1 //===- ARMLoadStoreOptimizer.cpp - ARM load / store opt. pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file contains a pass that performs load / store related peephole 10 /// optimizations. This pass should be run after register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARM.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMISelLowering.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/CodeGen/LiveRegUnits.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFrameInfo.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/RegisterClassInfo.h" 46 #include "llvm/CodeGen/TargetFrameLowering.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetLowering.h" 49 #include "llvm/CodeGen/TargetRegisterInfo.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/MC/MCInstrDesc.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Allocator.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include <cassert> 64 #include <cstddef> 65 #include <cstdlib> 66 #include <iterator> 67 #include <limits> 68 #include <utility> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "arm-ldst-opt" 73 74 STATISTIC(NumLDMGened , "Number of ldm instructions generated"); 75 STATISTIC(NumSTMGened , "Number of stm instructions generated"); 76 STATISTIC(NumVLDMGened, "Number of vldm instructions generated"); 77 STATISTIC(NumVSTMGened, "Number of vstm instructions generated"); 78 STATISTIC(NumLdStMoved, "Number of load / store instructions moved"); 79 STATISTIC(NumLDRDFormed,"Number of ldrd created before allocation"); 80 STATISTIC(NumSTRDFormed,"Number of strd created before allocation"); 81 STATISTIC(NumLDRD2LDM, "Number of ldrd instructions turned back into ldm"); 82 STATISTIC(NumSTRD2STM, "Number of strd instructions turned back into stm"); 83 STATISTIC(NumLDRD2LDR, "Number of ldrd instructions turned back into ldr's"); 84 STATISTIC(NumSTRD2STR, "Number of strd instructions turned back into str's"); 85 86 /// This switch disables formation of double/multi instructions that could 87 /// potentially lead to (new) alignment traps even with CCR.UNALIGN_TRP 88 /// disabled. This can be used to create libraries that are robust even when 89 /// users provoke undefined behaviour by supplying misaligned pointers. 90 /// \see mayCombineMisaligned() 91 static cl::opt<bool> 92 AssumeMisalignedLoadStores("arm-assume-misaligned-load-store", cl::Hidden, 93 cl::init(false), cl::desc("Be more conservative in ARM load/store opt")); 94 95 #define ARM_LOAD_STORE_OPT_NAME "ARM load / store optimization pass" 96 97 namespace { 98 99 /// Post- register allocation pass the combine load / store instructions to 100 /// form ldm / stm instructions. 101 struct ARMLoadStoreOpt : public MachineFunctionPass { 102 static char ID; 103 104 const MachineFunction *MF; 105 const TargetInstrInfo *TII; 106 const TargetRegisterInfo *TRI; 107 const ARMSubtarget *STI; 108 const TargetLowering *TL; 109 ARMFunctionInfo *AFI; 110 LiveRegUnits LiveRegs; 111 RegisterClassInfo RegClassInfo; 112 MachineBasicBlock::const_iterator LiveRegPos; 113 bool LiveRegsValid; 114 bool RegClassInfoValid; 115 bool isThumb1, isThumb2; 116 117 ARMLoadStoreOpt() : MachineFunctionPass(ID) {} 118 119 bool runOnMachineFunction(MachineFunction &Fn) override; 120 121 MachineFunctionProperties getRequiredProperties() const override { 122 return MachineFunctionProperties().set( 123 MachineFunctionProperties::Property::NoVRegs); 124 } 125 126 StringRef getPassName() const override { return ARM_LOAD_STORE_OPT_NAME; } 127 128 private: 129 /// A set of load/store MachineInstrs with same base register sorted by 130 /// offset. 131 struct MemOpQueueEntry { 132 MachineInstr *MI; 133 int Offset; ///< Load/Store offset. 134 unsigned Position; ///< Position as counted from end of basic block. 135 136 MemOpQueueEntry(MachineInstr &MI, int Offset, unsigned Position) 137 : MI(&MI), Offset(Offset), Position(Position) {} 138 }; 139 using MemOpQueue = SmallVector<MemOpQueueEntry, 8>; 140 141 /// A set of MachineInstrs that fulfill (nearly all) conditions to get 142 /// merged into a LDM/STM. 143 struct MergeCandidate { 144 /// List of instructions ordered by load/store offset. 145 SmallVector<MachineInstr*, 4> Instrs; 146 147 /// Index in Instrs of the instruction being latest in the schedule. 148 unsigned LatestMIIdx; 149 150 /// Index in Instrs of the instruction being earliest in the schedule. 151 unsigned EarliestMIIdx; 152 153 /// Index into the basic block where the merged instruction will be 154 /// inserted. (See MemOpQueueEntry.Position) 155 unsigned InsertPos; 156 157 /// Whether the instructions can be merged into a ldm/stm instruction. 158 bool CanMergeToLSMulti; 159 160 /// Whether the instructions can be merged into a ldrd/strd instruction. 161 bool CanMergeToLSDouble; 162 }; 163 SpecificBumpPtrAllocator<MergeCandidate> Allocator; 164 SmallVector<const MergeCandidate*,4> Candidates; 165 SmallVector<MachineInstr*,4> MergeBaseCandidates; 166 167 void moveLiveRegsBefore(const MachineBasicBlock &MBB, 168 MachineBasicBlock::const_iterator Before); 169 unsigned findFreeReg(const TargetRegisterClass &RegClass); 170 void UpdateBaseRegUses(MachineBasicBlock &MBB, 171 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, 172 unsigned Base, unsigned WordOffset, 173 ARMCC::CondCodes Pred, unsigned PredReg); 174 MachineInstr *CreateLoadStoreMulti( 175 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 176 int Offset, unsigned Base, bool BaseKill, unsigned Opcode, 177 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL, 178 ArrayRef<std::pair<unsigned, bool>> Regs, 179 ArrayRef<MachineInstr*> Instrs); 180 MachineInstr *CreateLoadStoreDouble( 181 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 182 int Offset, unsigned Base, bool BaseKill, unsigned Opcode, 183 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL, 184 ArrayRef<std::pair<unsigned, bool>> Regs, 185 ArrayRef<MachineInstr*> Instrs) const; 186 void FormCandidates(const MemOpQueue &MemOps); 187 MachineInstr *MergeOpsUpdate(const MergeCandidate &Cand); 188 bool FixInvalidRegPairOp(MachineBasicBlock &MBB, 189 MachineBasicBlock::iterator &MBBI); 190 bool MergeBaseUpdateLoadStore(MachineInstr *MI); 191 bool MergeBaseUpdateLSMultiple(MachineInstr *MI); 192 bool MergeBaseUpdateLSDouble(MachineInstr &MI) const; 193 bool LoadStoreMultipleOpti(MachineBasicBlock &MBB); 194 bool MergeReturnIntoLDM(MachineBasicBlock &MBB); 195 bool CombineMovBx(MachineBasicBlock &MBB); 196 }; 197 198 } // end anonymous namespace 199 200 char ARMLoadStoreOpt::ID = 0; 201 202 INITIALIZE_PASS(ARMLoadStoreOpt, "arm-ldst-opt", ARM_LOAD_STORE_OPT_NAME, false, 203 false) 204 205 static bool definesCPSR(const MachineInstr &MI) { 206 for (const auto &MO : MI.operands()) { 207 if (!MO.isReg()) 208 continue; 209 if (MO.isDef() && MO.getReg() == ARM::CPSR && !MO.isDead()) 210 // If the instruction has live CPSR def, then it's not safe to fold it 211 // into load / store. 212 return true; 213 } 214 215 return false; 216 } 217 218 static int getMemoryOpOffset(const MachineInstr &MI) { 219 unsigned Opcode = MI.getOpcode(); 220 bool isAM3 = Opcode == ARM::LDRD || Opcode == ARM::STRD; 221 unsigned NumOperands = MI.getDesc().getNumOperands(); 222 unsigned OffField = MI.getOperand(NumOperands - 3).getImm(); 223 224 if (Opcode == ARM::t2LDRi12 || Opcode == ARM::t2LDRi8 || 225 Opcode == ARM::t2STRi12 || Opcode == ARM::t2STRi8 || 226 Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8 || 227 Opcode == ARM::LDRi12 || Opcode == ARM::STRi12) 228 return OffField; 229 230 // Thumb1 immediate offsets are scaled by 4 231 if (Opcode == ARM::tLDRi || Opcode == ARM::tSTRi || 232 Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi) 233 return OffField * 4; 234 235 int Offset = isAM3 ? ARM_AM::getAM3Offset(OffField) 236 : ARM_AM::getAM5Offset(OffField) * 4; 237 ARM_AM::AddrOpc Op = isAM3 ? ARM_AM::getAM3Op(OffField) 238 : ARM_AM::getAM5Op(OffField); 239 240 if (Op == ARM_AM::sub) 241 return -Offset; 242 243 return Offset; 244 } 245 246 static const MachineOperand &getLoadStoreBaseOp(const MachineInstr &MI) { 247 return MI.getOperand(1); 248 } 249 250 static const MachineOperand &getLoadStoreRegOp(const MachineInstr &MI) { 251 return MI.getOperand(0); 252 } 253 254 static int getLoadStoreMultipleOpcode(unsigned Opcode, ARM_AM::AMSubMode Mode) { 255 switch (Opcode) { 256 default: llvm_unreachable("Unhandled opcode!"); 257 case ARM::LDRi12: 258 ++NumLDMGened; 259 switch (Mode) { 260 default: llvm_unreachable("Unhandled submode!"); 261 case ARM_AM::ia: return ARM::LDMIA; 262 case ARM_AM::da: return ARM::LDMDA; 263 case ARM_AM::db: return ARM::LDMDB; 264 case ARM_AM::ib: return ARM::LDMIB; 265 } 266 case ARM::STRi12: 267 ++NumSTMGened; 268 switch (Mode) { 269 default: llvm_unreachable("Unhandled submode!"); 270 case ARM_AM::ia: return ARM::STMIA; 271 case ARM_AM::da: return ARM::STMDA; 272 case ARM_AM::db: return ARM::STMDB; 273 case ARM_AM::ib: return ARM::STMIB; 274 } 275 case ARM::tLDRi: 276 case ARM::tLDRspi: 277 // tLDMIA is writeback-only - unless the base register is in the input 278 // reglist. 279 ++NumLDMGened; 280 switch (Mode) { 281 default: llvm_unreachable("Unhandled submode!"); 282 case ARM_AM::ia: return ARM::tLDMIA; 283 } 284 case ARM::tSTRi: 285 case ARM::tSTRspi: 286 // There is no non-writeback tSTMIA either. 287 ++NumSTMGened; 288 switch (Mode) { 289 default: llvm_unreachable("Unhandled submode!"); 290 case ARM_AM::ia: return ARM::tSTMIA_UPD; 291 } 292 case ARM::t2LDRi8: 293 case ARM::t2LDRi12: 294 ++NumLDMGened; 295 switch (Mode) { 296 default: llvm_unreachable("Unhandled submode!"); 297 case ARM_AM::ia: return ARM::t2LDMIA; 298 case ARM_AM::db: return ARM::t2LDMDB; 299 } 300 case ARM::t2STRi8: 301 case ARM::t2STRi12: 302 ++NumSTMGened; 303 switch (Mode) { 304 default: llvm_unreachable("Unhandled submode!"); 305 case ARM_AM::ia: return ARM::t2STMIA; 306 case ARM_AM::db: return ARM::t2STMDB; 307 } 308 case ARM::VLDRS: 309 ++NumVLDMGened; 310 switch (Mode) { 311 default: llvm_unreachable("Unhandled submode!"); 312 case ARM_AM::ia: return ARM::VLDMSIA; 313 case ARM_AM::db: return 0; // Only VLDMSDB_UPD exists. 314 } 315 case ARM::VSTRS: 316 ++NumVSTMGened; 317 switch (Mode) { 318 default: llvm_unreachable("Unhandled submode!"); 319 case ARM_AM::ia: return ARM::VSTMSIA; 320 case ARM_AM::db: return 0; // Only VSTMSDB_UPD exists. 321 } 322 case ARM::VLDRD: 323 ++NumVLDMGened; 324 switch (Mode) { 325 default: llvm_unreachable("Unhandled submode!"); 326 case ARM_AM::ia: return ARM::VLDMDIA; 327 case ARM_AM::db: return 0; // Only VLDMDDB_UPD exists. 328 } 329 case ARM::VSTRD: 330 ++NumVSTMGened; 331 switch (Mode) { 332 default: llvm_unreachable("Unhandled submode!"); 333 case ARM_AM::ia: return ARM::VSTMDIA; 334 case ARM_AM::db: return 0; // Only VSTMDDB_UPD exists. 335 } 336 } 337 } 338 339 static ARM_AM::AMSubMode getLoadStoreMultipleSubMode(unsigned Opcode) { 340 switch (Opcode) { 341 default: llvm_unreachable("Unhandled opcode!"); 342 case ARM::LDMIA_RET: 343 case ARM::LDMIA: 344 case ARM::LDMIA_UPD: 345 case ARM::STMIA: 346 case ARM::STMIA_UPD: 347 case ARM::tLDMIA: 348 case ARM::tLDMIA_UPD: 349 case ARM::tSTMIA_UPD: 350 case ARM::t2LDMIA_RET: 351 case ARM::t2LDMIA: 352 case ARM::t2LDMIA_UPD: 353 case ARM::t2STMIA: 354 case ARM::t2STMIA_UPD: 355 case ARM::VLDMSIA: 356 case ARM::VLDMSIA_UPD: 357 case ARM::VSTMSIA: 358 case ARM::VSTMSIA_UPD: 359 case ARM::VLDMDIA: 360 case ARM::VLDMDIA_UPD: 361 case ARM::VSTMDIA: 362 case ARM::VSTMDIA_UPD: 363 return ARM_AM::ia; 364 365 case ARM::LDMDA: 366 case ARM::LDMDA_UPD: 367 case ARM::STMDA: 368 case ARM::STMDA_UPD: 369 return ARM_AM::da; 370 371 case ARM::LDMDB: 372 case ARM::LDMDB_UPD: 373 case ARM::STMDB: 374 case ARM::STMDB_UPD: 375 case ARM::t2LDMDB: 376 case ARM::t2LDMDB_UPD: 377 case ARM::t2STMDB: 378 case ARM::t2STMDB_UPD: 379 case ARM::VLDMSDB_UPD: 380 case ARM::VSTMSDB_UPD: 381 case ARM::VLDMDDB_UPD: 382 case ARM::VSTMDDB_UPD: 383 return ARM_AM::db; 384 385 case ARM::LDMIB: 386 case ARM::LDMIB_UPD: 387 case ARM::STMIB: 388 case ARM::STMIB_UPD: 389 return ARM_AM::ib; 390 } 391 } 392 393 static bool isT1i32Load(unsigned Opc) { 394 return Opc == ARM::tLDRi || Opc == ARM::tLDRspi; 395 } 396 397 static bool isT2i32Load(unsigned Opc) { 398 return Opc == ARM::t2LDRi12 || Opc == ARM::t2LDRi8; 399 } 400 401 static bool isi32Load(unsigned Opc) { 402 return Opc == ARM::LDRi12 || isT1i32Load(Opc) || isT2i32Load(Opc) ; 403 } 404 405 static bool isT1i32Store(unsigned Opc) { 406 return Opc == ARM::tSTRi || Opc == ARM::tSTRspi; 407 } 408 409 static bool isT2i32Store(unsigned Opc) { 410 return Opc == ARM::t2STRi12 || Opc == ARM::t2STRi8; 411 } 412 413 static bool isi32Store(unsigned Opc) { 414 return Opc == ARM::STRi12 || isT1i32Store(Opc) || isT2i32Store(Opc); 415 } 416 417 static bool isLoadSingle(unsigned Opc) { 418 return isi32Load(Opc) || Opc == ARM::VLDRS || Opc == ARM::VLDRD; 419 } 420 421 static unsigned getImmScale(unsigned Opc) { 422 switch (Opc) { 423 default: llvm_unreachable("Unhandled opcode!"); 424 case ARM::tLDRi: 425 case ARM::tSTRi: 426 case ARM::tLDRspi: 427 case ARM::tSTRspi: 428 return 1; 429 case ARM::tLDRHi: 430 case ARM::tSTRHi: 431 return 2; 432 case ARM::tLDRBi: 433 case ARM::tSTRBi: 434 return 4; 435 } 436 } 437 438 static unsigned getLSMultipleTransferSize(const MachineInstr *MI) { 439 switch (MI->getOpcode()) { 440 default: return 0; 441 case ARM::LDRi12: 442 case ARM::STRi12: 443 case ARM::tLDRi: 444 case ARM::tSTRi: 445 case ARM::tLDRspi: 446 case ARM::tSTRspi: 447 case ARM::t2LDRi8: 448 case ARM::t2LDRi12: 449 case ARM::t2STRi8: 450 case ARM::t2STRi12: 451 case ARM::VLDRS: 452 case ARM::VSTRS: 453 return 4; 454 case ARM::VLDRD: 455 case ARM::VSTRD: 456 return 8; 457 case ARM::LDMIA: 458 case ARM::LDMDA: 459 case ARM::LDMDB: 460 case ARM::LDMIB: 461 case ARM::STMIA: 462 case ARM::STMDA: 463 case ARM::STMDB: 464 case ARM::STMIB: 465 case ARM::tLDMIA: 466 case ARM::tLDMIA_UPD: 467 case ARM::tSTMIA_UPD: 468 case ARM::t2LDMIA: 469 case ARM::t2LDMDB: 470 case ARM::t2STMIA: 471 case ARM::t2STMDB: 472 case ARM::VLDMSIA: 473 case ARM::VSTMSIA: 474 return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 4; 475 case ARM::VLDMDIA: 476 case ARM::VSTMDIA: 477 return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 8; 478 } 479 } 480 481 /// Update future uses of the base register with the offset introduced 482 /// due to writeback. This function only works on Thumb1. 