xref: /netbsd-src/sys/dev/ic/i82557.c (revision be6f2fcee7fefd8149c125c7283a8c03adc8149e)
1 /*	$NetBSD: i82557.c,v 1.162 2024/06/29 12:11:11 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1995, David Greenman
35  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice unmodified, this list of conditions, and the following
43  *    disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61  */
62 
63 /*
64  * Device driver for the Intel i82557 fast Ethernet controller,
65  * and its successors, the i82558 and i82559.
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.162 2024/06/29 12:11:11 riastradh Exp $");
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/callout.h>
74 #include <sys/mbuf.h>
75 #include <sys/malloc.h>
76 #include <sys/kernel.h>
77 #include <sys/socket.h>
78 #include <sys/ioctl.h>
79 #include <sys/errno.h>
80 #include <sys/device.h>
81 #include <sys/syslog.h>
82 #include <sys/proc.h>
83 
84 #include <machine/endian.h>
85 
86 #include <sys/rndsource.h>
87 
88 #include <net/if.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_ether.h>
92 
93 #include <netinet/in.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/ip.h>
96 #include <netinet/tcp.h>
97 #include <netinet/udp.h>
98 
99 #include <net/bpf.h>
100 
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103 
104 #include <dev/mii/miivar.h>
105 
106 #include <dev/ic/i82557reg.h>
107 #include <dev/ic/i82557var.h>
108 
109 #include <dev/microcode/i8255x/rcvbundl.h>
110 
111 /*
112  * NOTE!  On the Alpha, we have an alignment constraint.  The
113  * card DMAs the packet immediately following the RFA.  However,
114  * the first thing in the packet is a 14-byte Ethernet header.
115  * This means that the packet is misaligned.  To compensate,
116  * we actually offset the RFA 2 bytes into the cluster.  This
117  * aligns the packet after the Ethernet header at a 32-bit
118  * boundary.  HOWEVER!  This means that the RFA is misaligned!
119  */
120 #define	RFA_ALIGNMENT_FUDGE	2
121 
122 /*
123  * The configuration byte map has several undefined fields which
124  * must be one or must be zero.  Set up a template for these bits
125  * only (assuming an i82557 chip), leaving the actual configuration
126  * for fxp_init().
127  *
128  * See the definition of struct fxp_cb_config for the bit definitions.
129  */
130 const uint8_t fxp_cb_config_template[] = {
131 	0x0, 0x0,		/* cb_status */
132 	0x0, 0x0,		/* cb_command */
133 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
134 	0x0,	/*  0 */
135 	0x0,	/*  1 */
136 	0x0,	/*  2 */
137 	0x0,	/*  3 */
138 	0x0,	/*  4 */
139 	0x0,	/*  5 */
140 	0x32,	/*  6 */
141 	0x0,	/*  7 */
142 	0x0,	/*  8 */
143 	0x0,	/*  9 */
144 	0x6,	/* 10 */
145 	0x0,	/* 11 */
146 	0x0,	/* 12 */
147 	0x0,	/* 13 */
148 	0xf2,	/* 14 */
149 	0x48,	/* 15 */
150 	0x0,	/* 16 */
151 	0x40,	/* 17 */
152 	0xf0,	/* 18 */
153 	0x0,	/* 19 */
154 	0x3f,	/* 20 */
155 	0x5,	/* 21 */
156 	0x0,	/* 22 */
157 	0x0,	/* 23 */
158 	0x0,	/* 24 */
159 	0x0,	/* 25 */
160 	0x0,	/* 26 */
161 	0x0,	/* 27 */
162 	0x0,	/* 28 */
163 	0x0,	/* 29 */
164 	0x0,	/* 30 */
165 	0x0,	/* 31 */
166 };
167 
168 void	fxp_mii_initmedia(struct fxp_softc *);
169 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
170 
171 void	fxp_80c24_initmedia(struct fxp_softc *);
172 int	fxp_80c24_mediachange(struct ifnet *);
173 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
174 
175 void	fxp_start(struct ifnet *);
176 int	fxp_ioctl(struct ifnet *, u_long, void *);
177 void	fxp_watchdog(struct ifnet *);
178 int	fxp_init(struct ifnet *);
179 void	fxp_stop(struct ifnet *, int);
180 
181 void	fxp_txintr(struct fxp_softc *);
182 int	fxp_rxintr(struct fxp_softc *);
183 
184 void	fxp_rx_hwcksum(struct fxp_softc *, struct mbuf *,
185 	    const struct fxp_rfa *, u_int);
186 
187 void	fxp_rxdrain(struct fxp_softc *);
188 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
189 int	fxp_mdi_read(device_t, int, int, uint16_t *);
190 void	fxp_statchg(struct ifnet *);
191 int	fxp_mdi_write(device_t, int, int, uint16_t);
192 void	fxp_autosize_eeprom(struct fxp_softc*);
193 void	fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
194 void	fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
195 void	fxp_eeprom_update_cksum(struct fxp_softc *);
196 void	fxp_get_info(struct fxp_softc *, uint8_t *);
197 void	fxp_tick(void *);
198 void	fxp_mc_setup(struct fxp_softc *);
199 void	fxp_load_ucode(struct fxp_softc *);
200 
201 int	fxp_copy_small = 0;
202 
203 /*
204  * Variables for interrupt mitigating microcode.
205  */
206 int	fxp_int_delay = 1000;		/* usec */
207 int	fxp_bundle_max = 6;		/* packets */
208 
209 struct fxp_phytype {
210 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
211 	void	(*fp_init)(struct fxp_softc *);
212 } fxp_phytype_table[] = {
213 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
214 	{ -1,				fxp_mii_initmedia },
215 };
216 
217 /*
218  * Set initial transmit threshold at 64 (512 bytes). This is
219  * increased by 64 (512 bytes) at a time, to maximum of 192
220  * (1536 bytes), if an underrun occurs.
221  */
222 static int tx_threshold = 64;
223 
224 /*
225  * Wait for the previous command to be accepted (but not necessarily
226  * completed).
227  */
228 static inline void
fxp_scb_wait(struct fxp_softc * sc)229 fxp_scb_wait(struct fxp_softc *sc)
230 {
231 	int i = 10000;
232 
233 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
234 		delay(2);
235 	if (i == 0)
236 		log(LOG_WARNING,
237 		    "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
238 }
239 
240 /*
241  * Submit a command to the i82557.
242  */
243 static inline void
fxp_scb_cmd(struct fxp_softc * sc,uint8_t cmd)244 fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
245 {
246 
247 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
248 }
249 
250 /*
251  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
252  */
253 void
fxp_attach(struct fxp_softc * sc)254 fxp_attach(struct fxp_softc *sc)
255 {
256 	uint8_t enaddr[ETHER_ADDR_LEN];
257 	struct ifnet *ifp;
258 	bus_dma_segment_t seg;
259 	int rseg, i, error;
260 	struct fxp_phytype *fp;
261 
262 	callout_init(&sc->sc_callout, 0);
263 	callout_setfunc(&sc->sc_callout, fxp_tick, sc);
264 
265         /*
266 	 * Enable use of extended RFDs and IPCBs for 82550 and later chips.
267 	 * Note: to use IPCB we need extended TXCB support too, and
268 	 *       these feature flags should be set in each bus attachment.
269 	 */
270 	if (sc->sc_flags & FXPF_EXT_RFA) {
271 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
272 		sc->sc_rfa_size = RFA_EXT_SIZE;
273 	} else {
274 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
275 		sc->sc_rfa_size = RFA_SIZE;
276 	}
277 
278 	/*
279 	 * Allocate the control data structures, and create and load the
280 	 * DMA map for it.
281 	 */
282 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
283 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
284 	    0)) != 0) {
285 		aprint_error_dev(sc->sc_dev,
286 		    "unable to allocate control data, error = %d\n",
287 		    error);
288 		goto fail_0;
289 	}
290 
291 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
292 	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
293 	    BUS_DMA_COHERENT)) != 0) {
294 		aprint_error_dev(sc->sc_dev,
295 		    "unable to map control data, error = %d\n", error);
296 		goto fail_1;
297 	}
298 	sc->sc_cdseg = seg;
299 	sc->sc_cdnseg = rseg;
300 
301 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
302 
303 	if ((error = bus_dmamap_create(sc->sc_dmat,
304 	    sizeof(struct fxp_control_data), 1,
305 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
306 		aprint_error_dev(sc->sc_dev,
307 		    "unable to create control data DMA map, error = %d\n",
308 		    error);
309 		goto fail_2;
310 	}
311 
312 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
313 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
314 	    0)) != 0) {
315 		aprint_error_dev(sc->sc_dev,
316 		    "can't load control data DMA map, error = %d\n",
317 		    error);
318 		goto fail_3;
319 	}
320 
321 	/*
322 	 * Create the transmit buffer DMA maps.
323 	 */
324 	for (i = 0; i < FXP_NTXCB; i++) {
325 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
326 		    (sc->sc_flags & FXPF_EXT_RFA) ?
327 		    FXP_IPCB_NTXSEG : FXP_NTXSEG,
328 		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
329 			aprint_error_dev(sc->sc_dev,
330 			    "unable to create tx DMA map %d, error = %d\n",
331 			    i, error);
332 			goto fail_4;
333 		}
334 	}
335 
336 	/*
337 	 * Create the receive buffer DMA maps.
338 	 */
339 	for (i = 0; i < FXP_NRFABUFS; i++) {
340 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
341 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
342 			aprint_error_dev(sc->sc_dev,
343 			    "unable to create rx DMA map %d, error = %d\n",
344 			    i, error);
345 			goto fail_5;
346 		}
347 	}
348 
349 	/* Initialize MAC address and media structures. */
350 	fxp_get_info(sc, enaddr);
351 
352 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
353 	    ether_sprintf(enaddr));
354 
355 	ifp = &sc->sc_ethercom.ec_if;
356 
357 	/*
358 	 * Get info about our media interface, and initialize it.  Note
359 	 * the table terminates itself with a phy of -1, indicating
360 	 * that we're using MII.
