xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Target/X86/X86InstrInfo.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86InstrInfo.h"
14 #include "X86.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/IR/DebugInfoMetadata.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCExpr.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "x86-instr-info"
46 
47 #define GET_INSTRINFO_CTOR_DTOR
48 #include "X86GenInstrInfo.inc"
49 
50 static cl::opt<bool>
51     NoFusing("disable-spill-fusing",
52              cl::desc("Disable fusing of spill code into instructions"),
53              cl::Hidden);
54 static cl::opt<bool>
55 PrintFailedFusing("print-failed-fuse-candidates",
56                   cl::desc("Print instructions that the allocator wants to"
57                            " fuse, but the X86 backend currently can't"),
58                   cl::Hidden);
59 static cl::opt<bool>
60 ReMatPICStubLoad("remat-pic-stub-load",
61                  cl::desc("Re-materialize load from stub in PIC mode"),
62                  cl::init(false), cl::Hidden);
63 static cl::opt<unsigned>
64 PartialRegUpdateClearance("partial-reg-update-clearance",
65                           cl::desc("Clearance between two register writes "
66                                    "for inserting XOR to avoid partial "
67                                    "register update"),
68                           cl::init(64), cl::Hidden);
69 static cl::opt<unsigned>
70 UndefRegClearance("undef-reg-clearance",
71                   cl::desc("How many idle instructions we would like before "
72                            "certain undef register reads"),
73                   cl::init(128), cl::Hidden);
74 
75 
76 // Pin the vtable to this file.
anchor()77 void X86InstrInfo::anchor() {}
78 
X86InstrInfo(X86Subtarget & STI)79 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
80     : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81                                                : X86::ADJCALLSTACKDOWN32),
82                       (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83                                                : X86::ADJCALLSTACKUP32),
84                       X86::CATCHRET,
85                       (STI.is64Bit() ? X86::RETQ : X86::RETL)),
86       Subtarget(STI), RI(STI.getTargetTriple()) {
87 }
88 
89 bool
isCoalescableExtInstr(const MachineInstr & MI,Register & SrcReg,Register & DstReg,unsigned & SubIdx) const90 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
91                                     Register &SrcReg, Register &DstReg,
92                                     unsigned &SubIdx) const {
93   switch (MI.getOpcode()) {
94   default: break;
95   case X86::MOVSX16rr8:
96   case X86::MOVZX16rr8:
97   case X86::MOVSX32rr8:
98   case X86::MOVZX32rr8:
99   case X86::MOVSX64rr8:
100     if (!Subtarget.is64Bit())
101       // It's not always legal to reference the low 8-bit of the larger
102       // register in 32-bit mode.
103       return false;
104     LLVM_FALLTHROUGH;
105   case X86::MOVSX32rr16:
106   case X86::MOVZX32rr16:
107   case X86::MOVSX64rr16:
108   case X86::MOVSX64rr32: {
109     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
110       // Be conservative.
111       return false;
112     SrcReg = MI.getOperand(1).getReg();
113     DstReg = MI.getOperand(0).getReg();
114     switch (MI.getOpcode()) {
115     default: llvm_unreachable("Unreachable!");
116     case X86::MOVSX16rr8:
117     case X86::MOVZX16rr8:
118     case X86::MOVSX32rr8:
119     case X86::MOVZX32rr8:
120     case X86::MOVSX64rr8:
121       SubIdx = X86::sub_8bit;
122       break;
123     case X86::MOVSX32rr16:
124     case X86::MOVZX32rr16:
125     case X86::MOVSX64rr16:
126       SubIdx = X86::sub_16bit;
127       break;
128     case X86::MOVSX64rr32:
129       SubIdx = X86::sub_32bit;
130       break;
131     }
132     return true;
133   }
134   }
135   return false;
136 }
137 
isDataInvariant(MachineInstr & MI)138 bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
139   switch (MI.getOpcode()) {
140   default:
141     // By default, assume that the instruction is not data invariant.
142     return false;
143 
144     // Some target-independent operations that trivially lower to data-invariant
145     // instructions.
146   case TargetOpcode::COPY:
147   case TargetOpcode::INSERT_SUBREG:
148   case TargetOpcode::SUBREG_TO_REG:
149     return true;
150 
151   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
152   // However, they set flags and are perhaps the most surprisingly constant
153   // time operations so we call them out here separately.
154   case X86::IMUL16rr:
155   case X86::IMUL16rri8:
156   case X86::IMUL16rri:
157   case X86::IMUL32rr:
158   case X86::IMUL32rri8:
159   case X86::IMUL32rri:
160   case X86::IMUL64rr:
161   case X86::IMUL64rri32:
162   case X86::IMUL64rri8:
163 
164   // Bit scanning and counting instructions that are somewhat surprisingly
165   // constant time as they scan across bits and do other fairly complex
166   // operations like popcnt, but are believed to be constant time on x86.
167   // However, these set flags.
168   case X86::BSF16rr:
169   case X86::BSF32rr:
170   case X86::BSF64rr:
171   case X86::BSR16rr:
172   case X86::BSR32rr:
173   case X86::BSR64rr:
174   case X86::LZCNT16rr:
175   case X86::LZCNT32rr:
176   case X86::LZCNT64rr:
177   case X86::POPCNT16rr:
178   case X86::POPCNT32rr:
179   case X86::POPCNT64rr:
180   case X86::TZCNT16rr:
181   case X86::TZCNT32rr:
182   case X86::TZCNT64rr:
183 
184   // Bit manipulation instructions are effectively combinations of basic
185   // arithmetic ops, and should still execute in constant time. These also
186   // set flags.
187   case X86::BLCFILL32rr:
188   case X86::BLCFILL64rr:
189   case X86::BLCI32rr:
190   case X86::BLCI64rr:
191   case X86::BLCIC32rr:
192   case X86::BLCIC64rr:
193   case X86::BLCMSK32rr:
194   case X86::BLCMSK64rr:
195   case X86::BLCS32rr:
196   case X86::BLCS64rr:
197   case X86::BLSFILL32rr:
198   case X86::BLSFILL64rr:
199   case X86::BLSI32rr:
200   case X86::BLSI64rr:
201   case X86::BLSIC32rr:
202   case X86::BLSIC64rr:
203   case X86::BLSMSK32rr:
204   case X86::BLSMSK64rr:
205   case X86::BLSR32rr:
206   case X86::BLSR64rr:
207   case X86::TZMSK32rr:
208   case X86::TZMSK64rr:
209 
210   // Bit extracting and clearing instructions should execute in constant time,
211   // and set flags.
212   case X86::BEXTR32rr:
213   case X86::BEXTR64rr:
214   case X86::BEXTRI32ri:
215   case X86::BEXTRI64ri:
216   case X86::BZHI32rr:
217   case X86::BZHI64rr:
218 
219   // Shift and rotate.
220   case X86::ROL8r1:
221   case X86::ROL16r1:
222   case X86::ROL32r1:
223   case X86::ROL64r1:
224   case X86::ROL8rCL:
225   case X86::ROL16rCL:
226   case X86::ROL32rCL:
227   case X86::ROL64rCL:
228   case X86::ROL8ri:
229   case X86::ROL16ri:
230   case X86::ROL32ri:
231   case X86::ROL64ri:
232   case X86::ROR8r1:
233   case X86::ROR16r1:
234   case X86::ROR32r1:
235   case X86::ROR64r1:
236   case X86::ROR8rCL:
237   case X86::ROR16rCL:
238   case X86::ROR32rCL:
239   case X86::ROR64rCL:
240   case X86::ROR8ri:
241   case X86::ROR16ri:
242   case X86::ROR32ri:
243   case X86::ROR64ri:
244   case X86::SAR8r1:
245   case X86::SAR16r1:
246   case X86::SAR32r1:
247   case X86::SAR64r1:
248   case X86::SAR8rCL:
249   case X86::SAR16rCL:
250   case X86::SAR32rCL:
251   case X86::SAR64rCL:
252   case X86::SAR8ri:
253   case X86::SAR16ri:
254   case X86::SAR32ri:
255   case X86::SAR64ri:
256   case X86::SHL8r1:
257   case X86::SHL16r1:
258   case X86::SHL32r1:
259   case X86::SHL64r1:
260   case X86::SHL8rCL:
261   case X86::SHL16rCL:
262   case X86::SHL32rCL:
263   case X86::SHL64rCL:
264   case X86::SHL8ri:
265   case X86::SHL16ri:
266   case X86::SHL32ri:
267   case X86::SHL64ri:
268   case X86::SHR8r1:
269   case X86::SHR16r1:
270   case X86::SHR32r1:
271   case X86::SHR64r1:
272   case X86::SHR8rCL:
273   case X86::SHR16rCL:
274   case X86::SHR32rCL:
275   case X86::SHR64rCL:
276   case X86::SHR8ri:
277   case X86::SHR16ri:
278   case X86::SHR32ri:
279   case X86::SHR64ri:
280   case X86::SHLD16rrCL:
281   case X86::SHLD32rrCL:
282   case X86::SHLD64rrCL:
283   case X86::SHLD16rri8:
284   case X86::SHLD32rri8:
285   case X86::SHLD64rri8:
286   case X86::SHRD16rrCL:
287   case X86::SHRD32rrCL:
288   case X86::SHRD64rrCL:
289   case X86::SHRD16rri8:
290   case X86::SHRD32rri8:
291   case X86::SHRD64rri8:
292 
293   // Basic arithmetic is constant time on the input but does set flags.
294   case X86::ADC8rr:
295   case X86::ADC8ri:
296   case X86::ADC16rr:
297   case X86::ADC16ri:
298   case X86::ADC16ri8:
299   case X86::ADC32rr:
300   case X86::ADC32ri:
301   case X86::ADC32ri8:
302   case X86::ADC64rr:
303   case X86::ADC64ri8:
304   case X86::ADC64ri32:
305   case X86::ADD8rr:
306   case X86::ADD8ri:
307   case X86::ADD16rr:
308   case X86::ADD16ri:
309   case X86::ADD16ri8:
310   case X86::ADD32rr:
311   case X86::ADD32ri:
312   case X86::ADD32ri8:
313   case X86::ADD64rr:
314   case X86::ADD64ri8:
315   case X86::ADD64ri32:
316   case X86::AND8rr:
317   case X86::AND8ri:
318   case X86::AND16rr:
319   case X86::AND16ri:
320   case X86::AND16ri8:
321   case X86::AND32rr:
322   case X86::AND32ri:
323   case X86::AND32ri8:
324   case X86::AND64rr:
325   case X86::AND64ri8:
326   case X86::AND64ri32:
327   case X86::OR8rr:
328   case X86::OR8ri:
329   case X86::OR16rr:
330   case X86::OR16ri:
331   case X86::OR16ri8:
332   case X86::OR32rr:
333   case X86::OR32ri:
334   case X86::OR32ri8:
335   case X86::OR64rr:
336   case X86::OR64ri8:
337   case X86::OR64ri32:
338   case X86::SBB8rr:
339   case X86::SBB8ri:
340   case X86::SBB16rr:
341   case X86::SBB16ri:
342   case X86::SBB16ri8:
343   case X86::SBB32rr:
344   case X86::SBB32ri:
345   case X86::SBB32ri8:
346   case X86::SBB64rr:
347   case X86::SBB64ri8:
348   case X86::SBB64ri32:
349   case X86::SUB8rr:
350   case X86::SUB8ri:
351   case X86::SUB16rr:
352   case X86::SUB16ri:
353   case X86::SUB16ri8:
354   case X86::SUB32rr:
355   case X86::SUB32ri:
356   case X86::SUB32ri8:
357   case X86::SUB64rr:
358   case X86::SUB64ri8:
359   case X86::SUB64ri32:
360   case X86::XOR8rr:
361   case X86::XOR8ri:
362   case X86::XOR16rr:
363   case X86::XOR16ri:
364   case X86::XOR16ri8:
365   case X86::XOR32rr:
366   case X86::XOR32ri:
367   case X86::XOR32ri8:
368   case X86::XOR64rr:
369   case X86::XOR64ri8:
370   case X86::XOR64ri32:
371   // Arithmetic with just 32-bit and 64-bit variants and no immediates.
372   case X86::ADCX32rr:
373   case X86::ADCX64rr:
374   case X86::ADOX32rr:
375   case X86::ADOX64rr:
376   case X86::ANDN32rr:
377   case X86::ANDN64rr:
378   // Unary arithmetic operations.
379   case X86::DEC8r:
380   case X86::DEC16r:
381   case X86::DEC32r:
382   case X86::DEC64r:
383   case X86::INC8r:
384   case X86::INC16r:
385   case X86::INC32r:
386   case X86::INC64r:
387   case X86::NEG8r:
388   case X86::NEG16r:
389   case X86::NEG32r:
390   case X86::NEG64r:
391 
392   // Unlike other arithmetic, NOT doesn't set EFLAGS.
393   case X86::NOT8r:
394   case X86::NOT16r:
395   case X86::NOT32r:
396   case X86::NOT64r:
397 
398   // Various move instructions used to zero or sign extend things. Note that we
399   // intentionally don't support the _NOREX variants as we can't handle that
400   // register constraint anyways.
401   case X86::MOVSX16rr8:
402   case X86::MOVSX32rr8:
403   case X86::MOVSX32rr16:
404   case X86::MOVSX64rr8:
405   case X86::MOVSX64rr16:
406   case X86::MOVSX64rr32:
407   case X86::MOVZX16rr8:
408   case X86::MOVZX32rr8:
409   case X86::MOVZX32rr16:
410   case X86::MOVZX64rr8:
411   case X86::MOVZX64rr16:
412   case X86::MOV32rr:
413 
414   // Arithmetic instructions that are both constant time and don't set flags.
415   case X86::RORX32ri:
416   case X86::RORX64ri:
417   case X86::SARX32rr:
418   case X86::SARX64rr:
419   case X86::SHLX32rr:
420   case X86::SHLX64rr:
421   case X86::SHRX32rr:
422   case X86::SHRX64rr:
423 
424   // LEA doesn't actually access memory, and its arithmetic is constant time.
425   case X86::LEA16r:
426   case X86::LEA32r:
427   case X86::LEA64_32r:
428   case X86::LEA64r:
429     return true;
430   }
431 }
432 
isDataInvariantLoad(MachineInstr & MI)433 bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
434   switch (MI.getOpcode()) {
435   default:
436     // By default, assume that the load will immediately leak.
437     return false;
438 
439   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
440   // However, they set flags and are perhaps the most surprisingly constant
441   // time operations so we call them out here separately.
442   case X86::IMUL16rm:
443   case X86::IMUL16rmi8:
444   case X86::IMUL16rmi:
445   case X86::IMUL32rm:
446   case X86::IMUL32rmi8:
447   case X86::IMUL32rmi:
448   case X86::IMUL64rm:
449   case X86::IMUL64rmi32:
450   case X86::IMUL64rmi8:
451 
452   // Bit scanning and counting instructions that are somewhat surprisingly
453   // constant time as they scan across bits and do other fairly complex
454   // operations like popcnt, but are believed to be constant time on x86.
455   // However, these set flags.
456   case X86::BSF16rm:
457   case X86::BSF32rm:
458   case X86::BSF64rm:
459   case X86::BSR16rm:
460   case X86::BSR32rm:
461   case X86::BSR64rm:
462   case X86::LZCNT16rm:
463   case X86::LZCNT32rm:
464   case X86::LZCNT64rm:
465   case X86::POPCNT16rm:
466   case X86::POPCNT32rm:
467   case X86::POPCNT64rm:
468   case X86::TZCNT16rm:
469   case X86::TZCNT32rm:
470   case X86::TZCNT64rm:
471 
472   // Bit manipulation instructions are effectively combinations of basic
473   // arithmetic ops, and should still execute in constant time. These also
474   // set flags.
475   case X86::BLCFILL32rm:
476   case X86::BLCFILL64rm:
477   case X86::BLCI32rm:
478   case X86::BLCI64rm:
479   case X86::BLCIC32rm:
480   case X86::BLCIC64rm:
481   case X86::BLCMSK32rm:
482   case X86::BLCMSK64rm:
483   case X86::BLCS32rm:
484   case X86::BLCS64rm:
485   case X86::BLSFILL32rm:
486   case X86::BLSFILL64rm:
487   case X86::BLSI32rm:
488   case X86::BLSI64rm:
489   case X86::BLSIC32rm:
490   case X86::BLSIC64rm:
491   case X86::BLSMSK32rm:
492   case X86::BLSMSK64rm:
493   case X86::BLSR32rm:
494   case X86::BLSR64rm:
495   case X86::TZMSK32rm:
496   case X86::TZMSK64rm:
497 
498   // Bit extracting and clearing instructions should execute in constant time,
499   // and set flags.
500   case X86::BEXTR32rm:
501   case X86::BEXTR64rm:
502   case X86::BEXTRI32mi:
503   case X86::BEXTRI64mi:
504   case X86::BZHI32rm:
505   case X86::BZHI64rm:
506 
507   // Basic arithmetic is constant time on the input but does set flags.
508   case X86::ADC8rm:
509   case X86::ADC16rm:
510   case X86::ADC32rm:
511   case X86::ADC64rm:
512   case X86::ADCX32rm:
513   case X86::ADCX64rm:
514   case X86::ADD8rm:
515   case X86::ADD16rm:
516   case X86::ADD32rm:
517   case X86::ADD64rm:
518   case X86::ADOX32rm:
519   case X86::ADOX64rm:
520   case X86::AND8rm:
521   case X86::AND16rm:
522   case X86::AND32rm:
523   case X86::AND64rm:
524   case X86::ANDN32rm:
525   case X86::ANDN64rm:
526   case X86::OR8rm:
527   case X86::OR16rm:
528   case X86::OR32rm:
529   case X86::OR64rm:
530   case X86::SBB8rm:
531   case X86::SBB16rm:
532   case X86::SBB32rm:
533   case X86::SBB64rm:
534   case X86::SUB8rm:
535   case X86::SUB16rm:
536   case X86::SUB32rm:
537   case X86::SUB64rm:
538   case X86::XOR8rm:
539   case X86::XOR16rm:
540   case X86::XOR32rm:
541   case X86::XOR64rm:
542 
543   // Integer multiply w/o affecting flags is still believed to be constant
544   // time on x86. Called out separately as this is among the most surprising
545   // instructions to exhibit that behavior.
546   case X86::MULX32rm:
547   case X86::MULX64rm:
548 
549   // Arithmetic instructions that are both constant time and don't set flags.
550   case X86::RORX32mi:
551   case X86::RORX64mi:
552   case X86::SARX32rm:
553   case X86::SARX64rm:
554   case X86::SHLX32rm:
555   case X86::SHLX64rm:
556   case X86::SHRX32rm:
557   case X86::SHRX64rm:
558 
559   // Conversions are believed to be constant time and don't set flags.
560   case X86::CVTTSD2SI64rm:
561   case X86::VCVTTSD2SI64rm:
562   case X86::VCVTTSD2SI64Zrm:
563   case X86::CVTTSD2SIrm:
564   case X86::VCVTTSD2SIrm:
565   case X86::VCVTTSD2SIZrm:
566   case X86::CVTTSS2SI64rm:
567   case X86::VCVTTSS2SI64rm:
568   case X86::VCVTTSS2SI64Zrm:
569   case X86::CVTTSS2SIrm:
570   case X86::VCVTTSS2SIrm:
571   case X86::VCVTTSS2SIZrm:
572   case X86::CVTSI2SDrm:
573   case X86::VCVTSI2SDrm:
574   case X86::VCVTSI2SDZrm:
575   case X86::CVTSI2SSrm:
576   case X86::VCVTSI2SSrm:
577   case X86::VCVTSI2SSZrm:
578   case X86::CVTSI642SDrm:
579   case X86::VCVTSI642SDrm:
580   case X86::VCVTSI642SDZrm:
581   case X86::CVTSI642SSrm:
582   case X86::VCVTSI642SSrm:
583   case X86::VCVTSI642SSZrm:
584   case X86::CVTSS2SDrm:
585   case X86::VCVTSS2SDrm:
586   case X86::VCVTSS2SDZrm:
587   case X86::CVTSD2SSrm:
588   case X86::VCVTSD2SSrm:
589   case X86::VCVTSD2SSZrm:
590   // AVX512 added unsigned integer conversions.
591   case X86::VCVTTSD2USI64Zrm:
592   case X86::VCVTTSD2USIZrm:
593   case X86::VCVTTSS2USI64Zrm:
594   case X86::VCVTTSS2USIZrm:
595   case X86::VCVTUSI2SDZrm:
596   case X86::VCVTUSI642SDZrm:
597   case X86::VCVTUSI2SSZrm:
598   case X86::VCVTUSI642SSZrm:
599 
600   // Loads to register don't set flags.
601   case X86::MOV8rm:
602   case X86::MOV8rm_NOREX:
603   case X86::MOV16rm:
604   case X86::MOV32rm:
605   case X86::MOV64rm:
606   case X86::MOVSX16rm8:
607   case X86::MOVSX32rm16:
608   case X86::MOVSX32rm8:
609   case X86::MOVSX32rm8_NOREX:
610   case X86::MOVSX64rm16:
611   case X86::MOVSX64rm32:
612   case X86::MOVSX64rm8:
613   case X86::MOVZX16rm8:
614   case X86::MOVZX32rm16:
615   case X86::MOVZX32rm8:
616   case X86::MOVZX32rm8_NOREX:
617   case X86::MOVZX64rm16:
618   case X86::MOVZX64rm8:
619     return true;
620   }
621 }
622 
getSPAdjust(const MachineInstr & MI) const623 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
624   const MachineFunction *MF = MI.getParent()->getParent();
625   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
626 
627   if (isFrameInstr(MI)) {
628     int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
629     SPAdj -= getFrameAdjustment(MI);
630     if (!isFrameSetup(MI))
631       SPAdj = -SPAdj;
632     return SPAdj;
633   }
634 
635   // To know whether a call adjusts the stack, we need information
636   // that is bound to the following ADJCALLSTACKUP pseudo.
637   // Look for the next ADJCALLSTACKUP that follows the call.
638   if (MI.isCall()) {
639     const MachineBasicBlock *MBB = MI.getParent();
640     auto I = ++MachineBasicBlock::const_iterator(MI);
641     for (auto E = MBB->end(); I != E; ++I) {
642       if (I->getOpcode() == getCallFrameDestroyOpcode() ||
643           I->isCall())
644         break;
645     }
646 
647     // If we could not find a frame destroy opcode, then it has already
648     // been simplified, so we don't care.
649     if (I->getOpcode() != getCallFrameDestroyOpcode())
650       return 0;
651 
652     return -(I->getOperand(1).getImm());
653   }
654 
655   // Currently handle only PUSHes we can reasonably expect to see
656   // in call sequences
657   switch (MI.getOpcode()) {
658   default:
659     return 0;
660   case X86::PUSH32i8:
661   case X86::PUSH32r:
662   case X86::PUSH32rmm:
663   case X86::PUSH32rmr:
664   case X86::PUSHi32:
665     return 4;
666   case X86::PUSH64i8:
667   case X86::PUSH64r:
668   case X86::PUSH64rmm:
669   case X86::PUSH64rmr:
670   case X86::PUSH64i32:
671     return 8;
672   }
673 }
674 
675 /// Return true and the FrameIndex if the specified
676 /// operand and follow operands form a reference to the stack frame.
isFrameOperand(const MachineInstr & MI,unsigned int Op,int & FrameIndex) const677 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
678                                   int &FrameIndex) const {
679   if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
680       MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
681       MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
682       MI.getOperand(Op + X86::AddrDisp).isImm() &&
683       MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
684       MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
685       MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
686     FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
687     return true;
688   }
689   return false;
690 }
691 
isFrameLoadOpcode(int Opcode,unsigned & MemBytes)692 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
693   switch (Opcode) {
694   default:
695     return false;
696   case X86::MOV8rm:
697   case X86::KMOVBkm:
698     MemBytes = 1;
699     return true;
700   case X86::MOV16rm:
701   case X86::KMOVWkm:
702     MemBytes = 2;
703     return true;
704   case X86::MOV32rm:
705   case X86::MOVSSrm:
706   case X86::MOVSSrm_alt:
707   case X86::VMOVSSrm:
708   case X86::VMOVSSrm_alt:
709   case X86::VMOVSSZrm:
710   case X86::VMOVSSZrm_alt:
711   case X86::KMOVDkm:
712     MemBytes = 4;
713     return true;
714   case X86::MOV64rm:
715   case X86::LD_Fp64m:
716   case X86::MOVSDrm:
717   case X86::MOVSDrm_alt:
718   case X86::VMOVSDrm:
719   case X86::VMOVSDrm_alt:
720   case X86::VMOVSDZrm:
721   case X86::VMOVSDZrm_alt:
722   case X86::MMX_MOVD64rm:
723   case X86::MMX_MOVQ64rm:
724   case X86::KMOVQkm:
725     MemBytes = 8;
726     return true;
727   case X86::MOVAPSrm:
728   case X86::MOVUPSrm:
729   case X86::MOVAPDrm:
730   case X86::MOVUPDrm:
731   case X86::MOVDQArm:
732   case X86::MOVDQUrm:
733   case X86::VMOVAPSrm:
734   case X86::VMOVUPSrm:
735   case X86::VMOVAPDrm:
736   case X86::VMOVUPDrm:
737   case X86::VMOVDQArm:
738   case X86::VMOVDQUrm:
739   case X86::VMOVAPSZ128rm:
740   case X86::VMOVUPSZ128rm:
741   case X86::VMOVAPSZ128rm_NOVLX:
742   case X86::VMOVUPSZ128rm_NOVLX:
743   case X86::VMOVAPDZ128rm:
744   case X86::VMOVUPDZ128rm:
745   case X86::VMOVDQU8Z128rm:
746   case X86::VMOVDQU16Z128rm:
747   case X86::VMOVDQA32Z128rm:
748   case X86::VMOVDQU32Z128rm:
749   case X86::VMOVDQA64Z128rm:
750   case X86::VMOVDQU64Z128rm:
751     MemBytes = 16;
752     return true;
753   case X86::VMOVAPSYrm:
754   case X86::VMOVUPSYrm:
755   case X86::VMOVAPDYrm:
756   case X86::VMOVUPDYrm:
757   case X86::VMOVDQAYrm:
758   case X86::VMOVDQUYrm:
759   case X86::VMOVAPSZ256rm:
760   case X86::VMOVUPSZ256rm:
761   case X86::VMOVAPSZ256rm_NOVLX:
762   case X86::VMOVUPSZ256rm_NOVLX:
763   case X86::VMOVAPDZ256rm:
764   case X86::VMOVUPDZ256rm:
765   case X86::VMOVDQU8Z256rm:
766   case X86::VMOVDQU16Z256rm:
767   case X86::VMOVDQA32Z256rm:
768   case X86::VMOVDQU32Z256rm:
769   case X86::VMOVDQA64Z256rm:
770   case X86::VMOVDQU64Z256rm:
771     MemBytes = 32;
772     return true;
773   case X86::VMOVAPSZrm:
774   case X86::VMOVUPSZrm:
775   case X86::VMOVAPDZrm:
776   case X86::VMOVUPDZrm:
777   case X86::VMOVDQU8Zrm:
778   case X86::VMOVDQU16Zrm:
779   case X86::VMOVDQA32Zrm:
780   case X86::VMOVDQU32Zrm:
781   case X86::VMOVDQA64Zrm:
782   case X86::VMOVDQU64Zrm:
783     MemBytes = 64;
784     return true;
785   }
786 }
787 
isFrameStoreOpcode(int Opcode,unsigned & MemBytes)788 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
789   switch (Opcode) {
790   default:
791     return false;
792   case X86::MOV8mr:
793   case X86::KMOVBmk:
794     MemBytes = 1;
795     return true;
796   case X86::MOV16mr:
797   case X86::KMOVWmk:
798     MemBytes = 2;
799     return true;
800   case X86::MOV32mr:
801   case X86::MOVSSmr:
802   case X86::VMOVSSmr:
803   case X86::VMOVSSZmr:
804   case X86::KMOVDmk:
805     MemBytes = 4;
806     return true;
807   case X86::MOV64mr:
808   case X86::ST_FpP64m:
809   case X86::MOVSDmr:
810   case X86::VMOVSDmr:
811   case X86::VMOVSDZmr:
812   case X86::MMX_MOVD64mr:
813   case X86::MMX_MOVQ64mr:
814   case X86::MMX_MOVNTQmr:
815   case X86::KMOVQmk:
816     MemBytes = 8;
817     return true;
818   case X86::MOVAPSmr:
819   case X86::MOVUPSmr:
820   case X86::MOVAPDmr:
821   case X86::MOVUPDmr:
822   case X86::MOVDQAmr:
823   case X86::MOVDQUmr:
824   case X86::VMOVAPSmr:
825   case X86::VMOVUPSmr:
826   case X86::VMOVAPDmr:
827   case X86::VMOVUPDmr:
828   case X86::VMOVDQAmr:
829   case X86::VMOVDQUmr:
830   case X86::VMOVUPSZ128mr:
831   case X86::VMOVAPSZ128mr:
832   case X86::VMOVUPSZ128mr_NOVLX:
833   case X86::VMOVAPSZ128mr_NOVLX:
834   case X86::VMOVUPDZ128mr:
835   case X86::VMOVAPDZ128mr:
836   case X86::VMOVDQA32Z128mr:
837   case X86::VMOVDQU32Z128mr:
838   case X86::VMOVDQA64Z128mr:
839   case X86::VMOVDQU64Z128mr:
840   case X86::VMOVDQU8Z128mr:
841   case X86::VMOVDQU16Z128mr:
842     MemBytes = 16;
843     return true;
844   case X86::VMOVUPSYmr:
845   case X86::VMOVAPSYmr:
846   case X86::VMOVUPDYmr:
847   case X86::VMOVAPDYmr:
848   case X86::VMOVDQUYmr:
849   case X86::VMOVDQAYmr:
850   case X86::VMOVUPSZ256mr:
851   case X86::VMOVAPSZ256mr:
852   case X86::VMOVUPSZ256mr_NOVLX:
853   case X86::VMOVAPSZ256mr_NOVLX:
854   case X86::VMOVUPDZ256mr:
855   case X86::VMOVAPDZ256mr:
856   case X86::VMOVDQU8Z256mr:
857   case X86::VMOVDQU16Z256mr:
858   case X86::VMOVDQA32Z256mr:
859   case X86::VMOVDQU32Z256mr:
860   case X86::VMOVDQA64Z256mr:
861   case X86::VMOVDQU64Z256mr:
862     MemBytes = 32;
863     return true;
864   case X86::VMOVUPSZmr:
865   case X86::VMOVAPSZmr:
866   case X86::VMOVUPDZmr:
867   case X86::VMOVAPDZmr:
868   case X86::VMOVDQU8Zmr:
869   case X86::VMOVDQU16Zmr:
870   case X86::VMOVDQA32Zmr:
871   case X86::VMOVDQU32Zmr:
872   case X86::VMOVDQA64Zmr:
873   case X86::VMOVDQU64Zmr:
874     MemBytes = 64;
875     return true;
876   }
877   return false;
878 }
879 
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const880 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
881                                            int &FrameIndex) const {
882   unsigned Dummy;
883   return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
884 }
885 
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes) const886 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
887                                            int &FrameIndex,
888                                            unsigned &MemBytes) const {
889   if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
890     if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
891       return MI.getOperand(0).getReg();
892   return 0;
893 }
894 
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const895 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
896                                                  int &FrameIndex) const {
897   unsigned Dummy;
898   if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
899     unsigned Reg;
900     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
901       return Reg;
902     // Check for post-frame index elimination operations
903     SmallVector<const MachineMemOperand *, 1> Accesses;
904     if (hasLoadFromStackSlot(MI, Accesses)) {
905       FrameIndex =
906           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
907               ->getFrameIndex();
908       return 1;
909     }
910   }
911   return 0;
912 }
913 
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const914 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
915                                           int &FrameIndex) const {
916   unsigned Dummy;
917   return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
918 }
919 
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes) const920 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
921                                           int &FrameIndex,
922                                           unsigned &MemBytes) const {
923   if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
924     if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
925         isFrameOperand(MI, 0, FrameIndex))
926       return MI.getOperand(X86::AddrNumOperands).getReg();
927   return 0;
928 }
929 
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const930 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
931                                                 int &FrameIndex) const {
932   unsigned Dummy;
933   if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
934     unsigned Reg;
935     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
936       return Reg;
937     // Check for post-frame index elimination operations
938     SmallVector<const MachineMemOperand *, 1> Accesses;
939     if (hasStoreToStackSlot(MI, Accesses)) {
940       FrameIndex =
941           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
942               ->getFrameIndex();
943       return 1;
944     }
945   }
946   return 0;
947 }
948 
949 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
regIsPICBase(Register BaseReg,const MachineRegisterInfo & MRI)950 static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
951   // Don't waste compile time scanning use-def chains of physregs.
952   if (!BaseReg.isVirtual())
953     return false;
954   bool isPICBase = false;
955   for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
956          E = MRI.def_instr_end(); I != E; ++I) {
957     MachineInstr *DefMI = &*I;
958     if (DefMI->getOpcode() != X86::MOVPC32r)
959       return false;
960     assert(!isPICBase && "More than one PIC base?");
961     isPICBase = true;
962   }
963   return isPICBase;
964 }
965 
isReallyTriviallyReMaterializable(const MachineInstr & MI,AAResults * AA) const966 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
967                                                      AAResults *AA) const {
968   switch (MI.getOpcode()) {
969   default:
970     // This function should only be called for opcodes with the ReMaterializable
971     // flag set.
972     llvm_unreachable("Unknown rematerializable operation!");
973     break;
974 
975   case X86::LOAD_STACK_GUARD:
976   case X86::AVX1_SETALLONES:
977   case X86::AVX2_SETALLONES:
978   case X86::AVX512_128_SET0:
979   case X86::AVX512_256_SET0:
980   case X86::AVX512_512_SET0:
981   case X86::AVX512_512_SETALLONES:
982   case X86::AVX512_FsFLD0SD:
983   case X86::AVX512_FsFLD0SS:
984   case X86::AVX512_FsFLD0F128:
985   case X86::AVX_SET0:
986   case X86::FsFLD0SD:
987   case X86::FsFLD0SS:
988   case X86::FsFLD0F128:
989   case X86::KSET0D:
990   case X86::KSET0Q:
991   case X86::KSET0W:
992   case X86::KSET1D:
993   case X86::KSET1Q:
994   case X86::KSET1W:
995   case X86::MMX_SET0:
996   case X86::MOV32ImmSExti8:
997   case X86::MOV32r0:
998   case X86::MOV32r1:
999   case X86::MOV32r_1:
1000   case X86::MOV32ri64:
1001   case X86::MOV64ImmSExti8:
1002   case X86::V_SET0:
1003   case X86::V_SETALLONES:
1004   case X86::MOV16ri:
1005   case X86::MOV32ri:
1006   case X86::MOV64ri:
1007   case X86::MOV64ri32:
1008   case X86::MOV8ri:
1009   case X86::PTILEZEROV:
1010     return true;
1011 
1012   case X86::MOV8rm:
1013   case X86::MOV8rm_NOREX:
1014   case X86::MOV16rm:
1015   case X86::MOV32rm:
1016   case X86::MOV64rm:
1017   case X86::MOVSSrm:
1018   case X86::MOVSSrm_alt:
1019   case X86::MOVSDrm:
1020   case X86::MOVSDrm_alt:
1021   case X86::MOVAPSrm:
1022   case X86::MOVUPSrm:
1023   case X86::MOVAPDrm:
1024   case X86::MOVUPDrm:
1025   case X86::MOVDQArm:
1026   case X86::MOVDQUrm:
1027   case X86::VMOVSSrm:
1028   case X86::VMOVSSrm_alt:
1029   case X86::VMOVSDrm:
1030   case X86::VMOVSDrm_alt:
1031   case X86::VMOVAPSrm:
1032   case X86::VMOVUPSrm:
1033   case X86::VMOVAPDrm:
1034   case X86::VMOVUPDrm:
1035   case X86::VMOVDQArm:
1036   case X86::VMOVDQUrm:
1037   case X86::VMOVAPSYrm:
1038   case X86::VMOVUPSYrm:
1039   case X86::VMOVAPDYrm:
1040   case X86::VMOVUPDYrm:
1041   case X86::VMOVDQAYrm:
1042   case X86::VMOVDQUYrm:
1043   case X86::MMX_MOVD64rm:
1044   case X86::MMX_MOVQ64rm:
1045   // AVX-512
1046   case X86::VMOVSSZrm:
1047   case X86::VMOVSSZrm_alt:
1048   case X86::VMOVSDZrm:
1049   case X86::VMOVSDZrm_alt:
1050   case X86::VMOVAPDZ128rm:
1051   case X86::VMOVAPDZ256rm:
1052   case X86::VMOVAPDZrm:
1053   case X86::VMOVAPSZ128rm:
1054   case X86::VMOVAPSZ256rm:
1055   case X86::VMOVAPSZ128rm_NOVLX:
1056   case X86::VMOVAPSZ256rm_NOVLX:
1057   case X86::VMOVAPSZrm:
1058   case X86::VMOVDQA32Z128rm:
1059   case X86::VMOVDQA32Z256rm:
1060   case X86::VMOVDQA32Zrm:
1061   case X86::VMOVDQA64Z128rm:
1062   case X86::VMOVDQA64Z256rm:
1063   case X86::VMOVDQA64Zrm:
1064   case X86::VMOVDQU16Z128rm:
1065   case X86::VMOVDQU16Z256rm:
1066   case X86::VMOVDQU16Zrm:
1067   case X86::VMOVDQU32Z128rm:
1068   case X86::VMOVDQU32Z256rm:
1069   case X86::VMOVDQU32Zrm:
1070   case X86::VMOVDQU64Z128rm:
1071   case X86::VMOVDQU64Z256rm:
1072   case X86::VMOVDQU64Zrm:
1073   case X86::VMOVDQU8Z128rm:
1074   case X86::VMOVDQU8Z256rm:
1075   case X86::VMOVDQU8Zrm:
1076   case X86::VMOVUPDZ128rm:
1077   case X86::VMOVUPDZ256rm:
1078   case X86::VMOVUPDZrm:
1079   case X86::VMOVUPSZ128rm:
1080   case X86::VMOVUPSZ256rm:
1081   case X86::VMOVUPSZ128rm_NOVLX:
1082   case X86::VMOVUPSZ256rm_NOVLX:
1083   case X86::VMOVUPSZrm: {
1084     // Loads from constant pools are trivially rematerializable.
1085     if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
1086         MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
1087         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
1088         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
1089         MI.isDereferenceableInvariantLoad(AA)) {
1090       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
1091       if (BaseReg == 0 || BaseReg == X86::RIP)
1092         return true;
1093       // Allow re-materialization of PIC load.
1094       if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
1095         return false;
1096       const MachineFunction &MF = *MI.getParent()->getParent();
1097       const MachineRegisterInfo &MRI = MF.getRegInfo();
1098       return regIsPICBase(BaseReg, MRI);
1099     }
1100     return false;
1101   }
1102 
1103   case X86::LEA32r:
1104   case X86::LEA64r: {
1105     if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
1106         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
1107         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
1108         !MI.getOperand(1 + X86::AddrDisp).isReg()) {
1109       // lea fi#, lea GV, etc. are all rematerializable.
1110       if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
1111         return true;
1112       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
1113       if (BaseReg == 0)
1114         return true;
1115       // Allow re-materialization of lea PICBase + x.
1116       const MachineFunction &MF = *MI.getParent()->getParent();
1117       const MachineRegisterInfo &MRI = MF.getRegInfo();
1118       return regIsPICBase(BaseReg, MRI);
1119     }
1120     return false;
1121   }
1122   }
1123 }
1124 
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register DestReg,unsigned SubIdx,const MachineInstr & Orig,const TargetRegisterInfo & TRI) const1125 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1126                                  MachineBasicBlock::iterator I,
1127                                  Register DestReg, unsigned SubIdx,
1128                                  const MachineInstr &Orig,
1129                                  const TargetRegisterInfo &TRI) const {
1130   bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
1131   if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
1132                             MachineBasicBlock::LQR_Dead) {
1133     // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
1134     // effects.
1135     int Value;
1136     switch (Orig.getOpcode()) {
1137     case X86::MOV32r0:  Value = 0; break;
1138     case X86::MOV32r1:  Value = 1; break;
1139     case X86::MOV32r_1: Value = -1; break;
1140     default:
1141       llvm_unreachable("Unexpected instruction!");
1142     }
1143 
1144     const DebugLoc &DL = Orig.getDebugLoc();
1145     BuildMI(MBB, I, DL, get(X86::MOV32ri))
1146         .add(Orig.getOperand(0))
1147         .addImm(Value);
1148   } else {
1149     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1150     MBB.insert(I, MI);
1151   }
1152 
1153   MachineInstr &NewMI = *std::prev(I);
1154   NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1155 }
1156 
1157 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
hasLiveCondCodeDef(MachineInstr & MI) const1158 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
1159   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1160     MachineOperand &MO = MI.getOperand(i);
1161     if (MO.isReg() && MO.isDef() &&
1162         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1163       return true;
1164     }
1165   }
1166   return false;
1167 }
1168 
1169 /// Check whether the shift count for a machine operand is non-zero.
getTruncatedShiftCount(const MachineInstr & MI,unsigned ShiftAmtOperandIdx)1170 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
1171                                               unsigned ShiftAmtOperandIdx) {
1172   // The shift count is six bits with the REX.W prefix and five bits without.
1173   unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
1174   unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
1175   return Imm & ShiftCountMask;
1176 }
1177 
1178 /// Check whether the given shift count is appropriate
1179 /// can be represented by a LEA instruction.
isTruncatedShiftCountForLEA(unsigned ShAmt)1180 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
1181   // Left shift instructions can be transformed into load-effective-address
1182   // instructions if we can encode them appropriately.
1183   // A LEA instruction utilizes a SIB byte to encode its scale factor.
1184   // The SIB.scale field is two bits wide which means that we can encode any
1185   // shift amount less than 4.
1186   return ShAmt < 4 && ShAmt > 0;
1187 }
1188 
classifyLEAReg(MachineInstr & MI,const MachineOperand & Src,unsigned Opc,bool AllowSP,Register & NewSrc,bool & isKill,MachineOperand & ImplicitOp,LiveVariables * LV) const1189 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
1190                                   unsigned Opc, bool AllowSP, Register &NewSrc,
1191                                   bool &isKill, MachineOperand &ImplicitOp,
1192                                   LiveVariables *LV) const {
1193   MachineFunction &MF = *MI.getParent()->getParent();
1194   const TargetRegisterClass *RC;
1195   if (AllowSP) {
1196     RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1197   } else {
1198     RC = Opc != X86::LEA32r ?
1199       &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1200   }
1201   Register SrcReg = Src.getReg();
1202 
1203   // For both LEA64 and LEA32 the register already has essentially the right
1204   // type (32-bit or 64-bit) we may just need to forbid SP.
1205   if (Opc != X86::LEA64_32r) {
1206     NewSrc = SrcReg;
1207     isKill = Src.isKill();
1208     assert(!Src.isUndef() && "Undef op doesn't need optimization");
1209 
1210     if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1211       return false;
1212 
1213     return true;
1214   }
1215 
1216   // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1217   // another we need to add 64-bit registers to the final MI.
1218   if (SrcReg.isPhysical()) {
1219     ImplicitOp = Src;
1220     ImplicitOp.setImplicit();
1221 
1222     NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
1223     isKill = Src.isKill();
1224     assert(!Src.isUndef() && "Undef op doesn't need optimization");
1225   } else {
1226     // Virtual register of the wrong class, we have to create a temporary 64-bit
1227     // vreg to feed into the LEA.
1228     NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1229     MachineInstr *Copy =
1230         BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1231             .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1232             .add(Src);
1233 
1234     // Which is obviously going to be dead after we're done with it.
1235     isKill = true;
1236 
1237     if (LV)
1238       LV->replaceKillInstruction(SrcReg, MI, *Copy);
1239   }
1240 
1241   // We've set all the parameters without issue.
1242   return true;
1243 }
1244 
convertToThreeAddressWithLEA(unsigned MIOpc,MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV,bool Is8BitOp) const1245 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
1246     unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
1247     LiveVariables *LV, bool Is8BitOp) const {
1248   // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1249   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1250   assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
1251               *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
1252          "Unexpected type for LEA transform");
1253 
1254   // TODO: For a 32-bit target, we need to adjust the LEA variables with
1255   // something like this:
1256   //   Opcode = X86::LEA32r;
1257   //   InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1258   //   OutRegLEA =
1259   //       Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1260   //                : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1261   if (!Subtarget.is64Bit())
1262     return nullptr;
1263 
1264   unsigned Opcode = X86::LEA64_32r;
1265   Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1266   Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1267 
1268   // Build and insert into an implicit UNDEF value. This is OK because
1269   // we will be shifting and then extracting the lower 8/16-bits.
1270   // This has the potential to cause partial register stall. e.g.
1271   //   movw    (%rbp,%rcx,2), %dx
1272   //   leal    -65(%rdx), %esi
1273   // But testing has shown this *does* help performance in 64-bit mode (at
1274   // least on modern x86 machines).
