xref: /llvm-project/llvm/lib/CodeGen/RegisterBankInfo.cpp (revision a475ae05fba7368055071c29a1fc9408346ebd6a)
1 //===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the RegisterBankInfo class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/RegisterBankInfo.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/RegisterBank.h"
20 #include "llvm/CodeGen/TargetOpcodes.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/Config/llvm-config.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 
27 #include <algorithm> // For std::max.
28 
29 #define DEBUG_TYPE "registerbankinfo"
30 
31 using namespace llvm;
32 
33 STATISTIC(NumPartialMappingsCreated,
34           "Number of partial mappings dynamically created");
35 STATISTIC(NumPartialMappingsAccessed,
36           "Number of partial mappings dynamically accessed");
37 STATISTIC(NumValueMappingsCreated,
38           "Number of value mappings dynamically created");
39 STATISTIC(NumValueMappingsAccessed,
40           "Number of value mappings dynamically accessed");
41 STATISTIC(NumOperandsMappingsCreated,
42           "Number of operands mappings dynamically created");
43 STATISTIC(NumOperandsMappingsAccessed,
44           "Number of operands mappings dynamically accessed");
45 STATISTIC(NumInstructionMappingsCreated,
46           "Number of instruction mappings dynamically created");
47 STATISTIC(NumInstructionMappingsAccessed,
48           "Number of instruction mappings dynamically accessed");
49 
50 const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX;
51 const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1;
52 
53 //------------------------------------------------------------------------------
54 // RegisterBankInfo implementation.
55 //------------------------------------------------------------------------------
56 RegisterBankInfo::RegisterBankInfo(const RegisterBank **RegBanks,
57                                    unsigned NumRegBanks, const unsigned *Sizes,
58                                    unsigned HwMode)
59     : RegBanks(RegBanks), NumRegBanks(NumRegBanks), Sizes(Sizes),
60       HwMode(HwMode) {
61 #ifndef NDEBUG
62   for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
63     assert(RegBanks[Idx] != nullptr && "Invalid RegisterBank");
64     assert(RegBanks[Idx]->getID() == Idx &&
65            "RegisterBank ID should match index");
66   }
67 #endif // NDEBUG
68 }
69 
70 bool RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const {
71 #ifndef NDEBUG
72   for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
73     const RegisterBank &RegBank = getRegBank(Idx);
74     assert(Idx == RegBank.getID() &&
75            "ID does not match the index in the array");
76     LLVM_DEBUG(dbgs() << "Verify " << RegBank << '\n');
77     assert(RegBank.verify(*this, TRI) && "RegBank is invalid");
78   }
79 #endif // NDEBUG
80   return true;
81 }
82 
83 const RegisterBank *
84 RegisterBankInfo::getRegBank(Register Reg, const MachineRegisterInfo &MRI,
85                              const TargetRegisterInfo &TRI) const {
86   if (!Reg.isVirtual()) {
87     // FIXME: This was probably a copy to a virtual register that does have a
88     // type we could use.
89     const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg, TRI);
90     return RC ? &getRegBankFromRegClass(*RC, LLT()) : nullptr;
91   }
92 
93   const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
94   if (auto *RB = dyn_cast_if_present<const RegisterBank *>(RegClassOrBank))
95     return RB;
96   if (auto *RC =
97           dyn_cast_if_present<const TargetRegisterClass *>(RegClassOrBank))
98     return &getRegBankFromRegClass(*RC, MRI.getType(Reg));
99   return nullptr;
100 }
101 
102 const TargetRegisterClass *
103 RegisterBankInfo::getMinimalPhysRegClass(Register Reg,
104                                          const TargetRegisterInfo &TRI) const {
105   assert(Reg.isPhysical() && "Reg must be a physreg");
106   const auto [RegRCIt, Inserted] = PhysRegMinimalRCs.try_emplace(Reg);
107   if (Inserted)
108     RegRCIt->second = TRI.getMinimalPhysRegClassLLT(Reg, LLT());
109   return RegRCIt->second;
110 }
111 
112 const RegisterBank *RegisterBankInfo::getRegBankFromConstraints(
113     const MachineInstr &MI, unsigned OpIdx, const TargetInstrInfo &TII,
114     const MachineRegisterInfo &MRI) const {
115   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
116 
117   // The mapping of the registers may be available via the
118   // register class constraints.
