1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions identifies calls to builtin functions that allocate 10 // or free memory. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemoryBuiltins.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/TargetFolder.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/Utils/Local.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalAlias.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cassert> 43 #include <cstdint> 44 #include <iterator> 45 #include <numeric> 46 #include <optional> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "memory-builtins" 52 53 static cl::opt<unsigned> ObjectSizeOffsetVisitorMaxVisitInstructions( 54 "object-size-offset-visitor-max-visit-instructions", 55 cl::desc("Maximum number of instructions for ObjectSizeOffsetVisitor to " 56 "look at"), 57 cl::init(100)); 58 59 enum AllocType : uint8_t { 60 OpNewLike = 1<<0, // allocates; never returns null 61 MallocLike = 1<<1, // allocates; may return null 62 StrDupLike = 1<<2, 63 MallocOrOpNewLike = MallocLike | OpNewLike, 64 AllocLike = MallocOrOpNewLike | StrDupLike, 65 AnyAlloc = AllocLike 66 }; 67 68 enum class MallocFamily { 69 Malloc, 70 CPPNew, // new(unsigned int) 71 CPPNewAligned, // new(unsigned int, align_val_t) 72 CPPNewArray, // new[](unsigned int) 73 CPPNewArrayAligned, // new[](unsigned long, align_val_t) 74 MSVCNew, // new(unsigned int) 75 MSVCArrayNew, // new[](unsigned int) 76 VecMalloc, 77 KmpcAllocShared, 78 }; 79 80 StringRef mangledNameForMallocFamily(const MallocFamily &Family) { 81 switch (Family) { 82 case MallocFamily::Malloc: 83 return "malloc"; 84 case MallocFamily::CPPNew: 85 return "_Znwm"; 86 case MallocFamily::CPPNewAligned: 87 return "_ZnwmSt11align_val_t"; 88 case MallocFamily::CPPNewArray: 89 return "_Znam"; 90 case MallocFamily::CPPNewArrayAligned: 91 return "_ZnamSt11align_val_t"; 92 case MallocFamily::MSVCNew: 93 return "??2@YAPAXI@Z"; 94 case MallocFamily::MSVCArrayNew: 95 return "??_U@YAPAXI@Z"; 96 case MallocFamily::VecMalloc: 97 return "vec_malloc"; 98 case MallocFamily::KmpcAllocShared: 99 return "__kmpc_alloc_shared"; 100 } 101 llvm_unreachable("missing an alloc family"); 102 } 103 104 struct AllocFnsTy { 105 AllocType AllocTy; 106 unsigned NumParams; 107 // First and Second size parameters (or -1 if unused) 108 int FstParam, SndParam; 109 // Alignment parameter for aligned_alloc and aligned new 110 int AlignParam; 111 // Name of default allocator function to group malloc/free calls by family 112 MallocFamily Family; 113 }; 114 115 // clang-format off 116 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 117 // know which functions are nounwind, noalias, nocapture parameters, etc. 118 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 119 {LibFunc_Znwj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int) 120 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int, nothrow) 121 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t) 122 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t, nothrow) 123 {LibFunc_Znwm, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long) 124 {LibFunc_Znwm12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, __hot_cold_t) 125 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow) 126 {LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow, __hot_cold_t) 127 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t) 128 {LibFunc_ZnwmSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, __hot_cold_t) 129 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow) 130 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow, __hot_cold_t) 131 {LibFunc_Znaj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int) 132 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int, nothrow) 133 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t) 134 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow) 135 {LibFunc_Znam, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long) 136 {LibFunc_Znam12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, __hot_cold_t) 137 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long, nothrow) 138 {LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, nothrow, __hot_cold_t) 139 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t) 140 {LibFunc_ZnamSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, __hot_cold_t) 141 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow) 142 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, nothrow, __hot_cold_t) 143 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int) 144 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int, nothrow) 145 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long) 146 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long, nothrow) 147 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int) 148 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int, nothrow) 149 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long) 150 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long, nothrow) 151 {LibFunc_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, 152 {LibFunc_dunder_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, 153 {LibFunc_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 154 {LibFunc_dunder_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 155 {LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1, -1, MallocFamily::KmpcAllocShared}}, 156 }; 157 // clang-format on 158 159 static const Function *getCalledFunction(const Value *V) { 160 // Don't care about intrinsics in this case. 161 if (isa<IntrinsicInst>(V)) 162 return nullptr; 163 164 const auto *CB = dyn_cast<CallBase>(V); 165 if (!CB) 166 return nullptr; 167 168 if (CB->isNoBuiltin()) 169 return nullptr; 170 171 return CB->getCalledFunction(); 172 } 173 174 /// Returns the allocation data for the given value if it's a call to a known 175 /// allocation function. 176 static std::optional<AllocFnsTy> 177 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 178 const TargetLibraryInfo *TLI) { 179 // Don't perform a slow TLI lookup, if this function doesn't return a pointer 180 // and thus can't be an allocation function. 181 if (!Callee->getReturnType()->isPointerTy()) 182 return std::nullopt; 183 184 // Make sure that the function is available. 185 LibFunc TLIFn; 186 if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn)) 187 return std::nullopt; 188 189 const auto *Iter = find_if( 190 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 191 return P.first == TLIFn; 192 }); 193 194 if (Iter == std::end(AllocationFnData)) 195 return std::nullopt; 196 197 const AllocFnsTy *FnData = &Iter->second; 198 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 199 return std::nullopt; 200 201 // Check function prototype. 