1275   MachineBasicBlock::iterator MBBI = MI.getIterator();
1276   Register Dest = MI.getOperand(0).getReg();
1277   Register Src = MI.getOperand(1).getReg();
1278   bool IsDead = MI.getOperand(0).isDead();
1279   bool IsKill = MI.getOperand(1).isKill();
1280   unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1281   assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
1282   BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1283   MachineInstr *InsMI =
1284       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1285           .addReg(InRegLEA, RegState::Define, SubReg)
1286           .addReg(Src, getKillRegState(IsKill));
1287 
1288   MachineInstrBuilder MIB =
1289       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1290   switch (MIOpc) {
1291   default: llvm_unreachable("Unreachable!");
1292   case X86::SHL8ri:
1293   case X86::SHL16ri: {
1294     unsigned ShAmt = MI.getOperand(2).getImm();
1295     MIB.addReg(0).addImm(1ULL << ShAmt)
1296        .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
1297     break;
1298   }
1299   case X86::INC8r:
1300   case X86::INC16r:
1301     addRegOffset(MIB, InRegLEA, true, 1);
1302     break;
1303   case X86::DEC8r:
1304   case X86::DEC16r:
1305     addRegOffset(MIB, InRegLEA, true, -1);
1306     break;
1307   case X86::ADD8ri:
1308   case X86::ADD8ri_DB:
1309   case X86::ADD16ri:
1310   case X86::ADD16ri8:
1311   case X86::ADD16ri_DB:
1312   case X86::ADD16ri8_DB:
1313     addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
1314     break;
1315   case X86::ADD8rr:
1316   case X86::ADD8rr_DB:
1317   case X86::ADD16rr:
1318   case X86::ADD16rr_DB: {
1319     Register Src2 = MI.getOperand(2).getReg();
1320     bool IsKill2 = MI.getOperand(2).isKill();
1321     assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
1322     unsigned InRegLEA2 = 0;
1323     MachineInstr *InsMI2 = nullptr;
1324     if (Src == Src2) {
1325       // ADD8rr/ADD16rr killed %reg1028, %reg1028
1326       // just a single insert_subreg.
1327       addRegReg(MIB, InRegLEA, true, InRegLEA, false);
1328     } else {
1329       if (Subtarget.is64Bit())
1330         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1331       else
1332         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1333       // Build and insert into an implicit UNDEF value. This is OK because
1334       // we will be shifting and then extracting the lower 8/16-bits.
1335       BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2);
1336       InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1337                    .addReg(InRegLEA2, RegState::Define, SubReg)
1338                    .addReg(Src2, getKillRegState(IsKill2));
1339       addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
1340     }
1341     if (LV && IsKill2 && InsMI2)
1342       LV->replaceKillInstruction(Src2, MI, *InsMI2);
1343     break;
1344   }
1345   }
1346 
1347   MachineInstr *NewMI = MIB;
1348   MachineInstr *ExtMI =
1349       BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1350           .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
1351           .addReg(OutRegLEA, RegState::Kill, SubReg);
1352 
1353   if (LV) {
1354     // Update live variables.
1355     LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
1356     LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
1357     if (IsKill)
1358       LV->replaceKillInstruction(Src, MI, *InsMI);
1359     if (IsDead)
1360       LV->replaceKillInstruction(Dest, MI, *ExtMI);
1361   }
1362 
1363   return ExtMI;
1364 }
1365 
1366 /// This method must be implemented by targets that
1367 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1368 /// may be able to convert a two-address instruction into a true
1369 /// three-address instruction on demand.  This allows the X86 target (for
1370 /// example) to convert ADD and SHL instructions into LEA instructions if they
1371 /// would require register copies due to two-addressness.
1372 ///
1373 /// This method returns a null pointer if the transformation cannot be
1374 /// performed, otherwise it returns the new instruction.
1375 ///
1376 MachineInstr *
convertToThreeAddress(MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV) const1377 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1378                                     MachineInstr &MI, LiveVariables *LV) const {
1379   // The following opcodes also sets the condition code register(s). Only
1380   // convert them to equivalent lea if the condition code register def's
1381   // are dead!
1382   if (hasLiveCondCodeDef(MI))
1383     return nullptr;
1384 
1385   MachineFunction &MF = *MI.getParent()->getParent();
1386   // All instructions input are two-addr instructions.  Get the known operands.
1387   const MachineOperand &Dest = MI.getOperand(0);
1388   const MachineOperand &Src = MI.getOperand(1);
1389 
1390   // Ideally, operations with undef should be folded before we get here, but we
1391   // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1392   // Without this, we have to forward undef state to new register operands to
1393   // avoid machine verifier errors.
1394   if (Src.isUndef())
1395     return nullptr;
1396   if (MI.getNumOperands() > 2)
1397     if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
1398       return nullptr;
1399 
1400   MachineInstr *NewMI = nullptr;
1401   bool Is64Bit = Subtarget.is64Bit();
1402 
1403   bool Is8BitOp = false;
1404   unsigned MIOpc = MI.getOpcode();
1405   switch (MIOpc) {
1406   default: llvm_unreachable("Unreachable!");
1407   case X86::SHL64ri: {
1408     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1409     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1410     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1411 
1412     // LEA can't handle RSP.
1413     if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1414                                         Src.getReg(), &X86::GR64_NOSPRegClass))
1415       return nullptr;
1416 
1417     NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1418                 .add(Dest)
1419                 .addReg(0)
1420                 .addImm(1ULL << ShAmt)
1421                 .add(Src)
1422                 .addImm(0)
1423                 .addReg(0);
1424     break;
1425   }
1426   case X86::SHL32ri: {
1427     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1428     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1429     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1430 
1431     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1432 
1433     // LEA can't handle ESP.
1434     bool isKill;
1435     Register SrcReg;
1436     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1437     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
1438                         SrcReg, isKill, ImplicitOp, LV))
1439       return nullptr;
1440 
1441     MachineInstrBuilder MIB =
1442         BuildMI(MF, MI.getDebugLoc(), get(Opc))
1443             .add(Dest)
1444             .addReg(0)
1445             .addImm(1ULL << ShAmt)
1446             .addReg(SrcReg, getKillRegState(isKill))
1447             .addImm(0)
1448             .addReg(0);
1449     if (ImplicitOp.getReg() != 0)
1450       MIB.add(ImplicitOp);
1451     NewMI = MIB;
1452 
1453     break;
1454   }
1455   case X86::SHL8ri:
1456     Is8BitOp = true;
1457     LLVM_FALLTHROUGH;
1458   case X86::SHL16ri: {
1459     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1460     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1461     if (!isTruncatedShiftCountForLEA(ShAmt))
1462       return nullptr;
1463     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1464   }
1465   case X86::INC64r:
1466   case X86::INC32r: {
1467     assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
1468     unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
1469         (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1470     bool isKill;
1471     Register SrcReg;
1472     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1473     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
1474                         ImplicitOp, LV))
1475       return nullptr;
1476 
1477     MachineInstrBuilder MIB =
1478         BuildMI(MF, MI.getDebugLoc(), get(Opc))
1479             .add(Dest)
1480             .addReg(SrcReg, getKillRegState(isKill));
1481     if (ImplicitOp.getReg() != 0)
1482       MIB.add(ImplicitOp);
1483 
1484     NewMI = addOffset(MIB, 1);
1485     break;
1486   }
1487   case X86::DEC64r:
1488   case X86::DEC32r: {
1489     assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1490     unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1491         : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1492 
1493     bool isKill;
1494     Register SrcReg;
1495     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1496     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
1497                         ImplicitOp, LV))
1498       return nullptr;
1499 
1500     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1501                                   .add(Dest)
1502                                   .addReg(SrcReg, getKillRegState(isKill));
1503     if (ImplicitOp.getReg() != 0)
1504       MIB.add(ImplicitOp);
1505 
1506     NewMI = addOffset(MIB, -1);
1507 
1508     break;
1509   }
1510   case X86::DEC8r:
1511   case X86::INC8r:
1512     Is8BitOp = true;
1513     LLVM_FALLTHROUGH;
1514   case X86::DEC16r:
1515   case X86::INC16r:
1516     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1517   case X86::ADD64rr:
1518   case X86::ADD64rr_DB:
1519   case X86::ADD32rr:
1520   case X86::ADD32rr_DB: {
1521     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1522     unsigned Opc;
1523     if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1524       Opc = X86::LEA64r;
1525     else
1526       Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1527 
1528     bool isKill;
1529     Register SrcReg;
1530     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1531     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1532                         SrcReg, isKill, ImplicitOp, LV))
1533       return nullptr;
1534 
1535     const MachineOperand &Src2 = MI.getOperand(2);
1536     bool isKill2;
1537     Register SrcReg2;
1538     MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1539     if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
1540                         SrcReg2, isKill2, ImplicitOp2, LV))
1541       return nullptr;
1542 
1543     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1544     if (ImplicitOp.getReg() != 0)
1545       MIB.add(ImplicitOp);
1546     if (ImplicitOp2.getReg() != 0)
1547       MIB.add(ImplicitOp2);
1548 
1549     NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1550     if (LV && Src2.isKill())
1551       LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1552     break;
1553   }
1554   case X86::ADD8rr:
1555   case X86::ADD8rr_DB:
1556     Is8BitOp = true;
1557     LLVM_FALLTHROUGH;
1558   case X86::ADD16rr:
1559   case X86::ADD16rr_DB:
1560     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1561   case X86::ADD64ri32:
1562   case X86::ADD64ri8:
1563   case X86::ADD64ri32_DB:
1564   case X86::ADD64ri8_DB:
1565     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1566     NewMI = addOffset(
1567         BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1568         MI.getOperand(2));
1569     break;
1570   case X86::ADD32ri:
1571   case X86::ADD32ri8:
1572   case X86::ADD32ri_DB:
1573   case X86::ADD32ri8_DB: {
1574     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1575     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1576 
1577     bool isKill;
1578     Register SrcReg;
1579     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1580     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1581                         SrcReg, isKill, ImplicitOp, LV))
1582       return nullptr;
1583 
1584     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1585                                   .add(Dest)
1586                                   .addReg(SrcReg, getKillRegState(isKill));
1587     if (ImplicitOp.getReg() != 0)
1588       MIB.add(ImplicitOp);
1589 
1590     NewMI = addOffset(MIB, MI.getOperand(2));
1591     break;
1592   }
1593   case X86::ADD8ri:
1594   case X86::ADD8ri_DB:
1595     Is8BitOp = true;
1596     LLVM_FALLTHROUGH;
1597   case X86::ADD16ri:
1598   case X86::ADD16ri8:
1599   case X86::ADD16ri_DB:
1600   case X86::ADD16ri8_DB:
1601     return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1602   case X86::SUB8ri:
1603   case X86::SUB16ri8:
1604   case X86::SUB16ri:
1605     /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1606     return nullptr;
1607   case X86::SUB32ri8:
1608   case X86::SUB32ri: {
1609     if (!MI.getOperand(2).isImm())
1610       return nullptr;
1611     int64_t Imm = MI.getOperand(2).getImm();
1612     if (!isInt<32>(-Imm))
1613       return nullptr;
1614 
1615     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1616     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1617 
1618     bool isKill;
1619     Register SrcReg;
1620     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1621     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1622                         SrcReg, isKill, ImplicitOp, LV))
1623       return nullptr;
1624 
1625     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1626                                   .add(Dest)
1627                                   .addReg(SrcReg, getKillRegState(isKill));
1628     if (ImplicitOp.getReg() != 0)
1629       MIB.add(ImplicitOp);
1630 
1631     NewMI = addOffset(MIB, -Imm);
1632     break;
1633   }
1634 
1635   case X86::SUB64ri8:
1636   case X86::SUB64ri32: {
1637     if (!MI.getOperand(2).isImm())
1638       return nullptr;
1639     int64_t Imm = MI.getOperand(2).getImm();
1640     if (!isInt<32>(-Imm))
1641       return nullptr;
1642 
1643     assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1644 
1645     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1646                                       get(X86::LEA64r)).add(Dest).add(Src);
1647     NewMI = addOffset(MIB, -Imm);
1648     break;
1649   }
1650 
1651   case X86::VMOVDQU8Z128rmk:
1652   case X86::VMOVDQU8Z256rmk:
1653   case X86::VMOVDQU8Zrmk:
1654   case X86::VMOVDQU16Z128rmk:
1655   case X86::VMOVDQU16Z256rmk:
1656   case X86::VMOVDQU16Zrmk:
1657   case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1658   case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1659   case X86::VMOVDQU32Zrmk:    case X86::VMOVDQA32Zrmk:
1660   case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1661   case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1662   case X86::VMOVDQU64Zrmk:    case X86::VMOVDQA64Zrmk:
1663   case X86::VMOVUPDZ128rmk:   case X86::VMOVAPDZ128rmk:
1664   case X86::VMOVUPDZ256rmk:   case X86::VMOVAPDZ256rmk:
1665   case X86::VMOVUPDZrmk:      case X86::VMOVAPDZrmk:
1666   case X86::VMOVUPSZ128rmk:   case X86::VMOVAPSZ128rmk:
1667   case X86::VMOVUPSZ256rmk:   case X86::VMOVAPSZ256rmk:
1668   case X86::VMOVUPSZrmk:      case X86::VMOVAPSZrmk:
1669   case X86::VBROADCASTSDZ256rmk:
1670   case X86::VBROADCASTSDZrmk:
1671   case X86::VBROADCASTSSZ128rmk:
1672   case X86::VBROADCASTSSZ256rmk:
1673   case X86::VBROADCASTSSZrmk:
1674   case X86::VPBROADCASTDZ128rmk:
1675   case X86::VPBROADCASTDZ256rmk:
1676   case X86::VPBROADCASTDZrmk:
1677   case X86::VPBROADCASTQZ128rmk:
1678   case X86::VPBROADCASTQZ256rmk:
1679   case X86::VPBROADCASTQZrmk: {
1680     unsigned Opc;
1681     switch (MIOpc) {
1682     default: llvm_unreachable("Unreachable!");
1683     case X86::VMOVDQU8Z128rmk:     Opc = X86::VPBLENDMBZ128rmk; break;
1684     case X86::VMOVDQU8Z256rmk:     Opc = X86::VPBLENDMBZ256rmk; break;
1685     case X86::VMOVDQU8Zrmk:        Opc = X86::VPBLENDMBZrmk;    break;
1686     case X86::VMOVDQU16Z128rmk:    Opc = X86::VPBLENDMWZ128rmk; break;
1687     case X86::VMOVDQU16Z256rmk:    Opc = X86::VPBLENDMWZ256rmk; break;
1688     case X86::VMOVDQU16Zrmk:       Opc = X86::VPBLENDMWZrmk;    break;
1689     case X86::VMOVDQU32Z128rmk:    Opc = X86::VPBLENDMDZ128rmk; break;
1690     case X86::VMOVDQU32Z256rmk:    Opc = X86::VPBLENDMDZ256rmk; break;
1691     case X86::VMOVDQU32Zrmk:       Opc = X86::VPBLENDMDZrmk;    break;
1692     case X86::VMOVDQU64Z128rmk:    Opc = X86::VPBLENDMQZ128rmk; break;
1693     case X86::VMOVDQU64Z256rmk:    Opc = X86::VPBLENDMQZ256rmk; break;
1694     case X86::VMOVDQU64Zrmk:       Opc = X86::VPBLENDMQZrmk;    break;
1695     case X86::VMOVUPDZ128rmk:      Opc = X86::VBLENDMPDZ128rmk; break;
1696     case X86::VMOVUPDZ256rmk:      Opc = X86::VBLENDMPDZ256rmk; break;
1697     case X86::VMOVUPDZrmk:         Opc = X86::VBLENDMPDZrmk;    break;
1698     case X86::VMOVUPSZ128rmk:      Opc = X86::VBLENDMPSZ128rmk; break;
1699     case X86::VMOVUPSZ256rmk:      Opc = X86::VBLENDMPSZ256rmk; break;
1700     case X86::VMOVUPSZrmk:         Opc = X86::VBLENDMPSZrmk;    break;
1701     case X86::VMOVDQA32Z128rmk:    Opc = X86::VPBLENDMDZ128rmk; break;
1702     case X86::VMOVDQA32Z256rmk:    Opc = X86::VPBLENDMDZ256rmk; break;
1703     case X86::VMOVDQA32Zrmk:       Opc = X86::VPBLENDMDZrmk;    break;
1704     case X86::VMOVDQA64Z128rmk:    Opc = X86::VPBLENDMQZ128rmk; break;
1705     case X86::VMOVDQA64Z256rmk:    Opc = X86::VPBLENDMQZ256rmk; break;
1706     case X86::VMOVDQA64Zrmk:       Opc = X86::VPBLENDMQZrmk;    break;
1707     case X86::VMOVAPDZ128rmk:      Opc = X86::VBLENDMPDZ128rmk; break;
1708     case X86::VMOVAPDZ256rmk:      Opc = X86::VBLENDMPDZ256rmk; break;
1709     case X86::VMOVAPDZrmk:         Opc = X86::VBLENDMPDZrmk;    break;
1710     case X86::VMOVAPSZ128rmk:      Opc = X86::VBLENDMPSZ128rmk; break;
1711     case X86::VMOVAPSZ256rmk:      Opc = X86::VBLENDMPSZ256rmk; break;
1712     case X86::VMOVAPSZrmk:         Opc = X86::VBLENDMPSZrmk;    break;
1713     case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
1714     case X86::VBROADCASTSDZrmk:    Opc = X86::VBLENDMPDZrmbk;    break;
1715     case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
1716     case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
1717     case X86::VBROADCASTSSZrmk:    Opc = X86::VBLENDMPSZrmbk;    break;
1718     case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
1719     case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
1720     case X86::VPBROADCASTDZrmk:    Opc = X86::VPBLENDMDZrmbk;    break;
1721     case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
1722     case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
1723     case X86::VPBROADCASTQZrmk:    Opc = X86::VPBLENDMQZrmbk;    break;
1724     }
1725 
1726     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1727               .add(Dest)
1728               .add(MI.getOperand(2))
1729               .add(Src)
1730               .add(MI.getOperand(3))
1731               .add(MI.getOperand(4))
1732               .add(MI.getOperand(5))
1733               .add(MI.getOperand(6))
1734               .add(MI.getOperand(7));
1735     break;
1736   }
1737 
1738   case X86::VMOVDQU8Z128rrk:
1739   case X86::VMOVDQU8Z256rrk:
1740   case X86::VMOVDQU8Zrrk:
1741   case X86::VMOVDQU16Z128rrk:
1742   case X86::VMOVDQU16Z256rrk:
1743   case X86::VMOVDQU16Zrrk:
1744   case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1745   case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1746   case X86::VMOVDQU32Zrrk:    case X86::VMOVDQA32Zrrk:
1747   case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1748   case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1749   case X86::VMOVDQU64Zrrk:    case X86::VMOVDQA64Zrrk:
1750   case X86::VMOVUPDZ128rrk:   case X86::VMOVAPDZ128rrk:
1751   case X86::VMOVUPDZ256rrk:   case X86::VMOVAPDZ256rrk:
1752   case X86::VMOVUPDZrrk:      case X86::VMOVAPDZrrk:
1753   case X86::VMOVUPSZ128rrk:   case X86::VMOVAPSZ128rrk:
1754   case X86::VMOVUPSZ256rrk:   case X86::VMOVAPSZ256rrk:
1755   case X86::VMOVUPSZrrk:      case X86::VMOVAPSZrrk: {
1756     unsigned Opc;
1757     switch (MIOpc) {
1758     default: llvm_unreachable("Unreachable!");
1759     case X86::VMOVDQU8Z128rrk:  Opc = X86::VPBLENDMBZ128rrk; break;
1760     case X86::VMOVDQU8Z256rrk:  Opc = X86::VPBLENDMBZ256rrk; break;
1761     case X86::VMOVDQU8Zrrk:     Opc = X86::VPBLENDMBZrrk;    break;
1762     case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1763     case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1764     case X86::VMOVDQU16Zrrk:    Opc = X86::VPBLENDMWZrrk;    break;
1765     case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1766     case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1767     case X86::VMOVDQU32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1768     case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1769     case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1770     case X86::VMOVDQU64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1771     case X86::VMOVUPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1772     case X86::VMOVUPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1773     case X86::VMOVUPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1774     case X86::VMOVUPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1775     case X86::VMOVUPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1776     case X86::VMOVUPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1777     case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1778     case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1779     case X86::VMOVDQA32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1780     case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1781     case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1782     case X86::VMOVDQA64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1783     case X86::VMOVAPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1784     case X86::VMOVAPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1785     case X86::VMOVAPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1786     case X86::VMOVAPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1787     case X86::VMOVAPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1788     case X86::VMOVAPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1789     }
1790 
1791     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1792               .add(Dest)
1793               .add(MI.getOperand(2))
1794               .add(Src)
1795               .add(MI.getOperand(3));
1796     break;
1797   }
1798   }
1799 
1800   if (!NewMI) return nullptr;
1801 
1802   if (LV) {  // Update live variables
1803     if (Src.isKill())
1804       LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1805     if (Dest.isDead())
1806       LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1807   }
1808 
1809   MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
1810   return NewMI;
1811 }
1812 
1813 /// This determines which of three possible cases of a three source commute
1814 /// the source indexes correspond to taking into account any mask operands.
1815 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1816 /// possible.
1817 /// Case 0 - Possible to commute the first and second operands.
1818 /// Case 1 - Possible to commute the first and third operands.
1819 /// Case 2 - Possible to commute the second and third operands.
getThreeSrcCommuteCase(uint64_t TSFlags,unsigned SrcOpIdx1,unsigned SrcOpIdx2)1820 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1821                                        unsigned SrcOpIdx2) {
1822   // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1823   if (SrcOpIdx1 > SrcOpIdx2)
1824     std::swap(SrcOpIdx1, SrcOpIdx2);
1825 
1826   unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1827   if (X86II::isKMasked(TSFlags)) {
1828     Op2++;
1829     Op3++;
1830   }
1831 
1832   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1833     return 0;
1834   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1835     return 1;
1836   if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1837     return 2;
1838   llvm_unreachable("Unknown three src commute case.");
1839 }
1840 
getFMA3OpcodeToCommuteOperands(const MachineInstr & MI,unsigned SrcOpIdx1,unsigned SrcOpIdx2,const X86InstrFMA3Group & FMA3Group) const1841 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1842     const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1843     const X86InstrFMA3Group &FMA3Group) const {
1844 
1845   unsigned Opc = MI.getOpcode();
1846 
1847   // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1848   // analysis. The commute optimization is legal only if all users of FMA*_Int
1849   // use only the lowest element of the FMA*_Int instruction. Such analysis are
1850   // not implemented yet. So, just return 0 in that case.
1851   // When such analysis are available this place will be the right place for
1852   // calling it.
1853   assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1854          "Intrinsic instructions can't commute operand 1");
1855 
1856   // Determine which case this commute is or if it can't be done.
1857   unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1858                                          SrcOpIdx2);
1859   assert(Case < 3 && "Unexpected case number!");
1860 
1861   // Define the FMA forms mapping array that helps to map input FMA form
1862   // to output FMA form to preserve the operation semantics after
1863   // commuting the operands.
1864   const unsigned Form132Index = 0;
1865   const unsigned Form213Index = 1;
1866   const unsigned Form231Index = 2;
1867   static const unsigned FormMapping[][3] = {
1868     // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1869     // FMA132 A, C, b; ==> FMA231 C, A, b;
1870     // FMA213 B, A, c; ==> FMA213 A, B, c;
1871     // FMA231 C, A, b; ==> FMA132 A, C, b;
1872     { Form231Index, Form213Index, Form132Index },
1873     // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1874     // FMA132 A, c, B; ==> FMA132 B, c, A;
1875     // FMA213 B, a, C; ==> FMA231 C, a, B;
1876     // FMA231 C, a, B; ==> FMA213 B, a, C;
1877     { Form132Index, Form231Index, Form213Index },
1878     // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1879     // FMA132 a, C, B; ==> FMA213 a, B, C;
1880     // FMA213 b, A, C; ==> FMA132 b, C, A;
1881     // FMA231 c, A, B; ==> FMA231 c, B, A;
1882     { Form213Index, Form132Index, Form231Index }
1883   };
1884 
1885   unsigned FMAForms[3];
1886   FMAForms[0] = FMA3Group.get132Opcode();
1887   FMAForms[1] = FMA3Group.get213Opcode();
1888   FMAForms[2] = FMA3Group.get231Opcode();
1889   unsigned FormIndex;
1890   for (FormIndex = 0; FormIndex < 3; FormIndex++)
1891     if (Opc == FMAForms[FormIndex])
1892       break;
1893 
1894   // Everything is ready, just adjust the FMA opcode and return it.
1895   FormIndex = FormMapping[Case][FormIndex];
1896   return FMAForms[FormIndex];
1897 }
1898 
commuteVPTERNLOG(MachineInstr & MI,unsigned SrcOpIdx1,unsigned SrcOpIdx2)1899 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1900                              unsigned SrcOpIdx2) {
1901   // Determine which case this commute is or if it can't be done.
1902   unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1903                                          SrcOpIdx2);
1904   assert(Case < 3 && "Unexpected case value!");
1905 
1906   // For each case we need to swap two pairs of bits in the final immediate.
1907   static const uint8_t SwapMasks[3][4] = {
1908     { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1909     { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1910     { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1911   };
1912 
1913   uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1914   // Clear out the bits we are swapping.
1915   uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1916                            SwapMasks[Case][2] | SwapMasks[Case][3]);
1917   // If the immediate had a bit of the pair set, then set the opposite bit.
1918   if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1919   if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1920   if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1921   if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1922   MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1923 }
1924 
1925 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1926 // commuted.
isCommutableVPERMV3Instruction(unsigned Opcode)1927 static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1928 #define VPERM_CASES(Suffix) \
1929   case X86::VPERMI2##Suffix##128rr:    case X86::VPERMT2##Suffix##128rr:    \
1930   case X86::VPERMI2##Suffix##256rr:    case X86::VPERMT2##Suffix##256rr:    \
1931   case X86::VPERMI2##Suffix##rr:       case X86::VPERMT2##Suffix##rr:       \
1932   case X86::VPERMI2##Suffix##128rm:    case X86::VPERMT2##Suffix##128rm:    \
1933   case X86::VPERMI2##Suffix##256rm:    case X86::VPERMT2##Suffix##256rm:    \
1934   case X86::VPERMI2##Suffix##rm:       case X86::VPERMT2##Suffix##rm:       \
1935   case X86::VPERMI2##Suffix##128rrkz:  case X86::VPERMT2##Suffix##128rrkz:  \
1936   case X86::VPERMI2##Suffix##256rrkz:  case X86::VPERMT2##Suffix##256rrkz:  \
1937   case X86::VPERMI2##Suffix##rrkz:     case X86::VPERMT2##Suffix##rrkz:     \
1938   case X86::VPERMI2##Suffix##128rmkz:  case X86::VPERMT2##Suffix##128rmkz:  \
1939   case X86::VPERMI2##Suffix##256rmkz:  case X86::VPERMT2##Suffix##256rmkz:  \
1940   case X86::VPERMI2##Suffix##rmkz:     case X86::VPERMT2##Suffix##rmkz:
1941 
1942 #define VPERM_CASES_BROADCAST(Suffix) \
1943   VPERM_CASES(Suffix) \
1944   case X86::VPERMI2##Suffix##128rmb:   case X86::VPERMT2##Suffix##128rmb:   \
1945   case X86::VPERMI2##Suffix##256rmb:   case X86::VPERMT2##Suffix##256rmb:   \
1946   case X86::VPERMI2##Suffix##rmb:      case X86::VPERMT2##Suffix##rmb:      \
1947   case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1948   case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1949   case X86::VPERMI2##Suffix##rmbkz:    case X86::VPERMT2##Suffix##rmbkz:
1950 
1951   switch (Opcode) {
1952   default: return false;
1953   VPERM_CASES(B)
1954   VPERM_CASES_BROADCAST(D)
1955   VPERM_CASES_BROADCAST(PD)
1956   VPERM_CASES_BROADCAST(PS)
1957   VPERM_CASES_BROADCAST(Q)
1958   VPERM_CASES(W)
1959     return true;
1960   }
1961 #undef VPERM_CASES_BROADCAST
1962 #undef VPERM_CASES
1963 }
1964 
1965 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1966 // from the I opcode to the T opcode and vice versa.
getCommutedVPERMV3Opcode(unsigned Opcode)1967 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1968 #define VPERM_CASES(Orig, New) \
1969   case X86::Orig##128rr:    return X86::New##128rr;   \
1970   case X86::Orig##128rrkz:  return X86::New##128rrkz; \
1971   case X86::Orig##128rm:    return X86::New##128rm;   \
1972   case X86::Orig##128rmkz:  return X86::New##128rmkz; \
1973   case X86::Orig##256rr:    return X86::New##256rr;   \
1974   case X86::Orig##256rrkz:  return X86::New##256rrkz; \
1975   case X86::Orig##256rm:    return X86::New##256rm;   \
1976   case X86::Orig##256rmkz:  return X86::New##256rmkz; \
1977   case X86::Orig##rr:       return X86::New##rr;      \
1978   case X86::Orig##rrkz:     return X86::New##rrkz;    \
1979   case X86::Orig##rm:       return X86::New##rm;      \
1980   case X86::Orig##rmkz:     return X86::New##rmkz;
1981 
1982 #define VPERM_CASES_BROADCAST(Orig, New) \
1983   VPERM_CASES(Orig, New) \
1984   case X86::Orig##128rmb:   return X86::New##128rmb;   \
1985   case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1986   case X86::Orig##256rmb:   return X86::New##256rmb;   \
1987   case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1988   case X86::Orig##rmb:      return X86::New##rmb;      \
1989   case X86::Orig##rmbkz:    return X86::New##rmbkz;
1990 
1991   switch (Opcode) {
1992   VPERM_CASES(VPERMI2B, VPERMT2B)
1993   VPERM_CASES_BROADCAST(VPERMI2D,  VPERMT2D)
1994   VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1995   VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1996   VPERM_CASES_BROADCAST(VPERMI2Q,  VPERMT2Q)
1997   VPERM_CASES(VPERMI2W, VPERMT2W)
1998   VPERM_CASES(VPERMT2B, VPERMI2B)
1999   VPERM_CASES_BROADCAST(VPERMT2D,  VPERMI2D)
2000   VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
2001   VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
2002   VPERM_CASES_BROADCAST(VPERMT2Q,  VPERMI2Q)
2003   VPERM_CASES(VPERMT2W, VPERMI2W)
2004   }
2005 
2006   llvm_unreachable("Unreachable!");
2007 #undef VPERM_CASES_BROADCAST
2008 #undef VPERM_CASES
2009 }
2010 
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const2011 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
2012                                                    unsigned OpIdx1,
2013                                                    unsigned OpIdx2) const {
2014   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
2015     if (NewMI)
2016       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
2017     return MI;
2018   };
2019 
2020   switch (MI.getOpcode()) {
2021   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2022   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2023   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2024   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2025   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2026   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2027     unsigned Opc;
2028     unsigned Size;
2029     switch (MI.getOpcode()) {
2030     default: llvm_unreachable("Unreachable!");
2031     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2032     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2033     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2034     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2035     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2036     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2037     }
2038     unsigned Amt = MI.getOperand(3).getImm();
2039     auto &WorkingMI = cloneIfNew(MI);
2040     WorkingMI.setDesc(get(Opc));
2041     WorkingMI.getOperand(3).setImm(Size - Amt);
2042     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2043                                                    OpIdx1, OpIdx2);
2044   }
2045   case X86::PFSUBrr:
2046   case X86::PFSUBRrr: {
2047     // PFSUB  x, y: x = x - y
2048     // PFSUBR x, y: x = y - x
2049     unsigned Opc =
2050         (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
2051     auto &WorkingMI = cloneIfNew(MI);
2052     WorkingMI.setDesc(get(Opc));
2053     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2054                                                    OpIdx1, OpIdx2);
2055   }
2056   case X86::BLENDPDrri:
2057   case X86::BLENDPSrri:
2058   case X86::VBLENDPDrri:
2059   case X86::VBLENDPSrri:
2060     // If we're optimizing for size, try to use MOVSD/MOVSS.
2061     if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
2062       unsigned Mask, Opc;
2063       switch (MI.getOpcode()) {
2064       default: llvm_unreachable("Unreachable!");
2065       case X86::BLENDPDrri:  Opc = X86::MOVSDrr;  Mask = 0x03; break;
2066       case X86::BLENDPSrri:  Opc = X86::MOVSSrr;  Mask = 0x0F; break;
2067       case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
2068       case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
2069       }
2070       if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
2071         auto &WorkingMI = cloneIfNew(MI);
2072         WorkingMI.setDesc(get(Opc));
2073         WorkingMI.RemoveOperand(3);
2074         return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
2075                                                        /*NewMI=*/false,
2076                                                        OpIdx1, OpIdx2);
2077       }
2078     }
2079     LLVM_FALLTHROUGH;
2080   case X86::PBLENDWrri:
2081   case X86::VBLENDPDYrri:
2082   case X86::VBLENDPSYrri:
2083   case X86::VPBLENDDrri:
2084   case X86::VPBLENDWrri:
2085   case X86::VPBLENDDYrri:
2086   case X86::VPBLENDWYrri:{
2087     int8_t Mask;
2088     switch (MI.getOpcode()) {
2089     default: llvm_unreachable("Unreachable!");
2090     case X86::BLENDPDrri:    Mask = (int8_t)0x03; break;
2091     case X86::BLENDPSrri:    Mask = (int8_t)0x0F; break;
2092     case X86::PBLENDWrri:    Mask = (int8_t)0xFF; break;
2093     case X86::VBLENDPDrri:   Mask = (int8_t)0x03; break;
2094     case X86::VBLENDPSrri:   Mask = (int8_t)0x0F; break;
2095     case X86::VBLENDPDYrri:  Mask = (int8_t)0x0F; break;
2096     case X86::VBLENDPSYrri:  Mask = (int8_t)0xFF; break;
2097     case X86::VPBLENDDrri:   Mask = (int8_t)0x0F; break;
2098     case X86::VPBLENDWrri:   Mask = (int8_t)0xFF; break;
2099     case X86::VPBLENDDYrri:  Mask = (int8_t)0xFF; break;
2100     case X86::VPBLENDWYrri:  Mask = (int8_t)0xFF; break;
2101     }
2102     // Only the least significant bits of Imm are used.
2103     // Using int8_t to ensure it will be sign extended to the int64_t that
2104     // setImm takes in order to match isel behavior.
2105     int8_t Imm = MI.getOperand(3).getImm() & Mask;
2106     auto &WorkingMI = cloneIfNew(MI);
2107     WorkingMI.getOperand(3).setImm(Mask ^ Imm);
2108     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2109                                                    OpIdx1, OpIdx2);
2110   }
2111   case X86::INSERTPSrr:
2112   case X86::VINSERTPSrr:
2113   case X86::VINSERTPSZrr: {
2114     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2115     unsigned ZMask = Imm & 15;
2116     unsigned DstIdx = (Imm >> 4) & 3;
2117     unsigned SrcIdx = (Imm >> 6) & 3;
2118 
2119     // We can commute insertps if we zero 2 of the elements, the insertion is
2120     // "inline" and we don't override the insertion with a zero.
2121     if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2122         countPopulation(ZMask) == 2) {
2123       unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
2124       assert(AltIdx < 4 && "Illegal insertion index");
2125       unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2126       auto &WorkingMI = cloneIfNew(MI);
2127       WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
2128       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2129                                                      OpIdx1, OpIdx2);
2130     }
2131     return nullptr;
2132   }
2133   case X86::MOVSDrr:
2134   case X86::MOVSSrr:
2135   case X86::VMOVSDrr:
2136   case X86::VMOVSSrr:{
2137     // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2138     if (Subtarget.hasSSE41()) {
2139       unsigned Mask, Opc;
2140       switch (MI.getOpcode()) {
2141       default: llvm_unreachable("Unreachable!");
2142       case X86::MOVSDrr:  Opc = X86::BLENDPDrri;  Mask = 0x02; break;
2143       case X86::MOVSSrr:  Opc = X86::BLENDPSrri;  Mask = 0x0E; break;
2144       case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
2145       case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
2146       }
2147 
2148       auto &WorkingMI = cloneIfNew(MI);
2149       WorkingMI.setDesc(get(Opc));
2150       WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
2151       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2152                                                      OpIdx1, OpIdx2);
2153     }
2154 
2155     // Convert to SHUFPD.
2156     assert(MI.getOpcode() == X86::MOVSDrr &&
2157            "Can only commute MOVSDrr without SSE4.1");
2158 
2159     auto &WorkingMI = cloneIfNew(MI);
2160     WorkingMI.setDesc(get(X86::SHUFPDrri));
2161     WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
2162     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2163                                                    OpIdx1, OpIdx2);
2164   }
2165   case X86::SHUFPDrri: {
2166     // Commute to MOVSD.
2167     assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
2168     auto &WorkingMI = cloneIfNew(MI);
2169     WorkingMI.setDesc(get(X86::MOVSDrr));
2170     WorkingMI.RemoveOperand(3);
2171     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2172                                                    OpIdx1, OpIdx2);
2173   }
2174   case X86::PCLMULQDQrr:
2175   case X86::VPCLMULQDQrr:
2176   case X86::VPCLMULQDQYrr:
2177   case X86::VPCLMULQDQZrr:
2178   case X86::VPCLMULQDQZ128rr:
2179   case X86::VPCLMULQDQZ256rr: {
2180     // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2181     // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2182     unsigned Imm = MI.getOperand(3).getImm();
2183     unsigned Src1Hi = Imm & 0x01;
2184     unsigned Src2Hi = Imm & 0x10;
2185     auto &WorkingMI = cloneIfNew(MI);
2186     WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2187     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2188                                                    OpIdx1, OpIdx2);
2189   }
2190   case X86::VPCMPBZ128rri:  case X86::VPCMPUBZ128rri:
2191   case X86::VPCMPBZ256rri:  case X86::VPCMPUBZ256rri:
2192   case X86::VPCMPBZrri:     case X86::VPCMPUBZrri:
2193   case X86::VPCMPDZ128rri:  case X86::VPCMPUDZ128rri:
2194   case X86::VPCMPDZ256rri:  case X86::VPCMPUDZ256rri:
2195   case X86::VPCMPDZrri:     case X86::VPCMPUDZrri:
2196   case X86::VPCMPQZ128rri:  case X86::VPCMPUQZ128rri:
2197   case X86::VPCMPQZ256rri:  case X86::VPCMPUQZ256rri:
2198   case X86::VPCMPQZrri:     case X86::VPCMPUQZrri:
2199   case X86::VPCMPWZ128rri:  case X86::VPCMPUWZ128rri:
2200   case X86::VPCMPWZ256rri:  case X86::VPCMPUWZ256rri:
2201   case X86::VPCMPWZrri:     case X86::VPCMPUWZrri:
2202   case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
2203   case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
2204   case X86::VPCMPBZrrik:    case X86::VPCMPUBZrrik:
2205   case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
2206   case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
2207   case X86::VPCMPDZrrik:    case X86::VPCMPUDZrrik:
2208   case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
2209   case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
2210   case X86::VPCMPQZrrik:    case X86::VPCMPUQZrrik:
2211   case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
2212   case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
2213   case X86::VPCMPWZrrik:    case X86::VPCMPUWZrrik: {
2214     // Flip comparison mode immediate (if necessary).
2215     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
2216     Imm = X86::getSwappedVPCMPImm(Imm);
2217     auto &WorkingMI = cloneIfNew(MI);
2218     WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
2219     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2220                                                    OpIdx1, OpIdx2);
2221   }
2222   case X86::VPCOMBri: case X86::VPCOMUBri:
2223   case X86::VPCOMDri: case X86::VPCOMUDri:
2224   case X86::VPCOMQri: case X86::VPCOMUQri:
2225   case X86::VPCOMWri: case X86::VPCOMUWri: {
2226     // Flip comparison mode immediate (if necessary).
2227     unsigned Imm = MI.getOperand(3).getImm() & 0x7;
2228     Imm = X86::getSwappedVPCOMImm(Imm);
2229     auto &WorkingMI = cloneIfNew(MI);
2230     WorkingMI.getOperand(3).setImm(Imm);
2231     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2232                                                    OpIdx1, OpIdx2);
2233   }
2234   case X86::VCMPSDZrr:
2235   case X86::VCMPSSZrr:
2236   case X86::VCMPPDZrri:
2237   case X86::VCMPPSZrri:
2238   case X86::VCMPPDZ128rri:
2239   case X86::VCMPPSZ128rri:
2240   case X86::VCMPPDZ256rri:
2241   case X86::VCMPPSZ256rri:
2242   case X86::VCMPPDZrrik:
2243   case X86::VCMPPSZrrik:
2244   case X86::VCMPPDZ128rrik:
2245   case X86::VCMPPSZ128rrik:
2246   case X86::VCMPPDZ256rrik:
2247   case X86::VCMPPSZ256rrik: {
2248     unsigned Imm =
2249                 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
2250     Imm = X86::getSwappedVCMPImm(Imm);
2251     auto &WorkingMI = cloneIfNew(MI);
2252     WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
2253     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2254                                                    OpIdx1, OpIdx2);
2255   }
2256   case X86::VPERM2F128rr:
2257   case X86::VPERM2I128rr: {
2258     // Flip permute source immediate.
2259     // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2260     // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2261     int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
2262     auto &WorkingMI = cloneIfNew(MI);
2263     WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
2264     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2265                                                    OpIdx1, OpIdx2);
2266   }
2267   case X86::MOVHLPSrr:
2268   case X86::UNPCKHPDrr:
2269   case X86::VMOVHLPSrr:
2270   case X86::VUNPCKHPDrr:
2271   case X86::VMOVHLPSZrr:
2272   case X86::VUNPCKHPDZ128rr: {
2273     assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
2274 
2275     unsigned Opc = MI.getOpcode();
2276     switch (Opc) {
2277     default: llvm_unreachable("Unreachable!");
2278     case X86::MOVHLPSrr:       Opc = X86::UNPCKHPDrr;      break;
2279     case X86::UNPCKHPDrr:      Opc = X86::MOVHLPSrr;       break;
2280     case X86::VMOVHLPSrr:      Opc = X86::VUNPCKHPDrr;     break;
2281     case X86::VUNPCKHPDrr:     Opc = X86::VMOVHLPSrr;      break;
2282     case X86::VMOVHLPSZrr:     Opc = X86::VUNPCKHPDZ128rr; break;
2283     case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr;     break;
2284     }
2285     auto &WorkingMI = cloneIfNew(MI);
2286     WorkingMI.setDesc(get(Opc));
2287     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2288                                                    OpIdx1, OpIdx2);
2289   }
2290   case X86::CMOV16rr:  case X86::CMOV32rr:  case X86::CMOV64rr: {
2291     auto &WorkingMI = cloneIfNew(MI);
2292     unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2293     X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
2294     WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
2295     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2296                                                    OpIdx1, OpIdx2);
2297   }
2298   case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
2299   case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
2300   case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
2301   case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
2302   case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
2303   case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
2304   case X86::VPTERNLOGDZrrik:
2305   case X86::VPTERNLOGDZ128rrik:
2306   case X86::VPTERNLOGDZ256rrik:
2307   case X86::VPTERNLOGQZrrik:
2308   case X86::VPTERNLOGQZ128rrik:
2309   case X86::VPTERNLOGQZ256rrik:
2310   case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
2311   case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2312   case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2313   case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
2314   case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2315   case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2316   case X86::VPTERNLOGDZ128rmbi:
2317   case X86::VPTERNLOGDZ256rmbi:
2318   case X86::VPTERNLOGDZrmbi:
2319   case X86::VPTERNLOGQZ128rmbi:
2320   case X86::VPTERNLOGQZ256rmbi:
2321   case X86::VPTERNLOGQZrmbi:
2322   case X86::VPTERNLOGDZ128rmbikz:
2323   case X86::VPTERNLOGDZ256rmbikz:
2324   case X86::VPTERNLOGDZrmbikz:
2325   case X86::VPTERNLOGQZ128rmbikz:
2326   case X86::VPTERNLOGQZ256rmbikz:
2327   case X86::VPTERNLOGQZrmbikz: {
2328     auto &WorkingMI = cloneIfNew(MI);
2329     commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
2330     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2331                                                    OpIdx1, OpIdx2);
2332   }
2333   default: {
2334     if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
2335       unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
2336       auto &WorkingMI = cloneIfNew(MI);
2337       WorkingMI.setDesc(get(Opc));
2338       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2339                                                      OpIdx1, OpIdx2);
2340     }
2341 
2342     const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2343                                                       MI.getDesc().TSFlags);
2344     if (FMA3Group) {
2345       unsigned Opc =
2346         getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
2347       auto &WorkingMI = cloneIfNew(MI);
2348       WorkingMI.setDesc(get(Opc));
2349       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2350                                                      OpIdx1, OpIdx2);
2351     }
2352 
2353     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2354   }
2355   }
2356 }
2357 
2358 bool
findThreeSrcCommutedOpIndices(const MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2,bool IsIntrinsic) const2359 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2360                                             unsigned &SrcOpIdx1,
2361                                             unsigned &SrcOpIdx2,
2362                                             bool IsIntrinsic) const {
2363   uint64_t TSFlags = MI.getDesc().TSFlags;
2364 
2365   unsigned FirstCommutableVecOp = 1;
2366   unsigned LastCommutableVecOp = 3;
2367   unsigned KMaskOp = -1U;
2368   if (X86II::isKMasked(TSFlags)) {
2369     // For k-zero-masked operations it is Ok to commute the first vector
2370     // operand. Unless this is an intrinsic instruction.
2371     // For regular k-masked operations a conservative choice is done as the
2372     // elements of the first vector operand, for which the corresponding bit
2373     // in the k-mask operand is set to 0, are copied to the result of the
2374     // instruction.
2375     // TODO/FIXME: The commute still may be legal if it is known that the
2376     // k-mask operand is set to either all ones or all zeroes.
2377     // It is also Ok to commute the 1st operand if all users of MI use only
2378     // the elements enabled by the k-mask operand. For example,
2379     //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2380     //                                                     : v1[i];
2381     //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2382     //                                  // Ok, to commute v1 in FMADD213PSZrk.
