1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "X86FrameLowering.h"
14 #include "X86InstrBuilder.h"
15 #include "X86InstrInfo.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCObjectFileInfo.h"
32 #include "llvm/MC/MCSymbol.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include <cstdlib>
36
37 #define DEBUG_TYPE "x86-fl"
38
39 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue");
40 STATISTIC(NumFrameExtraProbe,
41 "Number of extra stack probes generated in prologue");
42
43 using namespace llvm;
44
X86FrameLowering(const X86Subtarget & STI,MaybeAlign StackAlignOverride)45 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
46 MaybeAlign StackAlignOverride)
47 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
48 STI.is64Bit() ? -8 : -4),
49 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
50 // Cache a bunch of frame-related predicates for this subtarget.
51 SlotSize = TRI->getSlotSize();
52 Is64Bit = STI.is64Bit();
53 IsLP64 = STI.isTarget64BitLP64();
54 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
55 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
56 StackPtr = TRI->getStackRegister();
57 }
58
hasReservedCallFrame(const MachineFunction & MF) const59 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
60 return !MF.getFrameInfo().hasVarSizedObjects() &&
61 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() &&
62 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall();
63 }
64
65 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
66 /// call frame pseudos can be simplified. Having a FP, as in the default
67 /// implementation, is not sufficient here since we can't always use it.
68 /// Use a more nuanced condition.
69 bool
canSimplifyCallFramePseudos(const MachineFunction & MF) const70 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
71 return hasReservedCallFrame(MF) ||
72 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
73 (hasFP(MF) && !TRI->hasStackRealignment(MF)) ||
74 TRI->hasBasePointer(MF);
75 }
76
77 // needsFrameIndexResolution - Do we need to perform FI resolution for
78 // this function. Normally, this is required only when the function
79 // has any stack objects. However, FI resolution actually has another job,
80 // not apparent from the title - it resolves callframesetup/destroy
81 // that were not simplified earlier.
82 // So, this is required for x86 functions that have push sequences even
83 // when there are no stack objects.
84 bool
needsFrameIndexResolution(const MachineFunction & MF) const85 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
86 return MF.getFrameInfo().hasStackObjects() ||
87 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
88 }
89
90 /// hasFP - Return true if the specified function should have a dedicated frame
91 /// pointer register. This is true if the function has variable sized allocas
92 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const93 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
94 const MachineFrameInfo &MFI = MF.getFrameInfo();
95 return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
96 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
97 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
98 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
99 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
100 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
101 MFI.hasStackMap() || MFI.hasPatchPoint() ||
102 MFI.hasCopyImplyingStackAdjustment());
103 }
104
getSUBriOpcode(bool IsLP64,int64_t Imm)105 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) {
106 if (IsLP64) {
107 if (isInt<8>(Imm))
108 return X86::SUB64ri8;
109 return X86::SUB64ri32;
110 } else {
111 if (isInt<8>(Imm))
112 return X86::SUB32ri8;
113 return X86::SUB32ri;
114 }
115 }
116
getADDriOpcode(bool IsLP64,int64_t Imm)117 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) {
118 if (IsLP64) {
119 if (isInt<8>(Imm))
120 return X86::ADD64ri8;
121 return X86::ADD64ri32;
122 } else {
123 if (isInt<8>(Imm))
124 return X86::ADD32ri8;
125 return X86::ADD32ri;
126 }
127 }
128
getSUBrrOpcode(bool IsLP64)129 static unsigned getSUBrrOpcode(bool IsLP64) {
130 return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
131 }
132
getADDrrOpcode(bool IsLP64)133 static unsigned getADDrrOpcode(bool IsLP64) {
134 return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
135 }
136
getANDriOpcode(bool IsLP64,int64_t Imm)137 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
138 if (IsLP64) {
139 if (isInt<8>(Imm))
140 return X86::AND64ri8;
141 return X86::AND64ri32;
142 }
143 if (isInt<8>(Imm))
144 return X86::AND32ri8;
145 return X86::AND32ri;
146 }
147
getLEArOpcode(bool IsLP64)148 static unsigned getLEArOpcode(bool IsLP64) {
149 return IsLP64 ? X86::LEA64r : X86::LEA32r;
150 }
151
isEAXLiveIn(MachineBasicBlock & MBB)152 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
153 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
154 unsigned Reg = RegMask.PhysReg;
155
156 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
157 Reg == X86::AH || Reg == X86::AL)
158 return true;
159 }
160
161 return false;
162 }
163
164 /// Check if the flags need to be preserved before the terminators.
165 /// This would be the case, if the eflags is live-in of the region
166 /// composed by the terminators or live-out of that region, without
167 /// being defined by a terminator.
168 static bool
flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock & MBB)169 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
170 for (const MachineInstr &MI : MBB.terminators()) {
171 bool BreakNext = false;
172 for (const MachineOperand &MO : MI.operands()) {
173 if (!MO.isReg())
174 continue;
175 Register Reg = MO.getReg();
176 if (Reg != X86::EFLAGS)
177 continue;
178
179 // This terminator needs an eflags that is not defined
180 // by a previous another terminator:
181 // EFLAGS is live-in of the region composed by the terminators.
182 if (!MO.isDef())
183 return true;
184 // This terminator defines the eflags, i.e., we don't need to preserve it.
185 // However, we still need to check this specific terminator does not
186 // read a live-in value.
187 BreakNext = true;
188 }
189 // We found a definition of the eflags, no need to preserve them.
190 if (BreakNext)
191 return false;
192 }
193
194 // None of the terminators use or define the eflags.
195 // Check if they are live-out, that would imply we need to preserve them.
196 for (const MachineBasicBlock *Succ : MBB.successors())
197 if (Succ->isLiveIn(X86::EFLAGS))
198 return true;
199
200 return false;
201 }
202
203 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
204 /// stack pointer by a constant value.
emitSPUpdate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & DL,int64_t NumBytes,bool InEpilogue) const205 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
206 MachineBasicBlock::iterator &MBBI,
207 const DebugLoc &DL,
208 int64_t NumBytes, bool InEpilogue) const {
209 bool isSub = NumBytes < 0;
210 uint64_t Offset = isSub ? -NumBytes : NumBytes;
211 MachineInstr::MIFlag Flag =
212 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
213
214 uint64_t Chunk = (1LL << 31) - 1;
215
216 MachineFunction &MF = *MBB.getParent();
217 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
218 const X86TargetLowering &TLI = *STI.getTargetLowering();
219 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
220
221 // It's ok to not take into account large chunks when probing, as the
222 // allocation is split in smaller chunks anyway.
223 if (EmitInlineStackProbe && !InEpilogue) {
224
225 // This pseudo-instruction is going to be expanded, potentially using a
226 // loop, by inlineStackProbe().
227 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset);
228 return;
229 } else if (Offset > Chunk) {
230 // Rather than emit a long series of instructions for large offsets,
231 // load the offset into a register and do one sub/add
232 unsigned Reg = 0;
233 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
234
235 if (isSub && !isEAXLiveIn(MBB))
236 Reg = Rax;
237 else
238 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI);
239
240 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
241 unsigned AddSubRROpc =
242 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
243 if (Reg) {
244 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
245 .addImm(Offset)
246 .setMIFlag(Flag);
247 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
248 .addReg(StackPtr)
249 .addReg(Reg);
250 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
251 return;
252 } else if (Offset > 8 * Chunk) {
253 // If we would need more than 8 add or sub instructions (a >16GB stack
254 // frame), it's worth spilling RAX to materialize this immediate.
255 // pushq %rax
256 // movabsq +-$Offset+-SlotSize, %rax
257 // addq %rsp, %rax
258 // xchg %rax, (%rsp)
259 // movq (%rsp), %rsp
260 assert(Is64Bit && "can't have 32-bit 16GB stack frame");
261 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
262 .addReg(Rax, RegState::Kill)
263 .setMIFlag(Flag);
264 // Subtract is not commutative, so negate the offset and always use add.
265 // Subtract 8 less and add 8 more to account for the PUSH we just did.
266 if (isSub)
267 Offset = -(Offset - SlotSize);
268 else
269 Offset = Offset + SlotSize;
270 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
271 .addImm(Offset)
272 .setMIFlag(Flag);
273 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
274 .addReg(Rax)
275 .addReg(StackPtr);
276 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
277 // Exchange the new SP in RAX with the top of the stack.
278 addRegOffset(
279 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
280 StackPtr, false, 0);
281 // Load new SP from the top of the stack into RSP.
282 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
283 StackPtr, false, 0);
284 return;
285 }
286 }
287
288 while (Offset) {
289 uint64_t ThisVal = std::min(Offset, Chunk);
290 if (ThisVal == SlotSize) {
291 // Use push / pop for slot sized adjustments as a size optimization. We
292 // need to find a dead register when using pop.
293 unsigned Reg = isSub
294 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
295 : TRI->findDeadCallerSavedReg(MBB, MBBI);
296 if (Reg) {
297 unsigned Opc = isSub
298 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
299 : (Is64Bit ? X86::POP64r : X86::POP32r);
300 BuildMI(MBB, MBBI, DL, TII.get(Opc))
301 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
302 .setMIFlag(Flag);
303 Offset -= ThisVal;
304 continue;
305 }
306 }
307
308 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
309 .setMIFlag(Flag);
310
311 Offset -= ThisVal;
312 }
313 }
314
BuildStackAdjustment(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,int64_t Offset,bool InEpilogue) const315 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
316 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
317 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
318 assert(Offset != 0 && "zero offset stack adjustment requested");
319
320 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
321 // is tricky.
322 bool UseLEA;
323 if (!InEpilogue) {
324 // Check if inserting the prologue at the beginning
325 // of MBB would require to use LEA operations.
326 // We need to use LEA operations if EFLAGS is live in, because
327 // it means an instruction will read it before it gets defined.
328 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
329 } else {
330 // If we can use LEA for SP but we shouldn't, check that none
331 // of the terminators uses the eflags. Otherwise we will insert
332 // a ADD that will redefine the eflags and break the condition.
333 // Alternatively, we could move the ADD, but this may not be possible
334 // and is an optimization anyway.
335 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
336 if (UseLEA && !STI.useLeaForSP())
337 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
338 // If that assert breaks, that means we do not do the right thing
339 // in canUseAsEpilogue.
340 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
341 "We shouldn't have allowed this insertion point");
342 }
343
344 MachineInstrBuilder MI;
345 if (UseLEA) {
346 MI = addRegOffset(BuildMI(MBB, MBBI, DL,
347 TII.get(getLEArOpcode(Uses64BitFramePtr)),
348 StackPtr),
349 StackPtr, false, Offset);
350 } else {
351 bool IsSub = Offset < 0;
352 uint64_t AbsOffset = IsSub ? -Offset : Offset;
353 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
354 : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
355 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
356 .addReg(StackPtr)
357 .addImm(AbsOffset);
358 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
359 }
360 return MI;
361 }
362
mergeSPUpdates(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,bool doMergeWithPrevious) const363 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
364 MachineBasicBlock::iterator &MBBI,
365 bool doMergeWithPrevious) const {
366 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
367 (!doMergeWithPrevious && MBBI == MBB.end()))
368 return 0;
369
370 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
371
372 PI = skipDebugInstructionsBackward(PI, MBB.begin());
373 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
374 // instruction, and that there are no DBG_VALUE or other instructions between
375 // ADD/SUB/LEA and its corresponding CFI instruction.
376 /* TODO: Add support for the case where there are multiple CFI instructions
377 below the ADD/SUB/LEA, e.g.:
378 ...
379 add
380 cfi_def_cfa_offset
381 cfi_offset
382 ...
383 */
384 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
385 PI = std::prev(PI);
386
387 unsigned Opc = PI->getOpcode();
388 int Offset = 0;
389
390 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
391 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
392 PI->getOperand(0).getReg() == StackPtr){
393 assert(PI->getOperand(1).getReg() == StackPtr);
394 Offset = PI->getOperand(2).getImm();
395 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
396 PI->getOperand(0).getReg() == StackPtr &&
397 PI->getOperand(1).getReg() == StackPtr &&
398 PI->getOperand(2).getImm() == 1 &&
399 PI->getOperand(3).getReg() == X86::NoRegister &&
400 PI->getOperand(5).getReg() == X86::NoRegister) {
401 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
402 Offset = PI->getOperand(4).getImm();
403 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
404 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
405 PI->getOperand(0).getReg() == StackPtr) {
406 assert(PI->getOperand(1).getReg() == StackPtr);
407 Offset = -PI->getOperand(2).getImm();
408 } else
409 return 0;
410
411 PI = MBB.erase(PI);
412 if (PI != MBB.end() && PI->isCFIInstruction()) {
413 auto CIs = MBB.getParent()->getFrameInstructions();
414 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()];
415 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset ||
416 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset)
417 PI = MBB.erase(PI);
418 }
419 if (!doMergeWithPrevious)
420 MBBI = skipDebugInstructionsForward(PI, MBB.end());
421
422 return Offset;
423 }
424
BuildCFI(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const MCCFIInstruction & CFIInst) const425 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
426 MachineBasicBlock::iterator MBBI,
427 const DebugLoc &DL,
428 const MCCFIInstruction &CFIInst) const {
429 MachineFunction &MF = *MBB.getParent();
430 unsigned CFIIndex = MF.addFrameInst(CFIInst);
431 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
432 .addCFIIndex(CFIIndex);
433 }
434
435 /// Emits Dwarf Info specifying offsets of callee saved registers and
436 /// frame pointer. This is called only when basic block sections are enabled.
emitCalleeSavedFrameMoves(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const437 void X86FrameLowering::emitCalleeSavedFrameMoves(
438 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
439 MachineFunction &MF = *MBB.getParent();
440 if (!hasFP(MF)) {
441 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
442 return;
443 }
444 const MachineModuleInfo &MMI = MF.getMMI();
445 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
446 const Register FramePtr = TRI->getFrameRegister(MF);
447 const Register MachineFramePtr =
448 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64))
449 : FramePtr;
450 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true);
451 // Offset = space for return address + size of the frame pointer itself.
452 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4);
453 BuildCFI(MBB, MBBI, DebugLoc{},
454 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset));
455 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
456 }
457
emitCalleeSavedFrameMoves(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool IsPrologue) const458 void X86FrameLowering::emitCalleeSavedFrameMoves(
459 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
460 const DebugLoc &DL, bool IsPrologue) const {
461 MachineFunction &MF = *MBB.getParent();
462 MachineFrameInfo &MFI = MF.getFrameInfo();
463 MachineModuleInfo &MMI = MF.getMMI();
464 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
465
466 // Add callee saved registers to move list.
467 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
468 if (CSI.empty()) return;
469
470 // Calculate offsets.
471 for (std::vector<CalleeSavedInfo>::const_iterator
472 I = CSI.begin(), E = CSI.end(); I != E; ++I) {
473 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
474 unsigned Reg = I->getReg();
475 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
476
477 if (IsPrologue) {
478 BuildCFI(MBB, MBBI, DL,
479 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
480 } else {
481 BuildCFI(MBB, MBBI, DL,
482 MCCFIInstruction::createRestore(nullptr, DwarfReg));
483 }
484 }
485 }
486
emitStackProbe(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const487 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
488 MachineBasicBlock &MBB,
489 MachineBasicBlock::iterator MBBI,
490 const DebugLoc &DL, bool InProlog) const {
491 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
492 if (STI.isTargetWindowsCoreCLR()) {
493 if (InProlog) {
494 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING))
495 .addImm(0 /* no explicit stack size */);
496 } else {
497 emitStackProbeInline(MF, MBB, MBBI, DL, false);
498 }
499 } else {
500 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
501 }
502 }
503
inlineStackProbe(MachineFunction & MF,MachineBasicBlock & PrologMBB) const504 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
505 MachineBasicBlock &PrologMBB) const {
506 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
507 return MI.getOpcode() == X86::STACKALLOC_W_PROBING;
508 });
509 if (Where != PrologMBB.end()) {
510 DebugLoc DL = PrologMBB.findDebugLoc(Where);
511 emitStackProbeInline(MF, PrologMBB, Where, DL, true);
512 Where->eraseFromParent();
513 }
514 }
515
emitStackProbeInline(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const516 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
517 MachineBasicBlock &MBB,
518 MachineBasicBlock::iterator MBBI,
519 const DebugLoc &DL,
520 bool InProlog) const {
521 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
522 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit())
523 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog);
524 else
525 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog);
526 }
527
emitStackProbeInlineGeneric(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const528 void X86FrameLowering::emitStackProbeInlineGeneric(
529 MachineFunction &MF, MachineBasicBlock &MBB,
530 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
531 MachineInstr &AllocWithProbe = *MBBI;
532 uint64_t Offset = AllocWithProbe.getOperand(0).getImm();
533
534 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
535 const X86TargetLowering &TLI = *STI.getTargetLowering();
536 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) &&
537 "different expansion expected for CoreCLR 64 bit");
538
539 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
540 uint64_t ProbeChunk = StackProbeSize * 8;
541
542 uint64_t MaxAlign =
543 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0;
544
545 // Synthesize a loop or unroll it, depending on the number of iterations.