483 void ARMLoadStoreOpt::UpdateBaseRegUses(MachineBasicBlock &MBB, 484 MachineBasicBlock::iterator MBBI, 485 const DebugLoc &DL, unsigned Base, 486 unsigned WordOffset, 487 ARMCC::CondCodes Pred, 488 unsigned PredReg) { 489 assert(isThumb1 && "Can only update base register uses for Thumb1!"); 490 // Start updating any instructions with immediate offsets. Insert a SUB before 491 // the first non-updateable instruction (if any). 492 for (; MBBI != MBB.end(); ++MBBI) { 493 bool InsertSub = false; 494 unsigned Opc = MBBI->getOpcode(); 495 496 if (MBBI->readsRegister(Base, /*TRI=*/nullptr)) { 497 int Offset; 498 bool IsLoad = 499 Opc == ARM::tLDRi || Opc == ARM::tLDRHi || Opc == ARM::tLDRBi; 500 bool IsStore = 501 Opc == ARM::tSTRi || Opc == ARM::tSTRHi || Opc == ARM::tSTRBi; 502 503 if (IsLoad || IsStore) { 504 // Loads and stores with immediate offsets can be updated, but only if 505 // the new offset isn't negative. 506 // The MachineOperand containing the offset immediate is the last one 507 // before predicates. 508 MachineOperand &MO = 509 MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3); 510 // The offsets are scaled by 1, 2 or 4 depending on the Opcode. 511 Offset = MO.getImm() - WordOffset * getImmScale(Opc); 512 513 // If storing the base register, it needs to be reset first. 514 Register InstrSrcReg = getLoadStoreRegOp(*MBBI).getReg(); 515 516 if (Offset >= 0 && !(IsStore && InstrSrcReg == Base)) 517 MO.setImm(Offset); 518 else 519 InsertSub = true; 520 } else if ((Opc == ARM::tSUBi8 || Opc == ARM::tADDi8) && 521 !definesCPSR(*MBBI)) { 522 // SUBS/ADDS using this register, with a dead def of the CPSR. 523 // Merge it with the update; if the merged offset is too large, 524 // insert a new sub instead. 525 MachineOperand &MO = 526 MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3); 527 Offset = (Opc == ARM::tSUBi8) ? 528 MO.getImm() + WordOffset * 4 : 529 MO.getImm() - WordOffset * 4 ; 530 if (Offset >= 0 && TL->isLegalAddImmediate(Offset)) { 531 // FIXME: Swap ADDS<->SUBS if Offset < 0, erase instruction if 532 // Offset == 0. 533 MO.setImm(Offset); 534 // The base register has now been reset, so exit early. 535 return; 536 } else { 537 InsertSub = true; 538 } 539 } else { 540 // Can't update the instruction. 541 InsertSub = true; 542 } 543 } else if (definesCPSR(*MBBI) || MBBI->isCall() || MBBI->isBranch()) { 544 // Since SUBS sets the condition flags, we can't place the base reset 545 // after an instruction that has a live CPSR def. 546 // The base register might also contain an argument for a function call. 547 InsertSub = true; 548 } 549 550 if (InsertSub) { 551 // An instruction above couldn't be updated, so insert a sub. 552 BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBi8), Base) 553 .add(t1CondCodeOp(true)) 554 .addReg(Base) 555 .addImm(WordOffset * 4) 556 .addImm(Pred) 557 .addReg(PredReg); 558 return; 559 } 560 561 if (MBBI->killsRegister(Base, /*TRI=*/nullptr) || 562 MBBI->definesRegister(Base, /*TRI=*/nullptr)) 563 // Register got killed. Stop updating. 564 return; 565 } 566 567 // End of block was reached. 568 if (!MBB.succ_empty()) { 569 // FIXME: Because of a bug, live registers are sometimes missing from 570 // the successor blocks' live-in sets. This means we can't trust that 571 // information and *always* have to reset at the end of a block. 572 // See PR21029. 573 if (MBBI != MBB.end()) --MBBI; 574 BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBi8), Base) 575 .add(t1CondCodeOp(true)) 576 .addReg(Base) 577 .addImm(WordOffset * 4) 578 .addImm(Pred) 579 .addReg(PredReg); 580 } 581 } 582 583 /// Return the first register of class \p RegClass that is not in \p Regs. 584 unsigned ARMLoadStoreOpt::findFreeReg(const TargetRegisterClass &RegClass) { 585 if (!RegClassInfoValid) { 586 RegClassInfo.runOnMachineFunction(*MF); 587 RegClassInfoValid = true; 588 } 589 590 for (unsigned Reg : RegClassInfo.getOrder(&RegClass)) 591 if (LiveRegs.available(Reg) && !MF->getRegInfo().isReserved(Reg)) 592 return Reg; 593 return 0; 594 } 595 596 /// Compute live registers just before instruction \p Before (in normal schedule 597 /// direction). Computes backwards so multiple queries in the same block must 598 /// come in reverse order. 599 void ARMLoadStoreOpt::moveLiveRegsBefore(const MachineBasicBlock &MBB, 600 MachineBasicBlock::const_iterator Before) { 601 // Initialize if we never queried in this block. 602 if (!LiveRegsValid) { 603 LiveRegs.init(*TRI); 604 LiveRegs.addLiveOuts(MBB); 605 LiveRegPos = MBB.end(); 606 LiveRegsValid = true; 607 } 608 // Move backward just before the "Before" position. 609 while (LiveRegPos != Before) { 610 --LiveRegPos; 611 LiveRegs.stepBackward(*LiveRegPos); 612 } 613 } 614 615 static bool ContainsReg(const ArrayRef<std::pair<unsigned, bool>> &Regs, 616 unsigned Reg) { 617 for (const std::pair<unsigned, bool> &R : Regs) 618 if (R.first == Reg) 619 return true; 620 return false; 621 } 622 623 /// Create and insert a LDM or STM with Base as base register and registers in 624 /// Regs as the register operands that would be loaded / stored. It returns 625 /// true if the transformation is done. 626 MachineInstr *ARMLoadStoreOpt::CreateLoadStoreMulti( 627 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 628 int Offset, unsigned Base, bool BaseKill, unsigned Opcode, 629 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL, 630 ArrayRef<std::pair<unsigned, bool>> Regs, 631 ArrayRef<MachineInstr*> Instrs) { 632 unsigned NumRegs = Regs.size(); 633 assert(NumRegs > 1); 634 635 // For Thumb1 targets, it might be necessary to clobber the CPSR to merge. 636 // Compute liveness information for that register to make the decision. 637 bool SafeToClobberCPSR = !isThumb1 || 638 (MBB.computeRegisterLiveness(TRI, ARM::CPSR, InsertBefore, 20) == 639 MachineBasicBlock::LQR_Dead); 640 641 bool Writeback = isThumb1; // Thumb1 LDM/STM have base reg writeback. 642 643 // Exception: If the base register is in the input reglist, Thumb1 LDM is 644 // non-writeback. 645 // It's also not possible to merge an STR of the base register in Thumb1. 646 if (isThumb1 && ContainsReg(Regs, Base)) { 647 assert(Base != ARM::SP && "Thumb1 does not allow SP in register list"); 648 if (Opcode == ARM::tLDRi) 649 Writeback = false; 650 else if (Opcode == ARM::tSTRi) 651 return nullptr; 652 } 653 654 ARM_AM::AMSubMode Mode = ARM_AM::ia; 655 // VFP and Thumb2 do not support IB or DA modes. Thumb1 only supports IA. 656 bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode); 657 bool haveIBAndDA = isNotVFP && !isThumb2 && !isThumb1; 658 659 if (Offset == 4 && haveIBAndDA) { 660 Mode = ARM_AM::ib; 661 } else if (Offset == -4 * (int)NumRegs + 4 && haveIBAndDA) { 662 Mode = ARM_AM::da; 663 } else if (Offset == -4 * (int)NumRegs && isNotVFP && !isThumb1) { 664 // VLDM/VSTM do not support DB mode without also updating the base reg. 665 Mode = ARM_AM::db; 666 } else if (Offset != 0 || Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi) { 667 // Check if this is a supported opcode before inserting instructions to 668 // calculate a new base register. 669 if (!getLoadStoreMultipleOpcode(Opcode, Mode)) return nullptr; 670 671 // If starting offset isn't zero, insert a MI to materialize a new base. 672 // But only do so if it is cost effective, i.e. merging more than two 673 // loads / stores. 674 if (NumRegs <= 2) 675 return nullptr; 676 677 // On Thumb1, it's not worth materializing a new base register without 678 // clobbering the CPSR (i.e. not using ADDS/SUBS). 679 if (!SafeToClobberCPSR) 680 return nullptr; 681 682 unsigned NewBase; 683 if (isi32Load(Opcode)) { 684 // If it is a load, then just use one of the destination registers 685 // as the new base. Will no longer be writeback in Thumb1. 686 NewBase = Regs[NumRegs-1].first; 687 Writeback = false; 688 } else { 689 // Find a free register that we can use as scratch register. 690 moveLiveRegsBefore(MBB, InsertBefore); 691 // The merged instruction does not exist yet but will use several Regs if 692 // it is a Store. 693 if (!isLoadSingle(Opcode)) 694 for (const std::pair<unsigned, bool> &R : Regs) 695 LiveRegs.addReg(R.first); 696 697 NewBase = findFreeReg(isThumb1 ? ARM::tGPRRegClass : ARM::GPRRegClass); 698 if (NewBase == 0) 699 return nullptr; 700 } 701 702 int BaseOpc = isThumb2 ? (BaseKill && Base == ARM::SP ? ARM::t2ADDspImm 703 : ARM::t2ADDri) 704 : (isThumb1 && Base == ARM::SP) 705 ? ARM::tADDrSPi 706 : (isThumb1 && Offset < 8) 707 ? ARM::tADDi3 708 : isThumb1 ? ARM::tADDi8 : ARM::ADDri; 709 710 if (Offset < 0) { 711 // FIXME: There are no Thumb1 load/store instructions with negative 712 // offsets. So the Base != ARM::SP might be unnecessary. 713 Offset = -Offset; 714 BaseOpc = isThumb2 ? (BaseKill && Base == ARM::SP ? ARM::t2SUBspImm 715 : ARM::t2SUBri) 716 : (isThumb1 && Offset < 8 && Base != ARM::SP) 717 ? ARM::tSUBi3 718 : isThumb1 ? ARM::tSUBi8 : ARM::SUBri; 719 } 720 721 if (!TL->isLegalAddImmediate(Offset)) 722 // FIXME: Try add with register operand? 723 return nullptr; // Probably not worth it then. 724 725 // We can only append a kill flag to the add/sub input if the value is not 726 // used in the register list of the stm as well. 727 bool KillOldBase = BaseKill && 728 (!isi32Store(Opcode) || !ContainsReg(Regs, Base)); 729 730 if (isThumb1) { 731 // Thumb1: depending on immediate size, use either 732 // ADDS NewBase, Base, #imm3 733 // or 734 // MOV NewBase, Base 735 // ADDS NewBase, #imm8. 736 if (Base != NewBase && 737 (BaseOpc == ARM::tADDi8 || BaseOpc == ARM::tSUBi8)) { 738 // Need to insert a MOV to the new base first. 739 if (isARMLowRegister(NewBase) && isARMLowRegister(Base) && 740 !STI->hasV6Ops()) { 741 // thumbv4t doesn't have lo->lo copies, and we can't predicate tMOVSr 742 if (Pred != ARMCC::AL) 743 return nullptr; 744 BuildMI(MBB, InsertBefore, DL, TII->get(ARM::tMOVSr), NewBase) 745 .addReg(Base, getKillRegState(KillOldBase)); 746 } else 747 BuildMI(MBB, InsertBefore, DL, TII->get(ARM::tMOVr), NewBase) 748 .addReg(Base, getKillRegState(KillOldBase)) 749 .add(predOps(Pred, PredReg)); 750 751 // The following ADDS/SUBS becomes an update. 752 Base = NewBase; 753 KillOldBase = true; 754 } 755 if (BaseOpc == ARM::tADDrSPi) { 756 assert(Offset % 4 == 0 && "tADDrSPi offset is scaled by 4"); 757 BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase) 758 .addReg(Base, getKillRegState(KillOldBase)) 759 .addImm(Offset / 4) 760 .add(predOps(Pred, PredReg)); 761 } else 762 BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase) 763 .add(t1CondCodeOp(true)) 764 .addReg(Base, getKillRegState(KillOldBase)) 765 .addImm(Offset) 766 .add(predOps(Pred, PredReg)); 767 } else { 768 BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase) 769 .addReg(Base, getKillRegState(KillOldBase)) 770 .addImm(Offset) 771 .add(predOps(Pred, PredReg)) 772 .add(condCodeOp()); 773 } 774 Base = NewBase; 775 BaseKill = true; // New base is always killed straight away. 776 } 777 778 bool isDef = isLoadSingle(Opcode); 779 780 // Get LS multiple opcode. Note that for Thumb1 this might be an opcode with 781 // base register writeback. 782 Opcode = getLoadStoreMultipleOpcode(Opcode, Mode); 783 if (!Opcode) 784 return nullptr; 785 786 // Check if a Thumb1 LDM/STM merge is safe. This is the case if: 787 // - There is no writeback (LDM of base register), 788 // - the base register is killed by the merged instruction, 789 // - or it's safe to overwrite the condition flags, i.e. to insert a SUBS 790 // to reset the base register. 791 // Otherwise, don't merge. 792 // It's safe to return here since the code to materialize a new base register 793 // above is also conditional on SafeToClobberCPSR. 794 if (isThumb1 && !SafeToClobberCPSR && Writeback && !BaseKill) 795 return nullptr; 796 797 MachineInstrBuilder MIB; 798 799 if (Writeback) { 800 assert(isThumb1 && "expected Writeback only inThumb1"); 801 if (Opcode == ARM::tLDMIA) { 802 assert(!(ContainsReg(Regs, Base)) && "Thumb1 can't LDM ! with Base in Regs"); 803 // Update tLDMIA with writeback if necessary. 804 Opcode = ARM::tLDMIA_UPD; 805 } 806 807 MIB = BuildMI(MBB, InsertBefore, DL, TII->get(Opcode)); 808 809 // Thumb1: we might need to set base writeback when building the MI. 810 MIB.addReg(Base, getDefRegState(true)) 811 .addReg(Base, getKillRegState(BaseKill)); 812 813 // The base isn't dead after a merged instruction with writeback. 814 // Insert a sub instruction after the newly formed instruction to reset. 815 if (!BaseKill) 816 UpdateBaseRegUses(MBB, InsertBefore, DL, Base, NumRegs, Pred, PredReg); 817 } else { 818 // No writeback, simply build the MachineInstr. 819 MIB = BuildMI(MBB, InsertBefore, DL, TII->get(Opcode)); 820 MIB.addReg(Base, getKillRegState(BaseKill)); 821 } 822 823 MIB.addImm(Pred).addReg(PredReg); 824 825 for (const std::pair<unsigned, bool> &R : Regs) 826 MIB.addReg(R.first, getDefRegState(isDef) | getKillRegState(R.second)); 827 828 MIB.cloneMergedMemRefs(Instrs); 829 830 return MIB.getInstr(); 831 } 832 833 MachineInstr *ARMLoadStoreOpt::CreateLoadStoreDouble( 834 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 835 int Offset, unsigned Base, bool BaseKill, unsigned Opcode, 836 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL, 837 ArrayRef<std::pair<unsigned, bool>> Regs, 838 ArrayRef<MachineInstr*> Instrs) const { 839 bool IsLoad = isi32Load(Opcode); 840 assert((IsLoad || isi32Store(Opcode)) && "Must have integer load or store"); 841 unsigned LoadStoreOpcode = IsLoad ? ARM::t2LDRDi8 : ARM::t2STRDi8; 842 843 assert(Regs.size() == 2); 844 MachineInstrBuilder MIB = BuildMI(MBB, InsertBefore, DL, 845 TII->get(LoadStoreOpcode)); 846 if (IsLoad) { 847 MIB.addReg(Regs[0].first, RegState::Define) 848 .addReg(Regs[1].first, RegState::Define); 849 } else { 850 MIB.addReg(Regs[0].first, getKillRegState(Regs[0].second)) 851 .addReg(Regs[1].first, getKillRegState(Regs[1].second)); 852 } 853 MIB.addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg); 854 MIB.cloneMergedMemRefs(Instrs); 855 return MIB.getInstr(); 856 } 857 858 /// Call MergeOps and update MemOps and merges accordingly on success. 859 MachineInstr *ARMLoadStoreOpt::MergeOpsUpdate(const MergeCandidate &Cand) { 860 const MachineInstr *First = Cand.Instrs.front(); 861 unsigned Opcode = First->getOpcode(); 862 bool IsLoad = isLoadSingle(Opcode); 863 SmallVector<std::pair<unsigned, bool>, 8> Regs; 864 SmallVector<unsigned, 4> ImpDefs; 865 DenseSet<unsigned> KilledRegs; 866 DenseSet<unsigned> UsedRegs; 867 // Determine list of registers and list of implicit super-register defs. 868 for (const MachineInstr *MI : Cand.Instrs) { 869 const MachineOperand &MO = getLoadStoreRegOp(*MI); 870 Register Reg = MO.getReg(); 871 bool IsKill = MO.isKill(); 872 if (IsKill) 873 KilledRegs.insert(Reg); 874 Regs.push_back(std::make_pair(Reg, IsKill)); 875 UsedRegs.insert(Reg); 876 877 if (IsLoad) { 878 // Collect any implicit defs of super-registers, after merging we can't 879 // be sure anymore that we properly preserved these live ranges and must 880 // removed these implicit operands. 