1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the loop fusion pass. 11 /// The implementation is largely based on the following document: 12 /// 13 /// Code Transformations to Augment the Scope of Loop Fusion in a 14 /// Production Compiler 15 /// Christopher Mark Barton 16 /// MSc Thesis 17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf 18 /// 19 /// The general approach taken is to collect sets of control flow equivalent 20 /// loops and test whether they can be fused. The necessary conditions for 21 /// fusion are: 22 /// 1. The loops must be adjacent (there cannot be any statements between 23 /// the two loops). 24 /// 2. The loops must be conforming (they must execute the same number of 25 /// iterations). 26 /// 3. The loops must be control flow equivalent (if one loop executes, the 27 /// other is guaranteed to execute). 28 /// 4. There cannot be any negative distance dependencies between the loops. 29 /// If all of these conditions are satisfied, it is safe to fuse the loops. 30 /// 31 /// This implementation creates FusionCandidates that represent the loop and the 32 /// necessary information needed by fusion. It then operates on the fusion 33 /// candidates, first confirming that the candidate is eligible for fusion. The 34 /// candidates are then collected into control flow equivalent sets, sorted in 35 /// dominance order. Each set of control flow equivalent candidates is then 36 /// traversed, attempting to fuse pairs of candidates in the set. If all 37 /// requirements for fusion are met, the two candidates are fused, creating a 38 /// new (fused) candidate which is then added back into the set to consider for 39 /// additional fusion. 40 /// 41 /// This implementation currently does not make any modifications to remove 42 /// conditions for fusion. Code transformations to make loops conform to each of 43 /// the conditions for fusion are discussed in more detail in the document 44 /// above. These can be added to the current implementation in the future. 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/Transforms/Scalar/LoopFuse.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Analysis/AssumptionCache.h" 50 #include "llvm/Analysis/DependenceAnalysis.h" 51 #include "llvm/Analysis/DomTreeUpdater.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 54 #include "llvm/Analysis/PostDominators.h" 55 #include "llvm/Analysis/ScalarEvolution.h" 56 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 57 #include "llvm/Analysis/TargetTransformInfo.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/Verifier.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include "llvm/Transforms/Utils/CodeMoverUtils.h" 65 #include "llvm/Transforms/Utils/LoopPeel.h" 66 #include "llvm/Transforms/Utils/LoopSimplify.h" 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-fusion" 71 72 STATISTIC(FuseCounter, "Loops fused"); 73 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion"); 74 STATISTIC(InvalidPreheader, "Loop has invalid preheader"); 75 STATISTIC(InvalidHeader, "Loop has invalid header"); 76 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks"); 77 STATISTIC(InvalidExitBlock, "Loop has invalid exit block"); 78 STATISTIC(InvalidLatch, "Loop has invalid latch"); 79 STATISTIC(InvalidLoop, "Loop is invalid"); 80 STATISTIC(AddressTakenBB, "Basic block has address taken"); 81 STATISTIC(MayThrowException, "Loop may throw an exception"); 82 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access"); 83 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form"); 84 STATISTIC(InvalidDependencies, "Dependencies prevent fusion"); 85 STATISTIC(UnknownTripCount, "Loop has unknown trip count"); 86 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop"); 87 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same"); 88 STATISTIC(NonAdjacent, "Loops are not adjacent"); 89 STATISTIC( 90 NonEmptyPreheader, 91 "Loop has a non-empty preheader with instructions that cannot be moved"); 92 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial"); 93 STATISTIC(NonIdenticalGuards, "Candidates have different guards"); 94 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with " 95 "instructions that cannot be moved"); 96 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with " 97 "instructions that cannot be moved"); 98 STATISTIC(NotRotated, "Candidate is not rotated"); 99 STATISTIC(OnlySecondCandidateIsGuarded, 100 "The second candidate is guarded while the first one is not"); 101 STATISTIC(NumHoistedInsts, "Number of hoisted preheader instructions."); 102 STATISTIC(NumSunkInsts, "Number of hoisted preheader instructions."); 103 104 enum FusionDependenceAnalysisChoice { 105 FUSION_DEPENDENCE_ANALYSIS_SCEV, 106 FUSION_DEPENDENCE_ANALYSIS_DA, 107 FUSION_DEPENDENCE_ANALYSIS_ALL, 108 }; 109 110 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis( 111 "loop-fusion-dependence-analysis", 112 cl::desc("Which dependence analysis should loop fusion use?"), 113 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev", 114 "Use the scalar evolution interface"), 115 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da", 116 "Use the dependence analysis interface"), 117 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all", 118 "Use all available analyses")), 119 cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL)); 120 121 static cl::opt<unsigned> FusionPeelMaxCount( 122 "loop-fusion-peel-max-count", cl::init(0), cl::Hidden, 123 cl::desc("Max number of iterations to be peeled from a loop, such that " 124 "fusion can take place")); 125 126 #ifndef NDEBUG 127 static cl::opt<bool> 128 VerboseFusionDebugging("loop-fusion-verbose-debug", 129 cl::desc("Enable verbose debugging for Loop Fusion"), 130 cl::Hidden, cl::init(false)); 131 #endif 132 133 namespace { 134 /// This class is used to represent a candidate for loop fusion. When it is 135 /// constructed, it checks the conditions for loop fusion to ensure that it 136 /// represents a valid candidate. It caches several parts of a loop that are 137 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead 138 /// of continually querying the underlying Loop to retrieve these values. It is 139 /// assumed these will not change throughout loop fusion. 140 /// 141 /// The invalidate method should be used to indicate that the FusionCandidate is 142 /// no longer a valid candidate for fusion. Similarly, the isValid() method can 143 /// be used to ensure that the FusionCandidate is still valid for fusion. 144 struct FusionCandidate { 145 /// Cache of parts of the loop used throughout loop fusion. These should not 146 /// need to change throughout the analysis and transformation. 147 /// These parts are cached to avoid repeatedly looking up in the Loop class. 148 149 /// Preheader of the loop this candidate represents 150 BasicBlock *Preheader; 151 /// Header of the loop this candidate represents 152 BasicBlock *Header; 153 /// Blocks in the loop that exit the loop 154 BasicBlock *ExitingBlock; 155 /// The successor block of this loop (where the exiting blocks go to) 156 BasicBlock *ExitBlock; 157 /// Latch of the loop 158 BasicBlock *Latch; 159 /// The loop that this fusion candidate represents 160 Loop *L; 161 /// Vector of instructions in this loop that read from memory 162 SmallVector<Instruction *, 16> MemReads; 163 /// Vector of instructions in this loop that write to memory 164 SmallVector<Instruction *, 16> MemWrites; 165 /// Are all of the members of this fusion candidate still valid 166 bool Valid; 167 /// Guard branch of the loop, if it exists 168 BranchInst *GuardBranch; 169 /// Peeling Paramaters of the Loop. 170 TTI::PeelingPreferences PP; 171 /// Can you Peel this Loop? 172 bool AbleToPeel; 173 /// Has this loop been Peeled 174 bool Peeled; 175 176 /// Dominator and PostDominator trees are needed for the 177 /// FusionCandidateCompare function, required by FusionCandidateSet to 178 /// determine where the FusionCandidate should be inserted into the set. These 179 /// are used to establish ordering of the FusionCandidates based on dominance. 180 DominatorTree &DT; 181 const PostDominatorTree *PDT; 182 183 OptimizationRemarkEmitter &ORE; 184 185 FusionCandidate(Loop *L, DominatorTree &DT, const PostDominatorTree *PDT, 186 OptimizationRemarkEmitter &ORE, TTI::PeelingPreferences PP) 187 : Preheader(L->getLoopPreheader()), Header(L->getHeader()), 188 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()), 189 Latch(L->getLoopLatch()), L(L), Valid(true), 190 GuardBranch(L->getLoopGuardBranch()), PP(PP), AbleToPeel(canPeel(L)), 191 Peeled(false), DT(DT), PDT(PDT), ORE(ORE) { 192 193 // Walk over all blocks in the loop and check for conditions that may 194 // prevent fusion. For each block, walk over all instructions and collect 195 // the memory reads and writes If any instructions that prevent fusion are 196 // found, invalidate this object and return. 197 for (BasicBlock *BB : L->blocks()) { 198 if (BB->hasAddressTaken()) { 199 invalidate(); 200 reportInvalidCandidate(AddressTakenBB); 201 return; 202 } 203 204 for (Instruction &I : *BB) { 205 if (I.mayThrow()) { 206 invalidate(); 207 reportInvalidCandidate(MayThrowException); 208 return; 209 } 210 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 211 if (SI->isVolatile()) { 212 invalidate(); 213 reportInvalidCandidate(ContainsVolatileAccess); 214 return; 215 } 216 } 217 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 218 if (LI->isVolatile()) { 219 invalidate(); 220 reportInvalidCandidate(ContainsVolatileAccess); 221 return; 222 } 223 } 224 if (I.mayWriteToMemory()) 225 MemWrites.push_back(&I); 226 if (I.mayReadFromMemory()) 227 MemReads.push_back(&I); 228 } 229 } 230 } 231 232 /// Check if all members of the class are valid. 233 bool isValid() const { 234 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L && 235 !L->isInvalid() && Valid; 236 } 237 238 /// Verify that all members are in sync with the Loop object. 239 void verify() const { 240 assert(isValid() && "Candidate is not valid!!"); 241 assert(!L->isInvalid() && "Loop is invalid!"); 242 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync"); 243 assert(Header == L->getHeader() && "Header is out of sync"); 244 assert(ExitingBlock == L->getExitingBlock() && 245 "Exiting Blocks is out of sync"); 246 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync"); 247 assert(Latch == L->getLoopLatch() && "Latch is out of sync"); 248 } 249 250 /// Get the entry block for this fusion candidate. 