202 int FstParam = FnData->FstParam; 203 int SndParam = FnData->SndParam; 204 FunctionType *FTy = Callee->getFunctionType(); 205 206 if (FTy->getReturnType()->isPointerTy() && 207 FTy->getNumParams() == FnData->NumParams && 208 (FstParam < 0 || 209 (FTy->getParamType(FstParam)->isIntegerTy(32) || 210 FTy->getParamType(FstParam)->isIntegerTy(64))) && 211 (SndParam < 0 || 212 FTy->getParamType(SndParam)->isIntegerTy(32) || 213 FTy->getParamType(SndParam)->isIntegerTy(64))) 214 return *FnData; 215 return std::nullopt; 216 } 217 218 static std::optional<AllocFnsTy> 219 getAllocationData(const Value *V, AllocType AllocTy, 220 const TargetLibraryInfo *TLI) { 221 if (const Function *Callee = getCalledFunction(V)) 222 return getAllocationDataForFunction(Callee, AllocTy, TLI); 223 return std::nullopt; 224 } 225 226 static std::optional<AllocFnsTy> 227 getAllocationData(const Value *V, AllocType AllocTy, 228 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 229 if (const Function *Callee = getCalledFunction(V)) 230 return getAllocationDataForFunction( 231 Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee))); 232 return std::nullopt; 233 } 234 235 static std::optional<AllocFnsTy> 236 getAllocationSize(const CallBase *CB, const TargetLibraryInfo *TLI) { 237 if (const Function *Callee = getCalledFunction(CB)) { 238 // Prefer to use existing information over allocsize. This will give us an 239 // accurate AllocTy. 240 if (std::optional<AllocFnsTy> Data = 241 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 242 return Data; 243 } 244 245 Attribute Attr = CB->getFnAttr(Attribute::AllocSize); 246 if (Attr == Attribute()) 247 return std::nullopt; 248 249 std::pair<unsigned, std::optional<unsigned>> Args = Attr.getAllocSizeArgs(); 250 251 AllocFnsTy Result; 252 // Because allocsize only tells us how many bytes are allocated, we're not 253 // really allowed to assume anything, so we use MallocLike. 254 Result.AllocTy = MallocLike; 255 Result.NumParams = CB->arg_size(); 256 Result.FstParam = Args.first; 257 Result.SndParam = Args.second.value_or(-1); 258 // Allocsize has no way to specify an alignment argument 259 Result.AlignParam = -1; 260 return Result; 261 } 262 263 static AllocFnKind getAllocFnKind(const Value *V) { 264 if (const auto *CB = dyn_cast<CallBase>(V)) { 265 Attribute Attr = CB->getFnAttr(Attribute::AllocKind); 266 if (Attr.isValid()) 267 return AllocFnKind(Attr.getValueAsInt()); 268 } 269 return AllocFnKind::Unknown; 270 } 271 272 static AllocFnKind getAllocFnKind(const Function *F) { 273 return F->getAttributes().getAllocKind(); 274 } 275 276 static bool checkFnAllocKind(const Value *V, AllocFnKind Wanted) { 277 return (getAllocFnKind(V) & Wanted) != AllocFnKind::Unknown; 278 } 279 280 static bool checkFnAllocKind(const Function *F, AllocFnKind Wanted) { 281 return (getAllocFnKind(F) & Wanted) != AllocFnKind::Unknown; 282 } 283 284 /// Tests if a value is a call or invoke to a library function that 285 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 286 /// like). 287 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) { 288 return getAllocationData(V, AnyAlloc, TLI).has_value() || 289 checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc); 290 } 291 bool llvm::isAllocationFn( 292 const Value *V, 293 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 294 return getAllocationData(V, AnyAlloc, GetTLI).has_value() || 295 checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc); 296 } 297 298 /// Tests if a value is a call or invoke to a library function that 299 /// allocates memory via new. 300 bool llvm::isNewLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 301 return getAllocationData(V, OpNewLike, TLI).has_value(); 302 } 303 304 /// Tests if a value is a call or invoke to a library function that 305 /// allocates memory similar to malloc or calloc. 306 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 307 // TODO: Function behavior does not match name. 308 return getAllocationData(V, MallocOrOpNewLike, TLI).has_value(); 309 } 310 311 /// Tests if a value is a call or invoke to a library function that 312 /// allocates memory (either malloc, calloc, or strdup like). 313 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 314 return getAllocationData(V, AllocLike, TLI).has_value() || 315 checkFnAllocKind(V, AllocFnKind::Alloc); 316 } 317 318 /// Tests if a functions is a call or invoke to a library function that 319 /// reallocates memory (e.g., realloc). 320 bool llvm::isReallocLikeFn(const Function *F) { 321 return checkFnAllocKind(F, AllocFnKind::Realloc); 322 } 323 324 Value *llvm::getReallocatedOperand(const CallBase *CB) { 325 if (checkFnAllocKind(CB, AllocFnKind::Realloc)) 326 return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer); 327 return nullptr; 328 } 329 330 bool llvm::isRemovableAlloc(const CallBase *CB, const TargetLibraryInfo *TLI) { 331 // Note: Removability is highly dependent on the source language. For 332 // example, recent C++ requires direct calls to the global allocation 333 // [basic.stc.dynamic.allocation] to be observable unless part of a new 334 // expression [expr.new paragraph 13]. 335 336 // Historically we've treated the C family allocation routines and operator 337 // new as removable 338 return isAllocLikeFn(CB, TLI); 339 } 340 341 Value *llvm::getAllocAlignment(const CallBase *V, 342 const TargetLibraryInfo *TLI) { 343 const std::optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI); 344 if (FnData && FnData->AlignParam >= 0) { 345 return V->getOperand(FnData->AlignParam); 346 } 347 return V->getArgOperandWithAttribute(Attribute::AllocAlign); 348 } 349 350 /// When we're compiling N-bit code, and the user uses parameters that are 351 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 352 /// trouble with APInt size issues. This function handles resizing + overflow 353 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and 354 /// I's value. 355 static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) { 356 // More bits than we can handle. Checking the bit width isn't necessary, but 357 // it's faster than checking active bits, and should give `false` in the 358 // vast majority of cases. 