xref: /openbsd-src/gnu/llvm/llvm/tools/llvm-exegesis/lib/Assembler.cpp (revision d415bd752c734aee168c4ee86ff32e8cc249eb16)
1 //===-- Assembler.cpp -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Assembler.h"
10 
11 #include "SnippetRepetitor.h"
12 #include "Target.h"
13 #include "llvm/Analysis/TargetLibraryInfo.h"
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
17 #include "llvm/CodeGen/MachineInstrBuilder.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include "llvm/CodeGen/TargetPassConfig.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
24 #include "llvm/IR/LegacyPassManager.h"
25 #include "llvm/MC/MCInstrInfo.h"
26 #include "llvm/Support/Alignment.h"
27 #include "llvm/Support/MemoryBuffer.h"
28 
29 namespace llvm {
30 namespace exegesis {
31 
32 static constexpr const char ModuleID[] = "ExegesisInfoTest";
33 static constexpr const char FunctionID[] = "foo";
34 static const Align kFunctionAlignment(4096);
35 
36 // Fills the given basic block with register setup code, and returns true if
37 // all registers could be setup correctly.
generateSnippetSetupCode(const ExegesisTarget & ET,const MCSubtargetInfo * const MSI,ArrayRef<RegisterValue> RegisterInitialValues,BasicBlockFiller & BBF)38 static bool generateSnippetSetupCode(
39     const ExegesisTarget &ET, const MCSubtargetInfo *const MSI,
40     ArrayRef<RegisterValue> RegisterInitialValues, BasicBlockFiller &BBF) {
41   bool IsSnippetSetupComplete = true;
42   for (const RegisterValue &RV : RegisterInitialValues) {
43     // Load a constant in the register.
44     const auto SetRegisterCode = ET.setRegTo(*MSI, RV.Register, RV.Value);
45     if (SetRegisterCode.empty())
46       IsSnippetSetupComplete = false;
47     BBF.addInstructions(SetRegisterCode);
48   }
49   return IsSnippetSetupComplete;
50 }
51 
52 // Small utility function to add named passes.
addPass(PassManagerBase & PM,StringRef PassName,TargetPassConfig & TPC)53 static bool addPass(PassManagerBase &PM, StringRef PassName,
54                     TargetPassConfig &TPC) {
55   const PassRegistry *PR = PassRegistry::getPassRegistry();
56   const PassInfo *PI = PR->getPassInfo(PassName);
57   if (!PI) {
58     errs() << " run-pass " << PassName << " is not registered.\n";
59     return true;
60   }
61 
62   if (!PI->getNormalCtor()) {
63     errs() << " cannot create pass: " << PI->getPassName() << "\n";
64     return true;
65   }
66   Pass *P = PI->getNormalCtor()();
67   std::string Banner = std::string("After ") + std::string(P->getPassName());
68   PM.add(P);
69   TPC.printAndVerify(Banner);
70 
71   return false;
72 }
73 
createVoidVoidPtrMachineFunction(StringRef FunctionName,Module * Module,MachineModuleInfo * MMI)74 MachineFunction &createVoidVoidPtrMachineFunction(StringRef FunctionName,
75                                                   Module *Module,
76                                                   MachineModuleInfo *MMI) {
77   Type *const ReturnType = Type::getInt32Ty(Module->getContext());
78   Type *const MemParamType = PointerType::get(
79       Type::getInt8Ty(Module->getContext()), 0 /*default address space*/);
80   FunctionType *FunctionType =
81       FunctionType::get(ReturnType, {MemParamType}, false);
82   Function *const F = Function::Create(
83       FunctionType, GlobalValue::InternalLinkage, FunctionName, Module);
84   // Making sure we can create a MachineFunction out of this Function even if it
85   // contains no IR.
