xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/IPO/IROutliner.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 // Implementation for the IROutliner which is used by the IROutliner Pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/IROutliner.h"
15 #include "llvm/Analysis/IRSimilarityIdentifier.h"
16 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/PassManager.h"
20 #include "llvm/InitializePasses.h"
21 #include "llvm/Pass.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Transforms/IPO.h"
24 #include <map>
25 #include <set>
26 #include <vector>
27 
28 #define DEBUG_TYPE "iroutliner"
29 
30 using namespace llvm;
31 using namespace IRSimilarity;
32 
33 // Set to true if the user wants the ir outliner to run on linkonceodr linkage
34 // functions. This is false by default because the linker can dedupe linkonceodr
35 // functions. Since the outliner is confined to a single module (modulo LTO),
36 // this is off by default. It should, however, be the default behavior in
37 // LTO.
38 static cl::opt<bool> EnableLinkOnceODRIROutlining(
39     "enable-linkonceodr-ir-outlining", cl::Hidden,
40     cl::desc("Enable the IR outliner on linkonceodr functions"),
41     cl::init(false));
42 
43 // This is a debug option to test small pieces of code to ensure that outlining
44 // works correctly.
45 static cl::opt<bool> NoCostModel(
46     "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
47     cl::desc("Debug option to outline greedily, without restriction that "
48              "calculated benefit outweighs cost"));
49 
50 /// The OutlinableGroup holds all the overarching information for outlining
51 /// a set of regions that are structurally similar to one another, such as the
52 /// types of the overall function, the output blocks, the sets of stores needed
53 /// and a list of the different regions. This information is used in the
54 /// deduplication of extracted regions with the same structure.
55 struct OutlinableGroup {
56   /// The sections that could be outlined
57   std::vector<OutlinableRegion *> Regions;
58 
59   /// The argument types for the function created as the overall function to
60   /// replace the extracted function for each region.
61   std::vector<Type *> ArgumentTypes;
62   /// The FunctionType for the overall function.
63   FunctionType *OutlinedFunctionType = nullptr;
64   /// The Function for the collective overall function.
65   Function *OutlinedFunction = nullptr;
66 
67   /// Flag for whether we should not consider this group of OutlinableRegions
68   /// for extraction.
69   bool IgnoreGroup = false;
70 
71   /// The return block for the overall function.
72   BasicBlock *EndBB = nullptr;
73 
74   /// A set containing the different GVN store sets needed. Each array contains
75   /// a sorted list of the different values that need to be stored into output
76   /// registers.
77   DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
78 
79   /// Flag for whether the \ref ArgumentTypes have been defined after the
80   /// extraction of the first region.
81   bool InputTypesSet = false;
82 
83   /// The number of input values in \ref ArgumentTypes.  Anything after this
84   /// index in ArgumentTypes is an output argument.
85   unsigned NumAggregateInputs = 0;
86 
87   /// The number of instructions that will be outlined by extracting \ref
88   /// Regions.
89   InstructionCost Benefit = 0;
90   /// The number of added instructions needed for the outlining of the \ref
91   /// Regions.
92   InstructionCost Cost = 0;
93 
94   /// The argument that needs to be marked with the swifterr attribute.  If not
95   /// needed, there is no value.
96   Optional<unsigned> SwiftErrorArgument;
97 
98   /// For the \ref Regions, we look at every Value.  If it is a constant,
99   /// we check whether it is the same in Region.
100   ///
101   /// \param [in,out] NotSame contains the global value numbers where the
102   /// constant is not always the same, and must be passed in as an argument.
103   void findSameConstants(DenseSet<unsigned> &NotSame);
104 
105   /// For the regions, look at each set of GVN stores needed and account for
106   /// each combination.  Add an argument to the argument types if there is
107   /// more than one combination.
108   ///
109   /// \param [in] M - The module we are outlining from.
110   void collectGVNStoreSets(Module &M);
111 };
112 
113 /// Move the contents of \p SourceBB to before the last instruction of \p
114 /// TargetBB.
115 /// \param SourceBB - the BasicBlock to pull Instructions from.
116 /// \param TargetBB - the BasicBlock to put Instruction into.
moveBBContents(BasicBlock & SourceBB,BasicBlock & TargetBB)117 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
118   BasicBlock::iterator BBCurr, BBEnd, BBNext;
119   for (BBCurr = SourceBB.begin(), BBEnd = SourceBB.end(); BBCurr != BBEnd;
120        BBCurr = BBNext) {
121     BBNext = std::next(BBCurr);
122     BBCurr->moveBefore(TargetBB, TargetBB.end());
123   }
124 }
125 
splitCandidate()126 void OutlinableRegion::splitCandidate() {
127   assert(!CandidateSplit && "Candidate already split!");
128 
129   Instruction *StartInst = (*Candidate->begin()).Inst;
130   Instruction *EndInst = (*Candidate->end()).Inst;
131   assert(StartInst && EndInst && "Expected a start and end instruction?");
132   StartBB = StartInst->getParent();
133   PrevBB = StartBB;
134 
135   // The basic block gets split like so:
136   // block:                 block:
137   //   inst1                  inst1
138   //   inst2                  inst2
139   //   region1               br block_to_outline
140   //   region2              block_to_outline:
141   //   region3          ->    region1
142   //   region4                region2
143   //   inst3                  region3
144   //   inst4                  region4
145   //                          br block_after_outline
146   //                        block_after_outline:
147   //                          inst3
148   //                          inst4
149 
150   std::string OriginalName = PrevBB->getName().str();
151 
152   StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
153 
154   // This is the case for the inner block since we do not have to include
155   // multiple blocks.
156   EndBB = StartBB;
157   FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
158 
159   CandidateSplit = true;
160 }
161 
reattachCandidate()162 void OutlinableRegion::reattachCandidate() {
163   assert(CandidateSplit && "Candidate is not split!");
164 
165   // The basic block gets reattached like so:
166   // block:                        block:
167   //   inst1                         inst1
168   //   inst2                         inst2
169   //   br block_to_outline           region1
170   // block_to_outline:        ->     region2
171   //   region1                       region3
172   //   region2                       region4
173   //   region3                       inst3
174   //   region4                       inst4
175   //   br block_after_outline
176   // block_after_outline:
177   //   inst3
178   //   inst4
179   assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
180   assert(FollowBB != nullptr && "StartBB for Candidate is not defined!");
181 
182   // StartBB should only have one predecessor since we put an unconditional
183   // branch at the end of PrevBB when we split the BasicBlock.
184   PrevBB = StartBB->getSinglePredecessor();
185   assert(PrevBB != nullptr &&
186          "No Predecessor for the region start basic block!");
187 
188   assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
189   assert(EndBB->getTerminator() && "Terminator removed from EndBB!");
190   PrevBB->getTerminator()->eraseFromParent();
191   EndBB->getTerminator()->eraseFromParent();
192 
193   moveBBContents(*StartBB, *PrevBB);
194 
195   BasicBlock *PlacementBB = PrevBB;
196   if (StartBB != EndBB)
197     PlacementBB = EndBB;
198   moveBBContents(*FollowBB, *PlacementBB);
199 
200   PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
201   PrevBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
202   StartBB->eraseFromParent();
203   FollowBB->eraseFromParent();
204 
205   // Make sure to save changes back to the StartBB.
206   StartBB = PrevBB;
207   EndBB = nullptr;
208   PrevBB = nullptr;
209   FollowBB = nullptr;
210 
211   CandidateSplit = false;
212 }
213 
214 /// Find whether \p V matches the Constants previously found for the \p GVN.
215 ///
216 /// \param V - The value to check for consistency.
217 /// \param GVN - The global value number assigned to \p V.
218 /// \param GVNToConstant - The mapping of global value number to Constants.
219 /// \returns true if the Value matches the Constant mapped to by V and false if
220 /// it \p V is a Constant but does not match.
221 /// \returns None if \p V is not a Constant.
222 static Optional<bool>
constantMatches(Value * V,unsigned GVN,DenseMap<unsigned,Constant * > & GVNToConstant)223 constantMatches(Value *V, unsigned GVN,
224                 DenseMap<unsigned, Constant *> &GVNToConstant) {
225   // See if we have a constants
226   Constant *CST = dyn_cast<Constant>(V);
227   if (!CST)
228     return None;
229 
230   // Holds a mapping from a global value number to a Constant.
231   DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
232   bool Inserted;
233 
234 
235   // If we have a constant, try to make a new entry in the GVNToConstant.
236   std::tie(GVNToConstantIt, Inserted) =
237       GVNToConstant.insert(std::make_pair(GVN, CST));
238   // If it was found and is not equal, it is not the same. We do not
239   // handle this case yet, and exit early.
