xref: /netbsd-src/sys/arch/m68k/fpe/fpu_emulate.c (revision 22cf537f244f0b097ed64dad590539002604fddb)
1 /*	$NetBSD: fpu_emulate.c,v 1.49 2025/01/06 07:34:24 isaki Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Gordon W. Ross
5  * some portion Copyright (c) 1995 Ken Nakata
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  * 4. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by Gordon Ross
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * mc68881 emulator
36  * XXX - Just a start at it for now...
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: fpu_emulate.c,v 1.49 2025/01/06 07:34:24 isaki Exp $");
41 
42 #include <sys/param.h>
43 #include <sys/types.h>
44 #include <sys/signal.h>
45 #include <sys/systm.h>
46 #include <machine/frame.h>
47 
48 #if defined(DDB) && defined(DEBUG_FPE)
49 # include <m68k/db_machdep.h>
50 #endif
51 
52 #include "fpu_emulate.h"
53 
54 #define	fpe_abort(tfp, ksi, signo, code)			\
55 	do {							\
56 		(ksi)->ksi_signo = (signo);			\
57 		(ksi)->ksi_code = (code);			\
58 		(ksi)->ksi_addr = (void *)(frame)->f_pc;	\
59 		return -1;					\
60 	} while (/* CONSTCOND */ 0)
61 
62 static int fpu_emul_fmovmcr(struct fpemu *, struct instruction *);
63 static int fpu_emul_fmovm(struct fpemu *, struct instruction *);
64 static int fpu_emul_arith(struct fpemu *, struct instruction *);
65 static int fpu_emul_type1(struct fpemu *, struct instruction *);
66 static int fpu_emul_brcc(struct fpemu *, struct instruction *);
67 static int test_cc(struct fpemu *, int);
68 
69 #ifdef DEBUG_FPE
70 #define DUMP_INSN(insn)							\
71 	printf("%s: insn={adv=%d,siz=%d,op=%04x,w1=%04x}\n",		\
72 	    __func__,							\
73 	    (insn)->is_advance, (insn)->is_datasize,			\
74 	    (insn)->is_opcode, (insn)->is_word1)
75 #define DPRINTF(x)	printf x
76 #else
77 #define DUMP_INSN(insn)	do {} while (/* CONSTCOND */ 0)
78 #define DPRINTF(x)	do {} while (/* CONSTCOND */ 0)
79 #endif
80 
81 /*
82  * Emulate a floating-point instruction.
83  * Return zero for success, else signal number.
84  * (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
85  */
86 int
87 fpu_emulate(struct frame *frame, struct fpframe *fpf, ksiginfo_t *ksi)
88 {
89 	static struct instruction insn;
90 	static struct fpemu fe;
91 	int optype, sig;
92 	unsigned short sval;
93 
94 	/* initialize insn.is_datasize to tell it is *not* initialized */
95 	insn.is_datasize = -1;
96 
97 	fe.fe_frame = frame;
98 	fe.fe_fpframe = fpf;
99 	fe.fe_fpsr = fpf->fpf_fpsr;
100 	fe.fe_fpcr = fpf->fpf_fpcr;
101 
102 	DPRINTF(("%s: ENTERING: FPSR=%08x, FPCR=%08x\n",
103 	    __func__, fe.fe_fpsr, fe.fe_fpcr));
104 
105 	/* always set this (to avoid a warning) */
106 	insn.is_pc = frame->f_pc;
107 	insn.is_nextpc = 0;
108 	if (frame->f_format == 4) {
109 		/*
110 		 * A format 4 is generated by the 68{EC,LC}040.  The PC is
111 		 * already set to the instruction following the faulting
112 		 * instruction.  We need to calculate that, anyway.  The
113 		 * fslw is the PC of the faulted instruction, which is what
114 		 * we expect to be in f_pc.
115 		 *
116 		 * XXX - This is a hack; it assumes we at least know the
117 		 * sizes of all instructions we run across.
118 		 * XXX TODO: This may not be true, so we might want to save
119 		 * the PC in order to restore it later.
120 		 */
121 #if 0
122 		insn.is_nextpc = frame->f_pc;
123 #endif
124 		insn.is_pc = frame->f_fmt4.f_fslw;
125 		frame->f_pc = insn.is_pc;
126 	}
127 
128 	if (ufetch_short((void *)(insn.is_pc), &sval)) {
129 		DPRINTF(("%s: fault reading opcode\n", __func__));
130 		fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
131 	}
132 
133 	if ((sval & 0xf000) != 0xf000) {
134 		DPRINTF(("%s: not coproc. insn.: opcode=0x%x\n",
135 		    __func__, sval));
136 		fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
137 	}
138 
139 	if ((sval & 0x0E00) != 0x0200) {
140 		DPRINTF(("%s: bad coproc. id: opcode=0x%x\n", __func__, sval));
141 		fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
142 	}
143 
144 	insn.is_opcode = sval;
145 	optype = (sval & 0x01C0);
146 
147 	if (ufetch_short((void *)(insn.is_pc + 2), &sval)) {
148 		DPRINTF(("%s: fault reading word1\n", __func__));
149 		fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
150 	}
151 	insn.is_word1 = sval;
152 	/* all FPU instructions are at least 4-byte long */
153 	insn.is_advance = 4;
154 
155 	DUMP_INSN(&insn);
156 
157 	/*
158 	 * Which family (or type) of opcode is it?
159 	 * Tests ordered by likelihood (hopefully).
160 	 * Certainly, type 0 is the most common.