86   F->setIsMaterializable(true);
87   return MMI->getOrCreateMachineFunction(*F);
88 }
89 
BasicBlockFiller(MachineFunction & MF,MachineBasicBlock * MBB,const MCInstrInfo * MCII)90 BasicBlockFiller::BasicBlockFiller(MachineFunction &MF, MachineBasicBlock *MBB,
91                                    const MCInstrInfo *MCII)
92     : MF(MF), MBB(MBB), MCII(MCII) {}
93 
addInstruction(const MCInst & Inst,const DebugLoc & DL)94 void BasicBlockFiller::addInstruction(const MCInst &Inst, const DebugLoc &DL) {
95   const unsigned Opcode = Inst.getOpcode();
96   const MCInstrDesc &MCID = MCII->get(Opcode);
97   MachineInstrBuilder Builder = BuildMI(MBB, DL, MCID);
98   for (unsigned OpIndex = 0, E = Inst.getNumOperands(); OpIndex < E;
99        ++OpIndex) {
100     const MCOperand &Op = Inst.getOperand(OpIndex);
101     if (Op.isReg()) {
102       const bool IsDef = OpIndex < MCID.getNumDefs();
103       unsigned Flags = 0;
104       const MCOperandInfo &OpInfo = MCID.operands().begin()[OpIndex];
105       if (IsDef && !OpInfo.isOptionalDef())
106         Flags |= RegState::Define;
107       Builder.addReg(Op.getReg(), Flags);
108     } else if (Op.isImm()) {
109       Builder.addImm(Op.getImm());
110     } else if (!Op.isValid()) {
111       llvm_unreachable("Operand is not set");
112     } else {
113       llvm_unreachable("Not yet implemented");
114     }
115   }
116 }
117 
addInstructions(ArrayRef<MCInst> Insts,const DebugLoc & DL)118 void BasicBlockFiller::addInstructions(ArrayRef<MCInst> Insts,
119                                        const DebugLoc &DL) {
120   for (const MCInst &Inst : Insts)
121     addInstruction(Inst, DL);
122 }
123 
addReturn(const DebugLoc & DL)124 void BasicBlockFiller::addReturn(const DebugLoc &DL) {
125   // Insert the return code.
126   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
127   if (TII->getReturnOpcode() < TII->getNumOpcodes()) {
128     BuildMI(MBB, DL, TII->get(TII->getReturnOpcode()));
129   } else {
130     MachineIRBuilder MIB(MF);
131     MIB.setMBB(*MBB);
132 
133     FunctionLoweringInfo FuncInfo;
134     FuncInfo.CanLowerReturn = true;
135     MF.getSubtarget().getCallLowering()->lowerReturn(MIB, nullptr, {},
136                                                      FuncInfo);
137   }
138 }
139 
FunctionFiller(MachineFunction & MF,std::vector<unsigned> RegistersSetUp)140 FunctionFiller::FunctionFiller(MachineFunction &MF,
141                                std::vector<unsigned> RegistersSetUp)
142     : MF(MF), MCII(MF.getTarget().getMCInstrInfo()), Entry(addBasicBlock()),
143       RegistersSetUp(std::move(RegistersSetUp)) {}
144 
addBasicBlock()145 BasicBlockFiller FunctionFiller::addBasicBlock() {
146   MachineBasicBlock *MBB = MF.CreateMachineBasicBlock();
147   MF.push_back(MBB);
148   return BasicBlockFiller(MF, MBB, MCII);
149 }
150 
getRegistersSetUp() const151 ArrayRef<unsigned> FunctionFiller::getRegistersSetUp() const {
152   return RegistersSetUp;
153 }
154 
155 static std::unique_ptr<Module>
createModule(const std::unique_ptr<LLVMContext> & Context,const DataLayout & DL)156 createModule(const std::unique_ptr<LLVMContext> &Context, const DataLayout &DL) {
157   auto Mod = std::make_unique<Module>(ModuleID, *Context);
158   Mod->setDataLayout(DL);
159   return Mod;
160 }
161 
getFunctionReservedRegs(const TargetMachine & TM)162 BitVector getFunctionReservedRegs(const TargetMachine &TM) {
163   std::unique_ptr<LLVMContext> Context = std::make_unique<LLVMContext>();
164   std::unique_ptr<Module> Module = createModule(Context, TM.createDataLayout());
165   // TODO: This only works for targets implementing LLVMTargetMachine.
