xref: /netbsd-src/sys/ufs/ffs/ffs_vfsops.c (revision 6c65ea480296b6eb2998084ea42d561b40a97c9e)
1 /*	$NetBSD: ffs_vfsops.c,v 1.384 2024/12/30 09:03:07 hannken Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Wasabi Systems, Inc, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1989, 1991, 1993, 1994
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)ffs_vfsops.c	8.31 (Berkeley) 5/20/95
61  */
62 
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.384 2024/12/30 09:03:07 hannken Exp $");
65 
66 #if defined(_KERNEL_OPT)
67 #include "opt_ffs.h"
68 #include "opt_quota.h"
69 #include "opt_wapbl.h"
70 #endif
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/proc.h>
76 #include <sys/kernel.h>
77 #include <sys/vnode.h>
78 #include <sys/fstrans.h>
79 #include <sys/socket.h>
80 #include <sys/mount.h>
81 #include <sys/buf.h>
82 #include <sys/device.h>
83 #include <sys/disk.h>
84 #include <sys/file.h>
85 #include <sys/disklabel.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/kmem.h>
89 #include <sys/pool.h>
90 #include <sys/lock.h>
91 #include <sys/sysctl.h>
92 #include <sys/conf.h>
93 #include <sys/kauth.h>
94 #include <sys/wapbl.h>
95 #include <sys/module.h>
96 
97 #include <miscfs/genfs/genfs.h>
98 #include <miscfs/specfs/specdev.h>
99 
100 #include <ufs/ufs/quota.h>
101 #include <ufs/ufs/ufsmount.h>
102 #include <ufs/ufs/inode.h>
103 #include <ufs/ufs/dir.h>
104 #include <ufs/ufs/ufs_extern.h>
105 #include <ufs/ufs/ufs_bswap.h>
106 #include <ufs/ufs/ufs_wapbl.h>
107 
108 #include <ufs/ffs/fs.h>
109 #include <ufs/ffs/ffs_extern.h>
110 
111 #ifdef WAPBL
112 MODULE(MODULE_CLASS_VFS, ffs, "ufs,wapbl");
113 #else
114 MODULE(MODULE_CLASS_VFS, ffs, "ufs");
115 #endif
116 
117 static int ffs_vfs_fsync(vnode_t *, int);
118 static int ffs_superblock_validate(struct fs *);
119 static int ffs_is_appleufs(struct vnode *, struct fs *);
120 
121 static int ffs_init_vnode(struct ufsmount *, struct vnode *, ino_t);
122 static void ffs_deinit_vnode(struct ufsmount *, struct vnode *);
123 
124 static kauth_listener_t ffs_snapshot_listener;
125 
126 /* how many times ffs_init() was called */
127 int ffs_initcount = 0;
128 
129 #ifdef DEBUG_FFS_MOUNT
130 #define DPRINTF(_fmt, args...)	printf("%s: " _fmt "\n", __func__, ##args)
131 #else
132 #define DPRINTF(_fmt, args...)	do {} while (/*CONSTCOND*/0)
133 #endif
134 
135 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
136 extern const struct vnodeopv_desc ffs_specop_opv_desc;
137 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
138 
139 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
140 	&ffs_vnodeop_opv_desc,
141 	&ffs_specop_opv_desc,
142 	&ffs_fifoop_opv_desc,
143 	NULL,
144 };
145 
146 struct vfsops ffs_vfsops = {
147 	.vfs_name = MOUNT_FFS,
148 	.vfs_min_mount_data = sizeof (struct ufs_args),
149 	.vfs_mount = ffs_mount,
150 	.vfs_start = ufs_start,
151 	.vfs_unmount = ffs_unmount,
152 	.vfs_root = ufs_root,
153 	.vfs_quotactl = ufs_quotactl,
154 	.vfs_statvfs = ffs_statvfs,
155 	.vfs_sync = ffs_sync,
156 	.vfs_vget = ufs_vget,
157 	.vfs_loadvnode = ffs_loadvnode,
158 	.vfs_newvnode = ffs_newvnode,
159 	.vfs_fhtovp = ffs_fhtovp,
160 	.vfs_vptofh = ffs_vptofh,
161 	.vfs_init = ffs_init,
162 	.vfs_reinit = ffs_reinit,
163 	.vfs_done = ffs_done,
164 	.vfs_mountroot = ffs_mountroot,
165 	.vfs_snapshot = ffs_snapshot,
166 	.vfs_extattrctl = ffs_extattrctl,
167 	.vfs_suspendctl = genfs_suspendctl,
168 	.vfs_renamelock_enter = genfs_renamelock_enter,
169 	.vfs_renamelock_exit = genfs_renamelock_exit,
170 	.vfs_fsync = ffs_vfs_fsync,
171 	.vfs_opv_descs = ffs_vnodeopv_descs
172 };
173 
174 static const struct genfs_ops ffs_genfsops = {
175 	.gop_size = ffs_gop_size,
176 	.gop_alloc = ufs_gop_alloc,
177 	.gop_write = genfs_gop_write,
178 	.gop_markupdate = ufs_gop_markupdate,
179 	.gop_putrange = genfs_gop_putrange,
180 };
181 
182 static const struct ufs_ops ffs_ufsops = {
183 	.uo_itimes = ffs_itimes,
184 	.uo_update = ffs_update,
185 	.uo_truncate = ffs_truncate,
186 	.uo_balloc = ffs_balloc,
187 	.uo_snapgone = ffs_snapgone,
188 	.uo_bufrd = ffs_bufrd,
189 	.uo_bufwr = ffs_bufwr,
190 };
191 
192 static int
193 ffs_checkrange(struct mount *mp, ino_t ino)
194 {
195 	struct fs *fs = VFSTOUFS(mp)->um_fs;
196 
197 	if (ino < UFS_ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg) {
198 		DPRINTF("out of range %" PRIu64 "\n", ino);
199 		return ESTALE;
200 	}
201 
202 	/*
203 	 * Need to check if inode is initialized because ffsv2 does
204 	 * lazy initialization and we can get here from nfs_fhtovp
205 	 */
206 	if (fs->fs_magic != FS_UFS2_MAGIC)
207 		return 0;
208 
209 	struct buf *bp;
210 	int cg = ino_to_cg(fs, ino);
211 	struct ufsmount *ump = VFSTOUFS(mp);
212 
213 	int error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
214 	    (int)fs->fs_cgsize, B_MODIFY, &bp);
215 	if (error) {
216 		DPRINTF("error %d reading cg %d ino %" PRIu64 "\n",