119   const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, &TII, TRI);
120 
121   if (!RC)
122     return nullptr;
123 
124   Register Reg = MI.getOperand(OpIdx).getReg();
125   const RegisterBank &RegBank = getRegBankFromRegClass(*RC, MRI.getType(Reg));
126   // Check that the target properly implemented getRegBankFromRegClass.
127   assert(RegBank.covers(*RC) &&
128          "The mapping of the register bank does not make sense");
129   return &RegBank;
130 }
131 
132 const TargetRegisterClass *RegisterBankInfo::constrainGenericRegister(
133     Register Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI) {
134 
135   // If the register already has a class, fallback to MRI::constrainRegClass.
136   auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
137   if (isa<const TargetRegisterClass *>(RegClassOrBank))
138     return MRI.constrainRegClass(Reg, &RC);
139 
140   const RegisterBank *RB = cast<const RegisterBank *>(RegClassOrBank);
141   // Otherwise, all we can do is ensure the bank covers the class, and set it.
142   if (RB && !RB->covers(RC))
143     return nullptr;
144 
145   // If nothing was set or the class is simply compatible, set it.
146   MRI.setRegClass(Reg, &RC);
147   return &RC;
148 }
149 
150 /// Check whether or not \p MI should be treated like a copy
151 /// for the mappings.
152 /// Copy like instruction are special for mapping because
153 /// they don't have actual register constraints. Moreover,
154 /// they sometimes have register classes assigned and we can
155 /// just use that instead of failing to provide a generic mapping.
156 static bool isCopyLike(const MachineInstr &MI) {
157   return MI.isCopy() || MI.isPHI() ||
158          MI.getOpcode() == TargetOpcode::REG_SEQUENCE;
159 }
160 
161 const RegisterBankInfo::InstructionMapping &
162 RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const {
163   // For copies we want to walk over the operands and try to find one
164   // that has a register bank since the instruction itself will not get
165   // us any constraint.
166   bool IsCopyLike = isCopyLike(MI);
167   // For copy like instruction, only the mapping of the definition
168   // is important. The rest is not constrained.
169   unsigned NumOperandsForMapping = IsCopyLike ? 1 : MI.getNumOperands();
170 
171   const MachineFunction &MF = *MI.getMF();
172   const TargetSubtargetInfo &STI = MF.getSubtarget();
173   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
174   const MachineRegisterInfo &MRI = MF.getRegInfo();
175   // We may need to query the instruction encoding to guess the mapping.
176   const TargetInstrInfo &TII = *STI.getInstrInfo();
177 
178   // Before doing anything complicated check if the mapping is not
179   // directly available.
180   bool CompleteMapping = true;
181 
182   SmallVector<const ValueMapping *, 8> OperandsMapping(NumOperandsForMapping);
183   for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
184        ++OpIdx) {
185     const MachineOperand &MO = MI.getOperand(OpIdx);
186     if (!MO.isReg())
187       continue;
188     Register Reg = MO.getReg();
189     if (!Reg)
190       continue;
191     // The register bank of Reg is just a side effect of the current
192     // excution and in particular, there is no reason to believe this
193     // is the best default mapping for the current instruction.  Keep
194     // it as an alternative register bank if we cannot figure out
195     // something.
196     const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
197     // For copy-like instruction, we want to reuse the register bank
198     // that is already set on Reg, if any, since those instructions do
199     // not have any constraints.
200     const RegisterBank *CurRegBank = IsCopyLike ? AltRegBank : nullptr;
201     if (!CurRegBank) {
202       // If this is a target specific instruction, we can deduce
203       // the register bank from the encoding constraints.
204       CurRegBank = getRegBankFromConstraints(MI, OpIdx, TII, MRI);
205       if (!CurRegBank) {
206         // All our attempts failed, give up.
207         CompleteMapping = false;
208 
209         if (!IsCopyLike)
210           // MI does not carry enough information to guess the mapping.