251 /// 252 /// If this fusion candidate represents a guarded loop, the entry block is the 253 /// loop guard block. If it represents an unguarded loop, the entry block is 254 /// the preheader of the loop. 255 BasicBlock *getEntryBlock() const { 256 if (GuardBranch) 257 return GuardBranch->getParent(); 258 else 259 return Preheader; 260 } 261 262 /// After Peeling the loop is modified quite a bit, hence all of the Blocks 263 /// need to be updated accordingly. 264 void updateAfterPeeling() { 265 Preheader = L->getLoopPreheader(); 266 Header = L->getHeader(); 267 ExitingBlock = L->getExitingBlock(); 268 ExitBlock = L->getExitBlock(); 269 Latch = L->getLoopLatch(); 270 verify(); 271 } 272 273 /// Given a guarded loop, get the successor of the guard that is not in the 274 /// loop. 275 /// 276 /// This method returns the successor of the loop guard that is not located 277 /// within the loop (i.e., the successor of the guard that is not the 278 /// preheader). 279 /// This method is only valid for guarded loops. 280 BasicBlock *getNonLoopBlock() const { 281 assert(GuardBranch && "Only valid on guarded loops."); 282 assert(GuardBranch->isConditional() && 283 "Expecting guard to be a conditional branch."); 284 if (Peeled) 285 return GuardBranch->getSuccessor(1); 286 return (GuardBranch->getSuccessor(0) == Preheader) 287 ? GuardBranch->getSuccessor(1) 288 : GuardBranch->getSuccessor(0); 289 } 290 291 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 292 LLVM_DUMP_METHOD void dump() const { 293 dbgs() << "\tGuardBranch: "; 294 if (GuardBranch) 295 dbgs() << *GuardBranch; 296 else 297 dbgs() << "nullptr"; 298 dbgs() << "\n" 299 << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n" 300 << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr") 301 << "\n" 302 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n" 303 << "\tExitingBB: " 304 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n" 305 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr") 306 << "\n" 307 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n" 308 << "\tEntryBlock: " 309 << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr") 310 << "\n"; 311 } 312 #endif 313 314 /// Determine if a fusion candidate (representing a loop) is eligible for 315 /// fusion. Note that this only checks whether a single loop can be fused - it 316 /// does not check whether it is *legal* to fuse two loops together. 317 bool isEligibleForFusion(ScalarEvolution &SE) const { 318 if (!isValid()) { 319 LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n"); 320 if (!Preheader) 321 ++InvalidPreheader; 322 if (!Header) 323 ++InvalidHeader; 324 if (!ExitingBlock) 325 ++InvalidExitingBlock; 326 if (!ExitBlock) 327 ++InvalidExitBlock; 328 if (!Latch) 329 ++InvalidLatch; 330 if (L->isInvalid()) 331 ++InvalidLoop; 332 333 return false; 334 } 335 336 // Require ScalarEvolution to be able to determine a trip count. 337 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 338 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 339 << " trip count not computable!\n"); 340 return reportInvalidCandidate(UnknownTripCount); 341 } 342 343 if (!L->isLoopSimplifyForm()) { 344 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 345 << " is not in simplified form!\n"); 346 return reportInvalidCandidate(NotSimplifiedForm); 347 } 348 349 if (!L->isRotatedForm()) { 350 LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n"); 351 return reportInvalidCandidate(NotRotated); 352 } 353 354 return true; 355 } 356 357 private: 358 // This is only used internally for now, to clear the MemWrites and MemReads 359 // list and setting Valid to false. I can't envision other uses of this right 360 // now, since once FusionCandidates are put into the FusionCandidateSet they 361 // are immutable. Thus, any time we need to change/update a FusionCandidate, 362 // we must create a new one and insert it into the FusionCandidateSet to 363 // ensure the FusionCandidateSet remains ordered correctly. 364 void invalidate() { 365 MemWrites.clear(); 366 MemReads.clear(); 367 Valid = false; 368 } 369 370 bool reportInvalidCandidate(llvm::Statistic &Stat) const { 371 using namespace ore; 372 assert(L && Preheader && "Fusion candidate not initialized properly!"); 373 #if LLVM_ENABLE_STATS 374 ++Stat; 375 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(), 376 L->getStartLoc(), Preheader) 377 << "[" << Preheader->getParent()->getName() << "]: " 378 << "Loop is not a candidate for fusion: " << Stat.getDesc()); 379 #endif 380 return false; 381 } 382 }; 383 384 struct FusionCandidateCompare { 385 /// Comparison functor to sort two Control Flow Equivalent fusion candidates 386 /// into dominance order. 387 /// If LHS dominates RHS and RHS post-dominates LHS, return true; 388 /// If RHS dominates LHS and LHS post-dominates RHS, return false; 389 /// If both LHS and RHS are not dominating each other then, non-strictly 390 /// post dominate check will decide the order of candidates. If RHS 391 /// non-strictly post dominates LHS then, return true. If LHS non-strictly 392 /// post dominates RHS then, return false. If both are non-strictly post 393 /// dominate each other then, level in the post dominator tree will decide 394 /// the order of candidates. 395 bool operator()(const FusionCandidate &LHS, 396 const FusionCandidate &RHS) const { 397 const DominatorTree *DT = &(LHS.DT); 398 399 BasicBlock *LHSEntryBlock = LHS.getEntryBlock(); 400 BasicBlock *RHSEntryBlock = RHS.getEntryBlock(); 401 402 // Do not save PDT to local variable as it is only used in asserts and thus 403 // will trigger an unused variable warning if building without asserts. 404 assert(DT && LHS.PDT && "Expecting valid dominator tree"); 405 406 // Do this compare first so if LHS == RHS, function returns false. 407 if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) { 408 // RHS dominates LHS 409 // Verify LHS post-dominates RHS 410 assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock)); 411 return false; 412 } 413 414 if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) { 415 // Verify RHS Postdominates LHS 416 assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock)); 417 return true; 418 } 419 420 // If two FusionCandidates are in the same level of dominator tree, 421 // they will not dominate each other, but may still be control flow 422 // equivalent. To sort those FusionCandidates, nonStrictlyPostDominate() 423 // function is needed. 424 bool WrongOrder = 425 nonStrictlyPostDominate(LHSEntryBlock, RHSEntryBlock, DT, LHS.PDT); 426 bool RightOrder = 427 nonStrictlyPostDominate(RHSEntryBlock, LHSEntryBlock, DT, LHS.PDT); 428 if (WrongOrder && RightOrder) { 429 // If common predecessor of LHS and RHS post dominates both 430 // FusionCandidates then, Order of FusionCandidate can be 431 // identified by its level in post dominator tree. 432 DomTreeNode *LNode = LHS.PDT->getNode(LHSEntryBlock); 433 DomTreeNode *RNode = LHS.PDT->getNode(RHSEntryBlock); 434 return LNode->getLevel() > RNode->getLevel(); 435 } else if (WrongOrder) 436 return false; 437 else if (RightOrder) 438 return true; 439 440 // If LHS does not non-strict Postdominate RHS and RHS does not non-strict 441 // Postdominate LHS then, there is no dominance relationship between the 442 // two FusionCandidates. Thus, they should not be in the same set together. 443 llvm_unreachable( 444 "No dominance relationship between these fusion candidates!"); 445 } 446 }; 447 448 using LoopVector = SmallVector<Loop *, 4>; 449 450 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance 451 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0 452 // dominates FC1 and FC1 post-dominates FC0. 453 // std::set was chosen because we want a sorted data structure with stable 454 // iterators. A subsequent patch to loop fusion will enable fusing non-adjacent 455 // loops by moving intervening code around. When this intervening code contains 456 // loops, those loops will be moved also. The corresponding FusionCandidates 457 // will also need to be moved accordingly. As this is done, having stable 458 // iterators will simplify the logic. Similarly, having an efficient insert that 459 // keeps the FusionCandidateSet sorted will also simplify the implementation. 460 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>; 461 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>; 462 463 #if !defined(NDEBUG) 464 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 465 const FusionCandidate &FC) { 466 if (FC.isValid()) 467 OS << FC.Preheader->getName(); 468 else 469 OS << "<Invalid>"; 470 471 return OS; 472 } 473 474 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 475 const FusionCandidateSet &CandSet) { 476 for (const FusionCandidate &FC : CandSet) 477 OS << FC << '\n'; 478 479 return OS; 480 } 481 482 static void 483 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) { 484 dbgs() << "Fusion Candidates: \n"; 485 for (const auto &CandidateSet : FusionCandidates) { 486 dbgs() << "*** Fusion Candidate Set ***\n"; 487 dbgs() << CandidateSet; 488 dbgs() << "****************************\n"; 489 } 490 } 491 #endif 492 493 /// Collect all loops in function at the same nest level, starting at the 494 /// outermost level. 495 /// 496 /// This data structure collects all loops at the same nest level for a 497 /// given function (specified by the LoopInfo object). It starts at the 498 /// outermost level. 499 struct LoopDepthTree { 500 using LoopsOnLevelTy = SmallVector<LoopVector, 4>; 501 using iterator = LoopsOnLevelTy::iterator; 502 using const_iterator = LoopsOnLevelTy::const_iterator; 503 504 LoopDepthTree(LoopInfo &LI) : Depth(1) { 505 if (!LI.empty()) 506 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend())); 507 } 508 509 /// Test whether a given loop has been removed from the function, and thus is 510 /// no longer valid. 511 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); } 512 513 /// Record that a given loop has been removed from the function and is no 514 /// longer valid. 