xref: /llvm-project/mlir/lib/Conversion/PDLToPDLInterp/PredicateTree.cpp (revision 5d6cb6f78ac93aedcf96e3a3bca61401a2177f31)
1 //===- PredicateTree.cpp - Predicate tree merging -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PredicateTree.h"
10 #include "RootOrdering.h"
11 
12 #include "mlir/Dialect/PDL/IR/PDL.h"
13 #include "mlir/Dialect/PDL/IR/PDLTypes.h"
14 #include "mlir/Dialect/PDLInterp/IR/PDLInterp.h"
15 #include "mlir/IR/BuiltinOps.h"
16 #include "mlir/Interfaces/InferTypeOpInterface.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/TypeSwitch.h"
20 #include "llvm/Support/Debug.h"
21 #include <queue>
22 
23 #define DEBUG_TYPE "pdl-predicate-tree"
24 
25 using namespace mlir;
26 using namespace mlir::pdl_to_pdl_interp;
27 
28 //===----------------------------------------------------------------------===//
29 // Predicate List Building
30 //===----------------------------------------------------------------------===//
31 
32 static void getTreePredicates(std::vector<PositionalPredicate> &predList,
33                               Value val, PredicateBuilder &builder,
34                               DenseMap<Value, Position *> &inputs,
35                               Position *pos);
36 
37 /// Compares the depths of two positions.
38 static bool comparePosDepth(Position *lhs, Position *rhs) {
39   return lhs->getOperationDepth() < rhs->getOperationDepth();
40 }
41 
42 /// Returns the number of non-range elements within `values`.
43 static unsigned getNumNonRangeValues(ValueRange values) {
44   return llvm::count_if(values.getTypes(),
45                         [](Type type) { return !isa<pdl::RangeType>(type); });
46 }
47 
48 static void getTreePredicates(std::vector<PositionalPredicate> &predList,
49                               Value val, PredicateBuilder &builder,
50                               DenseMap<Value, Position *> &inputs,
51                               AttributePosition *pos) {
52   assert(isa<pdl::AttributeType>(val.getType()) && "expected attribute type");
53   predList.emplace_back(pos, builder.getIsNotNull());
54 
55   if (auto attr = dyn_cast<pdl::AttributeOp>(val.getDefiningOp())) {
56     // If the attribute has a type or value, add a constraint.
57     if (Value type = attr.getValueType())
58       getTreePredicates(predList, type, builder, inputs, builder.getType(pos));
59     else if (Attribute value = attr.getValueAttr())
60       predList.emplace_back(pos, builder.getAttributeConstraint(value));
61   }
62 }
63 
64 /// Collect all of the predicates for the given operand position.
65 static void getOperandTreePredicates(std::vector<PositionalPredicate> &predList,
66                                      Value val, PredicateBuilder &builder,
67                                      DenseMap<Value, Position *> &inputs,
68                                      Position *pos) {
69   Type valueType = val.getType();
70   bool isVariadic = isa<pdl::RangeType>(valueType);
71 
72   // If this is a typed operand, add a type constraint.
73   TypeSwitch<Operation *>(val.getDefiningOp())
74       .Case<pdl::OperandOp, pdl::OperandsOp>([&](auto op) {
75         // Prevent traversal into a null value if the operand has a proper
76         // index.
77         if (std::is_same<pdl::OperandOp, decltype(op)>::value ||
78             cast<OperandGroupPosition>(pos)->getOperandGroupNumber())
79           predList.emplace_back(pos, builder.getIsNotNull());
80 
81         if (Value type = op.getValueType())
82           getTreePredicates(predList, type, builder, inputs,
83                             builder.getType(pos));
84       })
85       .Case<pdl::ResultOp, pdl::ResultsOp>([&](auto op) {
86         std::optional<unsigned> index = op.getIndex();
87 
88         // Prevent traversal into a null value if the result has a proper index.
89         if (index)
90           predList.emplace_back(pos, builder.getIsNotNull());
91 
92         // Get the parent operation of this operand.
93         OperationPosition *parentPos = builder.getOperandDefiningOp(pos);
94         predList.emplace_back(parentPos, builder.getIsNotNull());
95 
96         // Ensure that the operands match the corresponding results of the
97         // parent operation.
98         Position *resultPos = nullptr;
99         if (std::is_same<pdl::ResultOp, decltype(op)>::value)
100           resultPos = builder.getResult(parentPos, *index);
101         else
102           resultPos = builder.getResultGroup(parentPos, index, isVariadic);
103         predList.emplace_back(resultPos, builder.getEqualTo(pos));
104 
105         // Collect the predicates of the parent operation.
106         getTreePredicates(predList, op.getParent(), builder, inputs,
107                           (Position *)parentPos);
108       });
109 }
110 
111 static void
112 getTreePredicates(std::vector<PositionalPredicate> &predList, Value val,
113                   PredicateBuilder &builder,
114                   DenseMap<Value, Position *> &inputs, OperationPosition *pos,
115                   std::optional<unsigned> ignoreOperand = std::nullopt) {
116   assert(isa<pdl::OperationType>(val.getType()) && "expected operation");
117   pdl::OperationOp op = cast<pdl::OperationOp>(val.getDefiningOp());
118   OperationPosition *opPos = cast<OperationPosition>(pos);
119 
120   // Ensure getDefiningOp returns a non-null operation.
121   if (!opPos->isRoot())
122     predList.emplace_back(pos, builder.getIsNotNull());
123 
124   // Check that this is the correct root operation.
125   if (std::optional<StringRef> opName = op.getOpName())
126     predList.emplace_back(pos, builder.getOperationName(*opName));
127 
128   // Check that the operation has the proper number of operands. If there are
129   // any variable length operands, we check a minimum instead of an exact count.
