1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Config.h" 11 #include "DWARF.h" 12 #include "Driver.h" 13 #include "InputSection.h" 14 #include "LinkerScript.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "SyntheticSections.h" 18 #include "Target.h" 19 #include "lld/Common/CommonLinkerContext.h" 20 #include "lld/Common/DWARF.h" 21 #include "llvm/ADT/CachedHashString.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/Object/IRObjectFile.h" 25 #include "llvm/Support/ARMAttributeParser.h" 26 #include "llvm/Support/ARMBuildAttributes.h" 27 #include "llvm/Support/Endian.h" 28 #include "llvm/Support/FileSystem.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/RISCVAttributeParser.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <optional> 34 35 using namespace llvm; 36 using namespace llvm::ELF; 37 using namespace llvm::object; 38 using namespace llvm::sys; 39 using namespace llvm::sys::fs; 40 using namespace llvm::support::endian; 41 using namespace lld; 42 using namespace lld::elf; 43 44 // This function is explicitly instantiated in ARM.cpp, don't do it here to 45 // avoid warnings with MSVC. 46 extern template void ObjFile<ELF32LE>::importCmseSymbols(); 47 extern template void ObjFile<ELF32BE>::importCmseSymbols(); 48 extern template void ObjFile<ELF64LE>::importCmseSymbols(); 49 extern template void ObjFile<ELF64BE>::importCmseSymbols(); 50 51 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 52 std::string elf::toStr(Ctx &ctx, const InputFile *f) { 53 static std::mutex mu; 54 if (!f) 55 return "<internal>"; 56 57 { 58 std::lock_guard<std::mutex> lock(mu); 59 if (f->toStringCache.empty()) { 60 if (f->archiveName.empty()) 61 f->toStringCache = f->getName(); 62 else 63 (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache); 64 } 65 } 66 return std::string(f->toStringCache); 67 } 68 69 const ELFSyncStream &elf::operator<<(const ELFSyncStream &s, 70 const InputFile *f) { 71 return s << toStr(s.ctx, f); 72 } 73 74 static ELFKind getELFKind(Ctx &ctx, MemoryBufferRef mb, StringRef archiveName) { 75 unsigned char size; 76 unsigned char endian; 77 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 78 79 auto report = [&](StringRef msg) { 80 StringRef filename = mb.getBufferIdentifier(); 81 if (archiveName.empty()) 82 Fatal(ctx) << filename << ": " << msg; 83 else 84 Fatal(ctx) << archiveName << "(" << filename << "): " << msg; 85 }; 86 87 if (!mb.getBuffer().starts_with(ElfMagic)) 88 report("not an ELF file"); 89 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 90 report("corrupted ELF file: invalid data encoding"); 91 if (size != ELFCLASS32 && size != ELFCLASS64) 92 report("corrupted ELF file: invalid file class"); 93 94 size_t bufSize = mb.getBuffer().size(); 95 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 96 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 97 report("corrupted ELF file: file is too short"); 98 99 if (size == ELFCLASS32) 100 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 101 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 102 } 103 104 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 105 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 106 // the input objects have been compiled. 107 static void updateARMVFPArgs(Ctx &ctx, const ARMAttributeParser &attributes, 108 const InputFile *f) { 109 std::optional<unsigned> attr = 110 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 111 if (!attr) 112 // If an ABI tag isn't present then it is implicitly given the value of 0 113 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 114 // including some in glibc that don't use FP args (and should have value 3) 115 // don't have the attribute so we do not consider an implicit value of 0 116 // as a clash. 117 return; 118 119 unsigned vfpArgs = *attr; 120 ARMVFPArgKind arg; 121 switch (vfpArgs) { 122 case ARMBuildAttrs::BaseAAPCS: 123 arg = ARMVFPArgKind::Base; 124 break; 125 case ARMBuildAttrs::HardFPAAPCS: 126 arg = ARMVFPArgKind::VFP; 127 break; 128 case ARMBuildAttrs::ToolChainFPPCS: 129 // Tool chain specific convention that conforms to neither AAPCS variant. 130 arg = ARMVFPArgKind::ToolChain; 131 break; 132 case ARMBuildAttrs::CompatibleFPAAPCS: 133 // Object compatible with all conventions. 134 return; 135 default: 136 ErrAlways(ctx) << f << ": unknown Tag_ABI_VFP_args value: " << vfpArgs; 137 return; 138 } 139 // Follow ld.bfd and error if there is a mix of calling conventions. 140 if (ctx.arg.armVFPArgs != arg && ctx.arg.armVFPArgs != ARMVFPArgKind::Default) 141 ErrAlways(ctx) << f << ": incompatible Tag_ABI_VFP_args"; 142 else 143 ctx.arg.armVFPArgs = arg; 144 } 145 146 // The ARM support in lld makes some use of instructions that are not available 147 // on all ARM architectures. Namely: 148 // - Use of BLX instruction for interworking between ARM and Thumb state. 149 // - Use of the extended Thumb branch encoding in relocation. 150 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 151 // The ARM Attributes section contains information about the architecture chosen 152 // at compile time. We follow the convention that if at least one input object 153 // is compiled with an architecture that supports these features then lld is 154 // permitted to use them. 155 static void updateSupportedARMFeatures(Ctx &ctx, 156 const ARMAttributeParser &attributes) { 157 std::optional<unsigned> attr = 158 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 159 if (!attr) 160 return; 161 auto arch = *attr; 162 switch (arch) { 163 case ARMBuildAttrs::Pre_v4: 164 case ARMBuildAttrs::v4: 165 case ARMBuildAttrs::v4T: 166 // Architectures prior to v5 do not support BLX instruction 167 break; 168 case ARMBuildAttrs::v5T: 169 case ARMBuildAttrs::v5TE: 170 case ARMBuildAttrs::v5TEJ: 171 case ARMBuildAttrs::v6: 172 case ARMBuildAttrs::v6KZ: 173 case ARMBuildAttrs::v6K: 174 ctx.arg.armHasBlx = true; 175 // Architectures used in pre-Cortex processors do not support 176 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 177 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 178 break; 179 default: 180 // All other Architectures have BLX and extended branch encoding 181 ctx.arg.armHasBlx = true; 182 ctx.arg.armJ1J2BranchEncoding = true; 183 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 184 // All Architectures used in Cortex processors with the exception 185 // of v6-M and v6S-M have the MOVT and MOVW instructions. 186 ctx.arg.armHasMovtMovw = true; 187 break; 188 } 189 190 // Only ARMv8-M or later architectures have CMSE support. 191 std::optional<unsigned> profile = 192 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile); 193 if (!profile) 194 return; 195 if (arch >= ARMBuildAttrs::CPUArch::v8_M_Base && 196 profile == ARMBuildAttrs::MicroControllerProfile) 197 ctx.arg.armCMSESupport = true; 198 199 // The thumb PLT entries require Thumb2 which can be used on multiple archs. 200 // For now, let's limit it to ones where ARM isn't available and we know have 201 // Thumb2. 202 std::optional<unsigned> armISA = 203 attributes.getAttributeValue(ARMBuildAttrs::ARM_ISA_use); 204 std::optional<unsigned> thumb = 205 attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use); 206 ctx.arg.armHasArmISA |= armISA && *armISA >= ARMBuildAttrs::Allowed; 207 ctx.arg.armHasThumb2ISA |= thumb && *thumb >= ARMBuildAttrs::AllowThumb32; 208 } 209 210 InputFile::InputFile(Ctx &ctx, Kind k, MemoryBufferRef m) 211 : ctx(ctx), mb(m), groupId(ctx.driver.nextGroupId), fileKind(k) { 212 // All files within the same --{start,end}-group get the same group ID. 213 // Otherwise, a new file will get a new group ID. 214 if (!ctx.driver.isInGroup) 215 ++ctx.driver.nextGroupId; 216 } 217 218 InputFile::~InputFile() {} 219 220 std::optional<MemoryBufferRef> elf::readFile(Ctx &ctx, StringRef path) { 221 llvm::TimeTraceScope timeScope("Load input files", path); 222 223 // The --chroot option changes our virtual root directory. 224 // This is useful when you are dealing with files created by --reproduce. 225 if (!ctx.arg.chroot.empty() && path.starts_with("/")) 226 path = ctx.saver.save(ctx.arg.chroot + path); 227 228 bool remapped = false; 229 auto it = ctx.arg.remapInputs.find(path); 230 if (it != ctx.arg.remapInputs.end()) { 231 path = it->second; 232 remapped = true; 233 } else { 234 for (const auto &[pat, toFile] : ctx.arg.remapInputsWildcards) { 235 if (pat.match(path)) { 236 path = toFile; 237 remapped = true; 238 break; 239 } 240 } 241 } 242 if (remapped) { 243 // Use /dev/null to indicate an input file that should be ignored. Change 244 // the path to NUL on Windows. 245 #ifdef _WIN32 246 if (path == "/dev/null") 247 path = "NUL"; 248 #endif 249 } 250 251 Log(ctx) << path; 252 ctx.arg.dependencyFiles.insert(llvm::CachedHashString(path)); 253 254 auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false, 255 /*RequiresNullTerminator=*/false); 256 if (auto ec = mbOrErr.getError()) { 257 ErrAlways(ctx) << "cannot open " << path << ": " << ec.message(); 258 return std::nullopt; 259 } 260 261 MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef(); 262 ctx.memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership 263 264 if (ctx.tar) 265 ctx.tar->append(relativeToRoot(path), mbref.getBuffer()); 266 return mbref; 267 } 268 269 // All input object files must be for the same architecture 270 // (e.g. it does not make sense to link x86 object files with 271 // MIPS object files.) This function checks for that error. 