361 	 */
362 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
363 		if (fp->fp_phy == sc->phy_primary_device)
364 			break;
365 	(*fp->fp_init)(sc);
366 
367 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
368 	ifp->if_softc = sc;
369 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
370 	ifp->if_ioctl = fxp_ioctl;
371 	ifp->if_start = fxp_start;
372 	ifp->if_watchdog = fxp_watchdog;
373 	ifp->if_init = fxp_init;
374 	ifp->if_stop = fxp_stop;
375 	IFQ_SET_READY(&ifp->if_snd);
376 
377 	if (sc->sc_flags & FXPF_EXT_RFA) {
378 		/*
379 		 * Enable hardware cksum support by EXT_RFA and IPCB.
380 		 *
381 		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
382 		 * at least, on i82550 rev.12.
383 		 * specifically, it doesn't set ipv4 checksum properly
384 		 * when sending UDP (and probably TCP) packets with
385 		 * 20 byte ipv4 header + 1 or 2 byte data,
386 		 * though ICMP packets seem working.
387 		 * FreeBSD driver has related comments.
388 		 * We've added a workaround to handle the bug by padding
389 		 * such packets manually.
390 		 */
391 		ifp->if_capabilities =
392 		    IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
393 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
394 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
395 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
396 		sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
397 	} else if (sc->sc_flags & FXPF_82559_RXCSUM) {
398 		ifp->if_capabilities =
399 		    IFCAP_CSUM_TCPv4_Rx |
400 		    IFCAP_CSUM_UDPv4_Rx;
401 	}
402 
403 	/*
404 	 * We can support 802.1Q VLAN-sized frames.
405 	 */
406 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
407 
408 	/*
409 	 * Attach the interface.
410 	 */
411 	if_attach(ifp);
412 	if_deferred_start_init(ifp, NULL);
413 	ether_ifattach(ifp, enaddr);
414 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
415 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
416 
417 #ifdef FXP_EVENT_COUNTERS
418 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
419 	    NULL, device_xname(sc->sc_dev), "txstall");
420 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
421 	    NULL, device_xname(sc->sc_dev), "txintr");
422 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
423 	    NULL, device_xname(sc->sc_dev), "rxintr");
424 	if (sc->sc_flags & FXPF_FC) {
425 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
426 		    NULL, device_xname(sc->sc_dev), "txpause");
427 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
428 		    NULL, device_xname(sc->sc_dev), "rxpause");
429 	}
430 #endif /* FXP_EVENT_COUNTERS */
431 
432 	/* The attach is successful. */
433 	sc->sc_flags |= FXPF_ATTACHED;
434 
435 	return;
436 
437 	/*
438 	 * Free any resources we've allocated during the failed attach
439 	 * attempt.  Do this in reverse order and fall though.
440 	 */
441  fail_5:
442 	for (i = 0; i < FXP_NRFABUFS; i++) {
443 		if (sc->sc_rxmaps[i] != NULL)
444 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
445 	}
446  fail_4:
447 	for (i = 0; i < FXP_NTXCB; i++) {
448 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
449 			bus_dmamap_destroy(sc->sc_dmat,
450 			    FXP_DSTX(sc, i)->txs_dmamap);
451 	}
452 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
453  fail_3:
454 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
455  fail_2:
456 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
457 	    sizeof(struct fxp_control_data));
458  fail_1:
459 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
460  fail_0:
461 	return;
462 }
463 
464 void
fxp_mii_initmedia(struct fxp_softc * sc)465 fxp_mii_initmedia(struct fxp_softc *sc)
466 {
467 	struct mii_data * const mii = &sc->sc_mii;
468 	int flags;
469 
470 	sc->sc_flags |= FXPF_MII;
471 
472 	mii->mii_ifp = &sc->sc_ethercom.ec_if;
473 	mii->mii_readreg = fxp_mdi_read;
474 	mii->mii_writereg = fxp_mdi_write;
475 	mii->mii_statchg = fxp_statchg;
476 
477 	sc->sc_ethercom.ec_mii = mii;
478 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
479 	    fxp_mii_mediastatus);
480 
481 	flags = MIIF_NOISOLATE;
482 	if (sc->sc_flags & FXPF_FC)
483 		flags |= MIIF_FORCEANEG | MIIF_DOPAUSE;
484 	/*
485 	 * The i82557 wedges if all of its PHYs are isolated!
486 	 */
487 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
488 	    MII_OFFSET_ANY, flags);
489 	if (LIST_EMPTY(&mii->mii_phys)) {
490 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
491 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
492 	} else
493 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
494 }
495 
496 void
fxp_80c24_initmedia(struct fxp_softc * sc)497 fxp_80c24_initmedia(struct fxp_softc *sc)
498 {
499 	struct mii_data * const mii = &sc->sc_mii;
500 
501 	/*
502 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
503 	 * doesn't have a programming interface of any sort.  The
504 	 * media is sensed automatically based on how the link partner
505 	 * is configured.  This is, in essence, manual configuration.
506 	 */
507 	aprint_normal_dev(sc->sc_dev,
508 	    "Seeq 80c24 AutoDUPLEX media interface present\n");
509 	ifmedia_init(&mii->mii_media, 0, fxp_80c24_mediachange,
510 	    fxp_80c24_mediastatus);
511 	ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
512 	ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
513 }
514 
515 /*
516  * Initialize the interface media.
517  */
518 void
fxp_get_info(struct fxp_softc * sc,uint8_t * enaddr)519 fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
520 {
521 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
522 
523 	/*
524 	 * Reset to a stable state.
525 	 */
526 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
527 	DELAY(100);
528 
529 	sc->sc_eeprom_size = 0;
530 	fxp_autosize_eeprom(sc);
531 	if (sc->sc_eeprom_size == 0) {
532 		aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
533 		sc->sc_eeprom_size = 6; /* XXX panic here? */
534 	}
535 #ifdef DEBUG
536 	aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
537 	    1 << sc->sc_eeprom_size);
538 #endif
539 
540 	/*
541 	 * Get info about the primary PHY
542 	 */
543 	fxp_read_eeprom(sc, &data, 6, 1);
544 	sc->phy_primary_device =
545 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
546 
547 	/*
548 	 * Read MAC address.
549 	 */
550 	fxp_read_eeprom(sc, myea, 0, 3);
551 	enaddr[0] = myea[0] & 0xff;
552 	enaddr[1] = myea[0] >> 8;
553 	enaddr[2] = myea[1] & 0xff;
554 	enaddr[3] = myea[1] >> 8;
555 	enaddr[4] = myea[2] & 0xff;
556 	enaddr[5] = myea[2] >> 8;
557 
558 	/*
559 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
560 	 * as some i82559 designs, have a defect where the chip can
561 	 * cause a PCI protocol violation if it receives a CU_RESUME
562 	 * command when it is entering the IDLE state.
563 	 *
564 	 * The work-around is to disable Dynamic Standby Mode, so that
565 	 * the chip never deasserts #CLKRUN, and always remains in the
566 	 * active state.
567 	 *
568 	 * Unfortunately, the only way to disable Dynamic Standby is
569 	 * to frob an EEPROM setting and reboot (the EEPROM setting
570 	 * is only consulted when the PCI bus comes out of reset).
571 	 *
572 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
573 	 */
574 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
575 		fxp_read_eeprom(sc, &data, 10, 1);
576 		if (data & 0x02) {		/* STB enable */
577 			aprint_error_dev(sc->sc_dev, "WARNING: "
578 			    "Disabling dynamic standby mode in EEPROM "
579 			    "to work around a\n");
580 			aprint_normal_dev(sc->sc_dev,
581 			    "WARNING: hardware bug.  You must reset "
582 			    "the system before using this\n");
583 			aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
584 			data &= ~0x02;
585 			fxp_write_eeprom(sc, &data, 10, 1);
586 			aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
587 			    data);
588 			fxp_eeprom_update_cksum(sc);
589 		}
590 	}
591 
592 	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
593 	/* Due to false positives we make it conditional on setting link1 */
594 	fxp_read_eeprom(sc, &data, 3, 1);
595 	if ((data & 0x03) != 0x03) {
596 		aprint_verbose_dev(sc->sc_dev,
597 		    "May need receiver lock-up workaround\n");
598 	}
599 }
600 
601 static void
fxp_eeprom_shiftin(struct fxp_softc * sc,int data,int len)602 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
603 {
604 	uint16_t reg;
605 	int x;
606 
607 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
608 		DELAY(40);
609 		if (data & x)
610 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
611 		else
612 			reg = FXP_EEPROM_EECS;
613 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
614 		DELAY(40);
615 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
616 		    reg | FXP_EEPROM_EESK);
617 		DELAY(40);
618 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
619 	}
620 	DELAY(40);
621 }
622 
623 /*
624  * Figure out EEPROM size.
625  *
626  * 559's can have either 64-word or 256-word EEPROMs, the 558
627  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
628  * talks about the existence of 16 to 256 word EEPROMs.
629  *
630  * The only known sizes are 64 and 256, where the 256 version is used
631  * by CardBus cards to store CIS information.
632  *
633  * The address is shifted in msb-to-lsb, and after the last
634  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
635  * after which follows the actual data. We try to detect this zero, by
636  * probing the data-out bit in the EEPROM control register just after
637  * having shifted in a bit. If the bit is zero, we assume we've
638  * shifted enough address bits. The data-out should be tri-state,
639  * before this, which should translate to a logical one.
640  *
641  * Other ways to do this would be to try to read a register with known
642  * contents with a varying number of address bits, but no such
643  * register seem to be available. The high bits of register 10 are 01
644  * on the 558 and 559, but apparently not on the 557.