130   OperandRange operands = op.getOperandValues();
131   unsigned minOperands = getNumNonRangeValues(operands);
132   if (minOperands != operands.size()) {
133     if (minOperands)
134       predList.emplace_back(pos, builder.getOperandCountAtLeast(minOperands));
135   } else {
136     predList.emplace_back(pos, builder.getOperandCount(minOperands));
137   }
138 
139   // Check that the operation has the proper number of results. If there are
140   // any variable length results, we check a minimum instead of an exact count.
141   OperandRange types = op.getTypeValues();
142   unsigned minResults = getNumNonRangeValues(types);
143   if (minResults == types.size())
144     predList.emplace_back(pos, builder.getResultCount(types.size()));
145   else if (minResults)
146     predList.emplace_back(pos, builder.getResultCountAtLeast(minResults));
147 
148   // Recurse into any attributes, operands, or results.
149   for (auto [attrName, attr] :
150        llvm::zip(op.getAttributeValueNames(), op.getAttributeValues())) {
151     getTreePredicates(
152         predList, attr, builder, inputs,
153         builder.getAttribute(opPos, cast<StringAttr>(attrName).getValue()));
154   }
155 
156   // Process the operands and results of the operation. For all values up to
157   // the first variable length value, we use the concrete operand/result
158   // number. After that, we use the "group" given that we can't know the
159   // concrete indices until runtime. If there is only one variadic operand
160   // group, we treat it as all of the operands/results of the operation.
161   /// Operands.
162   if (operands.size() == 1 && isa<pdl::RangeType>(operands[0].getType())) {
163     // Ignore the operands if we are performing an upward traversal (in that
164     // case, they have already been visited).
165     if (opPos->isRoot() || opPos->isOperandDefiningOp())
166       getTreePredicates(predList, operands.front(), builder, inputs,
167                         builder.getAllOperands(opPos));
168   } else {
169     bool foundVariableLength = false;
170     for (const auto &operandIt : llvm::enumerate(operands)) {
171       bool isVariadic = isa<pdl::RangeType>(operandIt.value().getType());
172       foundVariableLength |= isVariadic;
173 
174       // Ignore the specified operand, usually because this position was
175       // visited in an upward traversal via an iterative choice.
176       if (ignoreOperand && *ignoreOperand == operandIt.index())
177         continue;
178 
179       Position *pos =
180           foundVariableLength
181               ? builder.getOperandGroup(opPos, operandIt.index(), isVariadic)
182               : builder.getOperand(opPos, operandIt.index());
183       getTreePredicates(predList, operandIt.value(), builder, inputs, pos);
184     }
185   }
186   /// Results.
187   if (types.size() == 1 && isa<pdl::RangeType>(types[0].getType())) {
188     getTreePredicates(predList, types.front(), builder, inputs,
189                       builder.getType(builder.getAllResults(opPos)));
190     return;
191   }
192 
193   bool foundVariableLength = false;
194   for (auto [idx, typeValue] : llvm::enumerate(types)) {
195     bool isVariadic = isa<pdl::RangeType>(typeValue.getType());
196     foundVariableLength |= isVariadic;
197 
198     auto *resultPos = foundVariableLength
199                           ? builder.getResultGroup(pos, idx, isVariadic)
200                           : builder.getResult(pos, idx);
201     predList.emplace_back(resultPos, builder.getIsNotNull());
202     getTreePredicates(predList, typeValue, builder, inputs,
203                       builder.getType(resultPos));
204   }
205 }
206 
207 static void getTreePredicates(std::vector<PositionalPredicate> &predList,
208                               Value val, PredicateBuilder &builder,
209                               DenseMap<Value, Position *> &inputs,
210                               TypePosition *pos) {
211   // Check for a constraint on a constant type.
212   if (pdl::TypeOp typeOp = val.getDefiningOp<pdl::TypeOp>()) {
213     if (Attribute type = typeOp.getConstantTypeAttr())
214       predList.emplace_back(pos, builder.getTypeConstraint(type));
215   } else if (pdl::TypesOp typeOp = val.getDefiningOp<pdl::TypesOp>()) {
216     if (Attribute typeAttr = typeOp.getConstantTypesAttr())
217       predList.emplace_back(pos, builder.getTypeConstraint(typeAttr));
218   }
219 }
220 
221 /// Collect the tree predicates anchored at the given value.
222 static void getTreePredicates(std::vector<PositionalPredicate> &predList,
223                               Value val, PredicateBuilder &builder,
224                               DenseMap<Value, Position *> &inputs,
225                               Position *pos) {
226   // Make sure this input value is accessible to the rewrite.
227   auto it = inputs.try_emplace(val, pos);
228   if (!it.second) {
229     // If this is an input value that has been visited in the tree, add a
230     // constraint to ensure that both instances refer to the same value.
231     if (isa<pdl::AttributeOp, pdl::OperandOp, pdl::OperandsOp, pdl::OperationOp,
232             pdl::TypeOp>(val.getDefiningOp())) {
233       auto minMaxPositions =
234           std::minmax(pos, it.first->second, comparePosDepth);
235       predList.emplace_back(minMaxPositions.second,
236                             builder.getEqualTo(minMaxPositions.first));
237     }
238     return;
239   }
240 
241   TypeSwitch<Position *>(pos)
242       .Case<AttributePosition, OperationPosition, TypePosition>([&](auto *pos) {
243         getTreePredicates(predList, val, builder, inputs, pos);
244       })
245       .Case<OperandPosition, OperandGroupPosition>([&](auto *pos) {
246         getOperandTreePredicates(predList, val, builder, inputs, pos);
247       })
248       .Default([](auto *) { llvm_unreachable("unexpected position kind"); });
249 }
250 
251 static void getAttributePredicates(pdl::AttributeOp op,
252                                    std::vector<PositionalPredicate> &predList,
253                                    PredicateBuilder &builder,
254                                    DenseMap<Value, Position *> &inputs) {
255   Position *&attrPos = inputs[op];
256   if (attrPos)
257     return;
258   Attribute value = op.getValueAttr();
259   assert(value && "expected non-tree `pdl.attribute` to contain a value");
260   attrPos = builder.getAttributeLiteral(value);
261 }
262 
263 static void getConstraintPredicates(pdl::ApplyNativeConstraintOp op,
264                                     std::vector<PositionalPredicate> &predList,
265                                     PredicateBuilder &builder,
266                                     DenseMap<Value, Position *> &inputs) {
267   OperandRange arguments = op.getArgs();
268 
269   std::vector<Position *> allPositions;
270   allPositions.reserve(arguments.size());
271   for (Value arg : arguments)
272     allPositions.push_back(inputs.lookup(arg));
273 
274   // Push the constraint to the furthest position.