546 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left
547 // between the unaligned rsp and current rsp.
548 if (Offset > ProbeChunk) {
549 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset,
550 MaxAlign % StackProbeSize);
551 } else {
552 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset,
553 MaxAlign % StackProbeSize);
554 }
555 }
556
emitStackProbeInlineGenericBlock(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,uint64_t Offset,uint64_t AlignOffset) const557 void X86FrameLowering::emitStackProbeInlineGenericBlock(
558 MachineFunction &MF, MachineBasicBlock &MBB,
559 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
560 uint64_t AlignOffset) const {
561
562 const bool NeedsDwarfCFI = needsDwarfCFI(MF);
563 const bool HasFP = hasFP(MF);
564 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
565 const X86TargetLowering &TLI = *STI.getTargetLowering();
566 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset);
567 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
568 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
569
570 uint64_t CurrentOffset = 0;
571
572 assert(AlignOffset < StackProbeSize);
573
574 // If the offset is so small it fits within a page, there's nothing to do.
575 if (StackProbeSize < Offset + AlignOffset) {
576
577 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
578 .addReg(StackPtr)
579 .addImm(StackProbeSize - AlignOffset)
580 .setMIFlag(MachineInstr::FrameSetup);
581 if (!HasFP && NeedsDwarfCFI) {
582 BuildCFI(MBB, MBBI, DL,
583 MCCFIInstruction::createAdjustCfaOffset(
584 nullptr, StackProbeSize - AlignOffset));
585 }
586 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
587
588 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
589 .setMIFlag(MachineInstr::FrameSetup),
590 StackPtr, false, 0)
591 .addImm(0)
592 .setMIFlag(MachineInstr::FrameSetup);
593 NumFrameExtraProbe++;
594 CurrentOffset = StackProbeSize - AlignOffset;
595 }
596
597 // For the next N - 1 pages, just probe. I tried to take advantage of
598 // natural probes but it implies much more logic and there was very few
599 // interesting natural probes to interleave.
600 while (CurrentOffset + StackProbeSize < Offset) {
601 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
602 .addReg(StackPtr)
603 .addImm(StackProbeSize)
604 .setMIFlag(MachineInstr::FrameSetup);
605 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
606
607 if (!HasFP && NeedsDwarfCFI) {
608 BuildCFI(
609 MBB, MBBI, DL,
610 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize));
611 }
612 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
613 .setMIFlag(MachineInstr::FrameSetup),
614 StackPtr, false, 0)
615 .addImm(0)
616 .setMIFlag(MachineInstr::FrameSetup);
617 NumFrameExtraProbe++;
618 CurrentOffset += StackProbeSize;
619 }
620
621 // No need to probe the tail, it is smaller than a Page.
622 uint64_t ChunkSize = Offset - CurrentOffset;
623 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
624 .addReg(StackPtr)
625 .addImm(ChunkSize)
626 .setMIFlag(MachineInstr::FrameSetup);
627 // No need to adjust Dwarf CFA offset here, the last position of the stack has
628 // been defined
629 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
630 }
631
emitStackProbeInlineGenericLoop(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,uint64_t Offset,uint64_t AlignOffset) const632 void X86FrameLowering::emitStackProbeInlineGenericLoop(
633 MachineFunction &MF, MachineBasicBlock &MBB,
634 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
635 uint64_t AlignOffset) const {
636 assert(Offset && "null offset");
637
638 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
639 const X86TargetLowering &TLI = *STI.getTargetLowering();
640 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
641 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
642
643 if (AlignOffset) {
644 if (AlignOffset < StackProbeSize) {
645 // Perform a first smaller allocation followed by a probe.
646 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset);
647 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr)
648 .addReg(StackPtr)
649 .addImm(AlignOffset)
650 .setMIFlag(MachineInstr::FrameSetup);
651 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
652
653 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
654 .setMIFlag(MachineInstr::FrameSetup),
655 StackPtr, false, 0)
656 .addImm(0)
657 .setMIFlag(MachineInstr::FrameSetup);
658 NumFrameExtraProbe++;
659 Offset -= AlignOffset;
660 }
661 }
662
663 // Synthesize a loop
664 NumFrameLoopProbe++;
665 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
666
667 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB);
668 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB);
669
670 MachineFunction::iterator MBBIter = ++MBB.getIterator();
671 MF.insert(MBBIter, testMBB);
672 MF.insert(MBBIter, tailMBB);
673
674 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D;
675 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
676 .addReg(StackPtr)
677 .setMIFlag(MachineInstr::FrameSetup);
678
679 // save loop bound
680 {
681 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, Offset);
682 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed)
683 .addReg(FinalStackProbed)
684 .addImm(Offset / StackProbeSize * StackProbeSize)
685 .setMIFlag(MachineInstr::FrameSetup);
686 }
687
688 // allocate a page
689 {
690 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
691 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr)
692 .addReg(StackPtr)
693 .addImm(StackProbeSize)
694 .setMIFlag(MachineInstr::FrameSetup);
695 }
696
697 // touch the page
698 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc))
699 .setMIFlag(MachineInstr::FrameSetup),
700 StackPtr, false, 0)
701 .addImm(0)
702 .setMIFlag(MachineInstr::FrameSetup);
703
704 // cmp with stack pointer bound
705 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
706 .addReg(StackPtr)
707 .addReg(FinalStackProbed)
708 .setMIFlag(MachineInstr::FrameSetup);
709
710 // jump
711 BuildMI(testMBB, DL, TII.get(X86::JCC_1))
712 .addMBB(testMBB)
713 .addImm(X86::COND_NE)
714 .setMIFlag(MachineInstr::FrameSetup);
715 testMBB->addSuccessor(testMBB);
716 testMBB->addSuccessor(tailMBB);
717
718 // BB management
719 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end());
720 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB);
721 MBB.addSuccessor(testMBB);
722
723 // handle tail
724 unsigned TailOffset = Offset % StackProbeSize;
725 if (TailOffset) {
726 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset);
727 BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr)
728 .addReg(StackPtr)
729 .addImm(TailOffset)
730 .setMIFlag(MachineInstr::FrameSetup);
731 }
732
733 // Update Live In information
734 recomputeLiveIns(*testMBB);
735 recomputeLiveIns(*tailMBB);
736 }
737
emitStackProbeInlineWindowsCoreCLR64(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const738 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
739 MachineFunction &MF, MachineBasicBlock &MBB,
740 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
741 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
742 assert(STI.is64Bit() && "different expansion needed for 32 bit");
743 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
744 const TargetInstrInfo &TII = *STI.getInstrInfo();
745 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
746
747 // RAX contains the number of bytes of desired stack adjustment.
748 // The handling here assumes this value has already been updated so as to
749 // maintain stack alignment.
750 //
751 // We need to exit with RSP modified by this amount and execute suitable
752 // page touches to notify the OS that we're growing the stack responsibly.
753 // All stack probing must be done without modifying RSP.
754 //
755 // MBB:
756 // SizeReg = RAX;
757 // ZeroReg = 0
758 // CopyReg = RSP
759 // Flags, TestReg = CopyReg - SizeReg
760 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg
761 // LimitReg = gs magic thread env access
762 // if FinalReg >= LimitReg goto ContinueMBB
763 // RoundBB:
764 // RoundReg = page address of FinalReg
765 // LoopMBB:
766 // LoopReg = PHI(LimitReg,ProbeReg)
767 // ProbeReg = LoopReg - PageSize
768 // [ProbeReg] = 0
769 // if (ProbeReg > RoundReg) goto LoopMBB
770 // ContinueMBB:
771 // RSP = RSP - RAX
772 // [rest of original MBB]
773
774 // Set up the new basic blocks
775 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
776 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
777 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
778
779 MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
780 MF.insert(MBBIter, RoundMBB);
781 MF.insert(MBBIter, LoopMBB);
782 MF.insert(MBBIter, ContinueMBB);
783
784 // Split MBB and move the tail portion down to ContinueMBB.
785 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
786 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
787 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
788
789 // Some useful constants
790 const int64_t ThreadEnvironmentStackLimit = 0x10;
791 const int64_t PageSize = 0x1000;
792 const int64_t PageMask = ~(PageSize - 1);
793
794 // Registers we need. For the normal case we use virtual
795 // registers. For the prolog expansion we use RAX, RCX and RDX.
796 MachineRegisterInfo &MRI = MF.getRegInfo();
797 const TargetRegisterClass *RegClass = &X86::GR64RegClass;
798 const Register SizeReg = InProlog ? X86::RAX
799 : MRI.createVirtualRegister(RegClass),
800 ZeroReg = InProlog ? X86::RCX
801 : MRI.createVirtualRegister(RegClass),
802 CopyReg = InProlog ? X86::RDX
803 : MRI.createVirtualRegister(RegClass),
804 TestReg = InProlog ? X86::RDX
805 : MRI.createVirtualRegister(RegClass),
806 FinalReg = InProlog ? X86::RDX
807 : MRI.createVirtualRegister(RegClass),
808 RoundedReg = InProlog ? X86::RDX
809 : MRI.createVirtualRegister(RegClass),
810 LimitReg = InProlog ? X86::RCX
811 : MRI.createVirtualRegister(RegClass),
812 JoinReg = InProlog ? X86::RCX
813 : MRI.createVirtualRegister(RegClass),
814 ProbeReg = InProlog ? X86::RCX
815 : MRI.createVirtualRegister(RegClass);
816
817 // SP-relative offsets where we can save RCX and RDX.
818 int64_t RCXShadowSlot = 0;
819 int64_t RDXShadowSlot = 0;
820
821 // If inlining in the prolog, save RCX and RDX.
822 if (InProlog) {
823 // Compute the offsets. We need to account for things already
824 // pushed onto the stack at this point: return address, frame
825 // pointer (if used), and callee saves.
826 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
827 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
828 const bool HasFP = hasFP(MF);
829
830 // Check if we need to spill RCX and/or RDX.
831 // Here we assume that no earlier prologue instruction changes RCX and/or
832 // RDX, so checking the block live-ins is enough.
833 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
834 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
835 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
836 // Assign the initial slot to both registers, then change RDX's slot if both
837 // need to be spilled.
838 if (IsRCXLiveIn)
839 RCXShadowSlot = InitSlot;
840 if (IsRDXLiveIn)
841 RDXShadowSlot = InitSlot;
842 if (IsRDXLiveIn && IsRCXLiveIn)
843 RDXShadowSlot += 8;
844 // Emit the saves if needed.
845 if (IsRCXLiveIn)
846 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
847 RCXShadowSlot)
848 .addReg(X86::RCX);
849 if (IsRDXLiveIn)
850 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
851 RDXShadowSlot)
852 .addReg(X86::RDX);
853 } else {
854 // Not in the prolog. Copy RAX to a virtual reg.
855 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
856 }
857
858 // Add code to MBB to check for overflow and set the new target stack pointer
859 // to zero if so.
860 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
861 .addReg(ZeroReg, RegState::Undef)
862 .addReg(ZeroReg, RegState::Undef);
863 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
864 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
865 .addReg(CopyReg)
866 .addReg(SizeReg);
867 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
868 .addReg(TestReg)
869 .addReg(ZeroReg)
870 .addImm(X86::COND_B);
871
872 // FinalReg now holds final stack pointer value, or zero if
873 // allocation would overflow. Compare against the current stack
874 // limit from the thread environment block. Note this limit is the
875 // lowest touched page on the stack, not the point at which the OS
876 // will cause an overflow exception, so this is just an optimization
877 // to avoid unnecessarily touching pages that are below the current
878 // SP but already committed to the stack by the OS.
879 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
880 .addReg(0)
881 .addImm(1)
882 .addReg(0)
883 .addImm(ThreadEnvironmentStackLimit)
884 .addReg(X86::GS);
885 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
886 // Jump if the desired stack pointer is at or above the stack limit.
887 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
888
889 // Add code to roundMBB to round the final stack pointer to a page boundary.
890 RoundMBB->addLiveIn(FinalReg);
891 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
892 .addReg(FinalReg)
893 .addImm(PageMask);
894 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
895
896 // LimitReg now holds the current stack limit, RoundedReg page-rounded
897 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
898 // and probe until we reach RoundedReg.
899 if (!InProlog) {
900 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
901 .addReg(LimitReg)
902 .addMBB(RoundMBB)
903 .addReg(ProbeReg)
904 .addMBB(LoopMBB);
905 }
906
907 LoopMBB->addLiveIn(JoinReg);
908 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
909 false, -PageSize);
910
911 // Probe by storing a byte onto the stack.
912 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
913 .addReg(ProbeReg)
914 .addImm(1)
915 .addReg(0)
916 .addImm(0)
917 .addReg(0)
918 .addImm(0);
919
920 LoopMBB->addLiveIn(RoundedReg);
921 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
922 .addReg(RoundedReg)
923 .addReg(ProbeReg);
924 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
925
926 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
927
928 // If in prolog, restore RDX and RCX.
929 if (InProlog) {
930 if (RCXShadowSlot) // It means we spilled RCX in the prologue.
931 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
932 TII.get(X86::MOV64rm), X86::RCX),
933 X86::RSP, false, RCXShadowSlot);
934 if (RDXShadowSlot) // It means we spilled RDX in the prologue.
935 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
936 TII.get(X86::MOV64rm), X86::RDX),
937 X86::RSP, false, RDXShadowSlot);
938 }
939
940 // Now that the probing is done, add code to continueMBB to update
941 // the stack pointer for real.
942 ContinueMBB->addLiveIn(SizeReg);
943 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
944 .addReg(X86::RSP)
945 .addReg(SizeReg);
946
947 // Add the control flow edges we need.
948 MBB.addSuccessor(ContinueMBB);
949 MBB.addSuccessor(RoundMBB);
950 RoundMBB->addSuccessor(LoopMBB);
951 LoopMBB->addSuccessor(ContinueMBB);
952 LoopMBB->addSuccessor(LoopMBB);
953
954 // Mark all the instructions added to the prolog as frame setup.
955 if (InProlog) {
956 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
957 BeforeMBBI->setFlag(MachineInstr::FrameSetup);
958 }
959 for (MachineInstr &MI : *RoundMBB) {
960 MI.setFlag(MachineInstr::FrameSetup);
961 }
962 for (MachineInstr &MI : *LoopMBB) {
963 MI.setFlag(MachineInstr::FrameSetup);
964 }
965 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
966 CMBBI != ContinueMBBI; ++CMBBI) {
967 CMBBI->setFlag(MachineInstr::FrameSetup);
968 }
969 }
970 }
971
emitStackProbeCall(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const972 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
973 MachineBasicBlock &MBB,
974 MachineBasicBlock::iterator MBBI,
975 const DebugLoc &DL,
976 bool InProlog) const {
977 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
978
979 // FIXME: Add indirect thunk support and remove this.