2383 
2384     // The k-mask operand has index = 2 for masked and zero-masked operations.
2385     KMaskOp = 2;
2386 
2387     // The operand with index = 1 is used as a source for those elements for
2388     // which the corresponding bit in the k-mask is set to 0.
2389     if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2390       FirstCommutableVecOp = 3;
2391 
2392     LastCommutableVecOp++;
2393   } else if (IsIntrinsic) {
2394     // Commuting the first operand of an intrinsic instruction isn't possible
2395     // unless we can prove that only the lowest element of the result is used.
2396     FirstCommutableVecOp = 2;
2397   }
2398 
2399   if (isMem(MI, LastCommutableVecOp))
2400     LastCommutableVecOp--;
2401 
2402   // Only the first RegOpsNum operands are commutable.
2403   // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2404   // that the operand is not specified/fixed.
2405   if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2406       (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2407        SrcOpIdx1 == KMaskOp))
2408     return false;
2409   if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2410       (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2411        SrcOpIdx2 == KMaskOp))
2412     return false;
2413 
2414   // Look for two different register operands assumed to be commutable
2415   // regardless of the FMA opcode. The FMA opcode is adjusted later.
2416   if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2417       SrcOpIdx2 == CommuteAnyOperandIndex) {
2418     unsigned CommutableOpIdx2 = SrcOpIdx2;
2419 
2420     // At least one of operands to be commuted is not specified and
2421     // this method is free to choose appropriate commutable operands.
2422     if (SrcOpIdx1 == SrcOpIdx2)
2423       // Both of operands are not fixed. By default set one of commutable
2424       // operands to the last register operand of the instruction.
2425       CommutableOpIdx2 = LastCommutableVecOp;
2426     else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2427       // Only one of operands is not fixed.
2428       CommutableOpIdx2 = SrcOpIdx1;
2429 
2430     // CommutableOpIdx2 is well defined now. Let's choose another commutable
2431     // operand and assign its index to CommutableOpIdx1.
2432     Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
2433 
2434     unsigned CommutableOpIdx1;
2435     for (CommutableOpIdx1 = LastCommutableVecOp;
2436          CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2437       // Just ignore and skip the k-mask operand.
2438       if (CommutableOpIdx1 == KMaskOp)
2439         continue;
2440 
2441       // The commuted operands must have different registers.
2442       // Otherwise, the commute transformation does not change anything and
2443       // is useless then.
2444       if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
2445         break;
2446     }
2447 
2448     // No appropriate commutable operands were found.
2449     if (CommutableOpIdx1 < FirstCommutableVecOp)
2450       return false;
2451 
2452     // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2453     // to return those values.
2454     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2455                               CommutableOpIdx1, CommutableOpIdx2))
2456       return false;
2457   }
2458 
2459   return true;
2460 }
2461 
findCommutedOpIndices(const MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const2462 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2463                                          unsigned &SrcOpIdx1,
2464                                          unsigned &SrcOpIdx2) const {
2465   const MCInstrDesc &Desc = MI.getDesc();
2466   if (!Desc.isCommutable())
2467     return false;
2468 
2469   switch (MI.getOpcode()) {
2470   case X86::CMPSDrr:
2471   case X86::CMPSSrr:
2472   case X86::CMPPDrri:
2473   case X86::CMPPSrri:
2474   case X86::VCMPSDrr:
2475   case X86::VCMPSSrr:
2476   case X86::VCMPPDrri:
2477   case X86::VCMPPSrri:
2478   case X86::VCMPPDYrri:
2479   case X86::VCMPPSYrri:
2480   case X86::VCMPSDZrr:
2481   case X86::VCMPSSZrr:
2482   case X86::VCMPPDZrri:
2483   case X86::VCMPPSZrri:
2484   case X86::VCMPPDZ128rri:
2485   case X86::VCMPPSZ128rri:
2486   case X86::VCMPPDZ256rri:
2487   case X86::VCMPPSZ256rri:
2488   case X86::VCMPPDZrrik:
2489   case X86::VCMPPSZrrik:
2490   case X86::VCMPPDZ128rrik:
2491   case X86::VCMPPSZ128rrik:
2492   case X86::VCMPPDZ256rrik:
2493   case X86::VCMPPSZ256rrik: {
2494     unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2495 
2496     // Float comparison can be safely commuted for
2497     // Ordered/Unordered/Equal/NotEqual tests
2498     unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2499     switch (Imm) {
2500     default:
2501       // EVEX versions can be commuted.
2502       if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2503         break;
2504       return false;
2505     case 0x00: // EQUAL
2506     case 0x03: // UNORDERED
2507     case 0x04: // NOT EQUAL
2508     case 0x07: // ORDERED
2509       break;
2510     }
2511 
2512     // The indices of the commutable operands are 1 and 2 (or 2 and 3
2513     // when masked).
2514     // Assign them to the returned operand indices here.
2515     return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2516                                 2 + OpOffset);
2517   }
2518   case X86::MOVSSrr:
2519     // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2520     // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2521     // AVX implies sse4.1.
2522     if (Subtarget.hasSSE41())
2523       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2524     return false;
2525   case X86::SHUFPDrri:
2526     // We can commute this to MOVSD.
2527     if (MI.getOperand(3).getImm() == 0x02)
2528       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2529     return false;
2530   case X86::MOVHLPSrr:
2531   case X86::UNPCKHPDrr:
2532   case X86::VMOVHLPSrr:
2533   case X86::VUNPCKHPDrr:
2534   case X86::VMOVHLPSZrr:
2535   case X86::VUNPCKHPDZ128rr:
2536     if (Subtarget.hasSSE2())
2537       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2538     return false;
2539   case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
2540   case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
2541   case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
2542   case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
2543   case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
2544   case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
2545   case X86::VPTERNLOGDZrrik:
2546   case X86::VPTERNLOGDZ128rrik:
2547   case X86::VPTERNLOGDZ256rrik:
2548   case X86::VPTERNLOGQZrrik:
2549   case X86::VPTERNLOGQZ128rrik:
2550   case X86::VPTERNLOGQZ256rrik:
2551   case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
2552   case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2553   case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2554   case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
2555   case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2556   case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2557   case X86::VPTERNLOGDZ128rmbi:
2558   case X86::VPTERNLOGDZ256rmbi:
2559   case X86::VPTERNLOGDZrmbi:
2560   case X86::VPTERNLOGQZ128rmbi:
2561   case X86::VPTERNLOGQZ256rmbi:
2562   case X86::VPTERNLOGQZrmbi:
2563   case X86::VPTERNLOGDZ128rmbikz:
2564   case X86::VPTERNLOGDZ256rmbikz:
2565   case X86::VPTERNLOGDZrmbikz:
2566   case X86::VPTERNLOGQZ128rmbikz:
2567   case X86::VPTERNLOGQZ256rmbikz:
2568   case X86::VPTERNLOGQZrmbikz:
2569     return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2570   case X86::VPDPWSSDYrr:
2571   case X86::VPDPWSSDrr:
2572   case X86::VPDPWSSDSYrr:
2573   case X86::VPDPWSSDSrr:
2574   case X86::VPDPWSSDZ128r:
2575   case X86::VPDPWSSDZ128rk:
2576   case X86::VPDPWSSDZ128rkz:
2577   case X86::VPDPWSSDZ256r:
2578   case X86::VPDPWSSDZ256rk:
2579   case X86::VPDPWSSDZ256rkz:
2580   case X86::VPDPWSSDZr:
2581   case X86::VPDPWSSDZrk:
2582   case X86::VPDPWSSDZrkz:
2583   case X86::VPDPWSSDSZ128r:
2584   case X86::VPDPWSSDSZ128rk:
2585   case X86::VPDPWSSDSZ128rkz:
2586   case X86::VPDPWSSDSZ256r:
2587   case X86::VPDPWSSDSZ256rk:
2588   case X86::VPDPWSSDSZ256rkz:
2589   case X86::VPDPWSSDSZr:
2590   case X86::VPDPWSSDSZrk:
2591   case X86::VPDPWSSDSZrkz:
2592   case X86::VPMADD52HUQZ128r:
2593   case X86::VPMADD52HUQZ128rk:
2594   case X86::VPMADD52HUQZ128rkz:
2595   case X86::VPMADD52HUQZ256r:
2596   case X86::VPMADD52HUQZ256rk:
2597   case X86::VPMADD52HUQZ256rkz:
2598   case X86::VPMADD52HUQZr:
2599   case X86::VPMADD52HUQZrk:
2600   case X86::VPMADD52HUQZrkz:
2601   case X86::VPMADD52LUQZ128r:
2602   case X86::VPMADD52LUQZ128rk:
2603   case X86::VPMADD52LUQZ128rkz:
2604   case X86::VPMADD52LUQZ256r:
2605   case X86::VPMADD52LUQZ256rk:
2606   case X86::VPMADD52LUQZ256rkz:
2607   case X86::VPMADD52LUQZr:
2608   case X86::VPMADD52LUQZrk:
2609   case X86::VPMADD52LUQZrkz: {
2610     unsigned CommutableOpIdx1 = 2;
2611     unsigned CommutableOpIdx2 = 3;
2612     if (X86II::isKMasked(Desc.TSFlags)) {
2613       // Skip the mask register.
2614       ++CommutableOpIdx1;
2615       ++CommutableOpIdx2;
2616     }
2617     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2618                               CommutableOpIdx1, CommutableOpIdx2))
2619       return false;
2620     if (!MI.getOperand(SrcOpIdx1).isReg() ||
2621         !MI.getOperand(SrcOpIdx2).isReg())
2622       // No idea.
2623       return false;
2624     return true;
2625   }
2626 
2627   default:
2628     const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2629                                                       MI.getDesc().TSFlags);
2630     if (FMA3Group)
2631       return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2632                                            FMA3Group->isIntrinsic());
2633 
2634     // Handled masked instructions since we need to skip over the mask input
2635     // and the preserved input.
2636     if (X86II::isKMasked(Desc.TSFlags)) {
2637       // First assume that the first input is the mask operand and skip past it.
2638       unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2639       unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2640       // Check if the first input is tied. If there isn't one then we only
2641       // need to skip the mask operand which we did above.
2642       if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2643                                              MCOI::TIED_TO) != -1)) {
2644         // If this is zero masking instruction with a tied operand, we need to
2645         // move the first index back to the first input since this must
2646         // be a 3 input instruction and we want the first two non-mask inputs.
2647         // Otherwise this is a 2 input instruction with a preserved input and
2648         // mask, so we need to move the indices to skip one more input.
2649         if (X86II::isKMergeMasked(Desc.TSFlags)) {
2650           ++CommutableOpIdx1;
2651           ++CommutableOpIdx2;
2652         } else {
2653           --CommutableOpIdx1;
2654         }
2655       }
2656 
2657       if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2658                                 CommutableOpIdx1, CommutableOpIdx2))
2659         return false;
2660 
2661       if (!MI.getOperand(SrcOpIdx1).isReg() ||
2662           !MI.getOperand(SrcOpIdx2).isReg())
2663         // No idea.
2664         return false;
2665       return true;
2666     }
2667 
2668     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2669   }
2670   return false;
2671 }
2672 
getCondFromBranch(const MachineInstr & MI)2673 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2674   switch (MI.getOpcode()) {
2675   default: return X86::COND_INVALID;
2676   case X86::JCC_1:
2677     return static_cast<X86::CondCode>(
2678         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2679   }
2680 }
2681 
2682 /// Return condition code of a SETCC opcode.
getCondFromSETCC(const MachineInstr & MI)2683 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2684   switch (MI.getOpcode()) {
2685   default: return X86::COND_INVALID;
2686   case X86::SETCCr: case X86::SETCCm:
2687     return static_cast<X86::CondCode>(
2688         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2689   }
2690 }
2691 
2692 /// Return condition code of a CMov opcode.
getCondFromCMov(const MachineInstr & MI)2693 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2694   switch (MI.getOpcode()) {
2695   default: return X86::COND_INVALID;
2696   case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
2697   case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
2698     return static_cast<X86::CondCode>(
2699         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2700   }
2701 }
2702 
2703 /// Return the inverse of the specified condition,
2704 /// e.g. turning COND_E to COND_NE.
GetOppositeBranchCondition(X86::CondCode CC)2705 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2706   switch (CC) {
2707   default: llvm_unreachable("Illegal condition code!");
2708   case X86::COND_E:  return X86::COND_NE;
2709   case X86::COND_NE: return X86::COND_E;
2710   case X86::COND_L:  return X86::COND_GE;
2711   case X86::COND_LE: return X86::COND_G;
2712   case X86::COND_G:  return X86::COND_LE;
2713   case X86::COND_GE: return X86::COND_L;
2714   case X86::COND_B:  return X86::COND_AE;
2715   case X86::COND_BE: return X86::COND_A;
2716   case X86::COND_A:  return X86::COND_BE;
2717   case X86::COND_AE: return X86::COND_B;
2718   case X86::COND_S:  return X86::COND_NS;
2719   case X86::COND_NS: return X86::COND_S;
2720   case X86::COND_P:  return X86::COND_NP;
2721   case X86::COND_NP: return X86::COND_P;
2722   case X86::COND_O:  return X86::COND_NO;
2723   case X86::COND_NO: return X86::COND_O;
2724   case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP;
2725   case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2726   }
2727 }
2728 
2729 /// Assuming the flags are set by MI(a,b), return the condition code if we
2730 /// modify the instructions such that flags are set by MI(b,a).
getSwappedCondition(X86::CondCode CC)2731 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2732   switch (CC) {
2733   default: return X86::COND_INVALID;
2734   case X86::COND_E:  return X86::COND_E;
2735   case X86::COND_NE: return X86::COND_NE;
2736   case X86::COND_L:  return X86::COND_G;
2737   case X86::COND_LE: return X86::COND_GE;
2738   case X86::COND_G:  return X86::COND_L;
2739   case X86::COND_GE: return X86::COND_LE;
2740   case X86::COND_B:  return X86::COND_A;
2741   case X86::COND_BE: return X86::COND_AE;
2742   case X86::COND_A:  return X86::COND_B;
2743   case X86::COND_AE: return X86::COND_BE;
2744   }
2745 }
2746 
2747 std::pair<X86::CondCode, bool>
getX86ConditionCode(CmpInst::Predicate Predicate)2748 X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2749   X86::CondCode CC = X86::COND_INVALID;
2750   bool NeedSwap = false;
2751   switch (Predicate) {
2752   default: break;
2753   // Floating-point Predicates
2754   case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
2755   case CmpInst::FCMP_OLT: NeedSwap = true;        LLVM_FALLTHROUGH;
2756   case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
2757   case CmpInst::FCMP_OLE: NeedSwap = true;        LLVM_FALLTHROUGH;
2758   case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
2759   case CmpInst::FCMP_UGT: NeedSwap = true;        LLVM_FALLTHROUGH;
2760   case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
2761   case CmpInst::FCMP_UGE: NeedSwap = true;        LLVM_FALLTHROUGH;
2762   case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
2763   case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
2764   case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
2765   case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
2766   case CmpInst::FCMP_OEQ:                         LLVM_FALLTHROUGH;
2767   case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2768 
2769   // Integer Predicates
2770   case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
2771   case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
2772   case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
2773   case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
2774   case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
2775   case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
2776   case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
2777   case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
2778   case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
2779   case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
2780   }
2781 
2782   return std::make_pair(CC, NeedSwap);
2783 }
2784 
2785 /// Return a setcc opcode based on whether it has memory operand.
getSETOpc(bool HasMemoryOperand)2786 unsigned X86::getSETOpc(bool HasMemoryOperand) {
2787   return HasMemoryOperand ? X86::SETCCr : X86::SETCCm;
2788 }
2789 
2790 /// Return a cmov opcode for the given register size in bytes, and operand type.
getCMovOpcode(unsigned RegBytes,bool HasMemoryOperand)2791 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2792   switch(RegBytes) {
2793   default: llvm_unreachable("Illegal register size!");
2794   case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2795   case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2796   case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2797   }
2798 }
2799 
2800 /// Get the VPCMP immediate for the given condition.
getVPCMPImmForCond(ISD::CondCode CC)2801 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2802   switch (CC) {
2803   default: llvm_unreachable("Unexpected SETCC condition");
2804   case ISD::SETNE:  return 4;
2805   case ISD::SETEQ:  return 0;
2806   case ISD::SETULT:
2807   case ISD::SETLT: return 1;
2808   case ISD::SETUGT:
2809   case ISD::SETGT: return 6;
2810   case ISD::SETUGE:
2811   case ISD::SETGE: return 5;
2812   case ISD::SETULE:
2813   case ISD::SETLE: return 2;
2814   }
2815 }
2816 
2817 /// Get the VPCMP immediate if the operands are swapped.
getSwappedVPCMPImm(unsigned Imm)2818 unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2819   switch (Imm) {
2820   default: llvm_unreachable("Unreachable!");
2821   case 0x01: Imm = 0x06; break; // LT  -> NLE
2822   case 0x02: Imm = 0x05; break; // LE  -> NLT
2823   case 0x05: Imm = 0x02; break; // NLT -> LE
2824   case 0x06: Imm = 0x01; break; // NLE -> LT
2825   case 0x00: // EQ
2826   case 0x03: // FALSE
2827   case 0x04: // NE
2828   case 0x07: // TRUE
2829     break;
2830   }
2831 
2832   return Imm;
2833 }
2834 
2835 /// Get the VPCOM immediate if the operands are swapped.
getSwappedVPCOMImm(unsigned Imm)2836 unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2837   switch (Imm) {
2838   default: llvm_unreachable("Unreachable!");
2839   case 0x00: Imm = 0x02; break; // LT -> GT
2840   case 0x01: Imm = 0x03; break; // LE -> GE
2841   case 0x02: Imm = 0x00; break; // GT -> LT
2842   case 0x03: Imm = 0x01; break; // GE -> LE
2843   case 0x04: // EQ
2844   case 0x05: // NE
2845   case 0x06: // FALSE
2846   case 0x07: // TRUE
2847     break;
2848   }
2849 
2850   return Imm;
2851 }
2852 
2853 /// Get the VCMP immediate if the operands are swapped.
getSwappedVCMPImm(unsigned Imm)2854 unsigned X86::getSwappedVCMPImm(unsigned Imm) {
2855   // Only need the lower 2 bits to distinquish.
2856   switch (Imm & 0x3) {
2857   default: llvm_unreachable("Unreachable!");
2858   case 0x00: case 0x03:
2859     // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2860     break;
2861   case 0x01: case 0x02:
2862     // Need to toggle bits 3:0. Bit 4 stays the same.
2863     Imm ^= 0xf;
2864     break;
2865   }
2866 
2867   return Imm;
2868 }
2869 
isUnconditionalTailCall(const MachineInstr & MI) const2870 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2871   switch (MI.getOpcode()) {
2872   case X86::TCRETURNdi:
2873   case X86::TCRETURNri:
2874   case X86::TCRETURNmi:
2875   case X86::TCRETURNdi64:
2876   case X86::TCRETURNri64:
2877   case X86::TCRETURNmi64:
2878     return true;
2879   default:
2880     return false;
2881   }
2882 }
2883 
canMakeTailCallConditional(SmallVectorImpl<MachineOperand> & BranchCond,const MachineInstr & TailCall) const2884 bool X86InstrInfo::canMakeTailCallConditional(
2885     SmallVectorImpl<MachineOperand> &BranchCond,
2886     const MachineInstr &TailCall) const {
2887   if (TailCall.getOpcode() != X86::TCRETURNdi &&
2888       TailCall.getOpcode() != X86::TCRETURNdi64) {
2889     // Only direct calls can be done with a conditional branch.
2890     return false;
2891   }
2892 
2893   const MachineFunction *MF = TailCall.getParent()->getParent();
2894   if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2895     // Conditional tail calls confuse the Win64 unwinder.
2896     return false;
2897   }
2898 
2899   assert(BranchCond.size() == 1);
2900   if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2901     // Can't make a conditional tail call with this condition.
2902     return false;
2903   }
2904 
2905   const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2906   if (X86FI->getTCReturnAddrDelta() != 0 ||
2907       TailCall.getOperand(1).getImm() != 0) {
2908     // A conditional tail call cannot do any stack adjustment.
2909     return false;
2910   }
2911 
2912   return true;
2913 }
2914 
replaceBranchWithTailCall(MachineBasicBlock & MBB,SmallVectorImpl<MachineOperand> & BranchCond,const MachineInstr & TailCall) const2915 void X86InstrInfo::replaceBranchWithTailCall(
2916     MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2917     const MachineInstr &TailCall) const {
2918   assert(canMakeTailCallConditional(BranchCond, TailCall));
2919 
2920   MachineBasicBlock::iterator I = MBB.end();
2921   while (I != MBB.begin()) {
2922     --I;
2923     if (I->isDebugInstr())
2924       continue;
2925     if (!I->isBranch())
2926       assert(0 && "Can't find the branch to replace!");
2927 
2928     X86::CondCode CC = X86::getCondFromBranch(*I);
2929     assert(BranchCond.size() == 1);
2930     if (CC != BranchCond[0].getImm())
2931       continue;
2932 
2933     break;
2934   }
2935 
2936   unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2937                                                          : X86::TCRETURNdi64cc;
2938 
2939   auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2940   MIB->addOperand(TailCall.getOperand(0)); // Destination.
2941   MIB.addImm(0); // Stack offset (not used).
2942   MIB->addOperand(BranchCond[0]); // Condition.
2943   MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2944 
2945   // Add implicit uses and defs of all live regs potentially clobbered by the
2946   // call. This way they still appear live across the call.
2947   LivePhysRegs LiveRegs(getRegisterInfo());
2948   LiveRegs.addLiveOuts(MBB);
2949   SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
2950   LiveRegs.stepForward(*MIB, Clobbers);
2951   for (const auto &C : Clobbers) {
2952     MIB.addReg(C.first, RegState::Implicit);
2953     MIB.addReg(C.first, RegState::Implicit | RegState::Define);
2954   }
2955 
2956   I->eraseFromParent();
2957 }
2958 
2959 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2960 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
2961 // fallthrough MBB cannot be identified.
getFallThroughMBB(MachineBasicBlock * MBB,MachineBasicBlock * TBB)2962 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
2963                                             MachineBasicBlock *TBB) {
2964   // Look for non-EHPad successors other than TBB. If we find exactly one, it
2965   // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2966   // and fallthrough MBB. If we find more than one, we cannot identify the
2967   // fallthrough MBB and should return nullptr.
2968   MachineBasicBlock *FallthroughBB = nullptr;
2969   for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
2970     if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
2971       continue;
2972     // Return a nullptr if we found more than one fallthrough successor.
2973     if (FallthroughBB && FallthroughBB != TBB)
2974       return nullptr;
2975     FallthroughBB = *SI;
2976   }
2977   return FallthroughBB;
2978 }
2979 
AnalyzeBranchImpl(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & CondBranches,bool AllowModify) const2980 bool X86InstrInfo::AnalyzeBranchImpl(
2981     MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
2982     SmallVectorImpl<MachineOperand> &Cond,
2983     SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
2984 
2985   // Start from the bottom of the block and work up, examining the
2986   // terminator instructions.
2987   MachineBasicBlock::iterator I = MBB.end();
2988   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2989   while (I != MBB.begin()) {
2990     --I;
2991     if (I->isDebugInstr())
2992       continue;
2993 
2994     // Working from the bottom, when we see a non-terminator instruction, we're
2995     // done.
2996     if (!isUnpredicatedTerminator(*I))
2997       break;
2998 
2999     // A terminator that isn't a branch can't easily be handled by this
3000     // analysis.
3001     if (!I->isBranch())
3002       return true;
3003 
3004     // Handle unconditional branches.
3005     if (I->getOpcode() == X86::JMP_1) {
3006       UnCondBrIter = I;
3007 
3008       if (!AllowModify) {
3009         TBB = I->getOperand(0).getMBB();
3010         continue;
3011       }
3012 
3013       // If the block has any instructions after a JMP, delete them.
3014       while (std::next(I) != MBB.end())
3015         std::next(I)->eraseFromParent();
3016 
3017       Cond.clear();
3018       FBB = nullptr;
3019 
3020       // Delete the JMP if it's equivalent to a fall-through.
3021       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3022         TBB = nullptr;
3023         I->eraseFromParent();
3024         I = MBB.end();
3025         UnCondBrIter = MBB.end();
3026         continue;
3027       }
3028 
3029       // TBB is used to indicate the unconditional destination.
3030       TBB = I->getOperand(0).getMBB();
3031       continue;
3032     }
3033 
3034     // Handle conditional branches.
3035     X86::CondCode BranchCode = X86::getCondFromBranch(*I);
3036     if (BranchCode == X86::COND_INVALID)
3037       return true;  // Can't handle indirect branch.
3038 
3039     // In practice we should never have an undef eflags operand, if we do
3040     // abort here as we are not prepared to preserve the flag.
3041     if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
3042       return true;
3043 
3044     // Working from the bottom, handle the first conditional branch.
3045     if (Cond.empty()) {
3046       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
3047       if (AllowModify && UnCondBrIter != MBB.end() &&
3048           MBB.isLayoutSuccessor(TargetBB)) {
3049         // If we can modify the code and it ends in something like:
3050         //
3051         //     jCC L1
3052         //     jmp L2
3053         //   L1:
3054         //     ...
3055         //   L2:
3056         //
3057         // Then we can change this to:
3058         //
3059         //     jnCC L2
3060         //   L1:
3061         //     ...
3062         //   L2:
3063         //
3064         // Which is a bit more efficient.
3065         // We conditionally jump to the fall-through block.
3066         BranchCode = GetOppositeBranchCondition(BranchCode);
3067         MachineBasicBlock::iterator OldInst = I;
3068 
3069         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
3070           .addMBB(UnCondBrIter->getOperand(0).getMBB())
3071           .addImm(BranchCode);
3072         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
3073           .addMBB(TargetBB);
3074 
3075         OldInst->eraseFromParent();
3076         UnCondBrIter->eraseFromParent();
3077 
3078         // Restart the analysis.
3079         UnCondBrIter = MBB.end();
3080         I = MBB.end();
3081         continue;
3082       }
3083 
3084       FBB = TBB;
3085       TBB = I->getOperand(0).getMBB();
3086       Cond.push_back(MachineOperand::CreateImm(BranchCode));
3087       CondBranches.push_back(&*I);
3088       continue;
3089     }
3090 
3091     // Handle subsequent conditional branches. Only handle the case where all
3092     // conditional branches branch to the same destination and their condition
3093     // opcodes fit one of the special multi-branch idioms.
3094     assert(Cond.size() == 1);
3095     assert(TBB);
3096 
3097     // If the conditions are the same, we can leave them alone.
3098     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3099     auto NewTBB = I->getOperand(0).getMBB();
3100     if (OldBranchCode == BranchCode && TBB == NewTBB)
3101       continue;
3102 
3103     // If they differ, see if they fit one of the known patterns. Theoretically,
3104     // we could handle more patterns here, but we shouldn't expect to see them
3105     // if instruction selection has done a reasonable job.
3106     if (TBB == NewTBB &&
3107                ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3108                 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3109       BranchCode = X86::COND_NE_OR_P;
3110     } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3111                (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3112       if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
3113         return true;
3114 
3115       // X86::COND_E_AND_NP usually has two different branch destinations.
3116       //
3117       // JP B1
3118       // JE B2
3119       // JMP B1
3120       // B1:
3121       // B2:
3122       //
3123       // Here this condition branches to B2 only if NP && E. It has another
3124       // equivalent form:
3125       //
3126       // JNE B1
3127       // JNP B2
3128       // JMP B1
3129       // B1:
3130       // B2:
3131       //
3132       // Similarly it branches to B2 only if E && NP. That is why this condition
3133       // is named with COND_E_AND_NP.
3134       BranchCode = X86::COND_E_AND_NP;
3135     } else
3136       return true;
3137 
3138     // Update the MachineOperand.
3139     Cond[0].setImm(BranchCode);
3140     CondBranches.push_back(&*I);
3141   }
3142 
3143   return false;
3144 }
3145 
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const3146 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
3147                                  MachineBasicBlock *&TBB,
3148                                  MachineBasicBlock *&FBB,
3149                                  SmallVectorImpl<MachineOperand> &Cond,
3150                                  bool AllowModify) const {
3151   SmallVector<MachineInstr *, 4> CondBranches;
3152   return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3153 }
3154 
analyzeBranchPredicate(MachineBasicBlock & MBB,MachineBranchPredicate & MBP,bool AllowModify) const3155 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
3156                                           MachineBranchPredicate &MBP,
3157                                           bool AllowModify) const {
3158   using namespace std::placeholders;
3159 
3160   SmallVector<MachineOperand, 4> Cond;
3161   SmallVector<MachineInstr *, 4> CondBranches;
3162   if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
3163                         AllowModify))
3164     return true;
3165 
3166   if (Cond.size() != 1)
3167     return true;
3168 
3169   assert(MBP.TrueDest && "expected!");
3170 
3171   if (!MBP.FalseDest)
3172     MBP.FalseDest = MBB.getNextNode();
3173 
3174   const TargetRegisterInfo *TRI = &getRegisterInfo();
3175 
3176   MachineInstr *ConditionDef = nullptr;
3177   bool SingleUseCondition = true;
3178 
3179   for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
3180     if (I->modifiesRegister(X86::EFLAGS, TRI)) {
3181       ConditionDef = &*I;
3182       break;
3183     }
3184 
3185     if (I->readsRegister(X86::EFLAGS, TRI))
3186       SingleUseCondition = false;
3187   }
3188 
3189   if (!ConditionDef)
3190     return true;
3191 
3192   if (SingleUseCondition) {
3193     for (auto *Succ : MBB.successors())
3194       if (Succ->isLiveIn(X86::EFLAGS))
3195         SingleUseCondition = false;
3196   }
3197 
3198   MBP.ConditionDef = ConditionDef;
3199   MBP.SingleUseCondition = SingleUseCondition;
3200 
3201   // Currently we only recognize the simple pattern:
3202   //
3203   //   test %reg, %reg
3204   //   je %label
3205   //
3206   const unsigned TestOpcode =
3207       Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
3208 
3209   if (ConditionDef->getOpcode() == TestOpcode &&
3210       ConditionDef->getNumOperands() == 3 &&
3211       ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
3212       (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
3213     MBP.LHS = ConditionDef->getOperand(0);
3214     MBP.RHS = MachineOperand::CreateImm(0);
3215     MBP.Predicate = Cond[0].getImm() == X86::COND_NE
3216                         ? MachineBranchPredicate::PRED_NE
3217                         : MachineBranchPredicate::PRED_EQ;
3218     return false;
3219   }
3220 
3221   return true;
3222 }
3223 
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const3224 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
3225                                     int *BytesRemoved) const {
3226   assert(!BytesRemoved && "code size not handled");
3227 
3228   MachineBasicBlock::iterator I = MBB.end();
3229   unsigned Count = 0;
3230 
3231   while (I != MBB.begin()) {
3232     --I;
3233     if (I->isDebugInstr())
3234       continue;
3235     if (I->getOpcode() != X86::JMP_1 &&
3236         X86::getCondFromBranch(*I) == X86::COND_INVALID)
3237       break;
3238     // Remove the branch.
3239     I->eraseFromParent();
3240     I = MBB.end();
3241     ++Count;
3242   }
3243 
3244   return Count;
3245 }
3246 
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const3247 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
3248                                     MachineBasicBlock *TBB,
3249                                     MachineBasicBlock *FBB,
3250                                     ArrayRef<MachineOperand> Cond,
3251                                     const DebugLoc &DL,
3252                                     int *BytesAdded) const {
3253   // Shouldn't be a fall through.
3254   assert(TBB && "insertBranch must not be told to insert a fallthrough");
3255   assert((Cond.size() == 1 || Cond.size() == 0) &&
3256          "X86 branch conditions have one component!");
3257   assert(!BytesAdded && "code size not handled");
3258 
3259   if (Cond.empty()) {
3260     // Unconditional branch?
3261     assert(!FBB && "Unconditional branch with multiple successors!");
3262     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3263     return 1;
3264   }
3265 
3266   // If FBB is null, it is implied to be a fall-through block.
3267   bool FallThru = FBB == nullptr;
3268 
3269   // Conditional branch.
3270   unsigned Count = 0;
3271   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3272   switch (CC) {
3273   case X86::COND_NE_OR_P:
3274     // Synthesize NE_OR_P with two branches.
3275     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
3276     ++Count;
3277     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
3278     ++Count;
3279     break;
3280   case X86::COND_E_AND_NP:
3281     // Use the next block of MBB as FBB if it is null.
3282     if (FBB == nullptr) {
3283       FBB = getFallThroughMBB(&MBB, TBB);
3284       assert(FBB && "MBB cannot be the last block in function when the false "
3285                     "body is a fall-through.");
3286     }
3287     // Synthesize COND_E_AND_NP with two branches.
3288     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
3289     ++Count;
3290     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
3291     ++Count;
3292     break;
3293   default: {
3294     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
3295     ++Count;
3296   }
3297   }
3298   if (!FallThru) {
3299     // Two-way Conditional branch. Insert the second branch.
3300     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3301     ++Count;
3302   }
3303   return Count;
3304 }
3305 
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,Register DstReg,Register TrueReg,Register FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const3306 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
3307                                    ArrayRef<MachineOperand> Cond,
3308                                    Register DstReg, Register TrueReg,
3309                                    Register FalseReg, int &CondCycles,
3310                                    int &TrueCycles, int &FalseCycles) const {
3311   // Not all subtargets have cmov instructions.
3312   if (!Subtarget.hasCMov())
3313     return false;
3314   if (Cond.size() != 1)
3315     return false;
3316   // We cannot do the composite conditions, at least not in SSA form.
3317   if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
3318     return false;
3319 
3320   // Check register classes.
3321   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3322   const TargetRegisterClass *RC =
3323     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3324   if (!RC)
3325     return false;
3326 
3327   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3328   if (X86::GR16RegClass.hasSubClassEq(RC) ||
3329       X86::GR32RegClass.hasSubClassEq(RC) ||
3330       X86::GR64RegClass.hasSubClassEq(RC)) {
3331     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3332     // Bridge. Probably Ivy Bridge as well.
3333     CondCycles = 2;
3334     TrueCycles = 2;
3335     FalseCycles = 2;
3336     return true;
3337   }
3338 
3339   // Can't do vectors.
3340   return false;
3341 }
3342 
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,Register DstReg,ArrayRef<MachineOperand> Cond,Register TrueReg,Register FalseReg) const3343 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3344                                 MachineBasicBlock::iterator I,
3345                                 const DebugLoc &DL, Register DstReg,
3346                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
3347                                 Register FalseReg) const {
3348   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3349   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
3350   const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
3351   assert(Cond.size() == 1 && "Invalid Cond array");
3352   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
3353                                     false /*HasMemoryOperand*/);
3354   BuildMI(MBB, I, DL, get(Opc), DstReg)
3355       .addReg(FalseReg)
3356       .addReg(TrueReg)
3357       .addImm(Cond[0].getImm());
3358 }
3359 
3360 /// Test if the given register is a physical h register.
isHReg(unsigned Reg)3361 static bool isHReg(unsigned Reg) {
3362   return X86::GR8_ABCD_HRegClass.contains(Reg);
3363 }
3364 
3365 // Try and copy between VR128/VR64 and GR64 registers.
CopyToFromAsymmetricReg(unsigned DestReg,unsigned SrcReg,const X86Subtarget & Subtarget)3366 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3367                                         const X86Subtarget &Subtarget) {
3368   bool HasAVX = Subtarget.hasAVX();
3369   bool HasAVX512 = Subtarget.hasAVX512();
3370 
3371   // SrcReg(MaskReg) -> DestReg(GR64)
3372   // SrcReg(MaskReg) -> DestReg(GR32)
3373 
3374   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3375   if (X86::VK16RegClass.contains(SrcReg)) {
3376     if (X86::GR64RegClass.contains(DestReg)) {
3377       assert(Subtarget.hasBWI());
3378       return X86::KMOVQrk;
3379     }
3380     if (X86::GR32RegClass.contains(DestReg))
3381       return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
3382   }
3383 
3384   // SrcReg(GR64) -> DestReg(MaskReg)
3385   // SrcReg(GR32) -> DestReg(MaskReg)
3386 
3387   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3388   if (X86::VK16RegClass.contains(DestReg)) {
3389     if (X86::GR64RegClass.contains(SrcReg)) {
3390       assert(Subtarget.hasBWI());
3391       return X86::KMOVQkr;
3392     }
3393     if (X86::GR32RegClass.contains(SrcReg))
3394       return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
3395   }
3396 
3397 
3398   // SrcReg(VR128) -> DestReg(GR64)
3399   // SrcReg(VR64)  -> DestReg(GR64)
3400   // SrcReg(GR64)  -> DestReg(VR128)
3401   // SrcReg(GR64)  -> DestReg(VR64)
3402 
3403   if (X86::GR64RegClass.contains(DestReg)) {
3404     if (X86::VR128XRegClass.contains(SrcReg))
3405       // Copy from a VR128 register to a GR64 register.
3406       return HasAVX512 ? X86::VMOVPQIto64Zrr :
3407              HasAVX    ? X86::VMOVPQIto64rr  :
3408                          X86::MOVPQIto64rr;
3409     if (X86::VR64RegClass.contains(SrcReg))
3410       // Copy from a VR64 register to a GR64 register.
3411       return X86::MMX_MOVD64from64rr;
3412   } else if (X86::GR64RegClass.contains(SrcReg)) {
3413     // Copy from a GR64 register to a VR128 register.
3414     if (X86::VR128XRegClass.contains(DestReg))
3415       return HasAVX512 ? X86::VMOV64toPQIZrr :
3416              HasAVX    ? X86::VMOV64toPQIrr  :
3417                          X86::MOV64toPQIrr;
3418     // Copy from a GR64 register to a VR64 register.
3419     if (X86::VR64RegClass.contains(DestReg))
3420       return X86::MMX_MOVD64to64rr;
3421   }
3422 
3423   // SrcReg(VR128) -> DestReg(GR32)
3424   // SrcReg(GR32)  -> DestReg(VR128)
3425 
3426   if (X86::GR32RegClass.contains(DestReg) &&
3427       X86::VR128XRegClass.contains(SrcReg))
3428     // Copy from a VR128 register to a GR32 register.
3429     return HasAVX512 ? X86::VMOVPDI2DIZrr :
3430            HasAVX    ? X86::VMOVPDI2DIrr  :
3431                        X86::MOVPDI2DIrr;
3432 
3433   if (X86::VR128XRegClass.contains(DestReg) &&
3434       X86::GR32RegClass.contains(SrcReg))
3435     // Copy from a VR128 register to a VR128 register.
3436     return HasAVX512 ? X86::VMOVDI2PDIZrr :
3437            HasAVX    ? X86::VMOVDI2PDIrr  :
3438                        X86::MOVDI2PDIrr;
3439   return 0;
3440 }
3441 
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc) const3442 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3443                                MachineBasicBlock::iterator MI,
3444                                const DebugLoc &DL, MCRegister DestReg,
3445                                MCRegister SrcReg, bool KillSrc) const {
3446   // First deal with the normal symmetric copies.
3447   bool HasAVX = Subtarget.hasAVX();
3448   bool HasVLX = Subtarget.hasVLX();
3449   unsigned Opc = 0;
3450   if (X86::GR64RegClass.contains(DestReg, SrcReg))
3451     Opc = X86::MOV64rr;
3452   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3453     Opc = X86::MOV32rr;
3454   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3455     Opc = X86::MOV16rr;
3456   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3457     // Copying to or from a physical H register on x86-64 requires a NOREX
3458     // move.  Otherwise use a normal move.
3459     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3460         Subtarget.is64Bit()) {
3461       Opc = X86::MOV8rr_NOREX;
3462       // Both operands must be encodable without an REX prefix.
3463       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3464              "8-bit H register can not be copied outside GR8_NOREX");
3465     } else
3466       Opc = X86::MOV8rr;
3467   }
3468   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3469     Opc = X86::MMX_MOVQ64rr;
3470   else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
3471     if (HasVLX)
3472       Opc = X86::VMOVAPSZ128rr;
3473     else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3474       Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3475     else {
3476       // If this an extended register and we don't have VLX we need to use a
3477       // 512-bit move.
3478       Opc = X86::VMOVAPSZrr;
3479       const TargetRegisterInfo *TRI = &getRegisterInfo();
3480       DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3481                                          &X86::VR512RegClass);
3482       SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3483                                         &X86::VR512RegClass);
3484     }
3485   } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3486     if (HasVLX)
3487       Opc = X86::VMOVAPSZ256rr;
3488     else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3489       Opc = X86::VMOVAPSYrr;
3490     else {
3491       // If this an extended register and we don't have VLX we need to use a
3492       // 512-bit move.
3493       Opc = X86::VMOVAPSZrr;
3494       const TargetRegisterInfo *TRI = &getRegisterInfo();
3495       DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3496                                          &X86::VR512RegClass);
3497       SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3498                                         &X86::VR512RegClass);
3499     }
3500   } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3501     Opc = X86::VMOVAPSZrr;
3502   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3503   else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3504     Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3505   if (!Opc)
3506     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3507 
3508   if (Opc) {
3509     BuildMI(MBB, MI, DL, get(Opc), DestReg)
3510       .addReg(SrcReg, getKillRegState(KillSrc));
3511     return;
3512   }
3513 
3514   if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3515     // FIXME: We use a fatal error here because historically LLVM has tried
3516     // lower some of these physreg copies and we want to ensure we get
3517     // reasonable bug reports if someone encounters a case no other testing
3518     // found. This path should be removed after the LLVM 7 release.
3519     report_fatal_error("Unable to copy EFLAGS physical register!");
3520   }
3521 
3522   LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
3523                     << RI.getName(DestReg) << '\n');
3524   report_fatal_error("Cannot emit physreg copy instruction");
3525 }
3526 
3527 Optional<DestSourcePair>
isCopyInstrImpl(const MachineInstr & MI) const3528 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
3529   if (MI.isMoveReg())
3530     return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
3531   return None;
3532 }
3533 
getLoadStoreRegOpcode(Register Reg,const TargetRegisterClass * RC,bool IsStackAligned,const X86Subtarget & STI,bool load)3534 static unsigned getLoadStoreRegOpcode(Register Reg,
3535                                       const TargetRegisterClass *RC,
3536                                       bool IsStackAligned,
3537                                       const X86Subtarget &STI, bool load) {
3538   bool HasAVX = STI.hasAVX();
3539   bool HasAVX512 = STI.hasAVX512();
3540   bool HasVLX = STI.hasVLX();
3541 
3542   switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3543   default:
3544     llvm_unreachable("Unknown spill size");
3545   case 1:
3546     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3547     if (STI.is64Bit())
3548       // Copying to or from a physical H register on x86-64 requires a NOREX
3549       // move.  Otherwise use a normal move.
3550       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3551         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3552     return load ? X86::MOV8rm : X86::MOV8mr;
3553   case 2:
3554     if (X86::VK16RegClass.hasSubClassEq(RC))
3555       return load ? X86::KMOVWkm : X86::KMOVWmk;
3556     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3557     return load ? X86::MOV16rm : X86::MOV16mr;
3558   case 4:
3559     if (X86::GR32RegClass.hasSubClassEq(RC))
3560       return load ? X86::MOV32rm : X86::MOV32mr;
3561     if (X86::FR32XRegClass.hasSubClassEq(RC))
3562       return load ?
3563         (HasAVX512 ? X86::VMOVSSZrm_alt :
3564          HasAVX    ? X86::VMOVSSrm_alt :
3565                      X86::MOVSSrm_alt) :
3566         (HasAVX512 ? X86::VMOVSSZmr :
3567          HasAVX    ? X86::VMOVSSmr :
3568                      X86::MOVSSmr);
3569     if (X86::RFP32RegClass.hasSubClassEq(RC))
3570       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3571     if (X86::VK32RegClass.hasSubClassEq(RC)) {
3572       assert(STI.hasBWI() && "KMOVD requires BWI");
3573       return load ? X86::KMOVDkm : X86::KMOVDmk;
3574     }
3575     // All of these mask pair classes have the same spill size, the same kind
3576     // of kmov instructions can be used with all of them.
3577     if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
3578         X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
3579         X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
3580         X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
3581         X86::VK16PAIRRegClass.hasSubClassEq(RC))
3582       return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
3583     llvm_unreachable("Unknown 4-byte regclass");
3584   case 8:
3585     if (X86::GR64RegClass.hasSubClassEq(RC))
3586       return load ? X86::MOV64rm : X86::MOV64mr;
3587     if (X86::FR64XRegClass.hasSubClassEq(RC))
3588       return load ?
3589         (HasAVX512 ? X86::VMOVSDZrm_alt :
3590          HasAVX    ? X86::VMOVSDrm_alt :
3591                      X86::MOVSDrm_alt) :
3592         (HasAVX512 ? X86::VMOVSDZmr :
3593          HasAVX    ? X86::VMOVSDmr :
3594                      X86::MOVSDmr);
3595     if (X86::VR64RegClass.hasSubClassEq(RC))
3596       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3597     if (X86::RFP64RegClass.hasSubClassEq(RC))
3598       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3599     if (X86::VK64RegClass.hasSubClassEq(RC)) {
3600       assert(STI.hasBWI() && "KMOVQ requires BWI");
3601       return load ? X86::KMOVQkm : X86::KMOVQmk;
3602     }
3603     llvm_unreachable("Unknown 8-byte regclass");
3604   case 10:
3605     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3606     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3607   case 16: {
3608     if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3609       // If stack is realigned we can use aligned stores.
3610       if (IsStackAligned)
3611         return load ?
3612           (HasVLX    ? X86::VMOVAPSZ128rm :
3613            HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3614            HasAVX    ? X86::VMOVAPSrm :
3615                        X86::MOVAPSrm):
3616           (HasVLX    ? X86::VMOVAPSZ128mr :
3617            HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3618            HasAVX    ? X86::VMOVAPSmr :
3619                        X86::MOVAPSmr);
3620       else
3621         return load ?