161 	 */
162 	if (optype == 0x0000) {
163 		/* type=0: generic */
164 		if ((sval & 0x8000)) {
165 			if ((sval & 0x4000)) {
166 				DPRINTF(("%s: fmovm FPr\n", __func__));
167 				sig = fpu_emul_fmovm(&fe, &insn);
168 			} else {
169 				DPRINTF(("%s: fmovm FPcr\n", __func__));
170 				sig = fpu_emul_fmovmcr(&fe, &insn);
171 			}
172 		} else {
173 			if ((sval & 0xe000) == 0x6000) {
174 				/* fstore = fmove FPn,mem */
175 				DPRINTF(("%s: fmove to mem\n", __func__));
176 				sig = fpu_emul_fstore(&fe, &insn);
177 			} else if ((sval & 0xfc00) == 0x5c00) {
178 				/* fmovecr */
179 				DPRINTF(("%s: fmovecr\n", __func__));
180 				sig = fpu_emul_fmovecr(&fe, &insn);
181 			} else if ((sval & 0xa07f) == 0x26) {
182 				/* fscale */
183 				DPRINTF(("%s: fscale\n", __func__));
184 				sig = fpu_emul_fscale(&fe, &insn);
185 			} else {
186 				DPRINTF(("%s: other type0\n", __func__));
187 				/* all other type0 insns are arithmetic */
188 				sig = fpu_emul_arith(&fe, &insn);
189 			}
190 			if (sig == 0) {
191 				DPRINTF(("%s: type 0 returned 0\n", __func__));
192 				sig = fpu_upd_excp(&fe);
193 			}
194 		}
195 	} else if (optype == 0x0080 || optype == 0x00C0) {
196 		/* type=2 or 3: fbcc, short or long disp. */
197 		DPRINTF(("%s: fbcc %s\n", __func__,
198 		    (optype & 0x40) ? "long" : "short"));
199 		sig = fpu_emul_brcc(&fe, &insn);
200 	} else if (optype == 0x0040) {
201 		/* type=1: fdbcc, fscc, ftrapcc */
202 		DPRINTF(("%s: type1\n", __func__));
203 		sig = fpu_emul_type1(&fe, &insn);
204 		/* real FTRAPcc raises T_TRAPVINST if the condition is met. */
205 		if (sig == SIGFPE) {
206 			ksi->ksi_trap = T_TRAPVINST;
207 		}
208 	} else {
209 		/* type=4: fsave    (privileged) */
210 		/* type=5: frestore (privileged) */
211 		/* type=6: reserved */
212 		/* type=7: reserved */
213 		DPRINTF(("%s: bad opcode type: opcode=0x%x\n", __func__,
214 		    insn.is_opcode));
215 		sig = SIGILL;
216 	}
217 
218 	DUMP_INSN(&insn);
219 
220 	/*
221 	 * XXX it is not clear to me, if we should progress the PC always,
222 	 * for SIGFPE || 0, or only for 0; however, without SIGFPE, we
223 	 * don't pass the signalling regression  tests.	-is
224 	 */
225 	if ((sig == 0) || (sig == SIGFPE))
226 		frame->f_pc += insn.is_advance;
227 #if defined(DDB) && defined(DEBUG_FPE)
228 	else {
229 		printf("%s: sig=%d, opcode=%x, word1=%x\n", __func__,
230 		    sig, insn.is_opcode, insn.is_word1);
231 		kdb_trap(-1, (db_regs_t *)&frame);
232 	}
233 #endif
234 #if 0 /* XXX something is wrong */
235 	if (frame->f_format == 4) {
236 		/* XXX Restore PC -- 68{EC,LC}040 only */
237 		if (insn.is_nextpc)
238 			frame->f_pc = insn.is_nextpc;
239 	}
240 #endif
241 
242 	DPRINTF(("%s: EXITING: w/FPSR=%08x, FPCR=%08x\n", __func__,
243 	    fe.fe_fpsr, fe.fe_fpcr));
244 
245 	if (sig)
246 		fpe_abort(frame, ksi, sig, 0);
247 	return sig;
248 }
249 
250 /* update accrued exception bits and see if there's an FP exception */
251 int
252 fpu_upd_excp(struct fpemu *fe)
253 {
254 	uint32_t fpsr;
255 	uint32_t fpcr;
256 
257 	fpsr = fe->fe_fpsr;
258 	fpcr = fe->fe_fpcr;
259 	/*
260 	 * update fpsr accrued exception bits; each insn doesn't have to
261 	 * update this
262 	 */
263 	if (fpsr & (FPSR_BSUN | FPSR_SNAN | FPSR_OPERR)) {
264 		fpsr |= FPSR_AIOP;
265 	}
266 	if (fpsr & FPSR_OVFL) {
267 		fpsr |= FPSR_AOVFL;
268 	}
269 	if ((fpsr & FPSR_UNFL) && (fpsr & FPSR_INEX2)) {
270 		fpsr |= FPSR_AUNFL;
271 	}
272 	if (fpsr & FPSR_DZ) {
273 		fpsr |= FPSR_ADZ;
274 	}
275 	if (fpsr & (FPSR_INEX1 | FPSR_INEX2 | FPSR_OVFL)) {
276 		fpsr |= FPSR_AINEX;
277 	}
278 
279 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
280 
281 	return (fpsr & fpcr & FPSR_EXCP) ? SIGFPE : 0;
282 }
283 
284 /* update fpsr according to fp (= result of an fp op) */
285 uint32_t
286 fpu_upd_fpsr(struct fpemu *fe, struct fpn *fp)
287 {
288 	uint32_t fpsr;
289 
290 	DPRINTF(("%s: previous fpsr=%08x\n", __func__, fe->fe_fpsr));
291 	/* clear all condition code */
292 	fpsr = fe->fe_fpsr & ~FPSR_CCB;
293 
294 	DPRINTF(("%s: result is a ", __func__));
295 	if (fp->fp_sign) {
296 		DPRINTF(("negative "));