240   if (Inserted || (GVNToConstantIt->second == CST))
241     return true;
242 
243   return false;
244 }
245 
getBenefit(TargetTransformInfo & TTI)246 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
247   InstructionCost Benefit = 0;
248 
249   // Estimate the benefit of outlining a specific sections of the program.  We
250   // delegate mostly this task to the TargetTransformInfo so that if the target
251   // has specific changes, we can have a more accurate estimate.
252 
253   // However, getInstructionCost delegates the code size calculation for
254   // arithmetic instructions to getArithmeticInstrCost in
255   // include/Analysis/TargetTransformImpl.h, where it always estimates that the
256   // code size for a division and remainder instruction to be equal to 4, and
257   // everything else to 1.  This is not an accurate representation of the
258   // division instruction for targets that have a native division instruction.
259   // To be overly conservative, we only add 1 to the number of instructions for
260   // each division instruction.
261   for (Instruction &I : *StartBB) {
262     switch (I.getOpcode()) {
263     case Instruction::FDiv:
264     case Instruction::FRem:
265     case Instruction::SDiv:
266     case Instruction::SRem:
267     case Instruction::UDiv:
268     case Instruction::URem:
269       Benefit += 1;
270       break;
271     default:
272       Benefit += TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
273       break;
274     }
275   }
276 
277   return Benefit;
278 }
279 
280 /// Find whether \p Region matches the global value numbering to Constant
281 /// mapping found so far.
282 ///
283 /// \param Region - The OutlinableRegion we are checking for constants
284 /// \param GVNToConstant - The mapping of global value number to Constants.
285 /// \param NotSame - The set of global value numbers that do not have the same
286 /// constant in each region.
287 /// \returns true if all Constants are the same in every use of a Constant in \p
288 /// Region and false if not
289 static bool
collectRegionsConstants(OutlinableRegion & Region,DenseMap<unsigned,Constant * > & GVNToConstant,DenseSet<unsigned> & NotSame)290 collectRegionsConstants(OutlinableRegion &Region,
291                         DenseMap<unsigned, Constant *> &GVNToConstant,
292                         DenseSet<unsigned> &NotSame) {
293   bool ConstantsTheSame = true;
294 
295   IRSimilarityCandidate &C = *Region.Candidate;
296   for (IRInstructionData &ID : C) {
297 
298     // Iterate over the operands in an instruction. If the global value number,
299     // assigned by the IRSimilarityCandidate, has been seen before, we check if
300     // the the number has been found to be not the same value in each instance.
301     for (Value *V : ID.OperVals) {
302       Optional<unsigned> GVNOpt = C.getGVN(V);
303       assert(GVNOpt.hasValue() && "Expected a GVN for operand?");
304       unsigned GVN = GVNOpt.getValue();
305 
306       // Check if this global value has been found to not be the same already.
307       if (NotSame.contains(GVN)) {
308         if (isa<Constant>(V))
309           ConstantsTheSame = false;
310         continue;
311       }
312 
313       // If it has been the same so far, we check the value for if the
314       // associated Constant value match the previous instances of the same
315       // global value number.  If the global value does not map to a Constant,
316       // it is considered to not be the same value.
317       Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant);
318       if (ConstantMatches.hasValue()) {
319         if (ConstantMatches.getValue())
320           continue;
321         else
322           ConstantsTheSame = false;
323       }
324 
325       // While this value is a register, it might not have been previously,
326       // make sure we don't already have a constant mapped to this global value
327       // number.
328       if (GVNToConstant.find(GVN) != GVNToConstant.end())
329         ConstantsTheSame = false;
330 
331       NotSame.insert(GVN);
332     }
333   }
334 
335   return ConstantsTheSame;
336 }
337 
findSameConstants(DenseSet<unsigned> & NotSame)338 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
339   DenseMap<unsigned, Constant *> GVNToConstant;
340 
341   for (OutlinableRegion *Region : Regions)
342     collectRegionsConstants(*Region, GVNToConstant, NotSame);
343 }
344 
collectGVNStoreSets(Module & M)345 void OutlinableGroup::collectGVNStoreSets(Module &M) {
346   for (OutlinableRegion *OS : Regions)
347     OutputGVNCombinations.insert(OS->GVNStores);
348 
349   // We are adding an extracted argument to decide between which output path
350   // to use in the basic block.  It is used in a switch statement and only
351   // needs to be an integer.
352   if (OutputGVNCombinations.size() > 1)
353     ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
354 }
355 
createFunction(Module & M,OutlinableGroup & Group,unsigned FunctionNameSuffix)356 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
357                                      unsigned FunctionNameSuffix) {
358   assert(!Group.OutlinedFunction && "Function is already defined!");
359 
360   Group.OutlinedFunctionType = FunctionType::get(
361       Type::getVoidTy(M.getContext()), Group.ArgumentTypes, false);
362 
363   // These functions will only be called from within the same module, so
364   // we can set an internal linkage.
365   Group.OutlinedFunction = Function::Create(
366       Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
367       "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
368 
369   // Transfer the swifterr attribute to the correct function parameter.
370   if (Group.SwiftErrorArgument.hasValue())
371     Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(),
372                                          Attribute::SwiftError);
373 
374   Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
375   Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
376 
377   return Group.OutlinedFunction;
378 }
379 
380 /// Move each BasicBlock in \p Old to \p New.
381 ///
382 /// \param [in] Old - the function to move the basic blocks from.
383 /// \param [in] New - The function to move the basic blocks to.
384 /// \returns the first return block for the function in New.
moveFunctionData(Function & Old,Function & New)385 static BasicBlock *moveFunctionData(Function &Old, Function &New) {
386   Function::iterator CurrBB, NextBB, FinalBB;
387   BasicBlock *NewEnd = nullptr;
388   std::vector<Instruction *> DebugInsts;
389   for (CurrBB = Old.begin(), FinalBB = Old.end(); CurrBB != FinalBB;
390        CurrBB = NextBB) {
391     NextBB = std::next(CurrBB);
392     CurrBB->removeFromParent();
393     CurrBB->insertInto(&New);
394     Instruction *I = CurrBB->getTerminator();
395     if (isa<ReturnInst>(I))
396       NewEnd = &(*CurrBB);
397   }
398 
399   assert(NewEnd && "No return instruction for new function?");
400   return NewEnd;
401 }
402 
403 /// Find the the constants that will need to be lifted into arguments
404 /// as they are not the same in each instance of the region.
405 ///
406 /// \param [in] C - The IRSimilarityCandidate containing the region we are
407 /// analyzing.
408 /// \param [in] NotSame - The set of global value numbers that do not have a
409 /// single Constant across all OutlinableRegions similar to \p C.
410 /// \param [out] Inputs - The list containing the global value numbers of the
411 /// arguments needed for the region of code.
findConstants(IRSimilarityCandidate & C,DenseSet<unsigned> & NotSame,std::vector<unsigned> & Inputs)412 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
413                           std::vector<unsigned> &Inputs) {
414   DenseSet<unsigned> Seen;
415   // Iterate over the instructions, and find what constants will need to be
416   // extracted into arguments.
417   for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
418        IDIt != EndIDIt; IDIt++) {
419     for (Value *V : (*IDIt).OperVals) {
420       // Since these are stored before any outlining, they will be in the
421       // global value numbering.
422       unsigned GVN = C.getGVN(V).getValue();
423       if (isa<Constant>(V))
424         if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
425           Inputs.push_back(GVN);
426           Seen.insert(GVN);
427         }
428     }
429   }
430 }
431 
432 /// Find the GVN for the inputs that have been found by the CodeExtractor.
433 ///
434 /// \param [in] C - The IRSimilarityCandidate containing the region we are
435 /// analyzing.
436 /// \param [in] CurrentInputs - The set of inputs found by the
437 /// CodeExtractor.
438 /// \param [in] OutputMappings - The mapping of values that have been replaced
439 /// by a new output value.
440 /// \param [out] EndInputNumbers - The global value numbers for the extracted
441 /// arguments.
mapInputsToGVNs(IRSimilarityCandidate & C,SetVector<Value * > & CurrentInputs,const DenseMap<Value *,Value * > & OutputMappings,std::vector<unsigned> & EndInputNumbers)442 static void mapInputsToGVNs(IRSimilarityCandidate &C,
443                             SetVector<Value *> &CurrentInputs,
444                             const DenseMap<Value *, Value *> &OutputMappings,
445                             std::vector<unsigned> &EndInputNumbers) {
446   // Get the Global Value Number for each input.  We check if the Value has been
447   // replaced by a different value at output, and use the original value before
448   // replacement.
449   for (Value *Input : CurrentInputs) {
450     assert(Input && "Have a nullptr as an input");
451     if (OutputMappings.find(Input) != OutputMappings.end())
452       Input = OutputMappings.find(Input)->second;
453     assert(C.getGVN(Input).hasValue() &&
454            "Could not find a numbering for the given input");
455     EndInputNumbers.push_back(C.getGVN(Input).getValue());
456   }
457 }
458 
459 /// Find the original value for the \p ArgInput values if any one of them was
460 /// replaced during a previous extraction.