217 		    error, cg, ino);
218 		return error;
219 	}
220 
221 	const int needswap = UFS_FSNEEDSWAP(fs);
222 
223 	struct cg *cgp = (struct cg *)bp->b_data;
224 	if (!cg_chkmagic(cgp, needswap)) {
225 		brelse(bp, 0);
226 		DPRINTF("bad cylinder group magic cg %d ino %" PRIu64 "\n",
227 		    cg, ino);
228 		return ESTALE;
229 	}
230 
231 	int32_t initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
232 	brelse(bp, 0);
233 
234 	if (cg * fs->fs_ipg + initediblk < ino) {
235 		DPRINTF("cg=%d fs->fs_ipg=%d initediblk=%d ino=%" PRIu64 "\n",
236 		    cg, fs->fs_ipg, initediblk, ino);
237 		return ESTALE;
238 	}
239 	return 0;
240 }
241 
242 static int
243 ffs_snapshot_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
244     void *arg0, void *arg1, void *arg2, void *arg3)
245 {
246 	vnode_t *vp = arg2;
247 	int result = KAUTH_RESULT_DEFER;
248 
249 	if (action != KAUTH_SYSTEM_FS_SNAPSHOT)
250 		return result;
251 
252 	if (VTOI(vp)->i_uid == kauth_cred_geteuid(cred))
253 		result = KAUTH_RESULT_ALLOW;
254 
255 	return result;
256 }
257 
258 SYSCTL_SETUP(ffs_sysctl_setup, "ffs sysctls")
259 {
260 #ifdef UFS_EXTATTR
261 	extern int ufs_extattr_autocreate;
262 #endif
263 	extern int ffs_log_changeopt;
264 
265 	sysctl_createv(clog, 0, NULL, NULL,
266 		       CTLFLAG_PERMANENT,
267 		       CTLTYPE_NODE, "ffs",
268 		       SYSCTL_DESCR("Berkeley Fast File System"),
269 		       NULL, 0, NULL, 0,
270 		       CTL_VFS, 1, CTL_EOL);
271 	/*
272 	 * @@@ should we even bother with these first three?
273 	 */
274 	sysctl_createv(clog, 0, NULL, NULL,
275 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
276 		       CTLTYPE_INT, "doclusterread", NULL,
277 		       sysctl_notavail, 0, NULL, 0,
278 		       CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
279 	sysctl_createv(clog, 0, NULL, NULL,
280 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
281 		       CTLTYPE_INT, "doclusterwrite", NULL,
282 		       sysctl_notavail, 0, NULL, 0,
283 		       CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
284 	sysctl_createv(clog, 0, NULL, NULL,
285 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
286 		       CTLTYPE_INT, "doreallocblks", NULL,
287 		       sysctl_notavail, 0, NULL, 0,
288 		       CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
289 #if 0
290 	sysctl_createv(clog, 0, NULL, NULL,
291 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
292 		       CTLTYPE_INT, "doasyncfree",
293 		       SYSCTL_DESCR("Release dirty blocks asynchronously"),
294 		       NULL, 0, &doasyncfree, 0,
295 		       CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
296 #endif
297 	sysctl_createv(clog, 0, NULL, NULL,
298 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
299 		       CTLTYPE_INT, "log_changeopt",
300 		       SYSCTL_DESCR("Log changes in optimization strategy"),
301 		       NULL, 0, &ffs_log_changeopt, 0,
302 		       CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
303 #ifdef UFS_EXTATTR
304 	sysctl_createv(clog, 0, NULL, NULL,
305 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
306 		       CTLTYPE_INT, "extattr_autocreate",
307 		       SYSCTL_DESCR("Size of attribute for "
308 				    "backing file autocreation"),
309 		       NULL, 0, &ufs_extattr_autocreate, 0,
310 		       CTL_VFS, 1, FFS_EXTATTR_AUTOCREATE, CTL_EOL);
311 
312 #endif /* UFS_EXTATTR */
313 }
314 
315 static int
316 ffs_modcmd(modcmd_t cmd, void *arg)
317 {
318 	int error;
319 
320 #if 0
321 	extern int doasyncfree;
322 #endif
323 
324 	switch (cmd) {
325 	case MODULE_CMD_INIT:
326 		error = vfs_attach(&ffs_vfsops);
327 		if (error != 0)
328 			break;
329 
330 		ffs_snapshot_listener = kauth_listen_scope(KAUTH_SCOPE_SYSTEM,
331 		    ffs_snapshot_cb, NULL);
332 		if (ffs_snapshot_listener == NULL)
333 			printf("ffs_modcmd: can't listen on system scope.\n");
334 
335 		break;
336 	case MODULE_CMD_FINI:
337 		error = vfs_detach(&ffs_vfsops);
338 		if (error != 0)
339 			break;
340 		if (ffs_snapshot_listener != NULL)
341 			kauth_unlisten_scope(ffs_snapshot_listener);
342 		break;
343 	default:
344 		error = ENOTTY;
345 		break;
346 	}
347 
348 	return (error);
349 }
350 
351 pool_cache_t ffs_inode_cache;
352 pool_cache_t ffs_dinode1_cache;
353 pool_cache_t ffs_dinode2_cache;
354 
355 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
356 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
357 
358 /*
359  * Called by main() when ffs is going to be mounted as root.
360  */
361 
362 int
363 ffs_mountroot(void)
364 {
365 	struct fs *fs;
366 	struct mount *mp;
367 	struct lwp *l = curlwp;			/* XXX */
368 	struct ufsmount *ump;
369 	int error;
370 
371 	if (device_class(root_device) != DV_DISK)
372 		return (ENODEV);
373 
374 	if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
375 		vrele(rootvp);
376 		return (error);
377 	}
378 
379 	/*
380 	 * We always need to be able to mount the root file system.
