1 //===- llvm/CodeGen/MachineRegisterInfo.h -----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MachineRegisterInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H 14 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/ADT/PointerUnion.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringSet.h" 23 #include "llvm/ADT/iterator_range.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/RegisterBank.h" 29 #include "llvm/CodeGen/TargetRegisterInfo.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/MC/LaneBitmask.h" 32 #include <cassert> 33 #include <cstddef> 34 #include <cstdint> 35 #include <iterator> 36 #include <memory> 37 #include <utility> 38 #include <vector> 39 40 namespace llvm { 41 42 class PSetIterator; 43 44 /// Convenient type to represent either a register class or a register bank. 45 using RegClassOrRegBank = 46 PointerUnion<const TargetRegisterClass *, const RegisterBank *>; 47 48 /// MachineRegisterInfo - Keep track of information for virtual and physical 49 /// registers, including vreg register classes, use/def chains for registers, 50 /// etc. 51 class MachineRegisterInfo { 52 public: 53 class Delegate { 54 virtual void anchor(); 55 56 public: 57 virtual ~Delegate() = default; 58 59 virtual void MRI_NoteNewVirtualRegister(Register Reg) = 0; 60 virtual void MRI_NoteCloneVirtualRegister(Register NewReg, 61 Register SrcReg) { 62 MRI_NoteNewVirtualRegister(NewReg); 63 } 64 }; 65 66 private: 67 MachineFunction *MF; 68 SmallPtrSet<Delegate *, 1> TheDelegates; 69 70 /// True if subregister liveness is tracked. 71 const bool TracksSubRegLiveness; 72 73 /// VRegInfo - Information we keep for each virtual register. 74 /// 75 /// Each element in this list contains the register class of the vreg and the 76 /// start of the use/def list for the register. 77 IndexedMap<std::pair<RegClassOrRegBank, MachineOperand *>, 78 VirtReg2IndexFunctor> 79 VRegInfo; 80 81 /// Map for recovering vreg name from vreg number. 82 /// This map is used by the MIR Printer. 83 IndexedMap<std::string, VirtReg2IndexFunctor> VReg2Name; 84 85 /// StringSet that is used to unique vreg names. 86 StringSet<> VRegNames; 87 88 /// The flag is true upon \p UpdatedCSRs initialization 89 /// and false otherwise. 90 bool IsUpdatedCSRsInitialized = false; 91 92 /// Contains the updated callee saved register list. 93 /// As opposed to the static list defined in register info, 94 /// all registers that were disabled are removed from the list. 95 SmallVector<MCPhysReg, 16> UpdatedCSRs; 96 97 /// RegAllocHints - This vector records register allocation hints for 98 /// virtual registers. For each virtual register, it keeps a pair of hint 99 /// type and hints vector making up the allocation hints. Only the first 100 /// hint may be target specific, and in that case this is reflected by the 101 /// first member of the pair being non-zero. If the hinted register is 102 /// virtual, it means the allocator should prefer the physical register 103 /// allocated to it if any. 104 IndexedMap<std::pair<unsigned, SmallVector<Register, 4>>, 105 VirtReg2IndexFunctor> 106 RegAllocHints; 107 108 /// PhysRegUseDefLists - This is an array of the head of the use/def list for 109 /// physical registers. 110 std::unique_ptr<MachineOperand *[]> PhysRegUseDefLists; 111 112 /// getRegUseDefListHead - Return the head pointer for the register use/def 113 /// list for the specified virtual or physical register. 114 MachineOperand *&getRegUseDefListHead(Register RegNo) { 115 if (RegNo.isVirtual()) 116 return VRegInfo[RegNo.id()].second; 117 return PhysRegUseDefLists[RegNo.id()]; 118 } 119 120 MachineOperand *getRegUseDefListHead(Register RegNo) const { 121 if (RegNo.isVirtual()) 122 return VRegInfo[RegNo.id()].second; 123 return PhysRegUseDefLists[RegNo.id()]; 124 } 125 126 /// Get the next element in the use-def chain. 127 static MachineOperand *getNextOperandForReg(const MachineOperand *MO) { 128 assert(MO && MO->isReg() && "This is not a register operand!"); 129 return MO->Contents.Reg.Next; 130 } 131 132 /// UsedPhysRegMask - Additional used physregs including aliases. 133 /// This bit vector represents all the registers clobbered by function calls. 134 BitVector UsedPhysRegMask; 135 136 /// ReservedRegs - This is a bit vector of reserved registers. The target 137 /// may change its mind about which registers should be reserved. This 138 /// vector is the frozen set of reserved registers when register allocation 139 /// started. 140 BitVector ReservedRegs; 141 142 using VRegToTypeMap = IndexedMap<LLT, VirtReg2IndexFunctor>; 143 /// Map generic virtual registers to their low-level type. 144 VRegToTypeMap VRegToType; 145 146 /// Keep track of the physical registers that are live in to the function. 147 /// Live in values are typically arguments in registers. LiveIn values are 148 /// allowed to have virtual registers associated with them, stored in the 149 /// second element. 150 std::vector<std::pair<MCRegister, Register>> LiveIns; 151 152 public: 153 explicit MachineRegisterInfo(MachineFunction *MF); 154 MachineRegisterInfo(const MachineRegisterInfo &) = delete; 155 MachineRegisterInfo &operator=(const MachineRegisterInfo &) = delete; 156 157 const TargetRegisterInfo *getTargetRegisterInfo() const { 158 return MF->getSubtarget().getRegisterInfo(); 159 } 160 161 void resetDelegate(Delegate *delegate) { 162 // Ensure another delegate does not take over unless the current 163 // delegate first unattaches itself. 164 assert(TheDelegates.count(delegate) && 165 "Only an existing delegate can perform reset!"); 166 TheDelegates.erase(delegate); 167 } 168 169 void addDelegate(Delegate *delegate) { 170 assert(delegate && !TheDelegates.count(delegate) && 171 "Attempted to add null delegate, or to change it without " 172 "first resetting it!"); 173 174 TheDelegates.insert(delegate); 175 } 176 177 void noteNewVirtualRegister(Register Reg) { 178 for (auto *TheDelegate : TheDelegates) 179 TheDelegate->MRI_NoteNewVirtualRegister(Reg); 180 } 181 182 void noteCloneVirtualRegister(Register NewReg, Register SrcReg) { 183 for (auto *TheDelegate : TheDelegates) 184 TheDelegate->MRI_NoteCloneVirtualRegister(NewReg, SrcReg); 185 } 186 187 //===--------------------------------------------------------------------===// 188 // Function State 189 //===--------------------------------------------------------------------===// 190 191 // isSSA - Returns true when the machine function is in SSA form. Early 192 // passes require the machine function to be in SSA form where every virtual 193 // register has a single defining instruction. 