461 ///
462 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
463 /// \param [in] OutputMappings - The mapping of values that have been replaced
464 /// by a new output value.
465 /// \param [out] RemappedArgInputs - The remapped values according to
466 /// \p OutputMappings that will be extracted.
467 static void
remapExtractedInputs(const ArrayRef<Value * > ArgInputs,const DenseMap<Value *,Value * > & OutputMappings,SetVector<Value * > & RemappedArgInputs)468 remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
469                      const DenseMap<Value *, Value *> &OutputMappings,
470                      SetVector<Value *> &RemappedArgInputs) {
471   // Get the global value number for each input that will be extracted as an
472   // argument by the code extractor, remapping if needed for reloaded values.
473   for (Value *Input : ArgInputs) {
474     if (OutputMappings.find(Input) != OutputMappings.end())
475       Input = OutputMappings.find(Input)->second;
476     RemappedArgInputs.insert(Input);
477   }
478 }
479 
480 /// Find the input GVNs and the output values for a region of Instructions.
481 /// Using the code extractor, we collect the inputs to the extracted function.
482 ///
483 /// The \p Region can be identified as needing to be ignored in this function.
484 /// It should be checked whether it should be ignored after a call to this
485 /// function.
486 ///
487 /// \param [in,out] Region - The region of code to be analyzed.
488 /// \param [out] InputGVNs - The global value numbers for the extracted
489 /// arguments.
490 /// \param [in] NotSame - The global value numbers in the region that do not
491 /// have the same constant value in the regions structurally similar to
492 /// \p Region.
493 /// \param [in] OutputMappings - The mapping of values that have been replaced
494 /// by a new output value after extraction.
495 /// \param [out] ArgInputs - The values of the inputs to the extracted function.
496 /// \param [out] Outputs - The set of values extracted by the CodeExtractor
497 /// as outputs.
getCodeExtractorArguments(OutlinableRegion & Region,std::vector<unsigned> & InputGVNs,DenseSet<unsigned> & NotSame,DenseMap<Value *,Value * > & OutputMappings,SetVector<Value * > & ArgInputs,SetVector<Value * > & Outputs)498 static void getCodeExtractorArguments(
499     OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
500     DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
501     SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
502   IRSimilarityCandidate &C = *Region.Candidate;
503 
504   // OverallInputs are the inputs to the region found by the CodeExtractor,
505   // SinkCands and HoistCands are used by the CodeExtractor to find sunken
506   // allocas of values whose lifetimes are contained completely within the
507   // outlined region. PremappedInputs are the arguments found by the
508   // CodeExtractor, removing conditions such as sunken allocas, but that
509   // may need to be remapped due to the extracted output values replacing
510   // the original values. We use DummyOutputs for this first run of finding
511   // inputs and outputs since the outputs could change during findAllocas,
512   // the correct set of extracted outputs will be in the final Outputs ValueSet.
513   SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
514       DummyOutputs;
515 
516   // Use the code extractor to get the inputs and outputs, without sunken
517   // allocas or removing llvm.assumes.
518   CodeExtractor *CE = Region.CE;
519   CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
520   assert(Region.StartBB && "Region must have a start BasicBlock!");
521   Function *OrigF = Region.StartBB->getParent();
522   CodeExtractorAnalysisCache CEAC(*OrigF);
523   BasicBlock *Dummy = nullptr;
524 
525   // The region may be ineligible due to VarArgs in the parent function. In this
526   // case we ignore the region.
527   if (!CE->isEligible()) {
528     Region.IgnoreRegion = true;
529     return;
530   }
531 
532   // Find if any values are going to be sunk into the function when extracted
533   CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
534   CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
535 
536   // TODO: Support regions with sunken allocas: values whose lifetimes are
537   // contained completely within the outlined region.  These are not guaranteed
538   // to be the same in every region, so we must elevate them all to arguments
539   // when they appear.  If these values are not equal, it means there is some
540   // Input in OverallInputs that was removed for ArgInputs.
541   if (OverallInputs.size() != PremappedInputs.size()) {
542     Region.IgnoreRegion = true;
543     return;
544   }
545 
546   findConstants(C, NotSame, InputGVNs);
547 
548   mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
549 
550   remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
551                        ArgInputs);
552 
553   // Sort the GVNs, since we now have constants included in the \ref InputGVNs
554   // we need to make sure they are in a deterministic order.
555   stable_sort(InputGVNs);
556 }
557 
558 /// Look over the inputs and map each input argument to an argument in the
559 /// overall function for the OutlinableRegions.  This creates a way to replace
560 /// the arguments of the extracted function with the arguments of the new
561 /// overall function.
562 ///
563 /// \param [in,out] Region - The region of code to be analyzed.
564 /// \param [in] InputGVNs - The global value numbering of the input values
565 /// collected.
566 /// \param [in] ArgInputs - The values of the arguments to the extracted
567 /// function.
568 static void
findExtractedInputToOverallInputMapping(OutlinableRegion & Region,std::vector<unsigned> & InputGVNs,SetVector<Value * > & ArgInputs)569 findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
570                                         std::vector<unsigned> &InputGVNs,
571                                         SetVector<Value *> &ArgInputs) {
572 
573   IRSimilarityCandidate &C = *Region.Candidate;
574   OutlinableGroup &Group = *Region.Parent;
575 
576   // This counts the argument number in the overall function.
577   unsigned TypeIndex = 0;
578 
579   // This counts the argument number in the extracted function.
580   unsigned OriginalIndex = 0;
581 
582   // Find the mapping of the extracted arguments to the arguments for the
583   // overall function. Since there may be extra arguments in the overall
584   // function to account for the extracted constants, we have two different
585   // counters as we find extracted arguments, and as we come across overall
586   // arguments.
587   for (unsigned InputVal : InputGVNs) {
588     Optional<Value *> InputOpt = C.fromGVN(InputVal);
589     assert(InputOpt.hasValue() && "Global value number not found?");
590     Value *Input = InputOpt.getValue();
591 
592     if (!Group.InputTypesSet) {
593       Group.ArgumentTypes.push_back(Input->getType());
594       // If the input value has a swifterr attribute, make sure to mark the
595       // argument in the overall function.
596       if (Input->isSwiftError()) {
597         assert(
598             !Group.SwiftErrorArgument.hasValue() &&
599             "Argument already marked with swifterr for this OutlinableGroup!");
600         Group.SwiftErrorArgument = TypeIndex;
601       }
602     }
603 
604     // Check if we have a constant. If we do add it to the overall argument
605     // number to Constant map for the region, and continue to the next input.
606     if (Constant *CST = dyn_cast<Constant>(Input)) {
607       Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
608       TypeIndex++;
609       continue;
610     }
611 
612     // It is not a constant, we create the mapping from extracted argument list
613     // to the overall argument list.
614     assert(ArgInputs.count(Input) && "Input cannot be found!");
615 
616     Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
617     Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
618     OriginalIndex++;
619     TypeIndex++;
620   }
621 
622   // If the function type definitions for the OutlinableGroup holding the region
623   // have not been set, set the length of the inputs here.  We should have the
624   // same inputs for all of the different regions contained in the
625   // OutlinableGroup since they are all structurally similar to one another.
626   if (!Group.InputTypesSet) {
627     Group.NumAggregateInputs = TypeIndex;
628     Group.InputTypesSet = true;
629   }
630 
631   Region.NumExtractedInputs = OriginalIndex;
632 }
633 
634 /// Create a mapping of the output arguments for the \p Region to the output
635 /// arguments of the overall outlined function.
636 ///
637 /// \param [in,out] Region - The region of code to be analyzed.
638 /// \param [in] Outputs - The values found by the code extractor.
639 static void
findExtractedOutputToOverallOutputMapping(OutlinableRegion & Region,ArrayRef<Value * > Outputs)640 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region,
641                                           ArrayRef<Value *> Outputs) {
642   OutlinableGroup &Group = *Region.Parent;
643   IRSimilarityCandidate &C = *Region.Candidate;
644 
645   // This counts the argument number in the extracted function.
646   unsigned OriginalIndex = Region.NumExtractedInputs;
647 
648   // This counts the argument number in the overall function.
649   unsigned TypeIndex = Group.NumAggregateInputs;
650   bool TypeFound;
651   DenseSet<unsigned> AggArgsUsed;
652 
653   // Iterate over the output types and identify if there is an aggregate pointer
654   // type whose base type matches the current output type. If there is, we mark
655   // that we will use this output register for this value. If not we add another
656   // type to the overall argument type list. We also store the GVNs used for
657   // stores to identify which values will need to be moved into an special
658   // block that holds the stores to the output registers.