980 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls())
981 report_fatal_error("Emitting stack probe calls on 64-bit with the large "
982 "code model and indirect thunks not yet implemented.");
983
984 unsigned CallOp;
985 if (Is64Bit)
986 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
987 else
988 CallOp = X86::CALLpcrel32;
989
990 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
991
992 MachineInstrBuilder CI;
993 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
994
995 // All current stack probes take AX and SP as input, clobber flags, and
996 // preserve all registers. x86_64 probes leave RSP unmodified.
997 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
998 // For the large code model, we have to call through a register. Use R11,
999 // as it is scratch in all supported calling conventions.
1000 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
1001 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1002 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
1003 } else {
1004 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
1005 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1006 }
1007
1008 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
1009 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
1010 CI.addReg(AX, RegState::Implicit)
1011 .addReg(SP, RegState::Implicit)
1012 .addReg(AX, RegState::Define | RegState::Implicit)
1013 .addReg(SP, RegState::Define | RegState::Implicit)
1014 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1015
1016 if (STI.isTargetWin64() || !STI.isOSWindows()) {
1017 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
1018 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
1019 // themselves. They also does not clobber %rax so we can reuse it when
1020 // adjusting %rsp.
1021 // All other platforms do not specify a particular ABI for the stack probe
1022 // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
1023 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
1024 .addReg(SP)
1025 .addReg(AX);
1026 }
1027
1028 if (InProlog) {
1029 // Apply the frame setup flag to all inserted instrs.
1030 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
1031 ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
1032 }
1033 }
1034
calculateSetFPREG(uint64_t SPAdjust)1035 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
1036 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
1037 // and might require smaller successive adjustments.
1038 const uint64_t Win64MaxSEHOffset = 128;
1039 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
1040 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
1041 return SEHFrameOffset & -16;
1042 }
1043
1044 // If we're forcing a stack realignment we can't rely on just the frame
1045 // info, we need to know the ABI stack alignment as well in case we
1046 // have a call out. Otherwise just make sure we have some alignment - we'll
1047 // go with the minimum SlotSize.
calculateMaxStackAlign(const MachineFunction & MF) const1048 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
1049 const MachineFrameInfo &MFI = MF.getFrameInfo();
1050 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment.
1051 Align StackAlign = getStackAlign();
1052 if (MF.getFunction().hasFnAttribute("stackrealign")) {
1053 if (MFI.hasCalls())
1054 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
1055 else if (MaxAlign < SlotSize)
1056 MaxAlign = Align(SlotSize);
1057 }
1058 return MaxAlign.value();
1059 }
1060
BuildStackAlignAND(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,unsigned Reg,uint64_t MaxAlign) const1061 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
1062 MachineBasicBlock::iterator MBBI,
1063 const DebugLoc &DL, unsigned Reg,
1064 uint64_t MaxAlign) const {
1065 uint64_t Val = -MaxAlign;
1066 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
1067
1068 MachineFunction &MF = *MBB.getParent();
1069 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
1070 const X86TargetLowering &TLI = *STI.getTargetLowering();
1071 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
1072 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
1073
1074 // We want to make sure that (in worst case) less than StackProbeSize bytes
1075 // are not probed after the AND. This assumption is used in
1076 // emitStackProbeInlineGeneric.
1077 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) {
1078 {
1079 NumFrameLoopProbe++;
1080 MachineBasicBlock *entryMBB =
1081 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1082 MachineBasicBlock *headMBB =
1083 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1084 MachineBasicBlock *bodyMBB =
1085 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1086 MachineBasicBlock *footMBB =
1087 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1088
1089 MachineFunction::iterator MBBIter = MBB.getIterator();
1090 MF.insert(MBBIter, entryMBB);
1091 MF.insert(MBBIter, headMBB);
1092 MF.insert(MBBIter, bodyMBB);
1093 MF.insert(MBBIter, footMBB);
1094 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
1095 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D;
1096
1097 // Setup entry block
1098 {
1099
1100 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI);
1101 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
1102 .addReg(StackPtr)
1103 .setMIFlag(MachineInstr::FrameSetup);
1104 MachineInstr *MI =
1105 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed)
1106 .addReg(FinalStackProbed)
1107 .addImm(Val)
1108 .setMIFlag(MachineInstr::FrameSetup);
1109
1110 // The EFLAGS implicit def is dead.
1111 MI->getOperand(3).setIsDead();
1112
1113 BuildMI(entryMBB, DL,
1114 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1115 .addReg(FinalStackProbed)
1116 .addReg(StackPtr)
1117 .setMIFlag(MachineInstr::FrameSetup);
1118 BuildMI(entryMBB, DL, TII.get(X86::JCC_1))
1119 .addMBB(&MBB)
1120 .addImm(X86::COND_E)
1121 .setMIFlag(MachineInstr::FrameSetup);
1122 entryMBB->addSuccessor(headMBB);
1123 entryMBB->addSuccessor(&MBB);
1124 }
1125
1126 // Loop entry block
1127
1128 {
1129 const unsigned SUBOpc =
1130 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
1131 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr)
1132 .addReg(StackPtr)
1133 .addImm(StackProbeSize)
1134 .setMIFlag(MachineInstr::FrameSetup);
1135
1136 BuildMI(headMBB, DL,
1137 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1138 .addReg(FinalStackProbed)
1139 .addReg(StackPtr)
1140 .setMIFlag(MachineInstr::FrameSetup);
1141
1142 // jump
1143 BuildMI(headMBB, DL, TII.get(X86::JCC_1))
1144 .addMBB(footMBB)
1145 .addImm(X86::COND_B)
1146 .setMIFlag(MachineInstr::FrameSetup);
1147
1148 headMBB->addSuccessor(bodyMBB);
1149 headMBB->addSuccessor(footMBB);
1150 }
1151
1152 // setup loop body
1153 {
1154 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc))
1155 .setMIFlag(MachineInstr::FrameSetup),
1156 StackPtr, false, 0)
1157 .addImm(0)
1158 .setMIFlag(MachineInstr::FrameSetup);
1159
1160 const unsigned SUBOpc =
1161 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
1162 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr)
1163 .addReg(StackPtr)
1164 .addImm(StackProbeSize)
1165 .setMIFlag(MachineInstr::FrameSetup);
1166
1167 // cmp with stack pointer bound
1168 BuildMI(bodyMBB, DL,
1169 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1170 .addReg(FinalStackProbed)
1171 .addReg(StackPtr)
1172 .setMIFlag(MachineInstr::FrameSetup);
1173
1174 // jump
1175 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1))
1176 .addMBB(bodyMBB)
1177 .addImm(X86::COND_B)
1178 .setMIFlag(MachineInstr::FrameSetup);
1179 bodyMBB->addSuccessor(bodyMBB);
1180 bodyMBB->addSuccessor(footMBB);
1181 }
1182
1183 // setup loop footer
1184 {
1185 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr)
1186 .addReg(FinalStackProbed)
1187 .setMIFlag(MachineInstr::FrameSetup);
1188 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc))
1189 .setMIFlag(MachineInstr::FrameSetup),
1190 StackPtr, false, 0)
1191 .addImm(0)
1192 .setMIFlag(MachineInstr::FrameSetup);
1193 footMBB->addSuccessor(&MBB);
1194 }
1195
1196 recomputeLiveIns(*headMBB);
1197 recomputeLiveIns(*bodyMBB);
1198 recomputeLiveIns(*footMBB);
1199 recomputeLiveIns(MBB);
1200 }
1201 } else {
1202 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
1203 .addReg(Reg)
1204 .addImm(Val)
1205 .setMIFlag(MachineInstr::FrameSetup);
1206
1207 // The EFLAGS implicit def is dead.
1208 MI->getOperand(3).setIsDead();
1209 }
1210 }
1211
has128ByteRedZone(const MachineFunction & MF) const1212 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
1213 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
1214 // clobbered by any interrupt handler.
1215 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1216 "MF used frame lowering for wrong subtarget");
1217 const Function &Fn = MF.getFunction();
1218 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
1219 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
1220 }
1221
isWin64Prologue(const MachineFunction & MF) const1222 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const {
1223 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1224 }
1225
needsDwarfCFI(const MachineFunction & MF) const1226 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const {
1227 return !isWin64Prologue(MF) && MF.needsFrameMoves();
1228 }
1229
1230 /// emitPrologue - Push callee-saved registers onto the stack, which
1231 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
1232 /// space for local variables. Also emit labels used by the exception handler to
1233 /// generate the exception handling frames.
1234
1235 /*
1236 Here's a gist of what gets emitted:
1237
1238 ; Establish frame pointer, if needed
1239 [if needs FP]
1240 push %rbp
1241 .cfi_def_cfa_offset 16
1242 .cfi_offset %rbp, -16
1243 .seh_pushreg %rpb
1244 mov %rsp, %rbp
1245 .cfi_def_cfa_register %rbp
1246
1247 ; Spill general-purpose registers
1248 [for all callee-saved GPRs]
1249 pushq %<reg>
1250 [if not needs FP]
1251 .cfi_def_cfa_offset (offset from RETADDR)
1252 .seh_pushreg %<reg>
1253
1254 ; If the required stack alignment > default stack alignment
1255 ; rsp needs to be re-aligned. This creates a "re-alignment gap"
1256 ; of unknown size in the stack frame.
1257 [if stack needs re-alignment]
1258 and $MASK, %rsp
1259
1260 ; Allocate space for locals
1261 [if target is Windows and allocated space > 4096 bytes]
1262 ; Windows needs special care for allocations larger
1263 ; than one page.
1264 mov $NNN, %rax
1265 call ___chkstk_ms/___chkstk
1266 sub %rax, %rsp
1267 [else]
1268 sub $NNN, %rsp
1269
1270 [if needs FP]
1271 .seh_stackalloc (size of XMM spill slots)
1272 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
1273 [else]
1274 .seh_stackalloc NNN
1275
1276 ; Spill XMMs
1277 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
1278 ; they may get spilled on any platform, if the current function
1279 ; calls @llvm.eh.unwind.init
1280 [if needs FP]
1281 [for all callee-saved XMM registers]
1282 movaps %<xmm reg>, -MMM(%rbp)
1283 [for all callee-saved XMM registers]
1284 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
1285 ; i.e. the offset relative to (%rbp - SEHFrameOffset)
1286 [else]
1287 [for all callee-saved XMM registers]
1288 movaps %<xmm reg>, KKK(%rsp)
1289 [for all callee-saved XMM registers]
1290 .seh_savexmm %<xmm reg>, KKK
1291
1292 .seh_endprologue
1293
1294 [if needs base pointer]
1295 mov %rsp, %rbx
1296 [if needs to restore base pointer]
1297 mov %rsp, -MMM(%rbp)
1298
1299 ; Emit CFI info
1300 [if needs FP]
1301 [for all callee-saved registers]
1302 .cfi_offset %<reg>, (offset from %rbp)
1303 [else]
1304 .cfi_def_cfa_offset (offset from RETADDR)
1305 [for all callee-saved registers]
1306 .cfi_offset %<reg>, (offset from %rsp)
1307
1308 Notes:
1309 - .seh directives are emitted only for Windows 64 ABI
1310 - .cv_fpo directives are emitted on win32 when emitting CodeView
1311 - .cfi directives are emitted for all other ABIs
1312 - for 32-bit code, substitute %e?? registers for %r??
1313 */
1314
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const1315 void X86FrameLowering::emitPrologue(MachineFunction &MF,
1316 MachineBasicBlock &MBB) const {
1317 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1318 "MF used frame lowering for wrong subtarget");
1319 MachineBasicBlock::iterator MBBI = MBB.begin();
1320 MachineFrameInfo &MFI = MF.getFrameInfo();
1321 const Function &Fn = MF.getFunction();
1322 MachineModuleInfo &MMI = MF.getMMI();
1323 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1324 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
1325 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate.
1326 bool IsFunclet = MBB.isEHFuncletEntry();
1327 EHPersonality Personality = EHPersonality::Unknown;
1328 if (Fn.hasPersonalityFn())
1329 Personality = classifyEHPersonality(Fn.getPersonalityFn());
1330 bool FnHasClrFunclet =
1331 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
1332 bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
1333 bool HasFP = hasFP(MF);
1334 bool IsWin64Prologue = isWin64Prologue(MF);
1335 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
1336 // FIXME: Emit FPO data for EH funclets.
1337 bool NeedsWinFPO =
1338 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
1339 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
1340 bool NeedsDwarfCFI = needsDwarfCFI(MF);
1341 Register FramePtr = TRI->getFrameRegister(MF);
1342 const Register MachineFramePtr =
1343 STI.isTarget64BitILP32()
1344 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1345 Register BasePtr = TRI->getBaseRegister();
1346 bool HasWinCFI = false;
1347
1348 // Debug location must be unknown since the first debug location is used
1349 // to determine the end of the prologue.
1350 DebugLoc DL;
1351
1352 // Add RETADDR move area to callee saved frame size.
1353 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1354 if (TailCallReturnAddrDelta && IsWin64Prologue)
1355 report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1356
1357 if (TailCallReturnAddrDelta < 0)
1358 X86FI->setCalleeSavedFrameSize(
1359 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
1360
1361 const bool EmitStackProbeCall =
1362 STI.getTargetLowering()->hasStackProbeSymbol(MF);
1363 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1364
1365 if (HasFP && X86FI->hasSwiftAsyncContext()) {
1366 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8),
1367 MachineFramePtr)
1368 .addUse(MachineFramePtr)
1369 .addImm(60)
1370 .setMIFlag(MachineInstr::FrameSetup);
1371 }
1372
1373 // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1374 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1375 // stack alignment.
1376 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1377 Fn.arg_size() == 2) {
1378 StackSize += 8;
1379 MFI.setStackSize(StackSize);
1380 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1381 }
1382
1383 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1384 // function, and use up to 128 bytes of stack space, don't have a frame
1385 // pointer, calls, or dynamic alloca then we do not need to adjust the
1386 // stack pointer (we fit in the Red Zone). We also check that we don't
1387 // push and pop from the stack.
1388 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) &&
1389 !MFI.hasVarSizedObjects() && // No dynamic alloca.
1390 !MFI.adjustsStack() && // No calls.
1391 !EmitStackProbeCall && // No stack probes.
1392 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1393 !MF.shouldSplitStack()) { // Regular stack
1394 uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1395 if (HasFP) MinSize += SlotSize;
1396 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1397 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1398 MFI.setStackSize(StackSize);
1399 }
1400
1401 // Insert stack pointer adjustment for later moving of return addr. Only
1402 // applies to tail call optimized functions where the callee argument stack
1403 // size is bigger than the callers.
1404 if (TailCallReturnAddrDelta < 0) {
1405 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1406 /*InEpilogue=*/false)
1407 .setMIFlag(MachineInstr::FrameSetup);
1408 }
1409
1410 // Mapping for machine moves:
1411 //
1412 // DST: VirtualFP AND
1413 // SRC: VirtualFP => DW_CFA_def_cfa_offset
1414 // ELSE => DW_CFA_def_cfa
1415 //
1416 // SRC: VirtualFP AND
1417 // DST: Register => DW_CFA_def_cfa_register
1418 //
1419 // ELSE
1420 // OFFSET < 0 => DW_CFA_offset_extended_sf
1421 // REG < 64 => DW_CFA_offset + Reg
1422 // ELSE => DW_CFA_offset_extended
1423
1424 uint64_t NumBytes = 0;
1425 int stackGrowth = -SlotSize;
1426
1427 // Find the funclet establisher parameter
1428 Register Establisher = X86::NoRegister;
1429 if (IsClrFunclet)
1430 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1431 else if (IsFunclet)
1432 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1433
1434 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1435 // Immediately spill establisher into the home slot.
1436 // The runtime cares about this.
1437 // MOV64mr %rdx, 16(%rsp)
1438 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1439 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1440 .addReg(Establisher)
1441 .setMIFlag(MachineInstr::FrameSetup);
1442 MBB.addLiveIn(Establisher);
1443 }
1444
1445 if (HasFP) {
1446 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1447
1448 // Calculate required stack adjustment.