881 for (const MachineOperand &MO : MI->implicit_operands()) { 882 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 883 continue; 884 assert(MO.isImplicit()); 885 Register DefReg = MO.getReg(); 886 887 if (is_contained(ImpDefs, DefReg)) 888 continue; 889 // We can ignore cases where the super-reg is read and written. 890 if (MI->readsRegister(DefReg, /*TRI=*/nullptr)) 891 continue; 892 ImpDefs.push_back(DefReg); 893 } 894 } 895 } 896 897 // Attempt the merge. 898 using iterator = MachineBasicBlock::iterator; 899 900 MachineInstr *LatestMI = Cand.Instrs[Cand.LatestMIIdx]; 901 iterator InsertBefore = std::next(iterator(LatestMI)); 902 MachineBasicBlock &MBB = *LatestMI->getParent(); 903 unsigned Offset = getMemoryOpOffset(*First); 904 Register Base = getLoadStoreBaseOp(*First).getReg(); 905 bool BaseKill = LatestMI->killsRegister(Base, /*TRI=*/nullptr); 906 Register PredReg; 907 ARMCC::CondCodes Pred = getInstrPredicate(*First, PredReg); 908 DebugLoc DL = First->getDebugLoc(); 909 MachineInstr *Merged = nullptr; 910 if (Cand.CanMergeToLSDouble) 911 Merged = CreateLoadStoreDouble(MBB, InsertBefore, Offset, Base, BaseKill, 912 Opcode, Pred, PredReg, DL, Regs, 913 Cand.Instrs); 914 if (!Merged && Cand.CanMergeToLSMulti) 915 Merged = CreateLoadStoreMulti(MBB, InsertBefore, Offset, Base, BaseKill, 916 Opcode, Pred, PredReg, DL, Regs, Cand.Instrs); 917 if (!Merged) 918 return nullptr; 919 920 // Determine earliest instruction that will get removed. We then keep an 921 // iterator just above it so the following erases don't invalidated it. 922 iterator EarliestI(Cand.Instrs[Cand.EarliestMIIdx]); 923 bool EarliestAtBegin = false; 924 if (EarliestI == MBB.begin()) { 925 EarliestAtBegin = true; 926 } else { 927 EarliestI = std::prev(EarliestI); 928 } 929 930 // Remove instructions which have been merged. 931 for (MachineInstr *MI : Cand.Instrs) 932 MBB.erase(MI); 933 934 // Determine range between the earliest removed instruction and the new one. 935 if (EarliestAtBegin) 936 EarliestI = MBB.begin(); 937 else 938 EarliestI = std::next(EarliestI); 939 auto FixupRange = make_range(EarliestI, iterator(Merged)); 940 941 if (isLoadSingle(Opcode)) { 942 // If the previous loads defined a super-reg, then we have to mark earlier 943 // operands undef; Replicate the super-reg def on the merged instruction. 944 for (MachineInstr &MI : FixupRange) { 945 for (unsigned &ImpDefReg : ImpDefs) { 946 for (MachineOperand &MO : MI.implicit_operands()) { 947 if (!MO.isReg() || MO.getReg() != ImpDefReg) 948 continue; 949 if (MO.readsReg()) 950 MO.setIsUndef(); 951 else if (MO.isDef()) 952 ImpDefReg = 0; 953 } 954 } 955 } 956 957 MachineInstrBuilder MIB(*Merged->getParent()->getParent(), Merged); 958 for (unsigned ImpDef : ImpDefs) 959 MIB.addReg(ImpDef, RegState::ImplicitDefine); 960 } else { 961 // Remove kill flags: We are possibly storing the values later now. 962 assert(isi32Store(Opcode) || Opcode == ARM::VSTRS || Opcode == ARM::VSTRD); 963 for (MachineInstr &MI : FixupRange) { 964 for (MachineOperand &MO : MI.uses()) { 965 if (!MO.isReg() || !MO.isKill()) 966 continue; 967 if (UsedRegs.count(MO.getReg())) 968 MO.setIsKill(false); 969 } 970 } 971 assert(ImpDefs.empty()); 972 } 973 974 return Merged; 975 } 976 977 static bool isValidLSDoubleOffset(int Offset) { 978 unsigned Value = abs(Offset); 979 // t2LDRDi8/t2STRDi8 supports an 8 bit immediate which is internally 980 // multiplied by 4. 981 return (Value % 4) == 0 && Value < 1024; 982 } 983 984 /// Return true for loads/stores that can be combined to a double/multi 985 /// operation without increasing the requirements for alignment. 986 static bool mayCombineMisaligned(const TargetSubtargetInfo &STI, 987 const MachineInstr &MI) { 988 // vldr/vstr trap on misaligned pointers anyway, forming vldm makes no 989 // difference. 990 unsigned Opcode = MI.getOpcode(); 991 if (!isi32Load(Opcode) && !isi32Store(Opcode)) 992 return true; 993 994 // Stack pointer alignment is out of the programmers control so we can trust 995 // SP-relative loads/stores. 996 if (getLoadStoreBaseOp(MI).getReg() == ARM::SP && 997 STI.getFrameLowering()->getTransientStackAlign() >= Align(4)) 998 return true; 999 return false; 1000 } 1001 1002 /// Find candidates for load/store multiple merge in list of MemOpQueueEntries. 1003 void ARMLoadStoreOpt::FormCandidates(const MemOpQueue &MemOps) { 1004 const MachineInstr *FirstMI = MemOps[0].MI; 1005 unsigned Opcode = FirstMI->getOpcode(); 1006 bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode); 1007 unsigned Size = getLSMultipleTransferSize(FirstMI); 1008 1009 unsigned SIndex = 0; 1010 unsigned EIndex = MemOps.size(); 1011 do { 1012 // Look at the first instruction. 1013 const MachineInstr *MI = MemOps[SIndex].MI; 1014 int Offset = MemOps[SIndex].Offset; 1015 const MachineOperand &PMO = getLoadStoreRegOp(*MI); 1016 Register PReg = PMO.getReg(); 1017 unsigned PRegNum = PMO.isUndef() ? std::numeric_limits<unsigned>::max() 1018 : TRI->getEncodingValue(PReg); 1019 unsigned Latest = SIndex; 1020 unsigned Earliest = SIndex; 1021 unsigned Count = 1; 1022 bool CanMergeToLSDouble = 1023 STI->isThumb2() && isNotVFP && isValidLSDoubleOffset(Offset); 1024 // ARM errata 602117: LDRD with base in list may result in incorrect base 1025 // register when interrupted or faulted. 1026 if (STI->isCortexM3() && isi32Load(Opcode) && 1027 PReg == getLoadStoreBaseOp(*MI).getReg()) 1028 CanMergeToLSDouble = false; 1029 1030 bool CanMergeToLSMulti = true; 1031 // On swift vldm/vstm starting with an odd register number as that needs 1032 // more uops than single vldrs. 1033 if (STI->hasSlowOddRegister() && !isNotVFP && (PRegNum % 2) == 1) 1034 CanMergeToLSMulti = false; 1035 1036 // LDRD/STRD do not allow SP/PC. LDM/STM do not support it or have it 1037 // deprecated; LDM to PC is fine but cannot happen here. 1038 if (PReg == ARM::SP || PReg == ARM::PC) 1039 CanMergeToLSMulti = CanMergeToLSDouble = false; 1040 1041 // Should we be conservative? 1042 if (AssumeMisalignedLoadStores && !mayCombineMisaligned(*STI, *MI)) 1043 CanMergeToLSMulti = CanMergeToLSDouble = false; 1044 1045 // vldm / vstm limit are 32 for S variants, 16 for D variants. 1046 unsigned Limit; 1047 switch (Opcode) { 1048 default: 1049 Limit = UINT_MAX; 1050 break; 1051 case ARM::VLDRD: 1052 case ARM::VSTRD: 1053 Limit = 16; 1054 break; 1055 } 1056 1057 // Merge following instructions where possible. 1058 for (unsigned I = SIndex+1; I < EIndex; ++I, ++Count) { 1059 int NewOffset = MemOps[I].Offset; 1060 if (NewOffset != Offset + (int)Size) 1061 break; 1062 const MachineOperand &MO = getLoadStoreRegOp(*MemOps[I].MI); 1063 Register Reg = MO.getReg(); 1064 if (Reg == ARM::SP || Reg == ARM::PC) 1065 break; 1066 if (Count == Limit) 1067 break; 1068 1069 // See if the current load/store may be part of a multi load/store. 1070 unsigned RegNum = MO.isUndef() ? std::numeric_limits<unsigned>::max() 1071 : TRI->getEncodingValue(Reg); 1072 bool PartOfLSMulti = CanMergeToLSMulti; 1073 if (PartOfLSMulti) { 1074 // Register numbers must be in ascending order. 1075 if (RegNum <= PRegNum) 1076 PartOfLSMulti = false; 1077 // For VFP / NEON load/store multiples, the registers must be 1078 // consecutive and within the limit on the number of registers per 1079 // instruction. 1080 else if (!isNotVFP && RegNum != PRegNum+1) 1081 PartOfLSMulti = false; 1082 } 1083 // See if the current load/store may be part of a double load/store. 1084 bool PartOfLSDouble = CanMergeToLSDouble && Count <= 1; 1085 1086 if (!PartOfLSMulti && !PartOfLSDouble) 1087 break; 1088 CanMergeToLSMulti &= PartOfLSMulti; 1089 CanMergeToLSDouble &= PartOfLSDouble; 1090 // Track MemOp with latest and earliest position (Positions are 1091 // counted in reverse). 1092 unsigned Position = MemOps[I].Position; 1093 if (Position < MemOps[Latest].Position) 1094 Latest = I; 1095 else if (Position > MemOps[Earliest].Position) 1096 Earliest = I; 1097 // Prepare for next MemOp. 1098 Offset += Size; 1099 PRegNum = RegNum; 1100 } 1101 1102 // Form a candidate from the Ops collected so far. 1103 MergeCandidate *Candidate = new(Allocator.Allocate()) MergeCandidate; 1104 for (unsigned C = SIndex, CE = SIndex + Count; C < CE; ++C) 1105 Candidate->Instrs.push_back(MemOps[C].MI); 1106 Candidate->LatestMIIdx = Latest - SIndex; 1107 Candidate->EarliestMIIdx = Earliest - SIndex; 1108 Candidate->InsertPos = MemOps[Latest].Position; 1109 if (Count == 1) 1110 CanMergeToLSMulti = CanMergeToLSDouble = false; 1111 Candidate->CanMergeToLSMulti = CanMergeToLSMulti; 1112 Candidate->CanMergeToLSDouble = CanMergeToLSDouble; 1113 Candidates.push_back(Candidate); 1114 // Continue after the chain. 1115 SIndex += Count; 1116 } while (SIndex < EIndex); 1117 } 1118 1119 static unsigned getUpdatingLSMultipleOpcode(unsigned Opc, 1120 ARM_AM::AMSubMode Mode) { 1121 switch (Opc) { 1122 default: llvm_unreachable("Unhandled opcode!"); 1123 case ARM::LDMIA: 1124 case ARM::LDMDA: 1125 case ARM::LDMDB: 1126 case ARM::LDMIB: 1127 switch (Mode) { 1128 default: llvm_unreachable("Unhandled submode!"); 1129 case ARM_AM::ia: return ARM::LDMIA_UPD; 1130 case ARM_AM::ib: return ARM::LDMIB_UPD; 1131 case ARM_AM::da: return ARM::LDMDA_UPD; 1132 case ARM_AM::db: return ARM::LDMDB_UPD; 1133 } 1134 case ARM::STMIA: 1135 case ARM::STMDA: 1136 case ARM::STMDB: 1137 case ARM::STMIB: 1138 switch (Mode) { 1139 default: llvm_unreachable("Unhandled submode!"); 1140 case ARM_AM::ia: return ARM::STMIA_UPD; 1141 case ARM_AM::ib: return ARM::STMIB_UPD; 1142 case ARM_AM::da: return ARM::STMDA_UPD; 1143 case ARM_AM::db: return ARM::STMDB_UPD; 1144 } 1145 case ARM::t2LDMIA: 1146 case ARM::t2LDMDB: 1147 switch (Mode) { 1148 default: llvm_unreachable("Unhandled submode!"); 1149 case ARM_AM::ia: return ARM::t2LDMIA_UPD; 1150 case ARM_AM::db: return ARM::t2LDMDB_UPD; 1151 } 1152 case ARM::t2STMIA: 1153 case ARM::t2STMDB: 1154 switch (Mode) { 1155 default: llvm_unreachable("Unhandled submode!"); 1156 case ARM_AM::ia: return ARM::t2STMIA_UPD; 1157 case ARM_AM::db: return ARM::t2STMDB_UPD; 1158 } 1159 case ARM::VLDMSIA: 1160 switch (Mode) { 1161 default: llvm_unreachable("Unhandled submode!"); 1162 case ARM_AM::ia: return ARM::VLDMSIA_UPD; 1163 case ARM_AM::db: return ARM::VLDMSDB_UPD; 1164 } 1165 case ARM::VLDMDIA: 1166 switch (Mode) { 1167 default: llvm_unreachable("Unhandled submode!"); 1168 case ARM_AM::ia: return ARM::VLDMDIA_UPD; 1169 case ARM_AM::db: return ARM::VLDMDDB_UPD; 1170 } 1171 case ARM::VSTMSIA: 1172 switch (Mode) { 1173 default: llvm_unreachable("Unhandled submode!"); 1174 case ARM_AM::ia: return ARM::VSTMSIA_UPD; 1175 case ARM_AM::db: return ARM::VSTMSDB_UPD; 1176 } 1177 case ARM::VSTMDIA: 1178 switch (Mode) { 1179 default: llvm_unreachable("Unhandled submode!"); 1180 case ARM_AM::ia: return ARM::VSTMDIA_UPD; 1181 case ARM_AM::db: return ARM::VSTMDDB_UPD; 1182 } 1183 } 1184 } 1185 1186 /// Check if the given instruction increments or decrements a register and 1187 /// return the amount it is incremented/decremented. Returns 0 if the CPSR flags 1188 /// generated by the instruction are possibly read as well. 1189 static int isIncrementOrDecrement(const MachineInstr &MI, Register Reg, 1190 ARMCC::CondCodes Pred, Register PredReg) { 1191 bool CheckCPSRDef; 1192 int Scale; 1193 switch (MI.getOpcode()) { 1194 case ARM::tADDi8: Scale = 4; CheckCPSRDef = true; break; 1195 case ARM::tSUBi8: Scale = -4; CheckCPSRDef = true; break; 1196 case ARM::t2SUBri: 1197 case ARM::t2SUBspImm: 1198 case ARM::SUBri: Scale = -1; CheckCPSRDef = true; break; 1199 case ARM::t2ADDri: 1200 case ARM::t2ADDspImm: 1201 case ARM::ADDri: Scale = 1; CheckCPSRDef = true; break; 1202 case ARM::tADDspi: Scale = 4; CheckCPSRDef = false; break; 1203 case ARM::tSUBspi: Scale = -4; CheckCPSRDef = false; break; 1204 default: return 0; 1205 } 1206 1207 Register MIPredReg; 1208 if (MI.getOperand(0).getReg() != Reg || 1209 MI.getOperand(1).getReg() != Reg || 1210 getInstrPredicate(MI, MIPredReg) != Pred || 1211 MIPredReg != PredReg) 1212 return 0; 1213 1214 if (CheckCPSRDef && definesCPSR(MI)) 1215 return 0; 1216 return MI.getOperand(2).getImm() * Scale; 1217 } 1218 1219 /// Searches for an increment or decrement of \p Reg before \p MBBI. 1220 static MachineBasicBlock::iterator 1221 findIncDecBefore(MachineBasicBlock::iterator MBBI, Register Reg, 1222 ARMCC::CondCodes Pred, Register PredReg, int &Offset) { 1223 Offset = 0; 1224 MachineBasicBlock &MBB = *MBBI->getParent(); 1225 MachineBasicBlock::iterator BeginMBBI = MBB.begin(); 1226 MachineBasicBlock::iterator EndMBBI = MBB.end(); 1227 if (MBBI == BeginMBBI) 1228 return EndMBBI; 1229 1230 // Skip debug values. 1231 MachineBasicBlock::iterator PrevMBBI = std::prev(MBBI); 1232 while (PrevMBBI->isDebugInstr() && PrevMBBI != BeginMBBI) 1233 --PrevMBBI; 1234 1235 Offset = isIncrementOrDecrement(*PrevMBBI, Reg, Pred, PredReg); 1236 return Offset == 0 ? EndMBBI : PrevMBBI; 1237 } 1238 1239 /// Searches for a increment or decrement of \p Reg after \p MBBI. 1240 static MachineBasicBlock::iterator 1241 findIncDecAfter(MachineBasicBlock::iterator MBBI, Register Reg, 1242 ARMCC::CondCodes Pred, Register PredReg, int &Offset, 1243 const TargetRegisterInfo *TRI) { 1244 Offset = 0; 1245 MachineBasicBlock &MBB = *MBBI->getParent(); 1246 MachineBasicBlock::iterator EndMBBI = MBB.end(); 1247 MachineBasicBlock::iterator NextMBBI = std::next(MBBI); 1248 while (NextMBBI != EndMBBI) { 1249 // Skip debug values. 1250 while (NextMBBI != EndMBBI && NextMBBI->isDebugInstr()) 1251 ++NextMBBI; 1252 if (NextMBBI == EndMBBI) 1253 return EndMBBI; 1254 1255 unsigned Off = isIncrementOrDecrement(*NextMBBI, Reg, Pred, PredReg); 1256 if (Off) { 1257 Offset = Off; 1258 return NextMBBI; 1259 } 1260 1261 // SP can only be combined if it is the next instruction after the original 1262 // MBBI, otherwise we may be incrementing the stack pointer (invalidating 1263 // anything below the new pointer) when its frame elements are still in 1264 // use. Other registers can attempt to look further, until a different use 1265 // or def of the register is found. 