659   for (Value *Output : Outputs) {
660     TypeFound = false;
661     // We can do this since it is a result value, and will have a number
662     // that is necessarily the same. BUT if in the future, the instructions
663     // do not have to be in same order, but are functionally the same, we will
664     // have to use a different scheme, as one-to-one correspondence is not
665     // guaranteed.
666     unsigned GlobalValue = C.getGVN(Output).getValue();
667     unsigned ArgumentSize = Group.ArgumentTypes.size();
668 
669     for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
670       if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType()))
671         continue;
672 
673       if (AggArgsUsed.contains(Jdx))
674         continue;
675 
676       TypeFound = true;
677       AggArgsUsed.insert(Jdx);
678       Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
679       Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
680       Region.GVNStores.push_back(GlobalValue);
681       break;
682     }
683 
684     // We were unable to find an unused type in the output type set that matches
685     // the output, so we add a pointer type to the argument types of the overall
686     // function to handle this output and create a mapping to it.
687     if (!TypeFound) {
688       Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType()));
689       AggArgsUsed.insert(Group.ArgumentTypes.size() - 1);
690       Region.ExtractedArgToAgg.insert(
691           std::make_pair(OriginalIndex, Group.ArgumentTypes.size() - 1));
692       Region.AggArgToExtracted.insert(
693           std::make_pair(Group.ArgumentTypes.size() - 1, OriginalIndex));
694       Region.GVNStores.push_back(GlobalValue);
695     }
696 
697     stable_sort(Region.GVNStores);
698     OriginalIndex++;
699     TypeIndex++;
700   }
701 }
702 
findAddInputsOutputs(Module & M,OutlinableRegion & Region,DenseSet<unsigned> & NotSame)703 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
704                                       DenseSet<unsigned> &NotSame) {
705   std::vector<unsigned> Inputs;
706   SetVector<Value *> ArgInputs, Outputs;
707 
708   getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
709                             Outputs);
710 
711   if (Region.IgnoreRegion)
712     return;
713 
714   // Map the inputs found by the CodeExtractor to the arguments found for
715   // the overall function.
716   findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
717 
718   // Map the outputs found by the CodeExtractor to the arguments found for
719   // the overall function.
720   findExtractedOutputToOverallOutputMapping(Region, Outputs.getArrayRef());
721 }
722 
723 /// Replace the extracted function in the Region with a call to the overall
724 /// function constructed from the deduplicated similar regions, replacing and
725 /// remapping the values passed to the extracted function as arguments to the
726 /// new arguments of the overall function.
727 ///
728 /// \param [in] M - The module to outline from.
729 /// \param [in] Region - The regions of extracted code to be replaced with a new
730 /// function.
731 /// \returns a call instruction with the replaced function.
replaceCalledFunction(Module & M,OutlinableRegion & Region)732 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
733   std::vector<Value *> NewCallArgs;
734   DenseMap<unsigned, unsigned>::iterator ArgPair;
735 
736   OutlinableGroup &Group = *Region.Parent;
737   CallInst *Call = Region.Call;
738   assert(Call && "Call to replace is nullptr?");
739   Function *AggFunc = Group.OutlinedFunction;
740   assert(AggFunc && "Function to replace with is nullptr?");
741 
742   // If the arguments are the same size, there are not values that need to be
743   // made argument, or different output registers to handle.  We can simply
744   // replace the called function in this case.
745   if (AggFunc->arg_size() == Call->arg_size()) {
746     LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
747                       << *AggFunc << " with same number of arguments\n");
748     Call->setCalledFunction(AggFunc);
749     return Call;
750   }
751 
752   // We have a different number of arguments than the new function, so
753   // we need to use our previously mappings off extracted argument to overall
754   // function argument, and constants to overall function argument to create the
755   // new argument list.
756   for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
757 
758     if (AggArgIdx == AggFunc->arg_size() - 1 &&
759         Group.OutputGVNCombinations.size() > 1) {
760       // If we are on the last argument, and we need to differentiate between
761       // output blocks, add an integer to the argument list to determine
762       // what block to take
763       LLVM_DEBUG(dbgs() << "Set switch block argument to "
764                         << Region.OutputBlockNum << "\n");
765       NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
766                                              Region.OutputBlockNum));
767       continue;
768     }
769 
770     ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
771     if (ArgPair != Region.AggArgToExtracted.end()) {
772       Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
773       // If we found the mapping from the extracted function to the overall
774       // function, we simply add it to the argument list.  We use the same
775       // value, it just needs to honor the new order of arguments.
776       LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
777                         << *ArgumentValue << "\n");
778       NewCallArgs.push_back(ArgumentValue);
779       continue;
780     }
781 
782     // If it is a constant, we simply add it to the argument list as a value.
783     if (Region.AggArgToConstant.find(AggArgIdx) !=
784         Region.AggArgToConstant.end()) {
785       Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
786       LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
787                         << *CST << "\n");
788       NewCallArgs.push_back(CST);
789       continue;
790     }
791 
792     // Add a nullptr value if the argument is not found in the extracted
793     // function.  If we cannot find a value, it means it is not in use
794     // for the region, so we should not pass anything to it.
795     LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
796     NewCallArgs.push_back(ConstantPointerNull::get(
797         static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
798   }
799 
800   LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
801                     << *AggFunc << " with new set of arguments\n");
802   // Create the new call instruction and erase the old one.
803   Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
804                           Call);
805 
806   // It is possible that the call to the outlined function is either the first
807   // instruction is in the new block, the last instruction, or both.  If either
808   // of these is the case, we need to make sure that we replace the instruction
809   // in the IRInstructionData struct with the new call.
810   CallInst *OldCall = Region.Call;
811   if (Region.NewFront->Inst == OldCall)
812     Region.NewFront->Inst = Call;
813   if (Region.NewBack->Inst == OldCall)
814     Region.NewBack->Inst = Call;
815 
816   // Transfer any debug information.
817   Call->setDebugLoc(Region.Call->getDebugLoc());
818 
819   // Remove the old instruction.
820   OldCall->eraseFromParent();
821   Region.Call = Call;
822 
823   // Make sure that the argument in the new function has the SwiftError
824   // argument.
825   if (Group.SwiftErrorArgument.hasValue())
826     Call->addParamAttr(Group.SwiftErrorArgument.getValue(),
827                        Attribute::SwiftError);
828 
829   return Call;
830 }
831 
832 // Within an extracted function, replace the argument uses of the extracted
833 // region with the arguments of the function for an OutlinableGroup.
834 //
835 /// \param [in] Region - The region of extracted code to be changed.
836 /// \param [in,out] OutputBB - The BasicBlock for the output stores for this
837 /// region.
replaceArgumentUses(OutlinableRegion & Region,BasicBlock * OutputBB)838 static void replaceArgumentUses(OutlinableRegion &Region,
839                                 BasicBlock *OutputBB) {
840   OutlinableGroup &Group = *Region.Parent;
841   assert(Region.ExtractedFunction && "Region has no extracted function?");
842 
843   for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
844        ArgIdx++) {
845     assert(Region.ExtractedArgToAgg.find(ArgIdx) !=
846                Region.ExtractedArgToAgg.end() &&
847            "No mapping from extracted to outlined?");
848     unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
849     Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
850     Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
851     // The argument is an input, so we can simply replace it with the overall
852     // argument value
853     if (ArgIdx < Region.NumExtractedInputs) {
854       LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
855                         << *Region.ExtractedFunction << " with " << *AggArg
856                         << " in function " << *Group.OutlinedFunction << "\n");
857       Arg->replaceAllUsesWith(AggArg);
858       continue;
859     }
860 
861     // If we are replacing an output, we place the store value in its own
862     // block inside the overall function before replacing the use of the output
863     // in the function.
864     assert(Arg->hasOneUse() && "Output argument can only have one use");
865     User *InstAsUser = Arg->user_back();
866     assert(InstAsUser && "User is nullptr!");
867 
868     Instruction *I = cast<Instruction>(InstAsUser);
869     I->setDebugLoc(DebugLoc());
870     LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
871                       << *OutputBB << "\n");
872 
873     I->moveBefore(*OutputBB, OutputBB->end());
874 
875     LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
876                       << *Region.ExtractedFunction << " with " << *AggArg
877                       << " in function " << *Group.OutlinedFunction << "\n");
878     Arg->replaceAllUsesWith(AggArg);
879   }
880 }
881 
882 /// Within an extracted function, replace the constants that need to be lifted
883 /// into arguments with the actual argument.
884 ///
885 /// \param Region [in] - The region of extracted code to be changed.
replaceConstants(OutlinableRegion & Region)886 void replaceConstants(OutlinableRegion &Region) {
887   OutlinableGroup &Group = *Region.Parent;
888   // Iterate over the constants that need to be elevated into arguments
889   for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
890     unsigned AggArgIdx = Const.first;
891     Function *OutlinedFunction = Group.OutlinedFunction;
892     assert(OutlinedFunction && "Overall Function is not defined?");
893     Constant *CST = Const.second;
894     Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
895     // Identify the argument it will be elevated to, and replace instances of
896     // that constant in the function.