515 void removeLoop(const Loop *L) { RemovedLoops.insert(L); } 516 517 /// Descend the tree to the next (inner) nesting level 518 void descend() { 519 LoopsOnLevelTy LoopsOnNextLevel; 520 521 for (const LoopVector &LV : *this) 522 for (Loop *L : LV) 523 if (!isRemovedLoop(L) && L->begin() != L->end()) 524 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end())); 525 526 LoopsOnLevel = LoopsOnNextLevel; 527 RemovedLoops.clear(); 528 Depth++; 529 } 530 531 bool empty() const { return size() == 0; } 532 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); } 533 unsigned getDepth() const { return Depth; } 534 535 iterator begin() { return LoopsOnLevel.begin(); } 536 iterator end() { return LoopsOnLevel.end(); } 537 const_iterator begin() const { return LoopsOnLevel.begin(); } 538 const_iterator end() const { return LoopsOnLevel.end(); } 539 540 private: 541 /// Set of loops that have been removed from the function and are no longer 542 /// valid. 543 SmallPtrSet<const Loop *, 8> RemovedLoops; 544 545 /// Depth of the current level, starting at 1 (outermost loops). 546 unsigned Depth; 547 548 /// Vector of loops at the current depth level that have the same parent loop 549 LoopsOnLevelTy LoopsOnLevel; 550 }; 551 552 #ifndef NDEBUG 553 static void printLoopVector(const LoopVector &LV) { 554 dbgs() << "****************************\n"; 555 for (auto *L : LV) 556 printLoop(*L, dbgs()); 557 dbgs() << "****************************\n"; 558 } 559 #endif 560 561 struct LoopFuser { 562 private: 563 // Sets of control flow equivalent fusion candidates for a given nest level. 564 FusionCandidateCollection FusionCandidates; 565 566 LoopDepthTree LDT; 567 DomTreeUpdater DTU; 568 569 LoopInfo &LI; 570 DominatorTree &DT; 571 DependenceInfo &DI; 572 ScalarEvolution &SE; 573 PostDominatorTree &PDT; 574 OptimizationRemarkEmitter &ORE; 575 AssumptionCache &AC; 576 const TargetTransformInfo &TTI; 577 578 public: 579 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI, 580 ScalarEvolution &SE, PostDominatorTree &PDT, 581 OptimizationRemarkEmitter &ORE, const DataLayout &DL, 582 AssumptionCache &AC, const TargetTransformInfo &TTI) 583 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI), 584 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE), AC(AC), TTI(TTI) {} 585 586 /// This is the main entry point for loop fusion. It will traverse the 587 /// specified function and collect candidate loops to fuse, starting at the 588 /// outermost nesting level and working inwards. 589 bool fuseLoops(Function &F) { 590 #ifndef NDEBUG 591 if (VerboseFusionDebugging) { 592 LI.print(dbgs()); 593 } 594 #endif 595 596 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName() 597 << "\n"); 598 bool Changed = false; 599 600 while (!LDT.empty()) { 601 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth " 602 << LDT.getDepth() << "\n";); 603 604 for (const LoopVector &LV : LDT) { 605 assert(LV.size() > 0 && "Empty loop set was build!"); 606 607 // Skip singleton loop sets as they do not offer fusion opportunities on 608 // this level. 609 if (LV.size() == 1) 610 continue; 611 #ifndef NDEBUG 612 if (VerboseFusionDebugging) { 613 LLVM_DEBUG({ 614 dbgs() << " Visit loop set (#" << LV.size() << "):\n"; 615 printLoopVector(LV); 616 }); 617 } 618 #endif 619 620 collectFusionCandidates(LV); 621 Changed |= fuseCandidates(); 622 } 623 624 // Finished analyzing candidates at this level. 625 // Descend to the next level and clear all of the candidates currently 626 // collected. Note that it will not be possible to fuse any of the 627 // existing candidates with new candidates because the new candidates will 628 // be at a different nest level and thus not be control flow equivalent 629 // with all of the candidates collected so far. 630 LLVM_DEBUG(dbgs() << "Descend one level!\n"); 631 LDT.descend(); 632 FusionCandidates.clear(); 633 } 634 635 if (Changed) 636 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump();); 637 638 #ifndef NDEBUG 639 assert(DT.verify()); 640 assert(PDT.verify()); 641 LI.verify(DT); 642 SE.verify(); 643 #endif 644 645 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n"); 646 return Changed; 647 } 648 649 private: 650 /// Determine if two fusion candidates are control flow equivalent. 651 /// 652 /// Two fusion candidates are control flow equivalent if when one executes, 653 /// the other is guaranteed to execute. This is determined using dominators 654 /// and post-dominators: if A dominates B and B post-dominates A then A and B 655 /// are control-flow equivalent. 656 bool isControlFlowEquivalent(const FusionCandidate &FC0, 657 const FusionCandidate &FC1) const { 658 assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders"); 659 660 return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(), 661 DT, PDT); 662 } 663 664 /// Iterate over all loops in the given loop set and identify the loops that 665 /// are eligible for fusion. Place all eligible fusion candidates into Control 666 /// Flow Equivalent sets, sorted by dominance. 667 void collectFusionCandidates(const LoopVector &LV) { 668 for (Loop *L : LV) { 669 TTI::PeelingPreferences PP = 670 gatherPeelingPreferences(L, SE, TTI, std::nullopt, std::nullopt); 671 FusionCandidate CurrCand(L, DT, &PDT, ORE, PP); 672 if (!CurrCand.isEligibleForFusion(SE)) 673 continue; 674 675 // Go through each list in FusionCandidates and determine if L is control 676 // flow equivalent with the first loop in that list. If it is, append LV. 677 // If not, go to the next list. 678 // If no suitable list is found, start another list and add it to 679 // FusionCandidates. 680 bool FoundSet = false; 681 682 for (auto &CurrCandSet : FusionCandidates) { 683 if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) { 684 CurrCandSet.insert(CurrCand); 685 FoundSet = true; 686 #ifndef NDEBUG 687 if (VerboseFusionDebugging) 688 LLVM_DEBUG(dbgs() << "Adding " << CurrCand 689 << " to existing candidate set\n"); 690 #endif 691 break; 692 } 693 } 694 if (!FoundSet) { 695 // No set was found. Create a new set and add to FusionCandidates 696 #ifndef NDEBUG 697 if (VerboseFusionDebugging) 698 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n"); 699 #endif 700 FusionCandidateSet NewCandSet; 701 NewCandSet.insert(CurrCand); 702 FusionCandidates.push_back(NewCandSet); 703 } 704 NumFusionCandidates++; 705 } 706 } 707 708 /// Determine if it is beneficial to fuse two loops. 709 /// 710 /// For now, this method simply returns true because we want to fuse as much 711 /// as possible (primarily to test the pass). This method will evolve, over 712 /// time, to add heuristics for profitability of fusion. 713 bool isBeneficialFusion(const FusionCandidate &FC0, 714 const FusionCandidate &FC1) { 715 return true; 716 } 717 718 /// Determine if two fusion candidates have the same trip count (i.e., they 719 /// execute the same number of iterations). 720 /// 721 /// This function will return a pair of values. The first is a boolean, 722 /// stating whether or not the two candidates are known at compile time to 723 /// have the same TripCount. The second is the difference in the two 724 /// TripCounts. This information can be used later to determine whether or not 725 /// peeling can be performed on either one of the candidates. 726 std::pair<bool, std::optional<unsigned>> 727 haveIdenticalTripCounts(const FusionCandidate &FC0, 728 const FusionCandidate &FC1) const { 729 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L); 730 if (isa<SCEVCouldNotCompute>(TripCount0)) { 731 UncomputableTripCount++; 732 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!"); 733 return {false, std::nullopt}; 734 } 735 736 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L); 737 if (isa<SCEVCouldNotCompute>(TripCount1)) { 738 UncomputableTripCount++; 739 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!"); 740 return {false, std::nullopt}; 741 } 742 743 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & " 744 << *TripCount1 << " are " 745 << (TripCount0 == TripCount1 ? "identical" : "different") 746 << "\n"); 747 748 if (TripCount0 == TripCount1) 749 return {true, 0}; 750 751 LLVM_DEBUG(dbgs() << "The loops do not have the same tripcount, " 752 "determining the difference between trip counts\n"); 753 754 // Currently only considering loops with a single exit point 755 // and a non-constant trip count. 756 const unsigned TC0 = SE.getSmallConstantTripCount(FC0.L); 757 const unsigned TC1 = SE.getSmallConstantTripCount(FC1.L); 758 759 // If any of the tripcounts are zero that means that loop(s) do not have 760 // a single exit or a constant tripcount. 761 if (TC0 == 0 || TC1 == 0) { 762 LLVM_DEBUG(dbgs() << "Loop(s) do not have a single exit point or do not " 763 "have a constant number of iterations. Peeling " 764 "is not benefical\n"); 765 return {false, std::nullopt}; 766 } 767 768 std::optional<unsigned> Difference; 769 int Diff = TC0 - TC1; 770 771 if (Diff > 0) 772 Difference = Diff; 773 else { 774 LLVM_DEBUG( 775 dbgs() << "Difference is less than 0. FC1 (second loop) has more " 776 "iterations than the first one. Currently not supported\n"); 777 } 778 779 LLVM_DEBUG(dbgs() << "Difference in loop trip count is: " << Difference 780 << "\n"); 781 782 return {false, Difference}; 783 } 784 785 void peelFusionCandidate(FusionCandidate &FC0, const FusionCandidate &FC1, 786 unsigned PeelCount) { 787 assert(FC0.AbleToPeel && "Should be able to peel loop"); 788 789 LLVM_DEBUG(dbgs() << "Attempting to peel first " << PeelCount 790 << " iterations of the first loop. \n"); 791 792 ValueToValueMapTy VMap; 793 FC0.Peeled = peelLoop(FC0.L, PeelCount, &LI, &SE, DT, &AC, true, VMap); 794 if (FC0.Peeled) { 795 LLVM_DEBUG(dbgs() << "Done Peeling\n"); 796 797 #ifndef NDEBUG 798 auto IdenticalTripCount = haveIdenticalTripCounts(FC0, FC1); 799 800 assert(IdenticalTripCount.first && *IdenticalTripCount.second == 0 && 801 "Loops should have identical trip counts after peeling"); 802 #endif 803 804 FC0.PP.PeelCount += PeelCount; 805 806 // Peeling does not update the PDT 807 PDT.recalculate(*FC0.Preheader->getParent()); 808 809 FC0.updateAfterPeeling(); 810 811 // In this case the iterations of the loop are constant, so the first 812 // loop will execute completely (will not jump from one of 813 // the peeled blocks to the second loop). Here we are updating the 814 // branch conditions of each of the peeled blocks, such that it will 815 // branch to its successor which is not the preheader of the second loop 816 // in the case of unguarded loops, or the succesors of the exit block of 817 // the first loop otherwise. Doing this update will ensure that the entry 818 // block of the first loop dominates the entry block of the second loop. 819 BasicBlock *BB = 820 FC0.GuardBranch ? FC0.ExitBlock->getUniqueSuccessor() : FC1.Preheader; 821 if (BB) { 822 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 823 SmallVector<Instruction *, 8> WorkList; 824 for (BasicBlock *Pred : predecessors(BB)) { 825 if (Pred != FC0.ExitBlock) { 826 WorkList.emplace_back(Pred->getTerminator()); 827 TreeUpdates.emplace_back( 828 DominatorTree::UpdateType(DominatorTree::Delete, Pred, BB)); 829 } 830 } 831 // Cannot modify the predecessors inside the above loop as it will cause 832 // the iterators to be nullptrs, causing memory errors. 