1266 if (Reg == ARM::SP || NextMBBI->readsRegister(Reg, TRI) || 1267 NextMBBI->definesRegister(Reg, TRI)) 1268 return EndMBBI; 1269 1270 ++NextMBBI; 1271 } 1272 return EndMBBI; 1273 } 1274 1275 /// Fold proceeding/trailing inc/dec of base register into the 1276 /// LDM/STM/VLDM{D|S}/VSTM{D|S} op when possible: 1277 /// 1278 /// stmia rn, <ra, rb, rc> 1279 /// rn := rn + 4 * 3; 1280 /// => 1281 /// stmia rn!, <ra, rb, rc> 1282 /// 1283 /// rn := rn - 4 * 3; 1284 /// ldmia rn, <ra, rb, rc> 1285 /// => 1286 /// ldmdb rn!, <ra, rb, rc> 1287 bool ARMLoadStoreOpt::MergeBaseUpdateLSMultiple(MachineInstr *MI) { 1288 // Thumb1 is already using updating loads/stores. 1289 if (isThumb1) return false; 1290 LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << *MI); 1291 1292 const MachineOperand &BaseOP = MI->getOperand(0); 1293 Register Base = BaseOP.getReg(); 1294 bool BaseKill = BaseOP.isKill(); 1295 Register PredReg; 1296 ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg); 1297 unsigned Opcode = MI->getOpcode(); 1298 DebugLoc DL = MI->getDebugLoc(); 1299 1300 // Can't use an updating ld/st if the base register is also a dest 1301 // register. e.g. ldmdb r0!, {r0, r1, r2}. The behavior is undefined. 1302 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1303 if (MO.getReg() == Base) 1304 return false; 1305 1306 int Bytes = getLSMultipleTransferSize(MI); 1307 MachineBasicBlock &MBB = *MI->getParent(); 1308 MachineBasicBlock::iterator MBBI(MI); 1309 int Offset; 1310 MachineBasicBlock::iterator MergeInstr 1311 = findIncDecBefore(MBBI, Base, Pred, PredReg, Offset); 1312 ARM_AM::AMSubMode Mode = getLoadStoreMultipleSubMode(Opcode); 1313 if (Mode == ARM_AM::ia && Offset == -Bytes) { 1314 Mode = ARM_AM::db; 1315 } else if (Mode == ARM_AM::ib && Offset == -Bytes) { 1316 Mode = ARM_AM::da; 1317 } else { 1318 MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI); 1319 if (((Mode != ARM_AM::ia && Mode != ARM_AM::ib) || Offset != Bytes) && 1320 ((Mode != ARM_AM::da && Mode != ARM_AM::db) || Offset != -Bytes)) { 1321 1322 // We couldn't find an inc/dec to merge. But if the base is dead, we 1323 // can still change to a writeback form as that will save us 2 bytes 1324 // of code size. It can create WAW hazards though, so only do it if 1325 // we're minimizing code size. 1326 if (!STI->hasMinSize() || !BaseKill) 1327 return false; 1328 1329 bool HighRegsUsed = false; 1330 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1331 if (MO.getReg() >= ARM::R8) { 1332 HighRegsUsed = true; 1333 break; 1334 } 1335 1336 if (!HighRegsUsed) 1337 MergeInstr = MBB.end(); 1338 else 1339 return false; 1340 } 1341 } 1342 if (MergeInstr != MBB.end()) { 1343 LLVM_DEBUG(dbgs() << " Erasing old increment: " << *MergeInstr); 1344 MBB.erase(MergeInstr); 1345 } 1346 1347 unsigned NewOpc = getUpdatingLSMultipleOpcode(Opcode, Mode); 1348 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)) 1349 .addReg(Base, getDefRegState(true)) // WB base register 1350 .addReg(Base, getKillRegState(BaseKill)) 1351 .addImm(Pred).addReg(PredReg); 1352 1353 // Transfer the rest of operands. 1354 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 3)) 1355 MIB.add(MO); 1356 1357 // Transfer memoperands. 1358 MIB.setMemRefs(MI->memoperands()); 1359 1360 LLVM_DEBUG(dbgs() << " Added new load/store: " << *MIB); 1361 MBB.erase(MBBI); 1362 return true; 1363 } 1364 1365 static unsigned getPreIndexedLoadStoreOpcode(unsigned Opc, 1366 ARM_AM::AddrOpc Mode) { 1367 switch (Opc) { 1368 case ARM::LDRi12: 1369 return ARM::LDR_PRE_IMM; 1370 case ARM::STRi12: 1371 return ARM::STR_PRE_IMM; 1372 case ARM::VLDRS: 1373 return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD; 1374 case ARM::VLDRD: 1375 return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD; 1376 case ARM::VSTRS: 1377 return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD; 1378 case ARM::VSTRD: 1379 return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD; 1380 case ARM::t2LDRi8: 1381 case ARM::t2LDRi12: 1382 return ARM::t2LDR_PRE; 1383 case ARM::t2STRi8: 1384 case ARM::t2STRi12: 1385 return ARM::t2STR_PRE; 1386 default: llvm_unreachable("Unhandled opcode!"); 1387 } 1388 } 1389 1390 static unsigned getPostIndexedLoadStoreOpcode(unsigned Opc, 1391 ARM_AM::AddrOpc Mode) { 1392 switch (Opc) { 1393 case ARM::LDRi12: 1394 return ARM::LDR_POST_IMM; 1395 case ARM::STRi12: 1396 return ARM::STR_POST_IMM; 1397 case ARM::VLDRS: 1398 return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD; 1399 case ARM::VLDRD: 1400 return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD; 1401 case ARM::VSTRS: 1402 return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD; 1403 case ARM::VSTRD: 1404 return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD; 1405 case ARM::t2LDRi8: 1406 case ARM::t2LDRi12: 1407 return ARM::t2LDR_POST; 1408 case ARM::t2LDRBi8: 1409 case ARM::t2LDRBi12: 1410 return ARM::t2LDRB_POST; 1411 case ARM::t2LDRSBi8: 1412 case ARM::t2LDRSBi12: 1413 return ARM::t2LDRSB_POST; 1414 case ARM::t2LDRHi8: 1415 case ARM::t2LDRHi12: 1416 return ARM::t2LDRH_POST; 1417 case ARM::t2LDRSHi8: 1418 case ARM::t2LDRSHi12: 1419 return ARM::t2LDRSH_POST; 1420 case ARM::t2STRi8: 1421 case ARM::t2STRi12: 1422 return ARM::t2STR_POST; 1423 case ARM::t2STRBi8: 1424 case ARM::t2STRBi12: 1425 return ARM::t2STRB_POST; 1426 case ARM::t2STRHi8: 1427 case ARM::t2STRHi12: 1428 return ARM::t2STRH_POST; 1429 1430 case ARM::MVE_VLDRBS16: 1431 return ARM::MVE_VLDRBS16_post; 1432 case ARM::MVE_VLDRBS32: 1433 return ARM::MVE_VLDRBS32_post; 1434 case ARM::MVE_VLDRBU16: 1435 return ARM::MVE_VLDRBU16_post; 1436 case ARM::MVE_VLDRBU32: 1437 return ARM::MVE_VLDRBU32_post; 1438 case ARM::MVE_VLDRHS32: 1439 return ARM::MVE_VLDRHS32_post; 1440 case ARM::MVE_VLDRHU32: 1441 return ARM::MVE_VLDRHU32_post; 1442 case ARM::MVE_VLDRBU8: 1443 return ARM::MVE_VLDRBU8_post; 1444 case ARM::MVE_VLDRHU16: 1445 return ARM::MVE_VLDRHU16_post; 1446 case ARM::MVE_VLDRWU32: 1447 return ARM::MVE_VLDRWU32_post; 1448 case ARM::MVE_VSTRB16: 1449 return ARM::MVE_VSTRB16_post; 1450 case ARM::MVE_VSTRB32: 1451 return ARM::MVE_VSTRB32_post; 1452 case ARM::MVE_VSTRH32: 1453 return ARM::MVE_VSTRH32_post; 1454 case ARM::MVE_VSTRBU8: 1455 return ARM::MVE_VSTRBU8_post; 1456 case ARM::MVE_VSTRHU16: 1457 return ARM::MVE_VSTRHU16_post; 1458 case ARM::MVE_VSTRWU32: 1459 return ARM::MVE_VSTRWU32_post; 1460 1461 default: llvm_unreachable("Unhandled opcode!"); 1462 } 1463 } 1464 1465 /// Fold proceeding/trailing inc/dec of base register into the 1466 /// LDR/STR/FLD{D|S}/FST{D|S} op when possible: 1467 bool ARMLoadStoreOpt::MergeBaseUpdateLoadStore(MachineInstr *MI) { 1468 // Thumb1 doesn't have updating LDR/STR. 1469 // FIXME: Use LDM/STM with single register instead. 1470 if (isThumb1) return false; 1471 LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << *MI); 1472 1473 Register Base = getLoadStoreBaseOp(*MI).getReg(); 1474 bool BaseKill = getLoadStoreBaseOp(*MI).isKill(); 1475 unsigned Opcode = MI->getOpcode(); 1476 DebugLoc DL = MI->getDebugLoc(); 1477 bool isAM5 = (Opcode == ARM::VLDRD || Opcode == ARM::VLDRS || 1478 Opcode == ARM::VSTRD || Opcode == ARM::VSTRS); 1479 bool isAM2 = (Opcode == ARM::LDRi12 || Opcode == ARM::STRi12); 1480 if (isi32Load(Opcode) || isi32Store(Opcode)) 1481 if (MI->getOperand(2).getImm() != 0) 1482 return false; 1483 if (isAM5 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0) 1484 return false; 1485 1486 // Can't do the merge if the destination register is the same as the would-be 1487 // writeback register. 1488 if (MI->getOperand(0).getReg() == Base) 1489 return false; 1490 1491 Register PredReg; 1492 ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg); 1493 int Bytes = getLSMultipleTransferSize(MI); 1494 MachineBasicBlock &MBB = *MI->getParent(); 1495 MachineBasicBlock::iterator MBBI(MI); 1496 int Offset; 1497 MachineBasicBlock::iterator MergeInstr 1498 = findIncDecBefore(MBBI, Base, Pred, PredReg, Offset); 1499 unsigned NewOpc; 1500 if (!isAM5 && Offset == Bytes) { 1501 NewOpc = getPreIndexedLoadStoreOpcode(Opcode, ARM_AM::add); 1502 } else if (Offset == -Bytes) { 1503 NewOpc = getPreIndexedLoadStoreOpcode(Opcode, ARM_AM::sub); 1504 } else { 1505 MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI); 1506 if (MergeInstr == MBB.end()) 1507 return false; 1508 1509 NewOpc = getPostIndexedLoadStoreOpcode(Opcode, ARM_AM::add); 1510 if ((isAM5 && Offset != Bytes) || 1511 (!isAM5 && !isLegalAddressImm(NewOpc, Offset, TII))) { 1512 NewOpc = getPostIndexedLoadStoreOpcode(Opcode, ARM_AM::sub); 1513 if (isAM5 || !isLegalAddressImm(NewOpc, Offset, TII)) 1514 return false; 1515 } 1516 } 1517 LLVM_DEBUG(dbgs() << " Erasing old increment: " << *MergeInstr); 1518 MBB.erase(MergeInstr); 1519 1520 ARM_AM::AddrOpc AddSub = Offset < 0 ? ARM_AM::sub : ARM_AM::add; 1521 1522 bool isLd = isLoadSingle(Opcode); 1523 if (isAM5) { 1524 // VLDM[SD]_UPD, VSTM[SD]_UPD 1525 // (There are no base-updating versions of VLDR/VSTR instructions, but the 1526 // updating load/store-multiple instructions can be used with only one 1527 // register.) 1528 MachineOperand &MO = MI->getOperand(0); 1529 auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)) 1530 .addReg(Base, getDefRegState(true)) // WB base register 1531 .addReg(Base, getKillRegState(isLd ? BaseKill : false)) 1532 .addImm(Pred) 1533 .addReg(PredReg) 1534 .addReg(MO.getReg(), (isLd ? getDefRegState(true) 1535 : getKillRegState(MO.isKill()))) 1536 .cloneMemRefs(*MI); 1537 (void)MIB; 1538 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1539 } else if (isLd) { 1540 if (isAM2) { 1541 // LDR_PRE, LDR_POST 1542 if (NewOpc == ARM::LDR_PRE_IMM || NewOpc == ARM::LDRB_PRE_IMM) { 1543 auto MIB = 1544 BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg()) 1545 .addReg(Base, RegState::Define) 1546 .addReg(Base) 1547 .addImm(Offset) 1548 .addImm(Pred) 1549 .addReg(PredReg) 1550 .cloneMemRefs(*MI); 1551 (void)MIB; 1552 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1553 } else { 1554 int Imm = ARM_AM::getAM2Opc(AddSub, abs(Offset), ARM_AM::no_shift); 1555 auto MIB = 1556 BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg()) 1557 .addReg(Base, RegState::Define) 1558 .addReg(Base) 1559 .addReg(0) 1560 .addImm(Imm) 1561 .add(predOps(Pred, PredReg)) 1562 .cloneMemRefs(*MI); 1563 (void)MIB; 1564 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1565 } 1566 } else { 1567 // t2LDR_PRE, t2LDR_POST 1568 auto MIB = 1569 BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg()) 1570 .addReg(Base, RegState::Define) 1571 .addReg(Base) 1572 .addImm(Offset) 1573 .add(predOps(Pred, PredReg)) 1574 .cloneMemRefs(*MI); 1575 (void)MIB; 1576 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1577 } 1578 } else { 1579 MachineOperand &MO = MI->getOperand(0); 1580 // FIXME: post-indexed stores use am2offset_imm, which still encodes 1581 // the vestigal zero-reg offset register. When that's fixed, this clause 1582 // can be removed entirely. 1583 if (isAM2 && NewOpc == ARM::STR_POST_IMM) { 1584 int Imm = ARM_AM::getAM2Opc(AddSub, abs(Offset), ARM_AM::no_shift); 1585 // STR_PRE, STR_POST 1586 auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc), Base) 1587 .addReg(MO.getReg(), getKillRegState(MO.isKill())) 1588 .addReg(Base) 1589 .addReg(0) 1590 .addImm(Imm) 1591 .add(predOps(Pred, PredReg)) 1592 .cloneMemRefs(*MI); 1593 (void)MIB; 1594 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1595 } else { 1596 // t2STR_PRE, t2STR_POST 1597 auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc), Base) 1598 .addReg(MO.getReg(), getKillRegState(MO.isKill())) 1599 .addReg(Base) 1600 .addImm(Offset) 1601 .add(predOps(Pred, PredReg)) 1602 .cloneMemRefs(*MI); 1603 (void)MIB; 1604 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1605 } 1606 } 1607 MBB.erase(MBBI); 1608 1609 return true; 1610 } 1611 1612 bool ARMLoadStoreOpt::MergeBaseUpdateLSDouble(MachineInstr &MI) const { 1613 unsigned Opcode = MI.getOpcode(); 1614 assert((Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8) && 1615 "Must have t2STRDi8 or t2LDRDi8"); 1616 if (MI.getOperand(3).getImm() != 0) 1617 return false; 1618 LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << MI); 1619 1620 // Behaviour for writeback is undefined if base register is the same as one 1621 // of the others. 1622 const MachineOperand &BaseOp = MI.getOperand(2); 1623 Register Base = BaseOp.getReg(); 1624 const MachineOperand &Reg0Op = MI.getOperand(0); 1625 const MachineOperand &Reg1Op = MI.getOperand(1); 1626 if (Reg0Op.getReg() == Base || Reg1Op.getReg() == Base) 1627 return false; 1628 1629 Register PredReg; 1630 ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg); 1631 MachineBasicBlock::iterator MBBI(MI); 1632 MachineBasicBlock &MBB = *MI.getParent(); 1633 int Offset; 1634 MachineBasicBlock::iterator MergeInstr = findIncDecBefore(MBBI, Base, Pred, 1635 PredReg, Offset); 1636 unsigned NewOpc; 1637 if (Offset == 8 || Offset == -8) { 1638 NewOpc = Opcode == ARM::t2LDRDi8 ? ARM::t2LDRD_PRE : ARM::t2STRD_PRE; 1639 } else { 1640 MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI); 1641 if (MergeInstr == MBB.end()) 1642 return false; 1643 NewOpc = Opcode == ARM::t2LDRDi8 ? ARM::t2LDRD_POST : ARM::t2STRD_POST; 1644 if (!isLegalAddressImm(NewOpc, Offset, TII)) 1645 return false; 1646 } 1647 LLVM_DEBUG(dbgs() << " Erasing old increment: " << *MergeInstr); 1648 MBB.erase(MergeInstr); 1649 1650 DebugLoc DL = MI.getDebugLoc(); 1651 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)); 1652 if (NewOpc == ARM::t2LDRD_PRE || NewOpc == ARM::t2LDRD_POST) { 1653 MIB.add(Reg0Op).add(Reg1Op).addReg(BaseOp.getReg(), RegState::Define); 1654 } else { 1655 assert(NewOpc == ARM::t2STRD_PRE || NewOpc == ARM::t2STRD_POST); 1656 MIB.addReg(BaseOp.getReg(), RegState::Define).add(Reg0Op).add(Reg1Op); 1657 } 1658 MIB.addReg(BaseOp.getReg(), RegState::Kill) 1659 .addImm(Offset).addImm(Pred).addReg(PredReg); 1660 assert(TII->get(Opcode).getNumOperands() == 6 && 1661 TII->get(NewOpc).getNumOperands() == 7 && 1662 "Unexpected number of operands in Opcode specification."); 1663 1664 // Transfer implicit operands. 1665 for (const MachineOperand &MO : MI.implicit_operands()) 1666 MIB.add(MO); 1667 MIB.cloneMemRefs(MI); 1668 1669 LLVM_DEBUG(dbgs() << " Added new load/store: " << *MIB); 1670 MBB.erase(MBBI); 1671 return true; 1672 } 1673 1674 /// Returns true if instruction is a memory operation that this pass is capable 1675 /// of operating on. 1676 static bool isMemoryOp(const MachineInstr &MI) { 1677 unsigned Opcode = MI.getOpcode(); 1678 switch (Opcode) { 1679 case ARM::VLDRS: 1680 case ARM::VSTRS: 1681 case ARM::VLDRD: 1682 case ARM::VSTRD: 1683 case ARM::LDRi12: 1684 case ARM::STRi12: 1685 case ARM::tLDRi: 1686 case ARM::tSTRi: 1687 case ARM::tLDRspi: 1688 case ARM::tSTRspi: 1689 case ARM::t2LDRi8: 1690 case ARM::t2LDRi12: 1691 case ARM::t2STRi8: 1692 case ARM::t2STRi12: 1693 break; 1694 default: 1695 return false; 1696 } 1697 if (!MI.getOperand(1).isReg()) 1698 return false; 1699 1700 // When no memory operands are present, conservatively assume unaligned, 1701 // volatile, unfoldable. 