297 		fpsr |= FPSR_NEG;
298 	} else {
299 		DPRINTF(("positive "));
300 	}
301 
302 	switch (fp->fp_class) {
303 	case FPC_SNAN:
304 		DPRINTF(("signaling NAN\n"));
305 		fpsr |= (FPSR_NAN | FPSR_SNAN);
306 		break;
307 	case FPC_QNAN:
308 		DPRINTF(("quiet NAN\n"));
309 		fpsr |= FPSR_NAN;
310 		break;
311 	case FPC_ZERO:
312 		DPRINTF(("Zero\n"));
313 		fpsr |= FPSR_ZERO;
314 		break;
315 	case FPC_INF:
316 		DPRINTF(("Inf\n"));
317 		fpsr |= FPSR_INF;
318 		break;
319 	default:
320 		DPRINTF(("Number\n"));
321 		/* anything else is treated as if it is a number */
322 		break;
323 	}
324 
325 	fe->fe_fpsr = fe->fe_fpframe->fpf_fpsr = fpsr;
326 
327 	DPRINTF(("%s: new fpsr=%08x\n", __func__, fe->fe_fpframe->fpf_fpsr));
328 
329 	return fpsr;
330 }
331 
332 static int
333 fpu_emul_fmovmcr(struct fpemu *fe, struct instruction *insn)
334 {
335 	struct frame *frame = fe->fe_frame;
336 	struct fpframe *fpf = fe->fe_fpframe;
337 	int sig;
338 	int reglist;
339 	int regcount;
340 	int fpu_to_mem;
341 	int modreg;
342 	uint32_t tmp[3];
343 
344 	/* move to/from control registers */
345 	reglist = (insn->is_word1 & 0x1c00) >> 10;
346 	/* Bit 13 selects direction (FPU to/from Mem) */
347 	fpu_to_mem = insn->is_word1 & 0x2000;
348 
349 	/* Check an illegal mod/reg. */
350 	modreg = insn->is_opcode & 077;
351 	if (fpu_to_mem) {
352 		/* PCrel, #imm are illegal. */
353 		if (modreg >= 072) {
354 			return SIGILL;
355 		}
356 	} else {
357 		/* All mod/reg can be specified. */
358 		if (modreg >= 075) {
359 			return SIGILL;
360 		}
361 	}
362 
363 	/*
364 	 * If reglist is 0b000, treat it as FPIAR.  This is not specification
365 	 * but the behavior described in the 6888x user's manual.
366 	 */
367 	if (reglist == 0)
368 		reglist = 1;
369 
370 	if (reglist == 7) {
371 		regcount = 3;
372 	} else if (reglist == 3 || reglist == 5 || reglist == 6) {
373 		regcount = 2;
374 	} else {
375 		regcount = 1;
376 	}
377 	insn->is_datasize = regcount * 4;
378 	sig = fpu_decode_ea(frame, insn, &insn->is_ea, modreg);
379 	if (sig)
380 		return sig;
381 
382 	/*
383 	 * For data register, only single register can be transferred.
384 	 * For addr register, only FPIAR can be transferred.
385 	 */
386 	if ((insn->is_ea.ea_flags & EA_DIRECT)) {
387 		if (insn->is_ea.ea_regnum < 8) {
388 			if (regcount != 1) {
389 				return SIGILL;
390 			}
391 		} else {
392 			if (reglist != 1) {
393 				return SIGILL;
394 			}
395 		}
396 	}
397 
398 	if (fpu_to_mem) {
399 		uint32_t *s = &tmp[0];
400 
401 		if ((reglist & 4)) {
402 			*s++ = fpf->fpf_fpcr;
403 		}
404 		if ((reglist & 2)) {
405 			*s++ = fpf->fpf_fpsr;
406 		}
407 		if ((reglist & 1)) {
408 			*s++ = fpf->fpf_fpiar;
409 		}
410 
411 		sig = fpu_store_ea(frame, insn, &insn->is_ea, (char *)tmp);
412 	} else {
413 		const uint32_t *d = &tmp[0];
414 
415 		sig = fpu_load_ea(frame, insn, &insn->is_ea, (char *)tmp);
416 		if (sig)
417 			return sig;
418 
419 		if ((reglist & 4)) {
420 			fpf->fpf_fpcr = *d++;
421 			fpf->fpf_fpcr &= 0x0000fff0;
422 		}
423 		if ((reglist & 2)) {
424 			fpf->fpf_fpsr = *d++;
425 			fpf->fpf_fpsr &= 0x0ffffff8;
426 		}
427 		if ((reglist & 1)) {
428 			fpf->fpf_fpiar = *d++;
429 		}
430 	}
431 	return sig;
432 }
433 
434 /*
435  * type 0: fmovem
436  * Separated out of fpu_emul_type0 for efficiency.
437  * In this function, we know:
438  *   (opcode & 0x01C0) == 0
439  *   (word1 & 0x8000) == 0x8000
440  *
441  * No conversion or rounding is done by this instruction,
442  * and the FPSR is not affected.
443  */
444 static int
445 fpu_emul_fmovm(struct fpemu *fe, struct instruction *insn)
446 {
447 	struct frame *frame = fe->fe_frame;
448 	struct fpframe *fpf = fe->fe_fpframe;
449 	int word1, sig;
450 	int reglist, regmask, regnum;
451 	int modreg;
452 	int fpu_to_mem, order;
453 	/* int w1_post_incr; */
454 	int *fpregs;
455 
456 	insn->is_datasize = 12;
457 	word1 = insn->is_word1;
458 
459 	/* Bit 13 selects direction (FPU to/from Mem) */
460 	fpu_to_mem = word1 & 0x2000;
461 
462 	/*
463 	 * Bits 12,11 select register list mode:
464 	 * 0,0: Static  reg list, pre-decr.