272 static bool isCompatible(Ctx &ctx, InputFile *file) { 273 if (!file->isElf() && !isa<BitcodeFile>(file)) 274 return true; 275 276 if (file->ekind == ctx.arg.ekind && file->emachine == ctx.arg.emachine) { 277 if (ctx.arg.emachine != EM_MIPS) 278 return true; 279 if (isMipsN32Abi(ctx, *file) == ctx.arg.mipsN32Abi) 280 return true; 281 } 282 283 StringRef target = 284 !ctx.arg.bfdname.empty() ? ctx.arg.bfdname : ctx.arg.emulation; 285 if (!target.empty()) { 286 Err(ctx) << file << " is incompatible with " << target; 287 return false; 288 } 289 290 InputFile *existing = nullptr; 291 if (!ctx.objectFiles.empty()) 292 existing = ctx.objectFiles[0]; 293 else if (!ctx.sharedFiles.empty()) 294 existing = ctx.sharedFiles[0]; 295 else if (!ctx.bitcodeFiles.empty()) 296 existing = ctx.bitcodeFiles[0]; 297 auto diag = Err(ctx); 298 diag << file << " is incompatible"; 299 if (existing) 300 diag << " with " << existing; 301 return false; 302 } 303 304 template <class ELFT> static void doParseFile(Ctx &ctx, InputFile *file) { 305 if (!isCompatible(ctx, file)) 306 return; 307 308 // Lazy object file 309 if (file->lazy) { 310 if (auto *f = dyn_cast<BitcodeFile>(file)) { 311 ctx.lazyBitcodeFiles.push_back(f); 312 f->parseLazy(); 313 } else { 314 cast<ObjFile<ELFT>>(file)->parseLazy(); 315 } 316 return; 317 } 318 319 if (ctx.arg.trace) 320 Msg(ctx) << file; 321 322 if (file->kind() == InputFile::ObjKind) { 323 ctx.objectFiles.push_back(cast<ELFFileBase>(file)); 324 cast<ObjFile<ELFT>>(file)->parse(); 325 } else if (auto *f = dyn_cast<SharedFile>(file)) { 326 f->parse<ELFT>(); 327 } else if (auto *f = dyn_cast<BitcodeFile>(file)) { 328 ctx.bitcodeFiles.push_back(f); 329 f->parse(); 330 } else { 331 ctx.binaryFiles.push_back(cast<BinaryFile>(file)); 332 cast<BinaryFile>(file)->parse(); 333 } 334 } 335 336 // Add symbols in File to the symbol table. 337 void elf::parseFile(Ctx &ctx, InputFile *file) { 338 invokeELFT(doParseFile, ctx, file); 339 } 340 341 // This function is explicitly instantiated in ARM.cpp. Mark it extern here, 342 // to avoid warnings when building with MSVC. 343 extern template void ObjFile<ELF32LE>::importCmseSymbols(); 344 extern template void ObjFile<ELF32BE>::importCmseSymbols(); 345 extern template void ObjFile<ELF64LE>::importCmseSymbols(); 346 extern template void ObjFile<ELF64BE>::importCmseSymbols(); 347 348 template <class ELFT> 349 static void 350 doParseFiles(Ctx &ctx, 351 const SmallVector<std::unique_ptr<InputFile>, 0> &files) { 352 // Add all files to the symbol table. This will add almost all symbols that we 353 // need to the symbol table. This process might add files to the link due to 354 // addDependentLibrary. 355 for (size_t i = 0; i < files.size(); ++i) { 356 llvm::TimeTraceScope timeScope("Parse input files", files[i]->getName()); 357 doParseFile<ELFT>(ctx, files[i].get()); 358 } 359 if (ctx.driver.armCmseImpLib) 360 cast<ObjFile<ELFT>>(*ctx.driver.armCmseImpLib).importCmseSymbols(); 361 } 362 363 void elf::parseFiles(Ctx &ctx, 364 const SmallVector<std::unique_ptr<InputFile>, 0> &files) { 365 llvm::TimeTraceScope timeScope("Parse input files"); 366 invokeELFT(doParseFiles, ctx, files); 367 } 368 369 // Concatenates arguments to construct a string representing an error location. 370 StringRef InputFile::getNameForScript() const { 371 if (archiveName.empty()) 372 return getName(); 373 374 if (nameForScriptCache.empty()) 375 nameForScriptCache = (archiveName + Twine(':') + getName()).str(); 376 377 return nameForScriptCache; 378 } 379 380 // An ELF object file may contain a `.deplibs` section. If it exists, the 381 // section contains a list of library specifiers such as `m` for libm. This 382 // function resolves a given name by finding the first matching library checking 383 // the various ways that a library can be specified to LLD. This ELF extension 384 // is a form of autolinking and is called `dependent libraries`. It is currently 385 // unique to LLVM and lld. 386 static void addDependentLibrary(Ctx &ctx, StringRef specifier, 387 const InputFile *f) { 388 if (!ctx.arg.dependentLibraries) 389 return; 390 if (std::optional<std::string> s = searchLibraryBaseName(ctx, specifier)) 391 ctx.driver.addFile(ctx.saver.save(*s), /*withLOption=*/true); 392 else if (std::optional<std::string> s = findFromSearchPaths(ctx, specifier)) 393 ctx.driver.addFile(ctx.saver.save(*s), /*withLOption=*/true); 394 else if (fs::exists(specifier)) 395 ctx.driver.addFile(specifier, /*withLOption=*/false); 396 else 397 ErrAlways(ctx) 398 << f << ": unable to find library from dependent library specifier: " 399 << specifier; 400 } 401 402 // Record the membership of a section group so that in the garbage collection 403 // pass, section group members are kept or discarded as a unit. 404 template <class ELFT> 405 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 406 ArrayRef<typename ELFT::Word> entries) { 407 bool hasAlloc = false; 408 for (uint32_t index : entries.slice(1)) { 409 if (index >= sections.size()) 410 return; 411 if (InputSectionBase *s = sections[index]) 412 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 413 hasAlloc = true; 414 } 415 416 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 417 // collection. See the comment in markLive(). This rule retains .debug_types 418 // and .rela.debug_types. 419 if (!hasAlloc) 420 return; 421 422 // Connect the members in a circular doubly-linked list via 423 // nextInSectionGroup. 424 InputSectionBase *head; 425 InputSectionBase *prev = nullptr; 426 for (uint32_t index : entries.slice(1)) { 427 InputSectionBase *s = sections[index]; 428 if (!s || s == &InputSection::discarded) 429 continue; 430 if (prev) 431 prev->nextInSectionGroup = s; 432 else 433 head = s; 434 prev = s; 435 } 436 if (prev) 437 prev->nextInSectionGroup = head; 438 } 439 440 template <class ELFT> void ObjFile<ELFT>::initDwarf() { 441 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 442 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 443 [&](Error err) { Warn(ctx) << getName() + ": " << std::move(err); }, 444 [&](Error warning) { 445 Warn(ctx) << getName() << ": " << std::move(warning); 446 })); 447 } 448 449 DWARFCache *ELFFileBase::getDwarf() { 450 assert(fileKind == ObjKind); 451 llvm::call_once(initDwarf, [this]() { 452 switch (ekind) { 453 default: 454 llvm_unreachable(""); 455 case ELF32LEKind: 456 return cast<ObjFile<ELF32LE>>(this)->initDwarf(); 457 case ELF32BEKind: 458 return cast<ObjFile<ELF32BE>>(this)->initDwarf(); 459 case ELF64LEKind: 460 return cast<ObjFile<ELF64LE>>(this)->initDwarf(); 461 case ELF64BEKind: 462 return cast<ObjFile<ELF64BE>>(this)->initDwarf(); 463 } 464 }); 465 return dwarf.get(); 466 } 467 468 ELFFileBase::ELFFileBase(Ctx &ctx, Kind k, ELFKind ekind, MemoryBufferRef mb) 469 : InputFile(ctx, k, mb) { 470 this->ekind = ekind; 471 } 472 473 ELFFileBase::~ELFFileBase() {} 474 475 template <typename Elf_Shdr> 476 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 477 for (const Elf_Shdr &sec : sections) 478 if (sec.sh_type == type) 479 return &sec; 480 return nullptr; 481 } 482 483 void ELFFileBase::init() { 484 switch (ekind) { 485 case ELF32LEKind: 486 init<ELF32LE>(fileKind); 487 break; 488 case ELF32BEKind: 489 init<ELF32BE>(fileKind); 490 break; 491 case ELF64LEKind: 492 init<ELF64LE>(fileKind); 493 break; 494 case ELF64BEKind: 495 init<ELF64BE>(fileKind); 496 break; 497 default: 498 llvm_unreachable("getELFKind"); 499 } 500 } 501 502 template <class ELFT> void ELFFileBase::init(InputFile::Kind k) { 503 using Elf_Shdr = typename ELFT::Shdr; 504 using Elf_Sym = typename ELFT::Sym; 505 506 // Initialize trivial attributes. 507 const ELFFile<ELFT> &obj = getObj<ELFT>(); 508 emachine = obj.getHeader().e_machine; 509 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; 510 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; 511 512 ArrayRef<Elf_Shdr> sections = CHECK2(obj.sections(), this); 513 elfShdrs = sections.data(); 514 numELFShdrs = sections.size(); 515 516 // Find a symbol table. 517 const Elf_Shdr *symtabSec = 518 findSection(sections, k == SharedKind ? SHT_DYNSYM : SHT_SYMTAB); 519 520 if (!symtabSec) 521 return; 522 523 // Initialize members corresponding to a symbol table. 524 firstGlobal = symtabSec->sh_info; 525 526 ArrayRef<Elf_Sym> eSyms = CHECK2(obj.symbols(symtabSec), this); 527 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 528 Fatal(ctx) << this << ": invalid sh_info in symbol table"; 529 530 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 531 numSymbols = eSyms.size(); 532 stringTable = CHECK2(obj.getStringTableForSymtab(*symtabSec, sections), this); 533 } 534 535 template <class ELFT> 536 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 537 return CHECK2( 538 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable), 539 this); 540 } 541 542 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 543 object::ELFFile<ELFT> obj = this->getObj(); 544 // Read a section table. justSymbols is usually false. 