359 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 360 return false; 361 if (I.getBitWidth() != IntTyBits) 362 I = I.zextOrTrunc(IntTyBits); 363 return true; 364 } 365 366 std::optional<APInt> 367 llvm::getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI, 368 function_ref<const Value *(const Value *)> Mapper) { 369 // Note: This handles both explicitly listed allocation functions and 370 // allocsize. The code structure could stand to be cleaned up a bit. 371 std::optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI); 372 if (!FnData) 373 return std::nullopt; 374 375 // Get the index type for this address space, results and intermediate 376 // computations are performed at that width. 377 auto &DL = CB->getDataLayout(); 378 const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType()); 379 380 // Handle strdup-like functions separately. 381 if (FnData->AllocTy == StrDupLike) { 382 APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0)))); 383 if (!Size) 384 return std::nullopt; 385 386 // Strndup limits strlen. 387 if (FnData->FstParam > 0) { 388 const ConstantInt *Arg = 389 dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam))); 390 if (!Arg) 391 return std::nullopt; 392 393 APInt MaxSize = Arg->getValue().zext(IntTyBits); 394 if (Size.ugt(MaxSize)) 395 Size = MaxSize + 1; 396 } 397 return Size; 398 } 399 400 const ConstantInt *Arg = 401 dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam))); 402 if (!Arg) 403 return std::nullopt; 404 405 APInt Size = Arg->getValue(); 406 if (!CheckedZextOrTrunc(Size, IntTyBits)) 407 return std::nullopt; 408 409 // Size is determined by just 1 parameter. 410 if (FnData->SndParam < 0) 411 return Size; 412 413 Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam))); 414 if (!Arg) 415 return std::nullopt; 416 417 APInt NumElems = Arg->getValue(); 418 if (!CheckedZextOrTrunc(NumElems, IntTyBits)) 419 return std::nullopt; 420 421 bool Overflow; 422 Size = Size.umul_ov(NumElems, Overflow); 423 if (Overflow) 424 return std::nullopt; 425 return Size; 426 } 427 428 Constant *llvm::getInitialValueOfAllocation(const Value *V, 429 const TargetLibraryInfo *TLI, 430 Type *Ty) { 431 auto *Alloc = dyn_cast<CallBase>(V); 432 if (!Alloc) 433 return nullptr; 434 435 // malloc are uninitialized (undef) 436 if (getAllocationData(Alloc, MallocOrOpNewLike, TLI).has_value()) 437 return UndefValue::get(Ty); 438 439 AllocFnKind AK = getAllocFnKind(Alloc); 440 if ((AK & AllocFnKind::Uninitialized) != AllocFnKind::Unknown) 441 return UndefValue::get(Ty); 442 if ((AK & AllocFnKind::Zeroed) != AllocFnKind::Unknown) 443 return Constant::getNullValue(Ty); 444 445 return nullptr; 446 } 447 448 struct FreeFnsTy { 449 unsigned NumParams; 450 // Name of default allocator function to group malloc/free calls by family 451 MallocFamily Family; 452 }; 453 454 // clang-format off 455 static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = { 456 {LibFunc_ZdlPv, {1, MallocFamily::CPPNew}}, // operator delete(void*) 457 {LibFunc_ZdaPv, {1, MallocFamily::CPPNewArray}}, // operator delete[](void*) 458 {LibFunc_msvc_delete_ptr32, {1, MallocFamily::MSVCNew}}, // operator delete(void*) 459 {LibFunc_msvc_delete_ptr64, {1, MallocFamily::MSVCNew}}, // operator delete(void*) 460 {LibFunc_msvc_delete_array_ptr32, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) 461 {LibFunc_msvc_delete_array_ptr64, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) 462 {LibFunc_ZdlPvj, {2, MallocFamily::CPPNew}}, // delete(void*, uint) 463 {LibFunc_ZdlPvm, {2, MallocFamily::CPPNew}}, // delete(void*, ulong) 464 {LibFunc_ZdlPvRKSt9nothrow_t, {2, MallocFamily::CPPNew}}, // delete(void*, nothrow) 465 {LibFunc_ZdlPvSt11align_val_t, {2, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t) 466 {LibFunc_ZdaPvj, {2, MallocFamily::CPPNewArray}}, // delete[](void*, uint) 467 {LibFunc_ZdaPvm, {2, MallocFamily::CPPNewArray}}, // delete[](void*, ulong) 468 {LibFunc_ZdaPvRKSt9nothrow_t, {2, MallocFamily::CPPNewArray}}, // delete[](void*, nothrow) 469 {LibFunc_ZdaPvSt11align_val_t, {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t) 470 {LibFunc_msvc_delete_ptr32_int, {2, MallocFamily::MSVCNew}}, // delete(void*, uint) 471 {LibFunc_msvc_delete_ptr64_longlong, {2, MallocFamily::MSVCNew}}, // delete(void*, ulonglong) 472 {LibFunc_msvc_delete_ptr32_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) 473 {LibFunc_msvc_delete_ptr64_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) 474 {LibFunc_msvc_delete_array_ptr32_int, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, uint) 475 {LibFunc_msvc_delete_array_ptr64_longlong, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, ulonglong) 476 {LibFunc_msvc_delete_array_ptr32_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) 477 {LibFunc_msvc_delete_array_ptr64_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) 478 {LibFunc___kmpc_free_shared, {2, MallocFamily::KmpcAllocShared}}, // OpenMP Offloading RTL free 479 {LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t, nothrow) 480 {LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow) 481 {LibFunc_ZdlPvjSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned int, align_val_t) 482 {LibFunc_ZdlPvmSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned long, align_val_t) 483 {LibFunc_ZdaPvjSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t) 484 {LibFunc_ZdaPvmSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t) 485 }; 486 // clang-format on 487 488 std::optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee, 489 const LibFunc TLIFn) { 490 const auto *Iter = 491 find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) { 492 return P.first == TLIFn; 493 }); 494 if (Iter == std::end(FreeFnData)) 495 return std::nullopt; 496 return Iter->second; 497 } 498 499 std::optional<StringRef> 500 llvm::getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI) { 501 if (const Function *Callee = getCalledFunction(I)) { 502 LibFunc TLIFn; 503 if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn)) { 504 // Callee is some known library function. 505 const auto AllocData = 506 getAllocationDataForFunction(Callee, AnyAlloc, TLI); 507 if (AllocData) 508 return mangledNameForMallocFamily(AllocData->Family); 509 const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn); 510 if (FreeData) 511 return mangledNameForMallocFamily(FreeData->Family); 512 } 513 } 514 515 // Callee isn't a known library function, still check attributes. 