381 	 */
382 	mp->mnt_flag |= MNT_FORCE;
383 	if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
384 		vfs_unbusy(mp);
385 		vfs_rele(mp);
386 		return (error);
387 	}
388 	mp->mnt_flag &= ~MNT_FORCE;
389 	mountlist_append(mp);
390 	ump = VFSTOUFS(mp);
391 	fs = ump->um_fs;
392 	memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
393 	(void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
394 	(void)ffs_statvfs(mp, &mp->mnt_stat);
395 	vfs_unbusy(mp);
396 	setrootfstime((time_t)fs->fs_time);
397 	return (0);
398 }
399 
400 static int
401 ffs_acls(struct mount *mp, int fs_flags)
402 {
403 	struct ufsmount *ump;
404 
405 	ump = VFSTOUFS(mp);
406 	if (ump->um_fstype == UFS2 && (ump->um_flags & UFS_EA) == 0 &&
407 	    ((mp->mnt_flag & (MNT_POSIX1EACLS | MNT_NFS4ACLS)) != 0 ||
408 	     (fs_flags & (FS_POSIX1EACLS | FS_NFS4ACLS)) != 0)) {
409 		printf("%s: ACLs requested but not supported by this fs\n",
410 		       mp->mnt_stat.f_mntonname);
411 		return EINVAL;
412 	}
413 
414 	if ((fs_flags & FS_POSIX1EACLS) != 0) {
415 #ifdef UFS_ACL
416 		if (mp->mnt_flag & MNT_NFS4ACLS)
417 			printf("WARNING: %s: POSIX.1e ACLs flag on fs conflicts "
418 			    "with \"nfsv4acls\" mount option; option ignored\n",
419 			    mp->mnt_stat.f_mntonname);
420 		mp->mnt_flag &= ~MNT_NFS4ACLS;
421 		mp->mnt_flag |= MNT_POSIX1EACLS;
422 #else
423 		printf("WARNING: %s: POSIX.1e ACLs flag on fs but no "
424 		    "ACLs support\n", mp->mnt_stat.f_mntonname);
425 #endif
426 	}
427 	if ((fs_flags & FS_NFS4ACLS) != 0) {
428 #ifdef UFS_ACL
429 		if (mp->mnt_flag & MNT_POSIX1EACLS)
430 			printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts "
431 			    "with \"posix1eacls\" mount option; option ignored\n",
432 			    mp->mnt_stat.f_mntonname);
433 		mp->mnt_flag &= ~MNT_POSIX1EACLS;
434 		mp->mnt_flag |= MNT_NFS4ACLS;
435 
436 #else
437 		printf("WARNING: %s: NFSv4 ACLs flag on fs but no "
438 		    "ACLs support\n", mp->mnt_stat.f_mntonname);
439 #endif
440 	}
441 	if ((mp->mnt_flag & (MNT_NFS4ACLS | MNT_POSIX1EACLS))
442 	    == (MNT_NFS4ACLS | MNT_POSIX1EACLS))
443 	{
444 		printf("%s: \"posix1eacls\" and \"nfsv4acls\" options "
445 		       "are mutually exclusive\n",
446 		    mp->mnt_stat.f_mntonname);
447 		return EINVAL;
448 	}
449 
450 	if (mp->mnt_flag & (MNT_NFS4ACLS | MNT_POSIX1EACLS))
451 		mp->mnt_iflag &= ~(IMNT_SHRLOOKUP|IMNT_NCLOOKUP);
452 	else
453 		mp->mnt_iflag |= IMNT_SHRLOOKUP|IMNT_NCLOOKUP;
454 	return 0;
455 }
456 
457 /*
458  * VFS Operations.
459  *
460  * mount system call
461  */
462 int
463 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
464 {
465 	struct lwp *l = curlwp;
466 	struct vnode *devvp = NULL;
467 	struct ufs_args *args = data;
468 	struct ufsmount *ump = NULL;
469 	struct fs *fs;
470 	int error = 0, flags, update;
471 	mode_t accessmode;
472 
473 	if (args == NULL) {
474 		DPRINTF("NULL args");
475 		return EINVAL;
476 	}
477 	if (*data_len < sizeof(*args)) {
478 		DPRINTF("bad size args %zu != %zu", *data_len, sizeof(*args));
479 		return EINVAL;
480 	}
481 
482 	ump = VFSTOUFS(mp);
483 	if ((mp->mnt_flag & (MNT_GETARGS|MNT_UPDATE)) && ump == NULL) {
484 		DPRINTF("no ump");
485 		return EIO;
486 	}
487 
488 	if (mp->mnt_flag & MNT_GETARGS) {
489 		args->fspec = NULL;
490 		*data_len = sizeof *args;
491 		return 0;
492 	}
493 
494 	update = mp->mnt_flag & MNT_UPDATE;
495 
496 	/* Check arguments */
497 	if (args->fspec == NULL) {
498 		if (!update) {
499 			/* New mounts must have a filename for the device */
500 			DPRINTF("no filename for mount");
501 			return EINVAL;
502 		}
503 	} else {
504 		/*
505 		 * Look up the name and verify that it's sane.
506 		 */
507 		error = namei_simple_user(args->fspec,
508 		    NSM_FOLLOW_NOEMULROOT, &devvp);
509 		if (error != 0) {
510 			DPRINTF("namei_simple_user returned %d", error);
511 			return error;
512 		}
513 
514 		/*
515 		 * Be sure this is a valid block device
516 		 */
517 		if (devvp->v_type != VBLK) {
518 			DPRINTF("non block device %d", devvp->v_type);
519 			error = ENOTBLK;
520 			goto fail;
521 		}
522 
523 		if (bdevsw_lookup(devvp->v_rdev) == NULL) {
524 			DPRINTF("can't find block device 0x%jx",
525 			    devvp->v_rdev);
526 			error = ENXIO;
527 			goto fail;
528 		}
529 
530 		if (update) {
531 			/*
532 			 * Be sure we're still naming the same device
533 			 * used for our initial mount
534 			 */
535 			if (devvp != ump->um_devvp &&
536 			    devvp->v_rdev != ump->um_devvp->v_rdev) {
537 				DPRINTF("wrong device 0x%jx != 0x%jx",
538 				    (uintmax_t)devvp->v_rdev,
539 				    (uintmax_t)ump->um_devvp->v_rdev);
540 				error = EINVAL;
541 				goto fail;
542 			}
543 			vrele(devvp);
544 			devvp = NULL;
545 		}
546 	}
547 
548 	if (devvp == NULL) {
549 		devvp = ump->um_devvp;
550 		vref(devvp);
551 	}
552 
553 	/*
554 	 * If mount by non-root, then verify that user has necessary
555 	 * permissions on the device.