545 if (this->justSymbols) { 546 initializeJustSymbols(); 547 initializeSymbols(obj); 548 return; 549 } 550 551 // Handle dependent libraries and selection of section groups as these are not 552 // done in parallel. 553 ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>(); 554 StringRef shstrtab = CHECK2(obj.getSectionStringTable(objSections), this); 555 uint64_t size = objSections.size(); 556 sections.resize(size); 557 for (size_t i = 0; i != size; ++i) { 558 const Elf_Shdr &sec = objSections[i]; 559 if (LLVM_LIKELY(sec.sh_type == SHT_PROGBITS)) 560 continue; 561 if (LLVM_LIKELY(sec.sh_type == SHT_GROUP)) { 562 StringRef signature = getShtGroupSignature(objSections, sec); 563 ArrayRef<Elf_Word> entries = 564 CHECK2(obj.template getSectionContentsAsArray<Elf_Word>(sec), this); 565 if (entries.empty()) 566 Fatal(ctx) << this << ": empty SHT_GROUP"; 567 568 Elf_Word flag = entries[0]; 569 if (flag && flag != GRP_COMDAT) 570 Fatal(ctx) << this << ": unsupported SHT_GROUP format"; 571 572 bool keepGroup = !flag || ignoreComdats || 573 ctx.symtab->comdatGroups 574 .try_emplace(CachedHashStringRef(signature), this) 575 .second; 576 if (keepGroup) { 577 if (!ctx.arg.resolveGroups) 578 sections[i] = createInputSection( 579 i, sec, check(obj.getSectionName(sec, shstrtab))); 580 } else { 581 // Otherwise, discard group members. 582 for (uint32_t secIndex : entries.slice(1)) { 583 if (secIndex >= size) 584 Fatal(ctx) << this 585 << ": invalid section index in group: " << secIndex; 586 sections[secIndex] = &InputSection::discarded; 587 } 588 } 589 continue; 590 } 591 592 if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !ctx.arg.relocatable) { 593 StringRef name = check(obj.getSectionName(sec, shstrtab)); 594 ArrayRef<char> data = CHECK2( 595 this->getObj().template getSectionContentsAsArray<char>(sec), this); 596 if (!data.empty() && data.back() != '\0') { 597 Err(ctx) 598 << this 599 << ": corrupted dependent libraries section (unterminated string): " 600 << name; 601 } else { 602 for (const char *d = data.begin(), *e = data.end(); d < e;) { 603 StringRef s(d); 604 addDependentLibrary(ctx, s, this); 605 d += s.size() + 1; 606 } 607 } 608 sections[i] = &InputSection::discarded; 609 continue; 610 } 611 612 switch (ctx.arg.emachine) { 613 case EM_ARM: 614 if (sec.sh_type == SHT_ARM_ATTRIBUTES) { 615 ARMAttributeParser attributes; 616 ArrayRef<uint8_t> contents = 617 check(this->getObj().getSectionContents(sec)); 618 StringRef name = check(obj.getSectionName(sec, shstrtab)); 619 sections[i] = &InputSection::discarded; 620 if (Error e = attributes.parse(contents, ekind == ELF32LEKind 621 ? llvm::endianness::little 622 : llvm::endianness::big)) { 623 InputSection isec(*this, sec, name); 624 Warn(ctx) << &isec << ": " << std::move(e); 625 } else { 626 updateSupportedARMFeatures(ctx, attributes); 627 updateARMVFPArgs(ctx, attributes, this); 628 629 // FIXME: Retain the first attribute section we see. The eglibc ARM 630 // dynamic loaders require the presence of an attribute section for 631 // dlopen to work. In a full implementation we would merge all 632 // attribute sections. 633 if (ctx.in.attributes == nullptr) { 634 ctx.in.attributes = 635 std::make_unique<InputSection>(*this, sec, name); 636 sections[i] = ctx.in.attributes.get(); 637 } 638 } 639 } 640 break; 641 case EM_AARCH64: 642 // Producing a static binary with MTE globals is not currently supported, 643 // remove all SHT_AARCH64_MEMTAG_GLOBALS_STATIC sections as they're unused 644 // medatada, and we don't want them to end up in the output file for 645 // static executables. 646 if (sec.sh_type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC && 647 !canHaveMemtagGlobals(ctx)) 648 sections[i] = &InputSection::discarded; 649 break; 650 } 651 } 652 653 // Read a symbol table. 654 initializeSymbols(obj); 655 } 656 657 // Sections with SHT_GROUP and comdat bits define comdat section groups. 658 // They are identified and deduplicated by group name. This function 659 // returns a group name. 660 template <class ELFT> 661 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 662 const Elf_Shdr &sec) { 663 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 664 if (sec.sh_info >= symbols.size()) 665 Fatal(ctx) << this << ": invalid symbol index"; 666 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 667 return CHECK2(sym.getName(this->stringTable), this); 668 } 669 670 template <class ELFT> 671 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 672 // On a regular link we don't merge sections if -O0 (default is -O1). This 673 // sometimes makes the linker significantly faster, although the output will 674 // be bigger. 675 // 676 // Doing the same for -r would create a problem as it would combine sections 677 // with different sh_entsize. One option would be to just copy every SHF_MERGE 678 // section as is to the output. While this would produce a valid ELF file with 679 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 680 // they see two .debug_str. We could have separate logic for combining 681 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 682 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 683 // logic for -r. 684 if (ctx.arg.optimize == 0 && !ctx.arg.relocatable) 685 return false; 686 687 // A mergeable section with size 0 is useless because they don't have 688 // any data to merge. A mergeable string section with size 0 can be 689 // argued as invalid because it doesn't end with a null character. 690 // We'll avoid a mess by handling them as if they were non-mergeable. 691 if (sec.sh_size == 0) 692 return false; 693 694 // Check for sh_entsize. The ELF spec is not clear about the zero 695 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 696 // the section does not hold a table of fixed-size entries". We know 697 // that Rust 1.13 produces a string mergeable section with a zero 698 // sh_entsize. Here we just accept it rather than being picky about it. 699 uint64_t entSize = sec.sh_entsize; 700 if (entSize == 0) 701 return false; 702 if (sec.sh_size % entSize) 703 ErrAlways(ctx) << this << ":(" << name << "): SHF_MERGE section size (" 704 << uint64_t(sec.sh_size) 705 << ") must be a multiple of sh_entsize (" << entSize << ")"; 706 if (sec.sh_flags & SHF_WRITE) 707 Err(ctx) << this << ":(" << name 708 << "): writable SHF_MERGE section is not supported"; 709 710 return true; 711 } 712 713 // This is for --just-symbols. 714 // 715 // --just-symbols is a very minor feature that allows you to link your 716 // output against other existing program, so that if you load both your 717 // program and the other program into memory, your output can refer the 718 // other program's symbols. 719 // 720 // When the option is given, we link "just symbols". The section table is 721 // initialized with null pointers. 722 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 723 sections.resize(numELFShdrs); 724 } 725 726 static bool isKnownSpecificSectionType(uint32_t t, uint32_t flags) { 727 if (SHT_LOUSER <= t && t <= SHT_HIUSER && !(flags & SHF_ALLOC)) 728 return true; 729 if (SHT_LOOS <= t && t <= SHT_HIOS && !(flags & SHF_OS_NONCONFORMING)) 730 return true; 731 // Allow all processor-specific types. This is different from GNU ld. 732 return SHT_LOPROC <= t && t <= SHT_HIPROC; 733 } 734 735 template <class ELFT> 736 void ObjFile<ELFT>::initializeSections(bool ignoreComdats, 737 const llvm::object::ELFFile<ELFT> &obj) { 738 ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>(); 739 StringRef shstrtab = CHECK2(obj.getSectionStringTable(objSections), this); 740 uint64_t size = objSections.size(); 741 SmallVector<ArrayRef<Elf_Word>, 0> selectedGroups; 742 for (size_t i = 0; i != size; ++i) { 743 if (this->sections[i] == &InputSection::discarded) 744 continue; 745 const Elf_Shdr &sec = objSections[i]; 746 const uint32_t type = sec.sh_type; 747 748 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 749 // if -r is given, we'll let the final link discard such sections. 750 // This is compatible with GNU. 751 if ((sec.sh_flags & SHF_EXCLUDE) && !ctx.arg.relocatable) { 752 if (type == SHT_LLVM_CALL_GRAPH_PROFILE) 753 cgProfileSectionIndex = i; 754 if (type == SHT_LLVM_ADDRSIG) { 755 // We ignore the address-significance table if we know that the object 756 // file was created by objcopy or ld -r. This is because these tools 757 // will reorder the symbols in the symbol table, invalidating the data 758 // in the address-significance table, which refers to symbols by index. 