211           return getInvalidInstructionMapping();
212         continue;
213       }
214     }
215 
216     TypeSize Size = getSizeInBits(Reg, MRI, TRI);
217     const ValueMapping *ValMapping =
218         &getValueMapping(0, Size.getKnownMinValue(), *CurRegBank);
219     if (IsCopyLike) {
220       if (!OperandsMapping[0]) {
221         if (MI.isRegSequence()) {
222           // For reg_sequence, the result size does not match the input.
223           unsigned ResultSize = getSizeInBits(MI.getOperand(0).getReg(),
224                                               MRI, TRI);
225           OperandsMapping[0] = &getValueMapping(0, ResultSize, *CurRegBank);
226         } else {
227           OperandsMapping[0] = ValMapping;
228         }
229       }
230 
231       // The default handling assumes any register bank can be copied to any
232       // other. If this isn't the case, the target should specially deal with
233       // reg_sequence/phi. There may also be unsatisfiable copies.
234       for (; OpIdx != EndIdx; ++OpIdx) {
235         const MachineOperand &MO = MI.getOperand(OpIdx);
236         if (!MO.isReg())
237           continue;
238         Register Reg = MO.getReg();
239         if (!Reg)
240           continue;
241 
242         const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
243         if (AltRegBank &&
244             cannotCopy(*CurRegBank, *AltRegBank, getSizeInBits(Reg, MRI, TRI)))
245           return getInvalidInstructionMapping();
246       }
247 
248       CompleteMapping = true;
249       break;
250     }
251 
252     OperandsMapping[OpIdx] = ValMapping;
253   }
254 
255   if (IsCopyLike && !CompleteMapping) {
256     // No way to deduce the type from what we have.
257     return getInvalidInstructionMapping();
258   }
259 
260   assert(CompleteMapping && "Setting an uncomplete mapping");
261   return getInstructionMapping(
262       DefaultMappingID, /*Cost*/ 1,
263       /*OperandsMapping*/ getOperandsMapping(OperandsMapping),
264       NumOperandsForMapping);
265 }
266 
267 /// Hashing function for PartialMapping.
268 static hash_code hashPartialMapping(unsigned StartIdx, unsigned Length,
269                                     const RegisterBank *RegBank) {
270   return hash_combine(StartIdx, Length, RegBank ? RegBank->getID() : 0);
271 }
272 
273 /// Overloaded version of hash_value for a PartialMapping.
274 hash_code
275 llvm::hash_value(const RegisterBankInfo::PartialMapping &PartMapping) {
276   return hashPartialMapping(PartMapping.StartIdx, PartMapping.Length,
277                             PartMapping.RegBank);
278 }
279 
280 const RegisterBankInfo::PartialMapping &
281 RegisterBankInfo::getPartialMapping(unsigned StartIdx, unsigned Length,
282                                     const RegisterBank &RegBank) const {
283   ++NumPartialMappingsAccessed;
284 
285   hash_code Hash = hashPartialMapping(StartIdx, Length, &RegBank);
286   const auto &It = MapOfPartialMappings.find(Hash);
287   if (It != MapOfPartialMappings.end())
288     return *It->second;
289 
290   ++NumPartialMappingsCreated;
291 
292   auto &PartMapping = MapOfPartialMappings[Hash];
293   PartMapping = std::make_unique<PartialMapping>(StartIdx, Length, RegBank);
294   return *PartMapping;
295 }
296 
297 const RegisterBankInfo::ValueMapping &
298 RegisterBankInfo::getValueMapping(unsigned StartIdx, unsigned Length,
299                                   const RegisterBank &RegBank) const {
300   return getValueMapping(&getPartialMapping(StartIdx, Length, RegBank), 1);
301 }
302 
303 static hash_code
304 hashValueMapping(const RegisterBankInfo::PartialMapping *BreakDown,
305                  unsigned NumBreakDowns) {
306   if (LLVM_LIKELY(NumBreakDowns == 1))
307     return hash_value(*BreakDown);
308   SmallVector<size_t, 8> Hashes(NumBreakDowns);
309   for (unsigned Idx = 0; Idx != NumBreakDowns; ++Idx)
310     Hashes.push_back(hash_value(BreakDown[Idx]));
311   return hash_combine_range(Hashes.begin(), Hashes.end());
312 }
313 
314 const RegisterBankInfo::ValueMapping &
315 RegisterBankInfo::getValueMapping(const PartialMapping *BreakDown,
316                                   unsigned NumBreakDowns) const {
317   ++NumValueMappingsAccessed;
318 
319   hash_code Hash = hashValueMapping(BreakDown, NumBreakDowns);
320   const auto &It = MapOfValueMappings.find(Hash);
321   if (It != MapOfValueMappings.end())
322     return *It->second;
323 
324   ++NumValueMappingsCreated;
325 
326   auto &ValMapping = MapOfValueMappings[Hash];
327   ValMapping = std::make_unique<ValueMapping>(BreakDown, NumBreakDowns);
328   return *ValMapping;
329 }
330 
331 template <typename Iterator>
332 const RegisterBankInfo::ValueMapping *
333 RegisterBankInfo::getOperandsMapping(Iterator Begin, Iterator End) const {
334 
335   ++NumOperandsMappingsAccessed;
336 
337   // The addresses of the value mapping are unique.