897 
898     // TODO: If in the future constants do not have one global value number,
899     // i.e. a constant 1 could be mapped to several values, this check will
900     // have to be more strict.  It cannot be using only replaceUsesWithIf.
901 
902     LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
903                       << " in function " << *OutlinedFunction << " with "
904                       << *Arg << "\n");
905     CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
906       if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
907         return I->getFunction() == OutlinedFunction;
908       return false;
909     });
910   }
911 }
912 
913 /// For the given function, find all the nondebug or lifetime instructions,
914 /// and return them as a vector. Exclude any blocks in \p ExludeBlocks.
915 ///
916 /// \param [in] F - The function we collect the instructions from.
917 /// \param [in] ExcludeBlocks - BasicBlocks to ignore.
918 /// \returns the list of instructions extracted.
919 static std::vector<Instruction *>
collectRelevantInstructions(Function & F,DenseSet<BasicBlock * > & ExcludeBlocks)920 collectRelevantInstructions(Function &F,
921                             DenseSet<BasicBlock *> &ExcludeBlocks) {
922   std::vector<Instruction *> RelevantInstructions;
923 
924   for (BasicBlock &BB : F) {
925     if (ExcludeBlocks.contains(&BB))
926       continue;
927 
928     for (Instruction &Inst : BB) {
929       if (Inst.isLifetimeStartOrEnd())
930         continue;
931       if (isa<DbgInfoIntrinsic>(Inst))
932         continue;
933 
934       RelevantInstructions.push_back(&Inst);
935     }
936   }
937 
938   return RelevantInstructions;
939 }
940 
941 /// It is possible that there is a basic block that already performs the same
942 /// stores. This returns a duplicate block, if it exists
943 ///
944 /// \param OutputBB [in] the block we are looking for a duplicate of.
945 /// \param OutputStoreBBs [in] The existing output blocks.
946 /// \returns an optional value with the number output block if there is a match.
947 Optional<unsigned>
findDuplicateOutputBlock(BasicBlock * OutputBB,ArrayRef<BasicBlock * > OutputStoreBBs)948 findDuplicateOutputBlock(BasicBlock *OutputBB,
949                          ArrayRef<BasicBlock *> OutputStoreBBs) {
950 
951   bool WrongInst = false;
952   bool WrongSize = false;
953   unsigned MatchingNum = 0;
954   for (BasicBlock *CompBB : OutputStoreBBs) {
955     WrongInst = false;
956     if (CompBB->size() - 1 != OutputBB->size()) {
957       WrongSize = true;
958       MatchingNum++;
959       continue;
960     }
961 
962     WrongSize = false;
963     BasicBlock::iterator NIt = OutputBB->begin();
964     for (Instruction &I : *CompBB) {
965       if (isa<BranchInst>(&I))
966         continue;
967 
968       if (!I.isIdenticalTo(&(*NIt))) {
969         WrongInst = true;
970         break;
971       }
972 
973       NIt++;
974     }
975     if (!WrongInst && !WrongSize)
976       return MatchingNum;
977 
978     MatchingNum++;
979   }
980 
981   return None;
982 }
983 
984 /// For the outlined section, move needed the StoreInsts for the output
985 /// registers into their own block. Then, determine if there is a duplicate
986 /// output block already created.
987 ///
988 /// \param [in] OG - The OutlinableGroup of regions to be outlined.
989 /// \param [in] Region - The OutlinableRegion that is being analyzed.
990 /// \param [in,out] OutputBB - the block that stores for this region will be
991 /// placed in.
992 /// \param [in] EndBB - the final block of the extracted function.
993 /// \param [in] OutputMappings - OutputMappings the mapping of values that have
994 /// been replaced by a new output value.
995 /// \param [in,out] OutputStoreBBs - The existing output blocks.
996 static void
alignOutputBlockWithAggFunc(OutlinableGroup & OG,OutlinableRegion & Region,BasicBlock * OutputBB,BasicBlock * EndBB,const DenseMap<Value *,Value * > & OutputMappings,std::vector<BasicBlock * > & OutputStoreBBs)997 alignOutputBlockWithAggFunc(OutlinableGroup &OG, OutlinableRegion &Region,
998                             BasicBlock *OutputBB, BasicBlock *EndBB,
999                             const DenseMap<Value *, Value *> &OutputMappings,
1000                             std::vector<BasicBlock *> &OutputStoreBBs) {
1001   DenseSet<unsigned> ValuesToFind(Region.GVNStores.begin(),
1002                                   Region.GVNStores.end());
1003 
1004   // We iterate over the instructions in the extracted function, and find the
1005   // global value number of the instructions.  If we find a value that should
1006   // be contained in a store, we replace the uses of the value with the value
1007   // from the overall function, so that the store is storing the correct
1008   // value from the overall function.
1009   DenseSet<BasicBlock *> ExcludeBBs(OutputStoreBBs.begin(),
1010                                     OutputStoreBBs.end());
1011   ExcludeBBs.insert(OutputBB);
1012   std::vector<Instruction *> ExtractedFunctionInsts =
1013       collectRelevantInstructions(*(Region.ExtractedFunction), ExcludeBBs);
1014   std::vector<Instruction *> OverallFunctionInsts =
1015       collectRelevantInstructions(*OG.OutlinedFunction, ExcludeBBs);
1016 
1017   assert(ExtractedFunctionInsts.size() == OverallFunctionInsts.size() &&
1018          "Number of relevant instructions not equal!");
1019 
1020   unsigned NumInstructions = ExtractedFunctionInsts.size();
1021   for (unsigned Idx = 0; Idx < NumInstructions; Idx++) {
1022     Value *V = ExtractedFunctionInsts[Idx];
1023 
1024     if (OutputMappings.find(V) != OutputMappings.end())
1025       V = OutputMappings.find(V)->second;
1026     Optional<unsigned> GVN = Region.Candidate->getGVN(V);
1027 
1028     // If we have found one of the stored values for output, replace the value
1029     // with the corresponding one from the overall function.
1030     if (GVN.hasValue() && ValuesToFind.erase(GVN.getValue())) {
1031       V->replaceAllUsesWith(OverallFunctionInsts[Idx]);
1032       if (ValuesToFind.size() == 0)
1033         break;
1034     }
1035 
1036     if (ValuesToFind.size() == 0)
1037       break;
1038   }
1039 
1040   assert(ValuesToFind.size() == 0 && "Not all store values were handled!");
1041 
1042   // If the size of the block is 0, then there are no stores, and we do not
1043   // need to save this block.
1044   if (OutputBB->size() == 0) {
1045     Region.OutputBlockNum = -1;
1046     OutputBB->eraseFromParent();
1047     return;
1048   }
1049 
1050   // Determine is there is a duplicate block.
1051   Optional<unsigned> MatchingBB =
1052       findDuplicateOutputBlock(OutputBB, OutputStoreBBs);
1053 
1054   // If there is, we remove the new output block.  If it does not,
1055   // we add it to our list of output blocks.
1056   if (MatchingBB.hasValue()) {
1057     LLVM_DEBUG(dbgs() << "Set output block for region in function"
1058                       << Region.ExtractedFunction << " to "
1059                       << MatchingBB.getValue());
1060 
1061     Region.OutputBlockNum = MatchingBB.getValue();
1062     OutputBB->eraseFromParent();
1063     return;
1064   }
1065 
1066   Region.OutputBlockNum = OutputStoreBBs.size();
1067 
1068   LLVM_DEBUG(dbgs() << "Create output block for region in"
1069                     << Region.ExtractedFunction << " to "
1070                     << *OutputBB);
1071   OutputStoreBBs.push_back(OutputBB);
1072   BranchInst::Create(EndBB, OutputBB);
1073 }
1074 
1075 /// Create the switch statement for outlined function to differentiate between
1076 /// all the output blocks.
1077 ///
1078 /// For the outlined section, determine if an outlined block already exists that
1079 /// matches the needed stores for the extracted section.
1080 /// \param [in] M - The module we are outlining from.
1081 /// \param [in] OG - The group of regions to be outlined.
1082 /// \param [in] EndBB - The final block of the extracted function.
1083 /// \param [in,out] OutputStoreBBs - The existing output blocks.
createSwitchStatement(Module & M,OutlinableGroup & OG,BasicBlock * EndBB,ArrayRef<BasicBlock * > OutputStoreBBs)1084 void createSwitchStatement(Module &M, OutlinableGroup &OG, BasicBlock *EndBB,
1085                            ArrayRef<BasicBlock *> OutputStoreBBs) {
1086   // We only need the switch statement if there is more than one store
1087   // combination.