3622           (HasVLX    ? X86::VMOVUPSZ128rm :
3623            HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3624            HasAVX    ? X86::VMOVUPSrm :
3625                        X86::MOVUPSrm):
3626           (HasVLX    ? X86::VMOVUPSZ128mr :
3627            HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3628            HasAVX    ? X86::VMOVUPSmr :
3629                        X86::MOVUPSmr);
3630     }
3631     if (X86::BNDRRegClass.hasSubClassEq(RC)) {
3632       if (STI.is64Bit())
3633         return load ? X86::BNDMOV64rm : X86::BNDMOV64mr;
3634       else
3635         return load ? X86::BNDMOV32rm : X86::BNDMOV32mr;
3636     }
3637     llvm_unreachable("Unknown 16-byte regclass");
3638   }
3639   case 32:
3640     assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3641     // If stack is realigned we can use aligned stores.
3642     if (IsStackAligned)
3643       return load ?
3644         (HasVLX    ? X86::VMOVAPSZ256rm :
3645          HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3646                      X86::VMOVAPSYrm) :
3647         (HasVLX    ? X86::VMOVAPSZ256mr :
3648          HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3649                      X86::VMOVAPSYmr);
3650     else
3651       return load ?
3652         (HasVLX    ? X86::VMOVUPSZ256rm :
3653          HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3654                      X86::VMOVUPSYrm) :
3655         (HasVLX    ? X86::VMOVUPSZ256mr :
3656          HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3657                      X86::VMOVUPSYmr);
3658   case 64:
3659     assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3660     assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3661     if (IsStackAligned)
3662       return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3663     else
3664       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3665   }
3666 }
3667 
3668 Optional<ExtAddrMode>
getAddrModeFromMemoryOp(const MachineInstr & MemI,const TargetRegisterInfo * TRI) const3669 X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
3670                                       const TargetRegisterInfo *TRI) const {
3671   const MCInstrDesc &Desc = MemI.getDesc();
3672   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3673   if (MemRefBegin < 0)
3674     return None;
3675 
3676   MemRefBegin += X86II::getOperandBias(Desc);
3677 
3678   auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
3679   if (!BaseOp.isReg()) // Can be an MO_FrameIndex
3680     return None;
3681 
3682   const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
3683   // Displacement can be symbolic
3684   if (!DispMO.isImm())
3685     return None;
3686 
3687   ExtAddrMode AM;
3688   AM.BaseReg = BaseOp.getReg();
3689   AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
3690   AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
3691   AM.Displacement = DispMO.getImm();
3692   return AM;
3693 }
3694 
getConstValDefinedInReg(const MachineInstr & MI,const Register Reg,int64_t & ImmVal) const3695 bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
3696                                            const Register Reg,
3697                                            int64_t &ImmVal) const {
3698   if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
3699     return false;
3700   // Mov Src can be a global address.
3701   if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
3702     return false;
3703   ImmVal = MI.getOperand(1).getImm();
3704   return true;
3705 }
3706 
preservesZeroValueInReg(const MachineInstr * MI,const Register NullValueReg,const TargetRegisterInfo * TRI) const3707 bool X86InstrInfo::preservesZeroValueInReg(
3708     const MachineInstr *MI, const Register NullValueReg,
3709     const TargetRegisterInfo *TRI) const {
3710   if (!MI->modifiesRegister(NullValueReg, TRI))
3711     return true;
3712   switch (MI->getOpcode()) {
3713   // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
3714   // X.
3715   case X86::SHR64ri:
3716   case X86::SHR32ri:
3717   case X86::SHL64ri:
3718   case X86::SHL32ri:
3719     assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
3720            "expected for shift opcode!");
3721     return MI->getOperand(0).getReg() == NullValueReg &&
3722            MI->getOperand(1).getReg() == NullValueReg;
3723   // Zero extend of a sub-reg of NullValueReg into itself does not change the
3724   // null value.
3725   case X86::MOV32rr:
3726     return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
3727       return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
3728     });
3729   default:
3730     return false;
3731   }
3732   llvm_unreachable("Should be handled above!");
3733 }
3734 
getMemOperandsWithOffsetWidth(const MachineInstr & MemOp,SmallVectorImpl<const MachineOperand * > & BaseOps,int64_t & Offset,bool & OffsetIsScalable,unsigned & Width,const TargetRegisterInfo * TRI) const3735 bool X86InstrInfo::getMemOperandsWithOffsetWidth(
3736     const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
3737     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
3738     const TargetRegisterInfo *TRI) const {
3739   const MCInstrDesc &Desc = MemOp.getDesc();
3740   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3741   if (MemRefBegin < 0)
3742     return false;
3743 
3744   MemRefBegin += X86II::getOperandBias(Desc);
3745 
3746   const MachineOperand *BaseOp =
3747       &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3748   if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3749     return false;
3750 
3751   if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3752     return false;
3753 
3754   if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3755       X86::NoRegister)
3756     return false;
3757 
3758   const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3759 
3760   // Displacement can be symbolic
3761   if (!DispMO.isImm())
3762     return false;
3763 
3764   Offset = DispMO.getImm();
3765 
3766   if (!BaseOp->isReg())
3767     return false;
3768 
3769   OffsetIsScalable = false;
3770   // FIXME: Relying on memoperands() may not be right thing to do here. Check
3771   // with X86 maintainers, and fix it accordingly. For now, it is ok, since
3772   // there is no use of `Width` for X86 back-end at the moment.
3773   Width =
3774       !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
3775   BaseOps.push_back(BaseOp);
3776   return true;
3777 }
3778 
getStoreRegOpcode(Register SrcReg,const TargetRegisterClass * RC,bool IsStackAligned,const X86Subtarget & STI)3779 static unsigned getStoreRegOpcode(Register SrcReg,
3780                                   const TargetRegisterClass *RC,
3781                                   bool IsStackAligned,
3782                                   const X86Subtarget &STI) {
3783   return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
3784 }
3785 
getLoadRegOpcode(Register DestReg,const TargetRegisterClass * RC,bool IsStackAligned,const X86Subtarget & STI)3786 static unsigned getLoadRegOpcode(Register DestReg,
3787                                  const TargetRegisterClass *RC,
3788                                  bool IsStackAligned, const X86Subtarget &STI) {
3789   return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
3790 }
3791 
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const3792 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3793                                        MachineBasicBlock::iterator MI,
3794                                        Register SrcReg, bool isKill, int FrameIdx,
3795                                        const TargetRegisterClass *RC,
3796                                        const TargetRegisterInfo *TRI) const {
3797   const MachineFunction &MF = *MBB.getParent();
3798   const MachineFrameInfo &MFI = MF.getFrameInfo();
3799   assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3800          "Stack slot too small for store");
3801   if (RC->getID() == X86::TILERegClassID) {
3802     unsigned Opc = X86::TILESTORED;
3803     // tilestored %tmm, (%sp, %idx)
3804     MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3805     Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3806     BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3807     MachineInstr *NewMI =
3808         addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3809             .addReg(SrcReg, getKillRegState(isKill));
3810     MachineOperand &MO = NewMI->getOperand(2);
3811     MO.setReg(VirtReg);
3812     MO.setIsKill(true);
3813   } else {
3814     unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3815     bool isAligned =
3816         (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3817         (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3818     unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3819     addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3820         .addReg(SrcReg, getKillRegState(isKill));
3821   }
3822 }
3823 
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const3824 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3825                                         MachineBasicBlock::iterator MI,
3826                                         Register DestReg, int FrameIdx,
3827                                         const TargetRegisterClass *RC,
3828                                         const TargetRegisterInfo *TRI) const {
3829   if (RC->getID() == X86::TILERegClassID) {
3830     unsigned Opc = X86::TILELOADD;
3831     // tileloadd (%sp, %idx), %tmm
3832     MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3833     Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3834     MachineInstr *NewMI =
3835         BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3836     NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3837                               FrameIdx);
3838     MachineOperand &MO = NewMI->getOperand(3);
3839     MO.setReg(VirtReg);
3840     MO.setIsKill(true);
3841   } else {
3842     const MachineFunction &MF = *MBB.getParent();
3843     const MachineFrameInfo &MFI = MF.getFrameInfo();
3844     unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3845     bool isAligned =
3846         (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3847         (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3848     unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3849     addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3850                       FrameIdx);
3851   }
3852 }
3853 
analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int & CmpMask,int & CmpValue) const3854 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
3855                                   Register &SrcReg2, int &CmpMask,
3856                                   int &CmpValue) const {
3857   switch (MI.getOpcode()) {
3858   default: break;
3859   case X86::CMP64ri32:
3860   case X86::CMP64ri8:
3861   case X86::CMP32ri:
3862   case X86::CMP32ri8:
3863   case X86::CMP16ri:
3864   case X86::CMP16ri8:
3865   case X86::CMP8ri:
3866     SrcReg = MI.getOperand(0).getReg();
3867     SrcReg2 = 0;
3868     if (MI.getOperand(1).isImm()) {
3869       CmpMask = ~0;
3870       CmpValue = MI.getOperand(1).getImm();
3871     } else {
3872       CmpMask = CmpValue = 0;
3873     }
3874     return true;
3875   // A SUB can be used to perform comparison.
3876   case X86::SUB64rm:
3877   case X86::SUB32rm:
3878   case X86::SUB16rm:
3879   case X86::SUB8rm:
3880     SrcReg = MI.getOperand(1).getReg();
3881     SrcReg2 = 0;
3882     CmpMask = 0;
3883     CmpValue = 0;
3884     return true;
3885   case X86::SUB64rr:
3886   case X86::SUB32rr:
3887   case X86::SUB16rr:
3888   case X86::SUB8rr:
3889     SrcReg = MI.getOperand(1).getReg();
3890     SrcReg2 = MI.getOperand(2).getReg();
3891     CmpMask = 0;
3892     CmpValue = 0;
3893     return true;
3894   case X86::SUB64ri32:
3895   case X86::SUB64ri8:
3896   case X86::SUB32ri:
3897   case X86::SUB32ri8:
3898   case X86::SUB16ri:
3899   case X86::SUB16ri8:
3900   case X86::SUB8ri:
3901     SrcReg = MI.getOperand(1).getReg();
3902     SrcReg2 = 0;
3903     if (MI.getOperand(2).isImm()) {
3904       CmpMask = ~0;
3905       CmpValue = MI.getOperand(2).getImm();
3906     } else {
3907       CmpMask = CmpValue = 0;
3908     }
3909     return true;
3910   case X86::CMP64rr:
3911   case X86::CMP32rr:
3912   case X86::CMP16rr:
3913   case X86::CMP8rr:
3914     SrcReg = MI.getOperand(0).getReg();
3915     SrcReg2 = MI.getOperand(1).getReg();
3916     CmpMask = 0;
3917     CmpValue = 0;
3918     return true;
3919   case X86::TEST8rr:
3920   case X86::TEST16rr:
3921   case X86::TEST32rr:
3922   case X86::TEST64rr:
3923     SrcReg = MI.getOperand(0).getReg();
3924     if (MI.getOperand(1).getReg() != SrcReg)
3925       return false;
3926     // Compare against zero.
3927     SrcReg2 = 0;
3928     CmpMask = ~0;
3929     CmpValue = 0;
3930     return true;
3931   }
3932   return false;
3933 }
3934 
3935 /// Check whether the first instruction, whose only
3936 /// purpose is to update flags, can be made redundant.
3937 /// CMPrr can be made redundant by SUBrr if the operands are the same.
3938 /// This function can be extended later on.
3939 /// SrcReg, SrcRegs: register operands for FlagI.
3940 /// ImmValue: immediate for FlagI if it takes an immediate.
isRedundantFlagInstr(const MachineInstr & FlagI,Register SrcReg,Register SrcReg2,int ImmMask,int ImmValue,const MachineInstr & OI)3941 inline static bool isRedundantFlagInstr(const MachineInstr &FlagI,
3942                                         Register SrcReg, Register SrcReg2,
3943                                         int ImmMask, int ImmValue,
3944                                         const MachineInstr &OI) {
3945   if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
3946        (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
3947        (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
3948        (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
3949       ((OI.getOperand(1).getReg() == SrcReg &&
3950         OI.getOperand(2).getReg() == SrcReg2) ||
3951        (OI.getOperand(1).getReg() == SrcReg2 &&
3952         OI.getOperand(2).getReg() == SrcReg)))
3953     return true;
3954 
3955   if (ImmMask != 0 &&
3956       ((FlagI.getOpcode() == X86::CMP64ri32 &&
3957         OI.getOpcode() == X86::SUB64ri32) ||
3958        (FlagI.getOpcode() == X86::CMP64ri8 &&
3959         OI.getOpcode() == X86::SUB64ri8) ||
3960        (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
3961        (FlagI.getOpcode() == X86::CMP32ri8 &&
3962         OI.getOpcode() == X86::SUB32ri8) ||
3963        (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
3964        (FlagI.getOpcode() == X86::CMP16ri8 &&
3965         OI.getOpcode() == X86::SUB16ri8) ||
3966        (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
3967       OI.getOperand(1).getReg() == SrcReg &&
3968       OI.getOperand(2).getImm() == ImmValue)
3969     return true;
3970   return false;
3971 }
3972 
3973 /// Check whether the definition can be converted
3974 /// to remove a comparison against zero.
isDefConvertible(const MachineInstr & MI,bool & NoSignFlag,bool & ClearsOverflowFlag)3975 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
3976                                     bool &ClearsOverflowFlag) {
3977   NoSignFlag = false;
3978   ClearsOverflowFlag = false;
3979 
3980   switch (MI.getOpcode()) {
3981   default: return false;
3982 
3983   // The shift instructions only modify ZF if their shift count is non-zero.
3984   // N.B.: The processor truncates the shift count depending on the encoding.
3985   case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
3986   case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
3987      return getTruncatedShiftCount(MI, 2) != 0;
3988 
3989   // Some left shift instructions can be turned into LEA instructions but only
3990   // if their flags aren't used. Avoid transforming such instructions.
3991   case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
3992     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3993     if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3994     return ShAmt != 0;
3995   }
3996 
3997   case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3998   case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3999      return getTruncatedShiftCount(MI, 3) != 0;
4000 
4001   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
4002   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
4003   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
4004   case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
4005   case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
4006   case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
4007   case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
4008   case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
4009   case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
4010   case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
4011   case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
4012   case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
4013   case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
4014   case X86::ADC32ri8:  case X86::ADC16ri:  case X86::ADC16ri8:
4015   case X86::ADC8ri:    case X86::ADC64rr:  case X86::ADC32rr:
4016   case X86::ADC16rr:   case X86::ADC8rr:   case X86::ADC64rm:
4017   case X86::ADC32rm:   case X86::ADC16rm:  case X86::ADC8rm:
4018   case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
4019   case X86::SBB32ri8:  case X86::SBB16ri:  case X86::SBB16ri8:
4020   case X86::SBB8ri:    case X86::SBB64rr:  case X86::SBB32rr:
4021   case X86::SBB16rr:   case X86::SBB8rr:   case X86::SBB64rm:
4022   case X86::SBB32rm:   case X86::SBB16rm:  case X86::SBB8rm:
4023   case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
4024   case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
4025   case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
4026   case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
4027   case X86::LZCNT16rr: case X86::LZCNT16rm:
4028   case X86::LZCNT32rr: case X86::LZCNT32rm:
4029   case X86::LZCNT64rr: case X86::LZCNT64rm:
4030   case X86::POPCNT16rr:case X86::POPCNT16rm:
4031   case X86::POPCNT32rr:case X86::POPCNT32rm:
4032   case X86::POPCNT64rr:case X86::POPCNT64rm:
4033   case X86::TZCNT16rr: case X86::TZCNT16rm:
4034   case X86::TZCNT32rr: case X86::TZCNT32rm:
4035   case X86::TZCNT64rr: case X86::TZCNT64rm:
4036     return true;
4037   case X86::AND64ri32:   case X86::AND64ri8:  case X86::AND32ri:
4038   case X86::AND32ri8:    case X86::AND16ri:   case X86::AND16ri8:
4039   case X86::AND8ri:      case X86::AND64rr:   case X86::AND32rr:
4040   case X86::AND16rr:     case X86::AND8rr:    case X86::AND64rm:
4041   case X86::AND32rm:     case X86::AND16rm:   case X86::AND8rm:
4042   case X86::XOR64ri32:   case X86::XOR64ri8:  case X86::XOR32ri:
4043   case X86::XOR32ri8:    case X86::XOR16ri:   case X86::XOR16ri8:
4044   case X86::XOR8ri:      case X86::XOR64rr:   case X86::XOR32rr:
4045   case X86::XOR16rr:     case X86::XOR8rr:    case X86::XOR64rm:
4046   case X86::XOR32rm:     case X86::XOR16rm:   case X86::XOR8rm:
4047   case X86::OR64ri32:    case X86::OR64ri8:   case X86::OR32ri:
4048   case X86::OR32ri8:     case X86::OR16ri:    case X86::OR16ri8:
4049   case X86::OR8ri:       case X86::OR64rr:    case X86::OR32rr:
4050   case X86::OR16rr:      case X86::OR8rr:     case X86::OR64rm:
4051   case X86::OR32rm:      case X86::OR16rm:    case X86::OR8rm:
4052   case X86::ANDN32rr:    case X86::ANDN32rm:
4053   case X86::ANDN64rr:    case X86::ANDN64rm:
4054   case X86::BLSI32rr:    case X86::BLSI32rm:
4055   case X86::BLSI64rr:    case X86::BLSI64rm:
4056   case X86::BLSMSK32rr:  case X86::BLSMSK32rm:
4057   case X86::BLSMSK64rr:  case X86::BLSMSK64rm:
4058   case X86::BLSR32rr:    case X86::BLSR32rm:
4059   case X86::BLSR64rr:    case X86::BLSR64rm:
4060   case X86::BLCFILL32rr: case X86::BLCFILL32rm:
4061   case X86::BLCFILL64rr: case X86::BLCFILL64rm:
4062   case X86::BLCI32rr:    case X86::BLCI32rm:
4063   case X86::BLCI64rr:    case X86::BLCI64rm:
4064   case X86::BLCIC32rr:   case X86::BLCIC32rm:
4065   case X86::BLCIC64rr:   case X86::BLCIC64rm:
4066   case X86::BLCMSK32rr:  case X86::BLCMSK32rm:
4067   case X86::BLCMSK64rr:  case X86::BLCMSK64rm:
4068   case X86::BLCS32rr:    case X86::BLCS32rm:
4069   case X86::BLCS64rr:    case X86::BLCS64rm:
4070   case X86::BLSFILL32rr: case X86::BLSFILL32rm:
4071   case X86::BLSFILL64rr: case X86::BLSFILL64rm:
4072   case X86::BLSIC32rr:   case X86::BLSIC32rm:
4073   case X86::BLSIC64rr:   case X86::BLSIC64rm:
4074   case X86::BZHI32rr:    case X86::BZHI32rm:
4075   case X86::BZHI64rr:    case X86::BZHI64rm:
4076   case X86::T1MSKC32rr:  case X86::T1MSKC32rm:
4077   case X86::T1MSKC64rr:  case X86::T1MSKC64rm:
4078   case X86::TZMSK32rr:   case X86::TZMSK32rm:
4079   case X86::TZMSK64rr:   case X86::TZMSK64rm:
4080     // These instructions clear the overflow flag just like TEST.
4081     // FIXME: These are not the only instructions in this switch that clear the
4082     // overflow flag.
4083     ClearsOverflowFlag = true;
4084     return true;
4085   case X86::BEXTR32rr:   case X86::BEXTR64rr:
4086   case X86::BEXTR32rm:   case X86::BEXTR64rm:
4087   case X86::BEXTRI32ri:  case X86::BEXTRI32mi:
4088   case X86::BEXTRI64ri:  case X86::BEXTRI64mi:
4089     // BEXTR doesn't update the sign flag so we can't use it. It does clear
4090     // the overflow flag, but that's not useful without the sign flag.
4091     NoSignFlag = true;
4092     return true;
4093   }
4094 }
4095 
4096 /// Check whether the use can be converted to remove a comparison against zero.
isUseDefConvertible(const MachineInstr & MI)4097 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
4098   switch (MI.getOpcode()) {
4099   default: return X86::COND_INVALID;
4100   case X86::NEG8r:
4101   case X86::NEG16r:
4102   case X86::NEG32r:
4103   case X86::NEG64r:
4104     return X86::COND_AE;
4105   case X86::LZCNT16rr:
4106   case X86::LZCNT32rr:
4107   case X86::LZCNT64rr:
4108     return X86::COND_B;
4109   case X86::POPCNT16rr:
4110   case X86::POPCNT32rr:
4111   case X86::POPCNT64rr:
4112     return X86::COND_E;
4113   case X86::TZCNT16rr:
4114   case X86::TZCNT32rr:
4115   case X86::TZCNT64rr:
4116     return X86::COND_B;
4117   case X86::BSF16rr:
4118   case X86::BSF32rr:
4119   case X86::BSF64rr:
4120   case X86::BSR16rr:
4121   case X86::BSR32rr:
4122   case X86::BSR64rr:
4123     return X86::COND_E;
4124   case X86::BLSI32rr:
4125   case X86::BLSI64rr:
4126     return X86::COND_AE;
4127   case X86::BLSR32rr:
4128   case X86::BLSR64rr:
4129   case X86::BLSMSK32rr:
4130   case X86::BLSMSK64rr:
4131     return X86::COND_B;
4132   // TODO: TBM instructions.
4133   }
4134 }
4135 
4136 /// Check if there exists an earlier instruction that
4137 /// operates on the same source operands and sets flags in the same way as
4138 /// Compare; remove Compare if possible.
optimizeCompareInstr(MachineInstr & CmpInstr,Register SrcReg,Register SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const4139 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
4140                                         Register SrcReg2, int CmpMask,
4141                                         int CmpValue,
4142                                         const MachineRegisterInfo *MRI) const {
4143   // Check whether we can replace SUB with CMP.
4144   switch (CmpInstr.getOpcode()) {
4145   default: break;
4146   case X86::SUB64ri32:
4147   case X86::SUB64ri8:
4148   case X86::SUB32ri:
4149   case X86::SUB32ri8:
4150   case X86::SUB16ri:
4151   case X86::SUB16ri8:
4152   case X86::SUB8ri:
4153   case X86::SUB64rm:
4154   case X86::SUB32rm:
4155   case X86::SUB16rm:
4156   case X86::SUB8rm:
4157   case X86::SUB64rr:
4158   case X86::SUB32rr:
4159   case X86::SUB16rr:
4160   case X86::SUB8rr: {
4161     if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
4162       return false;
4163     // There is no use of the destination register, we can replace SUB with CMP.
4164     unsigned NewOpcode = 0;
4165     switch (CmpInstr.getOpcode()) {
4166     default: llvm_unreachable("Unreachable!");
4167     case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
4168     case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
4169     case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
4170     case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
4171     case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
4172     case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
4173     case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
4174     case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
4175     case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4176     case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
4177     case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
4178     case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
4179     case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
4180     case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
4181     case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
4182     }
4183     CmpInstr.setDesc(get(NewOpcode));
4184     CmpInstr.RemoveOperand(0);
4185     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4186     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4187         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4188       return false;
4189   }
4190   }
4191 
4192   // Get the unique definition of SrcReg.
4193   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
4194   if (!MI) return false;
4195 
4196   // CmpInstr is the first instruction of the BB.
4197   MachineBasicBlock::iterator I = CmpInstr, Def = MI;
4198 
4199   // If we are comparing against zero, check whether we can use MI to update
4200   // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
4201   bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
4202   if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
4203     return false;
4204 
4205   // If we have a use of the source register between the def and our compare
4206   // instruction we can eliminate the compare iff the use sets EFLAGS in the
4207   // right way.
4208   bool ShouldUpdateCC = false;
4209   bool NoSignFlag = false;
4210   bool ClearsOverflowFlag = false;
4211   X86::CondCode NewCC = X86::COND_INVALID;
4212   if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag, ClearsOverflowFlag)) {
4213     // Scan forward from the use until we hit the use we're looking for or the
4214     // compare instruction.
4215     for (MachineBasicBlock::iterator J = MI;; ++J) {
4216       // Do we have a convertible instruction?
4217       NewCC = isUseDefConvertible(*J);
4218       if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
4219           J->getOperand(1).getReg() == SrcReg) {
4220         assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
4221         ShouldUpdateCC = true; // Update CC later on.
4222         // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
4223         // with the new def.
4224         Def = J;
4225         MI = &*Def;
4226         break;
4227       }
4228 
4229       if (J == I)
4230         return false;
4231     }
4232   }
4233 
4234   // We are searching for an earlier instruction that can make CmpInstr
4235   // redundant and that instruction will be saved in Sub.
4236   MachineInstr *Sub = nullptr;
4237   const TargetRegisterInfo *TRI = &getRegisterInfo();
4238 
4239   // We iterate backward, starting from the instruction before CmpInstr and
4240   // stop when reaching the definition of a source register or done with the BB.
4241   // RI points to the instruction before CmpInstr.
4242   // If the definition is in this basic block, RE points to the definition;
4243   // otherwise, RE is the rend of the basic block.
4244   MachineBasicBlock::reverse_iterator
4245       RI = ++I.getReverse(),
4246       RE = CmpInstr.getParent() == MI->getParent()
4247                ? Def.getReverse() /* points to MI */
4248                : CmpInstr.getParent()->rend();
4249   MachineInstr *Movr0Inst = nullptr;
4250   for (; RI != RE; ++RI) {
4251     MachineInstr &Instr = *RI;
4252     // Check whether CmpInstr can be made redundant by the current instruction.
4253     if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
4254                                            CmpValue, Instr)) {
4255       Sub = &Instr;
4256       break;
4257     }
4258 
4259     if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
4260         Instr.readsRegister(X86::EFLAGS, TRI)) {
4261       // This instruction modifies or uses EFLAGS.
4262 
4263       // MOV32r0 etc. are implemented with xor which clobbers condition code.
4264       // They are safe to move up, if the definition to EFLAGS is dead and
4265       // earlier instructions do not read or write EFLAGS.
4266       if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
4267           Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
4268         Movr0Inst = &Instr;
4269         continue;
4270       }
4271 
4272       // We can't remove CmpInstr.
4273       return false;
4274     }
4275   }
4276 
4277   // Return false if no candidates exist.
4278   if (!IsCmpZero && !Sub)
4279     return false;
4280 
4281   bool IsSwapped =
4282       (SrcReg2 != 0 && Sub && Sub->getOperand(1).getReg() == SrcReg2 &&
4283        Sub->getOperand(2).getReg() == SrcReg);
4284 
4285   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
4286   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4287   // If we are done with the basic block, we need to check whether EFLAGS is
4288   // live-out.
4289   bool IsSafe = false;
4290   SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
4291   MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
4292   for (++I; I != E; ++I) {
4293     const MachineInstr &Instr = *I;
4294     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4295     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4296     // We should check the usage if this instruction uses and updates EFLAGS.
4297     if (!UseEFLAGS && ModifyEFLAGS) {
4298       // It is safe to remove CmpInstr if EFLAGS is updated again.
4299       IsSafe = true;
4300       break;
4301     }
4302     if (!UseEFLAGS && !ModifyEFLAGS)
4303       continue;
4304 
4305     // EFLAGS is used by this instruction.
4306     X86::CondCode OldCC = X86::COND_INVALID;
4307     if (IsCmpZero || IsSwapped) {
4308       // We decode the condition code from opcode.
4309       if (Instr.isBranch())
4310         OldCC = X86::getCondFromBranch(Instr);
4311       else {
4312         OldCC = X86::getCondFromSETCC(Instr);
4313         if (OldCC == X86::COND_INVALID)
4314           OldCC = X86::getCondFromCMov(Instr);
4315       }
4316       if (OldCC == X86::COND_INVALID) return false;
4317     }
4318     X86::CondCode ReplacementCC = X86::COND_INVALID;
4319     if (IsCmpZero) {
4320       switch (OldCC) {
4321       default: break;
4322       case X86::COND_A: case X86::COND_AE:
4323       case X86::COND_B: case X86::COND_BE:
4324         // CF is used, we can't perform this optimization.
4325         return false;
4326       case X86::COND_G: case X86::COND_GE:
4327       case X86::COND_L: case X86::COND_LE:
4328       case X86::COND_O: case X86::COND_NO:
4329         // If OF is used, the instruction needs to clear it like CmpZero does.
4330         if (!ClearsOverflowFlag)
4331           return false;
4332         break;
4333       case X86::COND_S: case X86::COND_NS:
4334         // If SF is used, but the instruction doesn't update the SF, then we
4335         // can't do the optimization.
4336         if (NoSignFlag)
4337           return false;
4338         break;
4339       }
4340 
4341       // If we're updating the condition code check if we have to reverse the
4342       // condition.
4343       if (ShouldUpdateCC)
4344         switch (OldCC) {
4345         default:
4346           return false;
4347         case X86::COND_E:
4348           ReplacementCC = NewCC;
4349           break;
4350         case X86::COND_NE:
4351           ReplacementCC = GetOppositeBranchCondition(NewCC);
4352           break;
4353         }
4354     } else if (IsSwapped) {
4355       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4356       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4357       // We swap the condition code and synthesize the new opcode.
4358       ReplacementCC = getSwappedCondition(OldCC);
4359       if (ReplacementCC == X86::COND_INVALID) return false;
4360     }
4361 
4362     if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
4363       // Push the MachineInstr to OpsToUpdate.
4364       // If it is safe to remove CmpInstr, the condition code of these
4365       // instructions will be modified.
4366       OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC));
4367     }
4368     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4369       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
4370       IsSafe = true;
4371       break;
4372     }
4373   }
4374 
4375   // If EFLAGS is not killed nor re-defined, we should check whether it is
4376   // live-out. If it is live-out, do not optimize.
4377   if ((IsCmpZero || IsSwapped) && !IsSafe) {
4378     MachineBasicBlock *MBB = CmpInstr.getParent();
4379     for (MachineBasicBlock *Successor : MBB->successors())
4380       if (Successor->isLiveIn(X86::EFLAGS))
4381         return false;
4382   }
4383 
4384   // The instruction to be updated is either Sub or MI.
4385   Sub = IsCmpZero ? MI : Sub;
4386   // Move Movr0Inst to the appropriate place before Sub.
4387   if (Movr0Inst) {
4388     // Look backwards until we find a def that doesn't use the current EFLAGS.
4389     Def = Sub;
4390     MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
4391                                         InsertE = Sub->getParent()->rend();
4392     for (; InsertI != InsertE; ++InsertI) {
4393       MachineInstr *Instr = &*InsertI;
4394       if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4395           Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4396         Sub->getParent()->remove(Movr0Inst);
4397         Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4398                                    Movr0Inst);
4399         break;
4400       }
4401     }
4402     if (InsertI == InsertE)
4403       return false;
4404   }
4405 
4406   // Make sure Sub instruction defines EFLAGS and mark the def live.
4407   MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
4408   assert(FlagDef && "Unable to locate a def EFLAGS operand");
4409   FlagDef->setIsDead(false);
4410 
4411   CmpInstr.eraseFromParent();
4412 
4413   // Modify the condition code of instructions in OpsToUpdate.
4414   for (auto &Op : OpsToUpdate) {
4415     Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
4416         .setImm(Op.second);
4417   }
4418   return true;
4419 }
4420 
4421 /// Try to remove the load by folding it to a register
4422 /// operand at the use. We fold the load instructions if load defines a virtual
4423 /// register, the virtual register is used once in the same BB, and the
4424 /// instructions in-between do not load or store, and have no side effects.
optimizeLoadInstr(MachineInstr & MI,const MachineRegisterInfo * MRI,Register & FoldAsLoadDefReg,MachineInstr * & DefMI) const4425 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
4426                                               const MachineRegisterInfo *MRI,
4427                                               Register &FoldAsLoadDefReg,
4428                                               MachineInstr *&DefMI) const {
4429   // Check whether we can move DefMI here.
4430   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4431   assert(DefMI);
4432   bool SawStore = false;
4433   if (!DefMI->isSafeToMove(nullptr, SawStore))
4434     return nullptr;
4435 
4436   // Collect information about virtual register operands of MI.
4437   SmallVector<unsigned, 1> SrcOperandIds;
4438   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4439     MachineOperand &MO = MI.getOperand(i);
4440     if (!MO.isReg())
4441       continue;
4442     Register Reg = MO.getReg();
4443     if (Reg != FoldAsLoadDefReg)
4444       continue;
4445     // Do not fold if we have a subreg use or a def.
4446     if (MO.getSubReg() || MO.isDef())
4447       return nullptr;
4448     SrcOperandIds.push_back(i);
4449   }
4450   if (SrcOperandIds.empty())
4451     return nullptr;
4452 
4453   // Check whether we can fold the def into SrcOperandId.
4454   if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
4455     FoldAsLoadDefReg = 0;
4456     return FoldMI;
4457   }
4458 
4459   return nullptr;
4460 }
4461 
4462 /// Expand a single-def pseudo instruction to a two-addr
4463 /// instruction with two undef reads of the register being defined.
4464 /// This is used for mapping:
4465 ///   %xmm4 = V_SET0
4466 /// to:
4467 ///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
4468 ///
Expand2AddrUndef(MachineInstrBuilder & MIB,const MCInstrDesc & Desc)4469 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
4470                              const MCInstrDesc &Desc) {
4471   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4472   Register Reg = MIB.getReg(0);
4473   MIB->setDesc(Desc);
4474 
4475   // MachineInstr::addOperand() will insert explicit operands before any
4476   // implicit operands.
4477   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4478   // But we don't trust that.
4479   assert(MIB.getReg(1) == Reg &&
4480          MIB.getReg(2) == Reg && "Misplaced operand");
4481   return true;
4482 }
4483 
4484 /// Expand a single-def pseudo instruction to a two-addr
4485 /// instruction with two %k0 reads.
4486 /// This is used for mapping:
4487 ///   %k4 = K_SET1
4488 /// to:
4489 ///   %k4 = KXNORrr %k0, %k0
Expand2AddrKreg(MachineInstrBuilder & MIB,const MCInstrDesc & Desc,Register Reg)4490 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
4491                             Register Reg) {
4492   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4493   MIB->setDesc(Desc);
4494   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4495   return true;
4496 }
4497 
expandMOV32r1(MachineInstrBuilder & MIB,const TargetInstrInfo & TII,bool MinusOne)4498 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
4499                           bool MinusOne) {
4500   MachineBasicBlock &MBB = *MIB->getParent();
4501   const DebugLoc &DL = MIB->getDebugLoc();
4502   Register Reg = MIB.getReg(0);
4503 
4504   // Insert the XOR.
4505   BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
4506       .addReg(Reg, RegState::Undef)
4507       .addReg(Reg, RegState::Undef);
4508 
4509   // Turn the pseudo into an INC or DEC.
4510   MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
4511   MIB.addReg(Reg);
4512 
4513   return true;
4514 }
4515 
ExpandMOVImmSExti8(MachineInstrBuilder & MIB,const TargetInstrInfo & TII,const X86Subtarget & Subtarget)4516 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
4517                                const TargetInstrInfo &TII,
4518                                const X86Subtarget &Subtarget) {
4519   MachineBasicBlock &MBB = *MIB->getParent();
4520   const DebugLoc &DL = MIB->getDebugLoc();
4521   int64_t Imm = MIB->getOperand(1).getImm();
4522   assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
4523   MachineBasicBlock::iterator I = MIB.getInstr();
4524 
4525   int StackAdjustment;
4526 
4527   if (Subtarget.is64Bit()) {
4528     assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
4529            MIB->getOpcode() == X86::MOV32ImmSExti8);
4530 
4531     // Can't use push/pop lowering if the function might write to the red zone.
4532     X86MachineFunctionInfo *X86FI =
4533         MBB.getParent()->getInfo<X86MachineFunctionInfo>();
4534     if (X86FI->getUsesRedZone()) {
4535       MIB->setDesc(TII.get(MIB->getOpcode() ==
4536                            X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
4537       return true;
4538     }
4539 
4540     // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
4541     // widen the register if necessary.
4542     StackAdjustment = 8;
4543     BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
4544     MIB->setDesc(TII.get(X86::POP64r));
4545     MIB->getOperand(0)
4546         .setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
4547   } else {
4548     assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
4549     StackAdjustment = 4;
4550     BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
4551     MIB->setDesc(TII.get(X86::POP32r));
4552   }
4553   MIB->RemoveOperand(1);
4554   MIB->addImplicitDefUseOperands(*MBB.getParent());
4555 
4556   // Build CFI if necessary.
4557   MachineFunction &MF = *MBB.getParent();
4558   const X86FrameLowering *TFL = Subtarget.getFrameLowering();
4559   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
4560   bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
4561   bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
4562   if (EmitCFI) {
4563     TFL->BuildCFI(MBB, I, DL,
4564         MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
4565     TFL->BuildCFI(MBB, std::next(I), DL,
4566         MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
4567   }
4568 
4569   return true;
4570 }
4571 
4572 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4573 // code sequence is needed for other targets.
expandLoadStackGuard(MachineInstrBuilder & MIB,const TargetInstrInfo & TII)4574 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4575                                  const TargetInstrInfo &TII) {
4576   MachineBasicBlock &MBB = *MIB->getParent();
4577   const DebugLoc &DL = MIB->getDebugLoc();
4578   Register Reg = MIB.getReg(0);
4579   const GlobalValue *GV =
4580       cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4581   auto Flags = MachineMemOperand::MOLoad |
4582                MachineMemOperand::MODereferenceable |
4583                MachineMemOperand::MOInvariant;
4584   MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4585       MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
4586   MachineBasicBlock::iterator I = MIB.getInstr();
4587 
4588   BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4589       .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4590       .addMemOperand(MMO);
4591   MIB->setDebugLoc(DL);
4592   MIB->setDesc(TII.get(X86::MOV64rm));
4593   MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4594 }
4595 
expandXorFP(MachineInstrBuilder & MIB,const TargetInstrInfo & TII)4596 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4597   MachineBasicBlock &MBB = *MIB->getParent();
4598   MachineFunction &MF = *MBB.getParent();
4599   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4600   const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4601   unsigned XorOp =
4602       MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4603   MIB->setDesc(TII.get(XorOp));
4604   MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4605   return true;
4606 }
4607 
4608 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4609 // but not VLX. If it uses an extended register we need to use an instruction
4610 // that loads the lower 128/256-bit, but is available with only AVX512F.
expandNOVLXLoad(MachineInstrBuilder & MIB,const TargetRegisterInfo * TRI,const MCInstrDesc & LoadDesc,const MCInstrDesc & BroadcastDesc,unsigned SubIdx)4611 static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4612                             const TargetRegisterInfo *TRI,
4613                             const MCInstrDesc &LoadDesc,
4614                             const MCInstrDesc &BroadcastDesc,
4615                             unsigned SubIdx) {
4616   Register DestReg = MIB.getReg(0);
4617   // Check if DestReg is XMM16-31 or YMM16-31.
4618   if (TRI->getEncodingValue(DestReg) < 16) {
4619     // We can use a normal VEX encoded load.
4620     MIB->setDesc(LoadDesc);
4621   } else {
4622     // Use a 128/256-bit VBROADCAST instruction.
4623     MIB->setDesc(BroadcastDesc);
4624     // Change the destination to a 512-bit register.
4625     DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4626     MIB->getOperand(0).setReg(DestReg);
4627   }
4628   return true;
4629 }
4630 
4631 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4632 // but not VLX. If it uses an extended register we need to use an instruction
4633 // that stores the lower 128/256-bit, but is available with only AVX512F.
expandNOVLXStore(MachineInstrBuilder & MIB,const TargetRegisterInfo * TRI,const MCInstrDesc & StoreDesc,const MCInstrDesc & ExtractDesc,unsigned SubIdx)4634 static bool expandNOVLXStore(MachineInstrBuilder &MIB,
4635                              const TargetRegisterInfo *TRI,
4636                              const MCInstrDesc &StoreDesc,
4637                              const MCInstrDesc &ExtractDesc,
4638                              unsigned SubIdx) {
4639   Register SrcReg = MIB.getReg(X86::AddrNumOperands);
4640   // Check if DestReg is XMM16-31 or YMM16-31.
4641   if (TRI->getEncodingValue(SrcReg) < 16) {
4642     // We can use a normal VEX encoded store.
4643     MIB->setDesc(StoreDesc);
4644   } else {
4645     // Use a VEXTRACTF instruction.
4646     MIB->setDesc(ExtractDesc);
4647     // Change the destination to a 512-bit register.
4648     SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4649     MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4650     MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4651   }
4652 
4653   return true;
4654 }
4655 
expandSHXDROT(MachineInstrBuilder & MIB,const MCInstrDesc & Desc)4656 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
4657   MIB->setDesc(Desc);
4658   int64_t ShiftAmt = MIB->getOperand(2).getImm();
4659   // Temporarily remove the immediate so we can add another source register.
4660   MIB->RemoveOperand(2);
4661   // Add the register. Don't copy the kill flag if there is one.
4662   MIB.addReg(MIB.getReg(1),
4663              getUndefRegState(MIB->getOperand(1).isUndef()));
4664   // Add back the immediate.
4665   MIB.addImm(ShiftAmt);
4666   return true;
4667 }
4668 
expandPostRAPseudo(MachineInstr & MI) const4669 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4670   bool HasAVX = Subtarget.hasAVX();
4671   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4672   switch (MI.getOpcode()) {
4673   case X86::MOV32r0:
4674     return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4675   case X86::MOV32r1:
4676     return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4677   case X86::MOV32r_1:
4678     return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4679   case X86::MOV32ImmSExti8:
4680   case X86::MOV64ImmSExti8:
4681     return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4682   case X86::SETB_C32r:
4683     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4684   case X86::SETB_C64r:
4685     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4686   case X86::MMX_SET0:
4687     return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
4688   case X86::V_SET0:
4689   case X86::FsFLD0SS:
4690   case X86::FsFLD0SD:
4691   case X86::FsFLD0F128:
4692     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4693   case X86::AVX_SET0: {
4694     assert(HasAVX && "AVX not supported");
4695     const TargetRegisterInfo *TRI = &getRegisterInfo();
4696     Register SrcReg = MIB.getReg(0);
4697     Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4698     MIB->getOperand(0).setReg(XReg);
4699     Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4700     MIB.addReg(SrcReg, RegState::ImplicitDefine);
4701     return true;
4702   }
4703   case X86::AVX512_128_SET0:
4704   case X86::AVX512_FsFLD0SS:
4705   case X86::AVX512_FsFLD0SD:
4706   case X86::AVX512_FsFLD0F128: {
4707     bool HasVLX = Subtarget.hasVLX();
4708     Register SrcReg = MIB.getReg(0);
4709     const TargetRegisterInfo *TRI = &getRegisterInfo();
4710     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4711       return Expand2AddrUndef(MIB,
4712                               get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4713     // Extended register without VLX. Use a larger XOR.
4714     SrcReg =
4715         TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4716     MIB->getOperand(0).setReg(SrcReg);
4717     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4718   }
4719   case X86::AVX512_256_SET0:
4720   case X86::AVX512_512_SET0: {
4721     bool HasVLX = Subtarget.hasVLX();
4722     Register SrcReg = MIB.getReg(0);
4723     const TargetRegisterInfo *TRI = &getRegisterInfo();
4724     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4725       Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4726       MIB->getOperand(0).setReg(XReg);
4727       Expand2AddrUndef(MIB,
4728                        get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4729       MIB.addReg(SrcReg, RegState::ImplicitDefine);
4730       return true;
4731     }
4732     if (MI.getOpcode() == X86::AVX512_256_SET0) {
4733       // No VLX so we must reference a zmm.
4734       unsigned ZReg =
4735         TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4736       MIB->getOperand(0).setReg(ZReg);
4737     }
4738     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4739   }
4740   case X86::V_SETALLONES:
4741     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4742   case X86::AVX2_SETALLONES:
4743     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4744   case X86::AVX1_SETALLONES: {
4745     Register Reg = MIB.getReg(0);
4746     // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4747     MIB->setDesc(get(X86::VCMPPSYrri));
4748     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4749     return true;
4750   }
4751   case X86::AVX512_512_SETALLONES: {
4752     Register Reg = MIB.getReg(0);
4753     MIB->setDesc(get(X86::VPTERNLOGDZrri));
4754     // VPTERNLOGD needs 3 register inputs and an immediate.
4755     // 0xff will return 1s for any input.
4756     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4757        .addReg(Reg, RegState::Undef).addImm(0xff);
4758     return true;
4759   }
4760   case X86::AVX512_512_SEXT_MASK_32:
4761   case X86::AVX512_512_SEXT_MASK_64: {
4762     Register Reg = MIB.getReg(0);
4763     Register MaskReg = MIB.getReg(1);
4764     unsigned MaskState = getRegState(MIB->getOperand(1));
4765     unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4766                    X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4767     MI.RemoveOperand(1);
4768     MIB->setDesc(get(Opc));
4769     // VPTERNLOG needs 3 register inputs and an immediate.
4770     // 0xff will return 1s for any input.