833 for (Instruction *CurrentBranch : WorkList) { 834 BasicBlock *Succ = CurrentBranch->getSuccessor(0); 835 if (Succ == BB) 836 Succ = CurrentBranch->getSuccessor(1); 837 ReplaceInstWithInst(CurrentBranch, BranchInst::Create(Succ)); 838 } 839 840 DTU.applyUpdates(TreeUpdates); 841 DTU.flush(); 842 } 843 LLVM_DEBUG( 844 dbgs() << "Sucessfully peeled " << FC0.PP.PeelCount 845 << " iterations from the first loop.\n" 846 "Both Loops have the same number of iterations now.\n"); 847 } 848 } 849 850 /// Walk each set of control flow equivalent fusion candidates and attempt to 851 /// fuse them. This does a single linear traversal of all candidates in the 852 /// set. The conditions for legal fusion are checked at this point. If a pair 853 /// of fusion candidates passes all legality checks, they are fused together 854 /// and a new fusion candidate is created and added to the FusionCandidateSet. 855 /// The original fusion candidates are then removed, as they are no longer 856 /// valid. 857 bool fuseCandidates() { 858 bool Fused = false; 859 LLVM_DEBUG(printFusionCandidates(FusionCandidates)); 860 for (auto &CandidateSet : FusionCandidates) { 861 if (CandidateSet.size() < 2) 862 continue; 863 864 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n" 865 << CandidateSet << "\n"); 866 867 for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) { 868 assert(!LDT.isRemovedLoop(FC0->L) && 869 "Should not have removed loops in CandidateSet!"); 870 auto FC1 = FC0; 871 for (++FC1; FC1 != CandidateSet.end(); ++FC1) { 872 assert(!LDT.isRemovedLoop(FC1->L) && 873 "Should not have removed loops in CandidateSet!"); 874 875 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump(); 876 dbgs() << " with\n"; FC1->dump(); dbgs() << "\n"); 877 878 FC0->verify(); 879 FC1->verify(); 880 881 // Check if the candidates have identical tripcounts (first value of 882 // pair), and if not check the difference in the tripcounts between 883 // the loops (second value of pair). The difference is not equal to 884 // std::nullopt iff the loops iterate a constant number of times, and 885 // have a single exit. 886 std::pair<bool, std::optional<unsigned>> IdenticalTripCountRes = 887 haveIdenticalTripCounts(*FC0, *FC1); 888 bool SameTripCount = IdenticalTripCountRes.first; 889 std::optional<unsigned> TCDifference = IdenticalTripCountRes.second; 890 891 // Here we are checking that FC0 (the first loop) can be peeled, and 892 // both loops have different tripcounts. 893 if (FC0->AbleToPeel && !SameTripCount && TCDifference) { 894 if (*TCDifference > FusionPeelMaxCount) { 895 LLVM_DEBUG(dbgs() 896 << "Difference in loop trip counts: " << *TCDifference 897 << " is greater than maximum peel count specificed: " 898 << FusionPeelMaxCount << "\n"); 899 } else { 900 // Dependent on peeling being performed on the first loop, and 901 // assuming all other conditions for fusion return true. 902 SameTripCount = true; 903 } 904 } 905 906 if (!SameTripCount) { 907 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip " 908 "counts. Not fusing.\n"); 909 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 910 NonEqualTripCount); 911 continue; 912 } 913 914 if (!isAdjacent(*FC0, *FC1)) { 915 LLVM_DEBUG(dbgs() 916 << "Fusion candidates are not adjacent. Not fusing.\n"); 917 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent); 918 continue; 919 } 920 921 if ((!FC0->GuardBranch && FC1->GuardBranch) || 922 (FC0->GuardBranch && !FC1->GuardBranch)) { 923 LLVM_DEBUG(dbgs() << "The one of candidate is guarded while the " 924 "another one is not. Not fusing.\n"); 925 reportLoopFusion<OptimizationRemarkMissed>( 926 *FC0, *FC1, OnlySecondCandidateIsGuarded); 927 continue; 928 } 929 930 // Ensure that FC0 and FC1 have identical guards. 931 // If one (or both) are not guarded, this check is not necessary. 932 if (FC0->GuardBranch && FC1->GuardBranch && 933 !haveIdenticalGuards(*FC0, *FC1) && !TCDifference) { 934 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical " 935 "guards. Not Fusing.\n"); 936 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 937 NonIdenticalGuards); 938 continue; 939 } 940 941 if (FC0->GuardBranch) { 942 assert(FC1->GuardBranch && "Expecting valid FC1 guard branch"); 943 944 if (!isSafeToMoveBefore(*FC0->ExitBlock, 945 *FC1->ExitBlock->getFirstNonPHIOrDbg(), DT, 946 &PDT, &DI)) { 947 LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe " 948 "instructions in exit block. Not fusing.\n"); 949 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 950 NonEmptyExitBlock); 951 continue; 952 } 953 954 if (!isSafeToMoveBefore( 955 *FC1->GuardBranch->getParent(), 956 *FC0->GuardBranch->getParent()->getTerminator(), DT, &PDT, 957 &DI)) { 958 LLVM_DEBUG(dbgs() 959 << "Fusion candidate contains unsafe " 960 "instructions in guard block. Not fusing.\n"); 961 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 962 NonEmptyGuardBlock); 963 continue; 964 } 965 } 966 967 // Check the dependencies across the loops and do not fuse if it would 968 // violate them. 969 if (!dependencesAllowFusion(*FC0, *FC1)) { 970 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n"); 971 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 972 InvalidDependencies); 973 continue; 974 } 975 976 // If the second loop has instructions in the pre-header, attempt to 977 // hoist them up to the first loop's pre-header or sink them into the 978 // body of the second loop. 979 SmallVector<Instruction *, 4> SafeToHoist; 980 SmallVector<Instruction *, 4> SafeToSink; 981 // At this point, this is the last remaining legality check. 982 // Which means if we can make this pre-header empty, we can fuse 983 // these loops 984 if (!isEmptyPreheader(*FC1)) { 985 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty " 986 "preheader.\n"); 987 988 // If it is not safe to hoist/sink all instructions in the 989 // pre-header, we cannot fuse these loops. 990 if (!collectMovablePreheaderInsts(*FC0, *FC1, SafeToHoist, 991 SafeToSink)) { 992 LLVM_DEBUG(dbgs() << "Could not hoist/sink all instructions in " 993 "Fusion Candidate Pre-header.\n" 994 << "Not Fusing.\n"); 995 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 996 NonEmptyPreheader); 997 continue; 998 } 999 } 1000 1001 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1); 1002 LLVM_DEBUG(dbgs() 1003 << "\tFusion appears to be " 1004 << (BeneficialToFuse ? "" : "un") << "profitable!\n"); 1005 if (!BeneficialToFuse) { 1006 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 1007 FusionNotBeneficial); 1008 continue; 1009 } 1010 // All analysis has completed and has determined that fusion is legal 1011 // and profitable. At this point, start transforming the code and 1012 // perform fusion. 1013 1014 // Execute the hoist/sink operations on preheader instructions 1015 movePreheaderInsts(*FC0, *FC1, SafeToHoist, SafeToSink); 1016 1017 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and " 1018 << *FC1 << "\n"); 1019 1020 FusionCandidate FC0Copy = *FC0; 1021 // Peel the loop after determining that fusion is legal. The Loops 1022 // will still be safe to fuse after the peeling is performed. 1023 bool Peel = TCDifference && *TCDifference > 0; 1024 if (Peel) 1025 peelFusionCandidate(FC0Copy, *FC1, *TCDifference); 1026 1027 // Report fusion to the Optimization Remarks. 1028 // Note this needs to be done *before* performFusion because 1029 // performFusion will change the original loops, making it not 1030 // possible to identify them after fusion is complete. 1031 reportLoopFusion<OptimizationRemark>((Peel ? FC0Copy : *FC0), *FC1, 1032 FuseCounter); 1033 1034 FusionCandidate FusedCand( 1035 performFusion((Peel ? FC0Copy : *FC0), *FC1), DT, &PDT, ORE, 1036 FC0Copy.PP); 1037 FusedCand.verify(); 1038 assert(FusedCand.isEligibleForFusion(SE) && 1039 "Fused candidate should be eligible for fusion!"); 1040 1041 // Notify the loop-depth-tree that these loops are not valid objects 1042 LDT.removeLoop(FC1->L); 1043 1044 CandidateSet.erase(FC0); 1045 CandidateSet.erase(FC1); 1046 1047 auto InsertPos = CandidateSet.insert(FusedCand); 1048 1049 assert(InsertPos.second && 1050 "Unable to insert TargetCandidate in CandidateSet!"); 1051 1052 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations 1053 // of the FC1 loop will attempt to fuse the new (fused) loop with the 1054 // remaining candidates in the current candidate set. 1055 FC0 = FC1 = InsertPos.first; 1056 1057 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet 1058 << "\n"); 1059 1060 Fused = true; 1061 } 1062 } 1063 } 1064 return Fused; 1065 } 1066 1067 // Returns true if the instruction \p I can be hoisted to the end of the 1068 // preheader of \p FC0. \p SafeToHoist contains the instructions that are 1069 // known to be safe to hoist. The instructions encountered that cannot be 1070 // hoisted are in \p NotHoisting. 1071 // TODO: Move functionality into CodeMoverUtils 1072 bool canHoistInst(Instruction &I, 1073 const SmallVector<Instruction *, 4> &SafeToHoist, 1074 const SmallVector<Instruction *, 4> &NotHoisting, 1075 const FusionCandidate &FC0) const { 1076 const BasicBlock *FC0PreheaderTarget = FC0.Preheader->getSingleSuccessor(); 1077 assert(FC0PreheaderTarget && 1078 "Expected single successor for loop preheader."); 1079 1080 for (Use &Op : I.operands()) { 1081 if (auto *OpInst = dyn_cast<Instruction>(Op)) { 1082 bool OpHoisted = is_contained(SafeToHoist, OpInst); 1083 // Check if we have already decided to hoist this operand. In this 1084 // case, it does not dominate FC0 *yet*, but will after we hoist it. 1085 if (!