338   // Therefore, we can use them directly to hash the operand mapping.
339   hash_code Hash = hash_combine_range(Begin, End);
340   auto &Res = MapOfOperandsMappings[Hash];
341   if (Res)
342     return Res.get();
343 
344   ++NumOperandsMappingsCreated;
345 
346   // Create the array of ValueMapping.
347   // Note: this array will not hash to this instance of operands
348   // mapping, because we use the pointer of the ValueMapping
349   // to hash and we expect them to uniquely identify an instance
350   // of value mapping.
351   Res = std::make_unique<ValueMapping[]>(std::distance(Begin, End));
352   unsigned Idx = 0;
353   for (Iterator It = Begin; It != End; ++It, ++Idx) {
354     const ValueMapping *ValMap = *It;
355     if (!ValMap)
356       continue;
357     Res[Idx] = *ValMap;
358   }
359   return Res.get();
360 }
361 
362 const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
363     const SmallVectorImpl<const RegisterBankInfo::ValueMapping *> &OpdsMapping)
364     const {
365   return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
366 }
367 
368 const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
369     std::initializer_list<const RegisterBankInfo::ValueMapping *> OpdsMapping)
370     const {
371   return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
372 }
373 
374 static hash_code
375 hashInstructionMapping(unsigned ID, unsigned Cost,
376                        const RegisterBankInfo::ValueMapping *OperandsMapping,
377                        unsigned NumOperands) {
378   return hash_combine(ID, Cost, OperandsMapping, NumOperands);
379 }
380 
381 const RegisterBankInfo::InstructionMapping &
382 RegisterBankInfo::getInstructionMappingImpl(
383     bool IsInvalid, unsigned ID, unsigned Cost,
384     const RegisterBankInfo::ValueMapping *OperandsMapping,
385     unsigned NumOperands) const {
386   assert(((IsInvalid && ID == InvalidMappingID && Cost == 0 &&
387            OperandsMapping == nullptr && NumOperands == 0) ||
388           !IsInvalid) &&
389          "Mismatch argument for invalid input");
390   ++NumInstructionMappingsAccessed;
391 
392   hash_code Hash =
393       hashInstructionMapping(ID, Cost, OperandsMapping, NumOperands);
394   const auto &It = MapOfInstructionMappings.find(Hash);
395   if (It != MapOfInstructionMappings.end())
396     return *It->second;
397 
398   ++NumInstructionMappingsCreated;
399 
400   auto &InstrMapping = MapOfInstructionMappings[Hash];
401   InstrMapping = std::make_unique<InstructionMapping>(
402       ID, Cost, OperandsMapping, NumOperands);
403   return *InstrMapping;
404 }
405 
406 const RegisterBankInfo::InstructionMapping &
407 RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
408   const RegisterBankInfo::InstructionMapping &Mapping = getInstrMappingImpl(MI);
409   if (Mapping.isValid())
410     return Mapping;
411   llvm_unreachable("The target must implement this");
412 }
413 
414 RegisterBankInfo::InstructionMappings
415 RegisterBankInfo::getInstrPossibleMappings(const MachineInstr &MI) const {
416   InstructionMappings PossibleMappings;
417   const auto &Mapping = getInstrMapping(MI);
418   if (Mapping.isValid()) {
419     // Put the default mapping first.