759 if (sec.sh_link != 0) 760 this->addrsigSec = &sec; 761 else if (ctx.arg.icf == ICFLevel::Safe) 762 Warn(ctx) << this 763 << ": --icf=safe conservatively ignores " 764 "SHT_LLVM_ADDRSIG [index " 765 << i 766 << "] with sh_link=0 " 767 "(likely created using objcopy or ld -r)"; 768 } 769 this->sections[i] = &InputSection::discarded; 770 continue; 771 } 772 773 switch (type) { 774 case SHT_GROUP: { 775 if (!ctx.arg.relocatable) 776 sections[i] = &InputSection::discarded; 777 StringRef signature = 778 cantFail(this->getELFSyms<ELFT>()[sec.sh_info].getName(stringTable)); 779 ArrayRef<Elf_Word> entries = 780 cantFail(obj.template getSectionContentsAsArray<Elf_Word>(sec)); 781 if ((entries[0] & GRP_COMDAT) == 0 || ignoreComdats || 782 ctx.symtab->comdatGroups.find(CachedHashStringRef(signature)) 783 ->second == this) 784 selectedGroups.push_back(entries); 785 break; 786 } 787 case SHT_SYMTAB_SHNDX: 788 shndxTable = CHECK2(obj.getSHNDXTable(sec, objSections), this); 789 break; 790 case SHT_SYMTAB: 791 case SHT_STRTAB: 792 case SHT_REL: 793 case SHT_RELA: 794 case SHT_CREL: 795 case SHT_NULL: 796 break; 797 case SHT_PROGBITS: 798 case SHT_NOTE: 799 case SHT_NOBITS: 800 case SHT_INIT_ARRAY: 801 case SHT_FINI_ARRAY: 802 case SHT_PREINIT_ARRAY: 803 this->sections[i] = 804 createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab))); 805 break; 806 case SHT_LLVM_LTO: 807 // Discard .llvm.lto in a relocatable link that does not use the bitcode. 808 // The concatenated output does not properly reflect the linking 809 // semantics. In addition, since we do not use the bitcode wrapper format, 810 // the concatenated raw bitcode would be invalid. 811 if (ctx.arg.relocatable && !ctx.arg.fatLTOObjects) { 812 sections[i] = &InputSection::discarded; 813 break; 814 } 815 [[fallthrough]]; 816 default: 817 this->sections[i] = 818 createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab))); 819 if (type == SHT_LLVM_SYMPART) 820 ctx.hasSympart.store(true, std::memory_order_relaxed); 821 else if (ctx.arg.rejectMismatch && 822 !isKnownSpecificSectionType(type, sec.sh_flags)) 823 Err(ctx) << this->sections[i] << ": unknown section type 0x" 824 << Twine::utohexstr(type); 825 break; 826 } 827 } 828 829 // We have a second loop. It is used to: 830 // 1) handle SHF_LINK_ORDER sections. 831 // 2) create relocation sections. In some cases the section header index of a 832 // relocation section may be smaller than that of the relocated section. In 833 // such cases, the relocation section would attempt to reference a target 834 // section that has not yet been created. For simplicity, delay creation of 835 // relocation sections until now. 836 for (size_t i = 0; i != size; ++i) { 837 if (this->sections[i] == &InputSection::discarded) 838 continue; 839 const Elf_Shdr &sec = objSections[i]; 840 841 if (isStaticRelSecType(sec.sh_type)) { 842 // Find a relocation target section and associate this section with that. 843 // Target may have been discarded if it is in a different section group 844 // and the group is discarded, even though it's a violation of the spec. 845 // We handle that situation gracefully by discarding dangling relocation 846 // sections. 847 const uint32_t info = sec.sh_info; 848 InputSectionBase *s = getRelocTarget(i, info); 849 if (!s) 850 continue; 851 852 // ELF spec allows mergeable sections with relocations, but they are rare, 853 // and it is in practice hard to merge such sections by contents, because 854 // applying relocations at end of linking changes section contents. So, we 855 // simply handle such sections as non-mergeable ones. Degrading like this 856 // is acceptable because section merging is optional. 857 if (auto *ms = dyn_cast<MergeInputSection>(s)) { 858 s = makeThreadLocal<InputSection>(ms->file, ms->name, ms->type, 859 ms->flags, ms->addralign, ms->entsize, 860 ms->contentMaybeDecompress()); 861 sections[info] = s; 862 } 863 864 if (s->relSecIdx != 0) 865 ErrAlways(ctx) << s 866 << ": multiple relocation sections to one section are " 867 "not supported"; 868 s->relSecIdx = i; 869 870 // Relocation sections are usually removed from the output, so return 871 // `nullptr` for the normal case. However, if -r or --emit-relocs is 872 // specified, we need to copy them to the output. (Some post link analysis 873 // tools specify --emit-relocs to obtain the information.) 874 if (ctx.arg.copyRelocs) { 875 auto *isec = makeThreadLocal<InputSection>( 876 *this, sec, check(obj.getSectionName(sec, shstrtab))); 877 // If the relocated section is discarded (due to /DISCARD/ or 878 // --gc-sections), the relocation section should be discarded as well. 879 s->dependentSections.push_back(isec); 880 sections[i] = isec; 881 } 882 continue; 883 } 884 885 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have 886 // the flag. 887 if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER)) 888 continue; 889 890 InputSectionBase *linkSec = nullptr; 891 if (sec.sh_link < size) 892 linkSec = this->sections[sec.sh_link]; 893 if (!linkSec) { 894 ErrAlways(ctx) << this 895 << ": invalid sh_link index: " << uint32_t(sec.sh_link); 896 continue; 897 } 898 899 // A SHF_LINK_ORDER section is discarded if its linked-to section is 900 // discarded. 901 InputSection *isec = cast<InputSection>(this->sections[i]); 902 linkSec->dependentSections.push_back(isec); 903 if (!isa<InputSection>(linkSec)) 904 ErrAlways(ctx) 905 << "a section " << isec->name 906 << " with SHF_LINK_ORDER should not refer a non-regular section: " 907 << linkSec; 908 } 909 910 for (ArrayRef<Elf_Word> entries : selectedGroups) 911 handleSectionGroup<ELFT>(this->sections, entries); 912 } 913 914 // Read the following info from the .note.gnu.property section and write it to 915 // the corresponding fields in `ObjFile`: 916 // - Feature flags (32 bits) representing x86 or AArch64 features for 917 // hardware-assisted call flow control; 918 // - AArch64 PAuth ABI core info (16 bytes). 919 template <class ELFT> 920 static void readGnuProperty(Ctx &ctx, const InputSection &sec, 921 ObjFile<ELFT> &f) { 922 using Elf_Nhdr = typename ELFT::Nhdr; 923 using Elf_Note = typename ELFT::Note; 924 925 ArrayRef<uint8_t> data = sec.content(); 926 auto err = [&](const uint8_t *place) -> ELFSyncStream { 927 auto diag = Err(ctx); 928 diag << sec.file << ":(" << sec.name << "+0x" 929 << Twine::utohexstr(place - sec.content().data()) << "): "; 930 return diag; 931 }; 932 while (!data.empty()) { 933 // Read one NOTE record. 934 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 935 if (data.size() < sizeof(Elf_Nhdr) || 936 data.size() < nhdr->getSize(sec.addralign)) 937 return void(err(data.data()) << "data is too short"); 938 939 Elf_Note note(*nhdr); 940 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 941 data = data.slice(nhdr->getSize(sec.addralign)); 942 continue; 943 } 944 945 uint32_t featureAndType = ctx.arg.emachine == EM_AARCH64 946 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 947 : GNU_PROPERTY_X86_FEATURE_1_AND; 948 949 // Read a body of a NOTE record, which consists of type-length-value fields. 950 ArrayRef<uint8_t> desc = note.getDesc(sec.addralign); 951 while (!desc.empty()) { 952 const uint8_t *place = desc.data(); 953 if (desc.size() < 8) 954 return void(err(place) << "program property is too short"); 955 uint32_t type = read32<ELFT::Endianness>(desc.data()); 956 uint32_t size = read32<ELFT::Endianness>(desc.data() + 4); 957 desc = desc.slice(8); 958 if (desc.size() < size) 959 return void(err(place) << "program property is too short"); 960 961 if (type == featureAndType) { 962 // We found a FEATURE_1_AND field. There may be more than one of these 963 // in a .note.gnu.property section, for a relocatable object we 964 // accumulate the bits set. 965 if (size < 4) 966 return void(err(place) << "FEATURE_1_AND entry is too short"); 967 f.andFeatures |= read32<ELFT::Endianness>(desc.data()); 968 } else if (ctx.arg.emachine == EM_AARCH64 && 969 type == GNU_PROPERTY_AARCH64_FEATURE_PAUTH) { 970 if (!f.aarch64PauthAbiCoreInfo.empty()) { 971 return void( 972 err(data.data()) 973 << "multiple GNU_PROPERTY_AARCH64_FEATURE_PAUTH entries are " 974 "not supported"); 975 } else if (size != 16) { 976 return void(err(data.data()) 977 << "GNU_PROPERTY_AARCH64_FEATURE_PAUTH entry " 978 "is invalid: expected 16 bytes, but got " 979 << size); 980 } 981 f.aarch64PauthAbiCoreInfo = desc; 982 } 983 984 // Padding is present in the note descriptor, if necessary. 985 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); 986 } 987 988 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 989 data = data.slice(nhdr->getSize(sec.addralign)); 990 } 991 } 992 993 template <class ELFT> 994 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, uint32_t info) { 995 if (info < this->sections.size()) { 996 InputSectionBase *target = this->sections[info]; 997 998 // Strictly speaking, a relocation section must be included in the 999 // group of the section it relocates. However, LLVM 3.3 and earlier 1000 // would fail to do so, so we gracefully handle that case. 1001 if (target == &InputSection::discarded) 1002 return nullptr; 1003 1004 if (target != nullptr) 1005 return target; 1006 } 1007 1008 Err(ctx) << this << ": relocation section (index " << idx 1009 << ") has invalid sh_info (" << info << ')'; 1010 return nullptr; 1011 } 1012 1013 // The function may be called concurrently for different input files. For 1014 // allocation, prefer makeThreadLocal which does not require holding a lock. 1015 template <class ELFT> 1016 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx, 1017 const Elf_Shdr &sec, 1018 StringRef name) { 1019 if (name.starts_with(".n")) { 1020 // The GNU linker uses .note.GNU-stack section as a marker indicating 1021 // that the code in the object file does not expect that the stack is 1022 // executable (in terms of NX bit). If all input files have the marker, 1023 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 1024 // make the stack non-executable. Most object files have this section as 1025 // of 2017. 