275   Position *pos = *llvm::max_element(allPositions, comparePosDepth);
276   ResultRange results = op.getResults();
277   PredicateBuilder::Predicate pred = builder.getConstraint(
278       op.getName(), allPositions, SmallVector<Type>(results.getTypes()),
279       op.getIsNegated());
280 
281   // For each result register a position so it can be used later
282   for (auto [i, result] : llvm::enumerate(results)) {
283     ConstraintQuestion *q = cast<ConstraintQuestion>(pred.first);
284     ConstraintPosition *pos = builder.getConstraintPosition(q, i);
285     auto [it, inserted] = inputs.try_emplace(result, pos);
286     // If this is an input value that has been visited in the tree, add a
287     // constraint to ensure that both instances refer to the same value.
288     if (!inserted) {
289       Position *first = pos;
290       Position *second = it->second;
291       if (comparePosDepth(second, first))
292         std::tie(second, first) = std::make_pair(first, second);
293 
294       predList.emplace_back(second, builder.getEqualTo(first));
295     }
296   }
297   predList.emplace_back(pos, pred);
298 }
299 
300 static void getResultPredicates(pdl::ResultOp op,
301                                 std::vector<PositionalPredicate> &predList,
302                                 PredicateBuilder &builder,
303                                 DenseMap<Value, Position *> &inputs) {
304   Position *&resultPos = inputs[op];
305   if (resultPos)
306     return;
307 
308   // Ensure that the result isn't null.
309   auto *parentPos = cast<OperationPosition>(inputs.lookup(op.getParent()));
310   resultPos = builder.getResult(parentPos, op.getIndex());
311   predList.emplace_back(resultPos, builder.getIsNotNull());
312 }
313 
314 static void getResultPredicates(pdl::ResultsOp op,
315                                 std::vector<PositionalPredicate> &predList,
316                                 PredicateBuilder &builder,
317                                 DenseMap<Value, Position *> &inputs) {
318   Position *&resultPos = inputs[op];
319   if (resultPos)
320     return;
321 
322   // Ensure that the result isn't null if the result has an index.
323   auto *parentPos = cast<OperationPosition>(inputs.lookup(op.getParent()));
324   bool isVariadic = isa<pdl::RangeType>(op.getType());
325   std::optional<unsigned> index = op.getIndex();
326   resultPos = builder.getResultGroup(parentPos, index, isVariadic);
327   if (index)
328     predList.emplace_back(resultPos, builder.getIsNotNull());
329 }
330 
331 static void getTypePredicates(Value typeValue,
332                               function_ref<Attribute()> typeAttrFn,
333                               PredicateBuilder &builder,
334                               DenseMap<Value, Position *> &inputs) {
335   Position *&typePos = inputs[typeValue];
336   if (typePos)
337     return;
338   Attribute typeAttr = typeAttrFn();
339   assert(typeAttr &&
340          "expected non-tree `pdl.type`/`pdl.types` to contain a value");
341   typePos = builder.getTypeLiteral(typeAttr);
342 }
343 
344 /// Collect all of the predicates that cannot be determined via walking the
345 /// tree.
346 static void getNonTreePredicates(pdl::PatternOp pattern,
347                                  std::vector<PositionalPredicate> &predList,
348                                  PredicateBuilder &builder,
349                                  DenseMap<Value, Position *> &inputs) {
350   for (Operation &op : pattern.getBodyRegion().getOps()) {
351     TypeSwitch<Operation *>(&op)
352         .Case([&](pdl::AttributeOp attrOp) {
353           getAttributePredicates(attrOp, predList, builder, inputs);
354         })
355         .Case<pdl::ApplyNativeConstraintOp>([&](auto constraintOp) {
356           getConstraintPredicates(constraintOp, predList, builder, inputs);
357         })
358         .Case<pdl::ResultOp, pdl::ResultsOp>([&](auto resultOp) {
359           getResultPredicates(resultOp, predList, builder, inputs);
360         })
361         .Case([&](pdl::TypeOp typeOp) {
362           getTypePredicates(
363               typeOp, [&] { return typeOp.getConstantTypeAttr(); }, builder,
364               inputs);
365         })
366         .Case([&](pdl::TypesOp typeOp) {
367           getTypePredicates(
368               typeOp, [&] { return typeOp.getConstantTypesAttr(); }, builder,
369               inputs);
370         });
371   }
372 }
373 
374 namespace {
375 
376 /// An op accepting a value at an optional index.
377 struct OpIndex {
378   Value parent;
379   std::optional<unsigned> index;
380 };
381 
382 /// The parent and operand index of each operation for each root, stored
383 /// as a nested map [root][operation].
384 using ParentMaps = DenseMap<Value, DenseMap<Value, OpIndex>>;
385 
386 } // namespace
387 
388 /// Given a pattern, determines the set of roots present in this pattern.
389 /// These are the operations whose results are not consumed by other operations.
390 static SmallVector<Value> detectRoots(pdl::PatternOp pattern) {
391   // First, collect all the operations that are used as operands
392   // to other operations. These are not roots by default.