420     PossibleMappings.push_back(&Mapping);
421   }
422 
423   // Then the alternative mapping, if any.
424   InstructionMappings AltMappings = getInstrAlternativeMappings(MI);
425   append_range(PossibleMappings, AltMappings);
426 #ifndef NDEBUG
427   for (const InstructionMapping *Mapping : PossibleMappings)
428     assert(Mapping->verify(MI) && "Mapping is invalid");
429 #endif
430   return PossibleMappings;
431 }
432 
433 RegisterBankInfo::InstructionMappings
434 RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {
435   // No alternative for MI.
436   return InstructionMappings();
437 }
438 
439 void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) {
440   MachineInstr &MI = OpdMapper.getMI();
441   MachineRegisterInfo &MRI = OpdMapper.getMRI();
442   LLVM_DEBUG(dbgs() << "Applying default-like mapping\n");
443   for (unsigned OpIdx = 0,
444                 EndIdx = OpdMapper.getInstrMapping().getNumOperands();
445        OpIdx != EndIdx; ++OpIdx) {
446     LLVM_DEBUG(dbgs() << "OpIdx " << OpIdx);
447     MachineOperand &MO = MI.getOperand(OpIdx);
448     if (!MO.isReg()) {
449       LLVM_DEBUG(dbgs() << " is not a register, nothing to be done\n");
450       continue;
451     }
452     if (!MO.getReg()) {
453       LLVM_DEBUG(dbgs() << " is $noreg, nothing to be done\n");
454       continue;
455     }
456     LLT Ty = MRI.getType(MO.getReg());
457     if (!Ty.isValid())
458       continue;
459     assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns !=
460                0 &&
461            "Invalid mapping");
462     assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns ==
463                1 &&
464            "This mapping is too complex for this function");
465     iterator_range<SmallVectorImpl<Register>::const_iterator> NewRegs =
466         OpdMapper.getVRegs(OpIdx);
467     if (NewRegs.empty()) {
468       LLVM_DEBUG(dbgs() << " has not been repaired, nothing to be done\n");
469       continue;
470     }
471     Register OrigReg = MO.getReg();
472     Register NewReg = *NewRegs.begin();
473     LLVM_DEBUG(dbgs() << " changed, replace " << printReg(OrigReg, nullptr));
474     MO.setReg(NewReg);
475     LLVM_DEBUG(dbgs() << " with " << printReg(NewReg, nullptr));
476 
477     // The OperandsMapper creates plain scalar, we may have to fix that.
478     // Check if the types match and if not, fix that.
479     LLT OrigTy = MRI.getType(OrigReg);
480     LLT NewTy = MRI.getType(NewReg);
481     if (OrigTy != NewTy) {
482       // The default mapping is not supposed to change the size of
483       // the storage. However, right now we don't necessarily bump all
484       // the types to storage size. For instance, we can consider
485       // s16 G_AND legal whereas the storage size is going to be 32.
486       assert(
487           TypeSize::isKnownLE(OrigTy.getSizeInBits(), NewTy.getSizeInBits()) &&
488           "Types with difference size cannot be handled by the default "
489           "mapping");
490       LLVM_DEBUG(dbgs() << "\nChange type of new opd from " << NewTy << " to "
491                         << OrigTy);
492       MRI.setType(NewReg, OrigTy);
493     }
494     LLVM_DEBUG(dbgs() << '\n');
495   }
496 }
497 
498 TypeSize RegisterBankInfo::getSizeInBits(Register Reg,
499                                          const MachineRegisterInfo &MRI,
500                                          const TargetRegisterInfo &TRI) const {
501   if (Reg.isPhysical()) {
502     // The size is not directly available for physical registers.
503     // Instead, we need to access a register class that contains Reg and
504     // get the size of that register class.
505     // Because this is expensive, we'll cache the register class by calling
506     auto *RC = getMinimalPhysRegClass(Reg, TRI);
507     assert(RC && "Expecting Register class");
508     return TRI.getRegSizeInBits(*RC);
509   }
510   return TRI.getRegSizeInBits(Reg, MRI);
511 }
512 
513 //------------------------------------------------------------------------------
514 // Helper classes implementation.