(OpHoisted || DT.dominates(OpInst, FC0PreheaderTarget))) { 1086 return false; 1087 } 1088 } 1089 } 1090 1091 // PHIs in FC1's header only have FC0 blocks as predecessors. PHIs 1092 // cannot be hoisted and should be sunk to the exit of the fused loop. 1093 if (isa<PHINode>(I)) 1094 return false; 1095 1096 // If this isn't a memory inst, hoisting is safe 1097 if (!I.mayReadOrWriteMemory()) 1098 return true; 1099 1100 LLVM_DEBUG(dbgs() << "Checking if this mem inst can be hoisted.\n"); 1101 for (Instruction *NotHoistedInst : NotHoisting) { 1102 if (auto D = DI.depends(&I, NotHoistedInst, true)) { 1103 // Dependency is not read-before-write, write-before-read or 1104 // write-before-write 1105 if (D->isFlow() || D->isAnti() || D->isOutput()) { 1106 LLVM_DEBUG(dbgs() << "Inst depends on an instruction in FC1's " 1107 "preheader that is not being hoisted.\n"); 1108 return false; 1109 } 1110 } 1111 } 1112 1113 for (Instruction *ReadInst : FC0.MemReads) { 1114 if (auto D = DI.depends(ReadInst, &I, true)) { 1115 // Dependency is not read-before-write 1116 if (D->isAnti()) { 1117 LLVM_DEBUG(dbgs() << "Inst depends on a read instruction in FC0.\n"); 1118 return false; 1119 } 1120 } 1121 } 1122 1123 for (Instruction *WriteInst : FC0.MemWrites) { 1124 if (auto D = DI.depends(WriteInst, &I, true)) { 1125 // Dependency is not write-before-read or write-before-write 1126 if (D->isFlow() || D->isOutput()) { 1127 LLVM_DEBUG(dbgs() << "Inst depends on a write instruction in FC0.\n"); 1128 return false; 1129 } 1130 } 1131 } 1132 return true; 1133 } 1134 1135 // Returns true if the instruction \p I can be sunk to the top of the exit 1136 // block of \p FC1. 1137 // TODO: Move functionality into CodeMoverUtils 1138 bool canSinkInst(Instruction &I, const FusionCandidate &FC1) const { 1139 for (User *U : I.users()) { 1140 if (auto *UI{dyn_cast<Instruction>(U)}) { 1141 // Cannot sink if user in loop 1142 // If FC1 has phi users of this value, we cannot sink it into FC1. 1143 if (FC1.L->contains(UI)) { 1144 // Cannot hoist or sink this instruction. No hoisting/sinking 1145 // should take place, loops should not fuse 1146 return false; 1147 } 1148 } 1149 } 1150 1151 // If this isn't a memory inst, sinking is safe 1152 if (!I.mayReadOrWriteMemory()) 1153 return true; 1154 1155 for (Instruction *ReadInst : FC1.MemReads) { 1156 if (auto D = DI.depends(&I, ReadInst, true)) { 1157 // Dependency is not write-before-read 1158 if (D->isFlow()) { 1159 LLVM_DEBUG(dbgs() << "Inst depends on a read instruction in FC1.\n"); 1160 return false; 1161 } 1162 } 1163 } 1164 1165 for (Instruction *WriteInst : FC1.MemWrites) { 1166 if (auto D = DI.depends(&I, WriteInst, true)) { 1167 // Dependency is not write-before-write or read-before-write 1168 if (D->isOutput() || D->isAnti()) { 1169 LLVM_DEBUG(dbgs() << "Inst depends on a write instruction in FC1.\n"); 1170 return false; 1171 } 1172 } 1173 } 1174 1175 return true; 1176 } 1177 1178 /// Collect instructions in the \p FC1 Preheader that can be hoisted 1179 /// to the \p FC0 Preheader or sunk into the \p FC1 Body 1180 bool collectMovablePreheaderInsts( 1181 const FusionCandidate &FC0, const FusionCandidate &FC1, 1182 SmallVector<Instruction *, 4> &SafeToHoist, 1183 SmallVector<Instruction *, 4> &SafeToSink) const { 1184 BasicBlock *FC1Preheader = FC1.Preheader; 1185 // Save the instructions that are not being hoisted, so we know not to hoist 1186 // mem insts that they dominate. 1187 SmallVector<Instruction *, 4> NotHoisting; 1188 1189 for (Instruction &I : *FC1Preheader) { 1190 // Can't move a branch 1191 if (&I == FC1Preheader->getTerminator()) 1192 continue; 1193 // If the instruction has side-effects, give up. 1194 // TODO: The case of mayReadFromMemory we can handle but requires 1195 // additional work with a dependence analysis so for now we give 1196 // up on memory reads. 1197 if (I.mayThrow() || !I.willReturn()) { 1198 LLVM_DEBUG(dbgs() << "Inst: " << I << " may throw or won't return.\n"); 1199 return false; 1200 } 1201 1202 LLVM_DEBUG(dbgs() << "Checking Inst: " << I << "\n"); 1203 1204 if (I.isAtomic() || I.isVolatile()) { 1205 LLVM_DEBUG( 1206 dbgs() << "\tInstruction is volatile or atomic. Cannot move it.\n"); 1207 return false; 1208 } 1209 1210 if (canHoistInst(I, SafeToHoist, NotHoisting, FC0)) { 1211 SafeToHoist.push_back(&I); 1212 LLVM_DEBUG(dbgs() << "\tSafe to hoist.\n"); 1213 } else { 1214 LLVM_DEBUG(dbgs() << "\tCould not hoist. Trying to sink...\n"); 1215 NotHoisting.push_back(&I); 1216 1217 if (canSinkInst(I, FC1)) { 1218 SafeToSink.push_back(&I); 1219 LLVM_DEBUG(dbgs() << "\tSafe to sink.\n"); 1220 } else { 1221 LLVM_DEBUG(dbgs() << "\tCould not sink.\n"); 1222 return false; 1223 } 1224 } 1225 } 1226 LLVM_DEBUG( 1227 dbgs() << "All preheader instructions could be sunk or hoisted!\n"); 1228 return true; 1229 } 1230 1231 /// Rewrite all additive recurrences in a SCEV to use a new loop. 1232 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> { 1233 public: 1234 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL, 1235 bool UseMax = true) 1236 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL), 1237 NewL(NewL) {} 1238 1239 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 1240 const Loop *ExprL = Expr->getLoop(); 1241 SmallVector<const SCEV *, 2> Operands; 1242 if (ExprL == &OldL) { 1243 append_range(Operands, Expr->operands()); 1244 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags()); 1245 } 1246 1247 if (OldL.contains(ExprL)) { 1248 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE)); 1249 if (!UseMax || !Pos || !Expr->isAffine()) { 1250 Valid = false; 1251 return Expr; 1252 } 1253 return visit(Expr->getStart()); 1254 } 1255 1256 for (const SCEV *Op : Expr->operands()) 1257 Operands.push_back(visit(Op)); 1258 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags()); 1259 } 1260 1261 bool wasValidSCEV() const { return Valid; } 1262 1263 private: 1264 bool Valid, UseMax; 1265 const Loop &OldL, &NewL; 1266 }; 1267 1268 /// Return false if the access functions of \p I0 and \p I1 could cause 1269 /// a negative dependence. 1270 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0, 1271 Instruction &I1, bool EqualIsInvalid) { 1272 Value *Ptr0 = getLoadStorePointerOperand(&I0); 1273 Value *Ptr1 = getLoadStorePointerOperand(&I1); 1274 if (!Ptr0 || !Ptr1) 1275 return false; 1276 1277 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0); 1278 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1); 1279 #ifndef NDEBUG 1280 if (VerboseFusionDebugging) 1281 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs " 1282 << *SCEVPtr1 << "\n"); 1283 #endif 1284 AddRecLoopReplacer Rewriter(SE, L0, L1); 1285 SCEVPtr0 = Rewriter.visit(SCEVPtr0); 1286 #ifndef NDEBUG 1287 if (VerboseFusionDebugging) 1288 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0 1289 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n"); 1290 #endif 1291 if (!Rewriter.wasValidSCEV()) 1292 return false; 1293 1294 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by 1295 // L0) and the other is not. We could check if it is monotone and test 1296 // the beginning and end value instead. 1297 1298 BasicBlock *L0Header = L0.getHeader(); 1299 auto HasNonLinearDominanceRelation = [&](const SCEV *S) { 1300 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S); 1301 if (!AddRec) 1302 return false; 1303 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) && 1304 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header); 1305 }; 1306 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation)) 1307 return false; 1308 1309 ICmpInst::Predicate Pred = 1310 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE; 1311 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1); 1312 #ifndef NDEBUG 1313 if (VerboseFusionDebugging) 1314 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0 1315 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1 1316 << "\n"); 1317 #endif 1318 return IsAlwaysGE; 1319 } 1320 1321 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in 1322 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses 1323 /// specified by @p DepChoice are used to determine this. 1324 bool dependencesAllowFusion(const FusionCandidate &FC0, 1325 const FusionCandidate &FC1, Instruction &I0, 1326 Instruction &I1, bool AnyDep, 1327 FusionDependenceAnalysisChoice DepChoice) { 1328 #ifndef NDEBUG 1329 if (VerboseFusionDebugging) { 1330 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : " 1331 << DepChoice << "\n"); 1332 } 1333 #endif 1334 switch (DepChoice) { 1335 case FUSION_DEPENDENCE_ANALYSIS_SCEV: 1336 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep); 1337 case FUSION_DEPENDENCE_ANALYSIS_DA: { 1338 auto DepResult = DI.depends(&I0, &I1, true); 1339 if (!DepResult) 1340 return true; 1341 #ifndef NDEBUG 1342 if (VerboseFusionDebugging) { 1343 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs()); 1344 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: " 1345 << (DepResult->isOrdered() ? "true" : "false") 1346 << "]\n"); 1347 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels() 1348 << "\n"); 1349 } 1350 #endif 1351 1352 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor()) 1353 LLVM_DEBUG( 1354 dbgs() << "TODO: Implement pred/succ dependence handling!