556 	 *
557 	 * Permission to update a mount is checked higher, so here we presume
558 	 * updating the mount is okay (for example, as far as securelevel goes)
559 	 * which leaves us with the normal check.
560 	 */
561 	accessmode = VREAD;
562 	if (update ? (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
563 	    (mp->mnt_flag & MNT_RDONLY) == 0)
564 		accessmode |= VWRITE;
565 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
566 	error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MOUNT,
567 	    KAUTH_REQ_SYSTEM_MOUNT_DEVICE, mp, devvp, KAUTH_ARG(accessmode));
568 	VOP_UNLOCK(devvp);
569 	if (error) {
570 		DPRINTF("kauth returned %d", error);
571 		goto fail;
572 	}
573 
574 #ifdef WAPBL
575 	/* WAPBL can only be enabled on a r/w mount. */
576 	if (((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) ||
577 	    (mp->mnt_iflag & IMNT_WANTRDONLY)) {
578 		mp->mnt_flag &= ~MNT_LOG;
579 	}
580 #else /* !WAPBL */
581 	mp->mnt_flag &= ~MNT_LOG;
582 #endif /* !WAPBL */
583 
584 	error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
585 	    UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
586 	if (error)
587 		goto fail;
588 
589 	if (!update) {
590 		int xflags;
591 
592 		if (mp->mnt_flag & MNT_RDONLY)
593 			xflags = FREAD;
594 		else
595 			xflags = FREAD | FWRITE;
596 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
597 		error = VOP_OPEN(devvp, xflags, FSCRED);
598 		VOP_UNLOCK(devvp);
599 		if (error) {
600 			DPRINTF("VOP_OPEN returned %d", error);
601 			goto fail;
602 		}
603 		/* Need fstrans_start() for assertion in ufs_strategy(). */
604 		if ((mp->mnt_flag & MNT_RDONLY) == 0)
605 			fstrans_start(mp);
606 		error = ffs_mountfs(devvp, mp, l);
607 		if ((mp->mnt_flag & MNT_RDONLY) == 0)
608 			fstrans_done(mp);
609 		if (error) {
610 			DPRINTF("ffs_mountfs returned %d", error);
611 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
612 			(void)VOP_CLOSE(devvp, xflags, NOCRED);
613 			VOP_UNLOCK(devvp);
614 			goto fail;
615 		}
616 
617 		ump = VFSTOUFS(mp);
618 		fs = ump->um_fs;
619 	} else {
620 		/*
621 		 * Update the mount.  The file system is suspended.
622 		 */
623 		KASSERT(fstrans_is_owner(mp));
624 
625 		/*
626 		 * The initial mount got a reference on this
627 		 * device, so drop the one obtained via
628 		 * namei(), above.
629 		 */
630 		vrele(devvp);
631 
632 		ump = VFSTOUFS(mp);
633 		fs = ump->um_fs;
634 		if (fs->fs_ronly == 0 && (mp->mnt_iflag & IMNT_WANTRDONLY)) {
635 			/*
636 			 * Changing from r/w to r/o
637 			 */
638 			flags = WRITECLOSE;
639 			if (mp->mnt_flag & MNT_FORCE)
640 				flags |= FORCECLOSE;
641 			error = ffs_flushfiles(mp, flags, l);
642 			if (error)
643 				return error;
644 
645 			error = UFS_WAPBL_BEGIN(mp);
646 			if (error) {
647 				DPRINTF("wapbl %d", error);
648 				return error;
649 			}
650 
651 			if (ffs_cgupdate(ump, MNT_WAIT) == 0 &&
652 			    fs->fs_clean & FS_WASCLEAN) {
653 				if (mp->mnt_flag & MNT_SOFTDEP)
654 					fs->fs_flags &= ~FS_DOSOFTDEP;
655 				fs->fs_clean = FS_ISCLEAN;
656 				(void) ffs_sbupdate(ump, MNT_WAIT);
657 			}
658 
659 			UFS_WAPBL_END(mp);
660 		}
661 
662 #ifdef WAPBL
663 		if ((mp->mnt_flag & MNT_LOG) == 0) {
664 			error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
665 			if (error) {
666 				DPRINTF("ffs_wapbl_stop returned %d", error);
667 				return error;
668 			}
669 		}
670 #endif /* WAPBL */
671 
672 		if (fs->fs_ronly == 0 && (mp->mnt_iflag & IMNT_WANTRDONLY)) {
673 			/*
674 			 * Finish change from r/w to r/o
675 			 */
676 			fs->fs_ronly = 1;
677 			fs->fs_fmod = 0;
678 		}
679 
680 		error = ffs_acls(mp, fs->fs_flags);
681 		if (error)
682 			return error;
683 		if (mp->mnt_flag & MNT_RELOAD) {
684 			error = ffs_reload(mp, l->l_cred, l);
685 			if (error) {
686 				DPRINTF("ffs_reload returned %d", error);
687 				return error;
688 			}
689 		}
690 
691 		if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
692 			/*
693 			 * Changing from read-only to read/write
694 			 */
695 #ifndef QUOTA2
696 			if (fs->fs_flags & FS_DOQUOTA2) {
697 				ump->um_flags |= UFS_QUOTA2;
698 				uprintf("%s: options QUOTA2 not enabled%s\n",
699 				    mp->mnt_stat.f_mntonname,
700 				    (mp->mnt_flag & MNT_FORCE) ? "" :
701 				    ", not mounting");
702 				DPRINTF("ffs_quota2 %d", EINVAL);
703 				return EINVAL;
704 			}
705 #endif
706 			fs->fs_ronly = 0;
707 			fs->fs_clean =
708 			    fs->fs_clean == FS_ISCLEAN ? FS_WASCLEAN : 0;
709 			fs->fs_fmod = 1;
710 #ifdef WAPBL
711 			if (fs->fs_flags & FS_DOWAPBL) {
712 				const char *nm = mp->mnt_stat.f_mntonname;
713 				if (!mp->mnt_wapbl_replay) {
714 					printf("%s: log corrupted;"
715 					    " replay cancelled\n", nm);
716 					return EFTYPE;
717 				}
718 				printf("%s: replaying log to disk\n", nm);