645  *
646  * The Linux driver computes a checksum on the EEPROM data, but the
647  * value of this checksum is not very well documented.
648  */
649 
650 void
fxp_autosize_eeprom(struct fxp_softc * sc)651 fxp_autosize_eeprom(struct fxp_softc *sc)
652 {
653 	int x;
654 
655 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
656 	DELAY(40);
657 
658 	/* Shift in read opcode. */
659 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
660 
661 	/*
662 	 * Shift in address, wait for the dummy zero following a correct
663 	 * address shift.
664 	 */
665 	for (x = 1; x <= 8; x++) {
666 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
667 		DELAY(40);
668 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
669 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
670 		DELAY(40);
671 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
672 		    FXP_EEPROM_EEDO) == 0)
673 			break;
674 		DELAY(40);
675 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
676 		DELAY(40);
677 	}
678 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
679 	DELAY(40);
680 	if (x != 6 && x != 8) {
681 #ifdef DEBUG
682 		printf("%s: strange EEPROM size (%d)\n",
683 		    device_xname(sc->sc_dev), 1 << x);
684 #endif
685 	} else
686 		sc->sc_eeprom_size = x;
687 }
688 
689 /*
690  * Read from the serial EEPROM. Basically, you manually shift in
691  * the read opcode (one bit at a time) and then shift in the address,
692  * and then you shift out the data (all of this one bit at a time).
693  * The word size is 16 bits, so you have to provide the address for
694  * every 16 bits of data.
695  */
696 void
fxp_read_eeprom(struct fxp_softc * sc,uint16_t * data,int offset,int words)697 fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
698 {
699 	uint16_t reg;
700 	int i, x;
701 
702 	for (i = 0; i < words; i++) {
703 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
704 
705 		/* Shift in read opcode. */
706 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
707 
708 		/* Shift in address. */
709 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
710 
711 		reg = FXP_EEPROM_EECS;
712 		data[i] = 0;
713 
714 		/* Shift out data. */
715 		for (x = 16; x > 0; x--) {
716 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
717 			    reg | FXP_EEPROM_EESK);
718 			DELAY(40);
719 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
720 			    FXP_EEPROM_EEDO)
721 				data[i] |= (1 << (x - 1));
722 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
723 			DELAY(40);
724 		}
725 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
726 		DELAY(40);
727 	}
728 }
729 
730 /*
731  * Write data to the serial EEPROM.
732  */
733 void
fxp_write_eeprom(struct fxp_softc * sc,uint16_t * data,int offset,int words)734 fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
735 {
736 	int i, j;
737 
738 	for (i = 0; i < words; i++) {
739 		/* Erase/write enable. */
740 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
741 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
742 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
743 		    sc->sc_eeprom_size);
744 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
745 		DELAY(4);
746 
747 		/* Shift in write opcode, address, data. */
748 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
749 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
750 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
751 		fxp_eeprom_shiftin(sc, data[i], 16);
752 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
753 		DELAY(4);
754 
755 		/* Wait for the EEPROM to finish up. */
756 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
757 		DELAY(4);
758 		for (j = 0; j < 1000; j++) {
759 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
760 			    FXP_EEPROM_EEDO)
761 				break;
762 			DELAY(50);
763 		}
764 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
765 		DELAY(4);
766 
767 		/* Erase/write disable. */
768 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
769 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
770 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
771 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
772 		DELAY(4);
773 	}
774 }
775 
776 /*
777  * Update the checksum of the EEPROM.
778  */
779 void
fxp_eeprom_update_cksum(struct fxp_softc * sc)780 fxp_eeprom_update_cksum(struct fxp_softc *sc)
781 {
782 	int i;
783 	uint16_t data, cksum;
784 
785 	cksum = 0;
786 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
787 		fxp_read_eeprom(sc, &data, i, 1);
788 		cksum += data;
789 	}
790 	i = (1 << sc->sc_eeprom_size) - 1;
791 	cksum = 0xbaba - cksum;
792 	fxp_read_eeprom(sc, &data, i, 1);
793 	fxp_write_eeprom(sc, &cksum, i, 1);
794 	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
795 	    device_xname(sc->sc_dev), i, data, cksum);
796 }
797 
798 /*
799  * Start packet transmission on the interface.
800  */
801 void
fxp_start(struct ifnet * ifp)802 fxp_start(struct ifnet *ifp)
803 {
804 	struct fxp_softc *sc = ifp->if_softc;
805 	struct mbuf *m0, *m;
806 	struct fxp_txdesc *txd;
807 	struct fxp_txsoft *txs;
808 	bus_dmamap_t dmamap;
809 	int error, lasttx, nexttx, opending, seg, nsegs, len;
810 
811 	/*
812 	 * If we want a re-init, bail out now.
813 	 */
814 	if (sc->sc_flags & FXPF_WANTINIT) {
815 		ifp->if_flags |= IFF_OACTIVE;
816 		return;
817 	}
818 
819 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
820 		return;
821 
822 	/*
823 	 * Remember the previous txpending and the current lasttx.
824 	 */
825 	opending = sc->sc_txpending;
826 	lasttx = sc->sc_txlast;
827 
828 	/*
829 	 * Loop through the send queue, setting up transmit descriptors
830 	 * until we drain the queue, or use up all available transmit
831 	 * descriptors.
832 	 */
833 	for (;;) {
834 		struct fxp_tbd *tbdp;
835 		int csum_flags;
836 
837 		/*
838 		 * Grab a packet off the queue.
839 		 */
840 		IFQ_POLL(&ifp->if_snd, m0);
841 		if (m0 == NULL)
842 			break;
843 		m = NULL;
844 
845 		if (sc->sc_txpending == FXP_NTXCB - 1) {
846 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
847 			break;
848 		}
849 
850 		/*
851 		 * Get the next available transmit descriptor.
852 		 */
853 		nexttx = FXP_NEXTTX(sc->sc_txlast);
854 		txd = FXP_CDTX(sc, nexttx);
855 		txs = FXP_DSTX(sc, nexttx);
856 		dmamap = txs->txs_dmamap;
857 
858 		/*
859 		 * Load the DMA map.  If this fails, the packet either
860 		 * didn't fit in the allotted number of frags, or we were
861 		 * short on resources.  In this case, we'll copy and try
862 		 * again.
863 		 */
864 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
865 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
866 			MGETHDR(m, M_DONTWAIT, MT_DATA);
867 			if (m == NULL) {
868 				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
869 				    device_xname(sc->sc_dev));
870 				break;
871 			}
872 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
873 			if (m0->m_pkthdr.len > MHLEN) {
874 				MCLGET(m, M_DONTWAIT);
875 				if ((m->m_flags & M_EXT) == 0) {
876 					log(LOG_ERR, "%s: unable to allocate "
877 					    "Tx cluster\n",
878 					    device_xname(sc->sc_dev));
879 					m_freem(m);
880 					break;
881 				}
882 			}
883 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
884 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
885 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
886 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
887 			if (error) {
888 				log(LOG_ERR, "%s: unable to load Tx buffer, "
889 				    "error = %d\n",
890 				    device_xname(sc->sc_dev), error);
891 				break;
892 			}
893 		}
894 
895 		IFQ_DEQUEUE(&ifp->if_snd, m0);
896 		csum_flags = m0->m_pkthdr.csum_flags;
897 		if (m != NULL) {
898 			m_freem(m0);
899 			m0 = m;
900 		}
901 
902 		/* Initialize the fraglist. */
903 		tbdp = txd->txd_tbd;
904 		len = m0->m_pkthdr.len;
905 		nsegs = dmamap->dm_nsegs;
906 		if (sc->sc_flags & FXPF_EXT_RFA)
907 			tbdp++;
908 		for (seg = 0; seg < nsegs; seg++) {
909 			tbdp[seg].tb_addr =
910 			    htole32(dmamap->dm_segs[seg].ds_addr);
911 			tbdp[seg].tb_size =
912 			    htole32(dmamap->dm_segs[seg].ds_len);
913 		}
914 		if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
915 		    (csum_flags & M_CSUM_IPv4) != 0)) {
916 			/*
917 			 * Pad short packets to avoid ip4csum-tx bug.
918 			 *
919 			 * XXX Should we still consider if such short
920 			 *     (36 bytes or less) packets might already
921 			 *     occupy FXP_IPCB_NTXSEG (15) fragments here?
922 			 */
923 			KASSERT(nsegs < FXP_IPCB_NTXSEG);
924 			nsegs++;
925 			tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
926 			tbdp[seg].tb_size =
927 			    htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
928 		}
929 
930 		/* Sync the DMA map. */
931 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
932 		    BUS_DMASYNC_PREWRITE);
933 
934 		/*
935 		 * Store a pointer to the packet so we can free it later.
936 		 */
937 		txs->txs_mbuf = m0;
938 
939 		/*
940 		 * Initialize the transmit descriptor.
941 		 */
942 		/* BIG_ENDIAN: no need to swap to store 0 */
943 		txd->txd_txcb.cb_status = 0;
944 		txd->txd_txcb.cb_command =
945 		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
946 		txd->txd_txcb.tx_threshold = tx_threshold;
947 		txd->txd_txcb.tbd_number = nsegs;
948 
949 		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
950 		if (sc->sc_flags & FXPF_EXT_RFA) {
951 			struct fxp_ipcb *ipcb;
952 			/*
953 			 * Deal with TCP/IP checksum offload. Note that
954 			 * in order for TCP checksum offload to work,
955 			 * the pseudo header checksum must have already
956 			 * been computed and stored in the checksum field
957 			 * in the TCP header. The stack should have
958 			 * already done this for us.
959 			 */
960 			ipcb = &txd->txd_u.txdu_ipcb;
961 			memset(ipcb, 0, sizeof(*ipcb));
962 			/*
963 			 * always do hardware parsing.
964 			 */
965 			ipcb->ipcb_ip_activation_high =
966 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
967 			/*
968 			 * ip checksum offloading.