516 if (checkFnAllocKind(I, AllocFnKind::Free | AllocFnKind::Alloc | 517 AllocFnKind::Realloc)) { 518 Attribute Attr = cast<CallBase>(I)->getFnAttr("alloc-family"); 519 if (Attr.isValid()) 520 return Attr.getValueAsString(); 521 } 522 return std::nullopt; 523 } 524 525 /// isLibFreeFunction - Returns true if the function is a builtin free() 526 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) { 527 std::optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn); 528 if (!FnData) 529 return checkFnAllocKind(F, AllocFnKind::Free); 530 531 // Check free prototype. 532 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 533 // attribute will exist. 534 FunctionType *FTy = F->getFunctionType(); 535 if (!FTy->getReturnType()->isVoidTy()) 536 return false; 537 if (FTy->getNumParams() != FnData->NumParams) 538 return false; 539 if (!FTy->getParamType(0)->isPointerTy()) 540 return false; 541 542 return true; 543 } 544 545 Value *llvm::getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI) { 546 if (const Function *Callee = getCalledFunction(CB)) { 547 LibFunc TLIFn; 548 if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn) && 549 isLibFreeFunction(Callee, TLIFn)) { 550 // All currently supported free functions free the first argument. 551 return CB->getArgOperand(0); 552 } 553 } 554 555 if (checkFnAllocKind(CB, AllocFnKind::Free)) 556 return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer); 557 558 return nullptr; 559 } 560 561 //===----------------------------------------------------------------------===// 562 // Utility functions to compute size of objects. 563 // 564 static APInt getSizeWithOverflow(const SizeOffsetAPInt &Data) { 565 APInt Size = Data.Size; 566 APInt Offset = Data.Offset; 567 568 if (Offset.isNegative() || Size.ult(Offset)) 569 return APInt::getZero(Size.getBitWidth()); 570 571 return Size - Offset; 572 } 573 574 /// Compute the size of the object pointed by Ptr. Returns true and the 575 /// object size in Size if successful, and false otherwise. 576 /// If RoundToAlign is true, then Size is rounded up to the alignment of 577 /// allocas, byval arguments, and global variables. 578 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 579 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 580 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 581 SizeOffsetAPInt Data = Visitor.compute(const_cast<Value *>(Ptr)); 582 if (!Data.bothKnown()) 583 return false; 584 585 Size = getSizeWithOverflow(Data).getZExtValue(); 586 return true; 587 } 588 589 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 590 const DataLayout &DL, 591 const TargetLibraryInfo *TLI, 592 bool MustSucceed) { 593 return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr, 594 MustSucceed); 595 } 596 597 Value *llvm::lowerObjectSizeCall( 598 IntrinsicInst *ObjectSize, const DataLayout &DL, 599 const TargetLibraryInfo *TLI, AAResults *AA, bool MustSucceed, 600 SmallVectorImpl<Instruction *> *InsertedInstructions) { 601 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 602 "ObjectSize must be a call to llvm.objectsize!"); 603 604 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 605 ObjectSizeOpts EvalOptions; 606 EvalOptions.AA = AA; 607 608 // Unless we have to fold this to something, try to be as accurate as 609 // possible. 610 if (MustSucceed) 611 EvalOptions.EvalMode = 612 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 613 else 614 EvalOptions.EvalMode = ObjectSizeOpts::Mode::ExactSizeFromOffset; 615 616 EvalOptions.NullIsUnknownSize = 617 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 618 619 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 620 bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero(); 621 if (StaticOnly) { 622 // FIXME: Does it make sense to just return a failure value if the size won't 623 // fit in the output and `!MustSucceed`? 624 uint64_t Size; 625 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 626 isUIntN(ResultType->getBitWidth(), Size)) 627 return ConstantInt::get(ResultType, Size); 628 } else { 629 LLVMContext &Ctx = ObjectSize->getFunction()->getContext(); 630 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions); 631 SizeOffsetValue SizeOffsetPair = Eval.compute(ObjectSize->getArgOperand(0)); 632 633 if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) { 634 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 635 Ctx, TargetFolder(DL), IRBuilderCallbackInserter([&](Instruction *I) { 636 if (InsertedInstructions) 637 InsertedInstructions->push_back(I); 638 })); 639 Builder.SetInsertPoint(ObjectSize); 640 641 Value *Size = SizeOffsetPair.Size; 642 Value *Offset = SizeOffsetPair.Offset; 643 644 // If we've outside the end of the object, then we can always access 645 // exactly 0 bytes. 646 Value *ResultSize = Builder.CreateSub(Size, Offset); 647 Value *UseZero = Builder.CreateICmpULT(Size, Offset); 648 ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType); 649 Value *Ret = Builder.CreateSelect( 650 UseZero, ConstantInt::get(ResultType, 0), ResultSize); 651 652 // The non-constant size expression cannot evaluate to -1. 653 if (!isa<Constant>(Size) || !isa<Constant>(Offset)) 654 Builder.CreateAssumption( 655 Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1))); 656 657 return Ret; 658 } 659 } 660 661 if (!MustSucceed) 662 return nullptr; 663 664 return MaxVal ? Constant::getAllOnesValue(ResultType) 665 : Constant::getNullValue(ResultType); 666 } 667 668 STATISTIC(ObjectVisitorArgument, 669 "Number of arguments with unsolved size and offset"); 670 STATISTIC(ObjectVisitorLoad, 671 "Number of load instructions with unsolved size and offset"); 672 673 static std::optional<APInt> 674 combinePossibleConstantValues(std::optional<APInt> LHS, 675 std::optional<APInt> RHS, 676 ObjectSizeOpts::Mode EvalMode) { 677 if (!LHS || !RHS) 678 return std::nullopt; 679 if (EvalMode == ObjectSizeOpts::Mode::Max) 680 return LHS->sge(*RHS) ? *LHS : *RHS; 681 else 682 return LHS->sle(*RHS) ? *LHS : *RHS; 683 } 684 685 static std::optional<APInt> aggregatePossibleConstantValuesImpl( 686 const Value *V, ObjectSizeOpts::Mode EvalMode, unsigned recursionDepth) { 687 constexpr unsigned maxRecursionDepth = 4; 688 if (recursionDepth == maxRecursionDepth) 689 return std::nullopt; 690 691 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 692 return CI->getValue(); 693 } else if (const auto *SI = dyn_cast<SelectInst>(V)) { 694 return combinePossibleConstantValues( 695 aggregatePossibleConstantValuesImpl(SI->getTrueValue(), EvalMode, 696 recursionDepth + 1), 697 aggregatePossibleConstantValuesImpl(SI->getFalseValue(), EvalMode, 698 recursionDepth + 1), 699 EvalMode); 700 } else if (const auto *PN = dyn_cast<PHINode>(V)) { 701 unsigned Count = PN->getNumIncomingValues(); 702 if (Count == 0) 703 return std::nullopt; 704 auto Acc = aggregatePossibleConstantValuesImpl( 