1026 // 1027 // But making the stack non-executable is a norm today for security 1028 // reasons. Failure to do so may result in a serious security issue. 1029 // Therefore, we make LLD always add PT_GNU_STACK unless it is 1030 // explicitly told to do otherwise (by -z execstack). Because the stack 1031 // executable-ness is controlled solely by command line options, 1032 // .note.GNU-stack sections are, with one exception, ignored. Report 1033 // an error if we encounter an executable .note.GNU-stack to force the 1034 // user to explicitly request an executable stack. 1035 if (name == ".note.GNU-stack") { 1036 if ((sec.sh_flags & SHF_EXECINSTR) && !ctx.arg.relocatable && 1037 ctx.arg.zGnustack != GnuStackKind::Exec) { 1038 Err(ctx) << this 1039 << ": requires an executable stack, but -z execstack is not " 1040 "specified"; 1041 } 1042 return &InputSection::discarded; 1043 } 1044 1045 // Object files that use processor features such as Intel Control-Flow 1046 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 1047 // .note.gnu.property section containing a bitfield of feature bits like the 1048 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 1049 // 1050 // Since we merge bitmaps from multiple object files to create a new 1051 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 1052 // file's .note.gnu.property section. 1053 if (name == ".note.gnu.property") { 1054 readGnuProperty<ELFT>(ctx, InputSection(*this, sec, name), *this); 1055 return &InputSection::discarded; 1056 } 1057 1058 // Split stacks is a feature to support a discontiguous stack, 1059 // commonly used in the programming language Go. For the details, 1060 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 1061 // for split stack will include a .note.GNU-split-stack section. 1062 if (name == ".note.GNU-split-stack") { 1063 if (ctx.arg.relocatable) { 1064 ErrAlways(ctx) << "cannot mix split-stack and non-split-stack in a " 1065 "relocatable link"; 1066 return &InputSection::discarded; 1067 } 1068 this->splitStack = true; 1069 return &InputSection::discarded; 1070 } 1071 1072 // An object file compiled for split stack, but where some of the 1073 // functions were compiled with the no_split_stack_attribute will 1074 // include a .note.GNU-no-split-stack section. 1075 if (name == ".note.GNU-no-split-stack") { 1076 this->someNoSplitStack = true; 1077 return &InputSection::discarded; 1078 } 1079 1080 // Strip existing .note.gnu.build-id sections so that the output won't have 1081 // more than one build-id. This is not usually a problem because input 1082 // object files normally don't have .build-id sections, but you can create 1083 // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard 1084 // against it. 1085 if (name == ".note.gnu.build-id") 1086 return &InputSection::discarded; 1087 } 1088 1089 // The linker merges EH (exception handling) frames and creates a 1090 // .eh_frame_hdr section for runtime. So we handle them with a special 1091 // class. For relocatable outputs, they are just passed through. 1092 if (name == ".eh_frame" && !ctx.arg.relocatable) 1093 return makeThreadLocal<EhInputSection>(*this, sec, name); 1094 1095 if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name)) 1096 return makeThreadLocal<MergeInputSection>(*this, sec, name); 1097 return makeThreadLocal<InputSection>(*this, sec, name); 1098 } 1099 1100 // Initialize symbols. symbols is a parallel array to the corresponding ELF 1101 // symbol table. 1102 template <class ELFT> 1103 void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) { 1104 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1105 if (!symbols) 1106 symbols = std::make_unique<Symbol *[]>(numSymbols); 1107 1108 // Some entries have been filled by LazyObjFile. 1109 auto *symtab = ctx.symtab.get(); 1110 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1111 if (!symbols[i]) 1112 symbols[i] = symtab->insert(CHECK2(eSyms[i].getName(stringTable), this)); 1113 1114 // Perform symbol resolution on non-local symbols. 1115 SmallVector<unsigned, 32> undefineds; 1116 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1117 const Elf_Sym &eSym = eSyms[i]; 1118 uint32_t secIdx = eSym.st_shndx; 1119 if (secIdx == SHN_UNDEF) { 1120 undefineds.push_back(i); 1121 continue; 1122 } 1123 1124 uint8_t binding = eSym.getBinding(); 1125 uint8_t stOther = eSym.st_other; 1126 uint8_t type = eSym.getType(); 1127 uint64_t value = eSym.st_value; 1128 uint64_t size = eSym.st_size; 1129 1130 Symbol *sym = symbols[i]; 1131 sym->isUsedInRegularObj = true; 1132 if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) { 1133 if (value == 0 || value >= UINT32_MAX) 1134 Err(ctx) << this << ": common symbol '" << sym->getName() 1135 << "' has invalid alignment: " << value; 1136 hasCommonSyms = true; 1137 sym->resolve(ctx, CommonSymbol{ctx, this, StringRef(), binding, stOther, 1138 type, value, size}); 1139 continue; 1140 } 1141 1142 // Handle global defined symbols. Defined::section will be set in postParse. 1143 sym->resolve(ctx, Defined{ctx, this, StringRef(), binding, stOther, type, 1144 value, size, nullptr}); 1145 } 1146 1147 // Undefined symbols (excluding those defined relative to non-prevailing 1148 // sections) can trigger recursive extract. Process defined symbols first so 1149 // that the relative order between a defined symbol and an undefined symbol 1150 // does not change the symbol resolution behavior. In addition, a set of 1151 // interconnected symbols will all be resolved to the same file, instead of 1152 // being resolved to different files. 1153 for (unsigned i : undefineds) { 1154 const Elf_Sym &eSym = eSyms[i]; 1155 Symbol *sym = symbols[i]; 1156 sym->resolve(ctx, Undefined{this, StringRef(), eSym.getBinding(), 1157 eSym.st_other, eSym.getType()}); 1158 sym->isUsedInRegularObj = true; 1159 sym->referenced = true; 1160 } 1161 } 1162 1163 template <class ELFT> 1164 void ObjFile<ELFT>::initSectionsAndLocalSyms(bool ignoreComdats) { 1165 if (!justSymbols) 1166 initializeSections(ignoreComdats, getObj()); 1167 1168 if (!firstGlobal) 1169 return; 1170 SymbolUnion *locals = makeThreadLocalN<SymbolUnion>(firstGlobal); 1171 memset(locals, 0, sizeof(SymbolUnion) * firstGlobal); 1172 1173 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1174 for (size_t i = 0, end = firstGlobal; i != end; ++i) { 1175 const Elf_Sym &eSym = eSyms[i]; 1176 uint32_t secIdx = eSym.st_shndx; 1177 if (LLVM_UNLIKELY(secIdx == SHN_XINDEX)) 1178 secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable)); 1179 else if (secIdx >= SHN_LORESERVE) 1180 secIdx = 0; 1181 if (LLVM_UNLIKELY(secIdx >= sections.size())) { 1182 Err(ctx) << this << ": invalid section index: " << secIdx; 1183 secIdx = 0; 1184 } 1185 if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL)) 1186 ErrAlways(ctx) << this << ": non-local symbol (" << i 1187 << ") found at index < .symtab's sh_info (" << end << ")"; 1188 1189 InputSectionBase *sec = sections[secIdx]; 1190 uint8_t type = eSym.getType(); 1191 if (type == STT_FILE) 1192 sourceFile = CHECK2(eSym.getName(stringTable), this); 1193 unsigned stName = eSym.st_name; 1194 if (LLVM_UNLIKELY(stringTable.size() <= stName)) { 1195 Err(ctx) << this << ": invalid symbol name offset"; 1196 stName = 0; 1197 } 1198 StringRef name(stringTable.data() + stName); 1199 1200 symbols[i] = reinterpret_cast<Symbol *>(locals + i); 1201 if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded) 1202 new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type, 1203 /*discardedSecIdx=*/secIdx); 1204 else 1205 new (symbols[i]) Defined(ctx, this, name, STB_LOCAL, eSym.st_other, type, 1206 eSym.st_value, eSym.st_size, sec); 1207 symbols[i]->partition = 1; 1208 symbols[i]->isUsedInRegularObj = true; 1209 } 1210 } 1211 1212 // Called after all ObjFile::parse is called for all ObjFiles. This checks 1213 // duplicate symbols and may do symbol property merge in the future. 