515 //------------------------------------------------------------------------------
516 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
517 LLVM_DUMP_METHOD void RegisterBankInfo::PartialMapping::dump() const {
518   print(dbgs());
519   dbgs() << '\n';
520 }
521 #endif
522 
523 bool RegisterBankInfo::PartialMapping::verify(
524     const RegisterBankInfo &RBI) const {
525   assert(RegBank && "Register bank not set");
526   assert(Length && "Empty mapping");
527   assert((StartIdx <= getHighBitIdx()) && "Overflow, switch to APInt?");
528   // Check if the minimum width fits into RegBank.
529   assert(RBI.getMaximumSize(RegBank->getID()) >= Length &&
530          "Register bank too small for Mask");
531   return true;
532 }
533 
534 void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const {
535   OS << "[" << StartIdx << ", " << getHighBitIdx() << "], RegBank = ";
536   if (RegBank)
537     OS << *RegBank;
538   else
539     OS << "nullptr";
540 }
541 
542 bool RegisterBankInfo::ValueMapping::partsAllUniform() const {
543   if (NumBreakDowns < 2)
544     return true;
545 
546   const PartialMapping *First = begin();
547   for (const PartialMapping *Part = First + 1; Part != end(); ++Part) {
548     if (Part->Length != First->Length || Part->RegBank != First->RegBank)
549       return false;
550   }
551 
552   return true;
553 }
554 
555 bool RegisterBankInfo::ValueMapping::verify(const RegisterBankInfo &RBI,
556                                             TypeSize MeaningfulBitWidth) const {
557   assert(NumBreakDowns && "Value mapped nowhere?!");
558   unsigned OrigValueBitWidth = 0;
559   for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
560     // Check that each register bank is big enough to hold the partial value:
561     // this check is done by PartialMapping::verify
562     assert(PartMap.verify(RBI) && "Partial mapping is invalid");
563     // The original value should completely be mapped.
564     // Thus the maximum accessed index + 1 is the size of the original value.
565     OrigValueBitWidth =
566         std::max(OrigValueBitWidth, PartMap.getHighBitIdx() + 1);
567   }
568   assert((MeaningfulBitWidth.isScalable() ||
569           OrigValueBitWidth >= MeaningfulBitWidth) &&
570          "Meaningful bits not covered by the mapping");
571   APInt ValueMask(OrigValueBitWidth, 0);
572   for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
573     // Check that the union of the partial mappings covers the whole value,
574     // without overlaps.
575     // The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
576     APInt PartMapMask = APInt::getBitsSet(OrigValueBitWidth, PartMap.StartIdx,
577                                           PartMap.getHighBitIdx() + 1);
578     ValueMask ^= PartMapMask;
579     assert((ValueMask & PartMapMask) == PartMapMask &&
580            "Some partial mappings overlap");
581   }
582   assert(ValueMask.isAllOnes() && "Value is not fully mapped");
583   return true;
584 }
585 
586 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
587 LLVM_DUMP_METHOD void RegisterBankInfo::ValueMapping::dump() const {
588   print(dbgs());
589   dbgs() << '\n';
590 }
591 #endif
592 
593 void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const {
594   OS << "#BreakDown: " << NumBreakDowns << " ";
595   bool IsFirst = true;
596   for (const PartialMapping &PartMap : *this) {
597     if (!IsFirst)
598       OS << ", ";
599     OS << '[' << PartMap << ']';
600     IsFirst = false;
601   }
602 }
603 
604 bool RegisterBankInfo::InstructionMapping::verify(
605     const MachineInstr &MI) const {
606   // Check that all the register operands are properly mapped.
607   // Check the constructor invariant.
608   // For PHI, we only care about mapping the definition.