705 PN->getIncomingValue(0), EvalMode, recursionDepth + 1); 706 for (unsigned I = 1; Acc && I < Count; ++I) { 707 auto Tmp = aggregatePossibleConstantValuesImpl( 708 PN->getIncomingValue(I), EvalMode, recursionDepth + 1); 709 Acc = combinePossibleConstantValues(Acc, Tmp, EvalMode); 710 } 711 return Acc; 712 } 713 714 return std::nullopt; 715 } 716 717 static std::optional<APInt> 718 aggregatePossibleConstantValues(const Value *V, ObjectSizeOpts::Mode EvalMode) { 719 if (auto *CI = dyn_cast<ConstantInt>(V)) 720 return CI->getValue(); 721 722 if (EvalMode != ObjectSizeOpts::Mode::Min && 723 EvalMode != ObjectSizeOpts::Mode::Max) 724 return std::nullopt; 725 726 // Not using computeConstantRange here because we cannot guarantee it's not 727 // doing optimization based on UB which we want to avoid when expanding 728 // __builtin_object_size. 729 return aggregatePossibleConstantValuesImpl(V, EvalMode, 0u); 730 } 731 732 /// Align \p Size according to \p Alignment. If \p Size is greater than 733 /// getSignedMaxValue(), set it as unknown as we can only represent signed value 734 /// in OffsetSpan. 735 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) { 736 if (Options.RoundToAlign && Alignment) 737 Size = APInt(IntTyBits, alignTo(Size.getZExtValue(), *Alignment)); 738 739 return Size.isNegative() ? APInt() : Size; 740 } 741 742 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 743 const TargetLibraryInfo *TLI, 744 LLVMContext &Context, 745 ObjectSizeOpts Options) 746 : DL(DL), TLI(TLI), Options(Options) { 747 // Pointer size must be rechecked for each object visited since it could have 748 // a different address space. 749 } 750 751 SizeOffsetAPInt ObjectSizeOffsetVisitor::compute(Value *V) { 752 InstructionsVisited = 0; 753 OffsetSpan Span = computeImpl(V); 754 755 // In ExactSizeFromOffset mode, we don't care about the Before Field, so allow 756 // us to overwrite it if needs be. 757 if (Span.knownAfter() && !Span.knownBefore() && 758 Options.EvalMode == ObjectSizeOpts::Mode::ExactSizeFromOffset) 759 Span.Before = APInt::getZero(Span.After.getBitWidth()); 760 761 if (!Span.bothKnown()) 762 return {}; 763 764 return {Span.Before + Span.After, Span.Before}; 765 } 766 767 OffsetSpan ObjectSizeOffsetVisitor::computeImpl(Value *V) { 768 unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 769 770 // Stripping pointer casts can strip address space casts which can change the 771 // index type size. The invariant is that we use the value type to determine 772 // the index type size and if we stripped address space casts we have to 773 // readjust the APInt as we pass it upwards in order for the APInt to match 774 // the type the caller passed in. 775 APInt Offset(InitialIntTyBits, 0); 776 V = V->stripAndAccumulateConstantOffsets( 777 DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true); 778 779 // Give it another try with approximated analysis. We don't start with this 780 // one because stripAndAccumulateConstantOffsets behaves differently wrt. 781 // overflows if we provide an external Analysis. 782 if ((Options.EvalMode == ObjectSizeOpts::Mode::Min || 783 Options.EvalMode == ObjectSizeOpts::Mode::Max) && 784 isa<GEPOperator>(V)) { 785 // External Analysis used to compute the Min/Max value of individual Offsets 786 // within a GEP. 787 ObjectSizeOpts::Mode EvalMode = 788 Options.EvalMode == ObjectSizeOpts::Mode::Min 789 ? ObjectSizeOpts::Mode::Max 790 : ObjectSizeOpts::Mode::Min; 791 auto OffsetRangeAnalysis = [EvalMode](Value &VOffset, APInt &Offset) { 792 if (auto PossibleOffset = 793 aggregatePossibleConstantValues(&VOffset, EvalMode)) { 794 Offset = *PossibleOffset; 795 return true; 796 } 797 return false; 798 }; 799 800 V = V->stripAndAccumulateConstantOffsets( 801 DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true, 802 /*ExternalAnalysis=*/OffsetRangeAnalysis); 803 } 804 805 // Later we use the index type size and zero but it will match the type of the 806 // value that is passed to computeImpl. 807 IntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 808 Zero = APInt::getZero(IntTyBits); 809 OffsetSpan ORT = computeValue(V); 810 811 bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits; 812 if (!IndexTypeSizeChanged && Offset.isZero()) 813 return ORT; 814 815 // We stripped an address space cast that changed the index type size or we 816 // accumulated some constant offset (or both). Readjust the bit width to match 817 // the argument index type size and apply the offset, as required. 818 if (IndexTypeSizeChanged) { 819 if (ORT.knownBefore() && 820 !::CheckedZextOrTrunc(ORT.Before, InitialIntTyBits)) 821 ORT.Before = APInt(); 822 if (ORT.knownAfter() && !::CheckedZextOrTrunc(ORT.After, InitialIntTyBits)) 823 ORT.After = APInt(); 824 } 825 // If the computed bound is "unknown" we cannot add the stripped offset. 826 if (ORT.knownBefore()) { 827 bool Overflow; 828 ORT.Before = ORT.Before.sadd_ov(Offset, Overflow); 829 if (Overflow) 830 ORT.Before = APInt(); 831 } 832 if (ORT.knownAfter()) { 833 bool Overflow; 834 ORT.After = ORT.After.ssub_ov(Offset, Overflow); 835 if (Overflow) 836 ORT.After = APInt(); 837 } 838 839 // We end up pointing on a location that's outside of the original object. 840 if (ORT.knownBefore() && ORT.Before.isNegative()) { 841 // This means that we *may* be accessing memory before the allocation. 842 // Conservatively return an unknown size. 843 // 844 // TODO: working with ranges instead of value would make it possible to take 845 // a better decision. 846 if (Options.EvalMode == ObjectSizeOpts::Mode::Min || 847 Options.EvalMode == ObjectSizeOpts::Mode::Max) { 848 return ObjectSizeOffsetVisitor::unknown(); 849 } 850 // Otherwise it's fine, caller can handle negative offset. 851 } 852 return ORT; 853 } 854 855 OffsetSpan ObjectSizeOffsetVisitor::computeValue(Value *V) { 856 if (Instruction *I = dyn_cast<Instruction>(V)) { 857 // If we have already seen this instruction, bail out. Cycles can happen in 858 // unreachable code after constant propagation. 