1214 template <class ELFT> void ObjFile<ELFT>::postParse() { 1215 static std::mutex mu; 1216 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1217 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1218 const Elf_Sym &eSym = eSyms[i]; 1219 Symbol &sym = *symbols[i]; 1220 uint32_t secIdx = eSym.st_shndx; 1221 uint8_t binding = eSym.getBinding(); 1222 if (LLVM_UNLIKELY(binding != STB_GLOBAL && binding != STB_WEAK && 1223 binding != STB_GNU_UNIQUE)) 1224 Err(ctx) << this << ": symbol (" << i 1225 << ") has invalid binding: " << (int)binding; 1226 1227 // st_value of STT_TLS represents the assigned offset, not the actual 1228 // address which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can 1229 // only be referenced by special TLS relocations. It is usually an error if 1230 // a STT_TLS symbol is replaced by a non-STT_TLS symbol, vice versa. 1231 if (LLVM_UNLIKELY(sym.isTls()) && eSym.getType() != STT_TLS && 1232 eSym.getType() != STT_NOTYPE) 1233 Err(ctx) << "TLS attribute mismatch: " << &sym << "\n>>> in " << sym.file 1234 << "\n>>> in " << this; 1235 1236 // Handle non-COMMON defined symbol below. !sym.file allows a symbol 1237 // assignment to redefine a symbol without an error. 1238 if (!sym.isDefined() || secIdx == SHN_UNDEF) 1239 continue; 1240 if (LLVM_UNLIKELY(secIdx >= SHN_LORESERVE)) { 1241 if (secIdx == SHN_COMMON) 1242 continue; 1243 if (secIdx == SHN_XINDEX) 1244 secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable)); 1245 else 1246 secIdx = 0; 1247 } 1248 1249 if (LLVM_UNLIKELY(secIdx >= sections.size())) { 1250 Err(ctx) << this << ": invalid section index: " << secIdx; 1251 continue; 1252 } 1253 InputSectionBase *sec = sections[secIdx]; 1254 if (sec == &InputSection::discarded) { 1255 if (sym.traced) { 1256 printTraceSymbol(Undefined{this, sym.getName(), sym.binding, 1257 sym.stOther, sym.type, secIdx}, 1258 sym.getName()); 1259 } 1260 if (sym.file == this) { 1261 std::lock_guard<std::mutex> lock(mu); 1262 ctx.nonPrevailingSyms.emplace_back(&sym, secIdx); 1263 } 1264 continue; 1265 } 1266 1267 if (sym.file == this) { 1268 cast<Defined>(sym).section = sec; 1269 continue; 1270 } 1271 1272 if (sym.binding == STB_WEAK || binding == STB_WEAK) 1273 continue; 1274 std::lock_guard<std::mutex> lock(mu); 1275 ctx.duplicates.push_back({&sym, this, sec, eSym.st_value}); 1276 } 1277 } 1278 1279 // The handling of tentative definitions (COMMON symbols) in archives is murky. 1280 // A tentative definition will be promoted to a global definition if there are 1281 // no non-tentative definitions to dominate it. When we hold a tentative 1282 // definition to a symbol and are inspecting archive members for inclusion 1283 // there are 2 ways we can proceed: 1284 // 1285 // 1) Consider the tentative definition a 'real' definition (ie promotion from 1286 // tentative to real definition has already happened) and not inspect 1287 // archive members for Global/Weak definitions to replace the tentative 1288 // definition. An archive member would only be included if it satisfies some 1289 // other undefined symbol. This is the behavior Gold uses. 1290 // 1291 // 2) Consider the tentative definition as still undefined (ie the promotion to 1292 // a real definition happens only after all symbol resolution is done). 1293 // The linker searches archive members for STB_GLOBAL definitions to 1294 // replace the tentative definition with. This is the behavior used by 1295 // GNU ld. 1296 // 1297 // The second behavior is inherited from SysVR4, which based it on the FORTRAN 1298 // COMMON BLOCK model. This behavior is needed for proper initialization in old 1299 // (pre F90) FORTRAN code that is packaged into an archive. 1300 // 1301 // The following functions search archive members for definitions to replace 1302 // tentative definitions (implementing behavior 2). 1303 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, 1304 StringRef archiveName) { 1305 IRSymtabFile symtabFile = check(readIRSymtab(mb)); 1306 for (const irsymtab::Reader::SymbolRef &sym : 1307 symtabFile.TheReader.symbols()) { 1308 if (sym.isGlobal() && sym.getName() == symName) 1309 return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon(); 1310 } 1311 return false; 1312 } 1313 1314 template <class ELFT> 1315 static bool isNonCommonDef(Ctx &ctx, ELFKind ekind, MemoryBufferRef mb, 1316 StringRef symName, StringRef archiveName) { 1317 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(ctx, ekind, mb, archiveName); 1318 obj->init(); 1319 StringRef stringtable = obj->getStringTable(); 1320 1321 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) { 1322 Expected<StringRef> name = sym.getName(stringtable); 1323 if (name && name.get() == symName) 1324 return sym.isDefined() && sym.getBinding() == STB_GLOBAL && 1325 !sym.isCommon(); 1326 } 1327 return false; 1328 } 1329 1330 static bool isNonCommonDef(Ctx &ctx, MemoryBufferRef mb, StringRef symName, 1331 StringRef archiveName) { 1332 switch (getELFKind(ctx, mb, archiveName)) { 1333 case ELF32LEKind: 1334 return isNonCommonDef<ELF32LE>(ctx, ELF32LEKind, mb, symName, archiveName); 1335 case ELF32BEKind: 1336 return isNonCommonDef<ELF32BE>(ctx, ELF32BEKind, mb, symName, archiveName); 1337 case ELF64LEKind: 1338 return isNonCommonDef<ELF64LE>(ctx, ELF64LEKind, mb, symName, archiveName); 1339 case ELF64BEKind: 1340 return isNonCommonDef<ELF64BE>(ctx, ELF64BEKind, mb, symName, archiveName); 1341 default: 1342 llvm_unreachable("getELFKind"); 1343 } 1344 } 1345 1346 SharedFile::SharedFile(Ctx &ctx, MemoryBufferRef m, StringRef defaultSoName) 1347 : ELFFileBase(ctx, SharedKind, getELFKind(ctx, m, ""), m), 1348 soName(defaultSoName), isNeeded(!ctx.arg.asNeeded) {} 1349 1350 // Parse the version definitions in the object file if present, and return a 1351 // vector whose nth element contains a pointer to the Elf_Verdef for version 1352 // identifier n. Version identifiers that are not definitions map to nullptr. 1353 template <typename ELFT> 1354 static SmallVector<const void *, 0> 1355 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) { 1356 if (!sec) 1357 return {}; 1358 1359 // Build the Verdefs array by following the chain of Elf_Verdef objects 1360 // from the start of the .gnu.version_d section. 1361 SmallVector<const void *, 0> verdefs; 1362 const uint8_t *verdef = base + sec->sh_offset; 1363 for (unsigned i = 0, e = sec->sh_info; i != e; ++i) { 1364 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1365 verdef += curVerdef->vd_next; 1366 unsigned verdefIndex = curVerdef->vd_ndx; 1367 if (verdefIndex >= verdefs.size()) 1368 verdefs.resize(verdefIndex + 1); 1369 verdefs[verdefIndex] = curVerdef; 1370 } 1371 return verdefs; 1372 } 1373 1374 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1375 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1376 // implement sophisticated error checking like in llvm-readobj because the value 1377 // of such diagnostics is low. 1378 template <typename ELFT> 1379 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1380 const typename ELFT::Shdr *sec) { 1381 if (!sec) 1382 return {}; 1383 std::vector<uint32_t> verneeds; 1384 ArrayRef<uint8_t> data = CHECK2(obj.getSectionContents(*sec), this); 1385 const uint8_t *verneedBuf = data.begin(); 1386 for (unsigned i = 0; i != sec->sh_info; ++i) { 1387 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) { 1388 Err(ctx) << this << " has an invalid Verneed"; 1389 break; 1390 } 1391 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1392 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1393 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1394 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) { 1395 Err(ctx) << this << " has an invalid Vernaux"; 1396 break; 1397 } 1398 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1399 if (aux->vna_name >= this->stringTable.size()) { 1400 Err(ctx) << this << " has a Vernaux with an invalid vna_name"; 1401 break; 1402 } 1403 uint16_t version = aux->vna_other & VERSYM_VERSION; 1404 if (version >= verneeds.size()) 1405 verneeds.resize(version + 1); 1406 verneeds[version] = aux->vna_name; 1407 vernauxBuf += aux->vna_next; 1408 } 1409 verneedBuf += vn->vn_next; 1410 } 1411 return verneeds; 1412 } 1413 1414 // We do not usually care about alignments of data in shared object 1415 // files because the loader takes care of it. However, if we promote a 1416 // DSO symbol to point to .bss due to copy relocation, we need to keep 1417 // the original alignment requirements. We infer it in this function. 1418 template <typename ELFT> 1419 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1420 const typename ELFT::Sym &sym) { 1421 uint64_t ret = UINT64_MAX; 1422 if (sym.st_value) 1423 ret = 1ULL << llvm::countr_zero((uint64_t)sym.st_value); 1424 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1425 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1426 return (ret > UINT32_MAX) ? 0 : ret; 1427 } 1428 1429 // Fully parse the shared object file. 1430 // 1431 // This function parses symbol versions. If a DSO has version information, 1432 // the file has a ".gnu.version_d" section which contains symbol version 1433 // definitions. Each symbol is associated to one version through a table in 1434 // ".gnu.version" section. That table is a parallel array for the symbol 1435 // table, and each table entry contains an index in ".gnu.version_d". 