1449 uint64_t FrameSize = StackSize - SlotSize;
1450 // If required, include space for extra hidden slot for stashing base pointer.
1451 if (X86FI->getRestoreBasePointer())
1452 FrameSize += SlotSize;
1453
1454 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1455
1456 // Callee-saved registers are pushed on stack before the stack is realigned.
1457 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
1458 NumBytes = alignTo(NumBytes, MaxAlign);
1459
1460 // Save EBP/RBP into the appropriate stack slot.
1461 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1462 .addReg(MachineFramePtr, RegState::Kill)
1463 .setMIFlag(MachineInstr::FrameSetup);
1464
1465 if (NeedsDwarfCFI) {
1466 // Mark the place where EBP/RBP was saved.
1467 // Define the current CFA rule to use the provided offset.
1468 assert(StackSize);
1469 BuildCFI(MBB, MBBI, DL,
1470 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth));
1471
1472 // Change the rule for the FramePtr to be an "offset" rule.
1473 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1474 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1475 nullptr, DwarfFramePtr, 2 * stackGrowth));
1476 }
1477
1478 if (NeedsWinCFI) {
1479 HasWinCFI = true;
1480 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1481 .addImm(FramePtr)
1482 .setMIFlag(MachineInstr::FrameSetup);
1483 }
1484
1485 if (!IsWin64Prologue && !IsFunclet) {
1486 // Update EBP with the new base value.
1487 if (!X86FI->hasSwiftAsyncContext()) {
1488 BuildMI(MBB, MBBI, DL,
1489 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1490 FramePtr)
1491 .addReg(StackPtr)
1492 .setMIFlag(MachineInstr::FrameSetup);
1493 } else {
1494 // Before we update the live frame pointer we have to ensure there's a
1495 // valid (or null) asynchronous context in its slot just before FP in
1496 // the frame record, so store it now.
1497 const auto &Attrs = MF.getFunction().getAttributes();
1498
1499 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) {
1500 // We have an initial context in r14, store it just before the frame
1501 // pointer.
1502 MBB.addLiveIn(X86::R14);
1503 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1504 .addReg(X86::R14)
1505 .setMIFlag(MachineInstr::FrameSetup);
1506 } else {
1507 // No initial context, store null so that there's no pointer that
1508 // could be misused.
1509 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8))
1510 .addImm(0)
1511 .setMIFlag(MachineInstr::FrameSetup);
1512 }
1513 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr)
1514 .addUse(X86::RSP)
1515 .addImm(1)
1516 .addUse(X86::NoRegister)
1517 .addImm(8)
1518 .addUse(X86::NoRegister)
1519 .setMIFlag(MachineInstr::FrameSetup);
1520 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP)
1521 .addUse(X86::RSP)
1522 .addImm(8)
1523 .setMIFlag(MachineInstr::FrameSetup);
1524 }
1525
1526 if (NeedsDwarfCFI) {
1527 // Mark effective beginning of when frame pointer becomes valid.
1528 // Define the current CFA to use the EBP/RBP register.
1529 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1530 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1531 nullptr, DwarfFramePtr));
1532 }
1533
1534 if (NeedsWinFPO) {
1535 // .cv_fpo_setframe $FramePtr
1536 HasWinCFI = true;
1537 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1538 .addImm(FramePtr)
1539 .addImm(0)
1540 .setMIFlag(MachineInstr::FrameSetup);
1541 }
1542 }
1543 } else {
1544 assert(!IsFunclet && "funclets without FPs not yet implemented");
1545 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1546 }
1547
1548 // Update the offset adjustment, which is mainly used by codeview to translate
1549 // from ESP to VFRAME relative local variable offsets.
1550 if (!IsFunclet) {
1551 if (HasFP && TRI->hasStackRealignment(MF))
1552 MFI.setOffsetAdjustment(-NumBytes);
1553 else
1554 MFI.setOffsetAdjustment(-StackSize);
1555 }
1556
1557 // For EH funclets, only allocate enough space for outgoing calls. Save the
1558 // NumBytes value that we would've used for the parent frame.
1559 unsigned ParentFrameNumBytes = NumBytes;
1560 if (IsFunclet)
1561 NumBytes = getWinEHFuncletFrameSize(MF);
1562
1563 // Skip the callee-saved push instructions.
1564 bool PushedRegs = false;
1565 int StackOffset = 2 * stackGrowth;
1566
1567 while (MBBI != MBB.end() &&
1568 MBBI->getFlag(MachineInstr::FrameSetup) &&
1569 (MBBI->getOpcode() == X86::PUSH32r ||
1570 MBBI->getOpcode() == X86::PUSH64r)) {
1571 PushedRegs = true;
1572 Register Reg = MBBI->getOperand(0).getReg();
1573 ++MBBI;
1574
1575 if (!HasFP && NeedsDwarfCFI) {
1576 // Mark callee-saved push instruction.
1577 // Define the current CFA rule to use the provided offset.
1578 assert(StackSize);
1579 BuildCFI(MBB, MBBI, DL,
1580 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset));
1581 StackOffset += stackGrowth;
1582 }
1583
1584 if (NeedsWinCFI) {
1585 HasWinCFI = true;
1586 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1587 .addImm(Reg)
1588 .setMIFlag(MachineInstr::FrameSetup);
1589 }
1590 }
1591
1592 // Realign stack after we pushed callee-saved registers (so that we'll be
1593 // able to calculate their offsets from the frame pointer).
1594 // Don't do this for Win64, it needs to realign the stack after the prologue.
1595 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) {
1596 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1597 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1598
1599 if (NeedsWinCFI) {
1600 HasWinCFI = true;
1601 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1602 .addImm(MaxAlign)
1603 .setMIFlag(MachineInstr::FrameSetup);
1604 }
1605 }
1606
1607 // If there is an SUB32ri of ESP immediately before this instruction, merge
1608 // the two. This can be the case when tail call elimination is enabled and
1609 // the callee has more arguments then the caller.
1610 NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1611
1612 // Adjust stack pointer: ESP -= numbytes.
1613
1614 // Windows and cygwin/mingw require a prologue helper routine when allocating
1615 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
1616 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
1617 // stack and adjust the stack pointer in one go. The 64-bit version of
1618 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
1619 // responsible for adjusting the stack pointer. Touching the stack at 4K
1620 // increments is necessary to ensure that the guard pages used by the OS
1621 // virtual memory manager are allocated in correct sequence.
1622 uint64_t AlignedNumBytes = NumBytes;
1623 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF))
1624 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1625 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) {
1626 assert(!X86FI->getUsesRedZone() &&
1627 "The Red Zone is not accounted for in stack probes");
1628
1629 // Check whether EAX is livein for this block.
1630 bool isEAXAlive = isEAXLiveIn(MBB);
1631
1632 if (isEAXAlive) {
1633 if (Is64Bit) {
1634 // Save RAX
1635 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1636 .addReg(X86::RAX, RegState::Kill)
1637 .setMIFlag(MachineInstr::FrameSetup);
1638 } else {
1639 // Save EAX
1640 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1641 .addReg(X86::EAX, RegState::Kill)
1642 .setMIFlag(MachineInstr::FrameSetup);
1643 }
1644 }
1645
1646 if (Is64Bit) {
1647 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1648 // Function prologue is responsible for adjusting the stack pointer.
1649 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1650 if (isUInt<32>(Alloc)) {
1651 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1652 .addImm(Alloc)
1653 .setMIFlag(MachineInstr::FrameSetup);
1654 } else if (isInt<32>(Alloc)) {
1655 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1656 .addImm(Alloc)
1657 .setMIFlag(MachineInstr::FrameSetup);
1658 } else {
1659 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1660 .addImm(Alloc)
1661 .setMIFlag(MachineInstr::FrameSetup);
1662 }
1663 } else {
1664 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1665 // We'll also use 4 already allocated bytes for EAX.
1666 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1667 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1668 .setMIFlag(MachineInstr::FrameSetup);
1669 }
1670
1671 // Call __chkstk, __chkstk_ms, or __alloca.
1672 emitStackProbe(MF, MBB, MBBI, DL, true);
1673
1674 if (isEAXAlive) {
1675 // Restore RAX/EAX
1676 MachineInstr *MI;
1677 if (Is64Bit)
1678 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1679 StackPtr, false, NumBytes - 8);
1680 else
1681 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1682 StackPtr, false, NumBytes - 4);
1683 MI->setFlag(MachineInstr::FrameSetup);
1684 MBB.insert(MBBI, MI);
1685 }
1686 } else if (NumBytes) {
1687 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1688 }
1689
1690 if (NeedsWinCFI && NumBytes) {
1691 HasWinCFI = true;
1692 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1693 .addImm(NumBytes)
1694 .setMIFlag(MachineInstr::FrameSetup);
1695 }
1696
1697 int SEHFrameOffset = 0;
1698 unsigned SPOrEstablisher;
1699 if (IsFunclet) {
1700 if (IsClrFunclet) {
1701 // The establisher parameter passed to a CLR funclet is actually a pointer
1702 // to the (mostly empty) frame of its nearest enclosing funclet; we have
1703 // to find the root function establisher frame by loading the PSPSym from
1704 // the intermediate frame.
1705 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1706 MachinePointerInfo NoInfo;
1707 MBB.addLiveIn(Establisher);
1708 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1709 Establisher, false, PSPSlotOffset)
1710 .addMemOperand(MF.getMachineMemOperand(
1711 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize)));
1712 ;
1713 // Save the root establisher back into the current funclet's (mostly
1714 // empty) frame, in case a sub-funclet or the GC needs it.
1715 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1716 false, PSPSlotOffset)
1717 .addReg(Establisher)
1718 .addMemOperand(MF.getMachineMemOperand(
1719 NoInfo,
1720 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1721 SlotSize, Align(SlotSize)));
1722 }
1723 SPOrEstablisher = Establisher;
1724 } else {
1725 SPOrEstablisher = StackPtr;
1726 }
1727
1728 if (IsWin64Prologue && HasFP) {
1729 // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1730 // this calculation on the incoming establisher, which holds the value of
1731 // RSP from the parent frame at the end of the prologue.
1732 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1733 if (SEHFrameOffset)
1734 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1735 SPOrEstablisher, false, SEHFrameOffset);
1736 else
1737 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1738 .addReg(SPOrEstablisher);
1739
1740 // If this is not a funclet, emit the CFI describing our frame pointer.
1741 if (NeedsWinCFI && !IsFunclet) {
1742 assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1743 HasWinCFI = true;
1744 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1745 .addImm(FramePtr)
1746 .addImm(SEHFrameOffset)
1747 .setMIFlag(MachineInstr::FrameSetup);
1748 if (isAsynchronousEHPersonality(Personality))
1749 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1750 }
1751 } else if (IsFunclet && STI.is32Bit()) {
1752 // Reset EBP / ESI to something good for funclets.
1753 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1754 // If we're a catch funclet, we can be returned to via catchret. Save ESP
1755 // into the registration node so that the runtime will restore it for us.
1756 if (!MBB.isCleanupFuncletEntry()) {
1757 assert(Personality == EHPersonality::MSVC_CXX);
1758 Register FrameReg;
1759 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1760 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed();
1761 // ESP is the first field, so no extra displacement is needed.
1762 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1763 false, EHRegOffset)
1764 .addReg(X86::ESP);
1765 }
1766 }
1767
1768 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1769 const MachineInstr &FrameInstr = *MBBI;
1770 ++MBBI;
1771
1772 if (NeedsWinCFI) {
1773 int FI;
1774 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1775 if (X86::FR64RegClass.contains(Reg)) {
1776 int Offset;
1777 Register IgnoredFrameReg;
1778 if (IsWin64Prologue && IsFunclet)
1779 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
1780 else
1781 Offset =
1782 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() +
1783 SEHFrameOffset;
1784
1785 HasWinCFI = true;
1786 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1787 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1788 .addImm(Reg)
1789 .addImm(Offset)
1790 .setMIFlag(MachineInstr::FrameSetup);
1791 }
1792 }
1793 }
1794 }
1795
1796 if (NeedsWinCFI && HasWinCFI)
1797 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1798 .setMIFlag(MachineInstr::FrameSetup);
1799
1800 if (FnHasClrFunclet && !IsFunclet) {
1801 // Save the so-called Initial-SP (i.e. the value of the stack pointer
1802 // immediately after the prolog) into the PSPSlot so that funclets
1803 // and the GC can recover it.
1804 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1805 auto PSPInfo = MachinePointerInfo::getFixedStack(
1806 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1807 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1808 PSPSlotOffset)
1809 .addReg(StackPtr)
1810 .addMemOperand(MF.getMachineMemOperand(
1811 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1812 SlotSize, Align(SlotSize)));
1813 }
1814
1815 // Realign stack after we spilled callee-saved registers (so that we'll be
1816 // able to calculate their offsets from the frame pointer).
1817 // Win64 requires aligning the stack after the prologue.
1818 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) {
1819 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1820 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1821 }
1822
1823 // We already dealt with stack realignment and funclets above.
1824 if (IsFunclet && STI.is32Bit())
1825 return;
1826
1827 // If we need a base pointer, set it up here. It's whatever the value
1828 // of the stack pointer is at this point. Any variable size objects
1829 // will be allocated after this, so we can still use the base pointer
1830 // to reference locals.
1831 if (TRI->hasBasePointer(MF)) {
1832 // Update the base pointer with the current stack pointer.
1833 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1834 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1835 .addReg(SPOrEstablisher)
1836 .setMIFlag(MachineInstr::FrameSetup);
1837 if (X86FI->getRestoreBasePointer()) {
1838 // Stash value of base pointer. Saving RSP instead of EBP shortens
1839 // dependence chain. Used by SjLj EH.
1840 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1841 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1842 FramePtr, true, X86FI->getRestoreBasePointerOffset())
1843 .addReg(SPOrEstablisher)
1844 .setMIFlag(MachineInstr::FrameSetup);
1845 }
1846
1847 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1848 // Stash the value of the frame pointer relative to the base pointer for
1849 // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1850 // it recovers the frame pointer from the base pointer rather than the
1851 // other way around.
1852 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1853 Register UsedReg;
1854 int Offset =
1855 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
1856 .getFixed();
1857 assert(UsedReg == BasePtr);
1858 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1859 .addReg(FramePtr)
1860 .setMIFlag(MachineInstr::FrameSetup);
1861 }
1862 }
1863
1864 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1865 // Mark end of stack pointer adjustment.
1866 if (!HasFP && NumBytes) {
1867 // Define the current CFA rule to use the provided offset.
1868 assert(StackSize);
1869 BuildCFI(
1870 MBB, MBBI, DL,
1871 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth));
1872 }
1873
1874 // Emit DWARF info specifying the offsets of the callee-saved registers.
1875 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true);
1876 }
1877
1878 // X86 Interrupt handling function cannot assume anything about the direction
1879 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1880 // in each prologue of interrupt handler function.
1881 //
1882 // FIXME: Create "cld" instruction only in these cases:
1883 // 1. The interrupt handling function uses any of the "rep" instructions.
1884 // 2. Interrupt handling function calls another function.
1885 //
1886 if (Fn.getCallingConv() == CallingConv::X86_INTR)
1887 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1888 .setMIFlag(MachineInstr::FrameSetup);
1889
1890 // At this point we know if the function has WinCFI or not.
1891 MF.setHasWinCFI(HasWinCFI);
1892 }
1893
canUseLEAForSPInEpilogue(const MachineFunction & MF) const1894 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1895 const MachineFunction &MF) const {
1896 // We can't use LEA instructions for adjusting the stack pointer if we don't
1897 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used
1898 // to deallocate the stack.
1899 // This means that we can use LEA for SP in two situations:
1900 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1901 // 2. We *have* a frame pointer which means we are permitted to use LEA.
