xref: /llvm-project/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp (revision bb3f5e1fed7c6ba733b7f273e93f5d3930976185)
1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "SystemZ.h"
12 #include "SystemZMachineFunctionInfo.h"
13 #include "SystemZMachineScheduler.h"
14 #include "SystemZTargetObjectFile.h"
15 #include "SystemZTargetTransformInfo.h"
16 #include "TargetInfo/SystemZTargetInfo.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
21 #include "llvm/CodeGen/TargetPassConfig.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/MC/TargetRegistry.h"
24 #include "llvm/Support/CodeGen.h"
25 #include "llvm/Target/TargetLoweringObjectFile.h"
26 #include "llvm/Transforms/Scalar.h"
27 #include <memory>
28 #include <optional>
29 #include <string>
30 
31 using namespace llvm;
32 
33 static cl::opt<bool> EnableMachineCombinerPass(
34     "systemz-machine-combiner",
35     cl::desc("Enable the machine combiner pass"),
36     cl::init(true), cl::Hidden);
37 
38 // NOLINTNEXTLINE(readability-identifier-naming)
39 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
40   // Register the target.
41   RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
42   auto &PR = *PassRegistry::getPassRegistry();
43   initializeSystemZElimComparePass(PR);
44   initializeSystemZShortenInstPass(PR);
45   initializeSystemZLongBranchPass(PR);
46   initializeSystemZLDCleanupPass(PR);
47   initializeSystemZShortenInstPass(PR);
48   initializeSystemZPostRewritePass(PR);
49   initializeSystemZTDCPassPass(PR);
50   initializeSystemZDAGToDAGISelLegacyPass(PR);
51 }
52 
53 static std::string computeDataLayout(const Triple &TT) {
54   std::string Ret;
55 
56   // Big endian.
57   Ret += "E";
58 
59   // Data mangling.
60   Ret += DataLayout::getManglingComponent(TT);
61 
62   // Special features for z/OS.
63   if (TT.isOSzOS()) {
64     if (TT.isArch64Bit()) {
65       // Custom address space for ptr32.
66       Ret += "-p1:32:32";
67     }
68   }
69 
70   // Make sure that global data has at least 16 bits of alignment by
71   // default, so that we can refer to it using LARL.  We don't have any
72   // special requirements for stack variables though.
73   Ret += "-i1:8:16-i8:8:16";
74 
75   // 64-bit integers are naturally aligned.
76   Ret += "-i64:64";
77 
78   // 128-bit floats are aligned only to 64 bits.
79   Ret += "-f128:64";
80 
81   // The DataLayout string always holds a vector alignment of 64 bits, see
82   // comment in clang/lib/Basic/Targets/SystemZ.h.
83   Ret += "-v128:64";
84 
85   // We prefer 16 bits of aligned for all globals; see above.
86   Ret += "-a:8:16";
87 
88   // Integer registers are 32 or 64 bits.
89   Ret += "-n32:64";
90 
91   return Ret;
92 }
93 
94 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
95   if (TT.isOSzOS())
96     return std::make_unique<TargetLoweringObjectFileGOFF>();
97 
98   // Note: Some times run with -triple s390x-unknown.
99   // In this case, default to ELF unless z/OS specifically provided.
100   return std::make_unique<SystemZELFTargetObjectFile>();
101 }
102 
103 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) {
104   // Static code is suitable for use in a dynamic executable; there is no
105   // separate DynamicNoPIC model.
106   if (!RM || *RM == Reloc::DynamicNoPIC)
107     return Reloc::Static;
108   return *RM;
109 }
110 
111 // For SystemZ we define the models as follows:
112 //
113 // Small:  BRASL can call any function and will use a stub if necessary.
114 //         Locally-binding symbols will always be in range of LARL.
115 //
116 // Medium: BRASL can call any function and will use a stub if necessary.
117 //         GOT slots and locally-defined text will always be in range
118 //         of LARL, but other symbols might not be.
119 //
120 // Large:  Equivalent to Medium for now.