\n"); 1355 1356 // TODO: Can we actually use the dependence info analysis here? 1357 return false; 1358 } 1359 1360 case FUSION_DEPENDENCE_ANALYSIS_ALL: 1361 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 1362 FUSION_DEPENDENCE_ANALYSIS_SCEV) || 1363 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 1364 FUSION_DEPENDENCE_ANALYSIS_DA); 1365 } 1366 1367 llvm_unreachable("Unknown fusion dependence analysis choice!"); 1368 } 1369 1370 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused. 1371 bool dependencesAllowFusion(const FusionCandidate &FC0, 1372 const FusionCandidate &FC1) { 1373 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1 1374 << "\n"); 1375 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth()); 1376 assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock())); 1377 1378 for (Instruction *WriteL0 : FC0.MemWrites) { 1379 for (Instruction *WriteL1 : FC1.MemWrites) 1380 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 1381 /* AnyDep */ false, 1382 FusionDependenceAnalysis)) { 1383 InvalidDependencies++; 1384 return false; 1385 } 1386 for (Instruction *ReadL1 : FC1.MemReads) 1387 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1, 1388 /* AnyDep */ false, 1389 FusionDependenceAnalysis)) { 1390 InvalidDependencies++; 1391 return false; 1392 } 1393 } 1394 1395 for (Instruction *WriteL1 : FC1.MemWrites) { 1396 for (Instruction *WriteL0 : FC0.MemWrites) 1397 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 1398 /* AnyDep */ false, 1399 FusionDependenceAnalysis)) { 1400 InvalidDependencies++; 1401 return false; 1402 } 1403 for (Instruction *ReadL0 : FC0.MemReads) 1404 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1, 1405 /* AnyDep */ false, 1406 FusionDependenceAnalysis)) { 1407 InvalidDependencies++; 1408 return false; 1409 } 1410 } 1411 1412 // Walk through all uses in FC1. For each use, find the reaching def. If the 1413 // def is located in FC0 then it is not safe to fuse. 1414 for (BasicBlock *BB : FC1.L->blocks()) 1415 for (Instruction &I : *BB) 1416 for (auto &Op : I.operands()) 1417 if (Instruction *Def = dyn_cast<Instruction>(Op)) 1418 if (FC0.L->contains(Def->getParent())) { 1419 InvalidDependencies++; 1420 return false; 1421 } 1422 1423 return true; 1424 } 1425 1426 /// Determine if two fusion candidates are adjacent in the CFG. 1427 /// 1428 /// This method will determine if there are additional basic blocks in the CFG 1429 /// between the exit of \p FC0 and the entry of \p FC1. 1430 /// If the two candidates are guarded loops, then it checks whether the 1431 /// non-loop successor of the \p FC0 guard branch is the entry block of \p 1432 /// FC1. If not, then the loops are not adjacent. If the two candidates are 1433 /// not guarded loops, then it checks whether the exit block of \p FC0 is the 1434 /// preheader of \p FC1. 1435 bool isAdjacent(const FusionCandidate &FC0, 1436 const FusionCandidate &FC1) const { 1437 // If the successor of the guard branch is FC1, then the loops are adjacent 1438 if (FC0.GuardBranch) 1439 return FC0.getNonLoopBlock() == FC1.getEntryBlock(); 1440 else 1441 return FC0.ExitBlock == FC1.getEntryBlock(); 1442 } 1443 1444 bool isEmptyPreheader(const FusionCandidate &FC) const { 1445 return FC.Preheader->size() == 1; 1446 } 1447 1448 /// Hoist \p FC1 Preheader instructions to \p FC0 Preheader 1449 /// and sink others into the body of \p FC1. 1450 void movePreheaderInsts(const FusionCandidate &FC0, 1451 const FusionCandidate &FC1, 1452 SmallVector<Instruction *, 4> &HoistInsts, 1453 SmallVector<Instruction *, 4> &SinkInsts) const { 1454 // All preheader instructions except the branch must be hoisted or sunk 1455 assert(HoistInsts.size() + SinkInsts.size() == FC1.Preheader->size() - 1 && 1456 "Attempting to sink and hoist preheader instructions, but not all " 1457 "the preheader instructions are accounted for."); 1458 1459 NumHoistedInsts += HoistInsts.size(); 1460 NumSunkInsts += SinkInsts.size(); 1461 1462 LLVM_DEBUG(if (VerboseFusionDebugging) { 1463 if (!HoistInsts.empty()) 1464 dbgs() << "Hoisting: \n"; 1465 for (Instruction *I : HoistInsts) 1466 dbgs() << *I << "\n"; 1467 if (!SinkInsts.empty()) 1468 dbgs() << "Sinking: \n"; 1469 for (Instruction *I : SinkInsts) 1470 dbgs() << *I << "\n"; 1471 }); 1472 1473 for (Instruction *I : HoistInsts) { 1474 assert(I->getParent() == FC1.Preheader); 1475 I->moveBefore(*FC0.Preheader, 1476 FC0.Preheader->getTerminator()->getIterator()); 1477 } 1478 // insert instructions in reverse order to maintain dominance relationship 1479 for (Instruction *I : reverse(SinkInsts)) { 1480 assert(I->getParent() == FC1.Preheader); 1481 I->moveBefore(*FC1.ExitBlock, FC1.ExitBlock->getFirstInsertionPt()); 1482 } 1483 } 1484 1485 /// Determine if two fusion candidates have identical guards 1486 /// 1487 /// This method will determine if two fusion candidates have the same guards. 1488 /// The guards are considered the same if: 1489 /// 1. The instructions to compute the condition used in the compare are 1490 /// identical. 1491 /// 2. The successors of the guard have the same flow into/around the loop. 1492 /// If the compare instructions are identical, then the first successor of the 1493 /// guard must go to the same place (either the preheader of the loop or the 1494 /// NonLoopBlock). In other words, the first successor of both loops must 1495 /// both go into the loop (i.e., the preheader) or go around the loop (i.e., 1496 /// the NonLoopBlock). The same must be true for the second successor. 1497 bool haveIdenticalGuards(const FusionCandidate &FC0, 1498 const FusionCandidate &FC1) const { 1499 assert(FC0.GuardBranch && FC1.GuardBranch && 1500 "Expecting FC0 and FC1 to be guarded loops."); 1501 1502 if (auto FC0CmpInst = 1503 dyn_cast<Instruction>(FC0.GuardBranch->getCondition())) 1504 if (auto FC1CmpInst = 1505 dyn_cast<Instruction>(FC1.GuardBranch->getCondition())) 1506 if (!FC0CmpInst->isIdenticalTo(FC1CmpInst)) 1507 return false; 1508 1509 // The compare instructions are identical. 1510 // Now make sure the successor of the guards have the same flow into/around 1511 // the loop 1512 if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader) 1513 return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader); 1514 else 1515 return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader); 1516 } 1517 1518 /// Modify the latch branch of FC to be unconditional since successors of the 1519 /// branch are the same. 1520 void simplifyLatchBranch(const FusionCandidate &FC) const { 1521 BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator()); 1522 if (FCLatchBranch) { 1523 assert(FCLatchBranch->isConditional() && 1524 FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) && 1525 "Expecting the two successors of FCLatchBranch to be the same"); 1526 BranchInst *NewBranch = 1527 BranchInst::Create(FCLatchBranch->getSuccessor(0)); 1528 ReplaceInstWithInst(FCLatchBranch, NewBranch); 1529 } 1530 } 1531 1532 /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique 1533 /// successor, then merge FC0.Latch with its unique successor. 1534 void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) { 1535 moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI); 1536 if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) { 1537 MergeBlockIntoPredecessor(Succ, &DTU, &LI); 1538 DTU.flush(); 1539 } 1540 } 1541 1542 /// Fuse two fusion candidates, creating a new fused loop. 1543 /// 1544 /// This method contains the mechanics of fusing two loops, represented by \p 1545 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1 1546 /// postdominates \p FC0 (making them control flow equivalent). It also 1547 /// assumes that the other conditions for fusion have been met: adjacent, 1548 /// identical trip counts, and no negative distance dependencies exist that 1549 /// would prevent fusion. Thus, there is no checking for these conditions in 1550 /// this method. 1551 /// 1552 /// Fusion is performed by rewiring the CFG to update successor blocks of the 1553 /// components of tho loop. Specifically, the following changes are done: 1554 /// 1555 /// 1. The preheader of \p FC1 is removed as it is no longer necessary 1556 /// (because it is currently only a single statement block). 1557 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1. 1558 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0. 1559 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0. 1560 /// 1561 /// All of these modifications are done with dominator tree updates, thus 1562 /// keeping the dominator (and post dominator) information up-to-date. 1563 /// 1564 /// This can be improved in the future by actually merging blocks during 1565 /// fusion. For example, the preheader of \p FC1 can be merged with the 1566 /// preheader of \p FC0. This would allow loops with more than a single 1567 /// statement in the preheader to be fused. Similarly, the latch blocks of the 1568 /// two loops could also be fused into a single block. This will require 1569 /// analysis to prove it is safe to move the contents of the block past 1570 /// existing code, which currently has not been implemented. 1571 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) { 1572 assert(FC0.isValid() && FC1.isValid() && 1573 "Expecting valid fusion candidates"); 1574 1575 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump(); 1576 dbgs() << "Fusion Candidate 1: \n"; FC1.dump();); 1577 1578 // Move instructions from the preheader of FC1 to the end of the preheader 1579 // of FC0. 1580 moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI); 1581 1582 // Fusing guarded loops is handled slightly differently than non-guarded 1583 // loops and has been broken out into a separate method instead of trying to 1584 // intersperse the logic within a single method. 1585 if (FC0.GuardBranch) 1586 return fuseGuardedLoops(FC0, FC1); 1587 1588 assert(FC1.Preheader == 1589 (FC0.Peeled ? FC0.ExitBlock->getUniqueSuccessor() : FC0.ExitBlock)); 1590 assert(FC1.Preheader->size() == 1 && 1591 FC1.Preheader->getSingleSuccessor() == FC1.Header); 1592 1593 // Remember the phi nodes originally in the header of FC0 in order to rewire 1594 // them later. However, this is only necessary if the new loop carried 1595 // values might not dominate the exiting branch. While we do not generally 1596 // test if this is the case but simply insert intermediate phi nodes, we 1597 // need to make sure these intermediate phi nodes have different 1598 // predecessors. To this end, we filter the special case where the exiting 1599 // block is the latch block of the first loop. Nothing needs to be done 1600 // anyway as all loop carried values dominate the latch and thereby also the 1601 // exiting branch. 1602 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1603 if (FC0.ExitingBlock != FC0.Latch) 1604 for (PHINode &PHI : FC0.Header->phis()) 1605 OriginalFC0PHIs.push_back(&PHI); 1606 1607 // Replace incoming blocks for header PHIs first. 