166   const LLVMTargetMachine &LLVMTM = static_cast<const LLVMTargetMachine &>(TM);
167   std::unique_ptr<MachineModuleInfoWrapperPass> MMIWP =
168       std::make_unique<MachineModuleInfoWrapperPass>(&LLVMTM);
169   MachineFunction &MF = createVoidVoidPtrMachineFunction(
170       FunctionID, Module.get(), &MMIWP.get()->getMMI());
171   // Saving reserved registers for client.
172   return MF.getSubtarget().getRegisterInfo()->getReservedRegs(MF);
173 }
174 
assembleToStream(const ExegesisTarget & ET,std::unique_ptr<LLVMTargetMachine> TM,ArrayRef<unsigned> LiveIns,ArrayRef<RegisterValue> RegisterInitialValues,const FillFunction & Fill,raw_pwrite_stream & AsmStream)175 Error assembleToStream(const ExegesisTarget &ET,
176                        std::unique_ptr<LLVMTargetMachine> TM,
177                        ArrayRef<unsigned> LiveIns,
178                        ArrayRef<RegisterValue> RegisterInitialValues,
179                        const FillFunction &Fill, raw_pwrite_stream &AsmStream) {
180   auto Context = std::make_unique<LLVMContext>();
181   std::unique_ptr<Module> Module =
182       createModule(Context, TM->createDataLayout());
183   auto MMIWP = std::make_unique<MachineModuleInfoWrapperPass>(TM.get());
184   MachineFunction &MF = createVoidVoidPtrMachineFunction(
185       FunctionID, Module.get(), &MMIWP.get()->getMMI());
186   MF.ensureAlignment(kFunctionAlignment);
187 
188   // We need to instruct the passes that we're done with SSA and virtual
189   // registers.
190   auto &Properties = MF.getProperties();
191   Properties.set(MachineFunctionProperties::Property::NoVRegs);
192   Properties.reset(MachineFunctionProperties::Property::IsSSA);
193   Properties.set(MachineFunctionProperties::Property::NoPHIs);
194 
195   for (const unsigned Reg : LiveIns)
196     MF.getRegInfo().addLiveIn(Reg);
197 
198   std::vector<unsigned> RegistersSetUp;
199   for (const auto &InitValue : RegisterInitialValues) {
200     RegistersSetUp.push_back(InitValue.Register);
201   }
202   FunctionFiller Sink(MF, std::move(RegistersSetUp));
203   auto Entry = Sink.getEntry();
204   for (const unsigned Reg : LiveIns)
205     Entry.MBB->addLiveIn(Reg);
206 
207   const bool IsSnippetSetupComplete = generateSnippetSetupCode(
208       ET, TM->getMCSubtargetInfo(), RegisterInitialValues, Entry);
209 
210   // If the snippet setup is not complete, we disable liveliness tracking. This
211   // means that we won't know what values are in the registers.
212   // FIXME: this should probably be an assertion.
213   if (!IsSnippetSetupComplete)
214     Properties.reset(MachineFunctionProperties::Property::TracksLiveness);
215 
216   Fill(Sink);
217 
218   // prologue/epilogue pass needs the reserved registers to be frozen, this
219   // is usually done by the SelectionDAGISel pass.
220   MF.getRegInfo().freezeReservedRegs(MF);
221 
222   // We create the pass manager, run the passes to populate AsmBuffer.
223   MCContext &MCContext = MMIWP->getMMI().getContext();
224   legacy::PassManager PM;
225 
226   TargetLibraryInfoImpl TLII(Triple(Module->getTargetTriple()));
227   PM.add(new TargetLibraryInfoWrapperPass(TLII));
228 
229   TargetPassConfig *TPC = TM->createPassConfig(PM);
230   PM.add(TPC);
231   PM.add(MMIWP.release());
232   TPC->printAndVerify("MachineFunctionGenerator::assemble");
233   // Add target-specific passes.
234   ET.addTargetSpecificPasses(PM);
235   TPC->printAndVerify("After ExegesisTarget::addTargetSpecificPasses");
236   // Adding the following passes:
237   // - postrapseudos: expands pseudo return instructions used on some targets.
238   // - machineverifier: checks that the MachineFunction is well formed.
239   // - prologepilog: saves and restore callee saved registers.