1902 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1903 }
1904
isFuncletReturnInstr(MachineInstr & MI)1905 static bool isFuncletReturnInstr(MachineInstr &MI) {
1906 switch (MI.getOpcode()) {
1907 case X86::CATCHRET:
1908 case X86::CLEANUPRET:
1909 return true;
1910 default:
1911 return false;
1912 }
1913 llvm_unreachable("impossible");
1914 }
1915
1916 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1917 // stack. It holds a pointer to the bottom of the root function frame. The
1918 // establisher frame pointer passed to a nested funclet may point to the
1919 // (mostly empty) frame of its parent funclet, but it will need to find
1920 // the frame of the root function to access locals. To facilitate this,
1921 // every funclet copies the pointer to the bottom of the root function
1922 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1923 // same offset for the PSPSym in the root function frame that's used in the
1924 // funclets' frames allows each funclet to dynamically accept any ancestor
1925 // frame as its establisher argument (the runtime doesn't guarantee the
1926 // immediate parent for some reason lost to history), and also allows the GC,
1927 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1928 // frame with only a single offset reported for the entire method.
1929 unsigned
getPSPSlotOffsetFromSP(const MachineFunction & MF) const1930 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1931 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1932 Register SPReg;
1933 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1934 /*IgnoreSPUpdates*/ true)
1935 .getFixed();
1936 assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1937 return static_cast<unsigned>(Offset);
1938 }
1939
1940 unsigned
getWinEHFuncletFrameSize(const MachineFunction & MF) const1941 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1942 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1943 // This is the size of the pushed CSRs.
1944 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1945 // This is the size of callee saved XMMs.
1946 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1947 unsigned XMMSize = WinEHXMMSlotInfo.size() *
1948 TRI->getSpillSize(X86::VR128RegClass);
1949 // This is the amount of stack a funclet needs to allocate.
1950 unsigned UsedSize;
1951 EHPersonality Personality =
1952 classifyEHPersonality(MF.getFunction().getPersonalityFn());
1953 if (Personality == EHPersonality::CoreCLR) {
1954 // CLR funclets need to hold enough space to include the PSPSym, at the
1955 // same offset from the stack pointer (immediately after the prolog) as it
1956 // resides at in the main function.
1957 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1958 } else {
1959 // Other funclets just need enough stack for outgoing call arguments.
1960 UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1961 }
1962 // RBP is not included in the callee saved register block. After pushing RBP,
1963 // everything is 16 byte aligned. Everything we allocate before an outgoing
1964 // call must also be 16 byte aligned.
1965 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign());
1966 // Subtract out the size of the callee saved registers. This is how much stack
1967 // each funclet will allocate.
1968 return FrameSizeMinusRBP + XMMSize - CSSize;
1969 }
1970
isTailCallOpcode(unsigned Opc)1971 static bool isTailCallOpcode(unsigned Opc) {
1972 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1973 Opc == X86::TCRETURNmi ||
1974 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1975 Opc == X86::TCRETURNmi64;
1976 }
1977
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const1978 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1979 MachineBasicBlock &MBB) const {
1980 const MachineFrameInfo &MFI = MF.getFrameInfo();
1981 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1982 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
1983 MachineBasicBlock::iterator MBBI = Terminator;
1984 DebugLoc DL;
1985 if (MBBI != MBB.end())
1986 DL = MBBI->getDebugLoc();
1987 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1988 const bool Is64BitILP32 = STI.isTarget64BitILP32();
1989 Register FramePtr = TRI->getFrameRegister(MF);
1990 Register MachineFramePtr =
1991 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1992
1993 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1994 bool NeedsWin64CFI =
1995 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
1996 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
1997
1998 // Get the number of bytes to allocate from the FrameInfo.
1999 uint64_t StackSize = MFI.getStackSize();
2000 uint64_t MaxAlign = calculateMaxStackAlign(MF);
2001 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2002 bool HasFP = hasFP(MF);
2003 uint64_t NumBytes = 0;
2004
2005 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
2006 !MF.getTarget().getTargetTriple().isOSWindows()) &&
2007 MF.needsFrameMoves();
2008
2009 if (IsFunclet) {
2010 assert(HasFP && "EH funclets without FP not yet implemented");
2011 NumBytes = getWinEHFuncletFrameSize(MF);
2012 } else if (HasFP) {
2013 // Calculate required stack adjustment.
2014 uint64_t FrameSize = StackSize - SlotSize;
2015 NumBytes = FrameSize - CSSize;
2016
2017 // Callee-saved registers were pushed on stack before the stack was
2018 // realigned.
2019 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
2020 NumBytes = alignTo(FrameSize, MaxAlign);
2021 } else {
2022 NumBytes = StackSize - CSSize;
2023 }
2024 uint64_t SEHStackAllocAmt = NumBytes;
2025
2026 // AfterPop is the position to insert .cfi_restore.
2027 MachineBasicBlock::iterator AfterPop = MBBI;
2028 if (HasFP) {
2029 if (X86FI->hasSwiftAsyncContext()) {
2030 // Discard the context.
2031 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true);
2032 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true);
2033 }
2034 // Pop EBP.
2035 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
2036 MachineFramePtr)
2037 .setMIFlag(MachineInstr::FrameDestroy);
2038
2039 // We need to reset FP to its untagged state on return. Bit 60 is currently
2040 // used to show the presence of an extended frame.
2041 if (X86FI->hasSwiftAsyncContext()) {
2042 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8),
2043 MachineFramePtr)
2044 .addUse(MachineFramePtr)
2045 .addImm(60)
2046 .setMIFlag(MachineInstr::FrameDestroy);
2047 }
2048
2049 if (NeedsDwarfCFI) {
2050 unsigned DwarfStackPtr =
2051 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
2052 BuildCFI(MBB, MBBI, DL,
2053 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize));
2054 if (!MBB.succ_empty() && !MBB.isReturnBlock()) {
2055 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
2056 BuildCFI(MBB, AfterPop, DL,
2057 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr));
2058 --MBBI;
2059 --AfterPop;
2060 }
2061 --MBBI;
2062 }
2063 }
2064
2065 MachineBasicBlock::iterator FirstCSPop = MBBI;
2066 // Skip the callee-saved pop instructions.
2067 while (MBBI != MBB.begin()) {
2068 MachineBasicBlock::iterator PI = std::prev(MBBI);
2069 unsigned Opc = PI->getOpcode();
2070
2071 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
2072 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2073 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2074 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2075 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)))
2076 break;
2077 FirstCSPop = PI;
2078 }
2079
2080 --MBBI;
2081 }
2082 MBBI = FirstCSPop;
2083
2084 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
2085 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
2086
2087 if (MBBI != MBB.end())
2088 DL = MBBI->getDebugLoc();
2089
2090 // If there is an ADD32ri or SUB32ri of ESP immediately before this
2091 // instruction, merge the two instructions.
2092 if (NumBytes || MFI.hasVarSizedObjects())
2093 NumBytes += mergeSPUpdates(MBB, MBBI, true);
2094
2095 // If dynamic alloca is used, then reset esp to point to the last callee-saved
2096 // slot before popping them off! Same applies for the case, when stack was
2097 // realigned. Don't do this if this was a funclet epilogue, since the funclets
2098 // will not do realignment or dynamic stack allocation.
2099 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) &&
2100 !IsFunclet) {
2101 if (TRI->hasStackRealignment(MF))
2102 MBBI = FirstCSPop;
2103 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
2104 uint64_t LEAAmount =
2105 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
2106
2107 if (X86FI->hasSwiftAsyncContext())
2108 LEAAmount -= 16;
2109
2110 // There are only two legal forms of epilogue:
2111 // - add SEHAllocationSize, %rsp
2112 // - lea SEHAllocationSize(%FramePtr), %rsp
2113 //
2114 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
2115 // However, we may use this sequence if we have a frame pointer because the
2116 // effects of the prologue can safely be undone.
2117 if (LEAAmount != 0) {
2118 unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
2119 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
2120 FramePtr, false, LEAAmount);
2121 --MBBI;
2122 } else {
2123 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
2124 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
2125 .addReg(FramePtr);
2126 --MBBI;
2127 }
2128 } else if (NumBytes) {
2129 // Adjust stack pointer back: ESP += numbytes.
2130 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
2131 if (!hasFP(MF) && NeedsDwarfCFI) {
2132 // Define the current CFA rule to use the provided offset.
2133 BuildCFI(MBB, MBBI, DL,
2134 MCCFIInstruction::cfiDefCfaOffset(nullptr, CSSize + SlotSize));
2135 }
2136 --MBBI;
2137 }
2138
2139 // Windows unwinder will not invoke function's exception handler if IP is
2140 // either in prologue or in epilogue. This behavior causes a problem when a
2141 // call immediately precedes an epilogue, because the return address points
2142 // into the epilogue. To cope with that, we insert an epilogue marker here,
2143 // then replace it with a 'nop' if it ends up immediately after a CALL in the
2144 // final emitted code.
2145 if (NeedsWin64CFI && MF.hasWinCFI())
2146 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
2147
2148 if (!hasFP(MF) && NeedsDwarfCFI) {
2149 MBBI = FirstCSPop;
2150 int64_t Offset = -CSSize - SlotSize;
2151 // Mark callee-saved pop instruction.
2152 // Define the current CFA rule to use the provided offset.
2153 while (MBBI != MBB.end()) {
2154 MachineBasicBlock::iterator PI = MBBI;
2155 unsigned Opc = PI->getOpcode();
2156 ++MBBI;
2157 if (Opc == X86::POP32r || Opc == X86::POP64r) {
2158 Offset += SlotSize;
2159 BuildCFI(MBB, MBBI, DL,
2160 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset));
2161 }
2162 }
2163 }
2164
2165 // Emit DWARF info specifying the restores of the callee-saved registers.
2166 // For epilogue with return inside or being other block without successor,
2167 // no need to generate .cfi_restore for callee-saved registers.
2168 if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) {
2169 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false);
2170 }
2171
2172 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
2173 // Add the return addr area delta back since we are not tail calling.
2174 int Offset = -1 * X86FI->getTCReturnAddrDelta();
2175 assert(Offset >= 0 && "TCDelta should never be positive");
2176 if (Offset) {
2177 // Check for possible merge with preceding ADD instruction.
2178 Offset += mergeSPUpdates(MBB, Terminator, true);
2179 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
2180 }
2181 }
2182
2183 // Emit tilerelease for AMX kernel.
2184 const MachineRegisterInfo &MRI = MF.getRegInfo();
2185 const TargetRegisterClass *RC = TRI->getRegClass(X86::TILERegClassID);
2186 for (unsigned I = 0; I < RC->getNumRegs(); I++)
2187 if (!MRI.reg_nodbg_empty(X86::TMM0 + I)) {
2188 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE));
2189 break;
2190 }
2191 }
2192
getFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg) const2193 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF,
2194 int FI,
2195 Register &FrameReg) const {
2196 const MachineFrameInfo &MFI = MF.getFrameInfo();
2197
2198 bool IsFixed = MFI.isFixedObjectIndex(FI);
2199 // We can't calculate offset from frame pointer if the stack is realigned,
2200 // so enforce usage of stack/base pointer. The base pointer is used when we
2201 // have dynamic allocas in addition to dynamic realignment.
2202 if (TRI->hasBasePointer(MF))
2203 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
2204 else if (TRI->hasStackRealignment(MF))
2205 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
2206 else
2207 FrameReg = TRI->getFrameRegister(MF);
2208
2209 // Offset will hold the offset from the stack pointer at function entry to the
2210 // object.
2211 // We need to factor in additional offsets applied during the prologue to the
2212 // frame, base, and stack pointer depending on which is used.
2213 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
2214 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2215 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2216 uint64_t StackSize = MFI.getStackSize();
2217 bool HasFP = hasFP(MF);
2218 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2219 int64_t FPDelta = 0;
2220
2221 // In an x86 interrupt, remove the offset we added to account for the return
2222 // address from any stack object allocated in the caller's frame. Interrupts
2223 // do not have a standard return address. Fixed objects in the current frame,
2224 // such as SSE register spills, should not get this treatment.
2225 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
2226 Offset >= 0) {
2227 Offset += getOffsetOfLocalArea();
2228 }
2229
2230 if (IsWin64Prologue) {
2231 assert(!MFI.hasCalls() || (StackSize % 16) == 8);
2232
2233 // Calculate required stack adjustment.
2234 uint64_t FrameSize = StackSize - SlotSize;
2235 // If required, include space for extra hidden slot for stashing base pointer.
2236 if (X86FI->getRestoreBasePointer())
2237 FrameSize += SlotSize;
2238 uint64_t NumBytes = FrameSize - CSSize;
2239
2240 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
2241 if (FI && FI == X86FI->getFAIndex())
2242 return StackOffset::getFixed(-SEHFrameOffset);
2243
2244 // FPDelta is the offset from the "traditional" FP location of the old base
2245 // pointer followed by return address and the location required by the
2246 // restricted Win64 prologue.
2247 // Add FPDelta to all offsets below that go through the frame pointer.
2248 FPDelta = FrameSize - SEHFrameOffset;
2249 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
2250 "FPDelta isn't aligned per the Win64 ABI!");
2251 }
2252
2253
2254 if (TRI->hasBasePointer(MF)) {
2255 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
2256 if (FI < 0) {
2257 // Skip the saved EBP.
2258 return StackOffset::getFixed(Offset + SlotSize + FPDelta);
2259 } else {
2260 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2261 return StackOffset::getFixed(Offset + StackSize);
2262 }
2263 } else if (TRI->hasStackRealignment(MF)) {
2264 if (FI < 0) {
2265 // Skip the saved EBP.
2266 return StackOffset::getFixed(Offset + SlotSize + FPDelta);
2267 } else {
2268 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2269 return StackOffset::getFixed(Offset + StackSize);
2270 }
2271 // FIXME: Support tail calls
2272 } else {
2273 if (!HasFP)
2274 return StackOffset::getFixed(Offset + StackSize);
2275
2276 // Skip the saved EBP.
2277 Offset += SlotSize;
2278
2279 // Skip the RETADDR move area
2280 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2281 if (TailCallReturnAddrDelta < 0)
2282 Offset -= TailCallReturnAddrDelta;
2283 }
2284
2285 return StackOffset::getFixed(Offset + FPDelta);
2286 }
2287
getWin64EHFrameIndexRef(const MachineFunction & MF,int FI,Register & FrameReg) const2288 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI,
2289 Register &FrameReg) const {
2290 const MachineFrameInfo &MFI = MF.getFrameInfo();
2291 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2292 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2293 const auto it = WinEHXMMSlotInfo.find(FI);
2294
2295 if (it == WinEHXMMSlotInfo.end())
2296 return getFrameIndexReference(MF, FI, FrameReg).getFixed();
2297
2298 FrameReg = TRI->getStackRegister();
2299 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) +
2300 it->second;
2301 }
2302
2303 StackOffset
getFrameIndexReferenceSP(const MachineFunction & MF,int FI,Register & FrameReg,int Adjustment) const2304 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI,
2305 Register &FrameReg,
2306 int Adjustment) const {
2307 const MachineFrameInfo &MFI = MF.getFrameInfo();
2308 FrameReg = TRI->getStackRegister();
2309 return StackOffset::getFixed(MFI.getObjectOffset(FI) -
2310 getOffsetOfLocalArea() + Adjustment);
2311 }
2312
2313 StackOffset
getFrameIndexReferencePreferSP(const MachineFunction & MF,int FI,Register & FrameReg,bool IgnoreSPUpdates) const2314 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
2315 int FI, Register &FrameReg,
2316 bool IgnoreSPUpdates) const {
2317
2318 const MachineFrameInfo &MFI = MF.getFrameInfo();
2319 // Does not include any dynamic realign.
2320 const uint64_t StackSize = MFI.getStackSize();
2321 // LLVM arranges the stack as follows:
2322 // ...
2323 // ARG2
2324 // ARG1
2325 // RETADDR
2326 // PUSH RBP <-- RBP points here
2327 // PUSH CSRs
2328 // ~~~~~~~ <-- possible stack realignment (non-win64)
2329 // ...