393   DenseSet<Value> used;
394   for (auto operationOp : pattern.getBodyRegion().getOps<pdl::OperationOp>()) {
395     for (Value operand : operationOp.getOperandValues())
396       TypeSwitch<Operation *>(operand.getDefiningOp())
397           .Case<pdl::ResultOp, pdl::ResultsOp>(
398               [&used](auto resultOp) { used.insert(resultOp.getParent()); });
399   }
400 
401   // Remove the specified root from the use set, so that we can
402   // always select it as a root, even if it is used by other operations.
403   if (Value root = pattern.getRewriter().getRoot())
404     used.erase(root);
405 
406   // Finally, collect all the unused operations.
407   SmallVector<Value> roots;
408   for (Value operationOp : pattern.getBodyRegion().getOps<pdl::OperationOp>())
409     if (!used.contains(operationOp))
410       roots.push_back(operationOp);
411 
412   return roots;
413 }
414 
415 /// Given a list of candidate roots, builds the cost graph for connecting them.
416 /// The graph is formed by traversing the DAG of operations starting from each
417 /// root and marking the depth of each connector value (operand). Then we join
418 /// the candidate roots based on the common connector values, taking the one
419 /// with the minimum depth. Along the way, we compute, for each candidate root,
420 /// a mapping from each operation (in the DAG underneath this root) to its
421 /// parent operation and the corresponding operand index.
422 static void buildCostGraph(ArrayRef<Value> roots, RootOrderingGraph &graph,
423                            ParentMaps &parentMaps) {
424 
425   // The entry of a queue. The entry consists of the following items:
426   // * the value in the DAG underneath the root;
427   // * the parent of the value;
428   // * the operand index of the value in its parent;
429   // * the depth of the visited value.
430   struct Entry {
431     Entry(Value value, Value parent, std::optional<unsigned> index,
432           unsigned depth)
433         : value(value), parent(parent), index(index), depth(depth) {}
434 
435     Value value;
436     Value parent;
437     std::optional<unsigned> index;
438     unsigned depth;
439   };
440 
441   // A root of a value and its depth (distance from root to the value).
442   struct RootDepth {
443     Value root;
444     unsigned depth = 0;
445   };
446 
447   // Map from candidate connector values to their roots and depths. Using a
448   // small vector with 1 entry because most values belong to a single root.
449   llvm::MapVector<Value, SmallVector<RootDepth, 1>> connectorsRootsDepths;
450 
451   // Perform a breadth-first traversal of the op DAG rooted at each root.
452   for (Value root : roots) {
453     // The queue of visited values. A value may be present multiple times in
454     // the queue, for multiple parents. We only accept the first occurrence,
455     // which is guaranteed to have the lowest depth.
456     std::queue<Entry> toVisit;
457     toVisit.emplace(root, Value(), 0, 0);
458 
459     // The map from value to its parent for the current root.
460     DenseMap<Value, OpIndex> &parentMap = parentMaps[root];
461 
462     while (!toVisit.empty()) {
463       Entry entry = toVisit.front();
464       toVisit.pop();
465       // Skip if already visited.
466       if (!parentMap.insert({entry.value, {entry.parent, entry.index}}).second)
467         continue;
468 
469       // Mark the root and depth of the value.
470       connectorsRootsDepths[entry.value].push_back({root, entry.depth});
471 
472       // Traverse the operands of an operation and result ops.
473       // We intentionally do not traverse attributes and types, because those
474       // are expensive to join on.
475       TypeSwitch<Operation *>(entry.value.getDefiningOp())
476           .Case<pdl::OperationOp>([&](auto operationOp) {
477             OperandRange operands = operationOp.getOperandValues();
478             // Special case when we pass all the operands in one range.
479             // For those, the index is empty.
480             if (operands.size() == 1 &&
481                 isa<pdl::RangeType>(operands[0].getType())) {
482               toVisit.emplace(operands[0], entry.value, std::nullopt,
483                               entry.depth + 1);
484               return;
485             }
486 
487             // Default case: visit all the operands.
488             for (const auto &p :
489                  llvm::enumerate(operationOp.getOperandValues()))
490               toVisit.emplace(p.value(), entry.value, p.index(),
491                               entry.depth + 1);
492           })
493           .Case<pdl::ResultOp, pdl::ResultsOp>([&](auto resultOp) {
494             toVisit.emplace(resultOp.getParent(), entry.value,
495                             resultOp.getIndex(), entry.depth);
496           });
497     }
498   }
499 
500   // Now build the cost graph.
501   // This is simply a minimum over all depths for the target root.
502   unsigned nextID = 0;
503   for (const auto &connectorRootsDepths : connectorsRootsDepths) {
504     Value value = connectorRootsDepths.first;
505     ArrayRef<RootDepth> rootsDepths = connectorRootsDepths.second;
506     // If there is only one root for this value, this will not trigger
507     // any edges in the cost graph (a perf optimization).
508     if (rootsDepths.size() == 1)
509       continue;
510 
511     for (const RootDepth &p : rootsDepths) {
512       for (const RootDepth &q : rootsDepths) {
513         if (&p == &q)
514           continue;
515         // Insert or retrieve the property of edge from p to q.
516         RootOrderingEntry &entry = graph[q.root][p.root];
517         if (!entry.connector /* new edge */ || entry.cost.first > q.depth) {
518           if (!entry.connector)
519             entry.cost.second = nextID++;
520           entry.cost.first = q.depth;
521           entry.connector = value;
522         }
523       }
524     }
525   }
526 
527   assert((llvm::hasSingleElement(roots) || graph.size() == roots.size()) &&
528          "the pattern contains a candidate root disconnected from the others");
529 }
530 
531 /// Returns true if the operand at the given index needs to be queried using an
532 /// operand group, i.e., if it is variadic itself or follows a variadic operand.