4771     MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4772        .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4773     return true;
4774   }
4775   case X86::VMOVAPSZ128rm_NOVLX:
4776     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4777                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4778   case X86::VMOVUPSZ128rm_NOVLX:
4779     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4780                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4781   case X86::VMOVAPSZ256rm_NOVLX:
4782     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4783                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4784   case X86::VMOVUPSZ256rm_NOVLX:
4785     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4786                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4787   case X86::VMOVAPSZ128mr_NOVLX:
4788     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4789                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4790   case X86::VMOVUPSZ128mr_NOVLX:
4791     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
4792                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4793   case X86::VMOVAPSZ256mr_NOVLX:
4794     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
4795                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4796   case X86::VMOVUPSZ256mr_NOVLX:
4797     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
4798                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4799   case X86::MOV32ri64: {
4800     Register Reg = MIB.getReg(0);
4801     Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
4802     MI.setDesc(get(X86::MOV32ri));
4803     MIB->getOperand(0).setReg(Reg32);
4804     MIB.addReg(Reg, RegState::ImplicitDefine);
4805     return true;
4806   }
4807 
4808   // KNL does not recognize dependency-breaking idioms for mask registers,
4809   // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4810   // Using %k0 as the undef input register is a performance heuristic based
4811   // on the assumption that %k0 is used less frequently than the other mask
4812   // registers, since it is not usable as a write mask.
4813   // FIXME: A more advanced approach would be to choose the best input mask
4814   // register based on context.
4815   case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
4816   case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
4817   case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
4818   case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
4819   case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
4820   case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
4821   case TargetOpcode::LOAD_STACK_GUARD:
4822     expandLoadStackGuard(MIB, *this);
4823     return true;
4824   case X86::XOR64_FP:
4825   case X86::XOR32_FP:
4826     return expandXorFP(MIB, *this);
4827   case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
4828   case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
4829   case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
4830   case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
4831   case X86::ADD8rr_DB:    MIB->setDesc(get(X86::OR8rr));    break;
4832   case X86::ADD16rr_DB:   MIB->setDesc(get(X86::OR16rr));   break;
4833   case X86::ADD32rr_DB:   MIB->setDesc(get(X86::OR32rr));   break;
4834   case X86::ADD64rr_DB:   MIB->setDesc(get(X86::OR64rr));   break;
4835   case X86::ADD8ri_DB:    MIB->setDesc(get(X86::OR8ri));    break;
4836   case X86::ADD16ri_DB:   MIB->setDesc(get(X86::OR16ri));   break;
4837   case X86::ADD32ri_DB:   MIB->setDesc(get(X86::OR32ri));   break;
4838   case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
4839   case X86::ADD16ri8_DB:  MIB->setDesc(get(X86::OR16ri8));  break;
4840   case X86::ADD32ri8_DB:  MIB->setDesc(get(X86::OR32ri8));  break;
4841   case X86::ADD64ri8_DB:  MIB->setDesc(get(X86::OR64ri8));  break;
4842   }
4843   return false;
4844 }
4845 
4846 /// Return true for all instructions that only update
4847 /// the first 32 or 64-bits of the destination register and leave the rest
4848 /// unmodified. This can be used to avoid folding loads if the instructions
4849 /// only update part of the destination register, and the non-updated part is
4850 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4851 /// instructions breaks the partial register dependency and it can improve
4852 /// performance. e.g.:
4853 ///
4854 ///   movss (%rdi), %xmm0
4855 ///   cvtss2sd %xmm0, %xmm0
4856 ///
4857 /// Instead of
4858 ///   cvtss2sd (%rdi), %xmm0
4859 ///
4860 /// FIXME: This should be turned into a TSFlags.
4861 ///
hasPartialRegUpdate(unsigned Opcode,const X86Subtarget & Subtarget,bool ForLoadFold=false)4862 static bool hasPartialRegUpdate(unsigned Opcode,
4863                                 const X86Subtarget &Subtarget,
4864                                 bool ForLoadFold = false) {
4865   switch (Opcode) {
4866   case X86::CVTSI2SSrr:
4867   case X86::CVTSI2SSrm:
4868   case X86::CVTSI642SSrr:
4869   case X86::CVTSI642SSrm:
4870   case X86::CVTSI2SDrr:
4871   case X86::CVTSI2SDrm:
4872   case X86::CVTSI642SDrr:
4873   case X86::CVTSI642SDrm:
4874     // Load folding won't effect the undef register update since the input is
4875     // a GPR.
4876     return !ForLoadFold;
4877   case X86::CVTSD2SSrr:
4878   case X86::CVTSD2SSrm:
4879   case X86::CVTSS2SDrr:
4880   case X86::CVTSS2SDrm:
4881   case X86::MOVHPDrm:
4882   case X86::MOVHPSrm:
4883   case X86::MOVLPDrm:
4884   case X86::MOVLPSrm:
4885   case X86::RCPSSr:
4886   case X86::RCPSSm:
4887   case X86::RCPSSr_Int:
4888   case X86::RCPSSm_Int:
4889   case X86::ROUNDSDr:
4890   case X86::ROUNDSDm:
4891   case X86::ROUNDSSr:
4892   case X86::ROUNDSSm:
4893   case X86::RSQRTSSr:
4894   case X86::RSQRTSSm:
4895   case X86::RSQRTSSr_Int:
4896   case X86::RSQRTSSm_Int:
4897   case X86::SQRTSSr:
4898   case X86::SQRTSSm:
4899   case X86::SQRTSSr_Int:
4900   case X86::SQRTSSm_Int:
4901   case X86::SQRTSDr:
4902   case X86::SQRTSDm:
4903   case X86::SQRTSDr_Int:
4904   case X86::SQRTSDm_Int:
4905     return true;
4906   // GPR
4907   case X86::POPCNT32rm:
4908   case X86::POPCNT32rr:
4909   case X86::POPCNT64rm:
4910   case X86::POPCNT64rr:
4911     return Subtarget.hasPOPCNTFalseDeps();
4912   case X86::LZCNT32rm:
4913   case X86::LZCNT32rr:
4914   case X86::LZCNT64rm:
4915   case X86::LZCNT64rr:
4916   case X86::TZCNT32rm:
4917   case X86::TZCNT32rr:
4918   case X86::TZCNT64rm:
4919   case X86::TZCNT64rr:
4920     return Subtarget.hasLZCNTFalseDeps();
4921   }
4922 
4923   return false;
4924 }
4925 
4926 /// Inform the BreakFalseDeps pass how many idle
4927 /// instructions we would like before a partial register update.
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const4928 unsigned X86InstrInfo::getPartialRegUpdateClearance(
4929     const MachineInstr &MI, unsigned OpNum,
4930     const TargetRegisterInfo *TRI) const {
4931   if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
4932     return 0;
4933 
4934   // If MI is marked as reading Reg, the partial register update is wanted.
4935   const MachineOperand &MO = MI.getOperand(0);
4936   Register Reg = MO.getReg();
4937   if (Reg.isVirtual()) {
4938     if (MO.readsReg() || MI.readsVirtualRegister(Reg))
4939       return 0;
4940   } else {
4941     if (MI.readsRegister(Reg, TRI))
4942       return 0;
4943   }
4944 
4945   // If any instructions in the clearance range are reading Reg, insert a
4946   // dependency breaking instruction, which is inexpensive and is likely to
4947   // be hidden in other instruction's cycles.
4948   return PartialRegUpdateClearance;
4949 }
4950 
4951 // Return true for any instruction the copies the high bits of the first source
4952 // operand into the unused high bits of the destination operand.
4953 // Also returns true for instructions that have two inputs where one may
4954 // be undef and we want it to use the same register as the other input.
hasUndefRegUpdate(unsigned Opcode,unsigned OpNum,bool ForLoadFold=false)4955 static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
4956                               bool ForLoadFold = false) {
4957   // Set the OpNum parameter to the first source operand.
4958   switch (Opcode) {
4959   case X86::MMX_PUNPCKHBWirr:
4960   case X86::MMX_PUNPCKHWDirr:
4961   case X86::MMX_PUNPCKHDQirr:
4962   case X86::MMX_PUNPCKLBWirr:
4963   case X86::MMX_PUNPCKLWDirr:
4964   case X86::MMX_PUNPCKLDQirr:
4965   case X86::MOVHLPSrr:
4966   case X86::PACKSSWBrr:
4967   case X86::PACKUSWBrr:
4968   case X86::PACKSSDWrr:
4969   case X86::PACKUSDWrr:
4970   case X86::PUNPCKHBWrr:
4971   case X86::PUNPCKLBWrr:
4972   case X86::PUNPCKHWDrr:
4973   case X86::PUNPCKLWDrr:
4974   case X86::PUNPCKHDQrr:
4975   case X86::PUNPCKLDQrr:
4976   case X86::PUNPCKHQDQrr:
4977   case X86::PUNPCKLQDQrr:
4978   case X86::SHUFPDrri:
4979   case X86::SHUFPSrri:
4980     // These instructions are sometimes used with an undef first or second
4981     // source. Return true here so BreakFalseDeps will assign this source to the
4982     // same register as the first source to avoid a false dependency.
4983     // Operand 1 of these instructions is tied so they're separate from their
4984     // VEX counterparts.
4985     return OpNum == 2 && !ForLoadFold;
4986 
4987   case X86::VMOVLHPSrr:
4988   case X86::VMOVLHPSZrr:
4989   case X86::VPACKSSWBrr:
4990   case X86::VPACKUSWBrr:
4991   case X86::VPACKSSDWrr:
4992   case X86::VPACKUSDWrr:
4993   case X86::VPACKSSWBZ128rr:
4994   case X86::VPACKUSWBZ128rr:
4995   case X86::VPACKSSDWZ128rr:
4996   case X86::VPACKUSDWZ128rr:
4997   case X86::VPERM2F128rr:
4998   case X86::VPERM2I128rr:
4999   case X86::VSHUFF32X4Z256rri:
5000   case X86::VSHUFF32X4Zrri:
5001   case X86::VSHUFF64X2Z256rri:
5002   case X86::VSHUFF64X2Zrri:
5003   case X86::VSHUFI32X4Z256rri:
5004   case X86::VSHUFI32X4Zrri:
5005   case X86::VSHUFI64X2Z256rri:
5006   case X86::VSHUFI64X2Zrri:
5007   case X86::VPUNPCKHBWrr:
5008   case X86::VPUNPCKLBWrr:
5009   case X86::VPUNPCKHBWYrr:
5010   case X86::VPUNPCKLBWYrr:
5011   case X86::VPUNPCKHBWZ128rr:
5012   case X86::VPUNPCKLBWZ128rr:
5013   case X86::VPUNPCKHBWZ256rr:
5014   case X86::VPUNPCKLBWZ256rr:
5015   case X86::VPUNPCKHBWZrr:
5016   case X86::VPUNPCKLBWZrr:
5017   case X86::VPUNPCKHWDrr:
5018   case X86::VPUNPCKLWDrr:
5019   case X86::VPUNPCKHWDYrr:
5020   case X86::VPUNPCKLWDYrr:
5021   case X86::VPUNPCKHWDZ128rr:
5022   case X86::VPUNPCKLWDZ128rr:
5023   case X86::VPUNPCKHWDZ256rr:
5024   case X86::VPUNPCKLWDZ256rr:
5025   case X86::VPUNPCKHWDZrr:
5026   case X86::VPUNPCKLWDZrr:
5027   case X86::VPUNPCKHDQrr:
5028   case X86::VPUNPCKLDQrr:
5029   case X86::VPUNPCKHDQYrr:
5030   case X86::VPUNPCKLDQYrr:
5031   case X86::VPUNPCKHDQZ128rr:
5032   case X86::VPUNPCKLDQZ128rr:
5033   case X86::VPUNPCKHDQZ256rr:
5034   case X86::VPUNPCKLDQZ256rr:
5035   case X86::VPUNPCKHDQZrr:
5036   case X86::VPUNPCKLDQZrr:
5037   case X86::VPUNPCKHQDQrr:
5038   case X86::VPUNPCKLQDQrr:
5039   case X86::VPUNPCKHQDQYrr:
5040   case X86::VPUNPCKLQDQYrr:
5041   case X86::VPUNPCKHQDQZ128rr:
5042   case X86::VPUNPCKLQDQZ128rr:
5043   case X86::VPUNPCKHQDQZ256rr:
5044   case X86::VPUNPCKLQDQZ256rr:
5045   case X86::VPUNPCKHQDQZrr:
5046   case X86::VPUNPCKLQDQZrr:
5047     // These instructions are sometimes used with an undef first or second
5048     // source. Return true here so BreakFalseDeps will assign this source to the
5049     // same register as the first source to avoid a false dependency.
5050     return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
5051 
5052   case X86::VCVTSI2SSrr:
5053   case X86::VCVTSI2SSrm:
5054   case X86::VCVTSI2SSrr_Int:
5055   case X86::VCVTSI2SSrm_Int:
5056   case X86::VCVTSI642SSrr:
5057   case X86::VCVTSI642SSrm:
5058   case X86::VCVTSI642SSrr_Int:
5059   case X86::VCVTSI642SSrm_Int:
5060   case X86::VCVTSI2SDrr:
5061   case X86::VCVTSI2SDrm:
5062   case X86::VCVTSI2SDrr_Int:
5063   case X86::VCVTSI2SDrm_Int:
5064   case X86::VCVTSI642SDrr:
5065   case X86::VCVTSI642SDrm:
5066   case X86::VCVTSI642SDrr_Int:
5067   case X86::VCVTSI642SDrm_Int:
5068   // AVX-512
5069   case X86::VCVTSI2SSZrr:
5070   case X86::VCVTSI2SSZrm:
5071   case X86::VCVTSI2SSZrr_Int:
5072   case X86::VCVTSI2SSZrrb_Int:
5073   case X86::VCVTSI2SSZrm_Int:
5074   case X86::VCVTSI642SSZrr:
5075   case X86::VCVTSI642SSZrm:
5076   case X86::VCVTSI642SSZrr_Int:
5077   case X86::VCVTSI642SSZrrb_Int:
5078   case X86::VCVTSI642SSZrm_Int:
5079   case X86::VCVTSI2SDZrr:
5080   case X86::VCVTSI2SDZrm:
5081   case X86::VCVTSI2SDZrr_Int:
5082   case X86::VCVTSI2SDZrm_Int:
5083   case X86::VCVTSI642SDZrr:
5084   case X86::VCVTSI642SDZrm:
5085   case X86::VCVTSI642SDZrr_Int:
5086   case X86::VCVTSI642SDZrrb_Int:
5087   case X86::VCVTSI642SDZrm_Int:
5088   case X86::VCVTUSI2SSZrr:
5089   case X86::VCVTUSI2SSZrm:
5090   case X86::VCVTUSI2SSZrr_Int:
5091   case X86::VCVTUSI2SSZrrb_Int:
5092   case X86::VCVTUSI2SSZrm_Int:
5093   case X86::VCVTUSI642SSZrr:
5094   case X86::VCVTUSI642SSZrm:
5095   case X86::VCVTUSI642SSZrr_Int:
5096   case X86::VCVTUSI642SSZrrb_Int:
5097   case X86::VCVTUSI642SSZrm_Int:
5098   case X86::VCVTUSI2SDZrr:
5099   case X86::VCVTUSI2SDZrm:
5100   case X86::VCVTUSI2SDZrr_Int:
5101   case X86::VCVTUSI2SDZrm_Int:
5102   case X86::VCVTUSI642SDZrr:
5103   case X86::VCVTUSI642SDZrm:
5104   case X86::VCVTUSI642SDZrr_Int:
5105   case X86::VCVTUSI642SDZrrb_Int:
5106   case X86::VCVTUSI642SDZrm_Int:
5107     // Load folding won't effect the undef register update since the input is
5108     // a GPR.
5109     return OpNum == 1 && !ForLoadFold;
5110   case X86::VCVTSD2SSrr:
5111   case X86::VCVTSD2SSrm:
5112   case X86::VCVTSD2SSrr_Int:
5113   case X86::VCVTSD2SSrm_Int:
5114   case X86::VCVTSS2SDrr:
5115   case X86::VCVTSS2SDrm:
5116   case X86::VCVTSS2SDrr_Int:
5117   case X86::VCVTSS2SDrm_Int:
5118   case X86::VRCPSSr:
5119   case X86::VRCPSSr_Int:
5120   case X86::VRCPSSm:
5121   case X86::VRCPSSm_Int:
5122   case X86::VROUNDSDr:
5123   case X86::VROUNDSDm:
5124   case X86::VROUNDSDr_Int:
5125   case X86::VROUNDSDm_Int:
5126   case X86::VROUNDSSr:
5127   case X86::VROUNDSSm:
5128   case X86::VROUNDSSr_Int:
5129   case X86::VROUNDSSm_Int:
5130   case X86::VRSQRTSSr:
5131   case X86::VRSQRTSSr_Int:
5132   case X86::VRSQRTSSm:
5133   case X86::VRSQRTSSm_Int:
5134   case X86::VSQRTSSr:
5135   case X86::VSQRTSSr_Int:
5136   case X86::VSQRTSSm:
5137   case X86::VSQRTSSm_Int:
5138   case X86::VSQRTSDr:
5139   case X86::VSQRTSDr_Int:
5140   case X86::VSQRTSDm:
5141   case X86::VSQRTSDm_Int:
5142   // AVX-512
5143   case X86::VCVTSD2SSZrr:
5144   case X86::VCVTSD2SSZrr_Int:
5145   case X86::VCVTSD2SSZrrb_Int:
5146   case X86::VCVTSD2SSZrm:
5147   case X86::VCVTSD2SSZrm_Int:
5148   case X86::VCVTSS2SDZrr:
5149   case X86::VCVTSS2SDZrr_Int:
5150   case X86::VCVTSS2SDZrrb_Int:
5151   case X86::VCVTSS2SDZrm:
5152   case X86::VCVTSS2SDZrm_Int:
5153   case X86::VGETEXPSDZr:
5154   case X86::VGETEXPSDZrb:
5155   case X86::VGETEXPSDZm:
5156   case X86::VGETEXPSSZr:
5157   case X86::VGETEXPSSZrb:
5158   case X86::VGETEXPSSZm:
5159   case X86::VGETMANTSDZrri:
5160   case X86::VGETMANTSDZrrib:
5161   case X86::VGETMANTSDZrmi:
5162   case X86::VGETMANTSSZrri:
5163   case X86::VGETMANTSSZrrib:
5164   case X86::VGETMANTSSZrmi:
5165   case X86::VRNDSCALESDZr:
5166   case X86::VRNDSCALESDZr_Int:
5167   case X86::VRNDSCALESDZrb_Int:
5168   case X86::VRNDSCALESDZm:
5169   case X86::VRNDSCALESDZm_Int:
5170   case X86::VRNDSCALESSZr:
5171   case X86::VRNDSCALESSZr_Int:
5172   case X86::VRNDSCALESSZrb_Int:
5173   case X86::VRNDSCALESSZm:
5174   case X86::VRNDSCALESSZm_Int:
5175   case X86::VRCP14SDZrr:
5176   case X86::VRCP14SDZrm:
5177   case X86::VRCP14SSZrr:
5178   case X86::VRCP14SSZrm:
5179   case X86::VRCP28SDZr:
5180   case X86::VRCP28SDZrb:
5181   case X86::VRCP28SDZm:
5182   case X86::VRCP28SSZr:
5183   case X86::VRCP28SSZrb:
5184   case X86::VRCP28SSZm:
5185   case X86::VREDUCESSZrmi:
5186   case X86::VREDUCESSZrri:
5187   case X86::VREDUCESSZrrib:
5188   case X86::VRSQRT14SDZrr:
5189   case X86::VRSQRT14SDZrm:
5190   case X86::VRSQRT14SSZrr:
5191   case X86::VRSQRT14SSZrm:
5192   case X86::VRSQRT28SDZr:
5193   case X86::VRSQRT28SDZrb:
5194   case X86::VRSQRT28SDZm:
5195   case X86::VRSQRT28SSZr:
5196   case X86::VRSQRT28SSZrb:
5197   case X86::VRSQRT28SSZm:
5198   case X86::VSQRTSSZr:
5199   case X86::VSQRTSSZr_Int:
5200   case X86::VSQRTSSZrb_Int:
5201   case X86::VSQRTSSZm:
5202   case X86::VSQRTSSZm_Int:
5203   case X86::VSQRTSDZr:
5204   case X86::VSQRTSDZr_Int:
5205   case X86::VSQRTSDZrb_Int:
5206   case X86::VSQRTSDZm:
5207   case X86::VSQRTSDZm_Int:
5208     return OpNum == 1;
5209   case X86::VMOVSSZrrk:
5210   case X86::VMOVSDZrrk:
5211     return OpNum == 3 && !ForLoadFold;
5212   case X86::VMOVSSZrrkz:
5213   case X86::VMOVSDZrrkz:
5214     return OpNum == 2 && !ForLoadFold;
5215   }
5216 
5217   return false;
5218 }
5219 
5220 /// Inform the BreakFalseDeps pass how many idle instructions we would like
5221 /// before certain undef register reads.
5222 ///
5223 /// This catches the VCVTSI2SD family of instructions:
5224 ///
5225 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
5226 ///
5227 /// We should to be careful *not* to catch VXOR idioms which are presumably
5228 /// handled specially in the pipeline:
5229 ///
5230 /// vxorps undef %xmm1, undef %xmm1, %xmm1
5231 ///
5232 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5233 /// high bits that are passed-through are not live.
5234 unsigned
getUndefRegClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5235 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
5236                                    const TargetRegisterInfo *TRI) const {
5237   const MachineOperand &MO = MI.getOperand(OpNum);
5238   if (Register::isPhysicalRegister(MO.getReg()) &&
5239       hasUndefRegUpdate(MI.getOpcode(), OpNum))
5240     return UndefRegClearance;
5241 
5242   return 0;
5243 }
5244 
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5245 void X86InstrInfo::breakPartialRegDependency(
5246     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5247   Register Reg = MI.getOperand(OpNum).getReg();
5248   // If MI kills this register, the false dependence is already broken.
5249   if (MI.killsRegister(Reg, TRI))
5250     return;
5251 
5252   if (X86::VR128RegClass.contains(Reg)) {
5253     // These instructions are all floating point domain, so xorps is the best
5254     // choice.
5255     unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
5256     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
5257         .addReg(Reg, RegState::Undef)
5258         .addReg(Reg, RegState::Undef);
5259     MI.addRegisterKilled(Reg, TRI, true);
5260   } else if (X86::VR256RegClass.contains(Reg)) {
5261     // Use vxorps to clear the full ymm register.
5262     // It wants to read and write the xmm sub-register.
5263     Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5264     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
5265         .addReg(XReg, RegState::Undef)
5266         .addReg(XReg, RegState::Undef)
5267         .addReg(Reg, RegState::ImplicitDefine);
5268     MI.addRegisterKilled(Reg, TRI, true);
5269   } else if (X86::GR64RegClass.contains(Reg)) {
5270     // Using XOR32rr because it has shorter encoding and zeros up the upper bits
5271     // as well.
5272     Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
5273     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
5274         .addReg(XReg, RegState::Undef)
5275         .addReg(XReg, RegState::Undef)
5276         .addReg(Reg, RegState::ImplicitDefine);
5277     MI.addRegisterKilled(Reg, TRI, true);
5278   } else if (X86::GR32RegClass.contains(Reg)) {
5279     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
5280         .addReg(Reg, RegState::Undef)
5281         .addReg(Reg, RegState::Undef);
5282     MI.addRegisterKilled(Reg, TRI, true);
5283   }
5284 }
5285 
addOperands(MachineInstrBuilder & MIB,ArrayRef<MachineOperand> MOs,int PtrOffset=0)5286 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
5287                         int PtrOffset = 0) {
5288   unsigned NumAddrOps = MOs.size();
5289 
5290   if (NumAddrOps < 4) {
5291     // FrameIndex only - add an immediate offset (whether its zero or not).
5292     for (unsigned i = 0; i != NumAddrOps; ++i)
5293       MIB.add(MOs[i]);
5294     addOffset(MIB, PtrOffset);
5295   } else {
5296     // General Memory Addressing - we need to add any offset to an existing
5297     // offset.
5298     assert(MOs.size() == 5 && "Unexpected memory operand list length");
5299     for (unsigned i = 0; i != NumAddrOps; ++i) {
5300       const MachineOperand &MO = MOs[i];
5301       if (i == 3 && PtrOffset != 0) {
5302         MIB.addDisp(MO, PtrOffset);
5303       } else {
5304         MIB.add(MO);
5305       }
5306     }
5307   }
5308 }
5309 
updateOperandRegConstraints(MachineFunction & MF,MachineInstr & NewMI,const TargetInstrInfo & TII)5310 static void updateOperandRegConstraints(MachineFunction &MF,
5311                                         MachineInstr &NewMI,
5312                                         const TargetInstrInfo &TII) {
5313   MachineRegisterInfo &MRI = MF.getRegInfo();
5314   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
5315 
5316   for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
5317     MachineOperand &MO = NewMI.getOperand(Idx);
5318     // We only need to update constraints on virtual register operands.
5319     if (!MO.isReg())
5320       continue;
5321     Register Reg = MO.getReg();
5322     if (!Reg.isVirtual())
5323       continue;
5324 
5325     auto *NewRC = MRI.constrainRegClass(
5326         Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
5327     if (!NewRC) {
5328       LLVM_DEBUG(
5329           dbgs() << "WARNING: Unable to update register constraint for operand "
5330                  << Idx << " of instruction:\n";
5331           NewMI.dump(); dbgs() << "\n");
5332     }
5333   }
5334 }
5335 
FuseTwoAddrInst(MachineFunction & MF,unsigned Opcode,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI,const TargetInstrInfo & TII)5336 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
5337                                      ArrayRef<MachineOperand> MOs,
5338                                      MachineBasicBlock::iterator InsertPt,
5339                                      MachineInstr &MI,
5340                                      const TargetInstrInfo &TII) {
5341   // Create the base instruction with the memory operand as the first part.
5342   // Omit the implicit operands, something BuildMI can't do.
5343   MachineInstr *NewMI =
5344       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5345   MachineInstrBuilder MIB(MF, NewMI);
5346   addOperands(MIB, MOs);
5347 
5348   // Loop over the rest of the ri operands, converting them over.
5349   unsigned NumOps = MI.getDesc().getNumOperands() - 2;
5350   for (unsigned i = 0; i != NumOps; ++i) {
5351     MachineOperand &MO = MI.getOperand(i + 2);
5352     MIB.add(MO);
5353   }
5354   for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
5355     MachineOperand &MO = MI.getOperand(i);
5356     MIB.add(MO);
5357   }
5358 
5359   updateOperandRegConstraints(MF, *NewMI, TII);
5360 
5361   MachineBasicBlock *MBB = InsertPt->getParent();
5362   MBB->insert(InsertPt, NewMI);
5363 
5364   return MIB;
5365 }
5366 
FuseInst(MachineFunction & MF,unsigned Opcode,unsigned OpNo,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI,const TargetInstrInfo & TII,int PtrOffset=0)5367 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
5368                               unsigned OpNo, ArrayRef<MachineOperand> MOs,
5369                               MachineBasicBlock::iterator InsertPt,
5370                               MachineInstr &MI, const TargetInstrInfo &TII,
5371                               int PtrOffset = 0) {
5372   // Omit the implicit operands, something BuildMI can't do.
5373   MachineInstr *NewMI =
5374       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5375   MachineInstrBuilder MIB(MF, NewMI);
5376 
5377   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5378     MachineOperand &MO = MI.getOperand(i);
5379     if (i == OpNo) {
5380       assert(MO.isReg() && "Expected to fold into reg operand!");
5381       addOperands(MIB, MOs, PtrOffset);
5382     } else {
5383       MIB.add(MO);
5384     }
5385   }
5386 
5387   updateOperandRegConstraints(MF, *NewMI, TII);
5388 
5389   // Copy the NoFPExcept flag from the instruction we're fusing.
5390   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
5391     NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
5392 
5393   MachineBasicBlock *MBB = InsertPt->getParent();
5394   MBB->insert(InsertPt, NewMI);
5395 
5396   return MIB;
5397 }
5398 
MakeM0Inst(const TargetInstrInfo & TII,unsigned Opcode,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI)5399 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
5400                                 ArrayRef<MachineOperand> MOs,
5401                                 MachineBasicBlock::iterator InsertPt,
5402                                 MachineInstr &MI) {
5403   MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
5404                                     MI.getDebugLoc(), TII.get(Opcode));
5405   addOperands(MIB, MOs);
5406   return MIB.addImm(0);
5407 }
5408 
foldMemoryOperandCustom(MachineFunction & MF,MachineInstr & MI,unsigned OpNum,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,unsigned Size,Align Alignment) const5409 MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
5410     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
5411     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5412     unsigned Size, Align Alignment) const {
5413   switch (MI.getOpcode()) {
5414   case X86::INSERTPSrr:
5415   case X86::VINSERTPSrr:
5416   case X86::VINSERTPSZrr:
5417     // Attempt to convert the load of inserted vector into a fold load
5418     // of a single float.
5419     if (OpNum == 2) {
5420       unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
5421       unsigned ZMask = Imm & 15;
5422       unsigned DstIdx = (Imm >> 4) & 3;
5423       unsigned SrcIdx = (Imm >> 6) & 3;
5424 
5425       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5426       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5427       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5428       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) {
5429         int PtrOffset = SrcIdx * 4;
5430         unsigned NewImm = (DstIdx << 4) | ZMask;
5431         unsigned NewOpCode =
5432             (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
5433             (MI.getOpcode() == X86::VINSERTPSrr)  ? X86::VINSERTPSrm  :
5434                                                     X86::INSERTPSrm;
5435         MachineInstr *NewMI =
5436             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
5437         NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
5438         return NewMI;
5439       }
5440     }
5441     break;
5442   case X86::MOVHLPSrr:
5443   case X86::VMOVHLPSrr:
5444   case X86::VMOVHLPSZrr:
5445     // Move the upper 64-bits of the second operand to the lower 64-bits.
5446     // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
5447     // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
5448     if (OpNum == 2) {
5449       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5450       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5451       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5452       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
5453         unsigned NewOpCode =
5454             (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
5455             (MI.getOpcode() == X86::VMOVHLPSrr)  ? X86::VMOVLPSrm     :
5456                                                    X86::MOVLPSrm;
5457         MachineInstr *NewMI =
5458             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
5459         return NewMI;
5460       }
5461     }
5462     break;
5463   case X86::UNPCKLPDrr:
5464     // If we won't be able to fold this to the memory form of UNPCKL, use
5465     // MOVHPD instead. Done as custom because we can't have this in the load
5466     // table twice.
5467     if (OpNum == 2) {
5468       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5469       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5470       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5471       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
5472         MachineInstr *NewMI =
5473             FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
5474         return NewMI;
5475       }
5476     }
5477     break;
5478   }
5479 
5480   return nullptr;
5481 }
5482 
shouldPreventUndefRegUpdateMemFold(MachineFunction & MF,MachineInstr & MI)5483 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
5484                                                MachineInstr &MI) {
5485   if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) ||
5486       !MI.getOperand(1).isReg())
5487     return false;
5488 
5489   // The are two cases we need to handle depending on where in the pipeline
5490   // the folding attempt is being made.
5491   // -Register has the undef flag set.
5492   // -Register is produced by the IMPLICIT_DEF instruction.
5493 
5494   if (MI.getOperand(1).isUndef())
5495     return true;
5496 
5497   MachineRegisterInfo &RegInfo = MF.getRegInfo();
5498   MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
5499   return VRegDef && VRegDef->isImplicitDef();
5500 }
5501 
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,unsigned OpNum,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,unsigned Size,Align Alignment,bool AllowCommute) const5502 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5503     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
5504     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5505     unsigned Size, Align Alignment, bool AllowCommute) const {
5506   bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
5507   bool isTwoAddrFold = false;
5508 
5509   // For CPUs that favor the register form of a call or push,
5510   // do not fold loads into calls or pushes, unless optimizing for size
5511   // aggressively.
5512   if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
5513       (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
5514        MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
5515        MI.getOpcode() == X86::PUSH64r))
5516     return nullptr;
5517 
5518   // Avoid partial and undef register update stalls unless optimizing for size.
5519   if (!MF.getFunction().hasOptSize() &&
5520       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5521        shouldPreventUndefRegUpdateMemFold(MF, MI)))
5522     return nullptr;
5523 
5524   unsigned NumOps = MI.getDesc().getNumOperands();
5525   bool isTwoAddr =
5526       NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
5527 
5528   // FIXME: AsmPrinter doesn't know how to handle
5529   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
5530   if (MI.getOpcode() == X86::ADD32ri &&
5531       MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
5532     return nullptr;
5533 
5534   // GOTTPOFF relocation loads can only be folded into add instructions.
5535   // FIXME: Need to exclude other relocations that only support specific
5536   // instructions.
5537   if (MOs.size() == X86::AddrNumOperands &&
5538       MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
5539       MI.getOpcode() != X86::ADD64rr)
5540     return nullptr;
5541 
5542   MachineInstr *NewMI = nullptr;
5543 
5544   // Attempt to fold any custom cases we have.
5545   if (MachineInstr *CustomMI = foldMemoryOperandCustom(
5546           MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
5547     return CustomMI;
5548 
5549   const X86MemoryFoldTableEntry *I = nullptr;
5550 
5551   // Folding a memory location into the two-address part of a two-address
5552   // instruction is different than folding it other places.  It requires
5553   // replacing the *two* registers with the memory location.
5554   if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
5555       MI.getOperand(1).isReg() &&
5556       MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
5557     I = lookupTwoAddrFoldTable(MI.getOpcode());
5558     isTwoAddrFold = true;
5559   } else {
5560     if (OpNum == 0) {
5561       if (MI.getOpcode() == X86::MOV32r0) {
5562         NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
5563         if (NewMI)
5564           return NewMI;
5565       }
5566     }
5567 
5568     I = lookupFoldTable(MI.getOpcode(), OpNum);
5569   }
5570 
5571   if (I != nullptr) {
5572     unsigned Opcode = I->DstOp;
5573     bool FoldedLoad =
5574         isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
5575     bool FoldedStore =
5576         isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
5577     MaybeAlign MinAlign =
5578         decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT);
5579     if (MinAlign && Alignment < *MinAlign)
5580       return nullptr;
5581     bool NarrowToMOV32rm = false;
5582     if (Size) {
5583       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5584       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
5585                                                   &RI, MF);
5586       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5587       // Check if it's safe to fold the load. If the size of the object is
5588       // narrower than the load width, then it's not.
5589       // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
5590       if (FoldedLoad && Size < RCSize) {
5591         // If this is a 64-bit load, but the spill slot is 32, then we can do
5592         // a 32-bit load which is implicitly zero-extended. This likely is
5593         // due to live interval analysis remat'ing a load from stack slot.
5594         if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
5595           return nullptr;
5596         if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
5597           return nullptr;
5598         Opcode = X86::MOV32rm;
5599         NarrowToMOV32rm = true;
5600       }
5601       // For stores, make sure the size of the object is equal to the size of
5602       // the store. If the object is larger, the extra bits would be garbage. If
5603       // the object is smaller we might overwrite another object or fault.
5604       if (FoldedStore && Size != RCSize)
5605         return nullptr;
5606     }
5607 
5608     if (isTwoAddrFold)
5609       NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
5610     else
5611       NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
5612 
5613     if (NarrowToMOV32rm) {
5614       // If this is the special case where we use a MOV32rm to load a 32-bit
5615       // value and zero-extend the top bits. Change the destination register
5616       // to a 32-bit one.
5617       Register DstReg = NewMI->getOperand(0).getReg();
5618       if (DstReg.isPhysical())
5619         NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
5620       else
5621         NewMI->getOperand(0).setSubReg(X86::sub_32bit);
5622     }
5623     return NewMI;
5624   }
5625 
5626   // If the instruction and target operand are commutable, commute the
5627   // instruction and try again.
5628   if (AllowCommute) {
5629     unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
5630     if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
5631       bool HasDef = MI.getDesc().getNumDefs();
5632       Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
5633       Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
5634       Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
5635       bool Tied1 =
5636           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
5637       bool Tied2 =
5638           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
5639 
5640       // If either of the commutable operands are tied to the destination
5641       // then we can not commute + fold.
5642       if ((HasDef && Reg0 == Reg1 && Tied1) ||
5643           (HasDef && Reg0 == Reg2 && Tied2))
5644         return nullptr;
5645 
5646       MachineInstr *CommutedMI =
5647           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
5648       if (!CommutedMI) {
5649         // Unable to commute.
5650         return nullptr;
5651       }
5652       if (CommutedMI != &MI) {
5653         // New instruction. We can't fold from this.
5654         CommutedMI->eraseFromParent();
5655         return nullptr;
5656       }
5657 
5658       // Attempt to fold with the commuted version of the instruction.
5659       NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
5660                                     Alignment, /*AllowCommute=*/false);
5661       if (NewMI)
5662         return NewMI;
5663 
5664       // Folding failed again - undo the commute before returning.
5665       MachineInstr *UncommutedMI =
5666           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
5667       if (!UncommutedMI) {
5668         // Unable to commute.
5669         return nullptr;
5670       }
5671       if (UncommutedMI != &MI) {
5672         // New instruction. It doesn't need to be kept.
5673         UncommutedMI->eraseFromParent();
5674         return nullptr;
5675       }
5676 
5677       // Return here to prevent duplicate fuse failure report.
5678       return nullptr;
5679     }
5680   }
5681 
5682   // No fusion
5683   if (PrintFailedFusing && !MI.isCopy())
5684     dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
5685   return nullptr;
5686 }
5687 
5688 MachineInstr *
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,int FrameIndex,LiveIntervals * LIS,VirtRegMap * VRM) const5689 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
5690                                     ArrayRef<unsigned> Ops,
5691                                     MachineBasicBlock::iterator InsertPt,
5692                                     int FrameIndex, LiveIntervals *LIS,
5693                                     VirtRegMap *VRM) const {
5694   // Check switch flag
5695   if (NoFusing)
5696     return nullptr;
5697 
5698   // Avoid partial and undef register update stalls unless optimizing for size.
5699   if (!MF.getFunction().hasOptSize() &&
5700       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5701        shouldPreventUndefRegUpdateMemFold(MF, MI)))
5702     return nullptr;
5703 
5704   // Don't fold subreg spills, or reloads that use a high subreg.
5705   for (auto Op : Ops) {
5706     MachineOperand &MO = MI.getOperand(Op);
5707     auto SubReg = MO.getSubReg();
5708     if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
5709       return nullptr;
5710   }
5711 
5712   const MachineFrameInfo &MFI = MF.getFrameInfo();
5713   unsigned Size = MFI.getObjectSize(FrameIndex);
5714   Align Alignment = MFI.getObjectAlign(FrameIndex);
5715   // If the function stack isn't realigned we don't want to fold instructions
5716   // that need increased alignment.
5717   if (!RI.hasStackRealignment(MF))
5718     Alignment =
5719         std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
5720   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5721     unsigned NewOpc = 0;
5722     unsigned RCSize = 0;
5723     switch (MI.getOpcode()) {
5724     default: return nullptr;
5725     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
5726     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5727     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5728     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
5729     }
5730     // Check if it's safe to fold the load. If the size of the object is
5731     // narrower than the load width, then it's not.
5732     if (Size < RCSize)
5733       return nullptr;
5734     // Change to CMPXXri r, 0 first.
5735     MI.setDesc(get(NewOpc));
5736     MI.getOperand(1).ChangeToImmediate(0);
5737   } else if (Ops.size() != 1)
5738     return nullptr;
5739 
5740   return foldMemoryOperandImpl(MF, MI, Ops[0],
5741                                MachineOperand::CreateFI(FrameIndex), InsertPt,
5742                                Size, Alignment, /*AllowCommute=*/true);
5743 }
5744 
5745 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
5746 /// because the latter uses contents that wouldn't be defined in the folded
5747 /// version.  For instance, this transformation isn't legal:
5748 ///   movss (%rdi), %xmm0
5749 ///   addps %xmm0, %xmm0
5750 /// ->
5751 ///   addps (%rdi), %xmm0
5752 ///
5753 /// But this one is:
5754 ///   movss (%rdi), %xmm0
5755 ///   addss %xmm0, %xmm0
5756 /// ->
5757 ///   addss (%rdi), %xmm0
5758 ///
isNonFoldablePartialRegisterLoad(const MachineInstr & LoadMI,const MachineInstr & UserMI,const MachineFunction & MF)5759 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
5760                                              const MachineInstr &UserMI,
5761                                              const MachineFunction &MF) {
5762   unsigned Opc = LoadMI.getOpcode();
5763   unsigned UserOpc = UserMI.getOpcode();
5764   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5765   const TargetRegisterClass *RC =
5766       MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
5767   unsigned RegSize = TRI.getRegSizeInBits(*RC);
5768 
5769   if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
5770        Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
5771        Opc == X86::VMOVSSZrm_alt) &&
5772       RegSize > 32) {
5773     // These instructions only load 32 bits, we can't fold them if the
5774     // destination register is wider than 32 bits (4 bytes), and its user
5775     // instruction isn't scalar (SS).
5776     switch (UserOpc) {
5777     case X86::CVTSS2SDrr_Int:
5778     case X86::VCVTSS2SDrr_Int:
5779     case X86::VCVTSS2SDZrr_Int:
5780     case X86::VCVTSS2SDZrr_Intk:
5781     case X86::VCVTSS2SDZrr_Intkz:
5782     case X86::CVTSS2SIrr_Int:     case X86::CVTSS2SI64rr_Int:
5783     case X86::VCVTSS2SIrr_Int:    case X86::VCVTSS2SI64rr_Int:
5784     case X86::VCVTSS2SIZrr_Int:   case X86::VCVTSS2SI64Zrr_Int:
5785     case X86::CVTTSS2SIrr_Int:    case X86::CVTTSS2SI64rr_Int:
5786     case X86::VCVTTSS2SIrr_Int:   case X86::VCVTTSS2SI64rr_Int:
5787     case X86::VCVTTSS2SIZrr_Int:  case X86::VCVTTSS2SI64Zrr_Int:
5788     case X86::VCVTSS2USIZrr_Int:  case X86::VCVTSS2USI64Zrr_Int:
5789     case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int:
5790     case X86::RCPSSr_Int:   case X86::VRCPSSr_Int:
5791     case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int:
5792     case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int:
5793     case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int:
5794     case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int:
5795     case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
5796     case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
5797     case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
5798     case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
5799     case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
5800     case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
5801     case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int:
5802     case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
5803     case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
5804     case X86::VCMPSSZrr_Intk:
5805     case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
5806     case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
5807     case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
5808     case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
5809     case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz:
5810     case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
5811     case X86::VFMADDSS4rr_Int:   case X86::VFNMADDSS4rr_Int:
5812     case X86::VFMSUBSS4rr_Int:   case X86::VFNMSUBSS4rr_Int:
5813     case X86::VFMADD132SSr_Int:  case X86::VFNMADD132SSr_Int:
5814     case X86::VFMADD213SSr_Int:  case X86::VFNMADD213SSr_Int:
5815     case X86::VFMADD231SSr_Int:  case X86::VFNMADD231SSr_Int:
5816     case X86::VFMSUB132SSr_Int:  case X86::VFNMSUB132SSr_Int:
5817     case X86::VFMSUB213SSr_Int:  case X86::VFNMSUB213SSr_Int:
5818     case X86::VFMSUB231SSr_Int:  case X86::VFNMSUB231SSr_Int:
5819     case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
5820     case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
5821     case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
5822     case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
5823     case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
5824     case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
5825     case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
5826     case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
5827     case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
5828     case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
5829     case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
5830     case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
5831     case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
5832     case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
5833     case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
5834     case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
5835     case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
5836     case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
5837     case X86::VFIXUPIMMSSZrri:
5838     case X86::VFIXUPIMMSSZrrik:
5839     case X86::VFIXUPIMMSSZrrikz:
5840     case X86::VFPCLASSSSZrr:
5841     case X86::VFPCLASSSSZrrk:
5842     case X86::VGETEXPSSZr:
5843     case X86::VGETEXPSSZrk:
5844     case X86::VGETEXPSSZrkz:
5845     case X86::VGETMANTSSZrri:
5846     case X86::VGETMANTSSZrrik:
5847     case X86::VGETMANTSSZrrikz:
5848     case X86::VRANGESSZrri:
5849     case X86::VRANGESSZrrik:
5850     case X86::VRANGESSZrrikz:
5851     case X86::VRCP14SSZrr:
5852     case X86::VRCP14SSZrrk:
5853     case X86::VRCP14SSZrrkz:
5854     case X86::VRCP28SSZr:
5855     case X86::VRCP28SSZrk:
5856     case X86::VRCP28SSZrkz:
5857     case X86::VREDUCESSZrri:
5858     case X86::VREDUCESSZrrik:
5859     case X86::VREDUCESSZrrikz:
5860     case X86::VRNDSCALESSZr_Int:
5861     case X86::VRNDSCALESSZr_Intk:
5862     case X86::VRNDSCALESSZr_Intkz:
5863     case X86::VRSQRT14SSZrr:
5864     case X86::VRSQRT14SSZrrk:
5865     case X86::VRSQRT14SSZrrkz:
5866     case X86::VRSQRT28SSZr:
5867     case X86::VRSQRT28SSZrk:
5868     case X86::VRSQRT28SSZrkz:
5869     case X86::VSCALEFSSZrr:
5870     case X86::VSCALEFSSZrrk:
5871     case X86::VSCALEFSSZrrkz:
5872       return false;
5873     default:
5874       return true;
5875     }
5876   }
5877 
5878   if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
5879        Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
5880        Opc == X86::VMOVSDZrm_alt) &&
5881       RegSize > 64) {
5882     // These instructions only load 64 bits, we can't fold them if the
5883     // destination register is wider than 64 bits (8 bytes), and its user
5884     // instruction isn't scalar (SD).