859 auto P = SeenInsts.try_emplace(I, ObjectSizeOffsetVisitor::unknown()); 860 if (!P.second) 861 return P.first->second; 862 ++InstructionsVisited; 863 if (InstructionsVisited > ObjectSizeOffsetVisitorMaxVisitInstructions) 864 return ObjectSizeOffsetVisitor::unknown(); 865 OffsetSpan Res = visit(*I); 866 // Cache the result for later visits. If we happened to visit this during 867 // the above recursion, we would consider it unknown until now. 868 SeenInsts[I] = Res; 869 return Res; 870 } 871 if (Argument *A = dyn_cast<Argument>(V)) 872 return visitArgument(*A); 873 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 874 return visitConstantPointerNull(*P); 875 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 876 return visitGlobalAlias(*GA); 877 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 878 return visitGlobalVariable(*GV); 879 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 880 return visitUndefValue(*UV); 881 882 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " 883 << *V << '\n'); 884 return ObjectSizeOffsetVisitor::unknown(); 885 } 886 887 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { 888 return ::CheckedZextOrTrunc(I, IntTyBits); 889 } 890 891 OffsetSpan ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 892 TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType()); 893 if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min) 894 return ObjectSizeOffsetVisitor::unknown(); 895 if (!isUIntN(IntTyBits, ElemSize.getKnownMinValue())) 896 return ObjectSizeOffsetVisitor::unknown(); 897 APInt Size(IntTyBits, ElemSize.getKnownMinValue()); 898 899 if (!I.isArrayAllocation()) 900 return OffsetSpan(Zero, align(Size, I.getAlign())); 901 902 Value *ArraySize = I.getArraySize(); 903 if (auto PossibleSize = 904 aggregatePossibleConstantValues(ArraySize, Options.EvalMode)) { 905 APInt NumElems = *PossibleSize; 906 if (!CheckedZextOrTrunc(NumElems)) 907 return ObjectSizeOffsetVisitor::unknown(); 908 909 bool Overflow; 910 Size = Size.umul_ov(NumElems, Overflow); 911 912 return Overflow ? ObjectSizeOffsetVisitor::unknown() 913 : OffsetSpan(Zero, align(Size, I.getAlign())); 914 } 915 return ObjectSizeOffsetVisitor::unknown(); 916 } 917 918 OffsetSpan ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 919 Type *MemoryTy = A.getPointeeInMemoryValueType(); 920 // No interprocedural analysis is done at the moment. 921 if (!MemoryTy|| !MemoryTy->isSized()) { 922 ++ObjectVisitorArgument; 923 return ObjectSizeOffsetVisitor::unknown(); 924 } 925 926 APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy)); 927 return OffsetSpan(Zero, align(Size, A.getParamAlign())); 928 } 929 930 OffsetSpan ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) { 931 auto Mapper = [this](const Value *V) -> const Value * { 932 if (!V->getType()->isIntegerTy()) 933 return V; 934 935 if (auto PossibleBound = 936 aggregatePossibleConstantValues(V, Options.EvalMode)) 937 return ConstantInt::get(V->getType(), *PossibleBound); 938 939 return V; 940 }; 941 942 if (std::optional<APInt> Size = getAllocSize(&CB, TLI, Mapper)) { 943 // Very large unsigned value cannot be represented as OffsetSpan. 944 if (Size->isNegative()) 945 return ObjectSizeOffsetVisitor::unknown(); 946 return OffsetSpan(Zero, *Size); 947 } 948 return ObjectSizeOffsetVisitor::unknown(); 949 } 950 951 OffsetSpan 952 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull &CPN) { 953 // If null is unknown, there's nothing we can do. Additionally, non-zero 954 // address spaces can make use of null, so we don't presume to know anything 955 // about that. 956 // 957 // TODO: How should this work with address space casts? We currently just drop 958 // them on the floor, but it's unclear what we should do when a NULL from 959 // addrspace(1) gets casted to addrspace(0) (or vice-versa). 960 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) 961 return ObjectSizeOffsetVisitor::unknown(); 962 return OffsetSpan(Zero, Zero); 963 } 964 965 OffsetSpan 966 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst &) { 967 return ObjectSizeOffsetVisitor::unknown(); 968 } 969 970 OffsetSpan ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst &) { 971 // Easy cases were already folded by previous passes. 972 return ObjectSizeOffsetVisitor::unknown(); 973 } 974 975 OffsetSpan ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 976 if (GA.isInterposable()) 977 return ObjectSizeOffsetVisitor::unknown(); 978 return computeImpl(GA.getAliasee()); 979 } 980 981 OffsetSpan ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV) { 982 if (!GV.getValueType()->isSized() || GV.hasExternalWeakLinkage() || 983 ((!GV.hasInitializer() || GV.isInterposable()) && 984 Options.EvalMode != ObjectSizeOpts::Mode::Min)) 985 return ObjectSizeOffsetVisitor::unknown(); 986 987 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType())); 988 return OffsetSpan(Zero, align(Size, GV.getAlign())); 989 } 990 991 OffsetSpan ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst &) { 992 // clueless 993 return ObjectSizeOffsetVisitor::unknown(); 994 } 995 996 OffsetSpan ObjectSizeOffsetVisitor::findLoadOffsetRange( 997 LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From, 998 SmallDenseMap<BasicBlock *, OffsetSpan, 8> &VisitedBlocks, 999 unsigned &ScannedInstCount) { 1000 constexpr unsigned MaxInstsToScan = 128; 1001 1002 auto Where = VisitedBlocks.find(&BB); 1003 if (Where != VisitedBlocks.end()) 1004 return Where->second; 1005 1006 auto Unknown = [&BB, &VisitedBlocks]() { 1007 return VisitedBlocks[&BB] = ObjectSizeOffsetVisitor::unknown(); 1008 }; 1009 auto Known = [&BB, &VisitedBlocks](OffsetSpan SO) { 1010 return VisitedBlocks[&BB] = SO; 1011 }; 1012 1013 do { 1014 Instruction &I = *From; 1015 1016 if (I.isDebugOrPseudoInst()) 1017 continue; 1018 1019 if (++ScannedInstCount > MaxInstsToScan) 1020 return Unknown(); 1021 1022 if (!I.mayWriteToMemory()) 1023 continue; 1024 1025 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1026 AliasResult AR = 1027 Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand()); 1028 switch ((AliasResult::Kind)AR) { 1029 case AliasResult::NoAlias: 1030 continue; 1031 case AliasResult::MustAlias: 1032 if (SI->getValueOperand()->getType()->isPointerTy()) 1033 return Known(computeImpl(SI->getValueOperand())); 1034 else 1035 return Unknown(); // No handling of non-pointer values by `compute`. 1036 default: 1037 return Unknown(); 1038 } 1039 } 1040 1041 if (auto *CB = dyn_cast<CallBase>(&I)) { 1042 Function *Callee = CB->getCalledFunction(); 1043 // Bail out on indirect call. 1044 if (!Callee) 1045 return Unknown(); 1046 1047 LibFunc TLIFn; 1048 if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) || 1049 !TLI->has(TLIFn)) 1050 return Unknown(); 1051 1052 // TODO: There's probably more interesting case to support here. 1053 if (TLIFn != LibFunc_posix_memalign) 1054 return Unknown(); 1055 1056 AliasResult AR = 1057 Options.AA->alias(CB->getOperand(0), Load.getPointerOperand()); 1058 switch ((AliasResult::Kind)AR) { 1059 case AliasResult::NoAlias: 1060 continue; 1061 case AliasResult::MustAlias: 1062 break; 1063 default: 1064 return Unknown(); 1065 } 1066 1067 // Is the error status of posix_memalign correctly checked? If not it 1068 // would be incorrect to assume it succeeds and load doesn't see the 1069 // previous value. 