533 static bool useOperandGroup(pdl::OperationOp op, unsigned index) {
534   OperandRange operands = op.getOperandValues();
535   assert(index < operands.size() && "operand index out of range");
536   for (unsigned i = 0; i <= index; ++i)
537     if (isa<pdl::RangeType>(operands[i].getType()))
538       return true;
539   return false;
540 }
541 
542 /// Visit a node during upward traversal.
543 static void visitUpward(std::vector<PositionalPredicate> &predList,
544                         OpIndex opIndex, PredicateBuilder &builder,
545                         DenseMap<Value, Position *> &valueToPosition,
546                         Position *&pos, unsigned rootID) {
547   Value value = opIndex.parent;
548   TypeSwitch<Operation *>(value.getDefiningOp())
549       .Case<pdl::OperationOp>([&](auto operationOp) {
550         LLVM_DEBUG(llvm::dbgs() << "  * Value: " << value << "\n");
551 
552         // Get users and iterate over them.
553         Position *usersPos = builder.getUsers(pos, /*useRepresentative=*/true);
554         Position *foreachPos = builder.getForEach(usersPos, rootID);
555         OperationPosition *opPos = builder.getPassthroughOp(foreachPos);
556 
557         // Compare the operand(s) of the user against the input value(s).
558         Position *operandPos;
559         if (!opIndex.index) {
560           // We are querying all the operands of the operation.
561           operandPos = builder.getAllOperands(opPos);
562         } else if (useOperandGroup(operationOp, *opIndex.index)) {
563           // We are querying an operand group.
564           Type type = operationOp.getOperandValues()[*opIndex.index].getType();
565           bool variadic = isa<pdl::RangeType>(type);
566           operandPos = builder.getOperandGroup(opPos, opIndex.index, variadic);
567         } else {
568           // We are querying an individual operand.
569           operandPos = builder.getOperand(opPos, *opIndex.index);
570         }
571         predList.emplace_back(operandPos, builder.getEqualTo(pos));
572 
573         // Guard against duplicate upward visits. These are not possible,
574         // because if this value was already visited, it would have been
575         // cheaper to start the traversal at this value rather than at the
576         // `connector`, violating the optimality of our spanning tree.
577         bool inserted = valueToPosition.try_emplace(value, opPos).second;
578         (void)inserted;
579         assert(inserted && "duplicate upward visit");
580 
581         // Obtain the tree predicates at the current value.
582         getTreePredicates(predList, value, builder, valueToPosition, opPos,
583                           opIndex.index);
584 
585         // Update the position
586         pos = opPos;
587       })
588       .Case<pdl::ResultOp>([&](auto resultOp) {
589         // Traverse up an individual result.
590         auto *opPos = dyn_cast<OperationPosition>(pos);
591         assert(opPos && "operations and results must be interleaved");
592         pos = builder.getResult(opPos, *opIndex.index);
593 
594         // Insert the result position in case we have not visited it yet.
595         valueToPosition.try_emplace(value, pos);
596       })
597       .Case<pdl::ResultsOp>([&](auto resultOp) {
598         // Traverse up a group of results.
599         auto *opPos = dyn_cast<OperationPosition>(pos);
600         assert(opPos && "operations and results must be interleaved");
601         bool isVariadic = isa<pdl::RangeType>(value.getType());
602         if (opIndex.index)
603           pos = builder.getResultGroup(opPos, opIndex.index, isVariadic);
604         else
605           pos = builder.getAllResults(opPos);
606 
607         // Insert the result position in case we have not visited it yet.
608         valueToPosition.try_emplace(value, pos);
609       });
610 }
611 
612 /// Given a pattern operation, build the set of matcher predicates necessary to
613 /// match this pattern.
614 static Value buildPredicateList(pdl::PatternOp pattern,
615                                 PredicateBuilder &builder,
616                                 std::vector<PositionalPredicate> &predList,
617                                 DenseMap<Value, Position *> &valueToPosition) {
618   SmallVector<Value> roots = detectRoots(pattern);
619 
620   // Build the root ordering graph and compute the parent maps.
621   RootOrderingGraph graph;
622   ParentMaps parentMaps;
623   buildCostGraph(roots, graph, parentMaps);
624   LLVM_DEBUG({
625     llvm::dbgs() << "Graph:\n";
626     for (auto &target : graph) {
627       llvm::dbgs() << "  * " << target.first.getLoc() << " " << target.first
628                    << "\n";
629       for (auto &source : target.second) {
630         RootOrderingEntry &entry = source.second;
631         llvm::dbgs() << "      <- " << source.first << ": " << entry.cost.first
632                      << ":" << entry.cost.second << " via "
633                      << entry.connector.getLoc() << "\n";
634       }
635     }
636   });
637 
638   // Solve the optimal branching problem for each candidate root, or use the
639   // provided one.
640   Value bestRoot = pattern.getRewriter().getRoot();
641   OptimalBranching::EdgeList bestEdges;
642   if (!bestRoot) {
643     unsigned bestCost = 0;
644     LLVM_DEBUG(llvm::dbgs() << "Candidate roots:\n");
645     for (Value root : roots) {
646       OptimalBranching solver(graph, root);
647       unsigned cost = solver.solve();
648       LLVM_DEBUG(llvm::dbgs() << "  * " << root << ": " << cost << "\n");
649       if (!bestRoot || bestCost > cost) {
650         bestCost = cost;
651         bestRoot = root;
652         bestEdges = solver.preOrderTraversal(roots);
653       }
654     }
655   } else {
656     OptimalBranching solver(graph, bestRoot);
657     solver.solve();
658     bestEdges = solver.preOrderTraversal(roots);
659   }
660 
661   // Print the best solution.