1088   if (OG.OutputGVNCombinations.size() > 1) {
1089     Function *AggFunc = OG.OutlinedFunction;
1090     // Create a final block
1091     BasicBlock *ReturnBlock =
1092         BasicBlock::Create(M.getContext(), "final_block", AggFunc);
1093     Instruction *Term = EndBB->getTerminator();
1094     Term->moveBefore(*ReturnBlock, ReturnBlock->end());
1095     // Put the switch statement in the old end basic block for the function with
1096     // a fall through to the new return block
1097     LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
1098                       << OutputStoreBBs.size() << "\n");
1099     SwitchInst *SwitchI =
1100         SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
1101                            ReturnBlock, OutputStoreBBs.size(), EndBB);
1102 
1103     unsigned Idx = 0;
1104     for (BasicBlock *BB : OutputStoreBBs) {
1105       SwitchI->addCase(ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx),
1106                        BB);
1107       Term = BB->getTerminator();
1108       Term->setSuccessor(0, ReturnBlock);
1109       Idx++;
1110     }
1111     return;
1112   }
1113 
1114   // If there needs to be stores, move them from the output block to the end
1115   // block to save on branching instructions.
1116   if (OutputStoreBBs.size() == 1) {
1117     LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
1118                       << *OG.OutlinedFunction << "\n");
1119     BasicBlock *OutputBlock = OutputStoreBBs[0];
1120     Instruction *Term = OutputBlock->getTerminator();
1121     Term->eraseFromParent();
1122     Term = EndBB->getTerminator();
1123     moveBBContents(*OutputBlock, *EndBB);
1124     Term->moveBefore(*EndBB, EndBB->end());
1125     OutputBlock->eraseFromParent();
1126   }
1127 }
1128 
1129 /// Fill the new function that will serve as the replacement function for all of
1130 /// the extracted regions of a certain structure from the first region in the
1131 /// list of regions.  Replace this first region's extracted function with the
1132 /// new overall function.
1133 ///
1134 /// \param [in] M - The module we are outlining from.
1135 /// \param [in] CurrentGroup - The group of regions to be outlined.
1136 /// \param [in,out] OutputStoreBBs - The output blocks for each different
1137 /// set of stores needed for the different functions.
1138 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module
1139 /// once outlining is complete.
fillOverallFunction(Module & M,OutlinableGroup & CurrentGroup,std::vector<BasicBlock * > & OutputStoreBBs,std::vector<Function * > & FuncsToRemove)1140 static void fillOverallFunction(Module &M, OutlinableGroup &CurrentGroup,
1141                                 std::vector<BasicBlock *> &OutputStoreBBs,
1142                                 std::vector<Function *> &FuncsToRemove) {
1143   OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
1144 
1145   // Move first extracted function's instructions into new function.
1146   LLVM_DEBUG(dbgs() << "Move instructions from "
1147                     << *CurrentOS->ExtractedFunction << " to instruction "
1148                     << *CurrentGroup.OutlinedFunction << "\n");
1149 
1150   CurrentGroup.EndBB = moveFunctionData(*CurrentOS->ExtractedFunction,
1151                                         *CurrentGroup.OutlinedFunction);
1152 
1153   // Transfer the attributes from the function to the new function.
1154   for (Attribute A :
1155        CurrentOS->ExtractedFunction->getAttributes().getFnAttributes())
1156     CurrentGroup.OutlinedFunction->addFnAttr(A);
1157 
1158   // Create an output block for the first extracted function.
1159   BasicBlock *NewBB = BasicBlock::Create(
1160       M.getContext(), Twine("output_block_") + Twine(static_cast<unsigned>(0)),
1161       CurrentGroup.OutlinedFunction);
1162   CurrentOS->OutputBlockNum = 0;
1163 
1164   replaceArgumentUses(*CurrentOS, NewBB);
1165   replaceConstants(*CurrentOS);
1166 
1167   // If the new basic block has no new stores, we can erase it from the module.
1168   // It it does, we create a branch instruction to the last basic block from the
1169   // new one.
1170   if (NewBB->size() == 0) {
1171     CurrentOS->OutputBlockNum = -1;
1172     NewBB->eraseFromParent();
1173   } else {
1174     BranchInst::Create(CurrentGroup.EndBB, NewBB);
1175     OutputStoreBBs.push_back(NewBB);
1176   }
1177 
1178   // Replace the call to the extracted function with the outlined function.
1179   CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
1180 
1181   // We only delete the extracted functions at the end since we may need to
1182   // reference instructions contained in them for mapping purposes.
1183   FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
1184 }
1185 
deduplicateExtractedSections(Module & M,OutlinableGroup & CurrentGroup,std::vector<Function * > & FuncsToRemove,unsigned & OutlinedFunctionNum)1186 void IROutliner::deduplicateExtractedSections(
1187     Module &M, OutlinableGroup &CurrentGroup,
1188     std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
1189   createFunction(M, CurrentGroup, OutlinedFunctionNum);
1190 
1191   std::vector<BasicBlock *> OutputStoreBBs;
1192 
1193   OutlinableRegion *CurrentOS;
1194 
1195   fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove);
1196 
1197   for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
1198     CurrentOS = CurrentGroup.Regions[Idx];
1199     AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
1200                                                *CurrentOS->ExtractedFunction);
1201 
1202     // Create a new BasicBlock to hold the needed store instructions.
1203     BasicBlock *NewBB = BasicBlock::Create(
1204         M.getContext(), "output_block_" + std::to_string(Idx),
1205         CurrentGroup.OutlinedFunction);
1206     replaceArgumentUses(*CurrentOS, NewBB);
1207 
1208     alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBB,
1209                                 CurrentGroup.EndBB, OutputMappings,
1210                                 OutputStoreBBs);
1211 
1212     CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
1213     FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
1214   }
1215 
1216   // Create a switch statement to handle the different output schemes.
1217   createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBB, OutputStoreBBs);
1218 
1219   OutlinedFunctionNum++;
1220 }
1221 
pruneIncompatibleRegions(std::vector<IRSimilarityCandidate> & CandidateVec,OutlinableGroup & CurrentGroup)1222 void IROutliner::pruneIncompatibleRegions(
1223     std::vector<IRSimilarityCandidate> &CandidateVec,
1224     OutlinableGroup &CurrentGroup) {
1225   bool PreviouslyOutlined;
1226 
1227   // Sort from beginning to end, so the IRSimilarityCandidates are in order.
1228   stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
1229                                const IRSimilarityCandidate &RHS) {
1230     return LHS.getStartIdx() < RHS.getStartIdx();
1231   });
1232 
1233   unsigned CurrentEndIdx = 0;
1234   for (IRSimilarityCandidate &IRSC : CandidateVec) {
1235     PreviouslyOutlined = false;
1236     unsigned StartIdx = IRSC.getStartIdx();
1237     unsigned EndIdx = IRSC.getEndIdx();
1238 
1239     for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
1240       if (Outlined.contains(Idx)) {
1241         PreviouslyOutlined = true;
1242         break;
1243       }
1244 
1245     if (PreviouslyOutlined)
1246       continue;
1247 
1248     // TODO: If in the future we can outline across BasicBlocks, we will need to
1249     // check all BasicBlocks contained in the region.
1250     if (IRSC.getStartBB()->hasAddressTaken())
1251       continue;
1252 
1253     if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
1254         !OutlineFromLinkODRs)
1255       continue;
1256 
1257     // Greedily prune out any regions that will overlap with already chosen
1258     // regions.
1259     if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
1260       continue;
1261 
1262     bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
1263       // We check if there is a discrepancy between the InstructionDataList
1264       // and the actual next instruction in the module.  If there is, it means
1265       // that an extra instruction was added, likely by the CodeExtractor.
1266 
1267       // Since we do not have any similarity data about this particular
1268       // instruction, we cannot confidently outline it, and must discard this
1269       // candidate.
1270       if (std::next(ID.getIterator())->Inst !=
1271           ID.Inst->getNextNonDebugInstruction())
1272         return true;
1273       return !this->InstructionClassifier.visit(ID.Inst);
1274     });
1275 
1276     if (BadInst)
1277       continue;
1278 
1279     OutlinableRegion *OS = new (RegionAllocator.Allocate())
1280         OutlinableRegion(IRSC, CurrentGroup);
1281     CurrentGroup.Regions.push_back(OS);
1282 
1283     CurrentEndIdx = EndIdx;
1284   }
1285 }
1286 
1287 InstructionCost
findBenefitFromAllRegions(OutlinableGroup & CurrentGroup)1288 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
1289   InstructionCost RegionBenefit = 0;
1290   for (OutlinableRegion *Region : CurrentGroup.Regions) {
1291     TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
1292     // We add the number of instructions in the region to the benefit as an
1293     // estimate as to how much will be removed.