5885     switch (UserOpc) {
5886     case X86::CVTSD2SSrr_Int:
5887     case X86::VCVTSD2SSrr_Int:
5888     case X86::VCVTSD2SSZrr_Int:
5889     case X86::VCVTSD2SSZrr_Intk:
5890     case X86::VCVTSD2SSZrr_Intkz:
5891     case X86::CVTSD2SIrr_Int:     case X86::CVTSD2SI64rr_Int:
5892     case X86::VCVTSD2SIrr_Int:    case X86::VCVTSD2SI64rr_Int:
5893     case X86::VCVTSD2SIZrr_Int:   case X86::VCVTSD2SI64Zrr_Int:
5894     case X86::CVTTSD2SIrr_Int:    case X86::CVTTSD2SI64rr_Int:
5895     case X86::VCVTTSD2SIrr_Int:   case X86::VCVTTSD2SI64rr_Int:
5896     case X86::VCVTTSD2SIZrr_Int:  case X86::VCVTTSD2SI64Zrr_Int:
5897     case X86::VCVTSD2USIZrr_Int:  case X86::VCVTSD2USI64Zrr_Int:
5898     case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int:
5899     case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int:
5900     case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int:
5901     case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int:
5902     case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
5903     case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
5904     case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
5905     case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
5906     case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
5907     case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
5908     case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int:
5909     case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
5910     case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
5911     case X86::VCMPSDZrr_Intk:
5912     case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
5913     case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
5914     case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
5915     case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
5916     case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz:
5917     case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
5918     case X86::VFMADDSD4rr_Int:   case X86::VFNMADDSD4rr_Int:
5919     case X86::VFMSUBSD4rr_Int:   case X86::VFNMSUBSD4rr_Int:
5920     case X86::VFMADD132SDr_Int:  case X86::VFNMADD132SDr_Int:
5921     case X86::VFMADD213SDr_Int:  case X86::VFNMADD213SDr_Int:
5922     case X86::VFMADD231SDr_Int:  case X86::VFNMADD231SDr_Int:
5923     case X86::VFMSUB132SDr_Int:  case X86::VFNMSUB132SDr_Int:
5924     case X86::VFMSUB213SDr_Int:  case X86::VFNMSUB213SDr_Int:
5925     case X86::VFMSUB231SDr_Int:  case X86::VFNMSUB231SDr_Int:
5926     case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
5927     case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
5928     case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
5929     case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
5930     case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
5931     case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
5932     case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
5933     case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
5934     case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
5935     case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
5936     case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
5937     case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
5938     case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
5939     case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
5940     case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
5941     case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
5942     case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
5943     case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
5944     case X86::VFIXUPIMMSDZrri:
5945     case X86::VFIXUPIMMSDZrrik:
5946     case X86::VFIXUPIMMSDZrrikz:
5947     case X86::VFPCLASSSDZrr:
5948     case X86::VFPCLASSSDZrrk:
5949     case X86::VGETEXPSDZr:
5950     case X86::VGETEXPSDZrk:
5951     case X86::VGETEXPSDZrkz:
5952     case X86::VGETMANTSDZrri:
5953     case X86::VGETMANTSDZrrik:
5954     case X86::VGETMANTSDZrrikz:
5955     case X86::VRANGESDZrri:
5956     case X86::VRANGESDZrrik:
5957     case X86::VRANGESDZrrikz:
5958     case X86::VRCP14SDZrr:
5959     case X86::VRCP14SDZrrk:
5960     case X86::VRCP14SDZrrkz:
5961     case X86::VRCP28SDZr:
5962     case X86::VRCP28SDZrk:
5963     case X86::VRCP28SDZrkz:
5964     case X86::VREDUCESDZrri:
5965     case X86::VREDUCESDZrrik:
5966     case X86::VREDUCESDZrrikz:
5967     case X86::VRNDSCALESDZr_Int:
5968     case X86::VRNDSCALESDZr_Intk:
5969     case X86::VRNDSCALESDZr_Intkz:
5970     case X86::VRSQRT14SDZrr:
5971     case X86::VRSQRT14SDZrrk:
5972     case X86::VRSQRT14SDZrrkz:
5973     case X86::VRSQRT28SDZr:
5974     case X86::VRSQRT28SDZrk:
5975     case X86::VRSQRT28SDZrkz:
5976     case X86::VSCALEFSDZrr:
5977     case X86::VSCALEFSDZrrk:
5978     case X86::VSCALEFSDZrrkz:
5979       return false;
5980     default:
5981       return true;
5982     }
5983   }
5984 
5985   return false;
5986 }
5987 
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,MachineInstr & LoadMI,LiveIntervals * LIS) const5988 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5989     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
5990     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
5991     LiveIntervals *LIS) const {
5992 
5993   // TODO: Support the case where LoadMI loads a wide register, but MI
5994   // only uses a subreg.
5995   for (auto Op : Ops) {
5996     if (MI.getOperand(Op).getSubReg())
5997       return nullptr;
5998   }
5999 
6000   // If loading from a FrameIndex, fold directly from the FrameIndex.
6001   unsigned NumOps = LoadMI.getDesc().getNumOperands();
6002   int FrameIndex;
6003   if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
6004     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6005       return nullptr;
6006     return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
6007   }
6008 
6009   // Check switch flag
6010   if (NoFusing) return nullptr;
6011 
6012   // Avoid partial and undef register update stalls unless optimizing for size.
6013   if (!MF.getFunction().hasOptSize() &&
6014       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6015        shouldPreventUndefRegUpdateMemFold(MF, MI)))
6016     return nullptr;
6017 
6018   // Determine the alignment of the load.
6019   Align Alignment;
6020   if (LoadMI.hasOneMemOperand())
6021     Alignment = (*LoadMI.memoperands_begin())->getAlign();
6022   else
6023     switch (LoadMI.getOpcode()) {
6024     case X86::AVX512_512_SET0:
6025     case X86::AVX512_512_SETALLONES:
6026       Alignment = Align(64);
6027       break;
6028     case X86::AVX2_SETALLONES:
6029     case X86::AVX1_SETALLONES:
6030     case X86::AVX_SET0:
6031     case X86::AVX512_256_SET0:
6032       Alignment = Align(32);
6033       break;
6034     case X86::V_SET0:
6035     case X86::V_SETALLONES:
6036     case X86::AVX512_128_SET0:
6037     case X86::FsFLD0F128:
6038     case X86::AVX512_FsFLD0F128:
6039       Alignment = Align(16);
6040       break;
6041     case X86::MMX_SET0:
6042     case X86::FsFLD0SD:
6043     case X86::AVX512_FsFLD0SD:
6044       Alignment = Align(8);
6045       break;
6046     case X86::FsFLD0SS:
6047     case X86::AVX512_FsFLD0SS:
6048       Alignment = Align(4);
6049       break;
6050     default:
6051       return nullptr;
6052     }
6053   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6054     unsigned NewOpc = 0;
6055     switch (MI.getOpcode()) {
6056     default: return nullptr;
6057     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
6058     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
6059     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
6060     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
6061     }
6062     // Change to CMPXXri r, 0 first.
6063     MI.setDesc(get(NewOpc));
6064     MI.getOperand(1).ChangeToImmediate(0);
6065   } else if (Ops.size() != 1)
6066     return nullptr;
6067 
6068   // Make sure the subregisters match.
6069   // Otherwise we risk changing the size of the load.
6070   if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
6071     return nullptr;
6072 
6073   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
6074   switch (LoadMI.getOpcode()) {
6075   case X86::MMX_SET0:
6076   case X86::V_SET0:
6077   case X86::V_SETALLONES:
6078   case X86::AVX2_SETALLONES:
6079   case X86::AVX1_SETALLONES:
6080   case X86::AVX_SET0:
6081   case X86::AVX512_128_SET0:
6082   case X86::AVX512_256_SET0:
6083   case X86::AVX512_512_SET0:
6084   case X86::AVX512_512_SETALLONES:
6085   case X86::FsFLD0SD:
6086   case X86::AVX512_FsFLD0SD:
6087   case X86::FsFLD0SS:
6088   case X86::AVX512_FsFLD0SS:
6089   case X86::FsFLD0F128:
6090   case X86::AVX512_FsFLD0F128: {
6091     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
6092     // Create a constant-pool entry and operands to load from it.
6093 
6094     // Medium and large mode can't fold loads this way.
6095     if (MF.getTarget().getCodeModel() != CodeModel::Small &&
6096         MF.getTarget().getCodeModel() != CodeModel::Kernel)
6097       return nullptr;
6098 
6099     // x86-32 PIC requires a PIC base register for constant pools.
6100     unsigned PICBase = 0;
6101     // Since we're using Small or Kernel code model, we can always use
6102     // RIP-relative addressing for a smaller encoding.
6103     if (Subtarget.is64Bit()) {
6104       PICBase = X86::RIP;
6105     } else if (MF.getTarget().isPositionIndependent()) {
6106       // FIXME: PICBase = getGlobalBaseReg(&MF);
6107       // This doesn't work for several reasons.
6108       // 1. GlobalBaseReg may have been spilled.
6109       // 2. It may not be live at MI.
6110       return nullptr;
6111     }
6112 
6113     // Create a constant-pool entry.
6114     MachineConstantPool &MCP = *MF.getConstantPool();
6115     Type *Ty;
6116     unsigned Opc = LoadMI.getOpcode();
6117     if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
6118       Ty = Type::getFloatTy(MF.getFunction().getContext());
6119     else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
6120       Ty = Type::getDoubleTy(MF.getFunction().getContext());
6121     else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
6122       Ty = Type::getFP128Ty(MF.getFunction().getContext());
6123     else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
6124       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6125                                 16);
6126     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
6127              Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
6128       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6129                                 8);
6130     else if (Opc == X86::MMX_SET0)
6131       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6132                                 2);
6133     else
6134       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6135                                 4);
6136 
6137     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
6138                       Opc == X86::AVX512_512_SETALLONES ||
6139                       Opc == X86::AVX1_SETALLONES);
6140     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
6141                                     Constant::getNullValue(Ty);
6142     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
6143 
6144     // Create operands to load from the constant pool entry.
6145     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
6146     MOs.push_back(MachineOperand::CreateImm(1));
6147     MOs.push_back(MachineOperand::CreateReg(0, false));
6148     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
6149     MOs.push_back(MachineOperand::CreateReg(0, false));
6150     break;
6151   }
6152   default: {
6153     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6154       return nullptr;
6155 
6156     // Folding a normal load. Just copy the load's address operands.
6157     MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
6158                LoadMI.operands_begin() + NumOps);
6159     break;
6160   }
6161   }
6162   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
6163                                /*Size=*/0, Alignment, /*AllowCommute=*/true);
6164 }
6165 
6166 static SmallVector<MachineMemOperand *, 2>
extractLoadMMOs(ArrayRef<MachineMemOperand * > MMOs,MachineFunction & MF)6167 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6168   SmallVector<MachineMemOperand *, 2> LoadMMOs;
6169 
6170   for (MachineMemOperand *MMO : MMOs) {
6171     if (!MMO->isLoad())
6172       continue;
6173 
6174     if (!MMO->isStore()) {
6175       // Reuse the MMO.
6176       LoadMMOs.push_back(MMO);
6177     } else {
6178       // Clone the MMO and unset the store flag.
6179       LoadMMOs.push_back(MF.getMachineMemOperand(
6180           MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
6181     }
6182   }
6183 
6184   return LoadMMOs;
6185 }
6186 
6187 static SmallVector<MachineMemOperand *, 2>
extractStoreMMOs(ArrayRef<MachineMemOperand * > MMOs,MachineFunction & MF)6188 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6189   SmallVector<MachineMemOperand *, 2> StoreMMOs;
6190 
6191   for (MachineMemOperand *MMO : MMOs) {
6192     if (!MMO->isStore())
6193       continue;
6194 
6195     if (!MMO->isLoad()) {
6196       // Reuse the MMO.
6197       StoreMMOs.push_back(MMO);
6198     } else {
6199       // Clone the MMO and unset the load flag.
6200       StoreMMOs.push_back(MF.getMachineMemOperand(
6201           MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
6202     }
6203   }
6204 
6205   return StoreMMOs;
6206 }
6207 
getBroadcastOpcode(const X86MemoryFoldTableEntry * I,const TargetRegisterClass * RC,const X86Subtarget & STI)6208 static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
6209                                    const TargetRegisterClass *RC,
6210                                    const X86Subtarget &STI) {
6211   assert(STI.hasAVX512() && "Expected at least AVX512!");
6212   unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
6213   assert((SpillSize == 64 || STI.hasVLX()) &&
6214          "Can't broadcast less than 64 bytes without AVX512VL!");
6215 
6216   switch (I->Flags & TB_BCAST_MASK) {
6217   default: llvm_unreachable("Unexpected broadcast type!");
6218   case TB_BCAST_D:
6219     switch (SpillSize) {
6220     default: llvm_unreachable("Unknown spill size");
6221     case 16: return X86::VPBROADCASTDZ128rm;
6222     case 32: return X86::VPBROADCASTDZ256rm;
6223     case 64: return X86::VPBROADCASTDZrm;
6224     }
6225     break;
6226   case TB_BCAST_Q:
6227     switch (SpillSize) {
6228     default: llvm_unreachable("Unknown spill size");
6229     case 16: return X86::VPBROADCASTQZ128rm;
6230     case 32: return X86::VPBROADCASTQZ256rm;
6231     case 64: return X86::VPBROADCASTQZrm;
6232     }
6233     break;
6234   case TB_BCAST_SS:
6235     switch (SpillSize) {
6236     default: llvm_unreachable("Unknown spill size");
6237     case 16: return X86::VBROADCASTSSZ128rm;
6238     case 32: return X86::VBROADCASTSSZ256rm;
6239     case 64: return X86::VBROADCASTSSZrm;
6240     }
6241     break;
6242   case TB_BCAST_SD:
6243     switch (SpillSize) {
6244     default: llvm_unreachable("Unknown spill size");
6245     case 16: return X86::VMOVDDUPZ128rm;
6246     case 32: return X86::VBROADCASTSDZ256rm;
6247     case 64: return X86::VBROADCASTSDZrm;
6248     }
6249     break;
6250   }
6251 }
6252 
unfoldMemoryOperand(MachineFunction & MF,MachineInstr & MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs) const6253 bool X86InstrInfo::unfoldMemoryOperand(
6254     MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
6255     bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
6256   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
6257   if (I == nullptr)
6258     return false;
6259   unsigned Opc = I->DstOp;
6260   unsigned Index = I->Flags & TB_INDEX_MASK;
6261   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6262   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6263   bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
6264   if (UnfoldLoad && !FoldedLoad)
6265     return false;
6266   UnfoldLoad &= FoldedLoad;
6267   if (UnfoldStore && !FoldedStore)
6268     return false;
6269   UnfoldStore &= FoldedStore;
6270 
6271   const MCInstrDesc &MCID = get(Opc);
6272 
6273   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6274   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6275   // TODO: Check if 32-byte or greater accesses are slow too?
6276   if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
6277       Subtarget.isUnalignedMem16Slow())
6278     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
6279     // conservatively assume the address is unaligned. That's bad for
6280     // performance.
6281     return false;
6282   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
6283   SmallVector<MachineOperand,2> BeforeOps;
6284   SmallVector<MachineOperand,2> AfterOps;
6285   SmallVector<MachineOperand,4> ImpOps;
6286   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
6287     MachineOperand &Op = MI.getOperand(i);
6288     if (i >= Index && i < Index + X86::AddrNumOperands)
6289       AddrOps.push_back(Op);
6290     else if (Op.isReg() && Op.isImplicit())
6291       ImpOps.push_back(Op);
6292     else if (i < Index)
6293       BeforeOps.push_back(Op);
6294     else if (i > Index)
6295       AfterOps.push_back(Op);
6296   }
6297 
6298   // Emit the load or broadcast instruction.
6299   if (UnfoldLoad) {
6300     auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
6301 
6302     unsigned Opc;
6303     if (FoldedBCast) {
6304       Opc = getBroadcastOpcode(I, RC, Subtarget);
6305     } else {
6306       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6307       bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6308       Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
6309     }
6310 
6311     DebugLoc DL;
6312     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
6313     for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6314       MIB.add(AddrOps[i]);
6315     MIB.setMemRefs(MMOs);
6316     NewMIs.push_back(MIB);
6317 
6318     if (UnfoldStore) {
6319       // Address operands cannot be marked isKill.
6320       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
6321         MachineOperand &MO = NewMIs[0]->getOperand(i);
6322         if (MO.isReg())
6323           MO.setIsKill(false);
6324       }
6325     }
6326   }
6327 
6328   // Emit the data processing instruction.
6329   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
6330   MachineInstrBuilder MIB(MF, DataMI);
6331 
6332   if (FoldedStore)
6333     MIB.addReg(Reg, RegState::Define);
6334   for (MachineOperand &BeforeOp : BeforeOps)
6335     MIB.add(BeforeOp);
6336   if (FoldedLoad)
6337     MIB.addReg(Reg);
6338   for (MachineOperand &AfterOp : AfterOps)
6339     MIB.add(AfterOp);
6340   for (MachineOperand &ImpOp : ImpOps) {
6341     MIB.addReg(ImpOp.getReg(),
6342                getDefRegState(ImpOp.isDef()) |
6343                RegState::Implicit |
6344                getKillRegState(ImpOp.isKill()) |
6345                getDeadRegState(ImpOp.isDead()) |
6346                getUndefRegState(ImpOp.isUndef()));
6347   }
6348   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6349   switch (DataMI->getOpcode()) {
6350   default: break;
6351   case X86::CMP64ri32:
6352   case X86::CMP64ri8:
6353   case X86::CMP32ri:
6354   case X86::CMP32ri8:
6355   case X86::CMP16ri:
6356   case X86::CMP16ri8:
6357   case X86::CMP8ri: {
6358     MachineOperand &MO0 = DataMI->getOperand(0);
6359     MachineOperand &MO1 = DataMI->getOperand(1);
6360     if (MO1.getImm() == 0) {
6361       unsigned NewOpc;
6362       switch (DataMI->getOpcode()) {
6363       default: llvm_unreachable("Unreachable!");
6364       case X86::CMP64ri8:
6365       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
6366       case X86::CMP32ri8:
6367       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
6368       case X86::CMP16ri8:
6369       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
6370       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
6371       }
6372       DataMI->setDesc(get(NewOpc));
6373       MO1.ChangeToRegister(MO0.getReg(), false);
6374     }
6375   }
6376   }
6377   NewMIs.push_back(DataMI);
6378 
6379   // Emit the store instruction.
6380   if (UnfoldStore) {
6381     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
6382     auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
6383     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
6384     bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6385     unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
6386     DebugLoc DL;
6387     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
6388     for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6389       MIB.add(AddrOps[i]);
6390     MIB.addReg(Reg, RegState::Kill);
6391     MIB.setMemRefs(MMOs);
6392     NewMIs.push_back(MIB);
6393   }
6394 
6395   return true;
6396 }
6397 
6398 bool
unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes) const6399 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
6400                                   SmallVectorImpl<SDNode*> &NewNodes) const {
6401   if (!N->isMachineOpcode())
6402     return false;
6403 
6404   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
6405   if (I == nullptr)
6406     return false;
6407   unsigned Opc = I->DstOp;
6408   unsigned Index = I->Flags & TB_INDEX_MASK;
6409   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6410   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6411   bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
6412   const MCInstrDesc &MCID = get(Opc);
6413   MachineFunction &MF = DAG.getMachineFunction();
6414   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6415   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6416   unsigned NumDefs = MCID.NumDefs;
6417   std::vector<SDValue> AddrOps;
6418   std::vector<SDValue> BeforeOps;
6419   std::vector<SDValue> AfterOps;
6420   SDLoc dl(N);
6421   unsigned NumOps = N->getNumOperands();
6422   for (unsigned i = 0; i != NumOps-1; ++i) {
6423     SDValue Op = N->getOperand(i);
6424     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
6425       AddrOps.push_back(Op);
6426     else if (i < Index-NumDefs)
6427       BeforeOps.push_back(Op);
6428     else if (i > Index-NumDefs)
6429       AfterOps.push_back(Op);
6430   }
6431   SDValue Chain = N->getOperand(NumOps-1);
6432   AddrOps.push_back(Chain);
6433 
6434   // Emit the load instruction.
6435   SDNode *Load = nullptr;
6436   if (FoldedLoad) {
6437     EVT VT = *TRI.legalclasstypes_begin(*RC);
6438     auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
6439     if (MMOs.empty() && RC == &X86::VR128RegClass &&
6440         Subtarget.isUnalignedMem16Slow())
6441       // Do not introduce a slow unaligned load.
6442       return false;
6443     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
6444     // memory access is slow above.
6445 
6446     unsigned Opc;
6447     if (FoldedBCast) {
6448       Opc = getBroadcastOpcode(I, RC, Subtarget);
6449     } else {
6450       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6451       bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6452       Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
6453     }
6454 
6455     Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
6456     NewNodes.push_back(Load);
6457 
6458     // Preserve memory reference information.
6459     DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
6460   }
6461 
6462   // Emit the data processing instruction.
6463   std::vector<EVT> VTs;
6464   const TargetRegisterClass *DstRC = nullptr;
6465   if (MCID.getNumDefs() > 0) {
6466     DstRC = getRegClass(MCID, 0, &RI, MF);
6467     VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
6468   }
6469   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
6470     EVT VT = N->getValueType(i);
6471     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
6472       VTs.push_back(VT);
6473   }
6474   if (Load)
6475     BeforeOps.push_back(SDValue(Load, 0));
6476   llvm::append_range(BeforeOps, AfterOps);
6477   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6478   switch (Opc) {
6479     default: break;
6480     case X86::CMP64ri32:
6481     case X86::CMP64ri8:
6482     case X86::CMP32ri:
6483     case X86::CMP32ri8:
6484     case X86::CMP16ri:
6485     case X86::CMP16ri8:
6486     case X86::CMP8ri:
6487       if (isNullConstant(BeforeOps[1])) {
6488         switch (Opc) {
6489           default: llvm_unreachable("Unreachable!");
6490           case X86::CMP64ri8:
6491           case X86::CMP64ri32: Opc = X86::TEST64rr; break;
6492           case X86::CMP32ri8:
6493           case X86::CMP32ri:   Opc = X86::TEST32rr; break;
6494           case X86::CMP16ri8:
6495           case X86::CMP16ri:   Opc = X86::TEST16rr; break;
6496           case X86::CMP8ri:    Opc = X86::TEST8rr; break;
6497         }
6498         BeforeOps[1] = BeforeOps[0];
6499       }
6500   }
6501   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
6502   NewNodes.push_back(NewNode);
6503 
6504   // Emit the store instruction.
6505   if (FoldedStore) {
6506     AddrOps.pop_back();
6507     AddrOps.push_back(SDValue(NewNode, 0));
6508     AddrOps.push_back(Chain);
6509     auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
6510     if (MMOs.empty() && RC == &X86::VR128RegClass &&
6511         Subtarget.isUnalignedMem16Slow())
6512       // Do not introduce a slow unaligned store.
6513       return false;
6514     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
6515     // memory access is slow above.
6516     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6517     bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6518     SDNode *Store =
6519         DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
6520                            dl, MVT::Other, AddrOps);
6521     NewNodes.push_back(Store);
6522 
6523     // Preserve memory reference information.
6524     DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
6525   }
6526 
6527   return true;
6528 }
6529 
getOpcodeAfterMemoryUnfold(unsigned Opc,bool UnfoldLoad,bool UnfoldStore,unsigned * LoadRegIndex) const6530 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
6531                                       bool UnfoldLoad, bool UnfoldStore,
6532                                       unsigned *LoadRegIndex) const {
6533   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
6534   if (I == nullptr)
6535     return 0;
6536   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6537   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6538   if (UnfoldLoad && !FoldedLoad)
6539     return 0;
6540   if (UnfoldStore && !FoldedStore)
6541     return 0;
6542   if (LoadRegIndex)
6543     *LoadRegIndex = I->Flags & TB_INDEX_MASK;
6544   return I->DstOp;
6545 }
6546 
6547 bool
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const6548 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
6549                                      int64_t &Offset1, int64_t &Offset2) const {
6550   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
6551     return false;
6552   unsigned Opc1 = Load1->getMachineOpcode();
6553   unsigned Opc2 = Load2->getMachineOpcode();
6554   switch (Opc1) {
6555   default: return false;
6556   case X86::MOV8rm:
6557   case X86::MOV16rm:
6558   case X86::MOV32rm:
6559   case X86::MOV64rm:
6560   case X86::LD_Fp32m:
6561   case X86::LD_Fp64m:
6562   case X86::LD_Fp80m:
6563   case X86::MOVSSrm:
6564   case X86::MOVSSrm_alt:
6565   case X86::MOVSDrm:
6566   case X86::MOVSDrm_alt:
6567   case X86::MMX_MOVD64rm:
6568   case X86::MMX_MOVQ64rm:
6569   case X86::MOVAPSrm:
6570   case X86::MOVUPSrm:
6571   case X86::MOVAPDrm:
6572   case X86::MOVUPDrm:
6573   case X86::MOVDQArm:
6574   case X86::MOVDQUrm:
6575   // AVX load instructions
6576   case X86::VMOVSSrm:
6577   case X86::VMOVSSrm_alt:
6578   case X86::VMOVSDrm:
6579   case X86::VMOVSDrm_alt:
6580   case X86::VMOVAPSrm:
6581   case X86::VMOVUPSrm:
6582   case X86::VMOVAPDrm:
6583   case X86::VMOVUPDrm:
6584   case X86::VMOVDQArm:
6585   case X86::VMOVDQUrm:
6586   case X86::VMOVAPSYrm:
6587   case X86::VMOVUPSYrm:
6588   case X86::VMOVAPDYrm:
6589   case X86::VMOVUPDYrm:
6590   case X86::VMOVDQAYrm:
6591   case X86::VMOVDQUYrm:
6592   // AVX512 load instructions
6593   case X86::VMOVSSZrm:
6594   case X86::VMOVSSZrm_alt:
6595   case X86::VMOVSDZrm:
6596   case X86::VMOVSDZrm_alt:
6597   case X86::VMOVAPSZ128rm:
6598   case X86::VMOVUPSZ128rm:
6599   case X86::VMOVAPSZ128rm_NOVLX:
6600   case X86::VMOVUPSZ128rm_NOVLX:
6601   case X86::VMOVAPDZ128rm:
6602   case X86::VMOVUPDZ128rm:
6603   case X86::VMOVDQU8Z128rm:
6604   case X86::VMOVDQU16Z128rm:
6605   case X86::VMOVDQA32Z128rm:
6606   case X86::VMOVDQU32Z128rm:
6607   case X86::VMOVDQA64Z128rm:
6608   case X86::VMOVDQU64Z128rm:
6609   case X86::VMOVAPSZ256rm:
6610   case X86::VMOVUPSZ256rm:
6611   case X86::VMOVAPSZ256rm_NOVLX:
6612   case X86::VMOVUPSZ256rm_NOVLX:
6613   case X86::VMOVAPDZ256rm:
6614   case X86::VMOVUPDZ256rm:
6615   case X86::VMOVDQU8Z256rm:
6616   case X86::VMOVDQU16Z256rm:
6617   case X86::VMOVDQA32Z256rm:
6618   case X86::VMOVDQU32Z256rm:
6619   case X86::VMOVDQA64Z256rm:
6620   case X86::VMOVDQU64Z256rm:
6621   case X86::VMOVAPSZrm:
6622   case X86::VMOVUPSZrm:
6623   case X86::VMOVAPDZrm:
6624   case X86::VMOVUPDZrm:
6625   case X86::VMOVDQU8Zrm:
6626   case X86::VMOVDQU16Zrm:
6627   case X86::VMOVDQA32Zrm:
6628   case X86::VMOVDQU32Zrm:
6629   case X86::VMOVDQA64Zrm:
6630   case X86::VMOVDQU64Zrm:
6631   case X86::KMOVBkm:
6632   case X86::KMOVWkm:
6633   case X86::KMOVDkm:
6634   case X86::KMOVQkm:
6635     break;
6636   }
6637   switch (Opc2) {
6638   default: return false;
6639   case X86::MOV8rm:
6640   case X86::MOV16rm:
6641   case X86::MOV32rm:
6642   case X86::MOV64rm:
6643   case X86::LD_Fp32m:
6644   case X86::LD_Fp64m:
6645   case X86::LD_Fp80m:
6646   case X86::MOVSSrm:
6647   case X86::MOVSSrm_alt:
6648   case X86::MOVSDrm:
6649   case X86::MOVSDrm_alt:
6650   case X86::MMX_MOVD64rm:
6651   case X86::MMX_MOVQ64rm:
6652   case X86::MOVAPSrm:
6653   case X86::MOVUPSrm:
6654   case X86::MOVAPDrm:
6655   case X86::MOVUPDrm:
6656   case X86::MOVDQArm:
6657   case X86::MOVDQUrm:
6658   // AVX load instructions
6659   case X86::VMOVSSrm:
6660   case X86::VMOVSSrm_alt:
6661   case X86::VMOVSDrm:
6662   case X86::VMOVSDrm_alt:
6663   case X86::VMOVAPSrm:
6664   case X86::VMOVUPSrm:
6665   case X86::VMOVAPDrm:
6666   case X86::VMOVUPDrm:
6667   case X86::VMOVDQArm:
6668   case X86::VMOVDQUrm:
6669   case X86::VMOVAPSYrm:
6670   case X86::VMOVUPSYrm:
6671   case X86::VMOVAPDYrm:
6672   case X86::VMOVUPDYrm:
6673   case X86::VMOVDQAYrm:
6674   case X86::VMOVDQUYrm:
6675   // AVX512 load instructions
6676   case X86::VMOVSSZrm:
6677   case X86::VMOVSSZrm_alt:
6678   case X86::VMOVSDZrm:
6679   case X86::VMOVSDZrm_alt:
6680   case X86::VMOVAPSZ128rm:
6681   case X86::VMOVUPSZ128rm:
6682   case X86::VMOVAPSZ128rm_NOVLX:
6683   case X86::VMOVUPSZ128rm_NOVLX:
6684   case X86::VMOVAPDZ128rm:
6685   case X86::VMOVUPDZ128rm:
6686   case X86::VMOVDQU8Z128rm:
6687   case X86::VMOVDQU16Z128rm:
6688   case X86::VMOVDQA32Z128rm:
6689   case X86::VMOVDQU32Z128rm:
6690   case X86::VMOVDQA64Z128rm:
6691   case X86::VMOVDQU64Z128rm:
6692   case X86::VMOVAPSZ256rm:
6693   case X86::VMOVUPSZ256rm:
6694   case X86::VMOVAPSZ256rm_NOVLX:
6695   case X86::VMOVUPSZ256rm_NOVLX:
6696   case X86::VMOVAPDZ256rm:
6697   case X86::VMOVUPDZ256rm:
6698   case X86::VMOVDQU8Z256rm:
6699   case X86::VMOVDQU16Z256rm:
6700   case X86::VMOVDQA32Z256rm:
6701   case X86::VMOVDQU32Z256rm:
6702   case X86::VMOVDQA64Z256rm:
6703   case X86::VMOVDQU64Z256rm:
6704   case X86::VMOVAPSZrm:
6705   case X86::VMOVUPSZrm:
6706   case X86::VMOVAPDZrm:
6707   case X86::VMOVUPDZrm:
6708   case X86::VMOVDQU8Zrm:
6709   case X86::VMOVDQU16Zrm:
6710   case X86::VMOVDQA32Zrm:
6711   case X86::VMOVDQU32Zrm:
6712   case X86::VMOVDQA64Zrm:
6713   case X86::VMOVDQU64Zrm:
6714   case X86::KMOVBkm:
6715   case X86::KMOVWkm:
6716   case X86::KMOVDkm:
6717   case X86::KMOVQkm:
6718     break;
6719   }
6720 
6721   // Lambda to check if both the loads have the same value for an operand index.
6722   auto HasSameOp = [&](int I) {
6723     return Load1->getOperand(I) == Load2->getOperand(I);
6724   };
6725 
6726   // All operands except the displacement should match.
6727   if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
6728       !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
6729     return false;
6730 
6731   // Chain Operand must be the same.
6732   if (!HasSameOp(5))
6733     return false;
6734 
6735   // Now let's examine if the displacements are constants.
6736   auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
6737   auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
6738   if (!Disp1 || !Disp2)
6739     return false;
6740 
6741   Offset1 = Disp1->getSExtValue();
6742   Offset2 = Disp2->getSExtValue();
6743   return true;
6744 }
6745 
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const6746 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
6747                                            int64_t Offset1, int64_t Offset2,
6748                                            unsigned NumLoads) const {
6749   assert(Offset2 > Offset1);
6750   if ((Offset2 - Offset1) / 8 > 64)
6751     return false;
6752 
6753   unsigned Opc1 = Load1->getMachineOpcode();
6754   unsigned Opc2 = Load2->getMachineOpcode();
6755   if (Opc1 != Opc2)
6756     return false;  // FIXME: overly conservative?
6757 
6758   switch (Opc1) {
6759   default: break;
6760   case X86::LD_Fp32m:
6761   case X86::LD_Fp64m:
6762   case X86::LD_Fp80m:
6763   case X86::MMX_MOVD64rm:
6764   case X86::MMX_MOVQ64rm:
6765     return false;
6766   }
6767 
6768   EVT VT = Load1->getValueType(0);
6769   switch (VT.getSimpleVT().SimpleTy) {
6770   default:
6771     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
6772     // have 16 of them to play with.
6773     if (Subtarget.is64Bit()) {
6774       if (NumLoads >= 3)
6775         return false;
6776     } else if (NumLoads) {
6777       return false;
6778     }
6779     break;
6780   case MVT::i8:
6781   case MVT::i16:
6782   case MVT::i32:
6783   case MVT::i64:
6784   case MVT::f32:
6785   case MVT::f64:
6786     if (NumLoads)
6787       return false;
6788     break;
6789   }
6790 
6791   return true;
6792 }
6793 
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const6794 bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
6795                                         const MachineBasicBlock *MBB,
6796                                         const MachineFunction &MF) const {
6797 
6798   // ENDBR instructions should not be scheduled around.
6799   unsigned Opcode = MI.getOpcode();
6800   if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
6801       Opcode == X86::LDTILECFG)
6802     return true;
6803 
6804   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
6805 }
6806 
6807 bool X86InstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const6808 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
6809   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
6810   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
6811   Cond[0].setImm(GetOppositeBranchCondition(CC));
6812   return false;
6813 }
6814 
6815 bool X86InstrInfo::
isSafeToMoveRegClassDefs(const TargetRegisterClass * RC) const6816 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
6817   // FIXME: Return false for x87 stack register classes for now. We can't
6818   // allow any loads of these registers before FpGet_ST0_80.
6819   return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
6820            RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
6821            RC == &X86::RFP80RegClass);
6822 }
6823 
6824 /// Return a virtual register initialized with the
6825 /// the global base register value. Output instructions required to
6826 /// initialize the register in the function entry block, if necessary.
6827 ///
6828 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
6829 ///
getGlobalBaseReg(MachineFunction * MF) const6830 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
6831   assert((!Subtarget.is64Bit() ||
6832           MF->getTarget().getCodeModel() == CodeModel::Medium ||
6833           MF->getTarget().getCodeModel() == CodeModel::Large) &&
6834          "X86-64 PIC uses RIP relative addressing");
6835 
6836   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
6837   Register GlobalBaseReg = X86FI->getGlobalBaseReg();
6838   if (GlobalBaseReg != 0)
6839     return GlobalBaseReg;
6840 
6841   // Create the register. The code to initialize it is inserted
6842   // later, by the CGBR pass (below).
6843   MachineRegisterInfo &RegInfo = MF->getRegInfo();
6844   GlobalBaseReg = RegInfo.createVirtualRegister(
6845       Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
6846   X86FI->setGlobalBaseReg(GlobalBaseReg);
6847   return GlobalBaseReg;
6848 }
6849 
6850 // These are the replaceable SSE instructions. Some of these have Int variants
6851 // that we don't include here. We don't want to replace instructions selected
6852 // by intrinsics.
6853 static const uint16_t ReplaceableInstrs[][3] = {
6854   //PackedSingle     PackedDouble    PackedInt
6855   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
6856   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
6857   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
6858   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
6859   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
6860   { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr },
6861   { X86::MOVSDmr,    X86::MOVSDmr,   X86::MOVPQI2QImr },
6862   { X86::MOVSSmr,    X86::MOVSSmr,   X86::MOVPDI2DImr },
6863   { X86::MOVSDrm,    X86::MOVSDrm,   X86::MOVQI2PQIrm },
6864   { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
6865   { X86::MOVSSrm,    X86::MOVSSrm,   X86::MOVDI2PDIrm },
6866   { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
6867   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
6868   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
6869   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
6870   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
6871   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
6872   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
6873   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
6874   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
6875   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
6876   { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
6877   { X86::MOVLHPSrr,  X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
6878   { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
6879   { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
6880   { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
6881   { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
6882   { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
6883   { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
6884   { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
6885   { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
6886   // AVX 128-bit support
6887   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
6888   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
6889   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
6890   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
6891   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
6892   { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr },
6893   { X86::VMOVSDmr,   X86::VMOVSDmr,   X86::VMOVPQI2QImr },
6894   { X86::VMOVSSmr,   X86::VMOVSSmr,   X86::VMOVPDI2DImr },
6895   { X86::VMOVSDrm,   X86::VMOVSDrm,   X86::VMOVQI2PQIrm },
6896   { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
6897   { X86::VMOVSSrm,   X86::VMOVSSrm,   X86::VMOVDI2PDIrm },
6898   { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
6899   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
6900   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
6901   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
6902   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
6903   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
6904   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
6905   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
6906   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
6907   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
6908   { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
6909   { X86::VMOVLHPSrr,  X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
6910   { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
6911   { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
6912   { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
6913   { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
6914   { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
6915   { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
6916   { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
6917   { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
6918   // AVX 256-bit support
6919   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
6920   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
6921   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
6922   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
6923   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
6924   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
6925   { X86::VPERMPSYrm,   X86::VPERMPSYrm,   X86::VPERMDYrm },
6926   { X86::VPERMPSYrr,   X86::VPERMPSYrr,   X86::VPERMDYrr },
6927   { X86::VPERMPDYmi,   X86::VPERMPDYmi,   X86::VPERMQYmi },
6928   { X86::VPERMPDYri,   X86::VPERMPDYri,   X86::VPERMQYri },
6929   // AVX512 support
6930   { X86::VMOVLPSZ128mr,  X86::VMOVLPDZ128mr,  X86::VMOVPQI2QIZmr  },
6931   { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
6932   { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
6933   { X86::VMOVNTPSZmr,    X86::VMOVNTPDZmr,    X86::VMOVNTDQZmr    },
6934   { X86::VMOVSDZmr,      X86::VMOVSDZmr,      X86::VMOVPQI2QIZmr  },
6935   { X86::VMOVSSZmr,      X86::VMOVSSZmr,      X86::VMOVPDI2DIZmr  },
6936   { X86::VMOVSDZrm,      X86::VMOVSDZrm,      X86::VMOVQI2PQIZrm  },
6937   { X86::VMOVSDZrm_alt,  X86::VMOVSDZrm_alt,  X86::VMOVQI2PQIZrm  },
6938   { X86::VMOVSSZrm,      X86::VMOVSSZrm,      X86::VMOVDI2PDIZrm  },
6939   { X86::VMOVSSZrm_alt,  X86::VMOVSSZrm_alt,  X86::VMOVDI2PDIZrm  },
6940   { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr },
6941   { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm },
6942   { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr },
6943   { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm },
6944   { X86::VBROADCASTSSZrr,   X86::VBROADCASTSSZrr,   X86::VPBROADCASTDZrr },
6945   { X86::VBROADCASTSSZrm,   X86::VBROADCASTSSZrm,   X86::VPBROADCASTDZrm },
6946   { X86::VMOVDDUPZ128rr,    X86::VMOVDDUPZ128rr,    X86::VPBROADCASTQZ128rr },
6947   { X86::VMOVDDUPZ128rm,    X86::VMOVDDUPZ128rm,    X86::VPBROADCASTQZ128rm },
6948   { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr },
6949   { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm },
6950   { X86::VBROADCASTSDZrr,   X86::VBROADCASTSDZrr,   X86::VPBROADCASTQZrr },
6951   { X86::VBROADCASTSDZrm,   X86::VBROADCASTSDZrm,   X86::VPBROADCASTQZrm },
6952   { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrr,   X86::VINSERTI32x4Zrr },
6953   { X86::VINSERTF32x4Zrm,   X86::VINSERTF32x4Zrm,   X86::VINSERTI32x4Zrm },
6954   { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrr,   X86::VINSERTI32x8Zrr },
6955   { X86::VINSERTF32x8Zrm,   X86::VINSERTF32x8Zrm,   X86::VINSERTI32x8Zrm },
6956   { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrr,   X86::VINSERTI64x2Zrr },
6957   { X86::VINSERTF64x2Zrm,   X86::VINSERTF64x2Zrm,   X86::VINSERTI64x2Zrm },
6958   { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrr,   X86::VINSERTI64x4Zrr },
6959   { X86::VINSERTF64x4Zrm,   X86::VINSERTF64x4Zrm,   X86::VINSERTI64x4Zrm },
6960   { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
6961   { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
6962   { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
6963   { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
6964   { X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTI32x4Zrr },
6965   { X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTI32x4Zmr },
6966   { X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTI32x8Zrr },
6967   { X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTI32x8Zmr },
6968   { X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTI64x2Zrr },
6969   { X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTI64x2Zmr },
6970   { X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTI64x4Zrr },
6971   { X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTI64x4Zmr },
6972   { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
6973   { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
6974   { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
6975   { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
6976   { X86::VPERMILPSmi,        X86::VPERMILPSmi,        X86::VPSHUFDmi },
6977   { X86::VPERMILPSri,        X86::VPERMILPSri,        X86::VPSHUFDri },
6978   { X86::VPERMILPSZ128mi,    X86::VPERMILPSZ128mi,    X86::VPSHUFDZ128mi },
6979   { X86::VPERMILPSZ128ri,    X86::VPERMILPSZ128ri,    X86::VPSHUFDZ128ri },
6980   { X86::VPERMILPSZ256mi,    X86::VPERMILPSZ256mi,    X86::VPSHUFDZ256mi },
6981   { X86::VPERMILPSZ256ri,    X86::VPERMILPSZ256ri,    X86::VPSHUFDZ256ri },
6982   { X86::VPERMILPSZmi,       X86::VPERMILPSZmi,       X86::VPSHUFDZmi },
6983   { X86::VPERMILPSZri,       X86::VPERMILPSZri,       X86::VPSHUFDZri },
6984   { X86::VPERMPSZ256rm,      X86::VPERMPSZ256rm,      X86::VPERMDZ256rm },
6985   { X86::VPERMPSZ256rr,      X86::VPERMPSZ256rr,      X86::VPERMDZ256rr },
6986   { X86::VPERMPDZ256mi,      X86::VPERMPDZ256mi,      X86::VPERMQZ256mi },
6987   { X86::VPERMPDZ256ri,      X86::VPERMPDZ256ri,      X86::VPERMQZ256ri },
6988   { X86::VPERMPDZ256rm,      X86::VPERMPDZ256rm,      X86::VPERMQZ256rm },
6989   { X86::VPERMPDZ256rr,      X86::VPERMPDZ256rr,      X86::VPERMQZ256rr },
6990   { X86::VPERMPSZrm,         X86::VPERMPSZrm,         X86::VPERMDZrm },
6991   { X86::VPERMPSZrr,         X86::VPERMPSZrr,         X86::VPERMDZrr },
6992   { X86::VPERMPDZmi,         X86::VPERMPDZmi,         X86::VPERMQZmi },
6993   { X86::VPERMPDZri,         X86::VPERMPDZri,         X86::VPERMQZri },
6994   { X86::VPERMPDZrm,         X86::VPERMPDZrm,         X86::VPERMQZrm },
6995   { X86::VPERMPDZrr,         X86::VPERMPDZrr,         X86::VPERMQZrr },
6996   { X86::VUNPCKLPDZ256rm,    X86::VUNPCKLPDZ256rm,    X86::VPUNPCKLQDQZ256rm },
6997   { X86::VUNPCKLPDZ256rr,    X86::VUNPCKLPDZ256rr,    X86::VPUNPCKLQDQZ256rr },
6998   { X86::VUNPCKHPDZ256rm,    X86::VUNPCKHPDZ256rm,    X86::VPUNPCKHQDQZ256rm },
6999   { X86::VUNPCKHPDZ256rr,    X86::VUNPCKHPDZ256rr,    X86::VPUNPCKHQDQZ256rr },
7000   { X86::VUNPCKLPSZ256rm,    X86::VUNPCKLPSZ256rm,    X86::VPUNPCKLDQZ256rm },
7001   { X86::VUNPCKLPSZ256rr,    X86::VUNPCKLPSZ256rr,    X86::VPUNPCKLDQZ256rr },
7002   { X86::VUNPCKHPSZ256rm,    X86::VUNPCKHPSZ256rm,    X86::VPUNPCKHDQZ256rm },
7003   { X86::VUNPCKHPSZ256rr,    X86::VUNPCKHPSZ256rr,    X86::VPUNPCKHDQZ256rr },
7004   { X86::VUNPCKLPDZ128rm,    X86::VUNPCKLPDZ128rm,    X86::VPUNPCKLQDQZ128rm },
7005   { X86::VMOVLHPSZrr,        X86::VUNPCKLPDZ128rr,    X86::VPUNPCKLQDQZ128rr },
7006   { X86::VUNPCKHPDZ128rm,    X86::VUNPCKHPDZ128rm,    X86::VPUNPCKHQDQZ128rm },
7007   { X86::VUNPCKHPDZ128rr,    X86::VUNPCKHPDZ128rr,    X86::VPUNPCKHQDQZ128rr },
7008   { X86::VUNPCKLPSZ128rm,    X86::VUNPCKLPSZ128rm,    X86::VPUNPCKLDQZ128rm },
7009   { X86::VUNPCKLPSZ128rr,    X86::VUNPCKLPSZ128rr,    X86::VPUNPCKLDQZ128rr },
7010   { X86::VUNPCKHPSZ128rm,    X86::VUNPCKHPSZ128rm,    X86::VPUNPCKHDQZ128rm },
7011   { X86::VUNPCKHPSZ128rr,    X86::VUNPCKHPSZ128rr,    X86::VPUNPCKHDQZ128rr },
7012   { X86::VUNPCKLPDZrm,       X86::VUNPCKLPDZrm,       X86::VPUNPCKLQDQZrm },
7013   { X86::VUNPCKLPDZrr,       X86::VUNPCKLPDZrr,       X86::VPUNPCKLQDQZrr },
7014   { X86::VUNPCKHPDZrm,       X86::VUNPCKHPDZrm,       X86::VPUNPCKHQDQZrm },
7015   { X86::VUNPCKHPDZrr,       X86::VUNPCKHPDZrr,       X86::VPUNPCKHQDQZrr },
7016   { X86::VUNPCKLPSZrm,       X86::VUNPCKLPSZrm,       X86::VPUNPCKLDQZrm },
7017   { X86::VUNPCKLPSZrr,       X86::VUNPCKLPSZrr,       X86::VPUNPCKLDQZrr },
7018   { X86::VUNPCKHPSZrm,       X86::VUNPCKHPSZrm,       X86::VPUNPCKHDQZrm },
7019   { X86::VUNPCKHPSZrr,       X86::VUNPCKHPSZrr,       X86::VPUNPCKHDQZrr },
7020   { X86::VEXTRACTPSZmr,      X86::VEXTRACTPSZmr,      X86::VPEXTRDZmr },
7021   { X86::VEXTRACTPSZrr,      X86::VEXTRACTPSZrr,      X86::VPEXTRDZrr },
7022 };
7023 
7024 static const uint16_t ReplaceableInstrsAVX2[][3] = {
7025   //PackedSingle       PackedDouble       PackedInt
7026   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
7027   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
7028   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
7029   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
7030   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
7031   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
7032   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
7033   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
7034   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
7035   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
7036   { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
7037   { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
7038   { X86::VMOVDDUPrm,     X86::VMOVDDUPrm,     X86::VPBROADCASTQrm},
7039   { X86::VMOVDDUPrr,     X86::VMOVDDUPrr,     X86::VPBROADCASTQrr},
7040   { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
7041   { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
7042   { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
7043   { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
7044   { X86::VBROADCASTF128,  X86::VBROADCASTF128,  X86::VBROADCASTI128 },
7045   { X86::VBLENDPSYrri,    X86::VBLENDPSYrri,    X86::VPBLENDDYrri },
7046   { X86::VBLENDPSYrmi,    X86::VBLENDPSYrmi,    X86::VPBLENDDYrmi },
7047   { X86::VPERMILPSYmi,    X86::VPERMILPSYmi,    X86::VPSHUFDYmi },
7048   { X86::VPERMILPSYri,    X86::VPERMILPSYri,    X86::VPSHUFDYri },
7049   { X86::VUNPCKLPDYrm,    X86::VUNPCKLPDYrm,    X86::VPUNPCKLQDQYrm },
7050   { X86::VUNPCKLPDYrr,    X86::VUNPCKLPDYrr,    X86::VPUNPCKLQDQYrr },
7051   { X86::VUNPCKHPDYrm,    X86::VUNPCKHPDYrm,    X86::VPUNPCKHQDQYrm },
7052   { X86::VUNPCKHPDYrr,    X86::VUNPCKHPDYrr,    X86::VPUNPCKHQDQYrr },
7053   { X86::VUNPCKLPSYrm,    X86::VUNPCKLPSYrm,    X86::VPUNPCKLDQYrm },
7054   { X86::VUNPCKLPSYrr,    X86::VUNPCKLPSYrr,    X86::VPUNPCKLDQYrr },
7055   { X86::VUNPCKHPSYrm,    X86::VUNPCKHPSYrm,    X86::VPUNPCKHDQYrm },
7056   { X86::VUNPCKHPSYrr,    X86::VUNPCKHPSYrr,    X86::VPUNPCKHDQYrr },
7057 };
7058 
7059 static const uint16_t ReplaceableInstrsFP[][3] = {
7060   //PackedSingle         PackedDouble
7061   { X86::MOVLPSrm,       X86::MOVLPDrm,      X86::INSTRUCTION_LIST_END },
7062   { X86::MOVHPSrm,       X86::MOVHPDrm,      X86::INSTRUCTION_LIST_END },
7063   { X86::MOVHPSmr,       X86::MOVHPDmr,      X86::INSTRUCTION_LIST_END },
7064   { X86::VMOVLPSrm,      X86::VMOVLPDrm,     X86::INSTRUCTION_LIST_END },
7065   { X86::VMOVHPSrm,      X86::VMOVHPDrm,     X86::INSTRUCTION_LIST_END },
7066   { X86::VMOVHPSmr,      X86::VMOVHPDmr,     X86::INSTRUCTION_LIST_END },
7067   { X86::VMOVLPSZ128rm,  X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
7068   { X86::VMOVHPSZ128rm,  X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
7069   { X86::VMOVHPSZ128mr,  X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
7070 };
7071 
7072 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
7073   //PackedSingle       PackedDouble       PackedInt
7074   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
7075   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
7076   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
7077   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
7078 };
7079 
7080 static const uint16_t ReplaceableInstrsAVX512[][4] = {
7081   // Two integer columns for 64-bit and 32-bit elements.