609   assert(NumOperands == (isCopyLike(MI) ? 1 : MI.getNumOperands()) &&
610          "NumOperands must match, see constructor");
611   assert(MI.getParent() && MI.getMF() &&
612          "MI must be connected to a MachineFunction");
613   const MachineFunction &MF = *MI.getMF();
614   const RegisterBankInfo *RBI = MF.getSubtarget().getRegBankInfo();
615   (void)RBI;
616   const MachineRegisterInfo &MRI = MF.getRegInfo();
617 
618   for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
619     const MachineOperand &MO = MI.getOperand(Idx);
620     if (!MO.isReg()) {
621       assert(!getOperandMapping(Idx).isValid() &&
622              "We should not care about non-reg mapping");
623       continue;
624     }
625     Register Reg = MO.getReg();
626     if (!Reg)
627       continue;
628     LLT Ty = MRI.getType(Reg);
629     if (!Ty.isValid())
630       continue;
631     assert(getOperandMapping(Idx).isValid() &&
632            "We must have a mapping for reg operands");
633     const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx);
634     (void)MOMapping;
635     // Register size in bits.
636     // This size must match what the mapping expects.
637     assert(MOMapping.verify(*RBI, RBI->getSizeInBits(
638                                       Reg, MF.getRegInfo(),
639                                       *MF.getSubtarget().getRegisterInfo())) &&
640            "Value mapping is invalid");
641   }
642   return true;
643 }
644 
645 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
646 LLVM_DUMP_METHOD void RegisterBankInfo::InstructionMapping::dump() const {
647   print(dbgs());
648   dbgs() << '\n';
649 }
650 #endif
651 
652 void RegisterBankInfo::InstructionMapping::print(raw_ostream &OS) const {
653   OS << "ID: " << getID() << " Cost: " << getCost() << " Mapping: ";
654 
655   for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
656     const ValueMapping &ValMapping = getOperandMapping(OpIdx);
657     if (OpIdx)
658       OS << ", ";
659     OS << "{ Idx: " << OpIdx << " Map: " << ValMapping << '}';
660   }
661 }
662 
663 const int RegisterBankInfo::OperandsMapper::DontKnowIdx = -1;
664 
665 RegisterBankInfo::OperandsMapper::OperandsMapper(
666     MachineInstr &MI, const InstructionMapping &InstrMapping,
667     MachineRegisterInfo &MRI)
668     : MRI(MRI), MI(MI), InstrMapping(InstrMapping) {
669   unsigned NumOpds = InstrMapping.getNumOperands();
670   OpToNewVRegIdx.resize(NumOpds, OperandsMapper::DontKnowIdx);
671   assert(InstrMapping.verify(MI) && "Invalid mapping for MI");
672 }
673 
674 iterator_range<SmallVectorImpl<Register>::iterator>
675 RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx) {
676   assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
677   unsigned NumPartialVal =
678       getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
679   int StartIdx = OpToNewVRegIdx[OpIdx];
680 
681   if (StartIdx == OperandsMapper::DontKnowIdx) {
682     // This is the first time we try to access OpIdx.
683     // Create the cells that will hold all the partial values at the
684     // end of the list of NewVReg.
685     StartIdx = NewVRegs.size();
686     OpToNewVRegIdx[OpIdx] = StartIdx;
687     for (unsigned i = 0; i < NumPartialVal; ++i)
688       NewVRegs.push_back(0);
689   }
690   SmallVectorImpl<Register>::iterator End =
691       getNewVRegsEnd(StartIdx, NumPartialVal);
692 
693   return make_range(&NewVRegs[StartIdx], End);
694 }
695 
696 SmallVectorImpl<Register>::const_iterator
697 RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
698                                                  unsigned NumVal) const {
699   return const_cast<OperandsMapper *>(this)->getNewVRegsEnd(StartIdx, NumVal);
700 }
701 SmallVectorImpl<Register>::iterator
702 RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
703                                                  unsigned NumVal) {
704   assert((NewVRegs.size() == StartIdx + NumVal ||
705           NewVRegs.size() > StartIdx + NumVal) &&
706          "NewVRegs too small to contain all the partial mapping");
707   return NewVRegs.size() <= StartIdx + NumVal ? NewVRegs.end()
708                                               : &NewVRegs[StartIdx + NumVal];
709 }
710 
711 void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) {
712   assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
713   iterator_range<SmallVectorImpl<Register>::iterator> NewVRegsForOpIdx =
714       getVRegsMem(OpIdx);
715   const ValueMapping &ValMapping = getInstrMapping().getOperandMapping(OpIdx);
716   const PartialMapping *PartMap = ValMapping.begin();
717   for (Register &NewVReg : NewVRegsForOpIdx) {
718     assert(PartMap != ValMapping.end() && "Out-of-bound access");
719     assert(NewVReg == 0 && "Register has already been created");
720     // The new registers are always bound to scalar with the right size.