465 	 * 0,1: Dynamic reg list, pre-decr.
466 	 * 1,0: Static  reg list, post-incr.
467 	 * 1,1: Dynamic reg list, post-incr
468 	 */
469 	/* w1_post_incr = word1 & 0x1000; */
470 	if (word1 & 0x0800) {
471 		/* dynamic reg list */
472 		reglist = frame->f_regs[(word1 & 0x70) >> 4];
473 	} else {
474 		reglist = word1;
475 	}
476 	reglist &= 0xFF;
477 
478 	/* Check an illegal mod/reg. */
479 	modreg = insn->is_opcode & 077;
480 	if (fpu_to_mem) {
481 		/* Dn, An, (An)+, PCrel, #imm are illegal. */
482 		if (modreg < 020 || (modreg >> 3) == 3 || modreg >= 072) {
483 			return SIGILL;
484 		}
485 	} else {
486 		/* Dn, An, -(An), #imm are illegal. */
487 		if (modreg < 020 || (modreg >> 3) == 4 || modreg >= 074) {
488 			return SIGILL;
489 		}
490 	}
491 
492 	/* Get effective address. */
493 	sig = fpu_decode_ea(frame, insn, &insn->is_ea, modreg);
494 	if (sig)
495 		return sig;
496 
497 	/* Get address of soft coprocessor regs. */
498 	fpregs = &fpf->fpf_regs[0];
499 
500 	if (insn->is_ea.ea_flags & EA_PREDECR) {
501 		regnum = 7;
502 		order = -1;
503 	} else {
504 		regnum = 0;
505 		order = 1;
506 	}
507 
508 	regmask = 0x80;
509 	while ((0 <= regnum) && (regnum < 8)) {
510 		if (regmask & reglist) {
511 			if (fpu_to_mem) {
512 				sig = fpu_store_ea(frame, insn, &insn->is_ea,
513 				    (char *)&fpregs[regnum * 3]);
514 				DPRINTF(("%s: FP%d (%08x,%08x,%08x) saved\n",
515 				    __func__, regnum,
516 				    fpregs[regnum * 3],
517 				    fpregs[regnum * 3 + 1],
518 				    fpregs[regnum * 3 + 2]));
519 			} else {		/* mem to fpu */
520 				sig = fpu_load_ea(frame, insn, &insn->is_ea,
521 				    (char *)&fpregs[regnum * 3]);
522 				DPRINTF(("%s: FP%d (%08x,%08x,%08x) loaded\n",
523 				    __func__, regnum,
524 				    fpregs[regnum * 3],
525 				    fpregs[regnum * 3 + 1],
526 				    fpregs[regnum * 3 + 2]));
527 			}
528 			if (sig)
529 				break;
530 		}
531 		regnum += order;
532 		regmask >>= 1;
533 	}
534 
535 	return sig;
536 }
537 
538 struct fpn *
539 fpu_cmp(struct fpemu *fe)
540 {
541 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
542 
543 	/* take care of special cases */
544 	if (x->fp_class < 0 || y->fp_class < 0) {
545 		/* if either of two is a SNAN, result is SNAN */
546 		x->fp_class =
547 		    (y->fp_class < x->fp_class) ? y->fp_class : x->fp_class;
548 	} else if (x->fp_class == FPC_INF) {
549 		if (y->fp_class == FPC_INF) {
550 			/* both infinities */
551 			if (x->fp_sign == y->fp_sign) {
552 				/* return a signed zero */
553 				x->fp_class = FPC_ZERO;
554 			} else {
555 				/* return a faked number w/x's sign */
556 				x->fp_class = FPC_NUM;
557 				x->fp_exp = 16383;
558 				x->fp_mant[0] = FP_1;
559 			}
560 		} else {
561 			/* y is a number */
562 			/* return a forged number w/x's sign */
563 			x->fp_class = FPC_NUM;
564 			x->fp_exp = 16383;
565 			x->fp_mant[0] = FP_1;
566 		}
567 	} else if (y->fp_class == FPC_INF) {
568 		/* x is a Num but y is an Inf */
569 		/* return a forged number w/y's sign inverted */
570 		x->fp_class = FPC_NUM;
571 		x->fp_sign = !y->fp_sign;
572 		x->fp_exp = 16383;
573 		x->fp_mant[0] = FP_1;
574 	} else {
575 		/*
576 		 * x and y are both numbers or zeros,
577 		 * or pair of a number and a zero
578 		 */
579 		y->fp_sign = !y->fp_sign;
580 		x = fpu_add(fe);	/* (x - y) */
581 		/*
582 		 * FCMP does not set Inf bit in CC, so return a forged number
583 		 * (value doesn't matter) if Inf is the result of fsub.