2330 // STACK OBJECTS
2331 // ... <-- RSP after prologue points here
2332 // ~~~~~~~ <-- possible stack realignment (win64)
2333 //
2334 // if (hasVarSizedObjects()):
2335 // ... <-- "base pointer" (ESI/RBX) points here
2336 // DYNAMIC ALLOCAS
2337 // ... <-- RSP points here
2338 //
2339 // Case 1: In the simple case of no stack realignment and no dynamic
2340 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
2341 // with fixed offsets from RSP.
2342 //
2343 // Case 2: In the case of stack realignment with no dynamic allocas, fixed
2344 // stack objects are addressed with RBP and regular stack objects with RSP.
2345 //
2346 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
2347 // to address stack arguments for outgoing calls and nothing else. The "base
2348 // pointer" points to local variables, and RBP points to fixed objects.
2349 //
2350 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
2351 // answer we give is relative to the SP after the prologue, and not the
2352 // SP in the middle of the function.
2353
2354 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) &&
2355 !STI.isTargetWin64())
2356 return getFrameIndexReference(MF, FI, FrameReg);
2357
2358 // If !hasReservedCallFrame the function might have SP adjustement in the
2359 // body. So, even though the offset is statically known, it depends on where
2360 // we are in the function.
2361 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
2362 return getFrameIndexReference(MF, FI, FrameReg);
2363
2364 // We don't handle tail calls, and shouldn't be seeing them either.
2365 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
2366 "we don't handle this case!");
2367
2368 // This is how the math works out:
2369 //
2370 // %rsp grows (i.e. gets lower) left to right. Each box below is
2371 // one word (eight bytes). Obj0 is the stack slot we're trying to
2372 // get to.
2373 //
2374 // ----------------------------------
2375 // | BP | Obj0 | Obj1 | ... | ObjN |
2376 // ----------------------------------
2377 // ^ ^ ^ ^
2378 // A B C E
2379 //
2380 // A is the incoming stack pointer.
2381 // (B - A) is the local area offset (-8 for x86-64) [1]
2382 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
2383 //
2384 // |(E - B)| is the StackSize (absolute value, positive). For a
2385 // stack that grown down, this works out to be (B - E). [3]
2386 //
2387 // E is also the value of %rsp after stack has been set up, and we
2388 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
2389 // (C - E) == (C - A) - (B - A) + (B - E)
2390 // { Using [1], [2] and [3] above }
2391 // == getObjectOffset - LocalAreaOffset + StackSize
2392
2393 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
2394 }
2395
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const2396 bool X86FrameLowering::assignCalleeSavedSpillSlots(
2397 MachineFunction &MF, const TargetRegisterInfo *TRI,
2398 std::vector<CalleeSavedInfo> &CSI) const {
2399 MachineFrameInfo &MFI = MF.getFrameInfo();
2400 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2401
2402 unsigned CalleeSavedFrameSize = 0;
2403 unsigned XMMCalleeSavedFrameSize = 0;
2404 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2405 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
2406
2407 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2408
2409 if (TailCallReturnAddrDelta < 0) {
2410 // create RETURNADDR area
2411 // arg
2412 // arg
2413 // RETADDR
2414 // { ...
2415 // RETADDR area
2416 // ...
2417 // }
2418 // [EBP]
2419 MFI.CreateFixedObject(-TailCallReturnAddrDelta,
2420 TailCallReturnAddrDelta - SlotSize, true);
2421 }
2422
2423 // Spill the BasePtr if it's used.
2424 if (this->TRI->hasBasePointer(MF)) {
2425 // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2426 if (MF.hasEHFunclets()) {
2427 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize));
2428 X86FI->setHasSEHFramePtrSave(true);
2429 X86FI->setSEHFramePtrSaveIndex(FI);
2430 }
2431 }
2432
2433 if (hasFP(MF)) {
2434 // emitPrologue always spills frame register the first thing.
2435 SpillSlotOffset -= SlotSize;
2436 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2437
2438 // The async context lives directly before the frame pointer, and we
2439 // allocate a second slot to preserve stack alignment.
2440 if (X86FI->hasSwiftAsyncContext()) {
2441 SpillSlotOffset -= SlotSize;
2442 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2443 SpillSlotOffset -= SlotSize;
2444 }
2445
2446 // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2447 // the frame register, we can delete it from CSI list and not have to worry
2448 // about avoiding it later.
2449 Register FPReg = TRI->getFrameRegister(MF);
2450 for (unsigned i = 0; i < CSI.size(); ++i) {
2451 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
2452 CSI.erase(CSI.begin() + i);
2453 break;
2454 }
2455 }
2456 }
2457
2458 // Assign slots for GPRs. It increases frame size.
2459 for (unsigned i = CSI.size(); i != 0; --i) {
2460 unsigned Reg = CSI[i - 1].getReg();
2461
2462 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2463 continue;
2464
2465 SpillSlotOffset -= SlotSize;
2466 CalleeSavedFrameSize += SlotSize;
2467
2468 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2469 CSI[i - 1].setFrameIdx(SlotIndex);
2470 }
2471
2472 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2473 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2474
2475 // Assign slots for XMMs.
2476 for (unsigned i = CSI.size(); i != 0; --i) {
2477 unsigned Reg = CSI[i - 1].getReg();
2478 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2479 continue;
2480
2481 // If this is k-register make sure we lookup via the largest legal type.
2482 MVT VT = MVT::Other;
2483 if (X86::VK16RegClass.contains(Reg))
2484 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2485
2486 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2487 unsigned Size = TRI->getSpillSize(*RC);
2488 Align Alignment = TRI->getSpillAlign(*RC);
2489 // ensure alignment
2490 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
2491 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment);
2492
2493 // spill into slot
2494 SpillSlotOffset -= Size;
2495 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2496 CSI[i - 1].setFrameIdx(SlotIndex);
2497 MFI.ensureMaxAlignment(Alignment);
2498
2499 // Save the start offset and size of XMM in stack frame for funclets.
2500 if (X86::VR128RegClass.contains(Reg)) {
2501 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2502 XMMCalleeSavedFrameSize += Size;
2503 }
2504 }
2505
2506 return true;
2507 }
2508
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const2509 bool X86FrameLowering::spillCalleeSavedRegisters(
2510 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2511 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2512 DebugLoc DL = MBB.findDebugLoc(MI);
2513
2514 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2515 // for us, and there are no XMM CSRs on Win32.
2516 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2517 return true;
2518
2519 // Push GPRs. It increases frame size.
2520 const MachineFunction &MF = *MBB.getParent();
2521 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2522 for (unsigned i = CSI.size(); i != 0; --i) {
2523 unsigned Reg = CSI[i - 1].getReg();
2524
2525 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2526 continue;
2527
2528 const MachineRegisterInfo &MRI = MF.getRegInfo();
2529 bool isLiveIn = MRI.isLiveIn(Reg);
2530 if (!isLiveIn)
2531 MBB.addLiveIn(Reg);
2532
2533 // Decide whether we can add a kill flag to the use.
2534 bool CanKill = !isLiveIn;
2535 // Check if any subregister is live-in
2536 if (CanKill) {
2537 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2538 if (MRI.isLiveIn(*AReg)) {
2539 CanKill = false;
2540 break;
2541 }
2542 }
2543 }
2544
2545 // Do not set a kill flag on values that are also marked as live-in. This
2546 // happens with the @llvm-returnaddress intrinsic and with arguments
2547 // passed in callee saved registers.
2548 // Omitting the kill flags is conservatively correct even if the live-in
2549 // is not used after all.
2550 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2551 .setMIFlag(MachineInstr::FrameSetup);
2552 }
2553
2554 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2555 // It can be done by spilling XMMs to stack frame.
2556 for (unsigned i = CSI.size(); i != 0; --i) {
2557 unsigned Reg = CSI[i-1].getReg();
2558 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2559 continue;
2560
2561 // If this is k-register make sure we lookup via the largest legal type.
2562 MVT VT = MVT::Other;
2563 if (X86::VK16RegClass.contains(Reg))
2564 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2565
2566 // Add the callee-saved register as live-in. It's killed at the spill.
2567 MBB.addLiveIn(Reg);
2568 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2569
2570 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2571 TRI);
2572 --MI;
2573 MI->setFlag(MachineInstr::FrameSetup);
2574 ++MI;
2575 }
2576
2577 return true;
2578 }
2579
emitCatchRetReturnValue(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,MachineInstr * CatchRet) const2580 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2581 MachineBasicBlock::iterator MBBI,
2582 MachineInstr *CatchRet) const {
2583 // SEH shouldn't use catchret.
2584 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2585 MBB.getParent()->getFunction().getPersonalityFn())) &&
2586 "SEH should not use CATCHRET");
2587 const DebugLoc &DL = CatchRet->getDebugLoc();
2588 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2589
2590 // Fill EAX/RAX with the address of the target block.
2591 if (STI.is64Bit()) {
2592 // LEA64r CatchRetTarget(%rip), %rax
2593 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2594 .addReg(X86::RIP)
2595 .addImm(0)
2596 .addReg(0)
2597 .addMBB(CatchRetTarget)
2598 .addReg(0);
2599 } else {
2600 // MOV32ri $CatchRetTarget, %eax
2601 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2602 .addMBB(CatchRetTarget);
2603 }
2604
2605 // Record that we've taken the address of CatchRetTarget and no longer just
2606 // reference it in a terminator.
2607 CatchRetTarget->setHasAddressTaken();
2608 }
2609
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,MutableArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const2610 bool X86FrameLowering::restoreCalleeSavedRegisters(
2611 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2612 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2613 if (CSI.empty())
2614 return false;
2615
2616 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2617 // Don't restore CSRs in 32-bit EH funclets. Matches
2618 // spillCalleeSavedRegisters.
2619 if (STI.is32Bit())
2620 return true;
2621 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2622 // funclets. emitEpilogue transforms these to normal jumps.
2623 if (MI->getOpcode() == X86::CATCHRET) {
2624 const Function &F = MBB.getParent()->getFunction();
2625 bool IsSEH = isAsynchronousEHPersonality(
2626 classifyEHPersonality(F.getPersonalityFn()));
2627 if (IsSEH)
2628 return true;
2629 }
2630 }
2631
2632 DebugLoc DL = MBB.findDebugLoc(MI);
2633
2634 // Reload XMMs from stack frame.
2635 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2636 unsigned Reg = CSI[i].getReg();
2637 if (X86::GR64RegClass.contains(Reg) ||
2638 X86::GR32RegClass.contains(Reg))
2639 continue;
2640
2641 // If this is k-register make sure we lookup via the largest legal type.
2642 MVT VT = MVT::Other;
2643 if (X86::VK16RegClass.contains(Reg))
2644 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2645
2646 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2647 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2648 }
2649
2650 // POP GPRs.
2651 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2652 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2653 unsigned Reg = CSI[i].getReg();
2654 if (!X86::GR64RegClass.contains(Reg) &&
2655 !X86::GR32RegClass.contains(Reg))
2656 continue;
2657
2658 BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2659 .setMIFlag(MachineInstr::FrameDestroy);
2660 }
2661 return true;
2662 }
2663
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const2664 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2665 BitVector &SavedRegs,
2666 RegScavenger *RS) const {
2667 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2668
2669 // Spill the BasePtr if it's used.
2670 if (TRI->hasBasePointer(MF)){
2671 Register BasePtr = TRI->getBaseRegister();
2672 if (STI.isTarget64BitILP32())
2673 BasePtr = getX86SubSuperRegister(BasePtr, 64);
2674 SavedRegs.set(BasePtr);
2675 }
2676 }
2677
2678 static bool
HasNestArgument(const MachineFunction * MF)2679 HasNestArgument(const MachineFunction *MF) {
2680 const Function &F = MF->getFunction();
2681 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2682 I != E; I++) {
2683 if (I->hasNestAttr() && !I->use_empty())
2684 return true;
2685 }
2686 return false;
2687 }
2688
2689 /// GetScratchRegister - Get a temp register for performing work in the
2690 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2691 /// and the properties of the function either one or two registers will be
2692 /// needed. Set primary to true for the first register, false for the second.
2693 static unsigned
GetScratchRegister(bool Is64Bit,bool IsLP64,const MachineFunction & MF,bool Primary)2694 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2695 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2696
2697 // Erlang stuff.
2698 if (CallingConvention == CallingConv::HiPE) {
2699 if (Is64Bit)
2700 return Primary ? X86::R14 : X86::R13;
2701 else
2702 return Primary ? X86::EBX : X86::EDI;
2703 }
2704
2705 if (Is64Bit) {
2706 if (IsLP64)
2707 return Primary ? X86::R11 : X86::R12;
2708 else
2709 return Primary ? X86::R11D : X86::R12D;
2710 }
2711
2712 bool IsNested = HasNestArgument(&MF);
2713
2714 if (CallingConvention == CallingConv::X86_FastCall ||
2715 CallingConvention == CallingConv::Fast ||
2716 CallingConvention == CallingConv::Tail) {
2717 if (IsNested)
2718 report_fatal_error("Segmented stacks does not support fastcall with "
2719 "nested function.");
2720 return Primary ? X86::EAX : X86::ECX;
2721 }
2722 if (IsNested)
2723 return Primary ? X86::EDX : X86::EAX;
2724 return Primary ? X86::ECX : X86::EAX;
2725 }
2726
2727 // The stack limit in the TCB is set to this many bytes above the actual stack
2728 // limit.
2729 static const uint64_t kSplitStackAvailable = 256;
2730
adjustForSegmentedStacks(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2731 void X86FrameLowering::adjustForSegmentedStacks(
2732 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2733 MachineFrameInfo &MFI = MF.getFrameInfo();
2734 uint64_t StackSize;
2735 unsigned TlsReg, TlsOffset;
2736 DebugLoc DL;
2737
2738 // To support shrink-wrapping we would need to insert the new blocks
2739 // at the right place and update the branches to PrologueMBB.
2740 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2741
2742 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2743 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2744 "Scratch register is live-in");
2745
2746 if (MF.getFunction().isVarArg())
2747 report_fatal_error("Segmented stacks do not support vararg functions.");
2748 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2749 !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2750 !STI.isTargetDragonFly())
2751 report_fatal_error("Segmented stacks not supported on this platform.");
2752
2753 // Eventually StackSize will be calculated by a link-time pass; which will
2754 // also decide whether checking code needs to be injected into this particular
2755 // prologue.
2756 StackSize = MFI.getStackSize();
2757
2758 // Do not generate a prologue for leaf functions with a stack of size zero.
2759 // For non-leaf functions we have to allow for the possibility that the
2760 // callis to a non-split function, as in PR37807. This function could also
2761 // take the address of a non-split function. When the linker tries to adjust
2762 // its non-existent prologue, it would fail with an error. Mark the object
2763 // file so that such failures are not errors. See this Go language bug-report
2764 // https://go-review.googlesource.com/c/go/+/148819/
2765 if (StackSize == 0 && !MFI.hasTailCall()) {
2766 MF.getMMI().setHasNosplitStack(true);
2767 return;
2768 }
2769
2770 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2771 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2772 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2773 bool IsNested = false;
2774
2775 // We need to know if the function has a nest argument only in 64 bit mode.
2776 if (Is64Bit)
2777 IsNested = HasNestArgument(&MF);
2778
2779 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2780 // allocMBB needs to be last (terminating) instruction.
2781
2782 for (const auto &LI : PrologueMBB.liveins()) {
2783 allocMBB->addLiveIn(LI);
2784 checkMBB->addLiveIn(LI);
2785 }
2786
2787 if (IsNested)
2788 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2789
2790 MF.push_front(allocMBB);
2791 MF.push_front(checkMBB);
2792
2793 // When the frame size is less than 256 we just compare the stack
2794 // boundary directly to the value of the stack pointer, per gcc.
2795 bool CompareStackPointer = StackSize < kSplitStackAvailable;
2796
2797 // Read the limit off the current stacklet off the stack_guard location.