1436 // 1437 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1438 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1439 // ".gnu.version_d". 1440 // 1441 // The file format for symbol versioning is perhaps a bit more complicated 1442 // than necessary, but you can easily understand the code if you wrap your 1443 // head around the data structure described above. 1444 template <class ELFT> void SharedFile::parse() { 1445 using Elf_Dyn = typename ELFT::Dyn; 1446 using Elf_Shdr = typename ELFT::Shdr; 1447 using Elf_Sym = typename ELFT::Sym; 1448 using Elf_Verdef = typename ELFT::Verdef; 1449 using Elf_Versym = typename ELFT::Versym; 1450 1451 ArrayRef<Elf_Dyn> dynamicTags; 1452 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1453 ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>(); 1454 1455 const Elf_Shdr *versymSec = nullptr; 1456 const Elf_Shdr *verdefSec = nullptr; 1457 const Elf_Shdr *verneedSec = nullptr; 1458 symbols = std::make_unique<Symbol *[]>(numSymbols); 1459 1460 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1461 for (const Elf_Shdr &sec : sections) { 1462 switch (sec.sh_type) { 1463 default: 1464 continue; 1465 case SHT_DYNAMIC: 1466 dynamicTags = 1467 CHECK2(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this); 1468 break; 1469 case SHT_GNU_versym: 1470 versymSec = &sec; 1471 break; 1472 case SHT_GNU_verdef: 1473 verdefSec = &sec; 1474 break; 1475 case SHT_GNU_verneed: 1476 verneedSec = &sec; 1477 break; 1478 } 1479 } 1480 1481 if (versymSec && numSymbols == 0) { 1482 ErrAlways(ctx) << "SHT_GNU_versym should be associated with symbol table"; 1483 return; 1484 } 1485 1486 // Search for a DT_SONAME tag to initialize this->soName. 1487 for (const Elf_Dyn &dyn : dynamicTags) { 1488 if (dyn.d_tag == DT_NEEDED) { 1489 uint64_t val = dyn.getVal(); 1490 if (val >= this->stringTable.size()) { 1491 Err(ctx) << this << ": invalid DT_NEEDED entry"; 1492 return; 1493 } 1494 dtNeeded.push_back(this->stringTable.data() + val); 1495 } else if (dyn.d_tag == DT_SONAME) { 1496 uint64_t val = dyn.getVal(); 1497 if (val >= this->stringTable.size()) { 1498 Err(ctx) << this << ": invalid DT_SONAME entry"; 1499 return; 1500 } 1501 soName = this->stringTable.data() + val; 1502 } 1503 } 1504 1505 // DSOs are uniquified not by filename but by soname. 1506 StringSaver &ss = ctx.saver; 1507 DenseMap<CachedHashStringRef, SharedFile *>::iterator it; 1508 bool wasInserted; 1509 std::tie(it, wasInserted) = 1510 ctx.symtab->soNames.try_emplace(CachedHashStringRef(soName), this); 1511 1512 // If a DSO appears more than once on the command line with and without 1513 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1514 // user can add an extra DSO with --no-as-needed to force it to be added to 1515 // the dependency list. 1516 it->second->isNeeded |= isNeeded; 1517 if (!wasInserted) 1518 return; 1519 1520 ctx.sharedFiles.push_back(this); 1521 1522 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1523 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1524 1525 // Parse ".gnu.version" section which is a parallel array for the symbol 1526 // table. If a given file doesn't have a ".gnu.version" section, we use 1527 // VER_NDX_GLOBAL. 1528 size_t size = numSymbols - firstGlobal; 1529 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1530 if (versymSec) { 1531 ArrayRef<Elf_Versym> versym = 1532 CHECK2(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec), 1533 this) 1534 .slice(firstGlobal); 1535 for (size_t i = 0; i < size; ++i) 1536 versyms[i] = versym[i].vs_index; 1537 } 1538 1539 // System libraries can have a lot of symbols with versions. Using a 1540 // fixed buffer for computing the versions name (foo@ver) can save a 1541 // lot of allocations. 1542 SmallString<0> versionedNameBuffer; 1543 1544 // Add symbols to the symbol table. 1545 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1546 for (size_t i = 0, e = syms.size(); i != e; ++i) { 1547 const Elf_Sym &sym = syms[i]; 1548 1549 // ELF spec requires that all local symbols precede weak or global 1550 // symbols in each symbol table, and the index of first non-local symbol 1551 // is stored to sh_info. If a local symbol appears after some non-local 1552 // symbol, that's a violation of the spec. 1553 StringRef name = CHECK2(sym.getName(stringTable), this); 1554 if (sym.getBinding() == STB_LOCAL) { 1555 Err(ctx) << this << ": invalid local symbol '" << name 1556 << "' in global part of symbol table"; 1557 continue; 1558 } 1559 1560 const uint16_t ver = versyms[i], idx = ver & ~VERSYM_HIDDEN; 1561 if (sym.isUndefined()) { 1562 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1563 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1564 if (ver != VER_NDX_LOCAL && ver != VER_NDX_GLOBAL) { 1565 if (idx >= verneeds.size()) { 1566 ErrAlways(ctx) << "corrupt input file: version need index " << idx 1567 << " for symbol " << name 1568 << " is out of bounds\n>>> defined in " << this; 1569 continue; 1570 } 1571 StringRef verName = stringTable.data() + verneeds[idx]; 1572 versionedNameBuffer.clear(); 1573 name = ss.save((name + "@" + verName).toStringRef(versionedNameBuffer)); 1574 } 1575 Symbol *s = ctx.symtab->addSymbol( 1576 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1577 s->exportDynamic = true; 1578 if (sym.getBinding() != STB_WEAK && 1579 ctx.arg.unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) 1580 requiredSymbols.push_back(s); 1581 continue; 1582 } 1583 1584 if (ver == VER_NDX_LOCAL || 1585 (ver != VER_NDX_GLOBAL && idx >= verdefs.size())) { 1586 // In GNU ld < 2.31 (before 3be08ea4728b56d35e136af4e6fd3086ade17764), the 1587 // MIPS port puts _gp_disp symbol into DSO files and incorrectly assigns 1588 // VER_NDX_LOCAL. Workaround this bug. 1589 if (ctx.arg.emachine == EM_MIPS && name == "_gp_disp") 1590 continue; 1591 ErrAlways(ctx) << "corrupt input file: version definition index " << idx 1592 << " for symbol " << name 1593 << " is out of bounds\n>>> defined in " << this; 1594 continue; 1595 } 1596 1597 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1598 if (ver == idx) { 1599 auto *s = ctx.symtab->addSymbol( 1600 SharedSymbol{*this, name, sym.getBinding(), sym.st_other, 1601 sym.getType(), sym.st_value, sym.st_size, alignment}); 1602 s->dsoDefined = true; 1603 if (s->file == this) 1604 s->versionId = ver; 1605 } 1606 1607 // Also add the symbol with the versioned name to handle undefined symbols 1608 // with explicit versions. 1609 if (ver == VER_NDX_GLOBAL) 1610 continue; 1611 1612 StringRef verName = 1613 stringTable.data() + 1614 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1615 versionedNameBuffer.clear(); 1616 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1617 auto *s = ctx.symtab->addSymbol( 1618 SharedSymbol{*this, ss.save(name), sym.getBinding(), sym.st_other, 1619 sym.getType(), sym.st_value, sym.st_size, alignment}); 1620 s->dsoDefined = true; 1621 if (s->file == this) 1622 s->versionId = idx; 1623 } 1624 } 1625 1626 static ELFKind getBitcodeELFKind(const Triple &t) { 1627 if (t.isLittleEndian()) 1628 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1629 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1630 } 1631 1632 static uint16_t getBitcodeMachineKind(Ctx &ctx, StringRef path, 1633 const Triple &t) { 1634 switch (t.getArch()) { 1635 case Triple::aarch64: 1636 case Triple::aarch64_be: 1637 return EM_AARCH64; 1638 case Triple::amdgcn: 1639 case Triple::r600: 1640 return EM_AMDGPU; 1641 case Triple::arm: 1642 case Triple::armeb: 1643 case Triple::thumb: 1644 case Triple::thumbeb: 1645 return EM_ARM; 1646 case Triple::avr: 1647 return EM_AVR; 1648 case Triple::hexagon: 1649 return EM_HEXAGON; 1650 case Triple::loongarch32: 1651 case Triple::loongarch64: 1652 return EM_LOONGARCH; 1653 case Triple::mips: 1654 case Triple::mipsel: 1655 case Triple::mips64: 1656 case Triple::mips64el: 1657 return EM_MIPS; 1658 case Triple::msp430: 1659 return EM_MSP430; 1660 case Triple::ppc: 1661 case Triple::ppcle: 1662 return EM_PPC; 1663 case Triple::ppc64: 1664 case Triple::ppc64le: 1665 return EM_PPC64; 1666 case Triple::riscv32: 1667 case Triple::riscv64: 1668 return EM_RISCV; 1669 case Triple::sparcv9: 1670 return EM_SPARCV9; 1671 case Triple::systemz: 1672 return EM_S390; 1673 case Triple::x86: 1674 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1675 case Triple::x86_64: 1676 return EM_X86_64; 1677 default: 1678 ErrAlways(ctx) << path 1679 << ": could not infer e_machine from bitcode target triple " 1680 << t.str(); 1681 return EM_NONE; 1682 } 1683 } 1684 1685 static uint8_t getOsAbi(const Triple &t) { 1686 switch (t.getOS()) { 1687 case Triple::AMDHSA: 1688 return ELF::ELFOSABI_AMDGPU_HSA; 1689 case Triple::AMDPAL: 1690 return ELF::ELFOSABI_AMDGPU_PAL; 1691 case Triple::Mesa3D: 1692 return ELF::ELFOSABI_AMDGPU_MESA3D; 1693 default: 1694 return ELF::ELFOSABI_NONE; 1695 } 1696 } 1697 1698 BitcodeFile::BitcodeFile(Ctx &ctx, MemoryBufferRef mb, StringRef archiveName, 1699 uint64_t offsetInArchive, bool lazy) 1700 : InputFile(ctx, BitcodeKind, mb) { 1701 this->archiveName = archiveName; 1702 this->lazy = lazy; 1703 1704 std::string path = mb.getBufferIdentifier().str(); 1705 if (ctx.arg.thinLTOIndexOnly) 1706 path = replaceThinLTOSuffix(ctx, mb.getBufferIdentifier()); 1707 1708 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1709 // name. If two archives define two members with the same name, this 1710 // causes a collision which result in only one of the objects being taken 1711 // into consideration at LTO time (which very likely causes undefined 1712 // symbols later in the link stage). So we append file offset to make 1713 // filename unique. 