194 // 195 // The TwoAddressInstructionPass and PHIElimination passes take the machine 196 // function out of SSA form when they introduce multiple defs per virtual 197 // register. 198 bool isSSA() const { 199 return MF->getProperties().hasProperty( 200 MachineFunctionProperties::Property::IsSSA); 201 } 202 203 // leaveSSA - Indicates that the machine function is no longer in SSA form. 204 void leaveSSA() { 205 MF->getProperties().reset(MachineFunctionProperties::Property::IsSSA); 206 } 207 208 /// tracksLiveness - Returns true when tracking register liveness accurately. 209 /// (see MachineFUnctionProperties::Property description for details) 210 bool tracksLiveness() const { 211 return MF->getProperties().hasProperty( 212 MachineFunctionProperties::Property::TracksLiveness); 213 } 214 215 /// invalidateLiveness - Indicates that register liveness is no longer being 216 /// tracked accurately. 217 /// 218 /// This should be called by late passes that invalidate the liveness 219 /// information. 220 void invalidateLiveness() { 221 MF->getProperties().reset( 222 MachineFunctionProperties::Property::TracksLiveness); 223 } 224 225 /// Returns true if liveness for register class @p RC should be tracked at 226 /// the subregister level. 227 bool shouldTrackSubRegLiveness(const TargetRegisterClass &RC) const { 228 return subRegLivenessEnabled() && RC.HasDisjunctSubRegs; 229 } 230 bool shouldTrackSubRegLiveness(Register VReg) const { 231 assert(VReg.isVirtual() && "Must pass a VReg"); 232 const TargetRegisterClass *RC = getRegClassOrNull(VReg); 233 return LLVM_LIKELY(RC) ? shouldTrackSubRegLiveness(*RC) : false; 234 } 235 bool subRegLivenessEnabled() const { 236 return TracksSubRegLiveness; 237 } 238 239 //===--------------------------------------------------------------------===// 240 // Register Info 241 //===--------------------------------------------------------------------===// 242 243 /// Returns true if the updated CSR list was initialized and false otherwise. 244 bool isUpdatedCSRsInitialized() const { return IsUpdatedCSRsInitialized; } 245 246 /// Disables the register from the list of CSRs. 247 /// I.e. the register will not appear as part of the CSR mask. 248 /// \see UpdatedCalleeSavedRegs. 249 void disableCalleeSavedRegister(MCRegister Reg); 250 251 /// Returns list of callee saved registers. 252 /// The function returns the updated CSR list (after taking into account 253 /// registers that are disabled from the CSR list). 254 const MCPhysReg *getCalleeSavedRegs() const; 255 256 /// Sets the updated Callee Saved Registers list. 257 /// Notice that it will override ant previously disabled/saved CSRs. 258 void setCalleeSavedRegs(ArrayRef<MCPhysReg> CSRs); 259 260 // Strictly for use by MachineInstr.cpp. 261 void addRegOperandToUseList(MachineOperand *MO); 262 263 // Strictly for use by MachineInstr.cpp. 264 void removeRegOperandFromUseList(MachineOperand *MO); 265 266 // Strictly for use by MachineInstr.cpp. 267 void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps); 268 269 /// Verify the sanity of the use list for Reg. 270 void verifyUseList(Register Reg) const; 271 272 /// Verify the use list of all registers. 273 void verifyUseLists() const; 274 275 /// reg_begin/reg_end - Provide iteration support to walk over all definitions 276 /// and uses of a register within the MachineFunction that corresponds to this 277 /// MachineRegisterInfo object. 278 template<bool Uses, bool Defs, bool SkipDebug, 279 bool ByOperand, bool ByInstr, bool ByBundle> 280 class defusechain_iterator; 281 template<bool Uses, bool Defs, bool SkipDebug, 282 bool ByOperand, bool ByInstr, bool ByBundle> 283 class defusechain_instr_iterator; 284 285 // Make it a friend so it can access getNextOperandForReg(). 286 template<bool, bool, bool, bool, bool, bool> 287 friend class defusechain_iterator; 288 template<bool, bool, bool, bool, bool, bool> 289 friend class defusechain_instr_iterator; 290 291 /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified 292 /// register. 293 using reg_iterator = 294 defusechain_iterator<true, true, false, true, false, false>; 295 reg_iterator reg_begin(Register RegNo) const { 296 return reg_iterator(getRegUseDefListHead(RegNo)); 297 } 298 static reg_iterator reg_end() { return reg_iterator(nullptr); } 299 300 inline iterator_range<reg_iterator> reg_operands(Register Reg) const { 301 return make_range(reg_begin(Reg), reg_end()); 302 } 303 304 /// reg_instr_iterator/reg_instr_begin/reg_instr_end - Walk all defs and uses 305 /// of the specified register, stepping by MachineInstr. 306 using reg_instr_iterator = 307 defusechain_instr_iterator<true, true, false, false, true, false>; 308 reg_instr_iterator reg_instr_begin(Register RegNo) const { 309 return reg_instr_iterator(getRegUseDefListHead(RegNo)); 310 } 311 static reg_instr_iterator reg_instr_end() { 312 return reg_instr_iterator(nullptr); 313 } 314 315 inline iterator_range<reg_instr_iterator> 316 reg_instructions(Register Reg) const { 317 return make_range(reg_instr_begin(Reg), reg_instr_end()); 318 } 319 320 /// reg_bundle_iterator/reg_bundle_begin/reg_bundle_end - Walk all defs and uses 321 /// of the specified register, stepping by bundle. 322 using reg_bundle_iterator = 323 defusechain_instr_iterator<true, true, false, false, false, true>; 324 reg_bundle_iterator reg_bundle_begin(Register RegNo) const { 325 return reg_bundle_iterator(getRegUseDefListHead(RegNo)); 326 } 327 static reg_bundle_iterator reg_bundle_end() { 328 return reg_bundle_iterator(nullptr); 329 } 330 331 inline iterator_range<reg_bundle_iterator> reg_bundles(Register Reg) const { 332 return make_range(reg_bundle_begin(Reg), reg_bundle_end()); 333 } 334 335 /// reg_empty - Return true if there are no instructions using or defining the 336 /// specified register (it may be live-in). 337 bool reg_empty(Register RegNo) const { return reg_begin(RegNo) == reg_end(); } 338 339 /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses 340 /// of the specified register, skipping those marked as Debug. 