584 		 */
585 		if (x->fp_class == FPC_INF) {
586 			x->fp_class = FPC_NUM;
587 			x->fp_exp = 16383;
588 			x->fp_mant[0] = FP_1;
589 		}
590 	}
591 	return x;
592 }
593 
594 /*
595  * arithmetic operations
596  */
597 static int
598 fpu_emul_arith(struct fpemu *fe, struct instruction *insn)
599 {
600 	struct frame *frame = fe->fe_frame;
601 	uint32_t *fpregs = &(fe->fe_fpframe->fpf_regs[0]);
602 	struct fpn *res;
603 	int word1, sig = 0;
604 	int regnum, format;
605 	int modreg;
606 	int discard_result = 0;
607 	uint32_t buf[3];
608 #ifdef DEBUG_FPE
609 	int flags;
610 	char regname;
611 #endif
612 
613 	fe->fe_fpsr &= ~FPSR_EXCP;
614 
615 	DUMP_INSN(insn);
616 
617 	DPRINTF(("%s: FPSR = %08x, FPCR = %08x\n", __func__,
618 	    fe->fe_fpsr, fe->fe_fpcr));
619 
620 	word1 = insn->is_word1;
621 	format = (word1 >> 10) & 7;
622 	regnum = (word1 >> 7) & 7;
623 
624 	/* fetch a source operand : may not be used */
625 	DPRINTF(("%s: dst/src FP%d=%08x,%08x,%08x\n", __func__,
626 	    regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
627 	    fpregs[regnum * 3 + 2]));
628 
629 	fpu_explode(fe, &fe->fe_f1, FTYPE_EXT, &fpregs[regnum * 3]);
630 
631 	DUMP_INSN(insn);
632 
633 	/* get the other operand which is always the source */
634 	if ((word1 & 0x4000) == 0) {
635 		DPRINTF(("%s: FP%d op FP%d => FP%d\n", __func__,
636 		    format, regnum, regnum));
637 		DPRINTF(("%s: src opr FP%d=%08x,%08x,%08x\n", __func__,
638 		    format, fpregs[format * 3], fpregs[format * 3 + 1],
639 		    fpregs[format * 3 + 2]));
640 		fpu_explode(fe, &fe->fe_f2, FTYPE_EXT, &fpregs[format * 3]);
641 	} else {
642 		/* the operand is in memory */
643 		if (format == FTYPE_DBL) {
644 			insn->is_datasize = 8;
645 		} else if (format == FTYPE_SNG || format == FTYPE_LNG) {
646 			insn->is_datasize = 4;
647 		} else if (format == FTYPE_WRD) {
648 			insn->is_datasize = 2;
649 		} else if (format == FTYPE_BYT) {
650 			insn->is_datasize = 1;
651 		} else if (format == FTYPE_EXT) {
652 			insn->is_datasize = 12;
653 		} else {
654 			/* invalid or unsupported operand format */
655 			sig = SIGFPE;
656 			return sig;
657 		}
658 
659 		/* Check an illegal mod/reg. */
660 		modreg = insn->is_opcode & 077;
661 		if ((modreg >> 3) == 1/*An*/ || modreg >= 075) {
662 			return SIGILL;
663 		}
664 
665 		/* Get effective address. */
666 		sig = fpu_decode_ea(frame, insn, &insn->is_ea, modreg);
667 		if (sig) {
668 			DPRINTF(("%s: error in fpu_decode_ea\n", __func__));
669 			return sig;
670 		}
671 
672 		if (insn->is_ea.ea_flags == EA_DIRECT &&
673 		    insn->is_datasize > 4) {
674 			DPRINTF(("%s: attempted to fetch dbl/ext from reg\n",
675 			    __func__));
676 			return SIGILL;
677 		}
678 
679 		DUMP_INSN(insn);
680 
681 #ifdef DEBUG_FPE
682 		printf("%s: addr mode = ", __func__);
683 		flags = insn->is_ea.ea_flags;
684 		regname = (insn->is_ea.ea_regnum & 8) ? 'a' : 'd';
685 
686 		if (flags & EA_DIRECT) {
687 			printf("%c%d\n", regname, insn->is_ea.ea_regnum & 7);
688 		} else if (flags & EA_PC_REL) {
689 			if (flags & EA_OFFSET) {
690 				printf("pc@(%d)\n", insn->is_ea.ea_offset);
691 			} else if (flags & EA_INDEXED) {
692 				printf("pc@(...)\n");
693 			}
694 		} else if (flags & EA_PREDECR) {
695 			printf("%c%d@-\n", regname, insn->is_ea.ea_regnum & 7);
696 		} else if (flags & EA_POSTINCR) {
697 			printf("%c%d@+\n", regname, insn->is_ea.ea_regnum & 7);
698 		} else if (flags & EA_OFFSET) {
699 			printf("%c%d@(%d)\n", regname,
700 			    insn->is_ea.ea_regnum & 7,
701 			    insn->is_ea.ea_offset);
702 		} else if (flags & EA_INDEXED) {
703 			printf("%c%d@(...)\n", regname,
704 			    insn->is_ea.ea_regnum & 7);
705 		} else if (flags & EA_ABS) {
706 			printf("0x%08x\n", insn->is_ea.ea_absaddr);
707 		} else if (flags & EA_IMMED) {
708 			printf("#0x%08x,%08x,%08x\n",
709 			    insn->is_ea.ea_immed[0],
710 			    insn->is_ea.ea_immed[1],
711 			    insn->is_ea.ea_immed[2]);
712 		} else {
713 			printf("%c%d@\n", regname, insn->is_ea.ea_regnum & 7);
714 		}
715 #endif /* DEBUG_FPE */
716 
717 		fpu_load_ea(frame, insn, &insn->is_ea, (char*)buf);
718 		if (format == FTYPE_WRD) {
719 			/* sign-extend */
720 			buf[0] &= 0xffff;
721 			if (buf[0] & 0x8000)
722 				buf[0] |= 0xffff0000;
723 			format = FTYPE_LNG;
724 		} else if (format == FTYPE_BYT) {
725 			/* sign-extend */
726 			buf[0] &= 0xff;
727 			if (buf[0] & 0x80)
728 				buf[0] |= 0xffffff00;
729 			format = FTYPE_LNG;
730 		}
731 		DPRINTF(("%s: src = %08x %08x %08x, siz = %d\n", __func__,
732 		    buf[0], buf[1], buf[2], insn->is_datasize));
733 		fpu_explode(fe, &fe->fe_f2, format, buf);
734 	}
735 
736 	DUMP_INSN(insn);
737 
738 	/*
739 	 * An arithmetic instruction emulate function has a prototype of
740 	 * struct fpn *fpu_op(struct fpemu *);
741 	 *
742 	 * 1) If the instruction is monadic, then fpu_op() must use
743 	 *    fe->fe_f2 as its operand, and return a pointer to the
744 	 *    result.