719 				error = wapbl_replay_write(mp->mnt_wapbl_replay,
720 				    devvp);
721 				if (error) {
722 					DPRINTF("%s: wapbl_replay_write %d",
723 					    nm, error);
724 					return error;
725 				}
726 				wapbl_replay_stop(mp->mnt_wapbl_replay);
727 				fs->fs_clean = FS_WASCLEAN;
728 			}
729 #endif /* WAPBL */
730 			if (fs->fs_snapinum[0] != 0)
731 				ffs_snapshot_mount(mp);
732 		}
733 
734 #ifdef WAPBL
735 		error = ffs_wapbl_start(mp);
736 		if (error) {
737 			DPRINTF("ffs_wapbl_start returned %d", error);
738 			return error;
739 		}
740 #endif /* WAPBL */
741 
742 #ifdef QUOTA2
743 		if (!fs->fs_ronly) {
744 			error = ffs_quota2_mount(mp);
745 			if (error) {
746 				DPRINTF("ffs_quota2_mount returned %d", error);
747 				return error;
748 			}
749 		}
750 #endif
751 
752 		if ((mp->mnt_flag & MNT_DISCARD) && !(ump->um_discarddata))
753 			ump->um_discarddata = ffs_discard_init(devvp, fs);
754 
755 		if (args->fspec == NULL)
756 			return 0;
757 	}
758 
759 	(void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
760 	    sizeof(fs->fs_fsmnt));
761 
762 	fs->fs_flags &= ~FS_DOSOFTDEP;
763 
764 	if ((fs->fs_ronly && (fs->fs_clean & FS_ISCLEAN) == 0) ||
765 	    (!fs->fs_ronly && (fs->fs_clean & FS_WASCLEAN) == 0)) {
766 		printf("%s: file system not clean (fs_clean=%#x); "
767 		    "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
768 		    fs->fs_clean);
769 	}
770 
771 	if (UFS_WAPBL_BEGIN(mp) == 0) {
772 		mutex_enter(&ump->um_lock);
773 		if (fs->fs_fmod != 0) {
774 			KASSERT(!fs->fs_ronly);
775 
776 			if (fs->fs_clean & FS_WASCLEAN)
777 				fs->fs_time = time_second;
778 			fs->fs_fmod = 0;
779 			mutex_exit(&ump->um_lock);
780 			(void) ffs_cgupdate(ump, MNT_WAIT);
781 		} else {
782 			mutex_exit(&ump->um_lock);
783 		}
784 		UFS_WAPBL_END(mp);
785 	}
786 	if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
787 		printf("%s: `-o softdep' is no longer supported, "
788 		    "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
789 		mp->mnt_flag &= ~MNT_SOFTDEP;
790 	}
791 
792 	return (error);
793 
794 fail:
795 	vrele(devvp);
796 	return (error);
797 }
798 
799 /*
800  * Reload all incore data for a filesystem (used after running fsck on
801  * the root filesystem and finding things to fix). The filesystem must
802  * be mounted read-only.
803  *
804  * Things to do to update the mount:
805  *	1) invalidate all cached meta-data.
806  *	2) re-read superblock from disk.
807  *	3) re-read summary information from disk.
808  *	4) invalidate all inactive vnodes.
809  *	5) invalidate all cached file data.
810  *	6) re-read inode data for all active vnodes.
811  */
812 int
813 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
814 {
815 	struct vnode *vp, *devvp;
816 	struct inode *ip;
817 	void *space;
818 	struct buf *bp;
819 	struct fs *fs, *newfs;
820 	int i, bsize, blks, error;
821 	int32_t *lp, fs_sbsize;
822 	struct ufsmount *ump;
823 	daddr_t sblockloc;
824 	struct vnode_iterator *marker;
825 
826 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
827 		return (EINVAL);
828 
829 	ump = VFSTOUFS(mp);
830 
831 	/*
832 	 * Step 1: invalidate all cached meta-data.
833 	 */
834 	devvp = ump->um_devvp;
835 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
836 	error = vinvalbuf(devvp, 0, cred, l, 0, 0);
837 	VOP_UNLOCK(devvp);
838 	if (error)
839 		panic("%s: dirty1", __func__);
840 
841 	/*
842 	 * Step 2: re-read superblock from disk. XXX: We don't handle
843 	 * possibility that superblock moved. Which implies that we don't
844 	 * want its size to change either.
845 	 */
846 	fs = ump->um_fs;
847 	fs_sbsize = fs->fs_sbsize;
848 	error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs_sbsize,
849 		      0, &bp);
850 	if (error)
851 		return (error);
852 	newfs = kmem_alloc(fs_sbsize, KM_SLEEP);
853 	memcpy(newfs, bp->b_data, fs_sbsize);
854 
855 #ifdef FFS_EI
856 	if (ump->um_flags & UFS_NEEDSWAP) {
857 		ffs_sb_swap((struct fs *)bp->b_data, newfs);
858 		newfs->fs_flags |= FS_SWAPPED;
859 	} else
860 #endif
861 		newfs->fs_flags &= ~FS_SWAPPED;
862 
863 	brelse(bp, 0);
864 
865 	/* Allow converting from UFS2 to UFS2EA but not vice versa. */
866 	if (newfs->fs_magic == FS_UFS2EA_MAGIC) {
867 		ump->um_flags |= UFS_EA;
868 		newfs->fs_magic = FS_UFS2_MAGIC;
869 	} else {
870 		if ((ump->um_flags & UFS_EA) != 0)
871 			return EINVAL;
872 	}
873 
874 	if ((newfs->fs_magic != FS_UFS1_MAGIC) &&
875 	    (newfs->fs_magic != FS_UFS2_MAGIC)) {
876 		kmem_free(newfs, fs_sbsize);
877 		return (EIO);		/* XXX needs translation */
878 	}
879 	if (!ffs_superblock_validate(newfs)) {
880 		kmem_free(newfs, fs_sbsize);
881 		return (EINVAL);
882 	}
883 
884 	/*
885 	 * The current implementation doesn't handle the possibility that
886 	 * these values may have changed.