969 			 */
970 			if (csum_flags & M_CSUM_IPv4) {
971 				ipcb->ipcb_ip_schedule |=
972 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
973 			}
974 			/*
975 			 * TCP/UDP checksum offloading.
976 			 */
977 			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
978 				ipcb->ipcb_ip_schedule |=
979 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
980 			}
981 
982 			/*
983 			 * request VLAN tag insertion if needed.
984 			 */
985 			if (vlan_has_tag(m0)) {
986 				ipcb->ipcb_vlan_id = htobe16(vlan_get_tag(m0));
987 				ipcb->ipcb_ip_activation_high |=
988 				    FXP_IPCB_INSERTVLAN_ENABLE;
989 			}
990 		} else {
991 			KASSERT((csum_flags &
992 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
993 		}
994 
995 		FXP_CDTXSYNC(sc, nexttx,
996 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
997 
998 		/* Advance the tx pointer. */
999 		sc->sc_txpending++;
1000 		sc->sc_txlast = nexttx;
1001 
1002 		/*
1003 		 * Pass packet to bpf if there is a listener.
1004 		 */
1005 		bpf_mtap(ifp, m0, BPF_D_OUT);
1006 	}
1007 
1008 	if (sc->sc_txpending == FXP_NTXCB - 1) {
1009 		/* No more slots; notify upper layer. */
1010 		ifp->if_flags |= IFF_OACTIVE;
1011 	}
1012 
1013 	if (sc->sc_txpending != opending) {
1014 		/*
1015 		 * We enqueued packets.  If the transmitter was idle,
1016 		 * reset the txdirty pointer.
1017 		 */
1018 		if (opending == 0)
1019 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1020 
1021 		/*
1022 		 * Cause the chip to interrupt and suspend command
1023 		 * processing once the last packet we've enqueued
1024 		 * has been transmitted.
1025 		 *
1026 		 * To avoid a race between updating status bits
1027 		 * by the fxp chip and clearing command bits
1028 		 * by this function on machines which don't have
1029 		 * atomic methods to clear/set bits in memory
1030 		 * smaller than 32bits (both cb_status and cb_command
1031 		 * members are uint16_t and in the same 32bit word),
1032 		 * we have to prepare a dummy TX descriptor which has
1033 		 * NOP command and just causes a TX completion interrupt.
1034 		 */
1035 		sc->sc_txpending++;
1036 		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1037 		txd = FXP_CDTX(sc, sc->sc_txlast);
1038 		/* BIG_ENDIAN: no need to swap to store 0 */
1039 		txd->txd_txcb.cb_status = 0;
1040 		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1041 		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1042 		FXP_CDTXSYNC(sc, sc->sc_txlast,
1043 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1044 
1045 		/*
1046 		 * The entire packet chain is set up.  Clear the suspend bit
1047 		 * on the command prior to the first packet we set up.
1048 		 */
1049 		FXP_CDTXSYNC(sc, lasttx,
1050 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1051 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1052 		    htole16(~FXP_CB_COMMAND_S);
1053 		FXP_CDTXSYNC(sc, lasttx,
1054 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1055 
1056 		/*
1057 		 * Issue a Resume command in case the chip was suspended.
1058 		 */
1059 		fxp_scb_wait(sc);
1060 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1061 
1062 		/* Set a watchdog timer in case the chip flakes out. */
1063 		ifp->if_timer = 5;
1064 	}
1065 }
1066 
1067 /*
1068  * Process interface interrupts.
1069  */
1070 int
fxp_intr(void * arg)1071 fxp_intr(void *arg)
1072 {
1073 	struct fxp_softc *sc = arg;
1074 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1075 	bus_dmamap_t rxmap;
1076 	int claimed = 0, rnr;
1077 	uint8_t statack, rndstat = 0;
1078 
1079 	if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1080 		return (0);
1081 	/*
1082 	 * If the interface isn't running, don't try to
1083 	 * service the interrupt.. just ack it and bail.
1084 	 */
1085 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1086 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1087 		if (statack) {
1088 			claimed = 1;
1089 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1090 		}
1091 		return (claimed);
1092 	}
1093 
1094 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1095 		rndstat = statack;
1096 		claimed = 1;
1097 
1098 		/*
1099 		 * First ACK all the interrupts in this pass.
1100 		 */
1101 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1102 
1103 		/*
1104 		 * Process receiver interrupts. If a no-resource (RNR)
1105 		 * condition exists, get whatever packets we can and
1106 		 * re-start the receiver.
1107 		 */
1108 		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1109 		    1 : 0;
1110 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1111 		    FXP_SCB_STATACK_SWI)) {
1112 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1113 			rnr |= fxp_rxintr(sc);
1114 		}
1115 
1116 		/*
1117 		 * Free any finished transmit mbuf chains.
1118 		 */
1119 		if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1120 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1121 			fxp_txintr(sc);
1122 
1123 			/*
1124 			 * Try to get more packets going.
1125 			 */
1126 			if_schedule_deferred_start(ifp);
1127 
1128 			if (sc->sc_txpending == 0) {
1129 				/*
1130 				 * Tell them that they can re-init now.
1131 				 */
1132 				if (sc->sc_flags & FXPF_WANTINIT)
1133 					wakeup(sc);
1134 			}
1135 		}
1136 
1137 		if (rnr) {
1138 			fxp_scb_wait(sc);
1139 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1140 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1141 			fxp_scb_wait(sc);
1142 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1143 			    rxmap->dm_segs[0].ds_addr +
1144 			    RFA_ALIGNMENT_FUDGE);
1145 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1146 		}
1147 	}
1148 
1149 	if (claimed)
1150 		rnd_add_uint32(&sc->rnd_source, rndstat);
1151 	return (claimed);
1152 }
1153 
1154 /*
1155  * Handle transmit completion interrupts.
1156  */
1157 void
fxp_txintr(struct fxp_softc * sc)1158 fxp_txintr(struct fxp_softc *sc)
1159 {
1160 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1161 	struct fxp_txdesc *txd;
1162 	struct fxp_txsoft *txs;
1163 	int i;
1164 	uint16_t txstat;
1165 
1166 	ifp->if_flags &= ~IFF_OACTIVE;
1167 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1168 	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1169 		txd = FXP_CDTX(sc, i);
1170 		txs = FXP_DSTX(sc, i);
1171 
1172 		FXP_CDTXSYNC(sc, i,
1173 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1174 
1175 		/* skip dummy NOP TX descriptor */
1176 		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1177 		    == FXP_CB_COMMAND_NOP)
1178 			continue;
1179 
1180 		txstat = le16toh(txd->txd_txcb.cb_status);
1181 
1182 		if ((txstat & FXP_CB_STATUS_C) == 0)
1183 			break;
1184 
1185 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1186 		    0, txs->txs_dmamap->dm_mapsize,
1187 		    BUS_DMASYNC_POSTWRITE);
1188 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1189 		m_freem(txs->txs_mbuf);
1190 		txs->txs_mbuf = NULL;
1191 	}
1192 
1193 	/* Update the dirty transmit buffer pointer. */
1194 	sc->sc_txdirty = i;
1195 
1196 	/*
1197 	 * Cancel the watchdog timer if there are no pending
1198 	 * transmissions.
1199 	 */
1200 	if (sc->sc_txpending == 0)
1201 		ifp->if_timer = 0;
1202 }
1203 
1204 /*
1205  * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1206  */
1207 
1208 void
fxp_rx_hwcksum(struct fxp_softc * sc,struct mbuf * m,const struct fxp_rfa * rfa,u_int len)1209 fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
1210     u_int len)
1211 {
1212 	uint32_t csum_data;
1213 	int csum_flags;
1214 
1215 	/*
1216 	 * check H/W Checksumming.
1217 	 */
1218 
1219 	csum_flags = 0;
1220 	csum_data = 0;
1221 
1222 	if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
1223 		uint8_t csum_stat;
1224 
1225 		csum_stat = rfa->cksum_stat;
1226 		if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
1227 			goto out;
1228 
1229 		if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1230 			csum_flags = M_CSUM_IPv4;
1231 			if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
1232 				csum_flags |= M_CSUM_IPv4_BAD;
1233 		}
1234 
1235 		if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1236 			csum_flags |= (M_CSUM_TCPv4 | M_CSUM_UDPv4); /* XXX */
1237 			if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
1238 				csum_flags |= M_CSUM_TCP_UDP_BAD;
1239 		}
1240 
1241 	} else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1242 		struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1243 		struct ether_header *eh;
1244 		struct ip *ip;
1245 		struct udphdr *uh;
1246 		u_int hlen, pktlen;
1247 
1248 		if (len < ETHER_HDR_LEN + sizeof(struct ip))
1249 			goto out;
1250 		pktlen = len - ETHER_HDR_LEN;
1251 		eh = mtod(m, struct ether_header *);
1252 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1253 			goto out;
1254 		ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
1255 		if (ip->ip_v != IPVERSION)
1256 			goto out;
1257 
1258 		hlen = ip->ip_hl << 2;
1259 		if (hlen < sizeof(struct ip))
1260 			goto out;
1261 
1262 		/*
1263 		 * Bail if too short, has random trailing garbage, truncated,
1264 		 * fragment, or has ethernet pad.
1265 		 */
1266 		if (ntohs(ip->ip_len) < hlen ||
1267 		    ntohs(ip->ip_len) != pktlen ||
1268 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
1269 			goto out;
1270 
1271 		switch (ip->ip_p) {
1272 		case IPPROTO_TCP:
1273 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
1274 			    pktlen < (hlen + sizeof(struct tcphdr)))
1275 				goto out;
1276 			csum_flags =
1277 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1278 			break;
1279 		case IPPROTO_UDP:
1280 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
1281 			    pktlen < (hlen + sizeof(struct udphdr)))
1282 				goto out;
1283 			uh = (struct udphdr *)((uint8_t *)ip + hlen);
1284 			if (uh->uh_sum == 0)
1285 				goto out;	/* no checksum */
1286 			csum_flags =
1287 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1288 			break;
1289 		default:
1290 			goto out;
1291 		}
1292 
1293 		/* Extract computed checksum. */
1294 		csum_data = be16dec(mtod(m, uint8_t *) + len);
1295 
1296 		/*
1297 		 * The computed checksum includes IP headers,
1298 		 * so we have to deduct them.