240   for (const char *PassName :
241        {"postrapseudos", "machineverifier", "prologepilog"})
242     if (addPass(PM, PassName, *TPC))
243       return make_error<Failure>("Unable to add a mandatory pass");
244   TPC->setInitialized();
245 
246   // AsmPrinter is responsible for generating the assembly into AsmBuffer.
247   if (TM->addAsmPrinter(PM, AsmStream, nullptr, CGFT_ObjectFile, MCContext))
248     return make_error<Failure>("Cannot add AsmPrinter passes");
249 
250   PM.run(*Module); // Run all the passes
251   return Error::success();
252 }
253 
254 object::OwningBinary<object::ObjectFile>
getObjectFromBuffer(StringRef InputData)255 getObjectFromBuffer(StringRef InputData) {
256   // Storing the generated assembly into a MemoryBuffer that owns the memory.
257   std::unique_ptr<MemoryBuffer> Buffer =
258       MemoryBuffer::getMemBufferCopy(InputData);
259   // Create the ObjectFile from the MemoryBuffer.
260   std::unique_ptr<object::ObjectFile> Obj =
261       cantFail(object::ObjectFile::createObjectFile(Buffer->getMemBufferRef()));
262   // Returning both the MemoryBuffer and the ObjectFile.
263   return object::OwningBinary<object::ObjectFile>(std::move(Obj),
264                                                   std::move(Buffer));
265 }
266 
getObjectFromFile(StringRef Filename)267 object::OwningBinary<object::ObjectFile> getObjectFromFile(StringRef Filename) {
268   return cantFail(object::ObjectFile::createObjectFile(Filename));
269 }
270 
271 namespace {
272 
273 // Implementation of this class relies on the fact that a single object with a
274 // single function will be loaded into memory.
275 class TrackingSectionMemoryManager : public SectionMemoryManager {
276 public:
TrackingSectionMemoryManager(uintptr_t * CodeSize)277   explicit TrackingSectionMemoryManager(uintptr_t *CodeSize)
278       : CodeSize(CodeSize) {}
279 
allocateCodeSection(uintptr_t Size,unsigned Alignment,unsigned SectionID,StringRef SectionName)280   uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
281                                unsigned SectionID,
282                                StringRef SectionName) override {
283     *CodeSize = Size;
284     return SectionMemoryManager::allocateCodeSection(Size, Alignment, SectionID,
285                                                      SectionName);
286   }
287 
288 private:
289   uintptr_t *const CodeSize = nullptr;
290 };
291 
292 } // namespace
293 
ExecutableFunction(std::unique_ptr<LLVMTargetMachine> TM,object::OwningBinary<object::ObjectFile> && ObjectFileHolder)294 ExecutableFunction::ExecutableFunction(
295     std::unique_ptr<LLVMTargetMachine> TM,
296     object::OwningBinary<object::ObjectFile> &&ObjectFileHolder)
297     : Context(std::make_unique<LLVMContext>()) {
298   assert(ObjectFileHolder.getBinary() && "cannot create object file");
299   // Initializing the execution engine.
300   // We need to use the JIT EngineKind to be able to add an object file.
301   LLVMLinkInMCJIT();
302   uintptr_t CodeSize = 0;
303   std::string Error;
304   ExecEngine.reset(
305       EngineBuilder(createModule(Context, TM->createDataLayout()))
306           .setErrorStr(&Error)
307           .setMCPU(TM->getTargetCPU())
308           .setEngineKind(EngineKind::JIT)
309           .setMCJITMemoryManager(
310               std::make_unique<TrackingSectionMemoryManager>(&CodeSize))
311           .create(TM.release()));
312   if (!ExecEngine)
313     report_fatal_error(Twine(Error));
314   // Adding the generated object file containing the assembled function.
315   // The ExecutionEngine makes sure the object file is copied into an
316   // executable page.
317   ExecEngine->addObjectFile(std::move(ObjectFileHolder));
318   // Fetching function bytes.
319   const uint64_t FunctionAddress = ExecEngine->getFunctionAddress(FunctionID);
320   assert(isAligned(kFunctionAlignment, FunctionAddress) &&
321          "function is not properly aligned");
322   FunctionBytes =
323       StringRef(reinterpret_cast<const char *>(FunctionAddress), CodeSize);
324 }
325 
326 } // namespace exegesis
327 } // namespace llvm
328