121 //
122 // Kernel: Equivalent to Medium for now.
123 //
124 // This means that any PIC module smaller than 4GB meets the
125 // requirements of Small, so Small seems like the best default there.
126 //
127 // All symbols bind locally in a non-PIC module, so the choice is less
128 // obvious.  There are two cases:
129 //
130 // - When creating an executable, PLTs and copy relocations allow
131 //   us to treat external symbols as part of the executable.
132 //   Any executable smaller than 4GB meets the requirements of Small,
133 //   so that seems like the best default.
134 //
135 // - When creating JIT code, stubs will be in range of BRASL if the
136 //   image is less than 4GB in size.  GOT entries will likewise be
137 //   in range of LARL.  However, the JIT environment has no equivalent
138 //   of copy relocs, so locally-binding data symbols might not be in
139 //   the range of LARL.  We need the Medium model in that case.
140 static CodeModel::Model
141 getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM,
142                              Reloc::Model RM, bool JIT) {
143   if (CM) {
144     if (*CM == CodeModel::Tiny)
145       report_fatal_error("Target does not support the tiny CodeModel", false);
146     if (*CM == CodeModel::Kernel)
147       report_fatal_error("Target does not support the kernel CodeModel", false);
148     return *CM;
149   }
150   if (JIT)
151     return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
152   return CodeModel::Small;
153 }
154 
155 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
156                                            StringRef CPU, StringRef FS,
157                                            const TargetOptions &Options,
158                                            std::optional<Reloc::Model> RM,
159                                            std::optional<CodeModel::Model> CM,
160                                            CodeGenOptLevel OL, bool JIT)
161     : CodeGenTargetMachineImpl(
162           T, computeDataLayout(TT), TT, CPU, FS, Options,
163           getEffectiveRelocModel(RM),
164           getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
165           OL),
166       TLOF(createTLOF(getTargetTriple())) {
167   initAsmInfo();
168 }
169 
170 SystemZTargetMachine::~SystemZTargetMachine() = default;
171 
172 const SystemZSubtarget *
173 SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
174   Attribute CPUAttr = F.getFnAttribute("target-cpu");
175   Attribute TuneAttr = F.getFnAttribute("tune-cpu");
176   Attribute FSAttr = F.getFnAttribute("target-features");
177 
178   std::string CPU =
179       CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
180   std::string TuneCPU =
181       TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
182   std::string FS =
183       FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
184 
185   // FIXME: This is related to the code below to reset the target options,
186   // we need to know whether the soft float and backchain flags are set on the
187   // function, so we can enable them as subtarget features.
188   bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
189   if (SoftFloat)
190     FS += FS.empty() ? "+soft-float" : ",+soft-float";
191   bool BackChain = F.hasFnAttribute("backchain");
192   if (BackChain)
193     FS += FS.empty() ? "+backchain" : ",+backchain";
194 
195   auto &I = SubtargetMap[CPU + TuneCPU + FS];
196   if (!I) {
197     // This needs to be done before we create a new subtarget since any
198     // creation will depend on the TM and the code generation flags on the
199     // function that reside in TargetOptions.
200     resetTargetOptions(F);
201     I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, TuneCPU, FS,
202                                            *this);
203   }
204 
205   return I.get();
206 }
207 
208 namespace {
209 
210 /// SystemZ Code Generator Pass Configuration Options.