887 	 */
888 	if ((newfs->fs_sbsize != fs_sbsize) ||
889 	    (newfs->fs_cssize != fs->fs_cssize) ||
890 	    (newfs->fs_contigsumsize != fs->fs_contigsumsize) ||
891 	    (newfs->fs_ncg != fs->fs_ncg)) {
892 		kmem_free(newfs, fs_sbsize);
893 		return (EINVAL);
894 	}
895 
896 	/* Store off old fs_sblockloc for fs_oldfscompat_read. */
897 	sblockloc = fs->fs_sblockloc;
898 	/*
899 	 * Copy pointer fields back into superblock before copying in	XXX
900 	 * new superblock. These should really be in the ufsmount.	XXX
901 	 * Note that important parameters (eg fs_ncg) are unchanged.
902 	 */
903 	newfs->fs_csp = fs->fs_csp;
904 	newfs->fs_maxcluster = fs->fs_maxcluster;
905 	newfs->fs_contigdirs = fs->fs_contigdirs;
906 	newfs->fs_ronly = fs->fs_ronly;
907 	newfs->fs_active = fs->fs_active;
908 	memcpy(fs, newfs, (u_int)fs_sbsize);
909 	kmem_free(newfs, fs_sbsize);
910 
911 	/*
912 	 * Recheck for Apple UFS filesystem.
913 	 */
914 	ump->um_flags &= ~UFS_ISAPPLEUFS;
915 	if (ffs_is_appleufs(devvp, fs)) {
916 #ifdef APPLE_UFS
917 		ump->um_flags |= UFS_ISAPPLEUFS;
918 #else
919 		DPRINTF("AppleUFS not supported");
920 		return (EIO); /* XXX: really? */
921 #endif
922 	}
923 
924 	if (UFS_MPISAPPLEUFS(ump)) {
925 		/* see comment about NeXT below */
926 		ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
927 		ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
928 		mp->mnt_iflag |= IMNT_DTYPE;
929 	} else {
930 		ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
931 		ump->um_dirblksiz = UFS_DIRBLKSIZ;
932 		if (ump->um_maxsymlinklen > 0)
933 			mp->mnt_iflag |= IMNT_DTYPE;
934 		else
935 			mp->mnt_iflag &= ~IMNT_DTYPE;
936 	}
937 	ffs_oldfscompat_read(fs, ump, sblockloc);
938 
939 	mutex_enter(&ump->um_lock);
940 	ump->um_maxfilesize = fs->fs_maxfilesize;
941 	if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
942 		uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
943 		    mp->mnt_stat.f_mntonname, fs->fs_flags,
944 		    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
945 		if ((mp->mnt_flag & MNT_FORCE) == 0) {
946 			mutex_exit(&ump->um_lock);
947 			return (EINVAL);
948 		}
949 	}
950 
951 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
952 		fs->fs_pendingblocks = 0;
953 		fs->fs_pendinginodes = 0;
954 	}
955 	mutex_exit(&ump->um_lock);
956 
957 	ffs_statvfs(mp, &mp->mnt_stat);
958 	/*
959 	 * Step 3: re-read summary information from disk.
960 	 */
961 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
962 	space = fs->fs_csp;
963 	for (i = 0; i < blks; i += fs->fs_frag) {
964 		bsize = fs->fs_bsize;
965 		if (i + fs->fs_frag > blks)
966 			bsize = (blks - i) * fs->fs_fsize;
967 		error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
968 			      0, &bp);
969 		if (error) {
970 			return (error);
971 		}
972 #ifdef FFS_EI
973 		if (UFS_FSNEEDSWAP(fs))
974 			ffs_csum_swap((struct csum *)bp->b_data,
975 			    (struct csum *)space, bsize);
976 		else
977 #endif
978 			memcpy(space, bp->b_data, (size_t)bsize);
979 		space = (char *)space + bsize;
980 		brelse(bp, 0);
981 	}
982 	/*
983 	 * We no longer know anything about clusters per cylinder group.
984 	 */
985 	if (fs->fs_contigsumsize > 0) {
986 		lp = fs->fs_maxcluster;
987 		for (i = 0; i < fs->fs_ncg; i++)
988 			*lp++ = fs->fs_contigsumsize;
989 	}
990 
991 	vfs_vnode_iterator_init(mp, &marker);
992 	while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) {
993 		/*
994 		 * Step 4: invalidate all inactive vnodes.
995 		 */
996 		if (vrecycle(vp))
997 			continue;
998 		/*
999 		 * Step 5: invalidate all cached file data.
1000 		 */
1001 		if (vn_lock(vp, LK_EXCLUSIVE)) {
1002 			vrele(vp);
1003 			continue;
1004 		}
1005 		if (vinvalbuf(vp, 0, cred, l, 0, 0))
1006 			panic("%s: dirty2", __func__);
1007 		/*
1008 		 * Step 6: re-read inode data for all active vnodes.
1009 		 */
1010 		ip = VTOI(vp);
1011 		error = bread(devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ip->i_number)),
1012 			      (int)fs->fs_bsize, 0, &bp);
1013 		if (error) {
1014 			vput(vp);
1015 			break;
1016 		}
1017 		ffs_load_inode(bp, ip, fs, ip->i_number);
1018 		brelse(bp, 0);
1019 		vput(vp);
1020 	}
1021 	vfs_vnode_iterator_destroy(marker);
1022 	return (error);
1023 }
1024 
1025 /*
1026  * Possible superblock locations ordered from most to least likely.
1027  */
1028 static const int sblock_try[] = SBLOCKSEARCH;
1029 
1030 
1031 static int
1032 ffs_superblock_validate(struct fs *fs)
1033 {
1034 	int32_t i, fs_bshift = 0, fs_fshift = 0, fs_fragshift = 0, fs_frag;
1035 	int32_t fs_inopb;
1036 
1037 	/* Check the superblock size */
1038 	if (fs->fs_sbsize > SBLOCKSIZE || fs->fs_sbsize < sizeof(struct fs))
1039 		return 0;
1040 
1041 	/* Check the file system blocksize */
1042 	if (fs->fs_bsize > MAXBSIZE || fs->fs_bsize < MINBSIZE)
1043 		return 0;
1044 	if (!powerof2(fs->fs_bsize))
1045 		return 0;
1046 
1047 	/* Check the size of frag blocks */
1048 	if (!powerof2(fs->fs_fsize))
1049 		return 0;
1050 	if (fs->fs_fsize == 0)
1051 		return 0;
1052 
1053 	/*
1054 	 * XXX: these values are just zero-checked to prevent obvious
1055 	 * bugs. We need more strict checks.