341 using reg_nodbg_iterator = 342 defusechain_iterator<true, true, true, true, false, false>; 343 reg_nodbg_iterator reg_nodbg_begin(Register RegNo) const { 344 return reg_nodbg_iterator(getRegUseDefListHead(RegNo)); 345 } 346 static reg_nodbg_iterator reg_nodbg_end() { 347 return reg_nodbg_iterator(nullptr); 348 } 349 350 inline iterator_range<reg_nodbg_iterator> 351 reg_nodbg_operands(Register Reg) const { 352 return make_range(reg_nodbg_begin(Reg), reg_nodbg_end()); 353 } 354 355 /// reg_instr_nodbg_iterator/reg_instr_nodbg_begin/reg_instr_nodbg_end - Walk 356 /// all defs and uses of the specified register, stepping by MachineInstr, 357 /// skipping those marked as Debug. 358 using reg_instr_nodbg_iterator = 359 defusechain_instr_iterator<true, true, true, false, true, false>; 360 reg_instr_nodbg_iterator reg_instr_nodbg_begin(Register RegNo) const { 361 return reg_instr_nodbg_iterator(getRegUseDefListHead(RegNo)); 362 } 363 static reg_instr_nodbg_iterator reg_instr_nodbg_end() { 364 return reg_instr_nodbg_iterator(nullptr); 365 } 366 367 inline iterator_range<reg_instr_nodbg_iterator> 368 reg_nodbg_instructions(Register Reg) const { 369 return make_range(reg_instr_nodbg_begin(Reg), reg_instr_nodbg_end()); 370 } 371 372 /// reg_bundle_nodbg_iterator/reg_bundle_nodbg_begin/reg_bundle_nodbg_end - Walk 373 /// all defs and uses of the specified register, stepping by bundle, 374 /// skipping those marked as Debug. 375 using reg_bundle_nodbg_iterator = 376 defusechain_instr_iterator<true, true, true, false, false, true>; 377 reg_bundle_nodbg_iterator reg_bundle_nodbg_begin(Register RegNo) const { 378 return reg_bundle_nodbg_iterator(getRegUseDefListHead(RegNo)); 379 } 380 static reg_bundle_nodbg_iterator reg_bundle_nodbg_end() { 381 return reg_bundle_nodbg_iterator(nullptr); 382 } 383 384 inline iterator_range<reg_bundle_nodbg_iterator> 385 reg_nodbg_bundles(Register Reg) const { 386 return make_range(reg_bundle_nodbg_begin(Reg), reg_bundle_nodbg_end()); 387 } 388 389 /// reg_nodbg_empty - Return true if the only instructions using or defining 390 /// Reg are Debug instructions. 391 bool reg_nodbg_empty(Register RegNo) const { 392 return reg_nodbg_begin(RegNo) == reg_nodbg_end(); 393 } 394 395 /// def_iterator/def_begin/def_end - Walk all defs of the specified register. 396 using def_iterator = 397 defusechain_iterator<false, true, false, true, false, false>; 398 def_iterator def_begin(Register RegNo) const { 399 return def_iterator(getRegUseDefListHead(RegNo)); 400 } 401 static def_iterator def_end() { return def_iterator(nullptr); } 402 403 inline iterator_range<def_iterator> def_operands(Register Reg) const { 404 return make_range(def_begin(Reg), def_end()); 405 } 406 407 /// def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the 408 /// specified register, stepping by MachineInst. 409 using def_instr_iterator = 410 defusechain_instr_iterator<false, true, false, false, true, false>; 411 def_instr_iterator def_instr_begin(Register RegNo) const { 412 return def_instr_iterator(getRegUseDefListHead(RegNo)); 413 } 414 static def_instr_iterator def_instr_end() { 415 return def_instr_iterator(nullptr); 416 } 417 418 inline iterator_range<def_instr_iterator> 419 def_instructions(Register Reg) const { 420 return make_range(def_instr_begin(Reg), def_instr_end()); 421 } 422 423 /// def_bundle_iterator/def_bundle_begin/def_bundle_end - Walk all defs of the 424 /// specified register, stepping by bundle. 425 using def_bundle_iterator = 426 defusechain_instr_iterator<false, true, false, false, false, true>; 427 def_bundle_iterator def_bundle_begin(Register RegNo) const { 428 return def_bundle_iterator(getRegUseDefListHead(RegNo)); 429 } 430 static def_bundle_iterator def_bundle_end() { 431 return def_bundle_iterator(nullptr); 432 } 433 434 inline iterator_range<def_bundle_iterator> def_bundles(Register Reg) const { 435 return make_range(def_bundle_begin(Reg), def_bundle_end()); 436 } 437 438 /// def_empty - Return true if there are no instructions defining the 439 /// specified register (it may be live-in). 440 bool def_empty(Register RegNo) const { return def_begin(RegNo) == def_end(); } 441 442 StringRef getVRegName(Register Reg) const { 443 return VReg2Name.inBounds(Reg) ? StringRef(VReg2Name[Reg]) : ""; 444 } 445 446 void insertVRegByName(StringRef Name, Register Reg) { 447 assert((Name.empty() || !VRegNames.contains(Name)) && 448 "Named VRegs Must be Unique."); 449 if (!Name.empty()) { 450 VRegNames.insert(Name); 451 VReg2Name.grow(Reg); 452 VReg2Name[Reg] = Name.str(); 453 } 454 } 455 456 /// Return true if there is exactly one operand defining the specified 457 /// register. 458 bool hasOneDef(Register RegNo) const { 459 return hasSingleElement(def_operands(RegNo)); 460 } 461 462 /// Returns the defining operand if there is exactly one operand defining the 463 /// specified register, otherwise nullptr. 464 MachineOperand *getOneDef(Register Reg) const { 465 def_iterator DI = def_begin(Reg); 466 if (DI == def_end()) // No defs. 467 return nullptr; 468 469 def_iterator OneDef = DI; 470 if (++DI == def_end()) 471 return &*OneDef; 472 return nullptr; // Multiple defs. 473 } 474 475 /// use_iterator/use_begin/use_end - Walk all uses of the specified register. 476 using use_iterator = 477 defusechain_iterator<true, false, false, true, false, false>; 478 use_iterator use_begin(Register RegNo) const { 479 return use_iterator(getRegUseDefListHead(RegNo)); 480 } 481 static use_iterator use_end() { return use_iterator(nullptr); } 482 483 inline iterator_range<use_iterator> use_operands(Register Reg) const { 484 return make_range(use_begin(Reg), use_end()); 485 } 486 487 /// use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the 488 /// specified register, stepping by MachineInstr. 489 using use_instr_iterator = 490 defusechain_instr_iterator<true, false, false, false, true, false>; 491 use_instr_iterator use_instr_begin(Register RegNo) const { 492 return use_instr_iterator(getRegUseDefListHead(RegNo)); 493 } 494 static use_instr_iterator use_instr_end() { 495 return use_instr_iterator(nullptr); 496 } 497 498 inline iterator_range<use_instr_iterator> 499 use_instructions(Register Reg) const { 500 return make_range(use_instr_begin(Reg), use_instr_end()); 501 } 502 503 /// use_bundle_iterator/use_bundle_begin/use_bundle_end - Walk all uses of the 504 /// specified register, stepping by bundle. 