1070 std::optional<bool> Checked = isImpliedByDomCondition( 1071 ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL); 1072 if (!Checked || !*Checked) 1073 return Unknown(); 1074 1075 Value *Size = CB->getOperand(2); 1076 auto *C = dyn_cast<ConstantInt>(Size); 1077 if (!C) 1078 return Unknown(); 1079 1080 APInt CSize = C->getValue(); 1081 if (CSize.isNegative()) 1082 return Unknown(); 1083 1084 return Known({APInt(CSize.getBitWidth(), 0), CSize}); 1085 } 1086 1087 return Unknown(); 1088 } while (From-- != BB.begin()); 1089 1090 SmallVector<OffsetSpan> PredecessorSizeOffsets; 1091 for (auto *PredBB : predecessors(&BB)) { 1092 PredecessorSizeOffsets.push_back(findLoadOffsetRange( 1093 Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()), 1094 VisitedBlocks, ScannedInstCount)); 1095 if (!PredecessorSizeOffsets.back().bothKnown()) 1096 return Unknown(); 1097 } 1098 1099 if (PredecessorSizeOffsets.empty()) 1100 return Unknown(); 1101 1102 return Known(std::accumulate( 1103 PredecessorSizeOffsets.begin() + 1, PredecessorSizeOffsets.end(), 1104 PredecessorSizeOffsets.front(), [this](OffsetSpan LHS, OffsetSpan RHS) { 1105 return combineOffsetRange(LHS, RHS); 1106 })); 1107 } 1108 1109 OffsetSpan ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) { 1110 if (!Options.AA) { 1111 ++ObjectVisitorLoad; 1112 return ObjectSizeOffsetVisitor::unknown(); 1113 } 1114 1115 SmallDenseMap<BasicBlock *, OffsetSpan, 8> VisitedBlocks; 1116 unsigned ScannedInstCount = 0; 1117 OffsetSpan SO = 1118 findLoadOffsetRange(LI, *LI.getParent(), BasicBlock::iterator(LI), 1119 VisitedBlocks, ScannedInstCount); 1120 if (!SO.bothKnown()) 1121 ++ObjectVisitorLoad; 1122 return SO; 1123 } 1124 1125 OffsetSpan ObjectSizeOffsetVisitor::combineOffsetRange(OffsetSpan LHS, 1126 OffsetSpan RHS) { 1127 if (!LHS.bothKnown() || !RHS.bothKnown()) 1128 return ObjectSizeOffsetVisitor::unknown(); 1129 1130 switch (Options.EvalMode) { 1131 case ObjectSizeOpts::Mode::Min: 1132 return {LHS.Before.slt(RHS.Before) ? LHS.Before : RHS.Before, 1133 LHS.After.slt(RHS.After) ? LHS.After : RHS.After}; 1134 case ObjectSizeOpts::Mode::Max: { 1135 return {LHS.Before.sgt(RHS.Before) ? LHS.Before : RHS.Before, 1136 LHS.After.sgt(RHS.After) ? LHS.After : RHS.After}; 1137 } 1138 case ObjectSizeOpts::Mode::ExactSizeFromOffset: 1139 return {LHS.Before.eq(RHS.Before) ? LHS.Before : APInt(), 1140 LHS.After.eq(RHS.After) ? LHS.After : APInt()}; 1141 case ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset: 1142 return (LHS == RHS) ? LHS : ObjectSizeOffsetVisitor::unknown(); 1143 } 1144 llvm_unreachable("missing an eval mode"); 1145 } 1146 1147 OffsetSpan ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) { 1148 if (PN.getNumIncomingValues() == 0) 1149 return ObjectSizeOffsetVisitor::unknown(); 1150 auto IncomingValues = PN.incoming_values(); 1151 return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(), 1152 computeImpl(*IncomingValues.begin()), 1153 [this](OffsetSpan LHS, Value *VRHS) { 1154 return combineOffsetRange(LHS, computeImpl(VRHS)); 1155 }); 1156 } 1157 1158 OffsetSpan ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 1159 return combineOffsetRange(computeImpl(I.getTrueValue()), 1160 computeImpl(I.getFalseValue())); 1161 } 1162 1163 OffsetSpan ObjectSizeOffsetVisitor::visitUndefValue(UndefValue &) { 1164 return OffsetSpan(Zero, Zero); 1165 } 1166 1167 OffsetSpan ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 1168 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I 1169 << '\n'); 1170 return ObjectSizeOffsetVisitor::unknown(); 1171 } 1172 1173 // Just set these right here... 1174 SizeOffsetValue::SizeOffsetValue(const SizeOffsetWeakTrackingVH &SOT) 1175 : SizeOffsetType(SOT.Size, SOT.Offset) {} 1176 1177 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 1178 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 1179 ObjectSizeOpts EvalOpts) 1180 : DL(DL), TLI(TLI), Context(Context), 1181 Builder(Context, TargetFolder(DL), 1182 IRBuilderCallbackInserter( 1183 [&](Instruction *I) { InsertedInstructions.insert(I); })), 1184 EvalOpts(EvalOpts) { 1185 // IntTy and Zero must be set for each compute() since the address space may 1186 // be different for later objects. 1187 } 1188 1189 SizeOffsetValue ObjectSizeOffsetEvaluator::compute(Value *V) { 1190 // XXX - Are vectors of pointers possible here? 1191 IntTy = cast<IntegerType>(DL.getIndexType(V->getType())); 1192 Zero = ConstantInt::get(IntTy, 0); 1193 1194 SizeOffsetValue Result = compute_(V); 1195 1196 if (!Result.bothKnown()) { 1197 // Erase everything that was computed in this iteration from the cache, so 1198 // that no dangling references are left behind. We could be a bit smarter if 1199 // we kept a dependency graph. It's probably not worth the complexity. 1200 for (const Value *SeenVal : SeenVals) { 1201 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 1202 // non-computable results can be safely cached 1203 if (CacheIt != CacheMap.end() && CacheIt->second.anyKnown()) 1204 CacheMap.erase(CacheIt); 1205 } 1206 1207 // Erase any instructions we inserted as part of the traversal. 1208 for (Instruction *I : InsertedInstructions) { 1209 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 1210 I->eraseFromParent(); 1211 } 1212 } 1213 1214 SeenVals.clear(); 1215 InsertedInstructions.clear(); 1216 return Result; 1217 } 1218 1219 SizeOffsetValue ObjectSizeOffsetEvaluator::compute_(Value *V) { 1220 1221 // Only trust ObjectSizeOffsetVisitor in exact mode, otherwise fallback on 1222 // dynamic computation. 1223 ObjectSizeOpts VisitorEvalOpts(EvalOpts); 1224 VisitorEvalOpts.EvalMode = ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset; 1225 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, VisitorEvalOpts); 1226 1227 SizeOffsetAPInt Const = Visitor.compute(V); 1228 if (Const.bothKnown()) 1229 return SizeOffsetValue(ConstantInt::get(Context, Const.Size), 1230 ConstantInt::get(Context, Const.Offset)); 1231 1232 V = V->stripPointerCasts(); 1233 1234 // Check cache. 1235 CacheMapTy::iterator CacheIt = CacheMap.find(V); 1236 if (CacheIt != CacheMap.end()) 1237 return CacheIt->second; 1238 1239 // Always generate code immediately before the instruction being 1240 // processed, so that the generated code dominates the same BBs. 1241 BuilderTy::InsertPointGuard Guard(Builder); 1242 if (Instruction *I = dyn_cast<Instruction>(V)) 1243 Builder.SetInsertPoint(I); 1244 1245 // Now compute the size and offset. 