1294     RegionBenefit += Region->getBenefit(TTI);
1295     LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
1296                       << " saved instructions to overfall benefit.\n");
1297   }
1298 
1299   return RegionBenefit;
1300 }
1301 
1302 InstructionCost
findCostOutputReloads(OutlinableGroup & CurrentGroup)1303 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
1304   InstructionCost OverallCost = 0;
1305   for (OutlinableRegion *Region : CurrentGroup.Regions) {
1306     TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
1307 
1308     // Each output incurs a load after the call, so we add that to the cost.
1309     for (unsigned OutputGVN : Region->GVNStores) {
1310       Optional<Value *> OV = Region->Candidate->fromGVN(OutputGVN);
1311       assert(OV.hasValue() && "Could not find value for GVN?");
1312       Value *V = OV.getValue();
1313       InstructionCost LoadCost =
1314           TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
1315                               TargetTransformInfo::TCK_CodeSize);
1316 
1317       LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
1318                         << " instructions to cost for output of type "
1319                         << *V->getType() << "\n");
1320       OverallCost += LoadCost;
1321     }
1322   }
1323 
1324   return OverallCost;
1325 }
1326 
1327 /// Find the extra instructions needed to handle any output values for the
1328 /// region.
1329 ///
1330 /// \param [in] M - The Module to outline from.
1331 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
1332 /// \param [in] TTI - The TargetTransformInfo used to collect information for
1333 /// new instruction costs.
1334 /// \returns the additional cost to handle the outputs.
findCostForOutputBlocks(Module & M,OutlinableGroup & CurrentGroup,TargetTransformInfo & TTI)1335 static InstructionCost findCostForOutputBlocks(Module &M,
1336                                                OutlinableGroup &CurrentGroup,
1337                                                TargetTransformInfo &TTI) {
1338   InstructionCost OutputCost = 0;
1339 
1340   for (const ArrayRef<unsigned> &OutputUse :
1341        CurrentGroup.OutputGVNCombinations) {
1342     IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
1343     for (unsigned GVN : OutputUse) {
1344       Optional<Value *> OV = Candidate.fromGVN(GVN);
1345       assert(OV.hasValue() && "Could not find value for GVN?");
1346       Value *V = OV.getValue();
1347       InstructionCost StoreCost =
1348           TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
1349                               TargetTransformInfo::TCK_CodeSize);
1350 
1351       // An instruction cost is added for each store set that needs to occur for
1352       // various output combinations inside the function, plus a branch to
1353       // return to the exit block.
1354       LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
1355                         << " instructions to cost for output of type "
1356                         << *V->getType() << "\n");
1357       OutputCost += StoreCost;
1358     }
1359 
1360     InstructionCost BranchCost =
1361         TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
1362     LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
1363                       << " a branch instruction\n");
1364     OutputCost += BranchCost;
1365   }
1366 
1367   // If there is more than one output scheme, we must have a comparison and
1368   // branch for each different item in the switch statement.
1369   if (CurrentGroup.OutputGVNCombinations.size() > 1) {
1370     InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
1371         Instruction::ICmp, Type::getInt32Ty(M.getContext()),
1372         Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
1373         TargetTransformInfo::TCK_CodeSize);
1374     InstructionCost BranchCost =
1375         TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
1376 
1377     unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
1378     InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
1379 
1380     LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
1381                       << " instructions for each switch case for each different"
1382                       << " output path in a function\n");
1383     OutputCost += TotalCost;
1384   }
1385 
1386   return OutputCost;
1387 }
1388 
findCostBenefit(Module & M,OutlinableGroup & CurrentGroup)1389 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
1390   InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
1391   CurrentGroup.Benefit += RegionBenefit;
1392   LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
1393 
1394   InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
1395   CurrentGroup.Cost += OutputReloadCost;
1396   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
1397 
1398   InstructionCost AverageRegionBenefit =
1399       RegionBenefit / CurrentGroup.Regions.size();
1400   unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
1401   unsigned NumRegions = CurrentGroup.Regions.size();
1402   TargetTransformInfo &TTI =
1403       getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
1404 
1405   // We add one region to the cost once, to account for the instructions added
1406   // inside of the newly created function.
1407   LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
1408                     << " instructions to cost for body of new function.\n");
1409   CurrentGroup.Cost += AverageRegionBenefit;
1410   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
1411 
1412   // For each argument, we must add an instruction for loading the argument
1413   // out of the register and into a value inside of the newly outlined function.
1414   LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
1415                     << " instructions to cost for each argument in the new"
1416                     << " function.\n");
1417   CurrentGroup.Cost +=
1418       OverallArgumentNum * TargetTransformInfo::TCC_Basic;
1419   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
1420 
1421   // Each argument needs to either be loaded into a register or onto the stack.
1422   // Some arguments will only be loaded into the stack once the argument
1423   // registers are filled.
1424   LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
1425                     << " instructions to cost for each argument in the new"
1426                     << " function " << NumRegions << " times for the "
1427                     << "needed argument handling at the call site.\n");
1428   CurrentGroup.Cost +=
1429       2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
1430   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
1431 
1432   CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
1433   LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
1434 }
1435 
updateOutputMapping(OutlinableRegion & Region,ArrayRef<Value * > Outputs,LoadInst * LI)1436 void IROutliner::updateOutputMapping(OutlinableRegion &Region,
1437                                      ArrayRef<Value *> Outputs,
1438                                      LoadInst *LI) {
1439   // For and load instructions following the call
1440   Value *Operand = LI->getPointerOperand();
1441   Optional<unsigned> OutputIdx = None;
1442   // Find if the operand it is an output register.
1443   for (unsigned ArgIdx = Region.NumExtractedInputs;
1444        ArgIdx < Region.Call->arg_size(); ArgIdx++) {
1445     if (Operand == Region.Call->getArgOperand(ArgIdx)) {
1446       OutputIdx = ArgIdx - Region.NumExtractedInputs;
1447       break;
1448     }
1449   }
1450 
1451   // If we found an output register, place a mapping of the new value
1452   // to the original in the mapping.
1453   if (!OutputIdx.hasValue())
1454     return;
1455 
1456   if (OutputMappings.find(Outputs[OutputIdx.getValue()]) ==
1457       OutputMappings.end()) {
1458     LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
1459                       << *Outputs[OutputIdx.getValue()] << "\n");
1460     OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()]));
1461   } else {
1462     Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second;
1463     LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
1464                       << *Outputs[OutputIdx.getValue()] << "\n");
1465     OutputMappings.insert(std::make_pair(LI, Orig));
1466   }
1467 }
1468 
extractSection(OutlinableRegion & Region)1469 bool IROutliner::extractSection(OutlinableRegion &Region) {
1470   SetVector<Value *> ArgInputs, Outputs, SinkCands;
1471   Region.CE->findInputsOutputs(ArgInputs, Outputs, SinkCands);
1472 
1473   assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
1474   assert(Region.FollowBB && "FollowBB for the OutlinableRegion is nullptr!");
1475   Function *OrigF = Region.StartBB->getParent();
1476   CodeExtractorAnalysisCache CEAC(*OrigF);
1477   Region.ExtractedFunction = Region.CE->extractCodeRegion(CEAC);
1478 
1479   // If the extraction was successful, find the BasicBlock, and reassign the
1480   // OutlinableRegion blocks
1481   if (!Region.ExtractedFunction) {
1482     LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
1483                       << "\n");
1484     Region.reattachCandidate();
1485     return false;
1486   }
1487 
1488   BasicBlock *RewrittenBB = Region.FollowBB->getSinglePredecessor();
1489   Region.StartBB = RewrittenBB;
1490   Region.EndBB = RewrittenBB;
1491 
1492   // The sequences of outlinable regions has now changed.  We must fix the
1493   // IRInstructionDataList for consistency.  Although they may not be illegal
1494   // instructions, they should not be compared with anything else as they
1495   // should not be outlined in this round.  So marking these as illegal is
1496   // allowed.
1497   IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
1498   Instruction *BeginRewritten = &*RewrittenBB->begin();
1499   Instruction *EndRewritten = &*RewrittenBB->begin();
1500   Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
1501       *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
1502   Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
1503       *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
1504 
1505   // Insert the first IRInstructionData of the new region in front of the
1506   // first IRInstructionData of the IRSimilarityCandidate.
1507   IDL->insert(Region.Candidate->begin(), *Region.NewFront);
1508   // Insert the first IRInstructionData of the new region after the
1509   // last IRInstructionData of the IRSimilarityCandidate.
1510   IDL->insert(Region.Candidate->end(), *Region.NewBack);
1511   // Remove the IRInstructionData from the IRSimilarityCandidate.
1512   IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
1513 
1514   assert(RewrittenBB != nullptr &&
1515          "Could not find a predecessor after extraction!");
1516 
1517   // Iterate over the new set of instructions to find the new call
1518   // instruction.