1702 if (!MI.hasOneMemOperand()) 1703 return false; 1704 1705 const MachineMemOperand &MMO = **MI.memoperands_begin(); 1706 1707 // Don't touch volatile memory accesses - we may be changing their order. 1708 // TODO: We could allow unordered and monotonic atomics here, but we need to 1709 // make sure the resulting ldm/stm is correctly marked as atomic. 1710 if (MMO.isVolatile() || MMO.isAtomic()) 1711 return false; 1712 1713 // Unaligned ldr/str is emulated by some kernels, but unaligned ldm/stm is 1714 // not. 1715 if (MMO.getAlign() < Align(4)) 1716 return false; 1717 1718 // str <undef> could probably be eliminated entirely, but for now we just want 1719 // to avoid making a mess of it. 1720 // FIXME: Use str <undef> as a wildcard to enable better stm folding. 1721 if (MI.getOperand(0).isReg() && MI.getOperand(0).isUndef()) 1722 return false; 1723 1724 // Likewise don't mess with references to undefined addresses. 1725 if (MI.getOperand(1).isUndef()) 1726 return false; 1727 1728 return true; 1729 } 1730 1731 static void InsertLDR_STR(MachineBasicBlock &MBB, 1732 MachineBasicBlock::iterator &MBBI, int Offset, 1733 bool isDef, unsigned NewOpc, unsigned Reg, 1734 bool RegDeadKill, bool RegUndef, unsigned BaseReg, 1735 bool BaseKill, bool BaseUndef, ARMCC::CondCodes Pred, 1736 unsigned PredReg, const TargetInstrInfo *TII, 1737 MachineInstr *MI) { 1738 if (isDef) { 1739 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(), 1740 TII->get(NewOpc)) 1741 .addReg(Reg, getDefRegState(true) | getDeadRegState(RegDeadKill)) 1742 .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef)); 1743 MIB.addImm(Offset).addImm(Pred).addReg(PredReg); 1744 // FIXME: This is overly conservative; the new instruction accesses 4 1745 // bytes, not 8. 1746 MIB.cloneMemRefs(*MI); 1747 } else { 1748 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(), 1749 TII->get(NewOpc)) 1750 .addReg(Reg, getKillRegState(RegDeadKill) | getUndefRegState(RegUndef)) 1751 .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef)); 1752 MIB.addImm(Offset).addImm(Pred).addReg(PredReg); 1753 // FIXME: This is overly conservative; the new instruction accesses 4 1754 // bytes, not 8. 1755 MIB.cloneMemRefs(*MI); 1756 } 1757 } 1758 1759 bool ARMLoadStoreOpt::FixInvalidRegPairOp(MachineBasicBlock &MBB, 1760 MachineBasicBlock::iterator &MBBI) { 1761 MachineInstr *MI = &*MBBI; 1762 unsigned Opcode = MI->getOpcode(); 1763 // FIXME: Code/comments below check Opcode == t2STRDi8, but this check returns 1764 // if we see this opcode. 1765 if (Opcode != ARM::LDRD && Opcode != ARM::STRD && Opcode != ARM::t2LDRDi8) 1766 return false; 1767 1768 const MachineOperand &BaseOp = MI->getOperand(2); 1769 Register BaseReg = BaseOp.getReg(); 1770 Register EvenReg = MI->getOperand(0).getReg(); 1771 Register OddReg = MI->getOperand(1).getReg(); 1772 unsigned EvenRegNum = TRI->getDwarfRegNum(EvenReg, false); 1773 unsigned OddRegNum = TRI->getDwarfRegNum(OddReg, false); 1774 1775 // ARM errata 602117: LDRD with base in list may result in incorrect base 1776 // register when interrupted or faulted. 1777 bool Errata602117 = EvenReg == BaseReg && 1778 (Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8) && STI->isCortexM3(); 1779 // ARM LDRD/STRD needs consecutive registers. 1780 bool NonConsecutiveRegs = (Opcode == ARM::LDRD || Opcode == ARM::STRD) && 1781 (EvenRegNum % 2 != 0 || EvenRegNum + 1 != OddRegNum); 1782 1783 if (!Errata602117 && !NonConsecutiveRegs) 1784 return false; 1785 1786 bool isT2 = Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8; 1787 bool isLd = Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8; 1788 bool EvenDeadKill = isLd ? 1789 MI->getOperand(0).isDead() : MI->getOperand(0).isKill(); 1790 bool EvenUndef = MI->getOperand(0).isUndef(); 1791 bool OddDeadKill = isLd ? 1792 MI->getOperand(1).isDead() : MI->getOperand(1).isKill(); 1793 bool OddUndef = MI->getOperand(1).isUndef(); 1794 bool BaseKill = BaseOp.isKill(); 1795 bool BaseUndef = BaseOp.isUndef(); 1796 assert((isT2 || MI->getOperand(3).getReg() == ARM::NoRegister) && 1797 "register offset not handled below"); 1798 int OffImm = getMemoryOpOffset(*MI); 1799 Register PredReg; 1800 ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg); 1801 1802 if (OddRegNum > EvenRegNum && OffImm == 0) { 1803 // Ascending register numbers and no offset. It's safe to change it to a 1804 // ldm or stm. 1805 unsigned NewOpc = (isLd) 1806 ? (isT2 ? ARM::t2LDMIA : ARM::LDMIA) 1807 : (isT2 ? ARM::t2STMIA : ARM::STMIA); 1808 if (isLd) { 1809 BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc)) 1810 .addReg(BaseReg, getKillRegState(BaseKill)) 1811 .addImm(Pred).addReg(PredReg) 1812 .addReg(EvenReg, getDefRegState(isLd) | getDeadRegState(EvenDeadKill)) 1813 .addReg(OddReg, getDefRegState(isLd) | getDeadRegState(OddDeadKill)) 1814 .cloneMemRefs(*MI); 1815 ++NumLDRD2LDM; 1816 } else { 1817 BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc)) 1818 .addReg(BaseReg, getKillRegState(BaseKill)) 1819 .addImm(Pred).addReg(PredReg) 1820 .addReg(EvenReg, 1821 getKillRegState(EvenDeadKill) | getUndefRegState(EvenUndef)) 1822 .addReg(OddReg, 1823 getKillRegState(OddDeadKill) | getUndefRegState(OddUndef)) 1824 .cloneMemRefs(*MI); 1825 ++NumSTRD2STM; 1826 } 1827 } else { 1828 // Split into two instructions. 1829 unsigned NewOpc = (isLd) 1830 ? (isT2 ? (OffImm < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12) 1831 : (isT2 ? (OffImm < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12); 1832 // Be extra careful for thumb2. t2LDRi8 can't reference a zero offset, 1833 // so adjust and use t2LDRi12 here for that. 1834 unsigned NewOpc2 = (isLd) 1835 ? (isT2 ? (OffImm+4 < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12) 1836 : (isT2 ? (OffImm+4 < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12); 1837 // If this is a load, make sure the first load does not clobber the base 1838 // register before the second load reads it. 1839 if (isLd && TRI->regsOverlap(EvenReg, BaseReg)) { 1840 assert(!TRI->regsOverlap(OddReg, BaseReg)); 1841 InsertLDR_STR(MBB, MBBI, OffImm + 4, isLd, NewOpc2, OddReg, OddDeadKill, 1842 false, BaseReg, false, BaseUndef, Pred, PredReg, TII, MI); 1843 InsertLDR_STR(MBB, MBBI, OffImm, isLd, NewOpc, EvenReg, EvenDeadKill, 1844 false, BaseReg, BaseKill, BaseUndef, Pred, PredReg, TII, 1845 MI); 1846 } else { 1847 if (OddReg == EvenReg && EvenDeadKill) { 1848 // If the two source operands are the same, the kill marker is 1849 // probably on the first one. e.g. 1850 // t2STRDi8 killed %r5, %r5, killed %r9, 0, 14, %reg0 1851 EvenDeadKill = false; 1852 OddDeadKill = true; 1853 } 1854 // Never kill the base register in the first instruction. 1855 if (EvenReg == BaseReg) 1856 EvenDeadKill = false; 1857 InsertLDR_STR(MBB, MBBI, OffImm, isLd, NewOpc, EvenReg, EvenDeadKill, 1858 EvenUndef, BaseReg, false, BaseUndef, Pred, PredReg, TII, 1859 MI); 1860 InsertLDR_STR(MBB, MBBI, OffImm + 4, isLd, NewOpc2, OddReg, OddDeadKill, 1861 OddUndef, BaseReg, BaseKill, BaseUndef, Pred, PredReg, TII, 1862 MI); 1863 } 1864 if (isLd) 1865 ++NumLDRD2LDR; 1866 else 1867 ++NumSTRD2STR; 1868 } 1869 1870 MBBI = MBB.erase(MBBI); 1871 return true; 1872 } 1873 1874 /// An optimization pass to turn multiple LDR / STR ops of the same base and 1875 /// incrementing offset into LDM / STM ops. 1876 bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) { 1877 MemOpQueue MemOps; 1878 unsigned CurrBase = 0; 1879 unsigned CurrOpc = ~0u; 1880 ARMCC::CondCodes CurrPred = ARMCC::AL; 1881 unsigned Position = 0; 1882 assert(Candidates.size() == 0); 1883 assert(MergeBaseCandidates.size() == 0); 1884 LiveRegsValid = false; 1885 1886 for (MachineBasicBlock::iterator I = MBB.end(), MBBI; I != MBB.begin(); 1887 I = MBBI) { 1888 // The instruction in front of the iterator is the one we look at. 1889 MBBI = std::prev(I); 1890 if (FixInvalidRegPairOp(MBB, MBBI)) 1891 continue; 1892 ++Position; 1893 1894 if (isMemoryOp(*MBBI)) { 1895 unsigned Opcode = MBBI->getOpcode(); 1896 const MachineOperand &MO = MBBI->getOperand(0); 1897 Register Reg = MO.getReg(); 1898 Register Base = getLoadStoreBaseOp(*MBBI).getReg(); 1899 Register PredReg; 1900 ARMCC::CondCodes Pred = getInstrPredicate(*MBBI, PredReg); 1901 int Offset = getMemoryOpOffset(*MBBI); 1902 if (CurrBase == 0) { 1903 // Start of a new chain. 1904 CurrBase = Base; 1905 CurrOpc = Opcode; 1906 CurrPred = Pred; 1907 MemOps.push_back(MemOpQueueEntry(*MBBI, Offset, Position)); 1908 continue; 1909 } 1910 // Note: No need to match PredReg in the next if. 1911 if (CurrOpc == Opcode && CurrBase == Base && CurrPred == Pred) { 1912 // Watch out for: 1913 // r4 := ldr [r0, #8] 1914 // r4 := ldr [r0, #4] 1915 // or 1916 // r0 := ldr [r0] 1917 // If a load overrides the base register or a register loaded by 1918 // another load in our chain, we cannot take this instruction. 1919 bool Overlap = false; 1920 if (isLoadSingle(Opcode)) { 1921 Overlap = (Base == Reg); 1922 if (!Overlap) { 1923 for (const MemOpQueueEntry &E : MemOps) { 1924 if (TRI->regsOverlap(Reg, E.MI->getOperand(0).getReg())) { 1925 Overlap = true; 1926 break; 1927 } 1928 } 1929 } 1930 } 1931 1932 if (!Overlap) { 1933 // Check offset and sort memory operation into the current chain. 1934 if (Offset > MemOps.back().Offset) { 1935 MemOps.push_back(MemOpQueueEntry(*MBBI, Offset, Position)); 1936 continue; 1937 } else { 1938 MemOpQueue::iterator MI, ME; 1939 for (MI = MemOps.begin(), ME = MemOps.end(); MI != ME; ++MI) { 1940 if (Offset < MI->Offset) { 1941 // Found a place to insert. 1942 break; 1943 } 1944 if (Offset == MI->Offset) { 1945 // Collision, abort. 1946 MI = ME; 1947 break; 1948 } 1949 } 1950 if (MI != MemOps.end()) { 1951 MemOps.insert(MI, MemOpQueueEntry(*MBBI, Offset, Position)); 1952 continue; 1953 } 1954 } 1955 } 1956 } 1957 1958 // Don't advance the iterator; The op will start a new chain next. 1959 MBBI = I; 1960 --Position; 1961 // Fallthrough to look into existing chain. 1962 } else if (MBBI->isDebugInstr()) { 1963 continue; 1964 } else if (MBBI->getOpcode() == ARM::t2LDRDi8 || 1965 MBBI->getOpcode() == ARM::t2STRDi8) { 1966 // ARMPreAllocLoadStoreOpt has already formed some LDRD/STRD instructions 1967 // remember them because we may still be able to merge add/sub into them. 1968 MergeBaseCandidates.push_back(&*MBBI); 1969 } 1970 1971 // If we are here then the chain is broken; Extract candidates for a merge. 1972 if (MemOps.size() > 0) { 1973 FormCandidates(MemOps); 1974 // Reset for the next chain. 1975 CurrBase = 0; 1976 CurrOpc = ~0u; 1977 CurrPred = ARMCC::AL; 1978 MemOps.clear(); 1979 } 1980 } 1981 if (MemOps.size() > 0) 1982 FormCandidates(MemOps); 1983 1984 // Sort candidates so they get processed from end to begin of the basic 1985 // block later; This is necessary for liveness calculation. 1986 auto LessThan = [](const MergeCandidate* M0, const MergeCandidate *M1) { 1987 return M0->InsertPos < M1->InsertPos; 1988 }; 1989 llvm::sort(Candidates, LessThan); 1990 1991 // Go through list of candidates and merge. 1992 bool Changed = false; 1993 for (const MergeCandidate *Candidate : Candidates) { 1994 if (Candidate->CanMergeToLSMulti || Candidate->CanMergeToLSDouble) { 1995 MachineInstr *Merged = MergeOpsUpdate(*Candidate); 1996 // Merge preceding/trailing base inc/dec into the merged op. 1997 if (Merged) { 1998 Changed = true; 1999 unsigned Opcode = Merged->getOpcode(); 2000 if (Opcode == ARM::t2STRDi8 || Opcode == ARM::t2LDRDi8) 2001 MergeBaseUpdateLSDouble(*Merged); 2002 else 2003 MergeBaseUpdateLSMultiple(Merged); 2004 } else { 2005 for (MachineInstr *MI : Candidate->Instrs) { 2006 if (MergeBaseUpdateLoadStore(MI)) 2007 Changed = true; 2008 } 2009 } 2010 } else { 2011 assert(Candidate->Instrs.size() == 1); 2012 if (MergeBaseUpdateLoadStore(Candidate->Instrs.front())) 2013 Changed = true; 2014 } 2015 } 2016 Candidates.clear(); 2017 // Try to fold add/sub into the LDRD/STRD formed by ARMPreAllocLoadStoreOpt. 2018 for (MachineInstr *MI : MergeBaseCandidates) 2019 MergeBaseUpdateLSDouble(*MI); 2020 MergeBaseCandidates.clear(); 2021 2022 return Changed; 2023 } 2024 2025 /// If this is a exit BB, try merging the return ops ("bx lr" and "mov pc, lr") 2026 /// into the preceding stack restore so it directly restore the value of LR 2027 /// into pc. 2028 /// ldmfd sp!, {..., lr} 2029 /// bx lr 2030 /// or 2031 /// ldmfd sp!, {..., lr} 2032 /// mov pc, lr 2033 /// => 2034 /// ldmfd sp!, {..., pc} 2035 bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) { 2036 // Thumb1 LDM doesn't allow high registers. 2037 if (isThumb1) return false; 2038 if (MBB.empty()) return false; 2039 2040 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 2041 if (MBBI != MBB.begin() && MBBI != MBB.end() && 2042 (MBBI->getOpcode() == ARM::BX_RET || 2043 MBBI->getOpcode() == ARM::tBX_RET || 2044 MBBI->getOpcode() == ARM::MOVPCLR)) { 2045 MachineBasicBlock::iterator PrevI = std::prev(MBBI); 2046 // Ignore any debug instructions. 