1608 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1609 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1610 1611 // Then modify the control flow and update DT and PDT. 1612 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1613 1614 // The old exiting block of the first loop (FC0) has to jump to the header 1615 // of the second as we need to execute the code in the second header block 1616 // regardless of the trip count. That is, if the trip count is 0, so the 1617 // back edge is never taken, we still have to execute both loop headers, 1618 // especially (but not only!) if the second is a do-while style loop. 1619 // However, doing so might invalidate the phi nodes of the first loop as 1620 // the new values do only need to dominate their latch and not the exiting 1621 // predicate. To remedy this potential problem we always introduce phi 1622 // nodes in the header of the second loop later that select the loop carried 1623 // value, if the second header was reached through an old latch of the 1624 // first, or undef otherwise. This is sound as exiting the first implies the 1625 // second will exit too, __without__ taking the back-edge. [Their 1626 // trip-counts are equal after all. 1627 // KB: Would this sequence be simpler to just make FC0.ExitingBlock go 1628 // to FC1.Header? I think this is basically what the three sequences are 1629 // trying to accomplish; however, doing this directly in the CFG may mean 1630 // the DT/PDT becomes invalid 1631 if (!FC0.Peeled) { 1632 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader, 1633 FC1.Header); 1634 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1635 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader)); 1636 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1637 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1638 } else { 1639 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1640 DominatorTree::Delete, FC0.ExitBlock, FC1.Preheader)); 1641 1642 // Remove the ExitBlock of the first Loop (also not needed) 1643 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock, 1644 FC1.Header); 1645 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1646 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock)); 1647 FC0.ExitBlock->getTerminator()->eraseFromParent(); 1648 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1649 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1650 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock); 1651 } 1652 1653 // The pre-header of L1 is not necessary anymore. 1654 assert(pred_empty(FC1.Preheader)); 1655 FC1.Preheader->getTerminator()->eraseFromParent(); 1656 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1657 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1658 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1659 1660 // Moves the phi nodes from the second to the first loops header block. 1661 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1662 if (SE.isSCEVable(PHI->getType())) 1663 SE.forgetValue(PHI); 1664 if (PHI->hasNUsesOrMore(1)) 1665 PHI->moveBefore(FC0.Header->getFirstInsertionPt()); 1666 else 1667 PHI->eraseFromParent(); 1668 } 1669 1670 // Introduce new phi nodes in the second loop header to ensure 1671 // exiting the first and jumping to the header of the second does not break 1672 // the SSA property of the phis originally in the first loop. See also the 1673 // comment above. 1674 BasicBlock::iterator L1HeaderIP = FC1.Header->begin(); 1675 for (PHINode *LCPHI : OriginalFC0PHIs) { 1676 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1677 assert(L1LatchBBIdx >= 0 && 1678 "Expected loop carried value to be rewired at this point!"); 1679 1680 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1681 1682 PHINode *L1HeaderPHI = 1683 PHINode::Create(LCV->getType(), 2, LCPHI->getName() + ".afterFC0"); 1684 L1HeaderPHI->insertBefore(L1HeaderIP); 1685 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1686 L1HeaderPHI->addIncoming(PoisonValue::get(LCV->getType()), 1687 FC0.ExitingBlock); 1688 1689 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1690 } 1691 1692 // Replace latch terminator destinations. 1693 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1694 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1695 1696 // Modify the latch branch of FC0 to be unconditional as both successors of 1697 // the branch are the same. 1698 simplifyLatchBranch(FC0); 1699 1700 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1701 // performed the updates above. 1702 if (FC0.Latch != FC0.ExitingBlock) 1703 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1704 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1705 1706 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1707 FC0.Latch, FC0.Header)); 1708 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1709 FC1.Latch, FC0.Header)); 1710 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1711 FC1.Latch, FC1.Header)); 1712 1713 // Update DT/PDT 1714 DTU.applyUpdates(TreeUpdates); 1715 1716 LI.removeBlock(FC1.Preheader); 1717 DTU.deleteBB(FC1.Preheader); 1718 if (FC0.Peeled) { 1719 LI.removeBlock(FC0.ExitBlock); 1720 DTU.deleteBB(FC0.ExitBlock); 1721 } 1722 1723 DTU.flush(); 1724 1725 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1726 // and rebuild the information in subsequent passes of fusion? 1727 // Note: Need to forget the loops before merging the loop latches, as 1728 // mergeLatch may remove the only block in FC1. 1729 SE.forgetLoop(FC1.L); 1730 SE.forgetLoop(FC0.L); 1731 // Forget block dispositions as well, so that there are no dangling 1732 // pointers to erased/free'ed blocks. 1733 SE.forgetBlockAndLoopDispositions(); 1734 1735 // Move instructions from FC0.Latch to FC1.Latch. 1736 // Note: mergeLatch requires an updated DT. 1737 mergeLatch(FC0, FC1); 1738 1739 // Merge the loops. 1740 SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks()); 1741 for (BasicBlock *BB : Blocks) { 1742 FC0.L->addBlockEntry(BB); 1743 FC1.L->removeBlockFromLoop(BB); 1744 if (LI.getLoopFor(BB) != FC1.L) 1745 continue; 1746 LI.changeLoopFor(BB, FC0.L); 1747 } 1748 while (!FC1.L->isInnermost()) { 1749 const auto &ChildLoopIt = FC1.L->begin(); 1750 Loop *ChildLoop = *ChildLoopIt; 1751 FC1.L->removeChildLoop(ChildLoopIt); 1752 FC0.L->addChildLoop(ChildLoop); 1753 } 1754 1755 // Delete the now empty loop L1. 1756 LI.erase(FC1.L); 1757 1758 #ifndef NDEBUG 1759 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1760 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1761 assert(PDT.verify()); 1762 LI.verify(DT); 1763 SE.verify(); 1764 #endif 1765 1766 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1767 1768 return FC0.L; 1769 } 1770 1771 /// Report details on loop fusion opportunities. 1772 /// 1773 /// This template function can be used to report both successful and missed 1774 /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should 1775 /// be one of: 1776 /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful 1777 /// given two valid fusion candidates. 1778 /// - OptimizationRemark to report successful fusion of two fusion 1779 /// candidates. 1780 /// The remarks will be printed using the form: 1781 /// <path/filename>:<line number>:<column number>: [<function name>]: 1782 /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description> 1783 template <typename RemarkKind> 1784 void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1, 1785 llvm::Statistic &Stat) { 1786 assert(FC0.Preheader && FC1.Preheader && 1787 "Expecting valid fusion candidates"); 1788 using namespace ore; 1789 #if LLVM_ENABLE_STATS 1790 ++Stat; 1791 ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(), 1792 FC0.Preheader) 1793 << "[" << FC0.Preheader->getParent()->getName() 1794 << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName())) 1795 << " and " << NV("Cand2", StringRef(FC1.Preheader->getName())) 1796 << ": " << Stat.getDesc()); 1797 #endif 1798 } 1799 1800 /// Fuse two guarded fusion candidates, creating a new fused loop. 1801 /// 1802 /// Fusing guarded loops is handled much the same way as fusing non-guarded 1803 /// loops. The rewiring of the CFG is slightly different though, because of 1804 /// the presence of the guards around the loops and the exit blocks after the 1805 /// loop body. As such, the new loop is rewired as follows: 1806 /// 1. Keep the guard branch from FC0 and use the non-loop block target 1807 /// from the FC1 guard branch. 1808 /// 2. Remove the exit block from FC0 (this exit block should be empty 1809 /// right now). 1810 /// 3. Remove the guard branch for FC1 1811 /// 4. Remove the preheader for FC1. 1812 /// The exit block successor for the latch of FC0 is updated to be the header 1813 /// of FC1 and the non-exit block successor of the latch of FC1 is updated to 1814 /// be the header of FC0, thus creating the fused loop. 1815 Loop *fuseGuardedLoops(const FusionCandidate &FC0, 1816 const FusionCandidate &FC1) { 1817 assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops"); 1818 1819 BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent(); 1820 BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent(); 1821 BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock(); 1822 BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock(); 1823 BasicBlock *FC0ExitBlockSuccessor = FC0.ExitBlock->getUniqueSuccessor(); 1824 1825 // Move instructions from the exit block of FC0 to the beginning of the exit 1826 // block of FC1, in the case that the FC0 loop has not been peeled. In the 1827 // case that FC0 loop is peeled, then move the instructions of the successor 1828 // of the FC0 Exit block to the beginning of the exit block of FC1. 1829 moveInstructionsToTheBeginning( 1830 (FC0.Peeled ? *FC0ExitBlockSuccessor : *FC0.ExitBlock), *FC1.ExitBlock, 1831 DT, PDT, DI); 1832 1833 // Move instructions from the guard block of FC1 to the end of the guard 1834 // block of FC0. 1835 moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI); 1836 1837 assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent"); 1838 1839 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1840 1841 //////////////////////////////////////////////////////////////////////////// 1842 // Update the Loop Guard 1843 //////////////////////////////////////////////////////////////////////////// 1844 // The guard for FC0 is updated to guard both FC0 and FC1. This is done by 1845 // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1. 1846 // Thus, one path from the guard goes to the preheader for FC0 (and thus 1847 // executes the new fused loop) and the other path goes to the NonLoopBlock 1848 // for FC1 (where FC1 guard would have gone if FC1 was not executed). 1849 FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock); 1850 FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock); 1851 1852 BasicBlock *BBToUpdate = FC0.Peeled ? FC0ExitBlockSuccessor : FC0.ExitBlock; 1853 BBToUpdate->getTerminator()->replaceUsesOfWith(FC1GuardBlock, FC1.Header); 1854 1855 // The guard of FC1 is not necessary anymore. 