505 using use_bundle_iterator = 506 defusechain_instr_iterator<true, false, false, false, false, true>; 507 use_bundle_iterator use_bundle_begin(Register RegNo) const { 508 return use_bundle_iterator(getRegUseDefListHead(RegNo)); 509 } 510 static use_bundle_iterator use_bundle_end() { 511 return use_bundle_iterator(nullptr); 512 } 513 514 inline iterator_range<use_bundle_iterator> use_bundles(Register Reg) const { 515 return make_range(use_bundle_begin(Reg), use_bundle_end()); 516 } 517 518 /// use_empty - Return true if there are no instructions using the specified 519 /// register. 520 bool use_empty(Register RegNo) const { return use_begin(RegNo) == use_end(); } 521 522 /// hasOneUse - Return true if there is exactly one instruction using the 523 /// specified register. 524 bool hasOneUse(Register RegNo) const { 525 return hasSingleElement(use_operands(RegNo)); 526 } 527 528 /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the 529 /// specified register, skipping those marked as Debug. 530 using use_nodbg_iterator = 531 defusechain_iterator<true, false, true, true, false, false>; 532 use_nodbg_iterator use_nodbg_begin(Register RegNo) const { 533 return use_nodbg_iterator(getRegUseDefListHead(RegNo)); 534 } 535 static use_nodbg_iterator use_nodbg_end() { 536 return use_nodbg_iterator(nullptr); 537 } 538 539 inline iterator_range<use_nodbg_iterator> 540 use_nodbg_operands(Register Reg) const { 541 return make_range(use_nodbg_begin(Reg), use_nodbg_end()); 542 } 543 544 /// use_instr_nodbg_iterator/use_instr_nodbg_begin/use_instr_nodbg_end - Walk 545 /// all uses of the specified register, stepping by MachineInstr, skipping 546 /// those marked as Debug. 547 using use_instr_nodbg_iterator = 548 defusechain_instr_iterator<true, false, true, false, true, false>; 549 use_instr_nodbg_iterator use_instr_nodbg_begin(Register RegNo) const { 550 return use_instr_nodbg_iterator(getRegUseDefListHead(RegNo)); 551 } 552 static use_instr_nodbg_iterator use_instr_nodbg_end() { 553 return use_instr_nodbg_iterator(nullptr); 554 } 555 556 inline iterator_range<use_instr_nodbg_iterator> 557 use_nodbg_instructions(Register Reg) const { 558 return make_range(use_instr_nodbg_begin(Reg), use_instr_nodbg_end()); 559 } 560 561 /// use_bundle_nodbg_iterator/use_bundle_nodbg_begin/use_bundle_nodbg_end - Walk 562 /// all uses of the specified register, stepping by bundle, skipping 563 /// those marked as Debug. 564 using use_bundle_nodbg_iterator = 565 defusechain_instr_iterator<true, false, true, false, false, true>; 566 use_bundle_nodbg_iterator use_bundle_nodbg_begin(Register RegNo) const { 567 return use_bundle_nodbg_iterator(getRegUseDefListHead(RegNo)); 568 } 569 static use_bundle_nodbg_iterator use_bundle_nodbg_end() { 570 return use_bundle_nodbg_iterator(nullptr); 571 } 572 573 inline iterator_range<use_bundle_nodbg_iterator> 574 use_nodbg_bundles(Register Reg) const { 575 return make_range(use_bundle_nodbg_begin(Reg), use_bundle_nodbg_end()); 576 } 577 578 /// use_nodbg_empty - Return true if there are no non-Debug instructions 579 /// using the specified register. 580 bool use_nodbg_empty(Register RegNo) const { 581 return use_nodbg_begin(RegNo) == use_nodbg_end(); 582 } 583 584 /// hasOneNonDBGUse - Return true if there is exactly one non-Debug 585 /// use of the specified register. 586 bool hasOneNonDBGUse(Register RegNo) const; 587 588 /// hasOneNonDBGUse - Return true if there is exactly one non-Debug 589 /// instruction using the specified register. Said instruction may have 590 /// multiple uses. 591 bool hasOneNonDBGUser(Register RegNo) const; 592 593 594 /// hasAtMostUses - Return true if the given register has at most \p MaxUsers 595 /// non-debug user instructions. 596 bool hasAtMostUserInstrs(Register Reg, unsigned MaxUsers) const; 597 598 /// replaceRegWith - Replace all instances of FromReg with ToReg in the 599 /// machine function. This is like llvm-level X->replaceAllUsesWith(Y), 600 /// except that it also changes any definitions of the register as well. 601 /// 602 /// Note that it is usually necessary to first constrain ToReg's register 603 /// class and register bank to match the FromReg constraints using one of the 604 /// methods: 605 /// 606 /// constrainRegClass(ToReg, getRegClass(FromReg)) 607 /// constrainRegAttrs(ToReg, FromReg) 608 /// RegisterBankInfo::constrainGenericRegister(ToReg, 609 /// *MRI.getRegClass(FromReg), MRI) 610 /// 611 /// These functions will return a falsy result if the virtual registers have 612 /// incompatible constraints. 613 /// 614 /// Note that if ToReg is a physical register the function will replace and 615 /// apply sub registers to ToReg in order to obtain a final/proper physical 616 /// register. 617 void replaceRegWith(Register FromReg, Register ToReg); 618 619 /// getVRegDef - Return the machine instr that defines the specified virtual 620 /// register or null if none is found. This assumes that the code is in SSA 621 /// form, so there should only be one definition. 622 MachineInstr *getVRegDef(Register Reg) const; 623 624 /// getUniqueVRegDef - Return the unique machine instr that defines the 625 /// specified virtual register or null if none is found. If there are 626 /// multiple definitions or no definition, return null. 627 MachineInstr *getUniqueVRegDef(Register Reg) const; 628 629 /// clearKillFlags - Iterate over all the uses of the given register and 630 /// clear the kill flag from the MachineOperand. This function is used by 631 /// optimization passes which extend register lifetimes and need only 632 /// preserve conservative kill flag information. 633 void clearKillFlags(Register Reg) const; 634 635 void dumpUses(Register RegNo) const; 636 637 /// Returns true if PhysReg is unallocatable and constant throughout the 638 /// function. Writing to a constant register has no effect. 639 bool isConstantPhysReg(MCRegister PhysReg) const; 640 641 /// Get an iterator over the pressure sets affected by the given physical or 642 /// virtual register. If RegUnit is physical, it must be a register unit (from 643 /// MCRegUnitIterator). 