211 class SystemZPassConfig : public TargetPassConfig {
212 public:
213   SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
214     : TargetPassConfig(TM, PM) {}
215 
216   SystemZTargetMachine &getSystemZTargetMachine() const {
217     return getTM<SystemZTargetMachine>();
218   }
219 
220   ScheduleDAGInstrs *
221   createPostMachineScheduler(MachineSchedContext *C) const override {
222     return new ScheduleDAGMI(C,
223                              std::make_unique<SystemZPostRASchedStrategy>(C),
224                              /*RemoveKillFlags=*/true);
225   }
226 
227   void addIRPasses() override;
228   bool addInstSelector() override;
229   bool addILPOpts() override;
230   void addPreRegAlloc() override;
231   void addPostRewrite() override;
232   void addPostRegAlloc() override;
233   void addPreSched2() override;
234   void addPreEmitPass() override;
235 };
236 
237 } // end anonymous namespace
238 
239 void SystemZPassConfig::addIRPasses() {
240   if (getOptLevel() != CodeGenOptLevel::None) {
241     addPass(createSystemZTDCPass());
242     addPass(createLoopDataPrefetchPass());
243   }
244 
245   addPass(createAtomicExpandLegacyPass());
246 
247   TargetPassConfig::addIRPasses();
248 }
249 
250 bool SystemZPassConfig::addInstSelector() {
251   addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
252 
253   if (getOptLevel() != CodeGenOptLevel::None)
254     addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
255 
256   return false;
257 }
258 
259 bool SystemZPassConfig::addILPOpts() {
260   addPass(&EarlyIfConverterLegacyID);
261 
262   if (EnableMachineCombinerPass)
263     addPass(&MachineCombinerID);
264 
265   return true;
266 }
267 
268 void SystemZPassConfig::addPreRegAlloc() {
269   addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
270 }
271 
272 void SystemZPassConfig::addPostRewrite() {
273   addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
274 }
275 
276 void SystemZPassConfig::addPostRegAlloc() {
277   // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
278   // is not called).
279   if (getOptLevel() == CodeGenOptLevel::None)
280     addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
281 }
282 
283 void SystemZPassConfig::addPreSched2() {
284   if (getOptLevel() != CodeGenOptLevel::None)
285     addPass(&IfConverterID);
286 }
287 
288 void SystemZPassConfig::addPreEmitPass() {
289   // Do instruction shortening before compare elimination because some
290   // vector instructions will be shortened into opcodes that compare
291   // elimination recognizes.
292   if (getOptLevel() != CodeGenOptLevel::None)
293     addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
294 
295   // We eliminate comparisons here rather than earlier because some
296   // transformations can change the set of available CC values and we
297   // generally want those transformations to have priority.  This is
298   // especially true in the commonest case where the result of the comparison
299   // is used by a single in-range branch instruction, since we will then
300   // be able to fuse the compare and the branch instead.
301   //
302   // For example, two-address NILF can sometimes be converted into
303   // three-address RISBLG.  NILF produces a CC value that indicates whether
304   // the low word is zero, but RISBLG does not modify CC at all.  On the
305   // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
306   // The CC value produced by NILL isn't useful for our purposes, but the
307   // value produced by RISBG can be used for any comparison with zero
308   // (not just equality).  So there are some transformations that lose
309   // CC values (while still being worthwhile) and others that happen to make
310   // the CC result more useful than it was originally.
311   //
312   // Another reason is that we only want to use BRANCH ON COUNT in cases
313   // where we know that the count register is not going to be spilled.
314   //
315   // Doing it so late makes it more likely that a register will be reused
316   // between the comparison and the branch, but it isn't clear whether
317   // preventing that would be a win or not.
318   if (getOptLevel() != CodeGenOptLevel::None)
319     addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
320   addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
321 
322   // Do final scheduling after all other optimizations, to get an
323   // optimal input for the decoder (branch relaxation must happen
324   // after block placement).
325   if (getOptLevel() != CodeGenOptLevel::None)
326     addPass(&PostMachineSchedulerID);
327 }
328 
329 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
330   return new SystemZPassConfig(*this, PM);
331 }
332 
333 TargetTransformInfo
334 SystemZTargetMachine::getTargetTransformInfo(const Function &F) const {
335   return TargetTransformInfo(SystemZTTIImpl(this, F));
336 }
337 
338 MachineFunctionInfo *SystemZTargetMachine::createMachineFunctionInfo(
339     BumpPtrAllocator &Allocator, const Function &F,
340     const TargetSubtargetInfo *STI) const {
341   return SystemZMachineFunctionInfo::create<SystemZMachineFunctionInfo>(
342       Allocator, F, STI);
343 }
344