662   LLVM_DEBUG({
663     llvm::dbgs() << "Best tree:\n";
664     for (const std::pair<Value, Value> &edge : bestEdges) {
665       llvm::dbgs() << "  * " << edge.first;
666       if (edge.second)
667         llvm::dbgs() << " <- " << edge.second;
668       llvm::dbgs() << "\n";
669     }
670   });
671 
672   LLVM_DEBUG(llvm::dbgs() << "Calling key getTreePredicates:\n");
673   LLVM_DEBUG(llvm::dbgs() << "  * Value: " << bestRoot << "\n");
674 
675   // The best root is the starting point for the traversal. Get the tree
676   // predicates for the DAG rooted at bestRoot.
677   getTreePredicates(predList, bestRoot, builder, valueToPosition,
678                     builder.getRoot());
679 
680   // Traverse the selected optimal branching. For all edges in order, traverse
681   // up starting from the connector, until the candidate root is reached, and
682   // call getTreePredicates at every node along the way.
683   for (const auto &it : llvm::enumerate(bestEdges)) {
684     Value target = it.value().first;
685     Value source = it.value().second;
686 
687     // Check if we already visited the target root. This happens in two cases:
688     // 1) the initial root (bestRoot);
689     // 2) a root that is dominated by (contained in the subtree rooted at) an
690     //    already visited root.
691     if (valueToPosition.count(target))
692       continue;
693 
694     // Determine the connector.
695     Value connector = graph[target][source].connector;
696     assert(connector && "invalid edge");
697     LLVM_DEBUG(llvm::dbgs() << "  * Connector: " << connector.getLoc() << "\n");
698     DenseMap<Value, OpIndex> parentMap = parentMaps.lookup(target);
699     Position *pos = valueToPosition.lookup(connector);
700     assert(pos && "connector has not been traversed yet");
701 
702     // Traverse from the connector upwards towards the target root.
703     for (Value value = connector; value != target;) {
704       OpIndex opIndex = parentMap.lookup(value);
705       assert(opIndex.parent && "missing parent");
706       visitUpward(predList, opIndex, builder, valueToPosition, pos, it.index());
707       value = opIndex.parent;
708     }
709   }
710 
711   getNonTreePredicates(pattern, predList, builder, valueToPosition);
712 
713   return bestRoot;
714 }
715 
716 //===----------------------------------------------------------------------===//
717 // Pattern Predicate Tree Merging
718 //===----------------------------------------------------------------------===//
719 
720 namespace {
721 
722 /// This class represents a specific predicate applied to a position, and
723 /// provides hashing and ordering operators. This class allows for computing a
724 /// frequence sum and ordering predicates based on a cost model.
725 struct OrderedPredicate {
726   OrderedPredicate(const std::pair<Position *, Qualifier *> &ip)
727       : position(ip.first), question(ip.second) {}
728   OrderedPredicate(const PositionalPredicate &ip)
729       : position(ip.position), question(ip.question) {}
730 
731   /// The position this predicate is applied to.
732   Position *position;
733 
734   /// The question that is applied by this predicate onto the position.
735   Qualifier *question;
736 
737   /// The first and second order benefit sums.
738   /// The primary sum is the number of occurrences of this predicate among all
739   /// of the patterns.
740   unsigned primary = 0;
741   /// The secondary sum is a squared summation of the primary sum of all of the
742   /// predicates within each pattern that contains this predicate. This allows
743   /// for favoring predicates that are more commonly shared within a pattern, as
744   /// opposed to those shared across patterns.
745   unsigned secondary = 0;
746 
747   /// The tie breaking ID, used to preserve a deterministic (insertion) order
748   /// among all the predicates with the same priority, depth, and position /
749   /// predicate dependency.
750   unsigned id = 0;
751 
752   /// A map between a pattern operation and the answer to the predicate question
753   /// within that pattern.
754   DenseMap<Operation *, Qualifier *> patternToAnswer;
755 
756   /// Returns true if this predicate is ordered before `rhs`, based on the cost
757   /// model.
758   bool operator<(const OrderedPredicate &rhs) const {
759     // Sort by:
760     // * higher first and secondary order sums
761     // * lower depth
762     // * lower position dependency
763     // * lower predicate dependency
764     // * lower tie breaking ID
765     auto *rhsPos = rhs.position;
766     return std::make_tuple(primary, secondary, rhsPos->getOperationDepth(),
767                            rhsPos->getKind(), rhs.question->getKind(), rhs.id) >
768            std::make_tuple(rhs.primary, rhs.secondary,
769                            position->getOperationDepth(), position->getKind(),
770                            question->getKind(), id);
771   }
772 };
773 
774 /// A DenseMapInfo for OrderedPredicate based solely on the position and
775 /// question.
776 struct OrderedPredicateDenseInfo {
777   using Base = DenseMapInfo<std::pair<Position *, Qualifier *>>;
778 
779   static OrderedPredicate getEmptyKey() { return Base::getEmptyKey(); }
780   static OrderedPredicate getTombstoneKey() { return Base::getTombstoneKey(); }
781   static bool isEqual(const OrderedPredicate &lhs,
782                       const OrderedPredicate &rhs) {
783     return lhs.position == rhs.position && lhs.question == rhs.question;
784   }
785   static unsigned getHashValue(const OrderedPredicate &p) {
786     return llvm::hash_combine(p.position, p.question);
787   }
788 };
789 
790 /// This class wraps a set of ordered predicates that are used within a specific
791 /// pattern operation.
792 struct OrderedPredicateList {
793   OrderedPredicateList(pdl::PatternOp pattern, Value root)
794       : pattern(pattern), root(root) {}
795 
796   pdl::PatternOp pattern;
797   Value root;
798   DenseSet<OrderedPredicate *> predicates;
799 };
800 } // namespace
801 
802 /// Returns true if the given matcher refers to the same predicate as the given
803 /// ordered predicate. This means that the position and questions of the two
804 /// match.