721     // The actual type has to be set when the target does the mapping
722     // of the instruction.
723     // The rationale is that this generic code cannot guess how the
724     // target plans to split the input type.
725     NewVReg = MRI.createGenericVirtualRegister(LLT::scalar(PartMap->Length));
726     MRI.setRegBank(NewVReg, *PartMap->RegBank);
727     ++PartMap;
728   }
729 }
730 
731 void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx,
732                                                 unsigned PartialMapIdx,
733                                                 Register NewVReg) {
734   assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
735   assert(getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns >
736              PartialMapIdx &&
737          "Out-of-bound access for partial mapping");
738   // Make sure the memory is initialized for that operand.
739   (void)getVRegsMem(OpIdx);
740   assert(NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] == 0 &&
741          "This value is already set");
742   NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] = NewVReg;
743 }
744 
745 iterator_range<SmallVectorImpl<Register>::const_iterator>
746 RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx,
747                                            bool ForDebug) const {
748   (void)ForDebug;
749   assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
750   int StartIdx = OpToNewVRegIdx[OpIdx];
751 
752   if (StartIdx == OperandsMapper::DontKnowIdx)
753     return make_range(NewVRegs.end(), NewVRegs.end());
754 
755   unsigned PartMapSize =
756       getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
757   SmallVectorImpl<Register>::const_iterator End =
758       getNewVRegsEnd(StartIdx, PartMapSize);
759   iterator_range<SmallVectorImpl<Register>::const_iterator> Res =
760       make_range(&NewVRegs[StartIdx], End);
761 #ifndef NDEBUG
762   for (Register VReg : Res)
763     assert((VReg || ForDebug) && "Some registers are uninitialized");
764 #endif
765   return Res;
766 }
767 
768 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
769 LLVM_DUMP_METHOD void RegisterBankInfo::OperandsMapper::dump() const {
770   print(dbgs(), true);
771   dbgs() << '\n';
772 }
773 #endif
774 
775 void RegisterBankInfo::OperandsMapper::print(raw_ostream &OS,
776                                              bool ForDebug) const {
777   unsigned NumOpds = getInstrMapping().getNumOperands();
778   if (ForDebug) {
779     OS << "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
780     // Print out the internal state of the index table.
781     OS << "Populated indices (CellNumber, IndexInNewVRegs): ";
782     bool IsFirst = true;
783     for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
784       if (OpToNewVRegIdx[Idx] != DontKnowIdx) {
785         if (!IsFirst)
786           OS << ", ";
787         OS << '(' << Idx << ", " << OpToNewVRegIdx[Idx] << ')';
788         IsFirst = false;
789       }
790     }
791     OS << '\n';
792   } else
793     OS << "Mapping ID: " << getInstrMapping().getID() << ' ';
794 
795   OS << "Operand Mapping: ";
796   // If we have a function, we can pretty print the name of the registers.
797   // Otherwise we will print the raw numbers.
798   const TargetRegisterInfo *TRI =
799       getMI().getParent() && getMI().getMF()
800           ? getMI().getMF()->getSubtarget().getRegisterInfo()
801           : nullptr;
802   bool IsFirst = true;
803   for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
804     if (OpToNewVRegIdx[Idx] == DontKnowIdx)
805       continue;
806     if (!IsFirst)
807       OS << ", ";
808     IsFirst = false;
809     OS << '(' << printReg(getMI().getOperand(Idx).getReg(), TRI) << ", [";
810     bool IsFirstNewVReg = true;
811     for (Register VReg : getVRegs(Idx)) {
812       if (!IsFirstNewVReg)
813         OS << ", ";
814       IsFirstNewVReg = false;
815       OS << printReg(VReg, TRI);
816     }
817     OS << "])";
818   }
819 }
820