1299 		 */
1300 #if 0
1301 		/*
1302 		 * But in TCP/UDP layer we can assume the IP header is valid,
1303 		 * i.e. a sum of the whole IP header should be 0xffff,
1304 		 * so we don't have to bother to deduct it.
1305 		 */
1306 		if (hlen > 0) {
1307 			uint32_t hsum;
1308 			const uint16_t *iphdr;
1309 			hsum = 0;
1310 			iphdr = (uint16_t *)ip;
1311 
1312 			while (hlen > 1) {
1313 				hsum += ntohs(*iphdr++);
1314 				hlen -= sizeof(uint16_t);
1315 			}
1316 			while (hsum >> 16)
1317 				hsum = (hsum >> 16) + (hsum & 0xffff);
1318 
1319 			csum_data += (uint16_t)~hsum;
1320 
1321 			while (csum_data >> 16)
1322 				csum_data =
1323 				    (csum_data >> 16) + (csum_data & 0xffff);
1324 		}
1325 #endif
1326 	}
1327  out:
1328 	m->m_pkthdr.csum_flags = csum_flags;
1329 	m->m_pkthdr.csum_data = csum_data;
1330 }
1331 
1332 /*
1333  * Handle receive interrupts.
1334  */
1335 int
fxp_rxintr(struct fxp_softc * sc)1336 fxp_rxintr(struct fxp_softc *sc)
1337 {
1338 	struct ethercom *ec = &sc->sc_ethercom;
1339 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1340 	struct mbuf *m, *m0;
1341 	bus_dmamap_t rxmap;
1342 	struct fxp_rfa *rfa;
1343 	int rnr;
1344 	uint16_t len, rxstat;
1345 
1346 	rnr = 0;
1347 
1348 	for (;;) {
1349 		m = sc->sc_rxq.ifq_head;
1350 		rfa = FXP_MTORFA(m);
1351 		rxmap = M_GETCTX(m, bus_dmamap_t);
1352 
1353 		FXP_RFASYNC(sc, m,
1354 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1355 
1356 		rxstat = le16toh(rfa->rfa_status);
1357 
1358 		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1359 			rnr = 1;
1360 
1361 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1362 			/*
1363 			 * We have processed all of the
1364 			 * receive buffers.
1365 			 */
1366 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1367 			return rnr;
1368 		}
1369 
1370 		IF_DEQUEUE(&sc->sc_rxq, m);
1371 
1372 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1373 
1374 		len = le16toh(rfa->actual_size) &
1375 		    (m->m_ext.ext_size - 1);
1376 		if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1377 			/* Adjust for appended checksum bytes. */
1378 			len -= sizeof(uint16_t);
1379 		}
1380 
1381 		if (len < sizeof(struct ether_header)) {
1382 			/*
1383 			 * Runt packet; drop it now.
1384 			 */
1385 			FXP_INIT_RFABUF(sc, m);
1386 			continue;
1387 		}
1388 
1389 		/*
1390 		 * If support for 802.1Q VLAN sized frames is
1391 		 * enabled, we need to do some additional error
1392 		 * checking (as we are saving bad frames, in
1393 		 * order to receive the larger ones).
1394 		 */
1395 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1396 		    (rxstat & (FXP_RFA_STATUS_OVERRUN |
1397 			       FXP_RFA_STATUS_RNR |
1398 			       FXP_RFA_STATUS_ALIGN |
1399 			       FXP_RFA_STATUS_CRC)) != 0) {
1400 			FXP_INIT_RFABUF(sc, m);
1401 			continue;
1402 		}
1403 
1404 		/*
1405 		 * check VLAN tag stripping.
1406 		 */
1407 		if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
1408 		    (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0)
1409 			vlan_set_tag(m, be16toh(rfa->vlan_id));
1410 
1411 		/* Do checksum checking. */
1412 		if ((ifp->if_csum_flags_rx &
1413 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0)
1414 			fxp_rx_hwcksum(sc, m, rfa, len);
1415 
1416 		/*
1417 		 * If the packet is small enough to fit in a
1418 		 * single header mbuf, allocate one and copy
1419 		 * the data into it.  This greatly reduces
1420 		 * memory consumption when we receive lots
1421 		 * of small packets.
1422 		 *
1423 		 * Otherwise, we add a new buffer to the receive
1424 		 * chain.  If this fails, we drop the packet and
1425 		 * recycle the old buffer.
1426 		 */
1427 		if (fxp_copy_small != 0 && len <= MHLEN) {
1428 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1429 			if (m0 == NULL)
1430 				goto dropit;
1431 			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1432 			memcpy(mtod(m0, void *),
1433 			    mtod(m, void *), len);
1434 			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1435 			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1436 			FXP_INIT_RFABUF(sc, m);
1437 			m = m0;
1438 		} else {
1439 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1440  dropit:
1441 				if_statinc(ifp, if_ierrors);
1442 				FXP_INIT_RFABUF(sc, m);
1443 				continue;
1444 			}
1445 		}
1446 
1447 		m_set_rcvif(m, ifp);
1448 		m->m_pkthdr.len = m->m_len = len;
1449 
1450 		/* Pass it on. */
1451 		if_percpuq_enqueue(ifp->if_percpuq, m);
1452 	}
1453 }
1454 
1455 /*
1456  * Update packet in/out/collision statistics. The i82557 doesn't
1457  * allow you to access these counters without doing a fairly
1458  * expensive DMA to get _all_ of the statistics it maintains, so
1459  * we do this operation here only once per second. The statistics
1460  * counters in the kernel are updated from the previous dump-stats
1461  * DMA and then a new dump-stats DMA is started. The on-chip
1462  * counters are zeroed when the DMA completes. If we can't start
1463  * the DMA immediately, we don't wait - we just prepare to read
1464  * them again next time.
1465  */
1466 void
fxp_tick(void * arg)1467 fxp_tick(void *arg)
1468 {
1469 	struct fxp_softc *sc = arg;
1470 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1471 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1472 	int s;
1473 
1474 	if (!device_is_active(sc->sc_dev))
1475 		return;
1476 
1477 	s = splnet();
1478 
1479 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1480 
1481 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1482 
1483 	if_statadd_ref(ifp, nsr, if_opackets, le32toh(sp->tx_good));
1484 	if_statadd_ref(ifp, nsr, if_collisions,
1485 	    le32toh(sp->tx_total_collisions));
1486 	if (sp->rx_good) {
1487 		sc->sc_rxidle = 0;
1488 	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1489 		sc->sc_rxidle++;
1490 	}
1491 	if_statadd_ref(ifp, nsr, if_ierrors,
1492 	    le32toh(sp->rx_crc_errors) +
1493 	    le32toh(sp->rx_alignment_errors) +
1494 	    le32toh(sp->rx_rnr_errors) +
1495 	    le32toh(sp->rx_overrun_errors));
1496 	/*
1497 	 * If any transmit underruns occurred, bump up the transmit
1498 	 * threshold by another 512 bytes (64 * 8).
1499 	 */
1500 	if (sp->tx_underruns) {
1501 		if_statadd_ref(ifp, nsr, if_oerrors,
1502 		    le32toh(sp->tx_underruns));
1503 		if (tx_threshold < 192)
1504 			tx_threshold += 64;
1505 	}
1506 #ifdef FXP_EVENT_COUNTERS
1507 	if (sc->sc_flags & FXPF_FC) {
1508 		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1509 		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1510 	}
1511 #endif
1512 
1513 	IF_STAT_PUTREF(ifp);
1514 
1515 	/*
1516 	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1517 	 * then assume the receiver has locked up and attempt to clear
1518 	 * the condition by reprogramming the multicast filter (actually,
1519 	 * resetting the interface). This is a work-around for a bug in
1520 	 * the 82557 where the receiver locks up if it gets certain types
1521 	 * of garbage in the synchronization bits prior to the packet header.
1522 	 * This bug is supposed to only occur in 10Mbps mode, but has been
1523 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1524 	 * speed transition).
1525 	 */
1526 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1527 		(void) fxp_init(ifp);
1528 		splx(s);
1529 		return;
1530 	}
1531 	/*
1532 	 * If there is no pending command, start another stats
1533 	 * dump. Otherwise punt for now.
1534 	 */
1535 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1536 		/*
1537 		 * Start another stats dump.
1538 		 */
1539 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1540 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1541 	} else {
1542 		/*
1543 		 * A previous command is still waiting to be accepted.
1544 		 * Just zero our copy of the stats and wait for the
1545 		 * next timer event to update them.
1546 		 */
1547 		/* BIG_ENDIAN: no swap required to store 0 */
1548 		sp->tx_good = 0;
1549 		sp->tx_underruns = 0;
1550 		sp->tx_total_collisions = 0;
1551 
1552 		sp->rx_good = 0;
1553 		sp->rx_crc_errors = 0;
1554 		sp->rx_alignment_errors = 0;
1555 		sp->rx_rnr_errors = 0;
1556 		sp->rx_overrun_errors = 0;
1557 		if (sc->sc_flags & FXPF_FC) {
1558 			sp->tx_pauseframes = 0;
1559 			sp->rx_pauseframes = 0;
1560 		}
1561 	}
1562 
1563 	if (sc->sc_flags & FXPF_MII) {
1564 		/* Tick the MII clock. */
1565 		mii_tick(&sc->sc_mii);
1566 	}
1567 
1568 	splx(s);
1569 
1570 	/*
1571 	 * Schedule another timeout one second from now.