805 static bool isSamePredicate(MatcherNode *node, OrderedPredicate *predicate) {
806   return node->getPosition() == predicate->position &&
807          node->getQuestion() == predicate->question;
808 }
809 
810 /// Get or insert a child matcher for the given parent switch node, given a
811 /// predicate and parent pattern.
812 std::unique_ptr<MatcherNode> &getOrCreateChild(SwitchNode *node,
813                                                OrderedPredicate *predicate,
814                                                pdl::PatternOp pattern) {
815   assert(isSamePredicate(node, predicate) &&
816          "expected matcher to equal the given predicate");
817 
818   auto it = predicate->patternToAnswer.find(pattern);
819   assert(it != predicate->patternToAnswer.end() &&
820          "expected pattern to exist in predicate");
821   return node->getChildren()[it->second];
822 }
823 
824 /// Build the matcher CFG by "pushing" patterns through by sorted predicate
825 /// order. A pattern will traverse as far as possible using common predicates
826 /// and then either diverge from the CFG or reach the end of a branch and start
827 /// creating new nodes.
828 static void propagatePattern(std::unique_ptr<MatcherNode> &node,
829                              OrderedPredicateList &list,
830                              std::vector<OrderedPredicate *>::iterator current,
831                              std::vector<OrderedPredicate *>::iterator end) {
832   if (current == end) {
833     // We've hit the end of a pattern, so create a successful result node.
834     node =
835         std::make_unique<SuccessNode>(list.pattern, list.root, std::move(node));
836 
837     // If the pattern doesn't contain this predicate, ignore it.
838   } else if (!list.predicates.contains(*current)) {
839     propagatePattern(node, list, std::next(current), end);
840 
841     // If the current matcher node is invalid, create a new one for this
842     // position and continue propagation.
843   } else if (!node) {
844     // Create a new node at this position and continue
845     node = std::make_unique<SwitchNode>((*current)->position,
846                                         (*current)->question);
847     propagatePattern(
848         getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern),
849         list, std::next(current), end);
850 
851     // If the matcher has already been created, and it is for this predicate we
852     // continue propagation to the child.
853   } else if (isSamePredicate(node.get(), *current)) {
854     propagatePattern(
855         getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern),
856         list, std::next(current), end);
857 
858     // If the matcher doesn't match the current predicate, insert a branch as
859     // the common set of matchers has diverged.
860   } else {
861     propagatePattern(node->getFailureNode(), list, current, end);
862   }
863 }
864 
865 /// Fold any switch nodes nested under `node` to boolean nodes when possible.
866 /// `node` is updated in-place if it is a switch.
867 static void foldSwitchToBool(std::unique_ptr<MatcherNode> &node) {
868   if (!node)
869     return;
870 
871   if (SwitchNode *switchNode = dyn_cast<SwitchNode>(&*node)) {
872     SwitchNode::ChildMapT &children = switchNode->getChildren();
873     for (auto &it : children)
874       foldSwitchToBool(it.second);
875 
876     // If the node only contains one child, collapse it into a boolean predicate
877     // node.
878     if (children.size() == 1) {
879       auto *childIt = children.begin();
880       node = std::make_unique<BoolNode>(
881           node->getPosition(), node->getQuestion(), childIt->first,
882           std::move(childIt->second), std::move(node->getFailureNode()));
883     }
884   } else if (BoolNode *boolNode = dyn_cast<BoolNode>(&*node)) {
885     foldSwitchToBool(boolNode->getSuccessNode());
886   }
887 
888   foldSwitchToBool(node->getFailureNode());
889 }
890 
891 /// Insert an exit node at the end of the failure path of the `root`.
892 static void insertExitNode(std::unique_ptr<MatcherNode> *root) {
893   while (*root)
894     root = &(*root)->getFailureNode();
895   *root = std::make_unique<ExitNode>();
896 }
897 
898 /// Sorts the range begin/end with the partial order given by cmp.
899 template <typename Iterator, typename Compare>
900 static void stableTopologicalSort(Iterator begin, Iterator end, Compare cmp) {
901   while (begin != end) {
902     // Cannot compute sortBeforeOthers in the predicate of stable_partition
903     // because stable_partition will not keep the [begin, end) range intact
904     // while it runs.
905     llvm::SmallPtrSet<typename Iterator::value_type, 16> sortBeforeOthers;
906     for (auto i = begin; i != end; ++i) {
907       if (std::none_of(begin, end, [&](auto const &b) { return cmp(b, *i); }))
908         sortBeforeOthers.insert(*i);
909     }
910 
911     auto const next = std::stable_partition(begin, end, [&](auto const &a) {
912       return sortBeforeOthers.contains(a);
913     });
914     assert(next != begin && "not a partial ordering");
915     begin = next;
916   }
917 }
918 
919 /// Returns true if 'b' depends on a result of 'a'.
920 static bool dependsOn(OrderedPredicate *a, OrderedPredicate *b) {
921   auto *cqa = dyn_cast<ConstraintQuestion>(a->question);
922   if (!cqa)
923     return false;
924 
925   auto positionDependsOnA = [&](Position *p) {
926     auto *cp = dyn_cast<ConstraintPosition>(p);
927     return cp && cp->getQuestion() == cqa;
928   };
929 
930   if (auto *cqb = dyn_cast<ConstraintQuestion>(b->question)) {
931     // Does any argument of b use a?
932     return llvm::any_of(cqb->getArgs(), positionDependsOnA);
933   }
934   if (auto *equalTo = dyn_cast<EqualToQuestion>(b->question)) {
935     return positionDependsOnA(b->position) ||
936            positionDependsOnA(equalTo->getValue());
937   }
938   return positionDependsOnA(b->position);
939 }
940 
941 /// Given a module containing PDL pattern operations, generate a matcher tree
942 /// using the patterns within the given module and return the root matcher node.