1246 SizeOffsetValue Result; 1247 1248 // Record the pointers that were handled in this run, so that they can be 1249 // cleaned later if something fails. We also use this set to break cycles that 1250 // can occur in dead code. 1251 if (!SeenVals.insert(V).second) { 1252 Result = ObjectSizeOffsetEvaluator::unknown(); 1253 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1254 Result = visitGEPOperator(*GEP); 1255 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 1256 Result = visit(*I); 1257 } else if (isa<Argument>(V) || 1258 (isa<ConstantExpr>(V) && 1259 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 1260 isa<GlobalAlias>(V) || 1261 isa<GlobalVariable>(V)) { 1262 // Ignore values where we cannot do more than ObjectSizeVisitor. 1263 Result = ObjectSizeOffsetEvaluator::unknown(); 1264 } else { 1265 LLVM_DEBUG( 1266 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V 1267 << '\n'); 1268 Result = ObjectSizeOffsetEvaluator::unknown(); 1269 } 1270 1271 // Don't reuse CacheIt since it may be invalid at this point. 1272 CacheMap[V] = SizeOffsetWeakTrackingVH(Result); 1273 return Result; 1274 } 1275 1276 SizeOffsetValue ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 1277 if (!I.getAllocatedType()->isSized()) 1278 return ObjectSizeOffsetEvaluator::unknown(); 1279 1280 // must be a VLA or vscale. 1281 assert(I.isArrayAllocation() || I.getAllocatedType()->isScalableTy()); 1282 1283 // If needed, adjust the alloca's operand size to match the pointer indexing 1284 // size. Subsequent math operations expect the types to match. 1285 Value *ArraySize = Builder.CreateZExtOrTrunc( 1286 I.getArraySize(), 1287 DL.getIndexType(I.getContext(), DL.getAllocaAddrSpace())); 1288 assert(ArraySize->getType() == Zero->getType() && 1289 "Expected zero constant to have pointer index type"); 1290 1291 Value *Size = Builder.CreateTypeSize( 1292 ArraySize->getType(), DL.getTypeAllocSize(I.getAllocatedType())); 1293 Size = Builder.CreateMul(Size, ArraySize); 1294 return SizeOffsetValue(Size, Zero); 1295 } 1296 1297 SizeOffsetValue ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) { 1298 std::optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI); 1299 if (!FnData) 1300 return ObjectSizeOffsetEvaluator::unknown(); 1301 1302 // Handle strdup-like functions separately. 1303 if (FnData->AllocTy == StrDupLike) { 1304 // TODO: implement evaluation of strdup/strndup 1305 return ObjectSizeOffsetEvaluator::unknown(); 1306 } 1307 1308 Value *FirstArg = CB.getArgOperand(FnData->FstParam); 1309 FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy); 1310 if (FnData->SndParam < 0) 1311 return SizeOffsetValue(FirstArg, Zero); 1312 1313 Value *SecondArg = CB.getArgOperand(FnData->SndParam); 1314 SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy); 1315 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 1316 return SizeOffsetValue(Size, Zero); 1317 } 1318 1319 SizeOffsetValue 1320 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst &) { 1321 return ObjectSizeOffsetEvaluator::unknown(); 1322 } 1323 1324 SizeOffsetValue 1325 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst &) { 1326 return ObjectSizeOffsetEvaluator::unknown(); 1327 } 1328 1329 SizeOffsetValue ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 1330 SizeOffsetValue PtrData = compute_(GEP.getPointerOperand()); 1331 if (!PtrData.bothKnown()) 1332 return ObjectSizeOffsetEvaluator::unknown(); 1333 1334 Value *Offset = emitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 1335 Offset = Builder.CreateAdd(PtrData.Offset, Offset); 1336 return SizeOffsetValue(PtrData.Size, Offset); 1337 } 1338 1339 SizeOffsetValue ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst &) { 1340 // clueless 1341 return ObjectSizeOffsetEvaluator::unknown(); 1342 } 1343 1344 SizeOffsetValue ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) { 1345 return ObjectSizeOffsetEvaluator::unknown(); 1346 } 1347 1348 SizeOffsetValue ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 1349 // Create 2 PHIs: one for size and another for offset. 1350 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 1351 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 1352 1353 // Insert right away in the cache to handle recursive PHIs. 1354 CacheMap[&PHI] = SizeOffsetWeakTrackingVH(SizePHI, OffsetPHI); 1355 1356 // Compute offset/size for each PHI incoming pointer. 1357 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 1358 BasicBlock *IncomingBlock = PHI.getIncomingBlock(i); 1359 Builder.SetInsertPoint(IncomingBlock, IncomingBlock->getFirstInsertionPt()); 1360 SizeOffsetValue EdgeData = compute_(PHI.getIncomingValue(i)); 1361 1362 if (!EdgeData.bothKnown()) { 1363 OffsetPHI->replaceAllUsesWith(PoisonValue::get(IntTy)); 1364 OffsetPHI->eraseFromParent(); 1365 InsertedInstructions.erase(OffsetPHI); 1366 SizePHI->replaceAllUsesWith(PoisonValue::get(IntTy)); 1367 SizePHI->eraseFromParent(); 1368 InsertedInstructions.erase(SizePHI); 1369 return ObjectSizeOffsetEvaluator::unknown(); 1370 } 1371 SizePHI->addIncoming(EdgeData.Size, IncomingBlock); 1372 OffsetPHI->addIncoming(EdgeData.Offset, IncomingBlock); 1373 } 1374 1375 Value *Size = SizePHI, *Offset = OffsetPHI; 1376 if (Value *Tmp = SizePHI->hasConstantValue()) { 1377 Size = Tmp; 1378 SizePHI->replaceAllUsesWith(Size); 1379 SizePHI->eraseFromParent(); 1380 InsertedInstructions.erase(SizePHI); 1381 } 1382 if (Value *Tmp = OffsetPHI->hasConstantValue()) { 1383 Offset = Tmp; 1384 OffsetPHI->replaceAllUsesWith(Offset); 1385 OffsetPHI->eraseFromParent(); 1386 InsertedInstructions.erase(OffsetPHI); 1387 } 1388 return SizeOffsetValue(Size, Offset); 1389 } 1390 1391 SizeOffsetValue ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 1392 SizeOffsetValue TrueSide = compute_(I.getTrueValue()); 1393 SizeOffsetValue FalseSide = compute_(I.getFalseValue()); 1394 1395 if (!TrueSide.bothKnown() || !FalseSide.bothKnown()) 1396 return ObjectSizeOffsetEvaluator::unknown(); 1397 if (TrueSide == FalseSide) 1398 return TrueSide; 1399 1400 Value *Size = 1401 Builder.CreateSelect(I.getCondition(), TrueSide.Size, FalseSide.Size); 1402 Value *Offset = 1403 Builder.CreateSelect(I.getCondition(), TrueSide.Offset, FalseSide.Offset); 1404 return SizeOffsetValue(Size, Offset); 1405 } 1406 1407 SizeOffsetValue ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 1408 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I 1409 << '\n'); 1410 return ObjectSizeOffsetEvaluator::unknown(); 1411 } 1412