1572 	 */
1573 	callout_schedule(&sc->sc_callout, hz);
1574 }
1575 
1576 /*
1577  * Drain the receive queue.
1578  */
1579 void
fxp_rxdrain(struct fxp_softc * sc)1580 fxp_rxdrain(struct fxp_softc *sc)
1581 {
1582 	bus_dmamap_t rxmap;
1583 	struct mbuf *m;
1584 
1585 	for (;;) {
1586 		IF_DEQUEUE(&sc->sc_rxq, m);
1587 		if (m == NULL)
1588 			break;
1589 		rxmap = M_GETCTX(m, bus_dmamap_t);
1590 		bus_dmamap_unload(sc->sc_dmat, rxmap);
1591 		FXP_RXMAP_PUT(sc, rxmap);
1592 		m_freem(m);
1593 	}
1594 }
1595 
1596 /*
1597  * Stop the interface. Cancels the statistics updater and resets
1598  * the interface.
1599  */
1600 void
fxp_stop(struct ifnet * ifp,int disable)1601 fxp_stop(struct ifnet *ifp, int disable)
1602 {
1603 	struct fxp_softc *sc = ifp->if_softc;
1604 	struct fxp_txsoft *txs;
1605 	int i;
1606 
1607 	/*
1608 	 * Turn down interface (done early to avoid bad interactions
1609 	 * between panics, shutdown hooks, and the watchdog timer)
1610 	 */
1611 	ifp->if_timer = 0;
1612 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1613 
1614 	/*
1615 	 * Cancel stats updater.
1616 	 */
1617 	callout_stop(&sc->sc_callout);
1618 	if (sc->sc_flags & FXPF_MII) {
1619 		/* Down the MII. */
1620 		mii_down(&sc->sc_mii);
1621 	}
1622 
1623 	/*
1624 	 * Issue software reset.  This unloads any microcode that
1625 	 * might already be loaded.
1626 	 */
1627 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1628 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1629 	DELAY(50);
1630 
1631 	/*
1632 	 * Release any xmit buffers.
1633 	 */
1634 	for (i = 0; i < FXP_NTXCB; i++) {
1635 		txs = FXP_DSTX(sc, i);
1636 		if (txs->txs_mbuf != NULL) {
1637 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1638 			m_freem(txs->txs_mbuf);
1639 			txs->txs_mbuf = NULL;
1640 		}
1641 	}
1642 	sc->sc_txpending = 0;
1643 
1644 	if (disable) {
1645 		fxp_rxdrain(sc);
1646 		fxp_disable(sc);
1647 	}
1648 
1649 }
1650 
1651 /*
1652  * Watchdog/transmission transmit timeout handler. Called when a
1653  * transmission is started on the interface, but no interrupt is
1654  * received before the timeout. This usually indicates that the
1655  * card has wedged for some reason.
1656  */
1657 void
fxp_watchdog(struct ifnet * ifp)1658 fxp_watchdog(struct ifnet *ifp)
1659 {
1660 	struct fxp_softc *sc = ifp->if_softc;
1661 
1662 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1663 	if_statinc(ifp, if_oerrors);
1664 
1665 	(void) fxp_init(ifp);
1666 }
1667 
1668 /*
1669  * Initialize the interface.  Must be called at splnet().
1670  */
1671 int
fxp_init(struct ifnet * ifp)1672 fxp_init(struct ifnet *ifp)
1673 {
1674 	struct fxp_softc *sc = ifp->if_softc;
1675 	struct fxp_cb_config *cbp;
1676 	struct fxp_cb_ias *cb_ias;
1677 	struct fxp_txdesc *txd;
1678 	bus_dmamap_t rxmap;
1679 	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1680 	uint16_t status;
1681 
1682 	if ((error = fxp_enable(sc)) != 0)
1683 		goto out;
1684 
1685 	/*
1686 	 * Cancel any pending I/O
1687 	 */
1688 	fxp_stop(ifp, 0);
1689 
1690 	/*
1691 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1692 	 * flag, and this prevents the MII from detaching resulting in
1693 	 * a panic. The flags field should perhaps be split in runtime
1694 	 * flags and more static information. For now, just clear the
1695 	 * only other flag set.
1696 	 */
1697 
1698 	sc->sc_flags &= ~FXPF_WANTINIT;
1699 
1700 	/*
1701 	 * Initialize base of CBL and RFA memory. Loading with zero
1702 	 * sets it up for regular linear addressing.
1703 	 */
1704 	fxp_scb_wait(sc);
1705 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1706 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1707 
1708 	fxp_scb_wait(sc);
1709 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1710 
1711 	/*
1712 	 * Initialize the multicast filter.  Do this now, since we might
1713 	 * have to setup the config block differently.
1714 	 */
1715 	fxp_mc_setup(sc);
1716 
1717 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1718 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1719 
1720 	/*
1721 	 * In order to support receiving 802.1Q VLAN frames, we have to
1722 	 * enable "save bad frames", since they are 4 bytes larger than
1723 	 * the normal Ethernet maximum frame length.  On i82558 and later,
1724 	 * we have a better mechanism for this.
1725 	 */
1726 	save_bf = 0;
1727 	lrxen = 0;
1728 	vlan_drop = 0;
1729 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1730 		if (sc->sc_rev < FXP_REV_82558_A4)
1731 			save_bf = 1;
1732 		else
1733 			lrxen = 1;
1734 		if (sc->sc_rev >= FXP_REV_82550)
1735 			vlan_drop = 1;
1736 	}
1737 
1738 	/*
1739 	 * Initialize base of dump-stats buffer.
1740 	 */
1741 	fxp_scb_wait(sc);
1742 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1743 	    sc->sc_cddma + FXP_CDSTATSOFF);
1744 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1745 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1746 
1747 	cbp = &sc->sc_control_data->fcd_configcb;
1748 	memset(cbp, 0, sizeof(struct fxp_cb_config));
1749 
1750 	/*
1751 	 * Load microcode for this controller.
1752 	 */
1753 	fxp_load_ucode(sc);
1754 
1755 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1756 		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1757 	else
1758 		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1759 
1760 	/*
1761 	 * This copy is kind of disgusting, but there are a bunch of must be
1762 	 * zero and must be one bits in this structure and this is the easiest
1763 	 * way to initialize them all to proper values.
1764 	 */
1765 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1766 
1767 	/* BIG_ENDIAN: no need to swap to store 0 */
1768 	cbp->cb_status =	0;
1769 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1770 				    FXP_CB_COMMAND_EL);
1771 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1772 	cbp->link_addr =	0xffffffff; /* (no) next command */
1773 					/* bytes in config block */
1774 	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1775 				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1776 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1777 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1778 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1779 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1780 	cbp->type_enable =	0;	/* actually reserved */
1781 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1782 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1783 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1784 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1785 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1786 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1787 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1788 	cbp->ci_int =		1;	/* interrupt on CU idle */
1789 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1790 	cbp->ext_stats_dis =	1;	/* disable extended counters */
1791 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1792 	cbp->save_bf =		save_bf;/* save bad frames */
1793 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1794 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1795 	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1796 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1797 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1798 					/* interface mode */
1799 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1800 	cbp->csma_dis =		0;	/* (don't) disable link */
1801 	cbp->tcp_udp_cksum =	(sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
1802 					/* (don't) enable RX checksum */
1803 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1804 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1805 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1806 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1807 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1808 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1809 	cbp->loopback =		0;	/* (don't) loopback */
1810 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1811 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1812 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1813 	cbp->promiscuous =	prm;	/* promiscuous mode */
1814 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1815 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1816 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1817 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1818 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1819 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1820 	cbp->padding =		1;	/* (do) pad short tx packets */
1821 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1822 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1823 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1824 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1825 					/* must set wake_en in PMCSR also */
1826 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1827 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1828 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1829 	cbp->mc_all =		allm;	/* accept all multicasts */
1830 	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1831 	cbp->vlan_drop_en =	vlan_drop;
1832 
1833 	if (!(sc->sc_flags & FXPF_FC)) {
1834 		/*
1835 		 * The i82557 has no hardware flow control, the values
1836 		 * here are the defaults for the chip.
1837 		 */
1838 		cbp->fc_delay_lsb =	0;
1839 		cbp->fc_delay_msb =	0x40;
1840 		cbp->pri_fc_thresh =	3;
1841 		cbp->tx_fc_dis =	0;
1842 		cbp->rx_fc_restop =	0;
1843 		cbp->rx_fc_restart =	0;
1844 		cbp->fc_filter =	0;
1845 		cbp->pri_fc_loc =	1;
1846 	} else {
1847 		cbp->fc_delay_lsb =	0x1f;
1848 		cbp->fc_delay_msb =	0x01;
1849 		cbp->pri_fc_thresh =	3;
1850 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1851 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1852 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1853 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1854 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1855 		cbp->ext_stats_dis =	0;	/* enable extended stats */
1856 	}
1857 
1858 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1859 
1860 	/*
1861 	 * Start the config command/DMA.
1862 	 */
1863 	fxp_scb_wait(sc);
1864 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1865 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1866 	/* ...and wait for it to complete. */
1867 	for (i = 1000; i > 0; i--) {
1868 		FXP_CDCONFIGSYNC(sc,
1869 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1870 		status = le16toh(cbp->cb_status);
1871 		FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1872 		if ((status & FXP_CB_STATUS_C) != 0)
1873 			break;
1874 		DELAY(1);
1875 	}
1876 	if (i == 0) {
1877 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1878 		    device_xname(sc->sc_dev), __LINE__);
1879 		return (ETIMEDOUT);
1880 	}
1881 
1882 	/*
1883 	 * Initialize the station address.