644 PSetIterator getPressureSets(Register RegUnit) const; 645 646 //===--------------------------------------------------------------------===// 647 // Virtual Register Info 648 //===--------------------------------------------------------------------===// 649 650 /// Return the register class of the specified virtual register. 651 /// This shouldn't be used directly unless \p Reg has a register class. 652 /// \see getRegClassOrNull when this might happen. 653 const TargetRegisterClass *getRegClass(Register Reg) const { 654 assert(isa<const TargetRegisterClass *>(VRegInfo[Reg.id()].first) && 655 "Register class not set, wrong accessor"); 656 return cast<const TargetRegisterClass *>(VRegInfo[Reg.id()].first); 657 } 658 659 /// Return the register class of \p Reg, or null if Reg has not been assigned 660 /// a register class yet. 661 /// 662 /// \note A null register class can only happen when these two 663 /// conditions are met: 664 /// 1. Generic virtual registers are created. 665 /// 2. The machine function has not completely been through the 666 /// instruction selection process. 667 /// None of this condition is possible without GlobalISel for now. 668 /// In other words, if GlobalISel is not used or if the query happens after 669 /// the select pass, using getRegClass is safe. 670 const TargetRegisterClass *getRegClassOrNull(Register Reg) const { 671 const RegClassOrRegBank &Val = VRegInfo[Reg].first; 672 return dyn_cast_if_present<const TargetRegisterClass *>(Val); 673 } 674 675 /// Return the register bank of \p Reg, or null if Reg has not been assigned 676 /// a register bank or has been assigned a register class. 677 /// \note It is possible to get the register bank from the register class via 678 /// RegisterBankInfo::getRegBankFromRegClass. 679 const RegisterBank *getRegBankOrNull(Register Reg) const { 680 const RegClassOrRegBank &Val = VRegInfo[Reg].first; 681 return dyn_cast_if_present<const RegisterBank *>(Val); 682 } 683 684 /// Return the register bank or register class of \p Reg. 685 /// \note Before the register bank gets assigned (i.e., before the 686 /// RegBankSelect pass) \p Reg may not have either. 687 const RegClassOrRegBank &getRegClassOrRegBank(Register Reg) const { 688 return VRegInfo[Reg].first; 689 } 690 691 /// setRegClass - Set the register class of the specified virtual register. 692 void setRegClass(Register Reg, const TargetRegisterClass *RC); 693 694 /// Set the register bank to \p RegBank for \p Reg. 695 void setRegBank(Register Reg, const RegisterBank &RegBank); 696 697 void setRegClassOrRegBank(Register Reg, 698 const RegClassOrRegBank &RCOrRB){ 699 VRegInfo[Reg].first = RCOrRB; 700 } 701 702 /// constrainRegClass - Constrain the register class of the specified virtual 703 /// register to be a common subclass of RC and the current register class, 704 /// but only if the new class has at least MinNumRegs registers. Return the 705 /// new register class, or NULL if no such class exists. 706 /// This should only be used when the constraint is known to be trivial, like 707 /// GR32 -> GR32_NOSP. Beware of increasing register pressure. 708 /// 709 /// \note Assumes that the register has a register class assigned. 710 /// Use RegisterBankInfo::constrainGenericRegister in GlobalISel's 711 /// InstructionSelect pass and constrainRegAttrs in every other pass, 712 /// including non-select passes of GlobalISel, instead. 713 const TargetRegisterClass *constrainRegClass(Register Reg, 714 const TargetRegisterClass *RC, 715 unsigned MinNumRegs = 0); 716 717 /// Constrain the register class or the register bank of the virtual register 718 /// \p Reg (and low-level type) to be a common subclass or a common bank of 719 /// both registers provided respectively (and a common low-level type). Do 720 /// nothing if any of the attributes (classes, banks, or low-level types) of 721 /// the registers are deemed incompatible, or if the resulting register will 722 /// have a class smaller than before and of size less than \p MinNumRegs. 723 /// Return true if such register attributes exist, false otherwise. 724 /// 725 /// \note Use this method instead of constrainRegClass and 726 /// RegisterBankInfo::constrainGenericRegister everywhere but SelectionDAG 727 /// ISel / FastISel and GlobalISel's InstructionSelect pass respectively. 728 bool constrainRegAttrs(Register Reg, Register ConstrainingReg, 729 unsigned MinNumRegs = 0); 730 731 /// recomputeRegClass - Try to find a legal super-class of Reg's register 732 /// class that still satisfies the constraints from the instructions using 733 /// Reg. Returns true if Reg was upgraded. 734 /// 735 /// This method can be used after constraints have been removed from a 736 /// virtual register, for example after removing instructions or splitting 737 /// the live range. 738 bool recomputeRegClass(Register Reg); 739 740 /// createVirtualRegister - Create and return a new virtual register in the 741 /// function with the specified register class. 742 Register createVirtualRegister(const TargetRegisterClass *RegClass, 743 StringRef Name = ""); 744 745 /// All attributes(register class or bank and low-level type) a virtual 746 /// register can have. 747 struct VRegAttrs { 748 RegClassOrRegBank RCOrRB; 749 LLT Ty; 750 }; 751 752 /// Returns register class or bank and low level type of \p Reg. Always safe 753 /// to use. Special values are returned when \p Reg does not have some of the 754 /// attributes. 755 VRegAttrs getVRegAttrs(Register Reg) { 756 return {getRegClassOrRegBank(Reg), getType(Reg)}; 757 } 758 759 /// Create and return a new virtual register in the function with the 760 /// specified register attributes(register class or bank and low level type). 761 Register createVirtualRegister(VRegAttrs RegAttr, StringRef Name = ""); 762 763 /// Create and return a new virtual register in the function with the same 764 /// attributes as the given register. 765 Register cloneVirtualRegister(Register VReg, StringRef Name = ""); 766 767 /// Get the low-level type of \p Reg or LLT{} if Reg is not a generic 768 /// (target independent) virtual register. 769 LLT getType(Register Reg) const { 770 if (Reg.isVirtual() && VRegToType.inBounds(Reg)) 771 return VRegToType[Reg]; 772 return LLT{}; 773 } 774 775 /// Set the low-level type of \p VReg to \p Ty. 776 void setType(Register VReg, LLT Ty); 777 778 /// Create and return a new generic virtual register with low-level 779 /// type \p Ty. 780 Register createGenericVirtualRegister(LLT Ty, StringRef Name = ""); 781 782 /// Remove all types associated to virtual registers (after instruction 783 /// selection and constraining of all generic virtual registers). 