745 	 *
746 	 * 2) If the instruction is diadic, then fpu_op() must use
747 	 *    fe->fe_f1 and fe->fe_f2 as its two operands, and return a
748 	 *    pointer to the result.
749 	 *
750 	 */
751 	res = NULL;
752 	switch (word1 & 0x7f) {
753 	case 0x00:		/* fmove */
754 		res = &fe->fe_f2;
755 		break;
756 
757 	case 0x01:		/* fint */
758 		res = fpu_int(fe);
759 		break;
760 
761 	case 0x02:		/* fsinh */
762 		res = fpu_sinh(fe);
763 		break;
764 
765 	case 0x03:		/* fintrz */
766 		res = fpu_intrz(fe);
767 		break;
768 
769 	case 0x04:		/* fsqrt */
770 		res = fpu_sqrt(fe);
771 		break;
772 
773 	case 0x06:		/* flognp1 */
774 		res = fpu_lognp1(fe);
775 		break;
776 
777 	case 0x08:		/* fetoxm1 */
778 		res = fpu_etoxm1(fe);
779 		break;
780 
781 	case 0x09:		/* ftanh */
782 		res = fpu_tanh(fe);
783 		break;
784 
785 	case 0x0A:		/* fatan */
786 		res = fpu_atan(fe);
787 		break;
788 
789 	case 0x0C:		/* fasin */
790 		res = fpu_asin(fe);
791 		break;
792 
793 	case 0x0D:		/* fatanh */
794 		res = fpu_atanh(fe);
795 		break;
796 
797 	case 0x0E:		/* fsin */
798 		res = fpu_sin(fe);
799 		break;
800 
801 	case 0x0F:		/* ftan */
802 		res = fpu_tan(fe);
803 		break;
804 
805 	case 0x10:		/* fetox */
806 		res = fpu_etox(fe);
807 		break;
808 
809 	case 0x11:		/* ftwotox */
810 		res = fpu_twotox(fe);
811 		break;
812 
813 	case 0x12:		/* ftentox */
814 		res = fpu_tentox(fe);
815 		break;
816 
817 	case 0x14:		/* flogn */
818 		res = fpu_logn(fe);
819 		break;
820 
821 	case 0x15:		/* flog10 */
822 		res = fpu_log10(fe);
823 		break;
824 
825 	case 0x16:		/* flog2 */
826 		res = fpu_log2(fe);
827 		break;
828 
829 	case 0x18:		/* fabs */
830 		fe->fe_f2.fp_sign = 0;
831 		res = &fe->fe_f2;
832 		break;
833 
834 	case 0x19:		/* fcosh */
835 		res = fpu_cosh(fe);
836 		break;
837 
838 	case 0x1A:		/* fneg */
839 		fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign;
840 		res = &fe->fe_f2;
841 		break;
842 
843 	case 0x1C:		/* facos */
844 		res = fpu_acos(fe);
845 		break;
846 
847 	case 0x1D:		/* fcos */
848 		res = fpu_cos(fe);
849 		break;
850 
851 	case 0x1E:		/* fgetexp */
852 		res = fpu_getexp(fe);
853 		break;
854 
855 	case 0x1F:		/* fgetman */
856 		res = fpu_getman(fe);
857 		break;
858 
859 	case 0x20:		/* fdiv */
860 	case 0x24:		/* fsgldiv: cheating - better than nothing */
861 		res = fpu_div(fe);
862 		break;
863 
864 	case 0x21:		/* fmod */
865 		res = fpu_mod(fe);
866 		break;
867 
868 	case 0x28:		/* fsub */
869 		fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign; /* f2 = -f2 */
870 		/* FALLTHROUGH */
871 	case 0x22:		/* fadd */
872 		res = fpu_add(fe);
873 		break;
874 
875 	case 0x23:		/* fmul */
876 	case 0x27:		/* fsglmul: cheating - better than nothing */
877 		res = fpu_mul(fe);
878 		break;
879 
880 	case 0x25:		/* frem */
881 		res = fpu_rem(fe);
882 		break;
883 
884 	case 0x26:
885 		/* fscale is handled by a separate function */
886 		break;
887 
888 	case 0x30:
889 	case 0x31:
890 	case 0x32:
891 	case 0x33:
892 	case 0x34:
893 	case 0x35:
894 	case 0x36:
895 	case 0x37:		/* fsincos */
896 		res = fpu_sincos(fe, word1 & 7);
897 		break;
898 
899 	case 0x38:		/* fcmp */
900 		res = fpu_cmp(fe);
901 		discard_result = 1;
902 		break;
903 
904 	case 0x3A:		/* ftst */
905 		res = &fe->fe_f2;
906 		discard_result = 1;
907 		break;
908 
909 	default:		/* possibly 040/060 instructions */
910 		DPRINTF(("%s: bad opcode=0x%x, word1=0x%x\n", __func__,
911 		    insn->is_opcode, insn->is_word1));
912 		sig = SIGILL;
913 	}
914 
915 	/* for sanity */
916 	if (res == NULL)
917 		sig = SIGILL;
918 
919 	if (sig == 0) {
920 		if (!discard_result)
921 			fpu_implode(fe, res, FTYPE_EXT, &fpregs[regnum * 3]);
922 
923 		/* update fpsr according to the result of operation */
924 		fpu_upd_fpsr(fe, res);
925 #ifdef DEBUG_FPE
926 		if (!discard_result) {
927 			printf("%s: %08x,%08x,%08x stored in FP%d\n", __func__,
928 			    fpregs[regnum * 3],
929 			    fpregs[regnum * 3 + 1],
930 			    fpregs[regnum * 3 + 2],
931 			    regnum);
932 		} else {
933 			static const char *class_name[] =
934 			    { "SNAN", "QNAN", "ZERO", "NUM", "INF" };
935 			printf("%s: result(%s,%c,%d,%08x,%08x,%08x) "
936 			    "discarded\n", __func__,
937 			    class_name[res->fp_class + 2],
938 			    res->fp_sign ? '-' : '+', res->fp_exp,
939 			    res->fp_mant[0], res->fp_mant[1],
940 			    res->fp_mant[2]);
941 		}
942 #endif
943 	} else {
944 		DPRINTF(("%s: received signal %d\n", __func__, sig));
945 	}
946 
947 	DPRINTF(("%s: FPSR = %08x, FPCR = %08x\n", __func__,
948 	    fe->fe_fpsr, fe->fe_fpcr));
949 
950 	DUMP_INSN(insn);
951 
952 	return sig;
953 }
954 
955 /*
956  * test condition code according to the predicate in the opcode.