1884 	 */
1885 	cb_ias = &sc->sc_control_data->fcd_iascb;
1886 	/* BIG_ENDIAN: no need to swap to store 0 */
1887 	cb_ias->cb_status = 0;
1888 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1889 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1890 	cb_ias->link_addr = 0xffffffff;
1891 	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1892 
1893 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1894 
1895 	/*
1896 	 * Start the IAS (Individual Address Setup) command/DMA.
1897 	 */
1898 	fxp_scb_wait(sc);
1899 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1900 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1901 	/* ...and wait for it to complete. */
1902 	for (i = 1000; i > 0; i--) {
1903 		FXP_CDIASSYNC(sc,
1904 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1905 		status = le16toh(cb_ias->cb_status);
1906 		FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1907 		if ((status & FXP_CB_STATUS_C) != 0)
1908 			break;
1909 		DELAY(1);
1910 	}
1911 	if (i == 0) {
1912 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1913 		    device_xname(sc->sc_dev), __LINE__);
1914 		return (ETIMEDOUT);
1915 	}
1916 
1917 	/*
1918 	 * Initialize the transmit descriptor ring.  txlast is initialized
1919 	 * to the end of the list so that it will wrap around to the first
1920 	 * descriptor when the first packet is transmitted.
1921 	 */
1922 	for (i = 0; i < FXP_NTXCB; i++) {
1923 		txd = FXP_CDTX(sc, i);
1924 		memset(txd, 0, sizeof(*txd));
1925 		txd->txd_txcb.cb_command =
1926 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1927 		txd->txd_txcb.link_addr =
1928 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1929 		if (sc->sc_flags & FXPF_EXT_TXCB)
1930 			txd->txd_txcb.tbd_array_addr =
1931 			    htole32(FXP_CDTBDADDR(sc, i) +
1932 				    (2 * sizeof(struct fxp_tbd)));
1933 		else
1934 			txd->txd_txcb.tbd_array_addr =
1935 			    htole32(FXP_CDTBDADDR(sc, i));
1936 		FXP_CDTXSYNC(sc, i,
1937 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1938 	}
1939 	sc->sc_txpending = 0;
1940 	sc->sc_txdirty = 0;
1941 	sc->sc_txlast = FXP_NTXCB - 1;
1942 
1943 	/*
1944 	 * Initialize the receive buffer list.
1945 	 */
1946 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1947 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1948 		rxmap = FXP_RXMAP_GET(sc);
1949 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1950 			log(LOG_ERR, "%s: unable to allocate or map rx "
1951 			    "buffer %d, error = %d\n",
1952 			    device_xname(sc->sc_dev),
1953 			    sc->sc_rxq.ifq_len, error);
1954 			/*
1955 			 * XXX Should attempt to run with fewer receive
1956 			 * XXX buffers instead of just failing.
1957 			 */
1958 			FXP_RXMAP_PUT(sc, rxmap);
1959 			fxp_rxdrain(sc);
1960 			goto out;
1961 		}
1962 	}
1963 	sc->sc_rxidle = 0;
1964 
1965 	/*
1966 	 * Give the transmit ring to the chip.  We do this by pointing
1967 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1968 	 * issuing a start command.  It will execute the NOP and then
1969 	 * suspend, pointing at the first descriptor.
1970 	 */
1971 	fxp_scb_wait(sc);
1972 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1973 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1974 
1975 	/*
1976 	 * Initialize receiver buffer area - RFA.
1977 	 */
1978 #if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1979 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1980 	fxp_scb_wait(sc);
1981 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1982 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1983 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1984 #endif
1985 
1986 	if (sc->sc_flags & FXPF_MII) {
1987 		/*
1988 		 * Set current media.
1989 		 */
1990 		if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1991 			goto out;
1992 	}
1993 
1994 	/*
1995 	 * ...all done!
1996 	 */
1997 	ifp->if_flags |= IFF_RUNNING;
1998 	ifp->if_flags &= ~IFF_OACTIVE;
1999 
2000 	/*
2001 	 * Request a software generated interrupt that will be used to
2002 	 * (re)start the RU processing.  If we direct the chip to start
2003 	 * receiving from the start of queue now, instead of letting the
2004 	 * interrupt handler first process all received packets, we run
2005 	 * the risk of having it overwrite mbuf clusters while they are
2006 	 * being processed or after they have been returned to the pool.
2007 	 */
2008 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
2009 
2010 	/*
2011 	 * Start the one second timer.
2012 	 */
2013 	callout_schedule(&sc->sc_callout, hz);
2014 
2015 	/*
2016 	 * Attempt to start output on the interface.
2017 	 */
2018 	fxp_start(ifp);
2019 
2020  out:
2021 	if (error) {
2022 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2023 		ifp->if_timer = 0;
2024 		log(LOG_ERR, "%s: interface not running\n",
2025 		    device_xname(sc->sc_dev));
2026 	}
2027 	return (error);
2028 }
2029 
2030 /*
2031  * Notify the world which media we're using.
2032  */
2033 void
fxp_mii_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)2034 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2035 {
2036 	struct fxp_softc *sc = ifp->if_softc;
2037 
2038 	if (sc->sc_enabled == 0) {
2039 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
2040 		ifmr->ifm_status = 0;
2041 		return;
2042 	}
2043 
2044 	ether_mediastatus(ifp, ifmr);
2045 }
2046 
2047 int
fxp_80c24_mediachange(struct ifnet * ifp)2048 fxp_80c24_mediachange(struct ifnet *ifp)
2049 {
2050 
2051 	/* Nothing to do here. */
2052 	return (0);
2053 }
2054 
2055 void
fxp_80c24_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)2056 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2057 {
2058 	struct fxp_softc *sc = ifp->if_softc;
2059 
2060 	/*
2061 	 * Media is currently-selected media.  We cannot determine
2062 	 * the link status.
2063 	 */
2064 	ifmr->ifm_status = 0;
2065 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2066 }
2067 
2068 /*
2069  * Add a buffer to the end of the RFA buffer list.
2070  * Return 0 if successful, error code on failure.
2071  *
2072  * The RFA struct is stuck at the beginning of mbuf cluster and the
2073  * data pointer is fixed up to point just past it.
2074  */
2075 int
fxp_add_rfabuf(struct fxp_softc * sc,bus_dmamap_t rxmap,int unload)2076 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2077 {
2078 	struct mbuf *m;
2079 	int error;
2080 
2081 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2082 	if (m == NULL)
2083 		return (ENOBUFS);
2084 
2085 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2086 	MCLGET(m, M_DONTWAIT);
2087 	if ((m->m_flags & M_EXT) == 0) {
2088 		m_freem(m);
2089 		return (ENOBUFS);
2090 	}
2091 
2092 	if (unload)
2093 		bus_dmamap_unload(sc->sc_dmat, rxmap);
2094 
2095 	M_SETCTX(m, rxmap);
2096 
2097 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2098 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2099 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2100 	if (error) {
2101 		/* XXX XXX XXX */
2102 		aprint_error_dev(sc->sc_dev,
2103 		    "can't load rx DMA map %d, error = %d\n",
2104 		    sc->sc_rxq.ifq_len, error);
2105 		panic("fxp_add_rfabuf");
2106 	}
2107 
2108 	FXP_INIT_RFABUF(sc, m);
2109 
2110 	return (0);
2111 }
2112 
2113 int
fxp_mdi_read(device_t self,int phy,int reg,uint16_t * value)2114 fxp_mdi_read(device_t self, int phy, int reg, uint16_t *value)
2115 {
2116 	struct fxp_softc *sc = device_private(self);
2117 	int count = 10000;
2118 	uint32_t data;
2119 
2120 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2121 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2122 
2123 	while (((data = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2124 	    0x10000000) == 0 && count--)
2125 		DELAY(10);
2126 
2127 	if (count <= 0) {
2128 		log(LOG_WARNING,
2129 		    "%s: fxp_mdi_read: timed out\n", device_xname(self));
2130 		return ETIMEDOUT;
2131 	}
2132 
2133 	*value = data & 0xffff;
2134 	return 0;
2135 }
2136 
2137 void
fxp_statchg(struct ifnet * ifp)2138 fxp_statchg(struct ifnet *ifp)
2139 {
2140 
2141 	/* Nothing to do. */
2142 }
2143 
2144 int
fxp_mdi_write(device_t self,int phy,int reg,uint16_t value)2145 fxp_mdi_write(device_t self, int phy, int reg, uint16_t value)
2146 {
2147 	struct fxp_softc *sc = device_private(self);
2148 	int count = 10000;
2149 
2150 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2151 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | value);
2152 
2153 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2154 	    count--)
2155 		DELAY(10);
2156 
2157 	if (count <= 0) {
2158 		log(LOG_WARNING,
2159 		    "%s: fxp_mdi_write: timed out\n", device_xname(self));
2160 		return ETIMEDOUT;
2161 	}
2162 
2163 	return 0;
2164 }
2165 
2166 int
fxp_ioctl(struct ifnet * ifp,u_long cmd,void * data)2167 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2168 {
2169 	struct fxp_softc *sc = ifp->if_softc;
2170 	int s, error;
2171 
2172 	s = splnet();
2173 
2174 	switch (cmd) {
2175 	default:
2176 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2177 			break;
2178 
2179 		error = 0;
2180 
2181 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2182 			;
2183 		else if (ifp->if_flags & IFF_RUNNING) {
2184 			/*
2185 			 * Multicast list has changed; set the
2186 			 * hardware filter accordingly.
2187 			 */
2188 			while (sc->sc_txpending) {
2189 				sc->sc_flags |= FXPF_WANTINIT;
2190 				tsleep(sc, PSOCK, "fxp_init", 0);
2191 			}
2192 			error = fxp_init(ifp);
2193 		}
2194 		break;
2195 	}
2196 
2197 	/* Try to get more packets going. */
2198 	if (sc->sc_enabled)
2199 		fxp_start(ifp);
2200 
2201 	splx(s);
2202 	return (error);
2203 }
2204 
2205 /*
2206  * Program the multicast filter.