2047 while (PrevI->isDebugInstr() && PrevI != MBB.begin()) 2048 --PrevI; 2049 MachineInstr &PrevMI = *PrevI; 2050 unsigned Opcode = PrevMI.getOpcode(); 2051 if (Opcode == ARM::LDMIA_UPD || Opcode == ARM::LDMDA_UPD || 2052 Opcode == ARM::LDMDB_UPD || Opcode == ARM::LDMIB_UPD || 2053 Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 2054 MachineOperand &MO = PrevMI.getOperand(PrevMI.getNumOperands() - 1); 2055 if (MO.getReg() != ARM::LR) 2056 return false; 2057 unsigned NewOpc = (isThumb2 ? ARM::t2LDMIA_RET : ARM::LDMIA_RET); 2058 assert(((isThumb2 && Opcode == ARM::t2LDMIA_UPD) || 2059 Opcode == ARM::LDMIA_UPD) && "Unsupported multiple load-return!"); 2060 PrevMI.setDesc(TII->get(NewOpc)); 2061 MO.setReg(ARM::PC); 2062 PrevMI.copyImplicitOps(*MBB.getParent(), *MBBI); 2063 MBB.erase(MBBI); 2064 return true; 2065 } 2066 } 2067 return false; 2068 } 2069 2070 bool ARMLoadStoreOpt::CombineMovBx(MachineBasicBlock &MBB) { 2071 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 2072 if (MBBI == MBB.begin() || MBBI == MBB.end() || 2073 MBBI->getOpcode() != ARM::tBX_RET) 2074 return false; 2075 2076 MachineBasicBlock::iterator Prev = MBBI; 2077 --Prev; 2078 if (Prev->getOpcode() != ARM::tMOVr || 2079 !Prev->definesRegister(ARM::LR, /*TRI=*/nullptr)) 2080 return false; 2081 2082 for (auto Use : Prev->uses()) 2083 if (Use.isKill()) { 2084 assert(STI->hasV4TOps()); 2085 BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(ARM::tBX)) 2086 .addReg(Use.getReg(), RegState::Kill) 2087 .add(predOps(ARMCC::AL)) 2088 .copyImplicitOps(*MBBI); 2089 MBB.erase(MBBI); 2090 MBB.erase(Prev); 2091 return true; 2092 } 2093 2094 llvm_unreachable("tMOVr doesn't kill a reg before tBX_RET?"); 2095 } 2096 2097 bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2098 if (skipFunction(Fn.getFunction())) 2099 return false; 2100 2101 MF = &Fn; 2102 STI = &Fn.getSubtarget<ARMSubtarget>(); 2103 TL = STI->getTargetLowering(); 2104 AFI = Fn.getInfo<ARMFunctionInfo>(); 2105 TII = STI->getInstrInfo(); 2106 TRI = STI->getRegisterInfo(); 2107 2108 RegClassInfoValid = false; 2109 isThumb2 = AFI->isThumb2Function(); 2110 isThumb1 = AFI->isThumbFunction() && !isThumb2; 2111 2112 bool Modified = false, ModifiedLDMReturn = false; 2113 for (MachineBasicBlock &MBB : Fn) { 2114 Modified |= LoadStoreMultipleOpti(MBB); 2115 if (STI->hasV5TOps() && !AFI->shouldSignReturnAddress()) 2116 ModifiedLDMReturn |= MergeReturnIntoLDM(MBB); 2117 if (isThumb1) 2118 Modified |= CombineMovBx(MBB); 2119 } 2120 Modified |= ModifiedLDMReturn; 2121 2122 // If we merged a BX instruction into an LDM, we need to re-calculate whether 2123 // LR is restored. This check needs to consider the whole function, not just 2124 // the instruction(s) we changed, because there may be other BX returns which 2125 // still need LR to be restored. 2126 if (ModifiedLDMReturn) 2127 ARMFrameLowering::updateLRRestored(Fn); 2128 2129 Allocator.DestroyAll(); 2130 return Modified; 2131 } 2132 2133 #define ARM_PREALLOC_LOAD_STORE_OPT_NAME \ 2134 "ARM pre- register allocation load / store optimization pass" 2135 2136 namespace { 2137 2138 /// Pre- register allocation pass that move load / stores from consecutive 2139 /// locations close to make it more likely they will be combined later. 2140 struct ARMPreAllocLoadStoreOpt : public MachineFunctionPass{ 2141 static char ID; 2142 2143 AliasAnalysis *AA; 2144 const DataLayout *TD; 2145 const TargetInstrInfo *TII; 2146 const TargetRegisterInfo *TRI; 2147 const ARMSubtarget *STI; 2148 MachineRegisterInfo *MRI; 2149 MachineDominatorTree *DT; 2150 MachineFunction *MF; 2151 2152 ARMPreAllocLoadStoreOpt() : MachineFunctionPass(ID) {} 2153 2154 bool runOnMachineFunction(MachineFunction &Fn) override; 2155 2156 StringRef getPassName() const override { 2157 return ARM_PREALLOC_LOAD_STORE_OPT_NAME; 2158 } 2159 2160 void getAnalysisUsage(AnalysisUsage &AU) const override { 2161 AU.addRequired<AAResultsWrapperPass>(); 2162 AU.addRequired<MachineDominatorTreeWrapperPass>(); 2163 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 2164 MachineFunctionPass::getAnalysisUsage(AU); 2165 } 2166 2167 private: 2168 bool CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl, 2169 unsigned &NewOpc, Register &EvenReg, Register &OddReg, 2170 Register &BaseReg, int &Offset, Register &PredReg, 2171 ARMCC::CondCodes &Pred, bool &isT2); 2172 bool RescheduleOps( 2173 MachineBasicBlock *MBB, SmallVectorImpl<MachineInstr *> &Ops, 2174 unsigned Base, bool isLd, DenseMap<MachineInstr *, unsigned> &MI2LocMap, 2175 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap); 2176 bool RescheduleLoadStoreInstrs(MachineBasicBlock *MBB); 2177 bool DistributeIncrements(); 2178 bool DistributeIncrements(Register Base); 2179 }; 2180 2181 } // end anonymous namespace 2182 2183 char ARMPreAllocLoadStoreOpt::ID = 0; 2184 2185 INITIALIZE_PASS_BEGIN(ARMPreAllocLoadStoreOpt, "arm-prera-ldst-opt", 2186 ARM_PREALLOC_LOAD_STORE_OPT_NAME, false, false) 2187 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 2188 INITIALIZE_PASS_END(ARMPreAllocLoadStoreOpt, "arm-prera-ldst-opt", 2189 ARM_PREALLOC_LOAD_STORE_OPT_NAME, false, false) 2190 2191 // Limit the number of instructions to be rescheduled. 2192 // FIXME: tune this limit, and/or come up with some better heuristics. 2193 static cl::opt<unsigned> InstReorderLimit("arm-prera-ldst-opt-reorder-limit", 2194 cl::init(8), cl::Hidden); 2195 2196 bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2197 if (AssumeMisalignedLoadStores || skipFunction(Fn.getFunction())) 2198 return false; 2199 2200 TD = &Fn.getDataLayout(); 2201 STI = &Fn.getSubtarget<ARMSubtarget>(); 2202 TII = STI->getInstrInfo(); 2203 TRI = STI->getRegisterInfo(); 2204 MRI = &Fn.getRegInfo(); 2205 DT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 2206 MF = &Fn; 2207 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2208 2209 bool Modified = DistributeIncrements(); 2210 for (MachineBasicBlock &MFI : Fn) 2211 Modified |= RescheduleLoadStoreInstrs(&MFI); 2212 2213 return Modified; 2214 } 2215 2216 static bool IsSafeAndProfitableToMove(bool isLd, unsigned Base, 2217 MachineBasicBlock::iterator I, 2218 MachineBasicBlock::iterator E, 2219 SmallPtrSetImpl<MachineInstr*> &MemOps, 2220 SmallSet<unsigned, 4> &MemRegs, 2221 const TargetRegisterInfo *TRI, 2222 AliasAnalysis *AA) { 2223 // Are there stores / loads / calls between them? 2224 SmallSet<unsigned, 4> AddedRegPressure; 2225 while (++I != E) { 2226 if (I->isDebugInstr() || MemOps.count(&*I)) 2227 continue; 2228 if (I->isCall() || I->isTerminator() || I->hasUnmodeledSideEffects()) 2229 return false; 2230 if (I->mayStore() || (!isLd && I->mayLoad())) 2231 for (MachineInstr *MemOp : MemOps) 2232 if (I->mayAlias(AA, *MemOp, /*UseTBAA*/ false)) 2233 return false; 2234 for (unsigned j = 0, NumOps = I->getNumOperands(); j != NumOps; ++j) { 2235 MachineOperand &MO = I->getOperand(j); 2236 if (!MO.isReg()) 2237 continue; 2238 Register Reg = MO.getReg(); 2239 if (MO.isDef() && TRI->regsOverlap(Reg, Base)) 2240 return false; 2241 if (Reg != Base && !MemRegs.count(Reg)) 2242 AddedRegPressure.insert(Reg); 2243 } 2244 } 2245 2246 // Estimate register pressure increase due to the transformation. 2247 if (MemRegs.size() <= 4) 2248 // Ok if we are moving small number of instructions. 2249 return true; 2250 return AddedRegPressure.size() <= MemRegs.size() * 2; 2251 } 2252 2253 bool ARMPreAllocLoadStoreOpt::CanFormLdStDWord( 2254 MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl, unsigned &NewOpc, 2255 Register &FirstReg, Register &SecondReg, Register &BaseReg, int &Offset, 2256 Register &PredReg, ARMCC::CondCodes &Pred, bool &isT2) { 2257 // Make sure we're allowed to generate LDRD/STRD. 2258 if (!STI->hasV5TEOps()) 2259 return false; 2260 2261 // FIXME: VLDRS / VSTRS -> VLDRD / VSTRD 2262 unsigned Scale = 1; 2263 unsigned Opcode = Op0->getOpcode(); 2264 if (Opcode == ARM::LDRi12) { 2265 NewOpc = ARM::LDRD; 2266 } else if (Opcode == ARM::STRi12) { 2267 NewOpc = ARM::STRD; 2268 } else if (Opcode == ARM::t2LDRi8 || Opcode == ARM::t2LDRi12) { 2269 NewOpc = ARM::t2LDRDi8; 2270 Scale = 4; 2271 isT2 = true; 2272 } else if (Opcode == ARM::t2STRi8 || Opcode == ARM::t2STRi12) { 2273 NewOpc = ARM::t2STRDi8; 2274 Scale = 4; 2275 isT2 = true; 2276 } else { 2277 return false; 2278 } 2279 2280 // Make sure the base address satisfies i64 ld / st alignment requirement. 2281 // At the moment, we ignore the memoryoperand's value. 2282 // If we want to use AliasAnalysis, we should check it accordingly. 2283 if (!Op0->hasOneMemOperand() || 2284 (*Op0->memoperands_begin())->isVolatile() || 2285 (*Op0->memoperands_begin())->isAtomic()) 2286 return false; 2287 2288 Align Alignment = (*Op0->memoperands_begin())->getAlign(); 2289 Align ReqAlign = STI->getDualLoadStoreAlignment(); 2290 if (Alignment < ReqAlign) 2291 return false; 2292 2293 // Then make sure the immediate offset fits. 2294 int OffImm = getMemoryOpOffset(*Op0); 2295 if (isT2) { 2296 int Limit = (1 << 8) * Scale; 2297 if (OffImm >= Limit || (OffImm <= -Limit) || (OffImm & (Scale-1))) 2298 return false; 2299 Offset = OffImm; 2300 } else { 2301 ARM_AM::AddrOpc AddSub = ARM_AM::add; 2302 if (OffImm < 0) { 2303 AddSub = ARM_AM::sub; 2304 OffImm = - OffImm; 2305 } 2306 int Limit = (1 << 8) * Scale; 2307 if (OffImm >= Limit || (OffImm & (Scale-1))) 2308 return false; 2309 Offset = ARM_AM::getAM3Opc(AddSub, OffImm); 2310 } 2311 FirstReg = Op0->getOperand(0).getReg(); 2312 SecondReg = Op1->getOperand(0).getReg(); 2313 if (FirstReg == SecondReg) 2314 return false; 2315 BaseReg = Op0->getOperand(1).getReg(); 2316 Pred = getInstrPredicate(*Op0, PredReg); 2317 dl = Op0->getDebugLoc(); 2318 return true; 2319 } 2320 2321 bool ARMPreAllocLoadStoreOpt::RescheduleOps( 2322 MachineBasicBlock *MBB, SmallVectorImpl<MachineInstr *> &Ops, unsigned Base, 2323 bool isLd, DenseMap<MachineInstr *, unsigned> &MI2LocMap, 2324 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap) { 2325 bool RetVal = false; 2326 2327 // Sort by offset (in reverse order). 2328 llvm::sort(Ops, [](const MachineInstr *LHS, const MachineInstr *RHS) { 2329 int LOffset = getMemoryOpOffset(*LHS); 2330 int ROffset = getMemoryOpOffset(*RHS); 2331 assert(LHS == RHS || LOffset != ROffset); 2332 return LOffset > ROffset; 2333 }); 2334 2335 // The loads / stores of the same base are in order. Scan them from first to 2336 // last and check for the following: 2337 // 1. Any def of base. 2338 // 2. Any gaps. 2339 while (Ops.size() > 1) { 2340 unsigned FirstLoc = ~0U; 2341 unsigned LastLoc = 0; 2342 MachineInstr *FirstOp = nullptr; 2343 MachineInstr *LastOp = nullptr; 2344 int LastOffset = 0; 2345 unsigned LastOpcode = 0; 2346 unsigned LastBytes = 0; 2347 unsigned NumMove = 0; 2348 for (MachineInstr *Op : llvm::reverse(Ops)) { 2349 // Make sure each operation has the same kind. 2350 unsigned LSMOpcode 2351 = getLoadStoreMultipleOpcode(Op->getOpcode(), ARM_AM::ia); 2352 if (LastOpcode && LSMOpcode != LastOpcode) 2353 break; 2354 2355 // Check that we have a continuous set of offsets. 2356 int Offset = getMemoryOpOffset(*Op); 2357 unsigned Bytes = getLSMultipleTransferSize(Op); 2358 if (LastBytes) { 2359 if (Bytes != LastBytes || Offset != (LastOffset + (int)Bytes)) 2360 break; 2361 } 2362 2363 // Don't try to reschedule too many instructions. 2364 if (NumMove == InstReorderLimit) 2365 break; 2366 2367 // Found a mergable instruction; save information about it. 2368 ++NumMove; 2369 LastOffset = Offset; 2370 LastBytes = Bytes; 2371 LastOpcode = LSMOpcode; 2372 2373 unsigned Loc = MI2LocMap[Op]; 2374 if (Loc <= FirstLoc) { 2375 FirstLoc = Loc; 2376 FirstOp = Op; 2377 } 2378 if (Loc >= LastLoc) { 2379 LastLoc = Loc; 2380 LastOp = Op; 2381 } 2382 } 2383 2384 if (NumMove <= 1) 2385 Ops.pop_back(); 2386 else { 2387 SmallPtrSet<MachineInstr*, 4> MemOps; 2388 SmallSet<unsigned, 4> MemRegs; 2389 for (size_t i = Ops.size() - NumMove, e = Ops.size(); i != e; ++i) { 2390 MemOps.insert(Ops[i]); 2391 MemRegs.insert(Ops[i]->getOperand(0).getReg()); 2392 } 2393 2394 // Be conservative, if the instructions are too far apart, don't 2395 // move them. We want to limit the increase of register pressure. 2396 bool DoMove = (LastLoc - FirstLoc) <= NumMove*4; // FIXME: Tune this. 2397 if (DoMove) 2398 DoMove = IsSafeAndProfitableToMove(isLd, Base, FirstOp, LastOp, 2399 MemOps, MemRegs, TRI, AA); 2400 if (!DoMove) { 2401 for (unsigned i = 0; i != NumMove; ++i) 2402 Ops.pop_back(); 2403 } else { 2404 // This is the new location for the loads / stores. 2405 MachineBasicBlock::iterator InsertPos = isLd ? FirstOp : LastOp; 2406 while (InsertPos != MBB->end() && 2407 (MemOps.count(&*InsertPos) || InsertPos->isDebugInstr())) 2408 ++InsertPos; 2409 2410 // If we are moving a pair of loads / stores, see if it makes sense 2411 // to try to allocate a pair of registers that can form register pairs. 2412 MachineInstr *Op0 = Ops.back(); 2413 MachineInstr *Op1 = Ops[Ops.size()-2]; 2414 Register FirstReg, SecondReg; 2415 Register BaseReg, PredReg; 2416 ARMCC::CondCodes Pred = ARMCC::AL; 2417 bool isT2 = false; 2418 unsigned NewOpc = 0; 2419 int Offset = 0; 2420 DebugLoc dl; 2421 if (NumMove == 2 && CanFormLdStDWord(Op0, Op1, dl, NewOpc, 2422 FirstReg, SecondReg, BaseReg, 2423 Offset, PredReg, Pred, isT2)) { 2424 Ops.pop_back(); 2425 Ops.pop_back(); 2426 2427 const MCInstrDesc &MCID = TII->get(NewOpc); 2428 const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF); 2429 MRI->constrainRegClass(FirstReg, TRC); 2430 MRI->constrainRegClass(SecondReg, TRC); 2431 2432 // Form the pair instruction. 2433 if (isLd) { 2434 MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID) 2435 .addReg(FirstReg, RegState::Define) 2436 .addReg(SecondReg, RegState::Define) 2437 .addReg(BaseReg); 2438 // FIXME: We're converting from LDRi12 to an insn that still 2439 // uses addrmode2, so we need an explicit offset reg. It should 2440 // always by reg0 since we're transforming LDRi12s. 2441 if (!isT2) 2442 MIB.addReg(0); 2443 MIB.addImm(Offset).addImm(Pred).addReg(PredReg); 2444 MIB.cloneMergedMemRefs({Op0, Op1}); 2445 LLVM_DEBUG(dbgs() << "Formed " << *MIB << "\n"); 2446 ++NumLDRDFormed; 2447 } else { 2448 MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID) 2449 .addReg(FirstReg) 2450 .addReg(SecondReg) 2451 .addReg(BaseReg); 2452 // FIXME: We're converting from LDRi12 to an insn that still 2453 // uses addrmode2, so we need an explicit offset reg. It should 2454 // always by reg0 since we're transforming STRi12s. 2455 if (!isT2) 2456 MIB.addReg(0); 2457 MIB.addImm(Offset).addImm(Pred).addReg(PredReg); 2458 MIB.cloneMergedMemRefs({Op0, Op1}); 2459 LLVM_DEBUG(dbgs() << "Formed " << *MIB << "\n"); 2460 ++NumSTRDFormed; 2461 } 2462 MBB->erase(Op0); 2463 MBB->erase(Op1); 2464 2465 if (!isT2) { 2466 // Add register allocation hints to form register pairs. 2467 MRI->setRegAllocationHint(FirstReg, ARMRI::RegPairEven, SecondReg); 2468 MRI->setRegAllocationHint(SecondReg, ARMRI::RegPairOdd, FirstReg); 2469 } 2470 } else { 2471 for (unsigned i = 0; i != NumMove; ++i) { 2472 MachineInstr *Op = Ops.pop_back_val(); 2473 if (isLd) { 2474 // Populate RegisterMap with all Registers defined by loads. 2475 Register Reg = Op->getOperand(0).getReg(); 2476 RegisterMap[Reg]; 2477 } 2478 2479 MBB->splice(InsertPos, MBB, Op); 2480 } 2481 } 2482 2483 NumLdStMoved += NumMove; 2484 RetVal = true; 2485 } 2486 } 2487 } 2488 2489 return RetVal; 2490 } 2491 2492 static void forEachDbgRegOperand(MachineInstr *MI, 2493 std::function<void(MachineOperand &)> Fn) { 2494 if (MI->isNonListDebugValue()) { 2495 auto &Op = MI->getOperand(0); 2496 if (Op.isReg()) 2497 Fn(Op); 2498 } else { 2499 for (unsigned I = 2; I < MI->getNumOperands(); I++) { 2500 auto &Op = MI->getOperand(I); 2501 if (Op.isReg()) 2502 Fn(Op); 2503 } 2504 } 2505 } 2506 2507 // Update the RegisterMap with the instruction that was moved because a 2508 // DBG_VALUE_LIST may need to be moved again. 