957  * returns -1 when the predicate evaluates to true, 0 when false.
958  * signal numbers are returned when an error is detected.
959  */
960 static int
961 test_cc(struct fpemu *fe, int pred)
962 {
963 	int result, sig_bsun;
964 	int fpsr;
965 
966 	fpsr = fe->fe_fpsr;
967 	DPRINTF(("%s: fpsr=0x%08x\n", __func__, fpsr));
968 	pred &= 0x3f;		/* lowest 6 bits */
969 
970 	DPRINTF(("%s: ", __func__));
971 
972 	if (pred >= 0x20) {
973 		DPRINTF(("Illegal condition code\n"));
974 		return SIGILL;
975 	} else if (pred & 0x10) {
976 		/* IEEE nonaware tests */
977 		sig_bsun = 1;
978 		pred &= 0x0f;		/* lower 4 bits */
979 	} else {
980 		/* IEEE aware tests */
981 		DPRINTF(("IEEE "));
982 		sig_bsun = 0;
983 	}
984 
985 	/*
986 	 *           condition   real 68882
987 	 * mnemonic  in manual   condition
988 	 * --------  ----------  ----------
989 	 * 0000 F    0           <-         = ~NAN &  0 & ~Z | 0
990 	 * 0001 EQ   Z           <-         = ~NAN &  0 |  Z | 0
991 	 * 0010 OGT  ~(NAN|Z|N)  <-         = ~NAN & ~N & ~Z | 0
992 	 * 0011 OGE  Z|~(NAN|N)  <-         = ~NAN & ~N |  Z | 0
993 	 * 0100 OLT  N&~(NAN|Z)  <-         = ~NAN &  N & ~Z | 0
994 	 * 0101 OLE  Z|(N&~NAN)  <-         = ~NAN &  N |  Z | 0
995 	 * 0110 OGL  ~(NAN|Z)    <-         = ~NAN &  1 & ~Z | 0
996 	 * 0111 OR   ~NAN        Z|~NAN     = ~NAN &  1 |  Z | 0
997 	 *
998 	 * 1000 UN   NAN         <-         =  1   &  0 & ~Z | NAN
999 	 * 1001 UEQ  NAN|Z       <-         =  1   &  0 |  Z | NAN
1000 	 * 1010 UGT  NAN|~(N|Z)  <-         =  1   & ~N & ~Z | NAN
1001 	 * 1011 UGE  NAN|(Z|~N)  <-         =  1   & ~N |  Z | NAN
1002 	 * 1100 ULT  NAN|(N&~Z)  <-         =  1   &  N & ~Z | NAN
1003 	 * 1101 ULE  NAN|(Z|N)   <-         =  1   &  N |  Z | NAN
1004 	 * 1110 NE   ~Z          NAN|(~Z)   =  1   &  1 & ~Z | NAN
1005 	 * 1111 T    1           <-         =  1   &  1 |  Z | NAN
1006 	 */
1007 	if ((pred & 0x08) == 0) {
1008 		result = ((fpsr & FPSR_NAN) == 0);
1009 	} else {
1010 		result = 1;
1011 	}
1012 	switch (pred & 0x06) {
1013 	case 0x00:	/* AND 0 */
1014 		result &= 0;
1015 		break;
1016 	case 0x02:	/* AND ~N */
1017 		result &= ((fpsr & FPSR_NEG) == 0);
1018 		break;
1019 	case 0x04:	/* AND N */
1020 		result &= ((fpsr & FPSR_NEG) != 0);
1021 		break;
1022 	case 0x06:	/* AND 1 */
1023 		result &= 1;
1024 		break;
1025 	}
1026 	if ((pred & 0x01) == 0) {
1027 		result &= ((fpsr & FPSR_ZERO) == 0);
1028 	} else {
1029 		result |= ((fpsr & FPSR_ZERO) != 0);
1030 	}
1031 	if ((pred & 0x08) != 0) {
1032 		result |= ((fpsr & FPSR_NAN) != 0);
1033 	}
1034 
1035 	DPRINTF(("=> %s (%d)\n", result ? "true" : "false", result));
1036 	/* if it's an IEEE unaware test and NAN is set, BSUN is set */
1037 	if (sig_bsun && (fpsr & FPSR_NAN)) {
1038 		fpsr |= FPSR_BSUN;
1039 	}
1040 	/* if BSUN is set, IOP is set too */
1041 	if ((fpsr & FPSR_BSUN)) {
1042 		fpsr |= FPSR_AIOP;
1043 	}
1044 
1045 	/* put fpsr back */
1046 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
1047 
1048 	return -result;
1049 }
1050 
1051 /*
1052  * type 1: fdbcc, fscc, ftrapcc
1053  * In this function, we know:
1054  *   (opcode & 0x01C0) == 0x0040
1055  * return SIGILL for an illegal instruction.