2798 if (Is64Bit) {
2799 if (STI.isTargetLinux()) {
2800 TlsReg = X86::FS;
2801 TlsOffset = IsLP64 ? 0x70 : 0x40;
2802 } else if (STI.isTargetDarwin()) {
2803 TlsReg = X86::GS;
2804 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2805 } else if (STI.isTargetWin64()) {
2806 TlsReg = X86::GS;
2807 TlsOffset = 0x28; // pvArbitrary, reserved for application use
2808 } else if (STI.isTargetFreeBSD()) {
2809 TlsReg = X86::FS;
2810 TlsOffset = 0x18;
2811 } else if (STI.isTargetDragonFly()) {
2812 TlsReg = X86::FS;
2813 TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2814 } else {
2815 report_fatal_error("Segmented stacks not supported on this platform.");
2816 }
2817
2818 if (CompareStackPointer)
2819 ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2820 else
2821 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2822 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2823
2824 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2825 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2826 } else {
2827 if (STI.isTargetLinux()) {
2828 TlsReg = X86::GS;
2829 TlsOffset = 0x30;
2830 } else if (STI.isTargetDarwin()) {
2831 TlsReg = X86::GS;
2832 TlsOffset = 0x48 + 90*4;
2833 } else if (STI.isTargetWin32()) {
2834 TlsReg = X86::FS;
2835 TlsOffset = 0x14; // pvArbitrary, reserved for application use
2836 } else if (STI.isTargetDragonFly()) {
2837 TlsReg = X86::FS;
2838 TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2839 } else if (STI.isTargetFreeBSD()) {
2840 report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2841 } else {
2842 report_fatal_error("Segmented stacks not supported on this platform.");
2843 }
2844
2845 if (CompareStackPointer)
2846 ScratchReg = X86::ESP;
2847 else
2848 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2849 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2850
2851 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2852 STI.isTargetDragonFly()) {
2853 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2854 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2855 } else if (STI.isTargetDarwin()) {
2856
2857 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2858 unsigned ScratchReg2;
2859 bool SaveScratch2;
2860 if (CompareStackPointer) {
2861 // The primary scratch register is available for holding the TLS offset.
2862 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2863 SaveScratch2 = false;
2864 } else {
2865 // Need to use a second register to hold the TLS offset
2866 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2867
2868 // Unfortunately, with fastcc the second scratch register may hold an
2869 // argument.
2870 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2871 }
2872
2873 // If Scratch2 is live-in then it needs to be saved.
2874 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2875 "Scratch register is live-in and not saved");
2876
2877 if (SaveScratch2)
2878 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2879 .addReg(ScratchReg2, RegState::Kill);
2880
2881 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2882 .addImm(TlsOffset);
2883 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2884 .addReg(ScratchReg)
2885 .addReg(ScratchReg2).addImm(1).addReg(0)
2886 .addImm(0)
2887 .addReg(TlsReg);
2888
2889 if (SaveScratch2)
2890 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2891 }
2892 }
2893
2894 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2895 // It jumps to normal execution of the function body.
2896 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
2897
2898 // On 32 bit we first push the arguments size and then the frame size. On 64
2899 // bit, we pass the stack frame size in r10 and the argument size in r11.
2900 if (Is64Bit) {
2901 // Functions with nested arguments use R10, so it needs to be saved across
2902 // the call to _morestack
2903
2904 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2905 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2906 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2907 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2908 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2909
2910 if (IsNested)
2911 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2912
2913 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2914 .addImm(StackSize);
2915 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2916 .addImm(X86FI->getArgumentStackSize());
2917 } else {
2918 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2919 .addImm(X86FI->getArgumentStackSize());
2920 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2921 .addImm(StackSize);
2922 }
2923
2924 // __morestack is in libgcc
2925 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2926 // Under the large code model, we cannot assume that __morestack lives
2927 // within 2^31 bytes of the call site, so we cannot use pc-relative
2928 // addressing. We cannot perform the call via a temporary register,
2929 // as the rax register may be used to store the static chain, and all
2930 // other suitable registers may be either callee-save or used for
2931 // parameter passing. We cannot use the stack at this point either
2932 // because __morestack manipulates the stack directly.
2933 //
2934 // To avoid these issues, perform an indirect call via a read-only memory
2935 // location containing the address.
2936 //
2937 // This solution is not perfect, as it assumes that the .rodata section
2938 // is laid out within 2^31 bytes of each function body, but this seems
2939 // to be sufficient for JIT.
2940 // FIXME: Add retpoline support and remove the error here..
2941 if (STI.useIndirectThunkCalls())
2942 report_fatal_error("Emitting morestack calls on 64-bit with the large "
2943 "code model and thunks not yet implemented.");
2944 BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2945 .addReg(X86::RIP)
2946 .addImm(0)
2947 .addReg(0)
2948 .addExternalSymbol("__morestack_addr")
2949 .addReg(0);
2950 MF.getMMI().setUsesMorestackAddr(true);
2951 } else {
2952 if (Is64Bit)
2953 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2954 .addExternalSymbol("__morestack");
2955 else
2956 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2957 .addExternalSymbol("__morestack");
2958 }
2959
2960 if (IsNested)
2961 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2962 else
2963 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2964
2965 allocMBB->addSuccessor(&PrologueMBB);
2966
2967 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
2968 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
2969
2970 #ifdef EXPENSIVE_CHECKS
2971 MF.verify();
2972 #endif
2973 }
2974
2975 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2976 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2977 /// to fields it needs, through a named metadata node "hipe.literals" containing
2978 /// name-value pairs.
getHiPELiteral(NamedMDNode * HiPELiteralsMD,const StringRef LiteralName)2979 static unsigned getHiPELiteral(
2980 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2981 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2982 MDNode *Node = HiPELiteralsMD->getOperand(i);
2983 if (Node->getNumOperands() != 2) continue;
2984 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2985 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2986 if (!NodeName || !NodeVal) continue;
2987 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2988 if (ValConst && NodeName->getString() == LiteralName) {
2989 return ValConst->getZExtValue();
2990 }
2991 }
2992
2993 report_fatal_error("HiPE literal " + LiteralName
2994 + " required but not provided");
2995 }
2996
2997 // Return true if there are no non-ehpad successors to MBB and there are no
2998 // non-meta instructions between MBBI and MBB.end().
blockEndIsUnreachable(const MachineBasicBlock & MBB,MachineBasicBlock::const_iterator MBBI)2999 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
3000 MachineBasicBlock::const_iterator MBBI) {
3001 return llvm::all_of(
3002 MBB.successors(),
3003 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
3004 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
3005 return MI.isMetaInstruction();
3006 });
3007 }
3008
3009 /// Erlang programs may need a special prologue to handle the stack size they
3010 /// might need at runtime. That is because Erlang/OTP does not implement a C
3011 /// stack but uses a custom implementation of hybrid stack/heap architecture.
3012 /// (for more information see Eric Stenman's Ph.D. thesis:
3013 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
3014 ///
3015 /// CheckStack:
3016 /// temp0 = sp - MaxStack
3017 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3018 /// OldStart:
3019 /// ...
3020 /// IncStack:
3021 /// call inc_stack # doubles the stack space
3022 /// temp0 = sp - MaxStack
3023 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
adjustForHiPEPrologue(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const3024 void X86FrameLowering::adjustForHiPEPrologue(
3025 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
3026 MachineFrameInfo &MFI = MF.getFrameInfo();
3027 DebugLoc DL;
3028
3029 // To support shrink-wrapping we would need to insert the new blocks
3030 // at the right place and update the branches to PrologueMBB.
3031 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
3032
3033 // HiPE-specific values
3034 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
3035 ->getNamedMetadata("hipe.literals");
3036 if (!HiPELiteralsMD)
3037 report_fatal_error(
3038 "Can't generate HiPE prologue without runtime parameters");
3039 const unsigned HipeLeafWords
3040 = getHiPELiteral(HiPELiteralsMD,
3041 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
3042 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
3043 const unsigned Guaranteed = HipeLeafWords * SlotSize;
3044 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
3045 MF.getFunction().arg_size() - CCRegisteredArgs : 0;
3046 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
3047
3048 assert(STI.isTargetLinux() &&
3049 "HiPE prologue is only supported on Linux operating systems.");
3050
3051 // Compute the largest caller's frame that is needed to fit the callees'
3052 // frames. This 'MaxStack' is computed from:
3053 //
3054 // a) the fixed frame size, which is the space needed for all spilled temps,
3055 // b) outgoing on-stack parameter areas, and
3056 // c) the minimum stack space this function needs to make available for the
3057 // functions it calls (a tunable ABI property).
3058 if (MFI.hasCalls()) {
3059 unsigned MoreStackForCalls = 0;
3060
3061 for (auto &MBB : MF) {
3062 for (auto &MI : MBB) {
3063 if (!MI.isCall())
3064 continue;
3065
3066 // Get callee operand.
3067 const MachineOperand &MO = MI.getOperand(0);
3068
3069 // Only take account of global function calls (no closures etc.).
3070 if (!MO.isGlobal())
3071 continue;
3072
3073 const Function *F = dyn_cast<Function>(MO.getGlobal());
3074 if (!F)
3075 continue;
3076
3077 // Do not update 'MaxStack' for primitive and built-in functions
3078 // (encoded with names either starting with "erlang."/"bif_" or not
3079 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
3080 // "_", such as the BIF "suspend_0") as they are executed on another
3081 // stack.
3082 if (F->getName().find("erlang.") != StringRef::npos ||
3083 F->getName().find("bif_") != StringRef::npos ||
3084 F->getName().find_first_of("._") == StringRef::npos)
3085 continue;
3086
3087 unsigned CalleeStkArity =
3088 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
3089 if (HipeLeafWords - 1 > CalleeStkArity)
3090 MoreStackForCalls = std::max(MoreStackForCalls,
3091 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
3092 }
3093 }
3094 MaxStack += MoreStackForCalls;
3095 }
3096
3097 // If the stack frame needed is larger than the guaranteed then runtime checks
3098 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
3099 if (MaxStack > Guaranteed) {
3100 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
3101 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
3102
3103 for (const auto &LI : PrologueMBB.liveins()) {
3104 stackCheckMBB->addLiveIn(LI);
3105 incStackMBB->addLiveIn(LI);
3106 }
3107
3108 MF.push_front(incStackMBB);
3109 MF.push_front(stackCheckMBB);
3110
3111 unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
3112 unsigned LEAop, CMPop, CALLop;
3113 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
3114 if (Is64Bit) {
3115 SPReg = X86::RSP;
3116 PReg = X86::RBP;
3117 LEAop = X86::LEA64r;
3118 CMPop = X86::CMP64rm;
3119 CALLop = X86::CALL64pcrel32;
3120 } else {
3121 SPReg = X86::ESP;
3122 PReg = X86::EBP;
3123 LEAop = X86::LEA32r;
3124 CMPop = X86::CMP32rm;
3125 CALLop = X86::CALLpcrel32;
3126 }
3127
3128 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3129 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
3130 "HiPE prologue scratch register is live-in");
3131
3132 // Create new MBB for StackCheck:
3133 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
3134 SPReg, false, -MaxStack);
3135 // SPLimitOffset is in a fixed heap location (pointed by BP).
3136 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
3137 .addReg(ScratchReg), PReg, false, SPLimitOffset);
3138 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
3139
3140 // Create new MBB for IncStack:
3141 BuildMI(incStackMBB, DL, TII.get(CALLop)).
3142 addExternalSymbol("inc_stack_0");
3143 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
3144 SPReg, false, -MaxStack);
3145 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
3146 .addReg(ScratchReg), PReg, false, SPLimitOffset);
3147 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
3148
3149 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
3150 stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
3151 incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
3152 incStackMBB->addSuccessor(incStackMBB, {1, 100});
3153 }
3154 #ifdef EXPENSIVE_CHECKS
3155 MF.verify();
3156 #endif
3157 }
3158
adjustStackWithPops(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,int Offset) const3159 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
3160 MachineBasicBlock::iterator MBBI,
3161 const DebugLoc &DL,
3162 int Offset) const {
3163 if (Offset <= 0)
3164 return false;
3165
3166 if (Offset % SlotSize)
3167 return false;
3168
3169 int NumPops = Offset / SlotSize;
3170 // This is only worth it if we have at most 2 pops.
3171 if (NumPops != 1 && NumPops != 2)
3172 return false;
3173
3174 // Handle only the trivial case where the adjustment directly follows
3175 // a call. This is the most common one, anyway.
3176 if (MBBI == MBB.begin())
3177 return false;
3178 MachineBasicBlock::iterator Prev = std::prev(MBBI);
3179 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
3180 return false;
3181
3182 unsigned Regs[2];
3183 unsigned FoundRegs = 0;
3184
3185 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3186 const MachineOperand &RegMask = Prev->getOperand(1);
3187
3188 auto &RegClass =
3189 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
3190 // Try to find up to NumPops free registers.
3191 for (auto Candidate : RegClass) {
3192 // Poor man's liveness:
3193 // Since we're immediately after a call, any register that is clobbered
3194 // by the call and not defined by it can be considered dead.
3195 if (!RegMask.clobbersPhysReg(Candidate))
3196 continue;
3197
3198 // Don't clobber reserved registers
3199 if (MRI.isReserved(Candidate))
3200 continue;
3201
3202 bool IsDef = false;
3203 for (const MachineOperand &MO : Prev->implicit_operands()) {
3204 if (MO.isReg() && MO.isDef() &&
3205 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
3206 IsDef = true;
3207 break;
3208 }
3209 }
3210
3211 if (IsDef)
3212 continue;
3213
3214 Regs[FoundRegs++] = Candidate;
3215 if (FoundRegs == (unsigned)NumPops)
3216 break;
3217 }
3218
3219 if (FoundRegs == 0)
3220 return false;
3221
3222 // If we found only one free register, but need two, reuse the same one twice.
3223 while (FoundRegs < (unsigned)NumPops)
3224 Regs[FoundRegs++] = Regs[0];
3225
3226 for (int i = 0; i < NumPops; ++i)
3227 BuildMI(MBB, MBBI, DL,
3228 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
3229
3230 return true;
3231 }
3232
3233 MachineBasicBlock::iterator X86FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const3234 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
3235 MachineBasicBlock::iterator I) const {
3236 bool reserveCallFrame = hasReservedCallFrame(MF);
3237 unsigned Opcode = I->getOpcode();
3238 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
3239 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased.
3240 uint64_t Amount = TII.getFrameSize(*I);
3241 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
3242 I = MBB.erase(I);
3243 auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
3244
3245 // Try to avoid emitting dead SP adjustments if the block end is unreachable,
3246 // typically because the function is marked noreturn (abort, throw,
3247 // assert_fail, etc).
3248 if (isDestroy && blockEndIsUnreachable(MBB, I))
3249 return I;
3250
3251 if (!reserveCallFrame) {
3252 // If the stack pointer can be changed after prologue, turn the
3253 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
3254 // adjcallstackdown instruction into 'add ESP, <amt>'
3255
3256 // We need to keep the stack aligned properly. To do this, we round the
3257 // amount of space needed for the outgoing arguments up to the next
3258 // alignment boundary.
3259 Amount = alignTo(Amount, getStackAlign());
3260
3261 const Function &F = MF.getFunction();
3262 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3263 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
3264
3265 // If we have any exception handlers in this function, and we adjust
3266 // the SP before calls, we may need to indicate this to the unwinder
3267 // using GNU_ARGS_SIZE. Note that this may be necessary even when
3268 // Amount == 0, because the preceding function may have set a non-0
3269 // GNU_ARGS_SIZE.
3270 // TODO: We don't need to reset this between subsequent functions,
3271 // if it didn't change.
3272 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
3273
3274 if (HasDwarfEHHandlers && !isDestroy &&
3275 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
3276 BuildCFI(MBB, InsertPos, DL,
3277 MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
3278
3279 if (Amount == 0)
3280 return I;
3281
3282 // Factor out the amount that gets handled inside the sequence
3283 // (Pushes of argument for frame setup, callee pops for frame destroy)
3284 Amount -= InternalAmt;
3285
3286 // TODO: This is needed only if we require precise CFA.
3287 // If this is a callee-pop calling convention, emit a CFA adjust for
3288 // the amount the callee popped.