2207  *
2208  * This function must be called at splnet().
2209  */
2210 void
fxp_mc_setup(struct fxp_softc * sc)2211 fxp_mc_setup(struct fxp_softc *sc)
2212 {
2213 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2214 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2215 	struct ethercom *ec = &sc->sc_ethercom;
2216 	struct ether_multi *enm;
2217 	struct ether_multistep step;
2218 	int count, nmcasts;
2219 	uint16_t status;
2220 
2221 #ifdef DIAGNOSTIC
2222 	if (sc->sc_txpending)
2223 		panic("fxp_mc_setup: pending transmissions");
2224 #endif
2225 
2226 
2227 	if (ifp->if_flags & IFF_PROMISC) {
2228 		ifp->if_flags |= IFF_ALLMULTI;
2229 		return;
2230 	} else {
2231 		ifp->if_flags &= ~IFF_ALLMULTI;
2232 	}
2233 
2234 	/*
2235 	 * Initialize multicast setup descriptor.
2236 	 */
2237 	nmcasts = 0;
2238 	ETHER_LOCK(ec);
2239 	ETHER_FIRST_MULTI(step, ec, enm);
2240 	while (enm != NULL) {
2241 		/*
2242 		 * Check for too many multicast addresses or if we're
2243 		 * listening to a range.  Either way, we simply have
2244 		 * to accept all multicasts.
2245 		 */
2246 		if (nmcasts >= MAXMCADDR ||
2247 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2248 		    ETHER_ADDR_LEN) != 0) {
2249 			/*
2250 			 * Callers of this function must do the
2251 			 * right thing with this.  If we're called
2252 			 * from outside fxp_init(), the caller must
2253 			 * detect if the state if IFF_ALLMULTI changes.
2254 			 * If it does, the caller must then call
2255 			 * fxp_init(), since allmulti is handled by
2256 			 * the config block.
2257 			 */
2258 			ifp->if_flags |= IFF_ALLMULTI;
2259 			ETHER_UNLOCK(ec);
2260 			return;
2261 		}
2262 		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2263 		    ETHER_ADDR_LEN);
2264 		nmcasts++;
2265 		ETHER_NEXT_MULTI(step, enm);
2266 	}
2267 	ETHER_UNLOCK(ec);
2268 
2269 	/* BIG_ENDIAN: no need to swap to store 0 */
2270 	mcsp->cb_status = 0;
2271 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2272 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2273 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2274 
2275 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2276 
2277 	/*
2278 	 * Wait until the command unit is not active.  This should never
2279 	 * happen since nothing is queued, but make sure anyway.
2280 	 */
2281 	count = 100;
2282 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2283 	    FXP_SCB_CUS_ACTIVE && --count)
2284 		DELAY(1);
2285 	if (count == 0) {
2286 		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2287 		    device_xname(sc->sc_dev), __LINE__);
2288 		return;
2289 	}
2290 
2291 	/*
2292 	 * Start the multicast setup command/DMA.
2293 	 */
2294 	fxp_scb_wait(sc);
2295 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2296 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2297 
2298 	/* ...and wait for it to complete. */
2299 	for (count = 1000; count > 0; count--) {
2300 		FXP_CDMCSSYNC(sc,
2301 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2302 		status = le16toh(mcsp->cb_status);
2303 		FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2304 		if ((status & FXP_CB_STATUS_C) != 0)
2305 			break;
2306 		DELAY(1);
2307 	}
2308 	if (count == 0) {
2309 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2310 		    device_xname(sc->sc_dev), __LINE__);
2311 		return;
2312 	}
2313 }
2314 
2315 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2316 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2317 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2318 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2319 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2320 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2321 static const uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2322 
2323 #define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2324 
2325 static const struct ucode {
2326 	int32_t		revision;
2327 	const uint32_t	*ucode;
2328 	size_t		length;
2329 	uint16_t	int_delay_offset;
2330 	uint16_t	bundle_max_offset;
2331 } ucode_table[] = {
2332 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2333 	  D101_CPUSAVER_DWORD, 0 },
2334 
2335 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2336 	  D101_CPUSAVER_DWORD, 0 },
2337 
2338 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2339 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2340 
2341 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2342 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2343 
2344 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2345 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2346 
2347 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2348 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2349 
2350 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2351 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2352 
2353 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
2354 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2355 
2356 	{ 0, NULL, 0, 0, 0 }
2357 };
2358 
2359 void
fxp_load_ucode(struct fxp_softc * sc)2360 fxp_load_ucode(struct fxp_softc *sc)
2361 {
2362 	const struct ucode *uc;
2363 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2364 	int count, i;
2365 	uint16_t status;
2366 
2367 	if (sc->sc_flags & FXPF_UCODE_LOADED)
2368 		return;
2369 
2370 	/*
2371 	 * Only load the uCode if the user has requested that
2372 	 * we do so.
2373 	 */
2374 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2375 		sc->sc_int_delay = 0;
2376 		sc->sc_bundle_max = 0;
2377 		return;
2378 	}
2379 
2380 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2381 		if (sc->sc_rev == uc->revision)
2382 			break;
2383 	}
2384 	if (uc->ucode == NULL)
2385 		return;
2386 
2387 	/* BIG ENDIAN: no need to swap to store 0 */
2388 	cbp->cb_status = 0;
2389 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2390 	cbp->link_addr = 0xffffffff;		/* (no) next command */
2391 	for (i = 0; i < uc->length; i++)
2392 		cbp->ucode[i] = htole32(uc->ucode[i]);
2393 
2394 	if (uc->int_delay_offset)
2395 		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2396 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2397 
2398 	if (uc->bundle_max_offset)
2399 		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2400 		    htole16(fxp_bundle_max);
2401 
2402 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2403 
2404 	/*
2405 	 * Download the uCode to the chip.
2406 	 */
2407 	fxp_scb_wait(sc);
2408 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2409 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2410 
2411 	/* ...and wait for it to complete. */
2412 	for (count = 10000; count > 0; count--) {
2413 		FXP_CDUCODESYNC(sc,
2414 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2415 		status = le16toh(cbp->cb_status);
2416 		FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2417 		if ((status & FXP_CB_STATUS_C) != 0)
2418 			break;
2419 		DELAY(2);
2420 	}
2421 	if (count == 0) {
2422 		sc->sc_int_delay = 0;
2423 		sc->sc_bundle_max = 0;
2424 		log(LOG_WARNING, "%s: timeout loading microcode\n",
2425 		    device_xname(sc->sc_dev));
2426 		return;
2427 	}
2428 
2429 	if (sc->sc_int_delay != fxp_int_delay ||
2430 	    sc->sc_bundle_max != fxp_bundle_max) {
2431 		sc->sc_int_delay = fxp_int_delay;
2432 		sc->sc_bundle_max = fxp_bundle_max;
2433 		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2434 		    "max bundle: %d\n", device_xname(sc->sc_dev),
2435 		    sc->sc_int_delay,
2436 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2437 	}
2438 
2439 	sc->sc_flags |= FXPF_UCODE_LOADED;
2440 }
2441 
2442 int
fxp_enable(struct fxp_softc * sc)2443 fxp_enable(struct fxp_softc *sc)
2444 {
2445 
2446 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2447 		if ((*sc->sc_enable)(sc) != 0) {
2448 			log(LOG_ERR, "%s: device enable failed\n",
2449 			    device_xname(sc->sc_dev));
2450 			return (EIO);
2451 		}
2452 	}
2453 
2454 	sc->sc_enabled = 1;
2455 	return (0);
2456 }
2457 
2458 void
fxp_disable(struct fxp_softc * sc)2459 fxp_disable(struct fxp_softc *sc)
2460 {
2461 
2462 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2463 		(*sc->sc_disable)(sc);
2464 		sc->sc_enabled = 0;
2465 	}
2466 }
2467 
2468 /*
2469  * fxp_activate:
2470  *
2471  *	Handle device activation/deactivation requests.
2472  */
2473 int
fxp_activate(device_t self,enum devact act)2474 fxp_activate(device_t self, enum devact act)
2475 {
2476 	struct fxp_softc *sc = device_private(self);
2477 
2478 	switch (act) {
2479 	case DVACT_DEACTIVATE:
2480 		if_deactivate(&sc->sc_ethercom.ec_if);
2481 		return 0;
2482 	default:
2483 		return EOPNOTSUPP;
2484 	}
2485 }
2486 
2487 /*
2488  * fxp_detach:
2489  *
2490  *	Detach an i82557 interface.
2491  */
2492 int
fxp_detach(struct fxp_softc * sc,int flags)2493 fxp_detach(struct fxp_softc *sc, int flags)
2494 {
2495 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2496 	int i, s;
2497 
2498 	/* Succeed now if there's no work to do. */
2499 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2500 		return (0);
2501 
2502 	s = splnet();
2503 	/* Stop the interface. Callouts are stopped in it. */
2504 	fxp_stop(ifp, 1);
2505 	splx(s);
2506 
2507 	/* Destroy our callout. */
2508 	callout_destroy(&sc->sc_callout);
2509 
2510 	if (sc->sc_flags & FXPF_MII) {
2511 		/* Detach all PHYs */
2512 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2513 	}
2514 
2515 	rnd_detach_source(&sc->rnd_source);
2516 	ether_ifdetach(ifp);
2517 	if_detach(ifp);
2518 
2519 	/* Delete all remaining media. */
2520 	ifmedia_fini(&sc->sc_mii.mii_media);
2521 
2522 	for (i = 0; i < FXP_NRFABUFS; i++) {
2523 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2524 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2525 	}
2526 
2527 	for (i = 0; i < FXP_NTXCB; i++) {
2528 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2529 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2530 	}
2531 
2532 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2533 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2534 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2535 	    sizeof(struct fxp_control_data));
2536 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2537 
2538 	return (0);
2539 }
2540