943 std::unique_ptr<MatcherNode>
944 MatcherNode::generateMatcherTree(ModuleOp module, PredicateBuilder &builder,
945                                  DenseMap<Value, Position *> &valueToPosition) {
946   // The set of predicates contained within the pattern operations of the
947   // module.
948   struct PatternPredicates {
949     PatternPredicates(pdl::PatternOp pattern, Value root,
950                       std::vector<PositionalPredicate> predicates)
951         : pattern(pattern), root(root), predicates(std::move(predicates)) {}
952 
953     /// A pattern.
954     pdl::PatternOp pattern;
955 
956     /// A root of the pattern chosen among the candidate roots in pdl.rewrite.
957     Value root;
958 
959     /// The extracted predicates for this pattern and root.
960     std::vector<PositionalPredicate> predicates;
961   };
962 
963   SmallVector<PatternPredicates, 16> patternsAndPredicates;
964   for (pdl::PatternOp pattern : module.getOps<pdl::PatternOp>()) {
965     std::vector<PositionalPredicate> predicateList;
966     Value root =
967         buildPredicateList(pattern, builder, predicateList, valueToPosition);
968     patternsAndPredicates.emplace_back(pattern, root, std::move(predicateList));
969   }
970 
971   // Associate a pattern result with each unique predicate.
972   DenseSet<OrderedPredicate, OrderedPredicateDenseInfo> uniqued;
973   for (auto &patternAndPredList : patternsAndPredicates) {
974     for (auto &predicate : patternAndPredList.predicates) {
975       auto it = uniqued.insert(predicate);
976       it.first->patternToAnswer.try_emplace(patternAndPredList.pattern,
977                                             predicate.answer);
978       // Mark the insertion order (0-based indexing).
979       if (it.second)
980         it.first->id = uniqued.size() - 1;
981     }
982   }
983 
984   // Associate each pattern to a set of its ordered predicates for later lookup.
985   std::vector<OrderedPredicateList> lists;
986   lists.reserve(patternsAndPredicates.size());
987   for (auto &patternAndPredList : patternsAndPredicates) {
988     OrderedPredicateList list(patternAndPredList.pattern,
989                               patternAndPredList.root);
990     for (auto &predicate : patternAndPredList.predicates) {
991       OrderedPredicate *orderedPredicate = &*uniqued.find(predicate);
992       list.predicates.insert(orderedPredicate);
993 
994       // Increment the primary sum for each reference to a particular predicate.
995       ++orderedPredicate->primary;
996     }
997     lists.push_back(std::move(list));
998   }
999 
1000   // For a particular pattern, get the total primary sum and add it to the
1001   // secondary sum of each predicate. Square the primary sums to emphasize
1002   // shared predicates within rather than across patterns.
1003   for (auto &list : lists) {
1004     unsigned total = 0;
1005     for (auto *predicate : list.predicates)
1006       total += predicate->primary * predicate->primary;
1007     for (auto *predicate : list.predicates)
1008       predicate->secondary += total;
1009   }
1010 
1011   // Sort the set of predicates now that the cost primary and secondary sums
1012   // have been computed.
1013   std::vector<OrderedPredicate *> ordered;
1014   ordered.reserve(uniqued.size());
1015   for (auto &ip : uniqued)
1016     ordered.push_back(&ip);
1017   llvm::sort(ordered, [](OrderedPredicate *lhs, OrderedPredicate *rhs) {
1018     return *lhs < *rhs;
1019   });
1020 
1021   // Mostly keep the now established order, but also ensure that
1022   // ConstraintQuestions come after the results they use.
1023   stableTopologicalSort(ordered.begin(), ordered.end(), dependsOn);
1024 
1025   // Build the matchers for each of the pattern predicate lists.
1026   std::unique_ptr<MatcherNode> root;
1027   for (OrderedPredicateList &list : lists)
1028     propagatePattern(root, list, ordered.begin(), ordered.end());
1029 
1030   // Collapse the graph and insert the exit node.
1031   foldSwitchToBool(root);
1032   insertExitNode(&root);
1033   return root;
1034 }
1035 
1036 //===----------------------------------------------------------------------===//
1037 // MatcherNode
1038 //===----------------------------------------------------------------------===//
1039 
1040 MatcherNode::MatcherNode(TypeID matcherTypeID, Position *p, Qualifier *q,
1041                          std::unique_ptr<MatcherNode> failureNode)
1042     : position(p), question(q), failureNode(std::move(failureNode)),
1043       matcherTypeID(matcherTypeID) {}
1044 
1045 //===----------------------------------------------------------------------===//
1046 // BoolNode
1047 //===----------------------------------------------------------------------===//
1048 
1049 BoolNode::BoolNode(Position *position, Qualifier *question, Qualifier *answer,
1050                    std::unique_ptr<MatcherNode> successNode,
1051                    std::unique_ptr<MatcherNode> failureNode)
1052     : MatcherNode(TypeID::get<BoolNode>(), position, question,
1053                   std::move(failureNode)),
1054       answer(answer), successNode(std::move(successNode)) {}
1055 
1056 //===----------------------------------------------------------------------===//
1057 // SuccessNode
1058 //===----------------------------------------------------------------------===//
1059 
1060 SuccessNode::SuccessNode(pdl::PatternOp pattern, Value root,
1061                          std::unique_ptr<MatcherNode> failureNode)
1062     : MatcherNode(TypeID::get<SuccessNode>(), /*position=*/nullptr,
1063                   /*question=*/nullptr, std::move(failureNode)),
1064       pattern(pattern), root(root) {}
1065 
1066 //===----------------------------------------------------------------------===//
1067 // SwitchNode
1068 //===----------------------------------------------------------------------===//
1069 
1070 SwitchNode::SwitchNode(Position *position, Qualifier *question)
1071     : MatcherNode(TypeID::get<SwitchNode>(), position, question) {}
1072