1519   for (Instruction &I : *RewrittenBB)
1520     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1521       if (Region.ExtractedFunction == CI->getCalledFunction())
1522         Region.Call = CI;
1523     } else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
1524       updateOutputMapping(Region, Outputs.getArrayRef(), LI);
1525   Region.reattachCandidate();
1526   return true;
1527 }
1528 
doOutline(Module & M)1529 unsigned IROutliner::doOutline(Module &M) {
1530   // Find the possible similarity sections.
1531   IRSimilarityIdentifier &Identifier = getIRSI(M);
1532   SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
1533 
1534   // Sort them by size of extracted sections
1535   unsigned OutlinedFunctionNum = 0;
1536   // If we only have one SimilarityGroup in SimilarityCandidates, we do not have
1537   // to sort them by the potential number of instructions to be outlined
1538   if (SimilarityCandidates.size() > 1)
1539     llvm::stable_sort(SimilarityCandidates,
1540                       [](const std::vector<IRSimilarityCandidate> &LHS,
1541                          const std::vector<IRSimilarityCandidate> &RHS) {
1542                         return LHS[0].getLength() * LHS.size() >
1543                                RHS[0].getLength() * RHS.size();
1544                       });
1545 
1546   DenseSet<unsigned> NotSame;
1547   std::vector<Function *> FuncsToRemove;
1548   // Iterate over the possible sets of similarity.
1549   for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
1550     OutlinableGroup CurrentGroup;
1551 
1552     // Remove entries that were previously outlined
1553     pruneIncompatibleRegions(CandidateVec, CurrentGroup);
1554 
1555     // We pruned the number of regions to 0 to 1, meaning that it's not worth
1556     // trying to outlined since there is no compatible similar instance of this
1557     // code.
1558     if (CurrentGroup.Regions.size() < 2)
1559       continue;
1560 
1561     // Determine if there are any values that are the same constant throughout
1562     // each section in the set.
1563     NotSame.clear();
1564     CurrentGroup.findSameConstants(NotSame);
1565 
1566     if (CurrentGroup.IgnoreGroup)
1567       continue;
1568 
1569     // Create a CodeExtractor for each outlinable region. Identify inputs and
1570     // outputs for each section using the code extractor and create the argument
1571     // types for the Aggregate Outlining Function.
1572     std::vector<OutlinableRegion *> OutlinedRegions;
1573     for (OutlinableRegion *OS : CurrentGroup.Regions) {
1574       // Break the outlinable region out of its parent BasicBlock into its own
1575       // BasicBlocks (see function implementation).
1576       OS->splitCandidate();
1577       std::vector<BasicBlock *> BE = {OS->StartBB};
1578       OS->CE = new (ExtractorAllocator.Allocate())
1579           CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
1580                         false, "outlined");
1581       findAddInputsOutputs(M, *OS, NotSame);
1582       if (!OS->IgnoreRegion)
1583         OutlinedRegions.push_back(OS);
1584       else
1585         OS->reattachCandidate();
1586     }
1587 
1588     CurrentGroup.Regions = std::move(OutlinedRegions);
1589 
1590     if (CurrentGroup.Regions.empty())
1591       continue;
1592 
1593     CurrentGroup.collectGVNStoreSets(M);
1594 
1595     if (CostModel)
1596       findCostBenefit(M, CurrentGroup);
1597 
1598     // If we are adhering to the cost model, reattach all the candidates
1599     if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
1600       for (OutlinableRegion *OS : CurrentGroup.Regions)
1601         OS->reattachCandidate();
1602       OptimizationRemarkEmitter &ORE = getORE(
1603           *CurrentGroup.Regions[0]->Candidate->getFunction());
1604       ORE.emit([&]() {
1605         IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
1606         OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
1607                                    C->frontInstruction());
1608         R << "did not outline "
1609           << ore::NV(std::to_string(CurrentGroup.Regions.size()))
1610           << " regions due to estimated increase of "
1611           << ore::NV("InstructionIncrease",
1612                      CurrentGroup.Cost - CurrentGroup.Benefit)
1613           << " instructions at locations ";
1614         interleave(
1615             CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
1616             [&R](OutlinableRegion *Region) {
1617               R << ore::NV(
1618                   "DebugLoc",
1619                   Region->Candidate->frontInstruction()->getDebugLoc());
1620             },
1621             [&R]() { R << " "; });
1622         return R;
1623       });
1624       continue;
1625     }
1626 
1627     LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
1628                       << " and benefit " << CurrentGroup.Benefit << "\n");
1629 
1630     // Create functions out of all the sections, and mark them as outlined.
1631     OutlinedRegions.clear();
1632     for (OutlinableRegion *OS : CurrentGroup.Regions) {
1633       bool FunctionOutlined = extractSection(*OS);
1634       if (FunctionOutlined) {
1635         unsigned StartIdx = OS->Candidate->getStartIdx();
1636         unsigned EndIdx = OS->Candidate->getEndIdx();
1637         for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
1638           Outlined.insert(Idx);
1639 
1640         OutlinedRegions.push_back(OS);
1641       }
1642     }
1643 
1644     LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
1645                       << " with benefit " << CurrentGroup.Benefit
1646                       << " and cost " << CurrentGroup.Cost << "\n");
1647 
1648     CurrentGroup.Regions = std::move(OutlinedRegions);
1649 
1650     if (CurrentGroup.Regions.empty())
1651       continue;
1652 
1653     OptimizationRemarkEmitter &ORE =
1654         getORE(*CurrentGroup.Regions[0]->Call->getFunction());
1655     ORE.emit([&]() {
1656       IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
1657       OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
1658       R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
1659         << " regions with decrease of "
1660         << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
1661         << " instructions at locations ";
1662       interleave(
1663           CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
1664           [&R](OutlinableRegion *Region) {
1665             R << ore::NV("DebugLoc",
1666                          Region->Candidate->frontInstruction()->getDebugLoc());
1667           },
1668           [&R]() { R << " "; });
1669       return R;
1670     });
1671 
1672     deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
1673                                  OutlinedFunctionNum);
1674   }
1675 
1676   for (Function *F : FuncsToRemove)
1677     F->eraseFromParent();
1678 
1679   return OutlinedFunctionNum;
1680 }
1681 
run(Module & M)1682 bool IROutliner::run(Module &M) {
1683   CostModel = !NoCostModel;
1684   OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
1685 
1686   return doOutline(M) > 0;
1687 }
1688 
1689 // Pass Manager Boilerplate
1690 class IROutlinerLegacyPass : public ModulePass {
1691 public:
1692   static char ID;
IROutlinerLegacyPass()1693   IROutlinerLegacyPass() : ModulePass(ID) {
1694     initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry());
1695   }
1696 
getAnalysisUsage(AnalysisUsage & AU) const1697   void getAnalysisUsage(AnalysisUsage &AU) const override {
1698     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1699     AU.addRequired<TargetTransformInfoWrapperPass>();
1700     AU.addRequired<IRSimilarityIdentifierWrapperPass>();
1701   }
1702 
1703   bool runOnModule(Module &M) override;
1704 };
1705 
runOnModule(Module & M)1706 bool IROutlinerLegacyPass::runOnModule(Module &M) {
1707   if (skipModule(M))
1708     return false;
1709 
1710   std::unique_ptr<OptimizationRemarkEmitter> ORE;
1711   auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & {
1712     ORE.reset(new OptimizationRemarkEmitter(&F));
1713     return *ORE.get();
1714   };
1715 
1716   auto GTTI = [this](Function &F) -> TargetTransformInfo & {
1717     return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1718   };
1719 
1720   auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & {
1721     return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI();
1722   };
1723 
1724   return IROutliner(GTTI, GIRSI, GORE).run(M);
1725 }
1726 
run(Module & M,ModuleAnalysisManager & AM)1727 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
1728   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1729 
1730   std::function<TargetTransformInfo &(Function &)> GTTI =
1731       [&FAM](Function &F) -> TargetTransformInfo & {
1732     return FAM.getResult<TargetIRAnalysis>(F);
1733   };
1734 
1735   std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
1736       [&AM](Module &M) -> IRSimilarityIdentifier & {
1737     return AM.getResult<IRSimilarityAnalysis>(M);
1738   };
1739 
1740   std::unique_ptr<OptimizationRemarkEmitter> ORE;
1741   std::function<OptimizationRemarkEmitter &(Function &)> GORE =
1742       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
1743     ORE.reset(new OptimizationRemarkEmitter(&F));
1744     return *ORE.get();
1745   };
1746 
1747   if (IROutliner(GTTI, GIRSI, GORE).run(M))
1748     return PreservedAnalyses::none();
1749   return PreservedAnalyses::all();
1750 }
1751 
1752 char IROutlinerLegacyPass::ID = 0;
1753 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
1754                       false)
INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass)1755 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass)
1756 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1757 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1758 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
1759                     false)
1760 
1761 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); }
1762