1056  * return SIGFPE if FTRAPcc's condition is met.
1057  */
1058 static int
1059 fpu_emul_type1(struct fpemu *fe, struct instruction *insn)
1060 {
1061 	struct frame *frame = fe->fe_frame;
1062 	int advance, sig, branch, displ;
1063 	unsigned short sval;
1064 
1065 	branch = test_cc(fe, insn->is_word1);
1066 	if (branch > 0)
1067 		return branch;
1068 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
1069 
1070 	sig = 0;
1071 	switch (insn->is_opcode & 070) {
1072 	case 010:			/* fdbcc */
1073 		if (branch) {
1074 			/* advance */
1075 			insn->is_advance = 6;
1076 		} else {
1077 			/* decrement Dn and if (Dn != -1) branch */
1078 			uint16_t count = frame->f_regs[insn->is_opcode & 7];
1079 
1080 			if (count-- != 0) {
1081 				if (ufetch_short((void *)(insn->is_pc +
1082 							   insn->is_advance),
1083 						  &sval)) {
1084 					DPRINTF(("%s: fault reading "
1085 					    "displacement\n", __func__));
1086 					return SIGSEGV;
1087 				}
1088 				displ = sval;
1089 				/* sign-extend the displacement */
1090 				displ &= 0xffff;
1091 				if (displ & 0x8000) {
1092 					displ |= 0xffff0000;
1093 				}
1094 				insn->is_advance += displ;
1095 #if 0				/* XXX */
1096 				insn->is_nextpc = insn->is_pc +
1097 				    insn->is_advance;
1098 #endif
1099 			} else {
1100 				insn->is_advance = 6;
1101 			}
1102 			/* write it back */
1103 			frame->f_regs[insn->is_opcode & 7] &= 0xffff0000;
1104 			frame->f_regs[insn->is_opcode & 7] |= (uint32_t)count;
1105 		}
1106 		break;
1107 
1108 	case 070:			/* ftrapcc or fscc */
1109 		advance = 4;
1110 		if ((insn->is_opcode & 07) >= 2) {
1111 			switch (insn->is_opcode & 07) {
1112 			case 3:		/* long opr */
1113 				advance += 2;
1114 			case 2:		/* word opr */
1115 				advance += 2;
1116 			case 4:		/* no opr */
1117 				break;
1118 			default:
1119 				return SIGILL;
1120 				break;
1121 			}
1122 			insn->is_advance = advance;
1123 
1124 			if (branch) {
1125 				/* trap */
1126 				sig = SIGFPE;
1127 			}
1128 			break;
1129 		}
1130 
1131 		/* FALLTHROUGH */
1132 	default:			/* fscc */
1133 		insn->is_datasize = 1;	/* always byte */
1134 		sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
1135 		if (sig) {
1136 			break;
1137 		}
1138 		/* set result */
1139 		sig = fpu_store_ea(frame, insn, &insn->is_ea, (char *)&branch);
1140 		break;
1141 	}
1142 	return sig;
1143 }
1144 
1145 /*
1146  * Type 2 or 3: fbcc (also fnop)
1147  * In this function, we know:
1148  *   (opcode & 0x0180) == 0x0080
1149  */
1150 static int
1151 fpu_emul_brcc(struct fpemu *fe, struct instruction *insn)
1152 {
1153 	int displ, word2;
1154 	int sig;
1155 	unsigned short sval;
1156 
1157 	/*
1158 	 * Get branch displacement.
1159 	 */
1160 	displ = insn->is_word1;
1161 
1162 	if (insn->is_opcode & 0x40) {
1163 		if (ufetch_short((void *)(insn->is_pc + insn->is_advance),
1164 				  &sval)) {
1165 			DPRINTF(("%s: fault reading word2\n", __func__));
1166 			return SIGSEGV;
1167 		}
1168 		word2 = sval;
1169 		displ <<= 16;
1170 		displ |= word2;
1171 		insn->is_advance += 2;
1172 	} else {
1173 		/* displacement is word sized */
1174 		if (displ & 0x8000)
1175 			displ |= 0xFFFF0000;
1176 	}
1177 
1178 	/* XXX: If CC, insn->is_pc += displ */
1179 	sig = test_cc(fe, insn->is_opcode);
1180 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
1181 
1182 	if (fe->fe_fpsr & fe->fe_fpcr & FPSR_EXCP) {
1183 		return SIGFPE;		/* caught an exception */
1184 	}
1185 	if (sig == -1) {
1186 		/*
1187 		 * branch does take place; 2 is the offset to the 1st disp word
1188 		 */
1189 		insn->is_advance = displ + 2;
1190 #if 0		/* XXX */
1191 		insn->is_nextpc = insn->is_pc + insn->is_advance;
1192 #endif
1193 	} else if (sig)
1194 		return SIGILL;		/* got a signal */
1195 	DPRINTF(("%s: %s insn @ %x (%x+%x) (disp=%x)\n", __func__,
1196 	    (sig == -1) ? "BRANCH to" : "NEXT",
1197 	    insn->is_pc + insn->is_advance, insn->is_pc, insn->is_advance,
1198 	    displ));
1199 	return 0;
1200 }
1201