2509 static void updateRegisterMapForDbgValueListAfterMove( 2510 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap, 2511 MachineInstr *DbgValueListInstr, MachineInstr *InstrToReplace) { 2512 2513 forEachDbgRegOperand(DbgValueListInstr, [&](MachineOperand &Op) { 2514 auto RegIt = RegisterMap.find(Op.getReg()); 2515 if (RegIt == RegisterMap.end()) 2516 return; 2517 auto &InstrVec = RegIt->getSecond(); 2518 llvm::replace(InstrVec, InstrToReplace, DbgValueListInstr); 2519 }); 2520 } 2521 2522 static DebugVariable createDebugVariableFromMachineInstr(MachineInstr *MI) { 2523 auto DbgVar = DebugVariable(MI->getDebugVariable(), MI->getDebugExpression(), 2524 MI->getDebugLoc()->getInlinedAt()); 2525 return DbgVar; 2526 } 2527 2528 bool 2529 ARMPreAllocLoadStoreOpt::RescheduleLoadStoreInstrs(MachineBasicBlock *MBB) { 2530 bool RetVal = false; 2531 2532 DenseMap<MachineInstr *, unsigned> MI2LocMap; 2533 using Base2InstMap = DenseMap<unsigned, SmallVector<MachineInstr *, 4>>; 2534 using BaseVec = SmallVector<unsigned, 4>; 2535 Base2InstMap Base2LdsMap; 2536 Base2InstMap Base2StsMap; 2537 BaseVec LdBases; 2538 BaseVec StBases; 2539 // This map is used to track the relationship between the virtual 2540 // register that is the result of a load that is moved and the DBG_VALUE 2541 // MachineInstr pointer that uses that virtual register. 2542 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> RegisterMap; 2543 2544 unsigned Loc = 0; 2545 MachineBasicBlock::iterator MBBI = MBB->begin(); 2546 MachineBasicBlock::iterator E = MBB->end(); 2547 while (MBBI != E) { 2548 for (; MBBI != E; ++MBBI) { 2549 MachineInstr &MI = *MBBI; 2550 if (MI.isCall() || MI.isTerminator()) { 2551 // Stop at barriers. 2552 ++MBBI; 2553 break; 2554 } 2555 2556 if (!MI.isDebugInstr()) 2557 MI2LocMap[&MI] = ++Loc; 2558 2559 if (!isMemoryOp(MI)) 2560 continue; 2561 Register PredReg; 2562 if (getInstrPredicate(MI, PredReg) != ARMCC::AL) 2563 continue; 2564 2565 int Opc = MI.getOpcode(); 2566 bool isLd = isLoadSingle(Opc); 2567 Register Base = MI.getOperand(1).getReg(); 2568 int Offset = getMemoryOpOffset(MI); 2569 bool StopHere = false; 2570 auto FindBases = [&](Base2InstMap &Base2Ops, BaseVec &Bases) { 2571 auto [BI, Inserted] = Base2Ops.try_emplace(Base); 2572 if (Inserted) { 2573 BI->second.push_back(&MI); 2574 Bases.push_back(Base); 2575 return; 2576 } 2577 for (const MachineInstr *MI : BI->second) { 2578 if (Offset == getMemoryOpOffset(*MI)) { 2579 StopHere = true; 2580 break; 2581 } 2582 } 2583 if (!StopHere) 2584 BI->second.push_back(&MI); 2585 }; 2586 2587 if (isLd) 2588 FindBases(Base2LdsMap, LdBases); 2589 else 2590 FindBases(Base2StsMap, StBases); 2591 2592 if (StopHere) { 2593 // Found a duplicate (a base+offset combination that's seen earlier). 2594 // Backtrack. 2595 --Loc; 2596 break; 2597 } 2598 } 2599 2600 // Re-schedule loads. 2601 for (unsigned Base : LdBases) { 2602 SmallVectorImpl<MachineInstr *> &Lds = Base2LdsMap[Base]; 2603 if (Lds.size() > 1) 2604 RetVal |= RescheduleOps(MBB, Lds, Base, true, MI2LocMap, RegisterMap); 2605 } 2606 2607 // Re-schedule stores. 2608 for (unsigned Base : StBases) { 2609 SmallVectorImpl<MachineInstr *> &Sts = Base2StsMap[Base]; 2610 if (Sts.size() > 1) 2611 RetVal |= RescheduleOps(MBB, Sts, Base, false, MI2LocMap, RegisterMap); 2612 } 2613 2614 if (MBBI != E) { 2615 Base2LdsMap.clear(); 2616 Base2StsMap.clear(); 2617 LdBases.clear(); 2618 StBases.clear(); 2619 } 2620 } 2621 2622 // Reschedule DBG_VALUEs to match any loads that were moved. When a load is 2623 // sunk beyond a DBG_VALUE that is referring to it, the DBG_VALUE becomes a 2624 // use-before-def, resulting in a loss of debug info. 2625 2626 // Example: 2627 // Before the Pre Register Allocation Load Store Pass 2628 // inst_a 2629 // %2 = ld ... 2630 // inst_b 2631 // DBG_VALUE %2, "x", ... 2632 // %3 = ld ... 2633 2634 // After the Pass: 2635 // inst_a 2636 // inst_b 2637 // DBG_VALUE %2, "x", ... 2638 // %2 = ld ... 2639 // %3 = ld ... 2640 2641 // The code below addresses this by moving the DBG_VALUE to the position 2642 // immediately after the load. 2643 2644 // Example: 2645 // After the code below: 2646 // inst_a 2647 // inst_b 2648 // %2 = ld ... 2649 // DBG_VALUE %2, "x", ... 2650 // %3 = ld ... 2651 2652 // The algorithm works in two phases: First RescheduleOps() populates the 2653 // RegisterMap with registers that were moved as keys, there is no value 2654 // inserted. In the next phase, every MachineInstr in a basic block is 2655 // iterated over. If it is a valid DBG_VALUE or DBG_VALUE_LIST and it uses one 2656 // or more registers in the RegisterMap, the RegisterMap and InstrMap are 2657 // populated with the MachineInstr. If the DBG_VALUE or DBG_VALUE_LIST 2658 // describes debug information for a variable that already exists in the 2659 // DbgValueSinkCandidates, the MachineInstr in the DbgValueSinkCandidates must 2660 // be set to undef. If the current MachineInstr is a load that was moved, 2661 // undef the corresponding DBG_VALUE or DBG_VALUE_LIST and clone it to below 2662 // the load. 2663 2664 // To illustrate the above algorithm visually let's take this example. 2665 2666 // Before the Pre Register Allocation Load Store Pass: 2667 // %2 = ld ... 2668 // DBG_VALUE %2, A, .... # X 2669 // DBG_VALUE 0, A, ... # Y 2670 // %3 = ld ... 2671 // DBG_VALUE %3, A, ..., # Z 2672 // %4 = ld ... 2673 2674 // After Pre Register Allocation Load Store Pass: 2675 // DBG_VALUE %2, A, .... # X 2676 // DBG_VALUE 0, A, ... # Y 2677 // DBG_VALUE %3, A, ..., # Z 2678 // %2 = ld ... 2679 // %3 = ld ... 2680 // %4 = ld ... 2681 2682 // The algorithm below does the following: 2683 2684 // In the beginning, the RegisterMap will have been populated with the virtual 2685 // registers %2, and %3, the DbgValueSinkCandidates and the InstrMap will be 2686 // empty. DbgValueSinkCandidates = {}, RegisterMap = {2 -> {}, 3 -> {}}, 2687 // InstrMap {} 2688 // -> DBG_VALUE %2, A, .... # X 2689 // DBG_VALUE 0, A, ... # Y 2690 // DBG_VALUE %3, A, ..., # Z 2691 // %2 = ld ... 2692 // %3 = ld ... 2693 // %4 = ld ... 2694 2695 // After the first DBG_VALUE (denoted with an X) is processed, the 2696 // DbgValueSinkCandidates and InstrMap will be populated and the RegisterMap 2697 // entry for %2 will be populated as well. DbgValueSinkCandidates = {A -> X}, 2698 // RegisterMap = {2 -> {X}, 3 -> {}}, InstrMap {X -> 2} 2699 // DBG_VALUE %2, A, .... # X 2700 // -> DBG_VALUE 0, A, ... # Y 2701 // DBG_VALUE %3, A, ..., # Z 2702 // %2 = ld ... 2703 // %3 = ld ... 2704 // %4 = ld ... 2705 2706 // After the DBG_VALUE Y is processed, the DbgValueSinkCandidates is updated 2707 // to now hold Y for A and the RegisterMap is also updated to remove X from 2708 // %2, this is because both X and Y describe the same debug variable A. X is 2709 // also updated to have a $noreg as the first operand. 2710 // DbgValueSinkCandidates = {A -> {Y}}, RegisterMap = {2 -> {}, 3 -> {}}, 2711 // InstrMap = {X-> 2} 2712 // DBG_VALUE $noreg, A, .... # X 2713 // DBG_VALUE 0, A, ... # Y 2714 // -> DBG_VALUE %3, A, ..., # Z 2715 // %2 = ld ... 2716 // %3 = ld ... 2717 // %4 = ld ... 2718 2719 // After DBG_VALUE Z is processed, the DbgValueSinkCandidates is updated to 2720 // hold Z fr A, the RegisterMap is updated to hold Z for %3, and the InstrMap 2721 // is updated to have Z mapped to %3. This is again because Z describes the 2722 // debug variable A, Y is not updated to have $noreg as first operand because 2723 // its first operand is an immediate, not a register. 2724 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}}, 2725 // InstrMap = {X -> 2, Z -> 3} 2726 // DBG_VALUE $noreg, A, .... # X 2727 // DBG_VALUE 0, A, ... # Y 2728 // DBG_VALUE %3, A, ..., # Z 2729 // -> %2 = ld ... 2730 // %3 = ld ... 2731 // %4 = ld ... 2732 2733 // Nothing happens here since the RegisterMap for %2 contains no value. 2734 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}}, 2735 // InstrMap = {X -> 2, Z -> 3} 2736 // DBG_VALUE $noreg, A, .... # X 2737 // DBG_VALUE 0, A, ... # Y 2738 // DBG_VALUE %3, A, ..., # Z 2739 // %2 = ld ... 2740 // -> %3 = ld ... 2741 // %4 = ld ... 2742 2743 // Since the RegisterMap contains Z as a value for %3, the MachineInstr 2744 // pointer Z is copied to come after the load for %3 and the old Z's first 2745 // operand is changed to $noreg the Basic Block iterator is moved to after the 2746 // DBG_VALUE Z's new position. 2747 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}}, 2748 // InstrMap = {X -> 2, Z -> 3} 2749 // DBG_VALUE $noreg, A, .... # X 2750 // DBG_VALUE 0, A, ... # Y 2751 // DBG_VALUE $noreg, A, ..., # Old Z 2752 // %2 = ld ... 2753 // %3 = ld ... 2754 // DBG_VALUE %3, A, ..., # Z 2755 // -> %4 = ld ... 2756 2757 // Nothing happens for %4 and the algorithm exits having processed the entire 2758 // Basic Block. 2759 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}}, 2760 // InstrMap = {X -> 2, Z -> 3} 2761 // DBG_VALUE $noreg, A, .... # X 2762 // DBG_VALUE 0, A, ... # Y 2763 // DBG_VALUE $noreg, A, ..., # Old Z 2764 // %2 = ld ... 2765 // %3 = ld ... 2766 // DBG_VALUE %3, A, ..., # Z 2767 // %4 = ld ... 2768 2769 // This map is used to track the relationship between 2770 // a Debug Variable and the DBG_VALUE MachineInstr pointer that describes the 2771 // debug information for that Debug Variable. 2772 SmallDenseMap<DebugVariable, MachineInstr *, 8> DbgValueSinkCandidates; 2773 // This map is used to track the relationship between a DBG_VALUE or 2774 // DBG_VALUE_LIST MachineInstr pointer and Registers that it uses. 2775 SmallDenseMap<MachineInstr *, SmallVector<Register>, 8> InstrMap; 2776 for (MBBI = MBB->begin(), E = MBB->end(); MBBI != E; ++MBBI) { 2777 MachineInstr &MI = *MBBI; 2778 2779 auto PopulateRegisterAndInstrMapForDebugInstr = [&](Register Reg) { 2780 auto RegIt = RegisterMap.find(Reg); 2781 if (RegIt == RegisterMap.end()) 2782 return; 2783 auto &InstrVec = RegIt->getSecond(); 2784 InstrVec.push_back(&MI); 2785 InstrMap[&MI].push_back(Reg); 2786 }; 2787 2788 if (MI.isDebugValue()) { 2789 assert(MI.getDebugVariable() && 2790 "DBG_VALUE or DBG_VALUE_LIST must contain a DILocalVariable"); 2791 2792 auto DbgVar = createDebugVariableFromMachineInstr(&MI); 2793 // If the first operand is a register and it exists in the RegisterMap, we 2794 // know this is a DBG_VALUE that uses the result of a load that was moved, 2795 // and is therefore a candidate to also be moved, add it to the 2796 // RegisterMap and InstrMap. 2797 forEachDbgRegOperand(&MI, [&](MachineOperand &Op) { 2798 PopulateRegisterAndInstrMapForDebugInstr(Op.getReg()); 2799 }); 2800 2801 // If the current DBG_VALUE describes the same variable as one of the 2802 // in-flight DBG_VALUEs, remove the candidate from the list and set it to 2803 // undef. Moving one DBG_VALUE past another would result in the variable's 2804 // value going back in time when stepping through the block in the 2805 // debugger. 2806 auto InstrIt = DbgValueSinkCandidates.find(DbgVar); 2807 if (InstrIt != DbgValueSinkCandidates.end()) { 2808 auto *Instr = InstrIt->getSecond(); 2809 auto RegIt = InstrMap.find(Instr); 2810 if (RegIt != InstrMap.end()) { 2811 const auto &RegVec = RegIt->getSecond(); 2812 // For every Register in the RegVec, remove the MachineInstr in the 2813 // RegisterMap that describes the DbgVar. 2814 for (auto &Reg : RegVec) { 2815 auto RegIt = RegisterMap.find(Reg); 2816 if (RegIt == RegisterMap.end()) 2817 continue; 2818 auto &InstrVec = RegIt->getSecond(); 2819 auto IsDbgVar = [&](MachineInstr *I) -> bool { 2820 auto Var = createDebugVariableFromMachineInstr(I); 2821 return Var == DbgVar; 2822 }; 2823 2824 llvm::erase_if(InstrVec, IsDbgVar); 2825 } 2826 forEachDbgRegOperand(Instr, 2827 [&](MachineOperand &Op) { Op.setReg(0); }); 2828 } 2829 } 2830 DbgValueSinkCandidates[DbgVar] = &MI; 2831 } else { 2832 // If the first operand of a load matches with a DBG_VALUE in RegisterMap, 2833 // then move that DBG_VALUE to below the load. 2834 auto Opc = MI.getOpcode(); 2835 if (!isLoadSingle(Opc)) 2836 continue; 2837 auto Reg = MI.getOperand(0).getReg(); 2838 auto RegIt = RegisterMap.find(Reg); 2839 if (RegIt == RegisterMap.end()) 2840 continue; 2841 auto &DbgInstrVec = RegIt->getSecond(); 2842 if (!DbgInstrVec.size()) 2843 continue; 2844 for (auto *DbgInstr : DbgInstrVec) { 2845 MachineBasicBlock::iterator InsertPos = std::next(MBBI); 2846 auto *ClonedMI = MI.getMF()->CloneMachineInstr(DbgInstr); 2847 MBB->insert(InsertPos, ClonedMI); 2848 MBBI++; 2849 // Erase the entry into the DbgValueSinkCandidates for the DBG_VALUE 2850 // that was moved. 2851 auto DbgVar = createDebugVariableFromMachineInstr(DbgInstr); 2852 auto DbgIt = DbgValueSinkCandidates.find(DbgVar); 2853 // If the instruction is a DBG_VALUE_LIST, it may have already been 2854 // erased from the DbgValueSinkCandidates. Only erase if it exists in 2855 // the DbgValueSinkCandidates. 2856 if (DbgIt != DbgValueSinkCandidates.end()) 2857 DbgValueSinkCandidates.erase(DbgIt); 2858 // Zero out original dbg instr 2859 forEachDbgRegOperand(DbgInstr, 2860 [&](MachineOperand &Op) { Op.setReg(0); }); 2861 // Update RegisterMap with ClonedMI because it might have to be moved 2862 // again. 2863 if (DbgInstr->isDebugValueList()) 2864 updateRegisterMapForDbgValueListAfterMove(RegisterMap, ClonedMI, 2865 DbgInstr); 2866 } 2867 } 2868 } 2869 return RetVal; 2870 } 2871 2872 // Get the Base register operand index from the memory access MachineInst if we 2873 // should attempt to distribute postinc on it. Return -1 if not of a valid 2874 // instruction type. If it returns an index, it is assumed that instruction is a 2875 // r+i indexing mode, and getBaseOperandIndex() + 1 is the Offset index. 