784 void clearVirtRegTypes(); 785 786 /// Creates a new virtual register that has no register class, register bank 787 /// or size assigned yet. This is only allowed to be used 788 /// temporarily while constructing machine instructions. Most operations are 789 /// undefined on an incomplete register until one of setRegClass(), 790 /// setRegBank() or setSize() has been called on it. 791 Register createIncompleteVirtualRegister(StringRef Name = ""); 792 793 /// getNumVirtRegs - Return the number of virtual registers created. 794 unsigned getNumVirtRegs() const { return VRegInfo.size(); } 795 796 /// clearVirtRegs - Remove all virtual registers (after physreg assignment). 797 void clearVirtRegs(); 798 799 /// setRegAllocationHint - Specify a register allocation hint for the 800 /// specified virtual register. This is typically used by target, and in case 801 /// of an earlier hint it will be overwritten. 802 void setRegAllocationHint(Register VReg, unsigned Type, Register PrefReg) { 803 assert(VReg.isVirtual()); 804 RegAllocHints[VReg].first = Type; 805 RegAllocHints[VReg].second.clear(); 806 RegAllocHints[VReg].second.push_back(PrefReg); 807 } 808 809 /// addRegAllocationHint - Add a register allocation hint to the hints 810 /// vector for VReg. 811 void addRegAllocationHint(Register VReg, Register PrefReg) { 812 assert(VReg.isVirtual()); 813 RegAllocHints[VReg].second.push_back(PrefReg); 814 } 815 816 /// Specify the preferred (target independent) register allocation hint for 817 /// the specified virtual register. 818 void setSimpleHint(Register VReg, Register PrefReg) { 819 setRegAllocationHint(VReg, /*Type=*/0, PrefReg); 820 } 821 822 void clearSimpleHint(Register VReg) { 823 assert (!RegAllocHints[VReg].first && 824 "Expected to clear a non-target hint!"); 825 RegAllocHints[VReg].second.clear(); 826 } 827 828 /// getRegAllocationHint - Return the register allocation hint for the 829 /// specified virtual register. If there are many hints, this returns the 830 /// one with the greatest weight. 831 std::pair<unsigned, Register> getRegAllocationHint(Register VReg) const { 832 assert(VReg.isVirtual()); 833 Register BestHint = (RegAllocHints[VReg.id()].second.size() ? 834 RegAllocHints[VReg.id()].second[0] : Register()); 835 return {RegAllocHints[VReg.id()].first, BestHint}; 836 } 837 838 /// getSimpleHint - same as getRegAllocationHint except it will only return 839 /// a target independent hint. 840 Register getSimpleHint(Register VReg) const { 841 assert(VReg.isVirtual()); 842 std::pair<unsigned, Register> Hint = getRegAllocationHint(VReg); 843 return Hint.first ? Register() : Hint.second; 844 } 845 846 /// getRegAllocationHints - Return a reference to the vector of all 847 /// register allocation hints for VReg. 848 const std::pair<unsigned, SmallVector<Register, 4>> & 849 getRegAllocationHints(Register VReg) const { 850 assert(VReg.isVirtual()); 851 return RegAllocHints[VReg]; 852 } 853 854 /// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the 855 /// specified register as undefined which causes the DBG_VALUE to be 856 /// deleted during LiveDebugVariables analysis. 857 void markUsesInDebugValueAsUndef(Register Reg) const; 858 859 /// updateDbgUsersToReg - Update a collection of debug instructions 860 /// to refer to the designated register. 861 void updateDbgUsersToReg(MCRegister OldReg, MCRegister NewReg, 862 ArrayRef<MachineInstr *> Users) const { 863 // If this operand is a register, check whether it overlaps with OldReg. 864 // If it does, replace with NewReg. 865 auto UpdateOp = [this, &NewReg, &OldReg](MachineOperand &Op) { 866 if (Op.isReg() && 867 getTargetRegisterInfo()->regsOverlap(Op.getReg(), OldReg)) 868 Op.setReg(NewReg); 869 }; 870 871 // Iterate through (possibly several) operands to DBG_VALUEs and update 872 // each. For DBG_PHIs, only one operand will be present. 873 for (MachineInstr *MI : Users) { 874 if (MI->isDebugValue()) { 875 for (auto &Op : MI->debug_operands()) 876 UpdateOp(Op); 877 assert(MI->hasDebugOperandForReg(NewReg) && 878 "Expected debug value to have some overlap with OldReg"); 879 } else if (MI->isDebugPHI()) { 880 UpdateOp(MI->getOperand(0)); 881 } else { 882 llvm_unreachable("Non-DBG_VALUE, Non-DBG_PHI debug instr updated"); 883 } 884 } 885 } 886 887 /// Return true if the specified register is modified in this function. 888 /// This checks that no defining machine operands exist for the register or 889 /// any of its aliases. Definitions found on functions marked noreturn are 890 /// ignored, to consider them pass 'true' for optional parameter 891 /// SkipNoReturnDef. The register is also considered modified when it is set 892 /// in the UsedPhysRegMask. 893 bool isPhysRegModified(MCRegister PhysReg, bool SkipNoReturnDef = false) const; 894 895 /// Return true if the specified register is modified or read in this 896 /// function. This checks that no machine operands exist for the register or 897 /// any of its aliases. If SkipRegMaskTest is false, the register is 898 /// considered used when it is set in the UsedPhysRegMask. 899 bool isPhysRegUsed(MCRegister PhysReg, bool SkipRegMaskTest = false) const; 900 901 /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used. 902 /// This corresponds to the bit mask attached to register mask operands. 903 void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) { 904 UsedPhysRegMask.setBitsNotInMask(RegMask); 905 } 906 907 const BitVector &getUsedPhysRegsMask() const { return UsedPhysRegMask; } 908 909 //===--------------------------------------------------------------------===// 910 // Reserved Register Info 911 //===--------------------------------------------------------------------===// 912 // 913 // The set of reserved registers must be invariant during register 914 // allocation. For example, the target cannot suddenly decide it needs a 915 // frame pointer when the register allocator has already used the frame 916 // pointer register for something else. 917 // 918 // These methods can be used by target hooks like hasFP() to avoid changing 919 // the reserved register set during register allocation. 