3289 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
3290 BuildCFI(MBB, InsertPos, DL,
3291 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
3292
3293 // Add Amount to SP to destroy a frame, or subtract to setup.
3294 int64_t StackAdjustment = isDestroy ? Amount : -Amount;
3295
3296 if (StackAdjustment) {
3297 // Merge with any previous or following adjustment instruction. Note: the
3298 // instructions merged with here do not have CFI, so their stack
3299 // adjustments do not feed into CfaAdjustment.
3300 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
3301 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
3302
3303 if (StackAdjustment) {
3304 if (!(F.hasMinSize() &&
3305 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
3306 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
3307 /*InEpilogue=*/false);
3308 }
3309 }
3310
3311 if (DwarfCFI && !hasFP(MF)) {
3312 // If we don't have FP, but need to generate unwind information,
3313 // we need to set the correct CFA offset after the stack adjustment.
3314 // How much we adjust the CFA offset depends on whether we're emitting
3315 // CFI only for EH purposes or for debugging. EH only requires the CFA
3316 // offset to be correct at each call site, while for debugging we want
3317 // it to be more precise.
3318
3319 int64_t CfaAdjustment = -StackAdjustment;
3320 // TODO: When not using precise CFA, we also need to adjust for the
3321 // InternalAmt here.
3322 if (CfaAdjustment) {
3323 BuildCFI(MBB, InsertPos, DL,
3324 MCCFIInstruction::createAdjustCfaOffset(nullptr,
3325 CfaAdjustment));
3326 }
3327 }
3328
3329 return I;
3330 }
3331
3332 if (InternalAmt) {
3333 MachineBasicBlock::iterator CI = I;
3334 MachineBasicBlock::iterator B = MBB.begin();
3335 while (CI != B && !std::prev(CI)->isCall())
3336 --CI;
3337 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
3338 }
3339
3340 return I;
3341 }
3342
canUseAsPrologue(const MachineBasicBlock & MBB) const3343 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
3344 assert(MBB.getParent() && "Block is not attached to a function!");
3345 const MachineFunction &MF = *MBB.getParent();
3346 if (!MBB.isLiveIn(X86::EFLAGS))
3347 return true;
3348
3349 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3350 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext();
3351 }
3352
canUseAsEpilogue(const MachineBasicBlock & MBB) const3353 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
3354 assert(MBB.getParent() && "Block is not attached to a function!");
3355
3356 // Win64 has strict requirements in terms of epilogue and we are
3357 // not taking a chance at messing with them.
3358 // I.e., unless this block is already an exit block, we can't use
3359 // it as an epilogue.
3360 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
3361 return false;
3362
3363 // Swift async context epilogue has a BTR instruction that clobbers parts of
3364 // EFLAGS.
3365 const MachineFunction &MF = *MBB.getParent();
3366 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext())
3367 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3368
3369 if (canUseLEAForSPInEpilogue(*MBB.getParent()))
3370 return true;
3371
3372 // If we cannot use LEA to adjust SP, we may need to use ADD, which
3373 // clobbers the EFLAGS. Check that we do not need to preserve it,
3374 // otherwise, conservatively assume this is not
3375 // safe to insert the epilogue here.
3376 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3377 }
3378
enableShrinkWrapping(const MachineFunction & MF) const3379 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
3380 // If we may need to emit frameless compact unwind information, give
3381 // up as this is currently broken: PR25614.
3382 bool CompactUnwind =
3383 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() !=
3384 nullptr;
3385 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) ||
3386 !CompactUnwind) &&
3387 // The lowering of segmented stack and HiPE only support entry
3388 // blocks as prologue blocks: PR26107. This limitation may be
3389 // lifted if we fix:
3390 // - adjustForSegmentedStacks
3391 // - adjustForHiPEPrologue
3392 MF.getFunction().getCallingConv() != CallingConv::HiPE &&
3393 !MF.shouldSplitStack();
3394 }
3395
restoreWin32EHStackPointers(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool RestoreSP) const3396 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
3397 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3398 const DebugLoc &DL, bool RestoreSP) const {
3399 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
3400 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
3401 assert(STI.is32Bit() && !Uses64BitFramePtr &&
3402 "restoring EBP/ESI on non-32-bit target");
3403
3404 MachineFunction &MF = *MBB.getParent();
3405 Register FramePtr = TRI->getFrameRegister(MF);
3406 Register BasePtr = TRI->getBaseRegister();
3407 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
3408 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3409 MachineFrameInfo &MFI = MF.getFrameInfo();
3410
3411 // FIXME: Don't set FrameSetup flag in catchret case.
3412
3413 int FI = FuncInfo.EHRegNodeFrameIndex;
3414 int EHRegSize = MFI.getObjectSize(FI);
3415
3416 if (RestoreSP) {
3417 // MOV32rm -EHRegSize(%ebp), %esp
3418 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
3419 X86::EBP, true, -EHRegSize)
3420 .setMIFlag(MachineInstr::FrameSetup);
3421 }
3422
3423 Register UsedReg;
3424 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed();
3425 int EndOffset = -EHRegOffset - EHRegSize;
3426 FuncInfo.EHRegNodeEndOffset = EndOffset;
3427
3428 if (UsedReg == FramePtr) {
3429 // ADD $offset, %ebp
3430 unsigned ADDri = getADDriOpcode(false, EndOffset);
3431 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
3432 .addReg(FramePtr)
3433 .addImm(EndOffset)
3434 .setMIFlag(MachineInstr::FrameSetup)
3435 ->getOperand(3)
3436 .setIsDead();
3437 assert(EndOffset >= 0 &&
3438 "end of registration object above normal EBP position!");
3439 } else if (UsedReg == BasePtr) {
3440 // LEA offset(%ebp), %esi
3441 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
3442 FramePtr, false, EndOffset)
3443 .setMIFlag(MachineInstr::FrameSetup);
3444 // MOV32rm SavedEBPOffset(%esi), %ebp
3445 assert(X86FI->getHasSEHFramePtrSave());
3446 int Offset =
3447 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
3448 .getFixed();
3449 assert(UsedReg == BasePtr);
3450 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
3451 UsedReg, true, Offset)
3452 .setMIFlag(MachineInstr::FrameSetup);
3453 } else {
3454 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
3455 }
3456 return MBBI;
3457 }
3458
getInitialCFAOffset(const MachineFunction & MF) const3459 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3460 return TRI->getSlotSize();
3461 }
3462
3463 Register
getInitialCFARegister(const MachineFunction & MF) const3464 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const {
3465 return TRI->getDwarfRegNum(StackPtr, true);
3466 }
3467
3468 namespace {
3469 // Struct used by orderFrameObjects to help sort the stack objects.
3470 struct X86FrameSortingObject {
3471 bool IsValid = false; // true if we care about this Object.
3472 unsigned ObjectIndex = 0; // Index of Object into MFI list.
3473 unsigned ObjectSize = 0; // Size of Object in bytes.
3474 Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
3475 unsigned ObjectNumUses = 0; // Object static number of uses.
3476 };
3477
3478 // The comparison function we use for std::sort to order our local
3479 // stack symbols. The current algorithm is to use an estimated
3480 // "density". This takes into consideration the size and number of
3481 // uses each object has in order to roughly minimize code size.
3482 // So, for example, an object of size 16B that is referenced 5 times
3483 // will get higher priority than 4 4B objects referenced 1 time each.
3484 // It's not perfect and we may be able to squeeze a few more bytes out of
3485 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3486 // fringe end can have special consideration, given their size is less
3487 // important, etc.), but the algorithmic complexity grows too much to be
3488 // worth the extra gains we get. This gets us pretty close.
3489 // The final order leaves us with objects with highest priority going
3490 // at the end of our list.
3491 struct X86FrameSortingComparator {
operator ()__anonb74a5b7e0411::X86FrameSortingComparator3492 inline bool operator()(const X86FrameSortingObject &A,
3493 const X86FrameSortingObject &B) const {
3494 uint64_t DensityAScaled, DensityBScaled;
3495
3496 // For consistency in our comparison, all invalid objects are placed
3497 // at the end. This also allows us to stop walking when we hit the
3498 // first invalid item after it's all sorted.
3499 if (!A.IsValid)
3500 return false;
3501 if (!B.IsValid)
3502 return true;
3503
3504 // The density is calculated by doing :
3505 // (double)DensityA = A.ObjectNumUses / A.ObjectSize
3506 // (double)DensityB = B.ObjectNumUses / B.ObjectSize
3507 // Since this approach may cause inconsistencies in
3508 // the floating point <, >, == comparisons, depending on the floating
3509 // point model with which the compiler was built, we're going
3510 // to scale both sides by multiplying with
3511 // A.ObjectSize * B.ObjectSize. This ends up factoring away
3512 // the division and, with it, the need for any floating point
3513 // arithmetic.
3514 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3515 static_cast<uint64_t>(B.ObjectSize);
3516 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3517 static_cast<uint64_t>(A.ObjectSize);
3518
3519 // If the two densities are equal, prioritize highest alignment
3520 // objects. This allows for similar alignment objects
3521 // to be packed together (given the same density).
3522 // There's room for improvement here, also, since we can pack
3523 // similar alignment (different density) objects next to each
3524 // other to save padding. This will also require further
3525 // complexity/iterations, and the overall gain isn't worth it,
3526 // in general. Something to keep in mind, though.
3527 if (DensityAScaled == DensityBScaled)
3528 return A.ObjectAlignment < B.ObjectAlignment;
3529
3530 return DensityAScaled < DensityBScaled;
3531 }
3532 };
3533 } // namespace
3534
3535 // Order the symbols in the local stack.
3536 // We want to place the local stack objects in some sort of sensible order.
3537 // The heuristic we use is to try and pack them according to static number
3538 // of uses and size of object in order to minimize code size.
orderFrameObjects(const MachineFunction & MF,SmallVectorImpl<int> & ObjectsToAllocate) const3539 void X86FrameLowering::orderFrameObjects(
3540 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3541 const MachineFrameInfo &MFI = MF.getFrameInfo();
3542
3543 // Don't waste time if there's nothing to do.
3544 if (ObjectsToAllocate.empty())
3545 return;
3546
3547 // Create an array of all MFI objects. We won't need all of these
3548 // objects, but we're going to create a full array of them to make
3549 // it easier to index into when we're counting "uses" down below.
3550 // We want to be able to easily/cheaply access an object by simply
3551 // indexing into it, instead of having to search for it every time.
3552 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3553
3554 // Walk the objects we care about and mark them as such in our working
3555 // struct.
3556 for (auto &Obj : ObjectsToAllocate) {
3557 SortingObjects[Obj].IsValid = true;
3558 SortingObjects[Obj].ObjectIndex = Obj;
3559 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj);
3560 // Set the size.
3561 int ObjectSize = MFI.getObjectSize(Obj);
3562 if (ObjectSize == 0)
3563 // Variable size. Just use 4.
3564 SortingObjects[Obj].ObjectSize = 4;
3565 else
3566 SortingObjects[Obj].ObjectSize = ObjectSize;
3567 }
3568
3569 // Count the number of uses for each object.
3570 for (auto &MBB : MF) {
3571 for (auto &MI : MBB) {
3572 if (MI.isDebugInstr())
3573 continue;
3574 for (const MachineOperand &MO : MI.operands()) {
3575 // Check to see if it's a local stack symbol.
3576 if (!MO.isFI())
3577 continue;
3578 int Index = MO.getIndex();
3579 // Check to see if it falls within our range, and is tagged
3580 // to require ordering.
3581 if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3582 SortingObjects[Index].IsValid)
3583 SortingObjects[Index].ObjectNumUses++;
3584 }
3585 }
3586 }
3587
3588 // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3589 // info).
3590 llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3591
3592 // Now modify the original list to represent the final order that
3593 // we want. The order will depend on whether we're going to access them
3594 // from the stack pointer or the frame pointer. For SP, the list should
3595 // end up with the END containing objects that we want with smaller offsets.
3596 // For FP, it should be flipped.
3597 int i = 0;
3598 for (auto &Obj : SortingObjects) {
3599 // All invalid items are sorted at the end, so it's safe to stop.
3600 if (!Obj.IsValid)
3601 break;
3602 ObjectsToAllocate[i++] = Obj.ObjectIndex;
3603 }
3604
3605 // Flip it if we're accessing off of the FP.
3606 if (!TRI->hasStackRealignment(MF) && hasFP(MF))
3607 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3608 }
3609
3610
getWinEHParentFrameOffset(const MachineFunction & MF) const3611 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3612 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3613 unsigned Offset = 16;
3614 // RBP is immediately pushed.
3615 Offset += SlotSize;
3616 // All callee-saved registers are then pushed.
3617 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3618 // Every funclet allocates enough stack space for the largest outgoing call.
3619 Offset += getWinEHFuncletFrameSize(MF);
3620 return Offset;
3621 }
3622
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const3623 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3624 MachineFunction &MF, RegScavenger *RS) const {
3625 // Mark the function as not having WinCFI. We will set it back to true in
3626 // emitPrologue if it gets called and emits CFI.
3627 MF.setHasWinCFI(false);
3628
3629 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte
3630 // aligned. The format doesn't support misaligned stack adjustments.
3631 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
3632 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize));
3633
3634 // If this function isn't doing Win64-style C++ EH, we don't need to do
3635 // anything.
3636 if (STI.is64Bit() && MF.hasEHFunclets() &&
3637 classifyEHPersonality(MF.getFunction().getPersonalityFn()) ==
3638 EHPersonality::MSVC_CXX) {
3639 adjustFrameForMsvcCxxEh(MF);
3640 }
3641 }
3642
adjustFrameForMsvcCxxEh(MachineFunction & MF) const3643 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const {
3644 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3645 // relative to RSP after the prologue. Find the offset of the last fixed
3646 // object, so that we can allocate a slot immediately following it. If there
3647 // were no fixed objects, use offset -SlotSize, which is immediately after the
3648 // return address. Fixed objects have negative frame indices.
3649 MachineFrameInfo &MFI = MF.getFrameInfo();
3650 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3651 int64_t MinFixedObjOffset = -SlotSize;
3652 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3653 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3654
3655 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3656 for (WinEHHandlerType &H : TBME.HandlerArray) {
3657 int FrameIndex = H.CatchObj.FrameIndex;
3658 if (FrameIndex != INT_MAX) {
3659 // Ensure alignment.
3660 unsigned Align = MFI.getObjectAlign(FrameIndex).value();
3661 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3662 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3663 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3664 }
3665 }
3666 }
3667
3668 // Ensure alignment.
3669 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3670 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3671 int UnwindHelpFI =
3672 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
3673 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3674
3675 // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3676 // other frame setup instructions.
3677 MachineBasicBlock &MBB = MF.front();
3678 auto MBBI = MBB.begin();
3679 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3680 ++MBBI;
3681
3682 DebugLoc DL = MBB.findDebugLoc(MBBI);
3683 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3684 UnwindHelpFI)
3685 .addImm(-2);
3686 }
3687
processFunctionBeforeFrameIndicesReplaced(MachineFunction & MF,RegScavenger * RS) const3688 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3689 MachineFunction &MF, RegScavenger *RS) const {
3690 if (STI.is32Bit() && MF.hasEHFunclets())
3691 restoreWinEHStackPointersInParent(MF);
3692 }
3693
restoreWinEHStackPointersInParent(MachineFunction & MF) const3694 void X86FrameLowering::restoreWinEHStackPointersInParent(
3695 MachineFunction &MF) const {
3696 // 32-bit functions have to restore stack pointers when control is transferred
3697 // back to the parent function. These blocks are identified as eh pads that
3698 // are not funclet entries.
3699 bool IsSEH = isAsynchronousEHPersonality(
3700 classifyEHPersonality(MF.getFunction().getPersonalityFn()));
3701 for (MachineBasicBlock &MBB : MF) {
3702 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry();
3703 if (NeedsRestore)
3704 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(),
3705 /*RestoreSP=*/IsSEH);
3706 }
3707 }
3708