1056 	 */
1057 	if (fs->fs_size == 0 && fs->fs_old_size == 0)
1058 		return 0;
1059 	if (fs->fs_cssize == 0)
1060 		return 0;
1061 	if (fs->fs_ipg == 0)
1062 		return 0;
1063 	if (fs->fs_fpg == 0)
1064 		return 0;
1065 	if (fs->fs_ncg == 0)
1066 		return 0;
1067 	if (fs->fs_maxbpg == 0)
1068 		return 0;
1069 
1070 	/* Check the number of inodes per block */
1071 	if (fs->fs_magic == FS_UFS1_MAGIC)
1072 		fs_inopb = fs->fs_bsize / sizeof(struct ufs1_dinode);
1073 	else /* fs->fs_magic == FS_UFS2_MAGIC */
1074 		fs_inopb = fs->fs_bsize / sizeof(struct ufs2_dinode);
1075 	if (fs->fs_inopb != fs_inopb)
1076 		return 0;
1077 
1078 	/* Block size cannot be smaller than fragment size */
1079 	if (fs->fs_bsize < fs->fs_fsize)
1080 		return 0;
1081 
1082 	/* Compute fs_bshift and ensure it is consistent */
1083 	for (i = fs->fs_bsize; i > 1; i >>= 1)
1084 		fs_bshift++;
1085 	if (fs->fs_bshift != fs_bshift)
1086 		return 0;
1087 
1088 	/* Compute fs_fshift and ensure it is consistent */
1089 	for (i = fs->fs_fsize; i > 1; i >>= 1)
1090 		fs_fshift++;
1091 	if (fs->fs_fshift != fs_fshift)
1092 		return 0;
1093 
1094 	/* Compute fs_fragshift and ensure it is consistent */
1095 	for (i = fs->fs_frag; i > 1; i >>= 1)
1096 		fs_fragshift++;
1097 	if (fs->fs_fragshift != fs_fragshift)
1098 		return 0;
1099 
1100 	/* Check the masks */
1101 	if (fs->fs_bmask != ~(fs->fs_bsize - 1))
1102 		return 0;
1103 	if (fs->fs_fmask != ~(fs->fs_fsize - 1))
1104 		return 0;
1105 
1106 	/*
1107 	 * Now that the shifts and masks are sanitized, we can use the ffs_ API.
1108 	 */
1109 
1110 	/* Check the number of frag blocks */
1111 	if ((fs_frag = ffs_numfrags(fs, fs->fs_bsize)) > MAXFRAG)
1112 		return 0;
1113 	if (fs->fs_frag != fs_frag)
1114 		return 0;
1115 
1116 	/* Check the size of cylinder groups */
1117 	if ((fs->fs_cgsize < sizeof(struct cg)) ||
1118 	    (fs->fs_cgsize > fs->fs_bsize))
1119 		return 0;
1120 
1121 	return 1;
1122 }
1123 
1124 static int
1125 ffs_is_appleufs(struct vnode *devvp, struct fs *fs)
1126 {
1127 	struct dkwedge_info dkw;
1128 	int ret = 0;
1129 
1130 	/*
1131 	 * First check to see if this is tagged as an Apple UFS filesystem
1132 	 * in the disklabel.
1133 	 */
1134 	if (getdiskinfo(devvp, &dkw) == 0 &&
1135 	    strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0)
1136 		ret = 1;
1137 #ifdef APPLE_UFS
1138 	else {
1139 		struct appleufslabel *applefs;
1140 		struct buf *bp;
1141 		daddr_t blkno = APPLEUFS_LABEL_OFFSET / DEV_BSIZE;
1142 		int error;
1143 
1144 		/*
1145 		 * Manually look for an Apple UFS label, and if a valid one
1146 		 * is found, then treat it like an Apple UFS filesystem anyway.
1147 		 */
1148 		error = bread(devvp, blkno, APPLEUFS_LABEL_SIZE, 0, &bp);
1149 		if (error) {
1150 			DPRINTF("bread@0x%jx returned %d", (intmax_t)blkno, error);
1151 			return 0;
1152 		}
1153 		applefs = (struct appleufslabel *)bp->b_data;
1154 		error = ffs_appleufs_validate(fs->fs_fsmnt, applefs, NULL);
1155 		if (error == 0)
1156 			ret = 1;
1157 		brelse(bp, 0);
1158 	}
1159 #endif
1160 
1161 	return ret;
1162 }
1163 
1164 /*
1165  * Common code for mount and mountroot
1166  */
1167 int
1168 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
1169 {
1170 	struct ufsmount *ump = NULL;
1171 	struct buf *bp = NULL;
1172 	struct fs *fs = NULL;
1173 	dev_t dev;
1174 	void *space;
1175 	daddr_t sblockloc = 0;
1176 	int blks, fstype = 0;
1177 	int error, i, bsize, ronly, bset = 0;
1178 #ifdef FFS_EI
1179 	int needswap = 0;		/* keep gcc happy */
1180 #endif
1181 	int32_t *lp;
1182 	kauth_cred_t cred;
1183 	u_int32_t allocsbsize, fs_sbsize = 0;
1184 
1185 	dev = devvp->v_rdev;
1186 	cred = l ? l->l_cred : NOCRED;
1187 
1188 	/* Flush out any old buffers remaining from a previous use. */
1189 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1190 	error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
1191 	VOP_UNLOCK(devvp);
1192 	if (error) {
1193 		DPRINTF("vinvalbuf returned %d", error);
1194 		return error;
1195 	}
1196 
1197 	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
1198 
1199 	ump = kmem_zalloc(sizeof(*ump), KM_SLEEP);
1200 	mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
1201 	error = ffs_snapshot_init(ump);
1202 	if (error) {
1203 		DPRINTF("ffs_snapshot_init returned %d", error);
1204 		goto out;
1205 	}
1206 	ump->um_ops = &ffs_ufsops;
1207 
1208 #ifdef WAPBL
1209  sbagain:
1210 #endif
1211 	/*
1212 	 * Try reading the superblock in each of its possible locations.