1714 StringSaver &ss = ctx.saver; 1715 StringRef name = archiveName.empty() 1716 ? ss.save(path) 1717 : ss.save(archiveName + "(" + path::filename(path) + 1718 " at " + utostr(offsetInArchive) + ")"); 1719 MemoryBufferRef mbref(mb.getBuffer(), name); 1720 1721 obj = CHECK2(lto::InputFile::create(mbref), this); 1722 1723 Triple t(obj->getTargetTriple()); 1724 ekind = getBitcodeELFKind(t); 1725 emachine = getBitcodeMachineKind(ctx, mb.getBufferIdentifier(), t); 1726 osabi = getOsAbi(t); 1727 } 1728 1729 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1730 switch (gvVisibility) { 1731 case GlobalValue::DefaultVisibility: 1732 return STV_DEFAULT; 1733 case GlobalValue::HiddenVisibility: 1734 return STV_HIDDEN; 1735 case GlobalValue::ProtectedVisibility: 1736 return STV_PROTECTED; 1737 } 1738 llvm_unreachable("unknown visibility"); 1739 } 1740 1741 static void createBitcodeSymbol(Ctx &ctx, Symbol *&sym, 1742 const lto::InputFile::Symbol &objSym, 1743 BitcodeFile &f) { 1744 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1745 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1746 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1747 1748 if (!sym) { 1749 // Symbols can be duplicated in bitcode files because of '#include' and 1750 // linkonce_odr. Use uniqueSaver to save symbol names for de-duplication. 1751 // Update objSym.Name to reference (via StringRef) the string saver's copy; 1752 // this way LTO can reference the same string saver's copy rather than 1753 // keeping copies of its own. 1754 objSym.Name = ctx.uniqueSaver.save(objSym.getName()); 1755 sym = ctx.symtab->insert(objSym.getName()); 1756 } 1757 1758 if (objSym.isUndefined()) { 1759 Undefined newSym(&f, StringRef(), binding, visibility, type); 1760 sym->resolve(ctx, newSym); 1761 sym->referenced = true; 1762 return; 1763 } 1764 1765 if (objSym.isCommon()) { 1766 sym->resolve(ctx, CommonSymbol{ctx, &f, StringRef(), binding, visibility, 1767 STT_OBJECT, objSym.getCommonAlignment(), 1768 objSym.getCommonSize()}); 1769 } else { 1770 Defined newSym(ctx, &f, StringRef(), binding, visibility, type, 0, 0, 1771 nullptr); 1772 // The definition can be omitted if all bitcode definitions satisfy 1773 // `canBeOmittedFromSymbolTable()` and isUsedInRegularObj is false. 1774 // The latter condition is tested in Symbol::includeInDynsym. 1775 sym->ltoCanOmit = objSym.canBeOmittedFromSymbolTable() && 1776 (!sym->isDefined() || sym->ltoCanOmit); 1777 sym->resolve(ctx, newSym); 1778 } 1779 } 1780 1781 void BitcodeFile::parse() { 1782 for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) { 1783 keptComdats.push_back( 1784 s.second == Comdat::NoDeduplicate || 1785 ctx.symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this) 1786 .second); 1787 } 1788 1789 if (numSymbols == 0) { 1790 numSymbols = obj->symbols().size(); 1791 symbols = std::make_unique<Symbol *[]>(numSymbols); 1792 } 1793 // Process defined symbols first. See the comment in 1794 // ObjFile<ELFT>::initializeSymbols. 1795 for (auto [i, irSym] : llvm::enumerate(obj->symbols())) 1796 if (!irSym.isUndefined()) 1797 createBitcodeSymbol(ctx, symbols[i], irSym, *this); 1798 for (auto [i, irSym] : llvm::enumerate(obj->symbols())) 1799 if (irSym.isUndefined()) 1800 createBitcodeSymbol(ctx, symbols[i], irSym, *this); 1801 1802 for (auto l : obj->getDependentLibraries()) 1803 addDependentLibrary(ctx, l, this); 1804 } 1805 1806 void BitcodeFile::parseLazy() { 1807 numSymbols = obj->symbols().size(); 1808 symbols = std::make_unique<Symbol *[]>(numSymbols); 1809 for (auto [i, irSym] : llvm::enumerate(obj->symbols())) { 1810 // Symbols can be duplicated in bitcode files because of '#include' and 1811 // linkonce_odr. Use uniqueSaver to save symbol names for de-duplication. 1812 // Update objSym.Name to reference (via StringRef) the string saver's copy; 1813 // this way LTO can reference the same string saver's copy rather than 1814 // keeping copies of its own. 1815 irSym.Name = ctx.uniqueSaver.save(irSym.getName()); 1816 if (!irSym.isUndefined()) { 1817 auto *sym = ctx.symtab->insert(irSym.getName()); 1818 sym->resolve(ctx, LazySymbol{*this}); 1819 symbols[i] = sym; 1820 } 1821 } 1822 } 1823 1824 void BitcodeFile::postParse() { 1825 for (auto [i, irSym] : llvm::enumerate(obj->symbols())) { 1826 const Symbol &sym = *symbols[i]; 1827 if (sym.file == this || !sym.isDefined() || irSym.isUndefined() || 1828 irSym.isCommon() || irSym.isWeak()) 1829 continue; 1830 int c = irSym.getComdatIndex(); 1831 if (c != -1 && !keptComdats[c]) 1832 continue; 1833 reportDuplicate(ctx, sym, this, nullptr, 0); 1834 } 1835 } 1836 1837 void BinaryFile::parse() { 1838 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1839 auto *section = 1840 make<InputSection>(this, ".data", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, 1841 /*addralign=*/8, /*entsize=*/0, data); 1842 sections.push_back(section); 1843 1844 // For each input file foo that is embedded to a result as a binary 1845 // blob, we define _binary_foo_{start,end,size} symbols, so that 1846 // user programs can access blobs by name. Non-alphanumeric 1847 // characters in a filename are replaced with underscore. 1848 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1849 for (char &c : s) 1850 if (!isAlnum(c)) 1851 c = '_'; 1852 1853 llvm::StringSaver &ss = ctx.saver; 1854 ctx.symtab->addAndCheckDuplicate( 1855 ctx, Defined{ctx, this, ss.save(s + "_start"), STB_GLOBAL, STV_DEFAULT, 1856 STT_OBJECT, 0, 0, section}); 1857 ctx.symtab->addAndCheckDuplicate( 1858 ctx, Defined{ctx, this, ss.save(s + "_end"), STB_GLOBAL, STV_DEFAULT, 1859 STT_OBJECT, data.size(), 0, section}); 1860 ctx.symtab->addAndCheckDuplicate( 1861 ctx, Defined{ctx, this, ss.save(s + "_size"), STB_GLOBAL, STV_DEFAULT, 1862 STT_OBJECT, data.size(), 0, nullptr}); 1863 } 1864 1865 InputFile *elf::createInternalFile(Ctx &ctx, StringRef name) { 1866 auto *file = 1867 make<InputFile>(ctx, InputFile::InternalKind, MemoryBufferRef("", name)); 1868 // References from an internal file do not lead to --warn-backrefs 1869 // diagnostics. 1870 file->groupId = 0; 1871 return file; 1872 } 1873 1874 std::unique_ptr<ELFFileBase> elf::createObjFile(Ctx &ctx, MemoryBufferRef mb, 1875 StringRef archiveName, 1876 bool lazy) { 1877 std::unique_ptr<ELFFileBase> f; 1878 switch (getELFKind(ctx, mb, archiveName)) { 1879 case ELF32LEKind: 1880 f = std::make_unique<ObjFile<ELF32LE>>(ctx, ELF32LEKind, mb, archiveName); 1881 break; 1882 case ELF32BEKind: 1883 f = std::make_unique<ObjFile<ELF32BE>>(ctx, ELF32BEKind, mb, archiveName); 1884 break; 1885 case ELF64LEKind: 1886 f = std::make_unique<ObjFile<ELF64LE>>(ctx, ELF64LEKind, mb, archiveName); 1887 break; 1888 case ELF64BEKind: 1889 f = std::make_unique<ObjFile<ELF64BE>>(ctx, ELF64BEKind, mb, archiveName); 1890 break; 1891 default: 1892 llvm_unreachable("getELFKind"); 1893 } 1894 f->init(); 1895 f->lazy = lazy; 1896 return f; 1897 } 1898 1899 template <class ELFT> void ObjFile<ELFT>::parseLazy() { 1900 const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>(); 1901 numSymbols = eSyms.size(); 1902 symbols = std::make_unique<Symbol *[]>(numSymbols); 1903 1904 // resolve() may trigger this->extract() if an existing symbol is an undefined 1905 // symbol. If that happens, this function has served its purpose, and we can 1906 // exit from the loop early. 1907 auto *symtab = ctx.symtab.get(); 1908 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1909 if (eSyms[i].st_shndx == SHN_UNDEF) 1910 continue; 1911 symbols[i] = symtab->insert(CHECK2(eSyms[i].getName(stringTable), this)); 1912 symbols[i]->resolve(ctx, LazySymbol{*this}); 1913 if (!lazy) 1914 break; 1915 } 1916 } 1917 1918 bool InputFile::shouldExtractForCommon(StringRef name) const { 1919 if (isa<BitcodeFile>(this)) 1920 return isBitcodeNonCommonDef(mb, name, archiveName); 1921 1922 return isNonCommonDef(ctx, mb, name, archiveName); 1923 } 1924 1925 std::string elf::replaceThinLTOSuffix(Ctx &ctx, StringRef path) { 1926 auto [suffix, repl] = ctx.arg.thinLTOObjectSuffixReplace; 1927 if (path.consume_back(suffix)) 1928 return (path + repl).str(); 1929 return std::string(path); 1930 } 1931 1932 template class elf::ObjFile<ELF32LE>; 1933 template class elf::ObjFile<ELF32BE>; 1934 template class elf::ObjFile<ELF64LE>; 1935 template class elf::ObjFile<ELF64BE>; 1936 1937 template void SharedFile::parse<ELF32LE>(); 1938 template void SharedFile::parse<ELF32BE>(); 1939 template void SharedFile::parse<ELF64LE>(); 1940 template void SharedFile::parse<ELF64BE>(); 1941