7082   //PackedSingle        PackedDouble        PackedInt             PackedInt
7083   { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr  },
7084   { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm  },
7085   { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr  },
7086   { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr  },
7087   { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm  },
7088   { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr  },
7089   { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm  },
7090   { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr  },
7091   { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr  },
7092   { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm  },
7093   { X86::VMOVAPSZmr,    X86::VMOVAPDZmr,    X86::VMOVDQA64Zmr,    X86::VMOVDQA32Zmr     },
7094   { X86::VMOVAPSZrm,    X86::VMOVAPDZrm,    X86::VMOVDQA64Zrm,    X86::VMOVDQA32Zrm     },
7095   { X86::VMOVAPSZrr,    X86::VMOVAPDZrr,    X86::VMOVDQA64Zrr,    X86::VMOVDQA32Zrr     },
7096   { X86::VMOVUPSZmr,    X86::VMOVUPDZmr,    X86::VMOVDQU64Zmr,    X86::VMOVDQU32Zmr     },
7097   { X86::VMOVUPSZrm,    X86::VMOVUPDZrm,    X86::VMOVDQU64Zrm,    X86::VMOVDQU32Zrm     },
7098 };
7099 
7100 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
7101   // Two integer columns for 64-bit and 32-bit elements.
7102   //PackedSingle        PackedDouble        PackedInt           PackedInt
7103   { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7104   { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7105   { X86::VANDPSZ128rm,  X86::VANDPDZ128rm,  X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
7106   { X86::VANDPSZ128rr,  X86::VANDPDZ128rr,  X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
7107   { X86::VORPSZ128rm,   X86::VORPDZ128rm,   X86::VPORQZ128rm,   X86::VPORDZ128rm   },
7108   { X86::VORPSZ128rr,   X86::VORPDZ128rr,   X86::VPORQZ128rr,   X86::VPORDZ128rr   },
7109   { X86::VXORPSZ128rm,  X86::VXORPDZ128rm,  X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
7110   { X86::VXORPSZ128rr,  X86::VXORPDZ128rr,  X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
7111   { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7112   { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7113   { X86::VANDPSZ256rm,  X86::VANDPDZ256rm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
7114   { X86::VANDPSZ256rr,  X86::VANDPDZ256rr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
7115   { X86::VORPSZ256rm,   X86::VORPDZ256rm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
7116   { X86::VORPSZ256rr,   X86::VORPDZ256rr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
7117   { X86::VXORPSZ256rm,  X86::VXORPDZ256rm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
7118   { X86::VXORPSZ256rr,  X86::VXORPDZ256rr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
7119   { X86::VANDNPSZrm,    X86::VANDNPDZrm,    X86::VPANDNQZrm,    X86::VPANDNDZrm    },
7120   { X86::VANDNPSZrr,    X86::VANDNPDZrr,    X86::VPANDNQZrr,    X86::VPANDNDZrr    },
7121   { X86::VANDPSZrm,     X86::VANDPDZrm,     X86::VPANDQZrm,     X86::VPANDDZrm     },
7122   { X86::VANDPSZrr,     X86::VANDPDZrr,     X86::VPANDQZrr,     X86::VPANDDZrr     },
7123   { X86::VORPSZrm,      X86::VORPDZrm,      X86::VPORQZrm,      X86::VPORDZrm      },
7124   { X86::VORPSZrr,      X86::VORPDZrr,      X86::VPORQZrr,      X86::VPORDZrr      },
7125   { X86::VXORPSZrm,     X86::VXORPDZrm,     X86::VPXORQZrm,     X86::VPXORDZrm     },
7126   { X86::VXORPSZrr,     X86::VXORPDZrr,     X86::VPXORQZrr,     X86::VPXORDZrr     },
7127 };
7128 
7129 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
7130   // Two integer columns for 64-bit and 32-bit elements.
7131   //PackedSingle          PackedDouble
7132   //PackedInt             PackedInt
7133   { X86::VANDNPSZ128rmk,  X86::VANDNPDZ128rmk,
7134     X86::VPANDNQZ128rmk,  X86::VPANDNDZ128rmk  },
7135   { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
7136     X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
7137   { X86::VANDNPSZ128rrk,  X86::VANDNPDZ128rrk,
7138     X86::VPANDNQZ128rrk,  X86::VPANDNDZ128rrk  },
7139   { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
7140     X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
7141   { X86::VANDPSZ128rmk,   X86::VANDPDZ128rmk,
7142     X86::VPANDQZ128rmk,   X86::VPANDDZ128rmk   },
7143   { X86::VANDPSZ128rmkz,  X86::VANDPDZ128rmkz,
7144     X86::VPANDQZ128rmkz,  X86::VPANDDZ128rmkz  },
7145   { X86::VANDPSZ128rrk,   X86::VANDPDZ128rrk,
7146     X86::VPANDQZ128rrk,   X86::VPANDDZ128rrk   },
7147   { X86::VANDPSZ128rrkz,  X86::VANDPDZ128rrkz,
7148     X86::VPANDQZ128rrkz,  X86::VPANDDZ128rrkz  },
7149   { X86::VORPSZ128rmk,    X86::VORPDZ128rmk,
7150     X86::VPORQZ128rmk,    X86::VPORDZ128rmk    },
7151   { X86::VORPSZ128rmkz,   X86::VORPDZ128rmkz,
7152     X86::VPORQZ128rmkz,   X86::VPORDZ128rmkz   },
7153   { X86::VORPSZ128rrk,    X86::VORPDZ128rrk,
7154     X86::VPORQZ128rrk,    X86::VPORDZ128rrk    },
7155   { X86::VORPSZ128rrkz,   X86::VORPDZ128rrkz,
7156     X86::VPORQZ128rrkz,   X86::VPORDZ128rrkz   },
7157   { X86::VXORPSZ128rmk,   X86::VXORPDZ128rmk,
7158     X86::VPXORQZ128rmk,   X86::VPXORDZ128rmk   },
7159   { X86::VXORPSZ128rmkz,  X86::VXORPDZ128rmkz,
7160     X86::VPXORQZ128rmkz,  X86::VPXORDZ128rmkz  },
7161   { X86::VXORPSZ128rrk,   X86::VXORPDZ128rrk,
7162     X86::VPXORQZ128rrk,   X86::VPXORDZ128rrk   },
7163   { X86::VXORPSZ128rrkz,  X86::VXORPDZ128rrkz,
7164     X86::VPXORQZ128rrkz,  X86::VPXORDZ128rrkz  },
7165   { X86::VANDNPSZ256rmk,  X86::VANDNPDZ256rmk,
7166     X86::VPANDNQZ256rmk,  X86::VPANDNDZ256rmk  },
7167   { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
7168     X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
7169   { X86::VANDNPSZ256rrk,  X86::VANDNPDZ256rrk,
7170     X86::VPANDNQZ256rrk,  X86::VPANDNDZ256rrk  },
7171   { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
7172     X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
7173   { X86::VANDPSZ256rmk,   X86::VANDPDZ256rmk,
7174     X86::VPANDQZ256rmk,   X86::VPANDDZ256rmk   },
7175   { X86::VANDPSZ256rmkz,  X86::VANDPDZ256rmkz,
7176     X86::VPANDQZ256rmkz,  X86::VPANDDZ256rmkz  },
7177   { X86::VANDPSZ256rrk,   X86::VANDPDZ256rrk,
7178     X86::VPANDQZ256rrk,   X86::VPANDDZ256rrk   },
7179   { X86::VANDPSZ256rrkz,  X86::VANDPDZ256rrkz,
7180     X86::VPANDQZ256rrkz,  X86::VPANDDZ256rrkz  },
7181   { X86::VORPSZ256rmk,    X86::VORPDZ256rmk,
7182     X86::VPORQZ256rmk,    X86::VPORDZ256rmk    },
7183   { X86::VORPSZ256rmkz,   X86::VORPDZ256rmkz,
7184     X86::VPORQZ256rmkz,   X86::VPORDZ256rmkz   },
7185   { X86::VORPSZ256rrk,    X86::VORPDZ256rrk,
7186     X86::VPORQZ256rrk,    X86::VPORDZ256rrk    },
7187   { X86::VORPSZ256rrkz,   X86::VORPDZ256rrkz,
7188     X86::VPORQZ256rrkz,   X86::VPORDZ256rrkz   },
7189   { X86::VXORPSZ256rmk,   X86::VXORPDZ256rmk,
7190     X86::VPXORQZ256rmk,   X86::VPXORDZ256rmk   },
7191   { X86::VXORPSZ256rmkz,  X86::VXORPDZ256rmkz,
7192     X86::VPXORQZ256rmkz,  X86::VPXORDZ256rmkz  },
7193   { X86::VXORPSZ256rrk,   X86::VXORPDZ256rrk,
7194     X86::VPXORQZ256rrk,   X86::VPXORDZ256rrk   },
7195   { X86::VXORPSZ256rrkz,  X86::VXORPDZ256rrkz,
7196     X86::VPXORQZ256rrkz,  X86::VPXORDZ256rrkz  },
7197   { X86::VANDNPSZrmk,     X86::VANDNPDZrmk,
7198     X86::VPANDNQZrmk,     X86::VPANDNDZrmk     },
7199   { X86::VANDNPSZrmkz,    X86::VANDNPDZrmkz,
7200     X86::VPANDNQZrmkz,    X86::VPANDNDZrmkz    },
7201   { X86::VANDNPSZrrk,     X86::VANDNPDZrrk,
7202     X86::VPANDNQZrrk,     X86::VPANDNDZrrk     },
7203   { X86::VANDNPSZrrkz,    X86::VANDNPDZrrkz,
7204     X86::VPANDNQZrrkz,    X86::VPANDNDZrrkz    },
7205   { X86::VANDPSZrmk,      X86::VANDPDZrmk,
7206     X86::VPANDQZrmk,      X86::VPANDDZrmk      },
7207   { X86::VANDPSZrmkz,     X86::VANDPDZrmkz,
7208     X86::VPANDQZrmkz,     X86::VPANDDZrmkz     },
7209   { X86::VANDPSZrrk,      X86::VANDPDZrrk,
7210     X86::VPANDQZrrk,      X86::VPANDDZrrk      },
7211   { X86::VANDPSZrrkz,     X86::VANDPDZrrkz,
7212     X86::VPANDQZrrkz,     X86::VPANDDZrrkz     },
7213   { X86::VORPSZrmk,       X86::VORPDZrmk,
7214     X86::VPORQZrmk,       X86::VPORDZrmk       },
7215   { X86::VORPSZrmkz,      X86::VORPDZrmkz,
7216     X86::VPORQZrmkz,      X86::VPORDZrmkz      },
7217   { X86::VORPSZrrk,       X86::VORPDZrrk,
7218     X86::VPORQZrrk,       X86::VPORDZrrk       },
7219   { X86::VORPSZrrkz,      X86::VORPDZrrkz,
7220     X86::VPORQZrrkz,      X86::VPORDZrrkz      },
7221   { X86::VXORPSZrmk,      X86::VXORPDZrmk,
7222     X86::VPXORQZrmk,      X86::VPXORDZrmk      },
7223   { X86::VXORPSZrmkz,     X86::VXORPDZrmkz,
7224     X86::VPXORQZrmkz,     X86::VPXORDZrmkz     },
7225   { X86::VXORPSZrrk,      X86::VXORPDZrrk,
7226     X86::VPXORQZrrk,      X86::VPXORDZrrk      },
7227   { X86::VXORPSZrrkz,     X86::VXORPDZrrkz,
7228     X86::VPXORQZrrkz,     X86::VPXORDZrrkz     },
7229   // Broadcast loads can be handled the same as masked operations to avoid
7230   // changing element size.
7231   { X86::VANDNPSZ128rmb,  X86::VANDNPDZ128rmb,
7232     X86::VPANDNQZ128rmb,  X86::VPANDNDZ128rmb  },
7233   { X86::VANDPSZ128rmb,   X86::VANDPDZ128rmb,
7234     X86::VPANDQZ128rmb,   X86::VPANDDZ128rmb   },
7235   { X86::VORPSZ128rmb,    X86::VORPDZ128rmb,
7236     X86::VPORQZ128rmb,    X86::VPORDZ128rmb    },
7237   { X86::VXORPSZ128rmb,   X86::VXORPDZ128rmb,
7238     X86::VPXORQZ128rmb,   X86::VPXORDZ128rmb   },
7239   { X86::VANDNPSZ256rmb,  X86::VANDNPDZ256rmb,
7240     X86::VPANDNQZ256rmb,  X86::VPANDNDZ256rmb  },
7241   { X86::VANDPSZ256rmb,   X86::VANDPDZ256rmb,
7242     X86::VPANDQZ256rmb,   X86::VPANDDZ256rmb   },
7243   { X86::VORPSZ256rmb,    X86::VORPDZ256rmb,
7244     X86::VPORQZ256rmb,    X86::VPORDZ256rmb    },
7245   { X86::VXORPSZ256rmb,   X86::VXORPDZ256rmb,
7246     X86::VPXORQZ256rmb,   X86::VPXORDZ256rmb   },
7247   { X86::VANDNPSZrmb,     X86::VANDNPDZrmb,
7248     X86::VPANDNQZrmb,     X86::VPANDNDZrmb     },
7249   { X86::VANDPSZrmb,      X86::VANDPDZrmb,
7250     X86::VPANDQZrmb,      X86::VPANDDZrmb      },
7251   { X86::VANDPSZrmb,      X86::VANDPDZrmb,
7252     X86::VPANDQZrmb,      X86::VPANDDZrmb      },
7253   { X86::VORPSZrmb,       X86::VORPDZrmb,
7254     X86::VPORQZrmb,       X86::VPORDZrmb       },
7255   { X86::VXORPSZrmb,      X86::VXORPDZrmb,
7256     X86::VPXORQZrmb,      X86::VPXORDZrmb      },
7257   { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
7258     X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
7259   { X86::VANDPSZ128rmbk,  X86::VANDPDZ128rmbk,
7260     X86::VPANDQZ128rmbk,  X86::VPANDDZ128rmbk  },
7261   { X86::VORPSZ128rmbk,   X86::VORPDZ128rmbk,
7262     X86::VPORQZ128rmbk,   X86::VPORDZ128rmbk   },
7263   { X86::VXORPSZ128rmbk,  X86::VXORPDZ128rmbk,
7264     X86::VPXORQZ128rmbk,  X86::VPXORDZ128rmbk  },
7265   { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
7266     X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
7267   { X86::VANDPSZ256rmbk,  X86::VANDPDZ256rmbk,
7268     X86::VPANDQZ256rmbk,  X86::VPANDDZ256rmbk  },
7269   { X86::VORPSZ256rmbk,   X86::VORPDZ256rmbk,
7270     X86::VPORQZ256rmbk,   X86::VPORDZ256rmbk   },
7271   { X86::VXORPSZ256rmbk,  X86::VXORPDZ256rmbk,
7272     X86::VPXORQZ256rmbk,  X86::VPXORDZ256rmbk  },
7273   { X86::VANDNPSZrmbk,    X86::VANDNPDZrmbk,
7274     X86::VPANDNQZrmbk,    X86::VPANDNDZrmbk    },
7275   { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
7276     X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
7277   { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
7278     X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
7279   { X86::VORPSZrmbk,      X86::VORPDZrmbk,
7280     X86::VPORQZrmbk,      X86::VPORDZrmbk      },
7281   { X86::VXORPSZrmbk,     X86::VXORPDZrmbk,
7282     X86::VPXORQZrmbk,     X86::VPXORDZrmbk     },
7283   { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
7284     X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
7285   { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
7286     X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
7287   { X86::VORPSZ128rmbkz,  X86::VORPDZ128rmbkz,
7288     X86::VPORQZ128rmbkz,  X86::VPORDZ128rmbkz  },
7289   { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
7290     X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
7291   { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
7292     X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
7293   { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
7294     X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
7295   { X86::VORPSZ256rmbkz,  X86::VORPDZ256rmbkz,
7296     X86::VPORQZ256rmbkz,  X86::VPORDZ256rmbkz  },
7297   { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
7298     X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
7299   { X86::VANDNPSZrmbkz,   X86::VANDNPDZrmbkz,
7300     X86::VPANDNQZrmbkz,   X86::VPANDNDZrmbkz   },
7301   { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
7302     X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
7303   { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
7304     X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
7305   { X86::VORPSZrmbkz,     X86::VORPDZrmbkz,
7306     X86::VPORQZrmbkz,     X86::VPORDZrmbkz     },
7307   { X86::VXORPSZrmbkz,    X86::VXORPDZrmbkz,
7308     X86::VPXORQZrmbkz,    X86::VPXORDZrmbkz    },
7309 };
7310 
7311 // NOTE: These should only be used by the custom domain methods.
7312 static const uint16_t ReplaceableBlendInstrs[][3] = {
7313   //PackedSingle             PackedDouble             PackedInt
7314   { X86::BLENDPSrmi,         X86::BLENDPDrmi,         X86::PBLENDWrmi   },
7315   { X86::BLENDPSrri,         X86::BLENDPDrri,         X86::PBLENDWrri   },
7316   { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDWrmi  },
7317   { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDWrri  },
7318   { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDWYrmi },
7319   { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDWYrri },
7320 };
7321 static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
7322   //PackedSingle             PackedDouble             PackedInt
7323   { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDDrmi  },
7324   { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDDrri  },
7325   { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDDYrmi },
7326   { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDDYrri },
7327 };
7328 
7329 // Special table for changing EVEX logic instructions to VEX.
7330 // TODO: Should we run EVEX->VEX earlier?
7331 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
7332   // Two integer columns for 64-bit and 32-bit elements.
7333   //PackedSingle     PackedDouble     PackedInt           PackedInt
7334   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7335   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7336   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
7337   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
7338   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORQZ128rm,   X86::VPORDZ128rm   },
7339   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORQZ128rr,   X86::VPORDZ128rr   },
7340   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
7341   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
7342   { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7343   { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7344   { X86::VANDPSYrm,  X86::VANDPDYrm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
7345   { X86::VANDPSYrr,  X86::VANDPDYrr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
7346   { X86::VORPSYrm,   X86::VORPDYrm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
7347   { X86::VORPSYrr,   X86::VORPDYrr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
7348   { X86::VXORPSYrm,  X86::VXORPDYrm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
7349   { X86::VXORPSYrr,  X86::VXORPDYrr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
7350 };
7351 
7352 // FIXME: Some shuffle and unpack instructions have equivalents in different
7353 // domains, but they require a bit more work than just switching opcodes.
7354 
lookup(unsigned opcode,unsigned domain,ArrayRef<uint16_t[3]> Table)7355 static const uint16_t *lookup(unsigned opcode, unsigned domain,
7356                               ArrayRef<uint16_t[3]> Table) {
7357   for (const uint16_t (&Row)[3] : Table)
7358     if (Row[domain-1] == opcode)
7359       return Row;
7360   return nullptr;
7361 }
7362 
lookupAVX512(unsigned opcode,unsigned domain,ArrayRef<uint16_t[4]> Table)7363 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
7364                                     ArrayRef<uint16_t[4]> Table) {
7365   // If this is the integer domain make sure to check both integer columns.
7366   for (const uint16_t (&Row)[4] : Table)
7367     if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
7368       return Row;
7369   return nullptr;
7370 }
7371 
7372 // Helper to attempt to widen/narrow blend masks.
AdjustBlendMask(unsigned OldMask,unsigned OldWidth,unsigned NewWidth,unsigned * pNewMask=nullptr)7373 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
7374                             unsigned NewWidth, unsigned *pNewMask = nullptr) {
7375   assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
7376          "Illegal blend mask scale");
7377   unsigned NewMask = 0;
7378 
7379   if ((OldWidth % NewWidth) == 0) {
7380     unsigned Scale = OldWidth / NewWidth;
7381     unsigned SubMask = (1u << Scale) - 1;
7382     for (unsigned i = 0; i != NewWidth; ++i) {
7383       unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
7384       if (Sub == SubMask)
7385         NewMask |= (1u << i);
7386       else if (Sub != 0x0)
7387         return false;
7388     }
7389   } else {
7390     unsigned Scale = NewWidth / OldWidth;
7391     unsigned SubMask = (1u << Scale) - 1;
7392     for (unsigned i = 0; i != OldWidth; ++i) {
7393       if (OldMask & (1 << i)) {
7394         NewMask |= (SubMask << (i * Scale));
7395       }
7396     }
7397   }
7398 
7399   if (pNewMask)
7400     *pNewMask = NewMask;
7401   return true;
7402 }
7403 
getExecutionDomainCustom(const MachineInstr & MI) const7404 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
7405   unsigned Opcode = MI.getOpcode();
7406   unsigned NumOperands = MI.getDesc().getNumOperands();
7407 
7408   auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
7409     uint16_t validDomains = 0;
7410     if (MI.getOperand(NumOperands - 1).isImm()) {
7411       unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
7412       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
7413         validDomains |= 0x2; // PackedSingle
7414       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
7415         validDomains |= 0x4; // PackedDouble
7416       if (!Is256 || Subtarget.hasAVX2())
7417         validDomains |= 0x8; // PackedInt
7418     }
7419     return validDomains;
7420   };
7421 
7422   switch (Opcode) {
7423   case X86::BLENDPDrmi:
7424   case X86::BLENDPDrri:
7425   case X86::VBLENDPDrmi:
7426   case X86::VBLENDPDrri:
7427     return GetBlendDomains(2, false);
7428   case X86::VBLENDPDYrmi:
7429   case X86::VBLENDPDYrri:
7430     return GetBlendDomains(4, true);
7431   case X86::BLENDPSrmi:
7432   case X86::BLENDPSrri:
7433   case X86::VBLENDPSrmi:
7434   case X86::VBLENDPSrri:
7435   case X86::VPBLENDDrmi:
7436   case X86::VPBLENDDrri:
7437     return GetBlendDomains(4, false);
7438   case X86::VBLENDPSYrmi:
7439   case X86::VBLENDPSYrri:
7440   case X86::VPBLENDDYrmi:
7441   case X86::VPBLENDDYrri:
7442     return GetBlendDomains(8, true);
7443   case X86::PBLENDWrmi:
7444   case X86::PBLENDWrri:
7445   case X86::VPBLENDWrmi:
7446   case X86::VPBLENDWrri:
7447   // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
7448   case X86::VPBLENDWYrmi:
7449   case X86::VPBLENDWYrri:
7450     return GetBlendDomains(8, false);
7451   case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
7452   case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
7453   case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
7454   case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
7455   case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
7456   case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
7457   case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
7458   case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
7459   case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
7460   case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
7461   case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
7462   case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
7463   case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
7464   case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
7465   case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
7466   case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm:
7467     // If we don't have DQI see if we can still switch from an EVEX integer
7468     // instruction to a VEX floating point instruction.
7469     if (Subtarget.hasDQI())
7470       return 0;
7471 
7472     if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
7473       return 0;
7474     if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
7475       return 0;
7476     // Register forms will have 3 operands. Memory form will have more.
7477     if (NumOperands == 3 &&
7478         RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
7479       return 0;
7480 
7481     // All domains are valid.
7482     return 0xe;
7483   case X86::MOVHLPSrr:
7484     // We can swap domains when both inputs are the same register.
7485     // FIXME: This doesn't catch all the cases we would like. If the input
7486     // register isn't KILLed by the instruction, the two address instruction
7487     // pass puts a COPY on one input. The other input uses the original
7488     // register. This prevents the same physical register from being used by
7489     // both inputs.
7490     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
7491         MI.getOperand(0).getSubReg() == 0 &&
7492         MI.getOperand(1).getSubReg() == 0 &&
7493         MI.getOperand(2).getSubReg() == 0)
7494       return 0x6;
7495     return 0;
7496   case X86::SHUFPDrri:
7497     return 0x6;
7498   }
7499   return 0;
7500 }
7501 
setExecutionDomainCustom(MachineInstr & MI,unsigned Domain) const7502 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
7503                                             unsigned Domain) const {
7504   assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
7505   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
7506   assert(dom && "Not an SSE instruction");
7507 
7508   unsigned Opcode = MI.getOpcode();
7509   unsigned NumOperands = MI.getDesc().getNumOperands();
7510 
7511   auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
7512     if (MI.getOperand(NumOperands - 1).isImm()) {
7513       unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
7514       Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
7515       unsigned NewImm = Imm;
7516 
7517       const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
7518       if (!table)
7519         table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
7520 
7521       if (Domain == 1) { // PackedSingle
7522         AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
7523       } else if (Domain == 2) { // PackedDouble
7524         AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
7525       } else if (Domain == 3) { // PackedInt
7526         if (Subtarget.hasAVX2()) {
7527           // If we are already VPBLENDW use that, else use VPBLENDD.
7528           if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
7529             table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
7530             AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
7531           }
7532         } else {
7533           assert(!Is256 && "128-bit vector expected");
7534           AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
7535         }
7536       }
7537 
7538       assert(table && table[Domain - 1] && "Unknown domain op");
7539       MI.setDesc(get(table[Domain - 1]));
7540       MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
7541     }
7542     return true;
7543   };
7544 
7545   switch (Opcode) {
7546   case X86::BLENDPDrmi:
7547   case X86::BLENDPDrri:
7548   case X86::VBLENDPDrmi:
7549   case X86::VBLENDPDrri:
7550     return SetBlendDomain(2, false);
7551   case X86::VBLENDPDYrmi:
7552   case X86::VBLENDPDYrri:
7553     return SetBlendDomain(4, true);
7554   case X86::BLENDPSrmi:
7555   case X86::BLENDPSrri:
7556   case X86::VBLENDPSrmi:
7557   case X86::VBLENDPSrri:
7558   case X86::VPBLENDDrmi:
7559   case X86::VPBLENDDrri:
7560     return SetBlendDomain(4, false);
7561   case X86::VBLENDPSYrmi:
7562   case X86::VBLENDPSYrri:
7563   case X86::VPBLENDDYrmi:
7564   case X86::VPBLENDDYrri:
7565     return SetBlendDomain(8, true);
7566   case X86::PBLENDWrmi:
7567   case X86::PBLENDWrri:
7568   case X86::VPBLENDWrmi:
7569   case X86::VPBLENDWrri:
7570     return SetBlendDomain(8, false);
7571   case X86::VPBLENDWYrmi:
7572   case X86::VPBLENDWYrri:
7573     return SetBlendDomain(16, true);
7574   case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
7575   case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
7576   case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
7577   case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
7578   case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
7579   case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
7580   case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
7581   case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
7582   case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
7583   case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
7584   case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
7585   case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
7586   case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
7587   case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
7588   case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
7589   case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm: {
7590     // Without DQI, convert EVEX instructions to VEX instructions.
7591     if (Subtarget.hasDQI())
7592       return false;
7593 
7594     const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
7595                                          ReplaceableCustomAVX512LogicInstrs);
7596     assert(table && "Instruction not found in table?");
7597     // Don't change integer Q instructions to D instructions and
7598     // use D intructions if we started with a PS instruction.
7599     if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
7600       Domain = 4;
7601     MI.setDesc(get(table[Domain - 1]));
7602     return true;
7603   }
7604   case X86::UNPCKHPDrr:
7605   case X86::MOVHLPSrr:
7606     // We just need to commute the instruction which will switch the domains.
7607     if (Domain != dom && Domain != 3 &&
7608         MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
7609         MI.getOperand(0).getSubReg() == 0 &&
7610         MI.getOperand(1).getSubReg() == 0 &&
7611         MI.getOperand(2).getSubReg() == 0) {
7612       commuteInstruction(MI, false);
7613       return true;
7614     }
7615     // We must always return true for MOVHLPSrr.
7616     if (Opcode == X86::MOVHLPSrr)
7617       return true;
7618     break;
7619   case X86::SHUFPDrri: {
7620     if (Domain == 1) {
7621       unsigned Imm = MI.getOperand(3).getImm();
7622       unsigned NewImm = 0x44;
7623       if (Imm & 1) NewImm |= 0x0a;
7624       if (Imm & 2) NewImm |= 0xa0;
7625       MI.getOperand(3).setImm(NewImm);
7626       MI.setDesc(get(X86::SHUFPSrri));
7627     }
7628     return true;
7629   }
7630   }
7631   return false;
7632 }
7633 
7634 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI) const7635 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
7636   uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
7637   unsigned opcode = MI.getOpcode();
7638   uint16_t validDomains = 0;
7639   if (domain) {
7640     // Attempt to match for custom instructions.
7641     validDomains = getExecutionDomainCustom(MI);
7642     if (validDomains)
7643       return std::make_pair(domain, validDomains);
7644 
7645     if (lookup(opcode, domain, ReplaceableInstrs)) {
7646       validDomains = 0xe;
7647     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
7648       validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
7649     } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
7650       validDomains = 0x6;
7651     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
7652       // Insert/extract instructions should only effect domain if AVX2
7653       // is enabled.
7654       if (!Subtarget.hasAVX2())
7655         return std::make_pair(0, 0);
7656       validDomains = 0xe;
7657     } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
7658       validDomains = 0xe;
7659     } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
7660                                                   ReplaceableInstrsAVX512DQ)) {
7661       validDomains = 0xe;
7662     } else if (Subtarget.hasDQI()) {
7663       if (const uint16_t *table = lookupAVX512(opcode, domain,
7664                                              ReplaceableInstrsAVX512DQMasked)) {
7665         if (domain == 1 || (domain == 3 && table[3] == opcode))
7666           validDomains = 0xa;
7667         else
7668           validDomains = 0xc;
7669       }
7670     }
7671   }
7672   return std::make_pair(domain, validDomains);
7673 }
7674 
setExecutionDomain(MachineInstr & MI,unsigned Domain) const7675 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
7676   assert(Domain>0 && Domain<4 && "Invalid execution domain");
7677   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
7678   assert(dom && "Not an SSE instruction");
7679 
7680   // Attempt to match for custom instructions.
7681   if (setExecutionDomainCustom(MI, Domain))
7682     return;
7683 
7684   const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
7685   if (!table) { // try the other table
7686     assert((Subtarget.hasAVX2() || Domain < 3) &&
7687            "256-bit vector operations only available in AVX2");
7688     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
7689   }
7690   if (!table) { // try the FP table
7691     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
7692     assert((!table || Domain < 3) &&
7693            "Can only select PackedSingle or PackedDouble");
7694   }
7695   if (!table) { // try the other table
7696     assert(Subtarget.hasAVX2() &&
7697            "256-bit insert/extract only available in AVX2");
7698     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
7699   }
7700   if (!table) { // try the AVX512 table
7701     assert(Subtarget.hasAVX512() && "Requires AVX-512");
7702     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
7703     // Don't change integer Q instructions to D instructions.
7704     if (table && Domain == 3 && table[3] == MI.getOpcode())
7705       Domain = 4;
7706   }
7707   if (!table) { // try the AVX512DQ table
7708     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
7709     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
7710     // Don't change integer Q instructions to D instructions and
7711     // use D instructions if we started with a PS instruction.
7712     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
7713       Domain = 4;
7714   }
7715   if (!table) { // try the AVX512DQMasked table
7716     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
7717     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
7718     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
7719       Domain = 4;
7720   }
7721   assert(table && "Cannot change domain");
7722   MI.setDesc(get(table[Domain - 1]));
7723 }
7724 
7725 /// Return the noop instruction to use for a noop.
getNop() const7726 MCInst X86InstrInfo::getNop() const {
7727   MCInst Nop;
7728   Nop.setOpcode(X86::NOOP);
7729   return Nop;
7730 }
7731 
isHighLatencyDef(int opc) const7732 bool X86InstrInfo::isHighLatencyDef(int opc) const {
7733   switch (opc) {
7734   default: return false;
7735   case X86::DIVPDrm:
7736   case X86::DIVPDrr:
7737   case X86::DIVPSrm:
7738   case X86::DIVPSrr:
7739   case X86::DIVSDrm:
7740   case X86::DIVSDrm_Int:
7741   case X86::DIVSDrr:
7742   case X86::DIVSDrr_Int:
7743   case X86::DIVSSrm:
7744   case X86::DIVSSrm_Int:
7745   case X86::DIVSSrr:
7746   case X86::DIVSSrr_Int:
7747   case X86::SQRTPDm:
7748   case X86::SQRTPDr:
7749   case X86::SQRTPSm:
7750   case X86::SQRTPSr:
7751   case X86::SQRTSDm:
7752   case X86::SQRTSDm_Int:
7753   case X86::SQRTSDr:
7754   case X86::SQRTSDr_Int:
7755   case X86::SQRTSSm:
7756   case X86::SQRTSSm_Int:
7757   case X86::SQRTSSr:
7758   case X86::SQRTSSr_Int:
7759   // AVX instructions with high latency
7760   case X86::VDIVPDrm:
7761   case X86::VDIVPDrr:
7762   case X86::VDIVPDYrm:
7763   case X86::VDIVPDYrr:
7764   case X86::VDIVPSrm:
7765   case X86::VDIVPSrr:
7766   case X86::VDIVPSYrm:
7767   case X86::VDIVPSYrr:
7768   case X86::VDIVSDrm:
7769   case X86::VDIVSDrm_Int:
7770   case X86::VDIVSDrr:
7771   case X86::VDIVSDrr_Int:
7772   case X86::VDIVSSrm:
7773   case X86::VDIVSSrm_Int:
7774   case X86::VDIVSSrr:
7775   case X86::VDIVSSrr_Int:
7776   case X86::VSQRTPDm:
7777   case X86::VSQRTPDr:
7778   case X86::VSQRTPDYm:
7779   case X86::VSQRTPDYr:
7780   case X86::VSQRTPSm:
7781   case X86::VSQRTPSr:
7782   case X86::VSQRTPSYm:
7783   case X86::VSQRTPSYr:
7784   case X86::VSQRTSDm:
7785   case X86::VSQRTSDm_Int:
7786   case X86::VSQRTSDr:
7787   case X86::VSQRTSDr_Int:
7788   case X86::VSQRTSSm:
7789   case X86::VSQRTSSm_Int:
7790   case X86::VSQRTSSr:
7791   case X86::VSQRTSSr_Int:
7792   // AVX512 instructions with high latency
7793   case X86::VDIVPDZ128rm:
7794   case X86::VDIVPDZ128rmb:
7795   case X86::VDIVPDZ128rmbk:
7796   case X86::VDIVPDZ128rmbkz:
7797   case X86::VDIVPDZ128rmk:
7798   case X86::VDIVPDZ128rmkz:
7799   case X86::VDIVPDZ128rr:
7800   case X86::VDIVPDZ128rrk:
7801   case X86::VDIVPDZ128rrkz:
7802   case X86::VDIVPDZ256rm:
7803   case X86::VDIVPDZ256rmb:
7804   case X86::VDIVPDZ256rmbk:
7805   case X86::VDIVPDZ256rmbkz:
7806   case X86::VDIVPDZ256rmk:
7807   case X86::VDIVPDZ256rmkz:
7808   case X86::VDIVPDZ256rr:
7809   case X86::VDIVPDZ256rrk:
7810   case X86::VDIVPDZ256rrkz:
7811   case X86::VDIVPDZrrb:
7812   case X86::VDIVPDZrrbk:
7813   case X86::VDIVPDZrrbkz:
7814   case X86::VDIVPDZrm:
7815   case X86::VDIVPDZrmb:
7816   case X86::VDIVPDZrmbk:
7817   case X86::VDIVPDZrmbkz:
7818   case X86::VDIVPDZrmk:
7819   case X86::VDIVPDZrmkz:
7820   case X86::VDIVPDZrr:
7821   case X86::VDIVPDZrrk:
7822   case X86::VDIVPDZrrkz:
7823   case X86::VDIVPSZ128rm:
7824   case X86::VDIVPSZ128rmb:
7825   case X86::VDIVPSZ128rmbk:
7826   case X86::VDIVPSZ128rmbkz:
7827   case X86::VDIVPSZ128rmk:
7828   case X86::VDIVPSZ128rmkz:
7829   case X86::VDIVPSZ128rr:
7830   case X86::VDIVPSZ128rrk:
7831   case X86::VDIVPSZ128rrkz:
7832   case X86::VDIVPSZ256rm:
7833   case X86::VDIVPSZ256rmb:
7834   case X86::VDIVPSZ256rmbk:
7835   case X86::VDIVPSZ256rmbkz:
7836   case X86::VDIVPSZ256rmk:
7837   case X86::VDIVPSZ256rmkz:
7838   case X86::VDIVPSZ256rr:
7839   case X86::VDIVPSZ256rrk:
7840   case X86::VDIVPSZ256rrkz:
7841   case X86::VDIVPSZrrb:
7842   case X86::VDIVPSZrrbk:
7843   case X86::VDIVPSZrrbkz:
7844   case X86::VDIVPSZrm:
7845   case X86::VDIVPSZrmb:
7846   case X86::VDIVPSZrmbk:
7847   case X86::VDIVPSZrmbkz:
7848   case X86::VDIVPSZrmk:
7849   case X86::VDIVPSZrmkz:
7850   case X86::VDIVPSZrr:
7851   case X86::VDIVPSZrrk:
7852   case X86::VDIVPSZrrkz:
7853   case X86::VDIVSDZrm:
7854   case X86::VDIVSDZrr:
7855   case X86::VDIVSDZrm_Int:
7856   case X86::VDIVSDZrm_Intk:
7857   case X86::VDIVSDZrm_Intkz:
7858   case X86::VDIVSDZrr_Int:
7859   case X86::VDIVSDZrr_Intk:
7860   case X86::VDIVSDZrr_Intkz:
7861   case X86::VDIVSDZrrb_Int:
7862   case X86::VDIVSDZrrb_Intk:
7863   case X86::VDIVSDZrrb_Intkz:
7864   case X86::VDIVSSZrm:
7865   case X86::VDIVSSZrr:
7866   case X86::VDIVSSZrm_Int:
7867   case X86::VDIVSSZrm_Intk:
7868   case X86::VDIVSSZrm_Intkz:
7869   case X86::VDIVSSZrr_Int:
7870   case X86::VDIVSSZrr_Intk:
7871   case X86::VDIVSSZrr_Intkz:
7872   case X86::VDIVSSZrrb_Int:
7873   case X86::VDIVSSZrrb_Intk:
7874   case X86::VDIVSSZrrb_Intkz:
7875   case X86::VSQRTPDZ128m:
7876   case X86::VSQRTPDZ128mb:
7877   case X86::VSQRTPDZ128mbk:
7878   case X86::VSQRTPDZ128mbkz:
7879   case X86::VSQRTPDZ128mk:
7880   case X86::VSQRTPDZ128mkz:
7881   case X86::VSQRTPDZ128r:
7882   case X86::VSQRTPDZ128rk:
7883   case X86::VSQRTPDZ128rkz:
7884   case X86::VSQRTPDZ256m:
7885   case X86::VSQRTPDZ256mb:
7886   case X86::VSQRTPDZ256mbk:
7887   case X86::VSQRTPDZ256mbkz:
7888   case X86::VSQRTPDZ256mk:
7889   case X86::VSQRTPDZ256mkz:
7890   case X86::VSQRTPDZ256r:
7891   case X86::VSQRTPDZ256rk:
7892   case X86::VSQRTPDZ256rkz:
7893   case X86::VSQRTPDZm:
7894   case X86::VSQRTPDZmb:
7895   case X86::VSQRTPDZmbk:
7896   case X86::VSQRTPDZmbkz:
7897   case X86::VSQRTPDZmk:
7898   case X86::VSQRTPDZmkz:
7899   case X86::VSQRTPDZr:
7900   case X86::VSQRTPDZrb:
7901   case X86::VSQRTPDZrbk:
7902   case X86::VSQRTPDZrbkz:
7903   case X86::VSQRTPDZrk:
7904   case X86::VSQRTPDZrkz:
7905   case X86::VSQRTPSZ128m:
7906   case X86::VSQRTPSZ128mb:
7907   case X86::VSQRTPSZ128mbk:
7908   case X86::VSQRTPSZ128mbkz:
7909   case X86::VSQRTPSZ128mk:
7910   case X86::VSQRTPSZ128mkz:
7911   case X86::VSQRTPSZ128r:
7912   case X86::VSQRTPSZ128rk:
7913   case X86::VSQRTPSZ128rkz:
7914   case X86::VSQRTPSZ256m:
7915   case X86::VSQRTPSZ256mb:
7916   case X86::VSQRTPSZ256mbk:
7917   case X86::VSQRTPSZ256mbkz:
7918   case X86::VSQRTPSZ256mk:
7919   case X86::VSQRTPSZ256mkz:
7920   case X86::VSQRTPSZ256r:
7921   case X86::VSQRTPSZ256rk:
7922   case X86::VSQRTPSZ256rkz:
7923   case X86::VSQRTPSZm:
7924   case X86::VSQRTPSZmb:
7925   case X86::VSQRTPSZmbk:
7926   case X86::VSQRTPSZmbkz:
7927   case X86::VSQRTPSZmk:
7928   case X86::VSQRTPSZmkz:
7929   case X86::VSQRTPSZr:
7930   case X86::VSQRTPSZrb:
7931   case X86::VSQRTPSZrbk:
7932   case X86::VSQRTPSZrbkz:
7933   case X86::VSQRTPSZrk:
7934   case X86::VSQRTPSZrkz:
7935   case X86::VSQRTSDZm:
7936   case X86::VSQRTSDZm_Int:
7937   case X86::VSQRTSDZm_Intk:
7938   case X86::VSQRTSDZm_Intkz:
7939   case X86::VSQRTSDZr:
7940   case X86::VSQRTSDZr_Int:
7941   case X86::VSQRTSDZr_Intk:
7942   case X86::VSQRTSDZr_Intkz:
7943   case X86::VSQRTSDZrb_Int:
7944   case X86::VSQRTSDZrb_Intk:
7945   case X86::VSQRTSDZrb_Intkz:
7946   case X86::VSQRTSSZm:
7947   case X86::VSQRTSSZm_Int:
7948   case X86::VSQRTSSZm_Intk:
7949   case X86::VSQRTSSZm_Intkz:
7950   case X86::VSQRTSSZr:
7951   case X86::VSQRTSSZr_Int:
7952   case X86::VSQRTSSZr_Intk:
7953   case X86::VSQRTSSZr_Intkz:
7954   case X86::VSQRTSSZrb_Int:
7955   case X86::VSQRTSSZrb_Intk:
7956   case X86::VSQRTSSZrb_Intkz:
7957 
7958   case X86::VGATHERDPDYrm:
7959   case X86::VGATHERDPDZ128rm:
7960   case X86::VGATHERDPDZ256rm:
7961   case X86::VGATHERDPDZrm:
7962   case X86::VGATHERDPDrm:
7963   case X86::VGATHERDPSYrm:
7964   case X86::VGATHERDPSZ128rm:
7965   case X86::VGATHERDPSZ256rm:
7966   case X86::VGATHERDPSZrm:
7967   case X86::VGATHERDPSrm:
7968   case X86::VGATHERPF0DPDm:
7969   case X86::VGATHERPF0DPSm:
7970   case X86::VGATHERPF0QPDm:
7971   case X86::VGATHERPF0QPSm:
7972   case X86::VGATHERPF1DPDm:
7973   case X86::VGATHERPF1DPSm:
7974   case X86::VGATHERPF1QPDm:
7975   case X86::VGATHERPF1QPSm:
7976   case X86::VGATHERQPDYrm:
7977   case X86::VGATHERQPDZ128rm:
7978   case X86::VGATHERQPDZ256rm:
7979   case X86::VGATHERQPDZrm:
7980   case X86::VGATHERQPDrm:
7981   case X86::VGATHERQPSYrm:
7982   case X86::VGATHERQPSZ128rm:
7983   case X86::VGATHERQPSZ256rm:
7984   case X86::VGATHERQPSZrm:
7985   case X86::VGATHERQPSrm:
7986   case X86::VPGATHERDDYrm:
7987   case X86::VPGATHERDDZ128rm:
7988   case X86::VPGATHERDDZ256rm:
7989   case X86::VPGATHERDDZrm:
7990   case X86::VPGATHERDDrm:
7991   case X86::VPGATHERDQYrm:
7992   case X86::VPGATHERDQZ128rm:
7993   case X86::VPGATHERDQZ256rm:
7994   case X86::VPGATHERDQZrm:
7995   case X86::VPGATHERDQrm:
7996   case X86::VPGATHERQDYrm:
7997   case X86::VPGATHERQDZ128rm:
7998   case X86::VPGATHERQDZ256rm:
7999   case X86::VPGATHERQDZrm:
8000   case X86::VPGATHERQDrm:
8001   case X86::VPGATHERQQYrm:
8002   case X86::VPGATHERQQZ128rm:
8003   case X86::VPGATHERQQZ256rm:
8004   case X86::VPGATHERQQZrm:
8005   case X86::VPGATHERQQrm:
8006   case X86::VSCATTERDPDZ128mr:
8007   case X86::VSCATTERDPDZ256mr:
8008   case X86::VSCATTERDPDZmr:
8009   case X86::VSCATTERDPSZ128mr:
8010   case X86::VSCATTERDPSZ256mr:
8011   case X86::VSCATTERDPSZmr:
8012   case X86::VSCATTERPF0DPDm:
8013   case X86::VSCATTERPF0DPSm:
8014   case X86::VSCATTERPF0QPDm:
8015   case X86::VSCATTERPF0QPSm:
8016   case X86::VSCATTERPF1DPDm:
8017   case X86::VSCATTERPF1DPSm:
8018   case X86::VSCATTERPF1QPDm:
8019   case X86::VSCATTERPF1QPSm:
8020   case X86::VSCATTERQPDZ128mr:
8021   case X86::VSCATTERQPDZ256mr:
8022   case X86::VSCATTERQPDZmr:
8023   case X86::VSCATTERQPSZ128mr:
8024   case X86::VSCATTERQPSZ256mr:
8025   case X86::VSCATTERQPSZmr:
8026   case X86::VPSCATTERDDZ128mr:
8027   case X86::VPSCATTERDDZ256mr:
8028   case X86::VPSCATTERDDZmr:
8029   case X86::VPSCATTERDQZ128mr:
8030   case X86::VPSCATTERDQZ256mr:
8031   case X86::VPSCATTERDQZmr:
8032   case X86::VPSCATTERQDZ128mr:
8033   case X86::VPSCATTERQDZ256mr:
8034   case X86::VPSCATTERQDZmr:
8035   case X86::VPSCATTERQQZ128mr:
8036   case X86::VPSCATTERQQZ256mr:
8037   case X86::VPSCATTERQQZmr:
8038     return true;
8039   }
8040 }
8041 
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const8042 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
8043                                          const MachineRegisterInfo *MRI,
8044                                          const MachineInstr &DefMI,
8045                                          unsigned DefIdx,
8046                                          const MachineInstr &UseMI,
8047                                          unsigned UseIdx) const {
8048   return isHighLatencyDef(DefMI.getOpcode());
8049 }
8050 
hasReassociableOperands(const MachineInstr & Inst,const MachineBasicBlock * MBB) const8051 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
8052                                            const MachineBasicBlock *MBB) const {
8053   assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
8054          Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
8055 
8056   // Integer binary math/logic instructions have a third source operand:
8057   // the EFLAGS register. That operand must be both defined here and never
8058   // used; ie, it must be dead. If the EFLAGS operand is live, then we can
8059   // not change anything because rearranging the operands could affect other
8060   // instructions that depend on the exact status flags (zero, sign, etc.)