920 921 /// freezeReservedRegs - Called by the register allocator to freeze the set 922 /// of reserved registers before allocation begins. 923 void freezeReservedRegs(); 924 925 /// reserveReg -- Mark a register as reserved so checks like isAllocatable 926 /// will not suggest using it. This should not be used during the middle 927 /// of a function walk, or when liveness info is available. 928 void reserveReg(MCRegister PhysReg, const TargetRegisterInfo *TRI) { 929 assert(reservedRegsFrozen() && 930 "Reserved registers haven't been frozen yet. "); 931 MCRegAliasIterator R(PhysReg, TRI, true); 932 933 for (; R.isValid(); ++R) 934 ReservedRegs.set(*R); 935 } 936 937 /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called 938 /// to ensure the set of reserved registers stays constant. 939 bool reservedRegsFrozen() const { 940 return !ReservedRegs.empty(); 941 } 942 943 /// canReserveReg - Returns true if PhysReg can be used as a reserved 944 /// register. Any register can be reserved before freezeReservedRegs() is 945 /// called. 946 bool canReserveReg(MCRegister PhysReg) const { 947 return !reservedRegsFrozen() || ReservedRegs.test(PhysReg); 948 } 949 950 /// getReservedRegs - Returns a reference to the frozen set of reserved 951 /// registers. This method should always be preferred to calling 952 /// TRI::getReservedRegs() when possible. 953 const BitVector &getReservedRegs() const { 954 assert(reservedRegsFrozen() && 955 "Reserved registers haven't been frozen yet. " 956 "Use TRI::getReservedRegs()."); 957 return ReservedRegs; 958 } 959 960 /// isReserved - Returns true when PhysReg is a reserved register. 961 /// 962 /// Reserved registers may belong to an allocatable register class, but the 963 /// target has explicitly requested that they are not used. 964 bool isReserved(MCRegister PhysReg) const { 965 return getReservedRegs().test(PhysReg.id()); 966 } 967 968 /// Returns true when the given register unit is considered reserved. 969 /// 970 /// Register units are considered reserved when for at least one of their 971 /// root registers, the root register and all super registers are reserved. 972 /// This currently iterates the register hierarchy and may be slower than 973 /// expected. 974 bool isReservedRegUnit(unsigned Unit) const; 975 976 /// isAllocatable - Returns true when PhysReg belongs to an allocatable 977 /// register class and it hasn't been reserved. 978 /// 979 /// Allocatable registers may show up in the allocation order of some virtual 980 /// register, so a register allocator needs to track its liveness and 981 /// availability. 982 bool isAllocatable(MCRegister PhysReg) const { 983 return getTargetRegisterInfo()->isInAllocatableClass(PhysReg) && 984 !isReserved(PhysReg); 985 } 986 987 //===--------------------------------------------------------------------===// 988 // LiveIn Management 989 //===--------------------------------------------------------------------===// 990 991 /// addLiveIn - Add the specified register as a live-in. Note that it 992 /// is an error to add the same register to the same set more than once. 993 void addLiveIn(MCRegister Reg, Register vreg = Register()) { 994 LiveIns.push_back(std::make_pair(Reg, vreg)); 995 } 996 997 // Iteration support for the live-ins set. It's kept in sorted order 998 // by register number. 999 using livein_iterator = 1000 std::vector<std::pair<MCRegister,Register>>::const_iterator; 1001 livein_iterator livein_begin() const { return LiveIns.begin(); } 1002 livein_iterator livein_end() const { return LiveIns.end(); } 1003 bool livein_empty() const { return LiveIns.empty(); } 1004 1005 ArrayRef<std::pair<MCRegister, Register>> liveins() const { 1006 return LiveIns; 1007 } 1008 1009 bool isLiveIn(Register Reg) const; 1010 1011 /// getLiveInPhysReg - If VReg is a live-in virtual register, return the 1012 /// corresponding live-in physical register. 1013 MCRegister getLiveInPhysReg(Register VReg) const; 1014 1015 /// getLiveInVirtReg - If PReg is a live-in physical register, return the 1016 /// corresponding live-in virtual register. 1017 Register getLiveInVirtReg(MCRegister PReg) const; 1018 1019 /// EmitLiveInCopies - Emit copies to initialize livein virtual registers 1020 /// into the given entry block. 1021 void EmitLiveInCopies(MachineBasicBlock *EntryMBB, 1022 const TargetRegisterInfo &TRI, 1023 const TargetInstrInfo &TII); 1024 1025 /// Returns a mask covering all bits that can appear in lane masks of 1026 /// subregisters of the virtual register @p Reg. 1027 LaneBitmask getMaxLaneMaskForVReg(Register Reg) const; 1028 1029 /// defusechain_iterator - This class provides iterator support for machine 1030 /// operands in the function that use or define a specific register. If 1031 /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it 1032 /// returns defs. If neither are true then you are silly and it always 1033 /// returns end(). If SkipDebug is true it skips uses marked Debug 1034 /// when incrementing. 1035 template <bool ReturnUses, bool ReturnDefs, bool SkipDebug, bool ByOperand, 1036 bool ByInstr, bool ByBundle> 1037 class defusechain_iterator { 1038 friend class MachineRegisterInfo; 1039 1040 public: 1041 using iterator_category = std::forward_iterator_tag; 1042 using value_type = MachineOperand; 1043 using difference_type = std::ptrdiff_t; 1044 using pointer = value_type *; 1045 using reference = value_type &; 1046 1047 private: 1048 MachineOperand *Op = nullptr; 1049 1050 explicit defusechain_iterator(MachineOperand *op) : Op(op) { 1051 // If the first node isn't one we're interested in, advance to one that 1052 // we are interested in. 1053 if (op) { 1054 if ((!ReturnUses && op->isUse()) || 1055 (!ReturnDefs && op->isDef()) || 1056 (SkipDebug && op->isDebug())) 1057 advance(); 1058 } 1059 } 1060 1061 void advance() { 1062 assert(Op && "Cannot increment end iterator!"); 1063 Op = getNextOperandForReg(Op); 1064 1065 // All defs come before the uses, so stop def_iterator early. 1066 if (!ReturnUses) { 1067 if (Op) { 1068 if (Op->isUse()) 1069 Op = nullptr; 1070 else 1071 assert(!Op->isDebug() && "Can't have debug defs"); 1072 } 1073 } else { 1074 // If this is an operand we don't care about, skip it. 1075 while (Op && ((!ReturnDefs && Op->isDef()) || 1076 (SkipDebug && Op->isDebug()))) 1077 Op = getNextOperandForReg(Op); 1078 } 1079 } 1080 1081 public: 1082 defusechain_iterator() = default; 1083 1084 bool operator==(const defusechain_iterator &x) const { 1085 return Op == x.Op; 1086 } 1087 bool operator!