2876 static int getBaseOperandIndex(MachineInstr &MI) { 2877 switch (MI.getOpcode()) { 2878 case ARM::MVE_VLDRBS16: 2879 case ARM::MVE_VLDRBS32: 2880 case ARM::MVE_VLDRBU16: 2881 case ARM::MVE_VLDRBU32: 2882 case ARM::MVE_VLDRHS32: 2883 case ARM::MVE_VLDRHU32: 2884 case ARM::MVE_VLDRBU8: 2885 case ARM::MVE_VLDRHU16: 2886 case ARM::MVE_VLDRWU32: 2887 case ARM::MVE_VSTRB16: 2888 case ARM::MVE_VSTRB32: 2889 case ARM::MVE_VSTRH32: 2890 case ARM::MVE_VSTRBU8: 2891 case ARM::MVE_VSTRHU16: 2892 case ARM::MVE_VSTRWU32: 2893 case ARM::t2LDRHi8: 2894 case ARM::t2LDRHi12: 2895 case ARM::t2LDRSHi8: 2896 case ARM::t2LDRSHi12: 2897 case ARM::t2LDRBi8: 2898 case ARM::t2LDRBi12: 2899 case ARM::t2LDRSBi8: 2900 case ARM::t2LDRSBi12: 2901 case ARM::t2STRBi8: 2902 case ARM::t2STRBi12: 2903 case ARM::t2STRHi8: 2904 case ARM::t2STRHi12: 2905 return 1; 2906 case ARM::MVE_VLDRBS16_post: 2907 case ARM::MVE_VLDRBS32_post: 2908 case ARM::MVE_VLDRBU16_post: 2909 case ARM::MVE_VLDRBU32_post: 2910 case ARM::MVE_VLDRHS32_post: 2911 case ARM::MVE_VLDRHU32_post: 2912 case ARM::MVE_VLDRBU8_post: 2913 case ARM::MVE_VLDRHU16_post: 2914 case ARM::MVE_VLDRWU32_post: 2915 case ARM::MVE_VSTRB16_post: 2916 case ARM::MVE_VSTRB32_post: 2917 case ARM::MVE_VSTRH32_post: 2918 case ARM::MVE_VSTRBU8_post: 2919 case ARM::MVE_VSTRHU16_post: 2920 case ARM::MVE_VSTRWU32_post: 2921 case ARM::MVE_VLDRBS16_pre: 2922 case ARM::MVE_VLDRBS32_pre: 2923 case ARM::MVE_VLDRBU16_pre: 2924 case ARM::MVE_VLDRBU32_pre: 2925 case ARM::MVE_VLDRHS32_pre: 2926 case ARM::MVE_VLDRHU32_pre: 2927 case ARM::MVE_VLDRBU8_pre: 2928 case ARM::MVE_VLDRHU16_pre: 2929 case ARM::MVE_VLDRWU32_pre: 2930 case ARM::MVE_VSTRB16_pre: 2931 case ARM::MVE_VSTRB32_pre: 2932 case ARM::MVE_VSTRH32_pre: 2933 case ARM::MVE_VSTRBU8_pre: 2934 case ARM::MVE_VSTRHU16_pre: 2935 case ARM::MVE_VSTRWU32_pre: 2936 return 2; 2937 } 2938 return -1; 2939 } 2940 2941 static bool isPostIndex(MachineInstr &MI) { 2942 switch (MI.getOpcode()) { 2943 case ARM::MVE_VLDRBS16_post: 2944 case ARM::MVE_VLDRBS32_post: 2945 case ARM::MVE_VLDRBU16_post: 2946 case ARM::MVE_VLDRBU32_post: 2947 case ARM::MVE_VLDRHS32_post: 2948 case ARM::MVE_VLDRHU32_post: 2949 case ARM::MVE_VLDRBU8_post: 2950 case ARM::MVE_VLDRHU16_post: 2951 case ARM::MVE_VLDRWU32_post: 2952 case ARM::MVE_VSTRB16_post: 2953 case ARM::MVE_VSTRB32_post: 2954 case ARM::MVE_VSTRH32_post: 2955 case ARM::MVE_VSTRBU8_post: 2956 case ARM::MVE_VSTRHU16_post: 2957 case ARM::MVE_VSTRWU32_post: 2958 return true; 2959 } 2960 return false; 2961 } 2962 2963 static bool isPreIndex(MachineInstr &MI) { 2964 switch (MI.getOpcode()) { 2965 case ARM::MVE_VLDRBS16_pre: 2966 case ARM::MVE_VLDRBS32_pre: 2967 case ARM::MVE_VLDRBU16_pre: 2968 case ARM::MVE_VLDRBU32_pre: 2969 case ARM::MVE_VLDRHS32_pre: 2970 case ARM::MVE_VLDRHU32_pre: 2971 case ARM::MVE_VLDRBU8_pre: 2972 case ARM::MVE_VLDRHU16_pre: 2973 case ARM::MVE_VLDRWU32_pre: 2974 case ARM::MVE_VSTRB16_pre: 2975 case ARM::MVE_VSTRB32_pre: 2976 case ARM::MVE_VSTRH32_pre: 2977 case ARM::MVE_VSTRBU8_pre: 2978 case ARM::MVE_VSTRHU16_pre: 2979 case ARM::MVE_VSTRWU32_pre: 2980 return true; 2981 } 2982 return false; 2983 } 2984 2985 // Given a memory access Opcode, check that the give Imm would be a valid Offset 2986 // for this instruction (same as isLegalAddressImm), Or if the instruction 2987 // could be easily converted to one where that was valid. For example converting 2988 // t2LDRi12 to t2LDRi8 for negative offsets. Works in conjunction with 2989 // AdjustBaseAndOffset below. 2990 static bool isLegalOrConvertableAddressImm(unsigned Opcode, int Imm, 2991 const TargetInstrInfo *TII, 2992 int &CodesizeEstimate) { 2993 if (isLegalAddressImm(Opcode, Imm, TII)) 2994 return true; 2995 2996 // We can convert AddrModeT2_i12 to AddrModeT2_i8neg. 2997 const MCInstrDesc &Desc = TII->get(Opcode); 2998 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2999 switch (AddrMode) { 3000 case ARMII::AddrModeT2_i12: 3001 CodesizeEstimate += 1; 3002 return Imm < 0 && -Imm < ((1 << 8) * 1); 3003 } 3004 return false; 3005 } 3006 3007 // Given an MI adjust its address BaseReg to use NewBaseReg and address offset 3008 // by -Offset. This can either happen in-place or be a replacement as MI is 3009 // converted to another instruction type. 3010 static void AdjustBaseAndOffset(MachineInstr *MI, Register NewBaseReg, 3011 int Offset, const TargetInstrInfo *TII, 3012 const TargetRegisterInfo *TRI) { 3013 // Set the Base reg 3014 unsigned BaseOp = getBaseOperandIndex(*MI); 3015 MI->getOperand(BaseOp).setReg(NewBaseReg); 3016 // and constrain the reg class to that required by the instruction. 3017 MachineFunction *MF = MI->getMF(); 3018 MachineRegisterInfo &MRI = MF->getRegInfo(); 3019 const MCInstrDesc &MCID = TII->get(MI->getOpcode()); 3020 const TargetRegisterClass *TRC = TII->getRegClass(MCID, BaseOp, TRI, *MF); 3021 MRI.constrainRegClass(NewBaseReg, TRC); 3022 3023 int OldOffset = MI->getOperand(BaseOp + 1).getImm(); 3024 if (isLegalAddressImm(MI->getOpcode(), OldOffset - Offset, TII)) 3025 MI->getOperand(BaseOp + 1).setImm(OldOffset - Offset); 3026 else { 3027 unsigned ConvOpcode; 3028 switch (MI->getOpcode()) { 3029 case ARM::t2LDRHi12: 3030 ConvOpcode = ARM::t2LDRHi8; 3031 break; 3032 case ARM::t2LDRSHi12: 3033 ConvOpcode = ARM::t2LDRSHi8; 3034 break; 3035 case ARM::t2LDRBi12: 3036 ConvOpcode = ARM::t2LDRBi8; 3037 break; 3038 case ARM::t2LDRSBi12: 3039 ConvOpcode = ARM::t2LDRSBi8; 3040 break; 3041 case ARM::t2STRHi12: 3042 ConvOpcode = ARM::t2STRHi8; 3043 break; 3044 case ARM::t2STRBi12: 3045 ConvOpcode = ARM::t2STRBi8; 3046 break; 3047 default: 3048 llvm_unreachable("Unhandled convertable opcode"); 3049 } 3050 assert(isLegalAddressImm(ConvOpcode, OldOffset - Offset, TII) && 3051 "Illegal Address Immediate after convert!"); 3052 3053 const MCInstrDesc &MCID = TII->get(ConvOpcode); 3054 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID) 3055 .add(MI->getOperand(0)) 3056 .add(MI->getOperand(1)) 3057 .addImm(OldOffset - Offset) 3058 .add(MI->getOperand(3)) 3059 .add(MI->getOperand(4)) 3060 .cloneMemRefs(*MI); 3061 MI->eraseFromParent(); 3062 } 3063 } 3064 3065 static MachineInstr *createPostIncLoadStore(MachineInstr *MI, int Offset, 3066 Register NewReg, 3067 const TargetInstrInfo *TII, 3068 const TargetRegisterInfo *TRI) { 3069 MachineFunction *MF = MI->getMF(); 3070 MachineRegisterInfo &MRI = MF->getRegInfo(); 3071 3072 unsigned NewOpcode = getPostIndexedLoadStoreOpcode( 3073 MI->getOpcode(), Offset > 0 ? ARM_AM::add : ARM_AM::sub); 3074 3075 const MCInstrDesc &MCID = TII->get(NewOpcode); 3076 // Constrain the def register class 3077 const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF); 3078 MRI.constrainRegClass(NewReg, TRC); 3079 // And do the same for the base operand 3080 TRC = TII->getRegClass(MCID, 2, TRI, *MF); 3081 MRI.constrainRegClass(MI->getOperand(1).getReg(), TRC); 3082 3083 unsigned AddrMode = (MCID.TSFlags & ARMII::AddrModeMask); 3084 switch (AddrMode) { 3085 case ARMII::AddrModeT2_i7: 3086 case ARMII::AddrModeT2_i7s2: 3087 case ARMII::AddrModeT2_i7s4: 3088 // Any MVE load/store 3089 return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID) 3090 .addReg(NewReg, RegState::Define) 3091 .add(MI->getOperand(0)) 3092 .add(MI->getOperand(1)) 3093 .addImm(Offset) 3094 .add(MI->getOperand(3)) 3095 .add(MI->getOperand(4)) 3096 .add(MI->getOperand(5)) 3097 .cloneMemRefs(*MI); 3098 case ARMII::AddrModeT2_i8: 3099 if (MI->mayLoad()) { 3100 return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID) 3101 .add(MI->getOperand(0)) 3102 .addReg(NewReg, RegState::Define) 3103 .add(MI->getOperand(1)) 3104 .addImm(Offset) 3105 .add(MI->getOperand(3)) 3106 .add(MI->getOperand(4)) 3107 .cloneMemRefs(*MI); 3108 } else { 3109 return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID) 3110 .addReg(NewReg, RegState::Define) 3111 .add(MI->getOperand(0)) 3112 .add(MI->getOperand(1)) 3113 .addImm(Offset) 3114 .add(MI->getOperand(3)) 3115 .add(MI->getOperand(4)) 3116 .cloneMemRefs(*MI); 3117 } 3118 default: 3119 llvm_unreachable("Unhandled createPostIncLoadStore"); 3120 } 3121 } 3122 3123 // Given a Base Register, optimise the load/store uses to attempt to create more 3124 // post-inc accesses and less register moves. We do this by taking zero offset 3125 // loads/stores with an add, and convert them to a postinc load/store of the 3126 // same type. Any subsequent accesses will be adjusted to use and account for 3127 // the post-inc value. 3128 // For example: 3129 // LDR #0 LDR_POSTINC #16 3130 // LDR #4 LDR #-12 3131 // LDR #8 LDR #-8 3132 // LDR #12 LDR #-4 3133 // ADD #16 3134 // 3135 // At the same time if we do not find an increment but do find an existing 3136 // pre/post inc instruction, we can still adjust the offsets of subsequent 3137 // instructions to save the register move that would otherwise be needed for the 3138 // in-place increment. 3139 bool ARMPreAllocLoadStoreOpt::DistributeIncrements(Register Base) { 3140 // We are looking for: 3141 // One zero offset load/store that can become postinc 3142 MachineInstr *BaseAccess = nullptr; 3143 MachineInstr *PrePostInc = nullptr; 3144 // An increment that can be folded in 3145 MachineInstr *Increment = nullptr; 3146 // Other accesses after BaseAccess that will need to be updated to use the 3147 // postinc value. 3148 SmallPtrSet<MachineInstr *, 8> OtherAccesses; 3149 for (auto &Use : MRI->use_nodbg_instructions(Base)) { 3150 if (!Increment && getAddSubImmediate(Use) != 0) { 3151 Increment = &Use; 3152 continue; 3153 } 3154 3155 int BaseOp = getBaseOperandIndex(Use); 3156 if (BaseOp == -1) 3157 return false; 3158 3159 if (!Use.getOperand(BaseOp).isReg() || 3160 Use.getOperand(BaseOp).getReg() != Base) 3161 return false; 3162 if (isPreIndex(Use) || isPostIndex(Use)) 3163 PrePostInc = &Use; 3164 else if (Use.getOperand(BaseOp + 1).getImm() == 0) 3165 BaseAccess = &Use; 3166 else 3167 OtherAccesses.insert(&Use); 3168 } 3169 3170 int IncrementOffset; 3171 Register NewBaseReg; 3172 if (BaseAccess && Increment) { 3173 if (PrePostInc || BaseAccess->getParent() != Increment->getParent()) 3174 return false; 3175 Register PredReg; 3176 if (Increment->definesRegister(ARM::CPSR, /*TRI=*/nullptr) || 3177 getInstrPredicate(*Increment, PredReg) != ARMCC::AL) 3178 return false; 3179 3180 LLVM_DEBUG(dbgs() << "\nAttempting to distribute increments on VirtualReg " 3181 << Base.virtRegIndex() << "\n"); 3182 3183 // Make sure that Increment has no uses before BaseAccess that are not PHI 3184 // uses. 3185 for (MachineInstr &Use : 3186 MRI->use_nodbg_instructions(Increment->getOperand(0).getReg())) { 3187 if (&Use == BaseAccess || (Use.getOpcode() != TargetOpcode::PHI && 3188 !DT->dominates(BaseAccess, &Use))) { 3189 LLVM_DEBUG(dbgs() << " BaseAccess doesn't dominate use of increment\n"); 3190 return false; 3191 } 3192 } 3193 3194 // Make sure that Increment can be folded into Base 3195 IncrementOffset = getAddSubImmediate(*Increment); 3196 unsigned NewPostIncOpcode = getPostIndexedLoadStoreOpcode( 3197 BaseAccess->getOpcode(), IncrementOffset > 0 ? ARM_AM::add : ARM_AM::sub); 3198 if (!isLegalAddressImm(NewPostIncOpcode, IncrementOffset, TII)) { 3199 LLVM_DEBUG(dbgs() << " Illegal addressing mode immediate on postinc\n"); 3200 return false; 3201 } 3202 } 3203 else if (PrePostInc) { 3204 // If we already have a pre/post index load/store then set BaseAccess, 3205 // IncrementOffset and NewBaseReg to the values it already produces, 3206 // allowing us to update and subsequent uses of BaseOp reg with the 3207 // incremented value. 3208 if (Increment) 3209 return false; 3210 3211 LLVM_DEBUG(dbgs() << "\nAttempting to distribute increments on already " 3212 << "indexed VirtualReg " << Base.virtRegIndex() << "\n"); 3213 int BaseOp = getBaseOperandIndex(*PrePostInc); 3214 IncrementOffset = PrePostInc->getOperand(BaseOp+1).getImm(); 3215 BaseAccess = PrePostInc; 3216 NewBaseReg = PrePostInc->getOperand(0).getReg(); 3217 } 3218 else 3219 return false; 3220 3221 // And make sure that the negative value of increment can be added to all 3222 // other offsets after the BaseAccess. We rely on either 3223 // dominates(BaseAccess, OtherAccess) or dominates(OtherAccess, BaseAccess) 3224 // to keep things simple. 3225 // This also adds a simple codesize metric, to detect if an instruction (like 3226 // t2LDRBi12) which can often be shrunk to a thumb1 instruction (tLDRBi) 3227 // cannot because it is converted to something else (t2LDRBi8). We start this 3228 // at -1 for the gain from removing the increment. 3229 SmallPtrSet<MachineInstr *, 4> SuccessorAccesses; 3230 int CodesizeEstimate = -1; 3231 for (auto *Use : OtherAccesses) { 3232 if (DT->dominates(BaseAccess, Use)) { 3233 SuccessorAccesses.insert(Use); 3234 unsigned BaseOp = getBaseOperandIndex(*Use); 3235 if (!isLegalOrConvertableAddressImm(Use->getOpcode(), 3236 Use->getOperand(BaseOp + 1).getImm() - 3237 IncrementOffset, 3238 TII, CodesizeEstimate)) { 3239 LLVM_DEBUG(dbgs() << " Illegal addressing mode immediate on use\n"); 3240 return false; 3241 } 3242 } else if (!DT->dominates(Use, BaseAccess)) { 3243 LLVM_DEBUG( 3244 dbgs() << " Unknown dominance relation between Base and Use\n"); 3245 return false; 3246 } 3247 } 3248 if (STI->hasMinSize() && CodesizeEstimate > 0) { 3249 LLVM_DEBUG(dbgs() << " Expected to grow instructions under minsize\n"); 3250 return false; 3251 } 3252 3253 if (!PrePostInc) { 3254 // Replace BaseAccess with a post inc 3255 LLVM_DEBUG(dbgs() << "Changing: "; BaseAccess->dump()); 3256 LLVM_DEBUG(dbgs() << " And : "; Increment->dump()); 3257 NewBaseReg = Increment->getOperand(0).getReg(); 3258 MachineInstr *BaseAccessPost = 3259 createPostIncLoadStore(BaseAccess, IncrementOffset, NewBaseReg, TII, TRI); 3260 BaseAccess->eraseFromParent(); 3261 Increment->eraseFromParent(); 3262 (void)BaseAccessPost; 3263 LLVM_DEBUG(dbgs() << " To : "; BaseAccessPost->dump()); 3264 } 3265 3266 for (auto *Use : SuccessorAccesses) { 3267 LLVM_DEBUG(dbgs() << "Changing: "; Use->dump()); 3268 AdjustBaseAndOffset(Use, NewBaseReg, IncrementOffset, TII, TRI); 3269 LLVM_DEBUG(dbgs() << " To : "; Use->dump()); 3270 } 3271 3272 // Remove the kill flag from all uses of NewBaseReg, in case any old uses 3273 // remain. 3274 for (MachineOperand &Op : MRI->use_nodbg_operands(NewBaseReg)) 3275 Op.setIsKill(false); 3276 return true; 3277 } 3278 3279 bool ARMPreAllocLoadStoreOpt::DistributeIncrements() { 3280 bool Changed = false; 3281 SmallSetVector<Register, 4> Visited; 3282 for (auto &MBB : *MF) { 3283 for (auto &MI : MBB) { 3284 int BaseOp = getBaseOperandIndex(MI); 3285 if (BaseOp == -1 || !MI.getOperand(BaseOp).isReg()) 3286 continue; 3287 3288 Register Base = MI.getOperand(BaseOp).getReg(); 3289 if (!Base.isVirtual()) 3290 continue; 3291 3292 Visited.insert(Base); 3293 } 3294 } 3295 3296 for (auto Base : Visited) 3297 Changed |= DistributeIncrements(Base); 3298 3299 return Changed; 3300 } 3301 3302 /// Returns an instance of the load / store optimization pass. 3303 FunctionPass *llvm::createARMLoadStoreOptimizationPass(bool PreAlloc) { 3304 if (PreAlloc) 3305 return new ARMPreAllocLoadStoreOpt(); 3306 return new ARMLoadStoreOpt(); 3307 } 3308