8061   // that are set by using these particular operands with this operation.
8062   const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
8063   assert((Inst.getNumDefs() == 1 || FlagDef) &&
8064          "Implicit def isn't flags?");
8065   if (FlagDef && !FlagDef->isDead())
8066     return false;
8067 
8068   return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
8069 }
8070 
8071 // TODO: There are many more machine instruction opcodes to match:
8072 //       1. Other data types (integer, vectors)
8073 //       2. Other math / logic operations (xor, or)
8074 //       3. Other forms of the same operation (intrinsics and other variants)
isAssociativeAndCommutative(const MachineInstr & Inst) const8075 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
8076   switch (Inst.getOpcode()) {
8077   case X86::AND8rr:
8078   case X86::AND16rr:
8079   case X86::AND32rr:
8080   case X86::AND64rr:
8081   case X86::OR8rr:
8082   case X86::OR16rr:
8083   case X86::OR32rr:
8084   case X86::OR64rr:
8085   case X86::XOR8rr:
8086   case X86::XOR16rr:
8087   case X86::XOR32rr:
8088   case X86::XOR64rr:
8089   case X86::IMUL16rr:
8090   case X86::IMUL32rr:
8091   case X86::IMUL64rr:
8092   case X86::PANDrr:
8093   case X86::PORrr:
8094   case X86::PXORrr:
8095   case X86::ANDPDrr:
8096   case X86::ANDPSrr:
8097   case X86::ORPDrr:
8098   case X86::ORPSrr:
8099   case X86::XORPDrr:
8100   case X86::XORPSrr:
8101   case X86::PADDBrr:
8102   case X86::PADDWrr:
8103   case X86::PADDDrr:
8104   case X86::PADDQrr:
8105   case X86::PMULLWrr:
8106   case X86::PMULLDrr:
8107   case X86::PMAXSBrr:
8108   case X86::PMAXSDrr:
8109   case X86::PMAXSWrr:
8110   case X86::PMAXUBrr:
8111   case X86::PMAXUDrr:
8112   case X86::PMAXUWrr:
8113   case X86::PMINSBrr:
8114   case X86::PMINSDrr:
8115   case X86::PMINSWrr:
8116   case X86::PMINUBrr:
8117   case X86::PMINUDrr:
8118   case X86::PMINUWrr:
8119   case X86::VPANDrr:
8120   case X86::VPANDYrr:
8121   case X86::VPANDDZ128rr:
8122   case X86::VPANDDZ256rr:
8123   case X86::VPANDDZrr:
8124   case X86::VPANDQZ128rr:
8125   case X86::VPANDQZ256rr:
8126   case X86::VPANDQZrr:
8127   case X86::VPORrr:
8128   case X86::VPORYrr:
8129   case X86::VPORDZ128rr:
8130   case X86::VPORDZ256rr:
8131   case X86::VPORDZrr:
8132   case X86::VPORQZ128rr:
8133   case X86::VPORQZ256rr:
8134   case X86::VPORQZrr:
8135   case X86::VPXORrr:
8136   case X86::VPXORYrr:
8137   case X86::VPXORDZ128rr:
8138   case X86::VPXORDZ256rr:
8139   case X86::VPXORDZrr:
8140   case X86::VPXORQZ128rr:
8141   case X86::VPXORQZ256rr:
8142   case X86::VPXORQZrr:
8143   case X86::VANDPDrr:
8144   case X86::VANDPSrr:
8145   case X86::VANDPDYrr:
8146   case X86::VANDPSYrr:
8147   case X86::VANDPDZ128rr:
8148   case X86::VANDPSZ128rr:
8149   case X86::VANDPDZ256rr:
8150   case X86::VANDPSZ256rr:
8151   case X86::VANDPDZrr:
8152   case X86::VANDPSZrr:
8153   case X86::VORPDrr:
8154   case X86::VORPSrr:
8155   case X86::VORPDYrr:
8156   case X86::VORPSYrr:
8157   case X86::VORPDZ128rr:
8158   case X86::VORPSZ128rr:
8159   case X86::VORPDZ256rr:
8160   case X86::VORPSZ256rr:
8161   case X86::VORPDZrr:
8162   case X86::VORPSZrr:
8163   case X86::VXORPDrr:
8164   case X86::VXORPSrr:
8165   case X86::VXORPDYrr:
8166   case X86::VXORPSYrr:
8167   case X86::VXORPDZ128rr:
8168   case X86::VXORPSZ128rr:
8169   case X86::VXORPDZ256rr:
8170   case X86::VXORPSZ256rr:
8171   case X86::VXORPDZrr:
8172   case X86::VXORPSZrr:
8173   case X86::KADDBrr:
8174   case X86::KADDWrr:
8175   case X86::KADDDrr:
8176   case X86::KADDQrr:
8177   case X86::KANDBrr:
8178   case X86::KANDWrr:
8179   case X86::KANDDrr:
8180   case X86::KANDQrr:
8181   case X86::KORBrr:
8182   case X86::KORWrr:
8183   case X86::KORDrr:
8184   case X86::KORQrr:
8185   case X86::KXORBrr:
8186   case X86::KXORWrr:
8187   case X86::KXORDrr:
8188   case X86::KXORQrr:
8189   case X86::VPADDBrr:
8190   case X86::VPADDWrr:
8191   case X86::VPADDDrr:
8192   case X86::VPADDQrr:
8193   case X86::VPADDBYrr:
8194   case X86::VPADDWYrr:
8195   case X86::VPADDDYrr:
8196   case X86::VPADDQYrr:
8197   case X86::VPADDBZ128rr:
8198   case X86::VPADDWZ128rr:
8199   case X86::VPADDDZ128rr:
8200   case X86::VPADDQZ128rr:
8201   case X86::VPADDBZ256rr:
8202   case X86::VPADDWZ256rr:
8203   case X86::VPADDDZ256rr:
8204   case X86::VPADDQZ256rr:
8205   case X86::VPADDBZrr:
8206   case X86::VPADDWZrr:
8207   case X86::VPADDDZrr:
8208   case X86::VPADDQZrr:
8209   case X86::VPMULLWrr:
8210   case X86::VPMULLWYrr:
8211   case X86::VPMULLWZ128rr:
8212   case X86::VPMULLWZ256rr:
8213   case X86::VPMULLWZrr:
8214   case X86::VPMULLDrr:
8215   case X86::VPMULLDYrr:
8216   case X86::VPMULLDZ128rr:
8217   case X86::VPMULLDZ256rr:
8218   case X86::VPMULLDZrr:
8219   case X86::VPMULLQZ128rr:
8220   case X86::VPMULLQZ256rr:
8221   case X86::VPMULLQZrr:
8222   case X86::VPMAXSBrr:
8223   case X86::VPMAXSBYrr:
8224   case X86::VPMAXSBZ128rr:
8225   case X86::VPMAXSBZ256rr:
8226   case X86::VPMAXSBZrr:
8227   case X86::VPMAXSDrr:
8228   case X86::VPMAXSDYrr:
8229   case X86::VPMAXSDZ128rr:
8230   case X86::VPMAXSDZ256rr:
8231   case X86::VPMAXSDZrr:
8232   case X86::VPMAXSQZ128rr:
8233   case X86::VPMAXSQZ256rr:
8234   case X86::VPMAXSQZrr:
8235   case X86::VPMAXSWrr:
8236   case X86::VPMAXSWYrr:
8237   case X86::VPMAXSWZ128rr:
8238   case X86::VPMAXSWZ256rr:
8239   case X86::VPMAXSWZrr:
8240   case X86::VPMAXUBrr:
8241   case X86::VPMAXUBYrr:
8242   case X86::VPMAXUBZ128rr:
8243   case X86::VPMAXUBZ256rr:
8244   case X86::VPMAXUBZrr:
8245   case X86::VPMAXUDrr:
8246   case X86::VPMAXUDYrr:
8247   case X86::VPMAXUDZ128rr:
8248   case X86::VPMAXUDZ256rr:
8249   case X86::VPMAXUDZrr:
8250   case X86::VPMAXUQZ128rr:
8251   case X86::VPMAXUQZ256rr:
8252   case X86::VPMAXUQZrr:
8253   case X86::VPMAXUWrr:
8254   case X86::VPMAXUWYrr:
8255   case X86::VPMAXUWZ128rr:
8256   case X86::VPMAXUWZ256rr:
8257   case X86::VPMAXUWZrr:
8258   case X86::VPMINSBrr:
8259   case X86::VPMINSBYrr:
8260   case X86::VPMINSBZ128rr:
8261   case X86::VPMINSBZ256rr:
8262   case X86::VPMINSBZrr:
8263   case X86::VPMINSDrr:
8264   case X86::VPMINSDYrr:
8265   case X86::VPMINSDZ128rr:
8266   case X86::VPMINSDZ256rr:
8267   case X86::VPMINSDZrr:
8268   case X86::VPMINSQZ128rr:
8269   case X86::VPMINSQZ256rr:
8270   case X86::VPMINSQZrr:
8271   case X86::VPMINSWrr:
8272   case X86::VPMINSWYrr:
8273   case X86::VPMINSWZ128rr:
8274   case X86::VPMINSWZ256rr:
8275   case X86::VPMINSWZrr:
8276   case X86::VPMINUBrr:
8277   case X86::VPMINUBYrr:
8278   case X86::VPMINUBZ128rr:
8279   case X86::VPMINUBZ256rr:
8280   case X86::VPMINUBZrr:
8281   case X86::VPMINUDrr:
8282   case X86::VPMINUDYrr:
8283   case X86::VPMINUDZ128rr:
8284   case X86::VPMINUDZ256rr:
8285   case X86::VPMINUDZrr:
8286   case X86::VPMINUQZ128rr:
8287   case X86::VPMINUQZ256rr:
8288   case X86::VPMINUQZrr:
8289   case X86::VPMINUWrr:
8290   case X86::VPMINUWYrr:
8291   case X86::VPMINUWZ128rr:
8292   case X86::VPMINUWZ256rr:
8293   case X86::VPMINUWZrr:
8294   // Normal min/max instructions are not commutative because of NaN and signed
8295   // zero semantics, but these are. Thus, there's no need to check for global
8296   // relaxed math; the instructions themselves have the properties we need.
8297   case X86::MAXCPDrr:
8298   case X86::MAXCPSrr:
8299   case X86::MAXCSDrr:
8300   case X86::MAXCSSrr:
8301   case X86::MINCPDrr:
8302   case X86::MINCPSrr:
8303   case X86::MINCSDrr:
8304   case X86::MINCSSrr:
8305   case X86::VMAXCPDrr:
8306   case X86::VMAXCPSrr:
8307   case X86::VMAXCPDYrr:
8308   case X86::VMAXCPSYrr:
8309   case X86::VMAXCPDZ128rr:
8310   case X86::VMAXCPSZ128rr:
8311   case X86::VMAXCPDZ256rr:
8312   case X86::VMAXCPSZ256rr:
8313   case X86::VMAXCPDZrr:
8314   case X86::VMAXCPSZrr:
8315   case X86::VMAXCSDrr:
8316   case X86::VMAXCSSrr:
8317   case X86::VMAXCSDZrr:
8318   case X86::VMAXCSSZrr:
8319   case X86::VMINCPDrr:
8320   case X86::VMINCPSrr:
8321   case X86::VMINCPDYrr:
8322   case X86::VMINCPSYrr:
8323   case X86::VMINCPDZ128rr:
8324   case X86::VMINCPSZ128rr:
8325   case X86::VMINCPDZ256rr:
8326   case X86::VMINCPSZ256rr:
8327   case X86::VMINCPDZrr:
8328   case X86::VMINCPSZrr:
8329   case X86::VMINCSDrr:
8330   case X86::VMINCSSrr:
8331   case X86::VMINCSDZrr:
8332   case X86::VMINCSSZrr:
8333     return true;
8334   case X86::ADDPDrr:
8335   case X86::ADDPSrr:
8336   case X86::ADDSDrr:
8337   case X86::ADDSSrr:
8338   case X86::MULPDrr:
8339   case X86::MULPSrr:
8340   case X86::MULSDrr:
8341   case X86::MULSSrr:
8342   case X86::VADDPDrr:
8343   case X86::VADDPSrr:
8344   case X86::VADDPDYrr:
8345   case X86::VADDPSYrr:
8346   case X86::VADDPDZ128rr:
8347   case X86::VADDPSZ128rr:
8348   case X86::VADDPDZ256rr:
8349   case X86::VADDPSZ256rr:
8350   case X86::VADDPDZrr:
8351   case X86::VADDPSZrr:
8352   case X86::VADDSDrr:
8353   case X86::VADDSSrr:
8354   case X86::VADDSDZrr:
8355   case X86::VADDSSZrr:
8356   case X86::VMULPDrr:
8357   case X86::VMULPSrr:
8358   case X86::VMULPDYrr:
8359   case X86::VMULPSYrr:
8360   case X86::VMULPDZ128rr:
8361   case X86::VMULPSZ128rr:
8362   case X86::VMULPDZ256rr:
8363   case X86::VMULPSZ256rr:
8364   case X86::VMULPDZrr:
8365   case X86::VMULPSZrr:
8366   case X86::VMULSDrr:
8367   case X86::VMULSSrr:
8368   case X86::VMULSDZrr:
8369   case X86::VMULSSZrr:
8370     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
8371            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
8372   default:
8373     return false;
8374   }
8375 }
8376 
8377 /// If \p DescribedReg overlaps with the MOVrr instruction's destination
8378 /// register then, if possible, describe the value in terms of the source
8379 /// register.
8380 static Optional<ParamLoadedValue>
describeMOVrrLoadedValue(const MachineInstr & MI,Register DescribedReg,const TargetRegisterInfo * TRI)8381 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
8382                          const TargetRegisterInfo *TRI) {
8383   Register DestReg = MI.getOperand(0).getReg();
8384   Register SrcReg = MI.getOperand(1).getReg();
8385 
8386   auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8387 
8388   // If the described register is the destination, just return the source.
8389   if (DestReg == DescribedReg)
8390     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8391 
8392   // If the described register is a sub-register of the destination register,
8393   // then pick out the source register's corresponding sub-register.
8394   if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
8395     Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
8396     return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
8397   }
8398 
8399   // The remaining case to consider is when the described register is a
8400   // super-register of the destination register. MOV8rr and MOV16rr does not
8401   // write to any of the other bytes in the register, meaning that we'd have to
8402   // describe the value using a combination of the source register and the
8403   // non-overlapping bits in the described register, which is not currently
8404   // possible.
8405   if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
8406       !TRI->isSuperRegister(DestReg, DescribedReg))
8407     return None;
8408 
8409   assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
8410   return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8411 }
8412 
8413 Optional<ParamLoadedValue>
describeLoadedValue(const MachineInstr & MI,Register Reg) const8414 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
8415   const MachineOperand *Op = nullptr;
8416   DIExpression *Expr = nullptr;
8417 
8418   const TargetRegisterInfo *TRI = &getRegisterInfo();
8419 
8420   switch (MI.getOpcode()) {
8421   case X86::LEA32r:
8422   case X86::LEA64r:
8423   case X86::LEA64_32r: {
8424     // We may need to describe a 64-bit parameter with a 32-bit LEA.
8425     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8426       return None;
8427 
8428     // Operand 4 could be global address. For now we do not support
8429     // such situation.
8430     if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
8431       return None;
8432 
8433     const MachineOperand &Op1 = MI.getOperand(1);
8434     const MachineOperand &Op2 = MI.getOperand(3);
8435     assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||
8436                            Register::isPhysicalRegister(Op2.getReg())));
8437 
8438     // Omit situations like:
8439     // %rsi = lea %rsi, 4, ...
8440     if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
8441         Op2.getReg() == MI.getOperand(0).getReg())
8442       return None;
8443     else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
8444               TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
8445              (Op2.getReg() != X86::NoRegister &&
8446               TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
8447       return None;
8448 
8449     int64_t Coef = MI.getOperand(2).getImm();
8450     int64_t Offset = MI.getOperand(4).getImm();
8451     SmallVector<uint64_t, 8> Ops;
8452 
8453     if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
8454       Op = &Op1;
8455     } else if (Op1.isFI())
8456       Op = &Op1;
8457 
8458     if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
8459       Ops.push_back(dwarf::DW_OP_constu);
8460       Ops.push_back(Coef + 1);
8461       Ops.push_back(dwarf::DW_OP_mul);
8462     } else {
8463       if (Op && Op2.getReg() != X86::NoRegister) {
8464         int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
8465         if (dwarfReg < 0)
8466           return None;
8467         else if (dwarfReg < 32) {
8468           Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
8469           Ops.push_back(0);
8470         } else {
8471           Ops.push_back(dwarf::DW_OP_bregx);
8472           Ops.push_back(dwarfReg);
8473           Ops.push_back(0);
8474         }
8475       } else if (!Op) {
8476         assert(Op2.getReg() != X86::NoRegister);
8477         Op = &Op2;
8478       }
8479 
8480       if (Coef > 1) {
8481         assert(Op2.getReg() != X86::NoRegister);
8482         Ops.push_back(dwarf::DW_OP_constu);
8483         Ops.push_back(Coef);
8484         Ops.push_back(dwarf::DW_OP_mul);
8485       }
8486 
8487       if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
8488           Op2.getReg() != X86::NoRegister) {
8489         Ops.push_back(dwarf::DW_OP_plus);
8490       }
8491     }
8492 
8493     DIExpression::appendOffset(Ops, Offset);
8494     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
8495 
8496     return ParamLoadedValue(*Op, Expr);;
8497   }
8498   case X86::MOV8ri:
8499   case X86::MOV16ri:
8500     // TODO: Handle MOV8ri and MOV16ri.
8501     return None;
8502   case X86::MOV32ri:
8503   case X86::MOV64ri:
8504   case X86::MOV64ri32:
8505     // MOV32ri may be used for producing zero-extended 32-bit immediates in
8506     // 64-bit parameters, so we need to consider super-registers.
8507     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8508       return None;
8509     return ParamLoadedValue(MI.getOperand(1), Expr);
8510   case X86::MOV8rr:
8511   case X86::MOV16rr:
8512   case X86::MOV32rr:
8513   case X86::MOV64rr:
8514     return describeMOVrrLoadedValue(MI, Reg, TRI);
8515   case X86::XOR32rr: {
8516     // 64-bit parameters are zero-materialized using XOR32rr, so also consider
8517     // super-registers.
8518     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8519       return None;
8520     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
8521       return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
8522     return None;
8523   }
8524   case X86::MOVSX64rr32: {
8525     // We may need to describe the lower 32 bits of the MOVSX; for example, in
8526     // cases like this:
8527     //
8528     //  $ebx = [...]
8529     //  $rdi = MOVSX64rr32 $ebx
8530     //  $esi = MOV32rr $edi
8531     if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
8532       return None;
8533 
8534     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8535 
8536     // If the described register is the destination register we need to
8537     // sign-extend the source register from 32 bits. The other case we handle
8538     // is when the described register is the 32-bit sub-register of the
8539     // destination register, in case we just need to return the source
8540     // register.
8541     if (Reg == MI.getOperand(0).getReg())
8542       Expr = DIExpression::appendExt(Expr, 32, 64, true);
8543     else
8544       assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
8545              "Unhandled sub-register case for MOVSX64rr32");
8546 
8547     return ParamLoadedValue(MI.getOperand(1), Expr);
8548   }
8549   default:
8550     assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
8551     return TargetInstrInfo::describeLoadedValue(MI, Reg);
8552   }
8553 }
8554 
8555 /// This is an architecture-specific helper function of reassociateOps.
8556 /// Set special operand attributes for new instructions after reassociation.
setSpecialOperandAttr(MachineInstr & OldMI1,MachineInstr & OldMI2,MachineInstr & NewMI1,MachineInstr & NewMI2) const8557 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
8558                                          MachineInstr &OldMI2,
8559                                          MachineInstr &NewMI1,
8560                                          MachineInstr &NewMI2) const {
8561   // Propagate FP flags from the original instructions.
8562   // But clear poison-generating flags because those may not be valid now.
8563   // TODO: There should be a helper function for copying only fast-math-flags.
8564   uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
8565   NewMI1.setFlags(IntersectedFlags);
8566   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
8567   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
8568   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
8569 
8570   NewMI2.setFlags(IntersectedFlags);
8571   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
8572   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
8573   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
8574 
8575   // Integer instructions may define an implicit EFLAGS dest register operand.
8576   MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
8577   MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
8578 
8579   assert(!OldFlagDef1 == !OldFlagDef2 &&
8580          "Unexpected instruction type for reassociation");
8581 
8582   if (!OldFlagDef1 || !OldFlagDef2)
8583     return;
8584 
8585   assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
8586          "Must have dead EFLAGS operand in reassociable instruction");
8587 
8588   MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
8589   MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
8590 
8591   assert(NewFlagDef1 && NewFlagDef2 &&
8592          "Unexpected operand in reassociable instruction");
8593 
8594   // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
8595   // of this pass or other passes. The EFLAGS operands must be dead in these new
8596   // instructions because the EFLAGS operands in the original instructions must
8597   // be dead in order for reassociation to occur.
8598   NewFlagDef1->setIsDead();
8599   NewFlagDef2->setIsDead();
8600 }
8601 
8602 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const8603 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
8604   return std::make_pair(TF, 0u);
8605 }
8606 
8607 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const8608 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
8609   using namespace X86II;
8610   static const std::pair<unsigned, const char *> TargetFlags[] = {
8611       {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
8612       {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
8613       {MO_GOT, "x86-got"},
8614       {MO_GOTOFF, "x86-gotoff"},
8615       {MO_GOTPCREL, "x86-gotpcrel"},
8616       {MO_PLT, "x86-plt"},
8617       {MO_TLSGD, "x86-tlsgd"},
8618       {MO_TLSLD, "x86-tlsld"},
8619       {MO_TLSLDM, "x86-tlsldm"},
8620       {MO_GOTTPOFF, "x86-gottpoff"},
8621       {MO_INDNTPOFF, "x86-indntpoff"},
8622       {MO_TPOFF, "x86-tpoff"},
8623       {MO_DTPOFF, "x86-dtpoff"},
8624       {MO_NTPOFF, "x86-ntpoff"},
8625       {MO_GOTNTPOFF, "x86-gotntpoff"},
8626       {MO_DLLIMPORT, "x86-dllimport"},
8627       {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
8628       {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
8629       {MO_TLVP, "x86-tlvp"},
8630       {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
8631       {MO_SECREL, "x86-secrel"},
8632       {MO_COFFSTUB, "x86-coffstub"}};
8633   return makeArrayRef(TargetFlags);
8634 }
8635 
8636 namespace {
8637   /// Create Global Base Reg pass. This initializes the PIC
8638   /// global base register for x86-32.
8639   struct CGBR : public MachineFunctionPass {
8640     static char ID;
CGBR__anona130ae080611::CGBR8641     CGBR() : MachineFunctionPass(ID) {}
8642 
runOnMachineFunction__anona130ae080611::CGBR8643     bool runOnMachineFunction(MachineFunction &MF) override {
8644       const X86TargetMachine *TM =
8645         static_cast<const X86TargetMachine *>(&MF.getTarget());
8646       const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
8647 
8648       // Don't do anything in the 64-bit small and kernel code models. They use
8649       // RIP-relative addressing for everything.
8650       if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
8651                             TM->getCodeModel() == CodeModel::Kernel))
8652         return false;
8653 
8654       // Only emit a global base reg in PIC mode.
8655       if (!TM->isPositionIndependent())
8656         return false;
8657 
8658       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
8659       Register GlobalBaseReg = X86FI->getGlobalBaseReg();
8660 
8661       // If we didn't need a GlobalBaseReg, don't insert code.
8662       if (GlobalBaseReg == 0)
8663         return false;
8664 
8665       // Insert the set of GlobalBaseReg into the first MBB of the function
8666       MachineBasicBlock &FirstMBB = MF.front();
8667       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
8668       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
8669       MachineRegisterInfo &RegInfo = MF.getRegInfo();
8670       const X86InstrInfo *TII = STI.getInstrInfo();
8671 
8672       Register PC;
8673       if (STI.isPICStyleGOT())
8674         PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
8675       else
8676         PC = GlobalBaseReg;
8677 
8678       if (STI.is64Bit()) {
8679         if (TM->getCodeModel() == CodeModel::Medium) {
8680           // In the medium code model, use a RIP-relative LEA to materialize the
8681           // GOT.
8682           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
8683               .addReg(X86::RIP)
8684               .addImm(0)
8685               .addReg(0)
8686               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
8687               .addReg(0);
8688         } else if (TM->getCodeModel() == CodeModel::Large) {
8689           // In the large code model, we are aiming for this code, though the
8690           // register allocation may vary:
8691           //   leaq .LN$pb(%rip), %rax
8692           //   movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
8693           //   addq %rcx, %rax
8694           // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
8695           Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
8696           Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
8697           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
8698               .addReg(X86::RIP)
8699               .addImm(0)
8700               .addReg(0)
8701               .addSym(MF.getPICBaseSymbol())
8702               .addReg(0);
8703           std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
8704           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
8705               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
8706                                  X86II::MO_PIC_BASE_OFFSET);
8707           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
8708               .addReg(PBReg, RegState::Kill)
8709               .addReg(GOTReg, RegState::Kill);
8710         } else {
8711           llvm_unreachable("unexpected code model");
8712         }
8713       } else {
8714         // Operand of MovePCtoStack is completely ignored by asm printer. It's
8715         // only used in JIT code emission as displacement to pc.
8716         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
8717 
8718         // If we're using vanilla 'GOT' PIC style, we should use relative
8719         // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
8720         if (STI.isPICStyleGOT()) {
8721           // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
8722           // %some_register
8723           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
8724               .addReg(PC)
8725               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
8726                                  X86II::MO_GOT_ABSOLUTE_ADDRESS);
8727         }
8728       }
8729 
8730       return true;
8731     }
8732 
getPassName__anona130ae080611::CGBR8733     StringRef getPassName() const override {
8734       return "X86 PIC Global Base Reg Initialization";
8735     }
8736 
getAnalysisUsage__anona130ae080611::CGBR8737     void getAnalysisUsage(AnalysisUsage &AU) const override {
8738       AU.setPreservesCFG();
8739       MachineFunctionPass::getAnalysisUsage(AU);
8740     }
8741   };
8742 } // namespace
8743 
8744 char CGBR::ID = 0;
8745 FunctionPass*
createX86GlobalBaseRegPass()8746 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
8747 
8748 namespace {
8749   struct LDTLSCleanup : public MachineFunctionPass {
8750     static char ID;
LDTLSCleanup__anona130ae080711::LDTLSCleanup8751     LDTLSCleanup() : MachineFunctionPass(ID) {}
8752 
runOnMachineFunction__anona130ae080711::LDTLSCleanup8753     bool runOnMachineFunction(MachineFunction &MF) override {
8754       if (skipFunction(MF.getFunction()))
8755         return false;
8756 
8757       X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
8758       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
8759         // No point folding accesses if there isn't at least two.
8760         return false;
8761       }
8762 
8763       MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
8764       return VisitNode(DT->getRootNode(), 0);
8765     }
8766 
8767     // Visit the dominator subtree rooted at Node in pre-order.
8768     // If TLSBaseAddrReg is non-null, then use that to replace any
8769     // TLS_base_addr instructions. Otherwise, create the register
8770     // when the first such instruction is seen, and then use it
8771     // as we encounter more instructions.
VisitNode__anona130ae080711::LDTLSCleanup8772     bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
8773       MachineBasicBlock *BB = Node->getBlock();
8774       bool Changed = false;
8775 
8776       // Traverse the current block.
8777       for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
8778            ++I) {
8779         switch (I->getOpcode()) {
8780           case X86::TLS_base_addr32:
8781           case X86::TLS_base_addr64:
8782             if (TLSBaseAddrReg)
8783               I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
8784             else
8785               I = SetRegister(*I, &TLSBaseAddrReg);
8786             Changed = true;
8787             break;
8788           default:
8789             break;
8790         }
8791       }
8792 
8793       // Visit the children of this block in the dominator tree.
8794       for (auto I = Node->begin(), E = Node->end(); I != E; ++I) {
8795         Changed |= VisitNode(*I, TLSBaseAddrReg);
8796       }
8797 
8798       return Changed;
8799     }
8800 
8801     // Replace the TLS_base_addr instruction I with a copy from
8802     // TLSBaseAddrReg, returning the new instruction.
ReplaceTLSBaseAddrCall__anona130ae080711::LDTLSCleanup8803     MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
8804                                          unsigned TLSBaseAddrReg) {
8805       MachineFunction *MF = I.getParent()->getParent();
8806       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
8807       const bool is64Bit = STI.is64Bit();
8808       const X86InstrInfo *TII = STI.getInstrInfo();
8809 
8810       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
8811       MachineInstr *Copy =
8812           BuildMI(*I.getParent(), I, I.getDebugLoc(),
8813                   TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
8814               .addReg(TLSBaseAddrReg);
8815 
8816       // Erase the TLS_base_addr instruction.
8817       I.eraseFromParent();
8818 
8819       return Copy;
8820     }
8821 
8822     // Create a virtual register in *TLSBaseAddrReg, and populate it by
8823     // inserting a copy instruction after I. Returns the new instruction.
SetRegister__anona130ae080711::LDTLSCleanup8824     MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
8825       MachineFunction *MF = I.getParent()->getParent();
8826       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
8827       const bool is64Bit = STI.is64Bit();
8828       const X86InstrInfo *TII = STI.getInstrInfo();
8829 
8830       // Create a virtual register for the TLS base address.
8831       MachineRegisterInfo &RegInfo = MF->getRegInfo();
8832       *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
8833                                                       ? &X86::GR64RegClass
8834                                                       : &X86::GR32RegClass);
8835 
8836       // Insert a copy from RAX/EAX to TLSBaseAddrReg.
8837       MachineInstr *Next = I.getNextNode();
8838       MachineInstr *Copy =
8839           BuildMI(*I.getParent(), Next, I.getDebugLoc(),
8840                   TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
8841               .addReg(is64Bit ? X86::RAX : X86::EAX);
8842 
8843       return Copy;
8844     }
8845 
getPassName__anona130ae080711::LDTLSCleanup8846     StringRef getPassName() const override {
8847       return "Local Dynamic TLS Access Clean-up";
8848     }
8849 
getAnalysisUsage__anona130ae080711::LDTLSCleanup8850     void getAnalysisUsage(AnalysisUsage &AU) const override {
8851       AU.setPreservesCFG();
8852       AU.addRequired<MachineDominatorTree>();
8853       MachineFunctionPass::getAnalysisUsage(AU);
8854     }
8855   };
8856 }
8857 
8858 char LDTLSCleanup::ID = 0;
8859 FunctionPass*
createCleanupLocalDynamicTLSPass()8860 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
8861 
8862 /// Constants defining how certain sequences should be outlined.
8863 ///
8864 /// \p MachineOutlinerDefault implies that the function is called with a call
8865 /// instruction, and a return must be emitted for the outlined function frame.
8866 ///
8867 /// That is,
8868 ///
8869 /// I1                                 OUTLINED_FUNCTION:
8870 /// I2 --> call OUTLINED_FUNCTION       I1
8871 /// I3                                  I2
8872 ///                                     I3
8873 ///                                     ret
8874 ///
8875 /// * Call construction overhead: 1 (call instruction)
8876 /// * Frame construction overhead: 1 (return instruction)
8877 ///
8878 /// \p MachineOutlinerTailCall implies that the function is being tail called.
8879 /// A jump is emitted instead of a call, and the return is already present in
8880 /// the outlined sequence. That is,
8881 ///
8882 /// I1                                 OUTLINED_FUNCTION:
8883 /// I2 --> jmp OUTLINED_FUNCTION       I1
8884 /// ret                                I2
8885 ///                                    ret
8886 ///
8887 /// * Call construction overhead: 1 (jump instruction)
8888 /// * Frame construction overhead: 0 (don't need to return)
8889 ///
8890 enum MachineOutlinerClass {
8891   MachineOutlinerDefault,
8892   MachineOutlinerTailCall
8893 };
8894 
getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs) const8895 outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
8896     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
8897   unsigned SequenceSize =
8898       std::accumulate(RepeatedSequenceLocs[0].front(),
8899                       std::next(RepeatedSequenceLocs[0].back()), 0,
8900                       [](unsigned Sum, const MachineInstr &MI) {
8901                         // FIXME: x86 doesn't implement getInstSizeInBytes, so
8902                         // we can't tell the cost.  Just assume each instruction
8903                         // is one byte.
8904                         if (MI.isDebugInstr() || MI.isKill())
8905                           return Sum;
8906                         return Sum + 1;
8907                       });
8908 
8909   // We check to see if CFI Instructions are present, and if they are
8910   // we find the number of CFI Instructions in the candidates.
8911   unsigned CFICount = 0;
8912   MachineBasicBlock::iterator MBBI = RepeatedSequenceLocs[0].front();
8913   for (unsigned Loc = RepeatedSequenceLocs[0].getStartIdx();
8914        Loc < RepeatedSequenceLocs[0].getEndIdx() + 1; Loc++) {
8915     const std::vector<MCCFIInstruction> &CFIInstructions =
8916         RepeatedSequenceLocs[0].getMF()->getFrameInstructions();
8917     if (MBBI->isCFIInstruction()) {
8918       unsigned CFIIndex = MBBI->getOperand(0).getCFIIndex();
8919       MCCFIInstruction CFI = CFIInstructions[CFIIndex];
8920       CFICount++;
8921     }
8922     MBBI++;
8923   }
8924 
8925   // We compare the number of found CFI Instructions to  the number of CFI
8926   // instructions in the parent function for each candidate.  We must check this
8927   // since if we outline one of the CFI instructions in a function, we have to
8928   // outline them all for correctness. If we do not, the address offsets will be
8929   // incorrect between the two sections of the program.
8930   for (outliner::Candidate &C : RepeatedSequenceLocs) {
8931     std::vector<MCCFIInstruction> CFIInstructions =
8932         C.getMF()->getFrameInstructions();
8933 
8934     if (CFICount > 0 && CFICount != CFIInstructions.size())
8935       return outliner::OutlinedFunction();
8936   }
8937 
8938   // FIXME: Use real size in bytes for call and ret instructions.
8939   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
8940     for (outliner::Candidate &C : RepeatedSequenceLocs)
8941       C.setCallInfo(MachineOutlinerTailCall, 1);
8942 
8943     return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
8944                                       0, // Number of bytes to emit frame.
8945                                       MachineOutlinerTailCall // Type of frame.
8946     );
8947   }
8948 
8949   if (CFICount > 0)
8950     return outliner::OutlinedFunction();
8951 
8952   for (outliner::Candidate &C : RepeatedSequenceLocs)
8953     C.setCallInfo(MachineOutlinerDefault, 1);
8954 
8955   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
8956                                     MachineOutlinerDefault);
8957 }
8958 
isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs) const8959 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
8960                                            bool OutlineFromLinkOnceODRs) const {
8961   const Function &F = MF.getFunction();
8962 
8963   // Does the function use a red zone? If it does, then we can't risk messing
8964   // with the stack.
8965   if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
8966     // It could have a red zone. If it does, then we don't want to touch it.
8967     const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
8968     if (!X86FI || X86FI->getUsesRedZone())
8969       return false;
8970   }
8971 
8972   // If we *don't* want to outline from things that could potentially be deduped
8973   // then return false.
8974   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
8975       return false;
8976 
8977   // This function is viable for outlining, so return true.
8978   return true;
8979 }
8980 
8981 outliner::InstrType
getOutliningType(MachineBasicBlock::iterator & MIT,unsigned Flags) const8982 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,  unsigned Flags) const {
8983   MachineInstr &MI = *MIT;
8984   // Don't allow debug values to impact outlining type.
8985   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
8986     return outliner::InstrType::Invisible;
8987 
8988   // At this point, KILL instructions don't really tell us much so we can go
8989   // ahead and skip over them.
8990   if (MI.isKill())
8991     return outliner::InstrType::Invisible;
8992 
8993   // Is this a tail call? If yes, we can outline as a tail call.
8994   if (isTailCall(MI))
8995     return outliner::InstrType::Legal;
8996 
8997   // Is this the terminator of a basic block?
8998   if (MI.isTerminator() || MI.isReturn()) {
8999 
9000     // Does its parent have any successors in its MachineFunction?
9001     if (MI.getParent()->succ_empty())
9002       return outliner::InstrType::Legal;
9003 
9004     // It does, so we can't tail call it.
9005     return outliner::InstrType::Illegal;
9006   }
9007 
9008   // Don't outline anything that modifies or reads from the stack pointer.
9009   //
9010   // FIXME: There are instructions which are being manually built without
9011   // explicit uses/defs so we also have to check the MCInstrDesc. We should be
9012   // able to remove the extra checks once those are fixed up. For example,
9013   // sometimes we might get something like %rax = POP64r 1. This won't be
9014   // caught by modifiesRegister or readsRegister even though the instruction
9015   // really ought to be formed so that modifiesRegister/readsRegister would
9016   // catch it.
9017   if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
9018       MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
9019       MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
9020     return outliner::InstrType::Illegal;
9021 
9022   // Outlined calls change the instruction pointer, so don't read from it.
9023   if (MI.readsRegister(X86::RIP, &RI) ||
9024       MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
9025       MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
9026     return outliner::InstrType::Illegal;
9027 
9028   // Positions can't safely be outlined.
9029   if (MI.isPosition())
9030     return outliner::InstrType::Illegal;
9031 
9032   // Make sure none of the operands of this instruction do anything tricky.
9033   for (const MachineOperand &MOP : MI.operands())
9034     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
9035         MOP.isTargetIndex())
9036       return outliner::InstrType::Illegal;
9037 
9038   return outliner::InstrType::Legal;
9039 }
9040 
buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF) const9041 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
9042                                           MachineFunction &MF,
9043                                           const outliner::OutlinedFunction &OF)
9044                                           const {
9045   // If we're a tail call, we already have a return, so don't do anything.
9046   if (OF.FrameConstructionID == MachineOutlinerTailCall)
9047     return;
9048 
9049   // We're a normal call, so our sequence doesn't have a return instruction.
9050   // Add it in.
9051   MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
9052   MBB.insert(MBB.end(), retq);
9053 }
9054 
9055 MachineBasicBlock::iterator
insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,const outliner::Candidate & C) const9056 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
9057                                  MachineBasicBlock::iterator &It,
9058                                  MachineFunction &MF,
9059                                  const outliner::Candidate &C) const {
9060   // Is it a tail call?
9061   if (C.CallConstructionID == MachineOutlinerTailCall) {
9062     // Yes, just insert a JMP.
9063     It = MBB.insert(It,
9064                   BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
9065                       .addGlobalAddress(M.getNamedValue(MF.getName())));
9066   } else {
9067     // No, insert a call.
9068     It = MBB.insert(It,
9069                   BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
9070                       .addGlobalAddress(M.getNamedValue(MF.getName())));
9071   }
9072 
9073   return It;
9074 }
9075 
9076 #define GET_INSTRINFO_HELPERS
9077 #include "X86GenInstrInfo.inc"
9078