1856 FC1.GuardBranch->eraseFromParent(); 1857 new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock); 1858 1859 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1860 DominatorTree::Delete, FC1GuardBlock, FC1.Preheader)); 1861 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1862 DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock)); 1863 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1864 DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock)); 1865 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1866 DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock)); 1867 1868 if (FC0.Peeled) { 1869 // Remove the Block after the ExitBlock of FC0 1870 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1871 DominatorTree::Delete, FC0ExitBlockSuccessor, FC1GuardBlock)); 1872 FC0ExitBlockSuccessor->getTerminator()->eraseFromParent(); 1873 new UnreachableInst(FC0ExitBlockSuccessor->getContext(), 1874 FC0ExitBlockSuccessor); 1875 } 1876 1877 assert(pred_empty(FC1GuardBlock) && 1878 "Expecting guard block to have no predecessors"); 1879 assert(succ_empty(FC1GuardBlock) && 1880 "Expecting guard block to have no successors"); 1881 1882 // Remember the phi nodes originally in the header of FC0 in order to rewire 1883 // them later. However, this is only necessary if the new loop carried 1884 // values might not dominate the exiting branch. While we do not generally 1885 // test if this is the case but simply insert intermediate phi nodes, we 1886 // need to make sure these intermediate phi nodes have different 1887 // predecessors. To this end, we filter the special case where the exiting 1888 // block is the latch block of the first loop. Nothing needs to be done 1889 // anyway as all loop carried values dominate the latch and thereby also the 1890 // exiting branch. 1891 // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch 1892 // (because the loops are rotated. Thus, nothing will ever be added to 1893 // OriginalFC0PHIs. 1894 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1895 if (FC0.ExitingBlock != FC0.Latch) 1896 for (PHINode &PHI : FC0.Header->phis()) 1897 OriginalFC0PHIs.push_back(&PHI); 1898 1899 assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!"); 1900 1901 // Replace incoming blocks for header PHIs first. 1902 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1903 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1904 1905 // The old exiting block of the first loop (FC0) has to jump to the header 1906 // of the second as we need to execute the code in the second header block 1907 // regardless of the trip count. That is, if the trip count is 0, so the 1908 // back edge is never taken, we still have to execute both loop headers, 1909 // especially (but not only!) if the second is a do-while style loop. 1910 // However, doing so might invalidate the phi nodes of the first loop as 1911 // the new values do only need to dominate their latch and not the exiting 1912 // predicate. To remedy this potential problem we always introduce phi 1913 // nodes in the header of the second loop later that select the loop carried 1914 // value, if the second header was reached through an old latch of the 1915 // first, or undef otherwise. This is sound as exiting the first implies the 1916 // second will exit too, __without__ taking the back-edge (their 1917 // trip-counts are equal after all). 1918 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock, 1919 FC1.Header); 1920 1921 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1922 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock)); 1923 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1924 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1925 1926 // Remove FC0 Exit Block 1927 // The exit block for FC0 is no longer needed since control will flow 1928 // directly to the header of FC1. Since it is an empty block, it can be 1929 // removed at this point. 1930 // TODO: In the future, we can handle non-empty exit blocks my merging any 1931 // instructions from FC0 exit block into FC1 exit block prior to removing 1932 // the block. 1933 assert(pred_empty(FC0.ExitBlock) && "Expecting exit block to be empty"); 1934 FC0.ExitBlock->getTerminator()->eraseFromParent(); 1935 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock); 1936 1937 // Remove FC1 Preheader 1938 // The pre-header of L1 is not necessary anymore. 1939 assert(pred_empty(FC1.Preheader)); 1940 FC1.Preheader->getTerminator()->eraseFromParent(); 1941 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1942 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1943 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1944 1945 // Moves the phi nodes from the second to the first loops header block. 1946 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1947 if (SE.isSCEVable(PHI->getType())) 1948 SE.forgetValue(PHI); 1949 if (PHI->hasNUsesOrMore(1)) 1950 PHI->moveBefore(FC0.Header->getFirstInsertionPt()); 1951 else 1952 PHI->eraseFromParent(); 1953 } 1954 1955 // Introduce new phi nodes in the second loop header to ensure 1956 // exiting the first and jumping to the header of the second does not break 1957 // the SSA property of the phis originally in the first loop. See also the 1958 // comment above. 1959 BasicBlock::iterator L1HeaderIP = FC1.Header->begin(); 1960 for (PHINode *LCPHI : OriginalFC0PHIs) { 1961 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1962 assert(L1LatchBBIdx >= 0 && 1963 "Expected loop carried value to be rewired at this point!"); 1964 1965 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1966 1967 PHINode *L1HeaderPHI = 1968 PHINode::Create(LCV->getType(), 2, LCPHI->getName() + ".afterFC0"); 1969 L1HeaderPHI->insertBefore(L1HeaderIP); 1970 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1971 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1972 FC0.ExitingBlock); 1973 1974 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1975 } 1976 1977 // Update the latches 1978 1979 // Replace latch terminator destinations. 1980 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1981 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1982 1983 // Modify the latch branch of FC0 to be unconditional as both successors of 1984 // the branch are the same. 1985 simplifyLatchBranch(FC0); 1986 1987 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1988 // performed the updates above. 1989 if (FC0.Latch != FC0.ExitingBlock) 1990 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1991 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1992 1993 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1994 FC0.Latch, FC0.Header)); 1995 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1996 FC1.Latch, FC0.Header)); 1997 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1998 FC1.Latch, FC1.Header)); 1999 2000 // All done 2001 // Apply the updates to the Dominator Tree and cleanup. 2002 2003 assert(succ_empty(FC1GuardBlock) && "FC1GuardBlock has successors!!"); 2004 assert(pred_empty(FC1GuardBlock) && "FC1GuardBlock has predecessors!!"); 2005 2006 // Update DT/PDT 2007 DTU.applyUpdates(TreeUpdates); 2008 2009 LI.removeBlock(FC1GuardBlock); 2010 LI.removeBlock(FC1.Preheader); 2011 LI.removeBlock(FC0.ExitBlock); 2012 if (FC0.Peeled) { 2013 LI.removeBlock(FC0ExitBlockSuccessor); 2014 DTU.deleteBB(FC0ExitBlockSuccessor); 2015 } 2016 DTU.deleteBB(FC1GuardBlock); 2017 DTU.deleteBB(FC1.Preheader); 2018 DTU.deleteBB(FC0.ExitBlock); 2019 DTU.flush(); 2020 2021 // Is there a way to keep SE up-to-date so we don't need to forget the loops 2022 // and rebuild the information in subsequent passes of fusion? 2023 // Note: Need to forget the loops before merging the loop latches, as 2024 // mergeLatch may remove the only block in FC1. 2025 SE.forgetLoop(FC1.L); 2026 SE.forgetLoop(FC0.L); 2027 // Forget block dispositions as well, so that there are no dangling 2028 // pointers to erased/free'ed blocks. 2029 SE.forgetBlockAndLoopDispositions(); 2030 2031 // Move instructions from FC0.Latch to FC1.Latch. 2032 // Note: mergeLatch requires an updated DT. 2033 mergeLatch(FC0, FC1); 2034 2035 // Merge the loops. 2036 SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks()); 2037 for (BasicBlock *BB : Blocks) { 2038 FC0.L->addBlockEntry(BB); 2039 FC1.L->removeBlockFromLoop(BB); 2040 if (LI.getLoopFor(BB) != FC1.L) 2041 continue; 2042 LI.changeLoopFor(BB, FC0.L); 2043 } 2044 while (!FC1.L->isInnermost()) { 2045 const auto &ChildLoopIt = FC1.L->begin(); 2046 Loop *ChildLoop = *ChildLoopIt; 2047 FC1.L->removeChildLoop(ChildLoopIt); 2048 FC0.L->addChildLoop(ChildLoop); 2049 } 2050 2051 // Delete the now empty loop L1. 2052 LI.erase(FC1.L); 2053 2054 #ifndef NDEBUG 2055 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 2056 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2057 assert(PDT.verify()); 2058 LI.verify(DT); 2059 SE.verify(); 2060 #endif 2061 2062 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 2063 2064 return FC0.L; 2065 } 2066 }; 2067 } // namespace 2068 2069 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) { 2070 auto &LI = AM.getResult<LoopAnalysis>(F); 2071 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2072 auto &DI = AM.getResult<DependenceAnalysis>(F); 2073 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 2074 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 2075 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 2076 auto &AC = AM.getResult<AssumptionAnalysis>(F); 2077 const TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 2078 const DataLayout &DL = F.getDataLayout(); 2079 2080 // Ensure loops are in simplifed form which is a pre-requisite for loop fusion 2081 // pass. Added only for new PM since the legacy PM has already added 2082 // LoopSimplify pass as a dependency. 2083 bool Changed = false; 2084 for (auto &L : LI) { 2085 Changed |= 2086 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 2087 } 2088 if (Changed) 2089 PDT.recalculate(F); 2090 2091 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI); 2092 Changed |= LF.fuseLoops(F); 2093 if (!Changed) 2094 return PreservedAnalyses::all(); 2095 2096 PreservedAnalyses PA; 2097 PA.preserve<DominatorTreeAnalysis>(); 2098 PA.preserve<PostDominatorTreeAnalysis>(); 2099 PA.preserve<ScalarEvolutionAnalysis>(); 2100 PA.preserve<LoopAnalysis>(); 2101 return PA; 2102 } 2103