=(const defusechain_iterator &x) const { 1088 return !operator==(x); 1089 } 1090 1091 /// atEnd - return true if this iterator is equal to reg_end() on the value. 1092 bool atEnd() const { return Op == nullptr; } 1093 1094 // Iterator traversal: forward iteration only 1095 defusechain_iterator &operator++() { // Preincrement 1096 assert(Op && "Cannot increment end iterator!"); 1097 if (ByOperand) 1098 advance(); 1099 else if (ByInstr) { 1100 MachineInstr *P = Op->getParent(); 1101 do { 1102 advance(); 1103 } while (Op && Op->getParent() == P); 1104 } else if (ByBundle) { 1105 MachineBasicBlock::instr_iterator P = 1106 getBundleStart(Op->getParent()->getIterator()); 1107 do { 1108 advance(); 1109 } while (Op && getBundleStart(Op->getParent()->getIterator()) == P); 1110 } 1111 1112 return *this; 1113 } 1114 defusechain_iterator operator++(int) { // Postincrement 1115 defusechain_iterator tmp = *this; ++*this; return tmp; 1116 } 1117 1118 /// getOperandNo - Return the operand # of this MachineOperand in its 1119 /// MachineInstr. 1120 unsigned getOperandNo() const { 1121 assert(Op && "Cannot dereference end iterator!"); 1122 return Op - &Op->getParent()->getOperand(0); 1123 } 1124 1125 // Retrieve a reference to the current operand. 1126 MachineOperand &operator*() const { 1127 assert(Op && "Cannot dereference end iterator!"); 1128 return *Op; 1129 } 1130 1131 MachineOperand *operator->() const { 1132 assert(Op && "Cannot dereference end iterator!"); 1133 return Op; 1134 } 1135 }; 1136 1137 /// defusechain_iterator - This class provides iterator support for machine 1138 /// operands in the function that use or define a specific register. If 1139 /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it 1140 /// returns defs. If neither are true then you are silly and it always 1141 /// returns end(). If SkipDebug is true it skips uses marked Debug 1142 /// when incrementing. 1143 template <bool ReturnUses, bool ReturnDefs, bool SkipDebug, bool ByOperand, 1144 bool ByInstr, bool ByBundle> 1145 class defusechain_instr_iterator { 1146 friend class MachineRegisterInfo; 1147 1148 public: 1149 using iterator_category = std::forward_iterator_tag; 1150 using value_type = MachineInstr; 1151 using difference_type = std::ptrdiff_t; 1152 using pointer = value_type *; 1153 using reference = value_type &; 1154 1155 private: 1156 MachineOperand *Op = nullptr; 1157 1158 explicit defusechain_instr_iterator(MachineOperand *op) : Op(op) { 1159 // If the first node isn't one we're interested in, advance to one that 1160 // we are interested in. 1161 if (op) { 1162 if ((!ReturnUses && op->isUse()) || 1163 (!ReturnDefs && op->isDef()) || 1164 (SkipDebug && op->isDebug())) 1165 advance(); 1166 } 1167 } 1168 1169 void advance() { 1170 assert(Op && "Cannot increment end iterator!"); 1171 Op = getNextOperandForReg(Op); 1172 1173 // All defs come before the uses, so stop def_iterator early. 1174 if (!ReturnUses) { 1175 if (Op) { 1176 if (Op->isUse()) 1177 Op = nullptr; 1178 else 1179 assert(!Op->isDebug() && "Can't have debug defs"); 1180 } 1181 } else { 1182 // If this is an operand we don't care about, skip it. 1183 while (Op && ((!ReturnDefs && Op->isDef()) || 1184 (SkipDebug && Op->isDebug()))) 1185 Op = getNextOperandForReg(Op); 1186 } 1187 } 1188 1189 public: 1190 defusechain_instr_iterator() = default; 1191 1192 bool operator==(const defusechain_instr_iterator &x) const { 1193 return Op == x.Op; 1194 } 1195 bool operator!=(const defusechain_instr_iterator &x) const { 1196 return !operator==(x); 1197 } 1198 1199 /// atEnd - return true if this iterator is equal to reg_end() on the value. 1200 bool atEnd() const { return Op == nullptr; } 1201 1202 // Iterator traversal: forward iteration only 1203 defusechain_instr_iterator &operator++() { // Preincrement 1204 assert(Op && "Cannot increment end iterator!"); 1205 if (ByOperand) 1206 advance(); 1207 else if (ByInstr) { 1208 MachineInstr *P = Op->getParent(); 1209 do { 1210 advance(); 1211 } while (Op && Op->getParent() == P); 1212 } else if (ByBundle) { 1213 MachineBasicBlock::instr_iterator P = 1214 getBundleStart(Op->getParent()->getIterator()); 1215 do { 1216 advance(); 1217 } while (Op && getBundleStart(Op->getParent()->getIterator()) == P); 1218 } 1219 1220 return *this; 1221 } 1222 defusechain_instr_iterator operator++(int) { // Postincrement 1223 defusechain_instr_iterator tmp = *this; ++*this; return tmp; 1224 } 1225 1226 // Retrieve a reference to the current operand. 1227 MachineInstr &operator*() const { 1228 assert(Op && "Cannot dereference end iterator!"); 1229 if (ByBundle) 1230 return *getBundleStart(Op->getParent()->getIterator()); 1231 return *Op->getParent(); 1232 } 1233 1234 MachineInstr *operator->() const { return &operator*(); } 1235 }; 1236 }; 1237 1238 /// Iterate over the pressure sets affected by the given physical or virtual 1239 /// register. If Reg is physical, it must be a register unit (from 1240 /// MCRegUnitIterator). 1241 class PSetIterator { 1242 const int *PSet = nullptr; 1243 unsigned Weight = 0; 1244 1245 public: 1246 PSetIterator() = default; 1247 1248 PSetIterator(Register RegUnit, const MachineRegisterInfo *MRI) { 1249 const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo(); 1250 if (RegUnit.isVirtual()) { 1251 const TargetRegisterClass *RC = MRI->getRegClass(RegUnit); 1252 PSet = TRI->getRegClassPressureSets(RC); 1253 Weight = TRI->getRegClassWeight(RC).RegWeight; 1254 } else { 1255 PSet = TRI->getRegUnitPressureSets(RegUnit); 1256 Weight = TRI->getRegUnitWeight(RegUnit); 1257 } 1258 if (*PSet == -1) 1259 PSet = nullptr; 1260 } 1261 1262 bool isValid() const { return PSet; } 1263 1264 unsigned getWeight() const { return Weight; } 1265 1266 unsigned operator*() const { return *PSet; } 1267 1268 void operator++() { 1269 assert(isValid() && "Invalid PSetIterator."); 1270 ++PSet; 1271 if (*PSet == -1) 1272 PSet = nullptr; 1273 } 1274 }; 1275 1276 inline PSetIterator 1277 MachineRegisterInfo::getPressureSets(Register RegUnit) const { 1278 return PSetIterator(RegUnit, this); 1279 } 1280 1281 } // end namespace llvm 1282 1283 #endif // LLVM_CODEGEN_MACHINEREGISTERINFO_H 1284