1213 	 */
1214 	for (i = 0; ; i++) {
1215 		daddr_t fs_sblockloc;
1216 
1217 		if (bp != NULL) {
1218 			brelse(bp, BC_NOCACHE);
1219 			bp = NULL;
1220 		}
1221 		if (sblock_try[i] == -1) {
1222 			DPRINTF("no superblock found");
1223 			error = EINVAL;
1224 			fs = NULL;
1225 			goto out;
1226 		}
1227 
1228 		error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE,
1229 		    0, &bp);
1230 		if (error) {
1231 			DPRINTF("bread@0x%x returned %d",
1232 			    sblock_try[i] / DEV_BSIZE, error);
1233 			fs = NULL;
1234 			goto out;
1235 		}
1236 		fs = (struct fs *)bp->b_data;
1237 
1238 		sblockloc = sblock_try[i];
1239 		DPRINTF("fs_magic 0x%x", fs->fs_magic);
1240 
1241 		/*
1242 		 * Swap: here, we swap fs->fs_sbsize in order to get the correct
1243 		 * size to read the superblock. Once read, we swap the whole
1244 		 * superblock structure.
1245 		 */
1246 		if (fs->fs_magic == FS_UFS2EA_MAGIC) {
1247 			ump->um_flags |= UFS_EA;
1248 			fs->fs_magic = FS_UFS2_MAGIC;
1249 		} else if (fs->fs_magic == FS_UFS2EA_MAGIC_SWAPPED) {
1250 			ump->um_flags |= UFS_EA;
1251 			fs->fs_magic = FS_UFS2_MAGIC_SWAPPED;
1252 		}
1253 		if (fs->fs_magic == FS_UFS1_MAGIC) {
1254 			fs_sbsize = fs->fs_sbsize;
1255 			fstype = UFS1;
1256 #ifdef FFS_EI
1257 			needswap = 0;
1258 		} else if (fs->fs_magic == FS_UFS1_MAGIC_SWAPPED) {
1259 			fs_sbsize = bswap32(fs->fs_sbsize);
1260 			fstype = UFS1;
1261 			needswap = 1;
1262 #endif
1263 		} else if (fs->fs_magic == FS_UFS2_MAGIC) {
1264 			fs_sbsize = fs->fs_sbsize;
1265 			fstype = UFS2;
1266 #ifdef FFS_EI
1267 			needswap = 0;
1268 		} else if (fs->fs_magic == FS_UFS2_MAGIC_SWAPPED) {
1269 			fs_sbsize = bswap32(fs->fs_sbsize);
1270 			fstype = UFS2;
1271 			needswap = 1;
1272 #endif
1273 		} else
1274 			continue;
1275 
1276 		/* fs->fs_sblockloc isn't defined for old filesystems */
1277 		if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
1278 			if (sblockloc == SBLOCK_UFS2)
1279 				/*
1280 				 * This is likely to be the first alternate
1281 				 * in a filesystem with 64k blocks.
1282 				 * Don't use it.
1283 				 */
1284 				continue;
1285 			fs_sblockloc = sblockloc;
1286 		} else {
1287 			fs_sblockloc = fs->fs_sblockloc;
1288 #ifdef FFS_EI
1289 			if (needswap)
1290 				fs_sblockloc = bswap64(fs_sblockloc);
1291 #endif
1292 		}
1293 
1294 		/* Check we haven't found an alternate superblock */
1295 		if (fs_sblockloc != sblockloc)
1296 			continue;
1297 
1298 		/* Check the superblock size */
1299 		if (fs_sbsize > SBLOCKSIZE || fs_sbsize < sizeof(struct fs))
1300 			continue;
1301 		fs = kmem_alloc((u_long)fs_sbsize, KM_SLEEP);
1302 		memcpy(fs, bp->b_data, fs_sbsize);
1303 
1304 		/* Swap the whole superblock structure, if necessary. */
1305 #ifdef FFS_EI
1306 		if (needswap) {
1307 			ffs_sb_swap((struct fs*)bp->b_data, fs);
1308 			fs->fs_flags |= FS_SWAPPED;
1309 		} else
1310 #endif
1311 			fs->fs_flags &= ~FS_SWAPPED;
1312 
1313 		/*
1314 		 * Now that everything is swapped, the superblock is ready to
1315 		 * be sanitized.
1316 		 */
1317 		if (!ffs_superblock_validate(fs)) {
1318 			kmem_free(fs, fs_sbsize);
1319 			continue;
1320 		}
1321 
1322 		/* Ok seems to be a good superblock */
1323 		break;
1324 	}
1325 
1326 	ump->um_fs = fs;
1327 
1328 #ifdef WAPBL
1329 	if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
1330 		error = ffs_wapbl_replay_start(mp, fs, devvp);
1331 		if (error && (mp->mnt_flag & MNT_FORCE) == 0) {
1332 			DPRINTF("ffs_wapbl_replay_start returned %d", error);
1333 			goto out;
1334 		}
1335 		if (!error) {
1336 			if (!ronly) {
1337 				/* XXX fsmnt may be stale. */
1338 				printf("%s: replaying log to disk\n",
1339 				    fs->fs_fsmnt);
1340 				error = wapbl_replay_write(mp->mnt_wapbl_replay,
1341 				    devvp);
1342 				if (error) {
1343 					DPRINTF("wapbl_replay_write returned %d",
1344 					    error);
1345 					goto out;
1346 				}
1347 				wapbl_replay_stop(mp->mnt_wapbl_replay);
1348 				fs->fs_clean = FS_WASCLEAN;
1349 			} else {
1350 				/* XXX fsmnt may be stale */
1351 				printf("%s: replaying log to memory\n",
1352 				    fs->fs_fsmnt);
1353 			}
1354 
1355 			/* Force a re-read of the superblock */
1356 			brelse(bp, BC_INVAL);
1357 			bp = NULL;
1358 			kmem_free(fs, fs_sbsize);
1359 			fs = NULL;
1360 			goto sbagain;
1361 		}
1362 	}
1363 #else /* !WAPBL */
1364 	if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
1365 		error = EPERM;
1366 		DPRINTF("no force %d", error);
1367 		goto out;
1368 	}
1369 #endif /* !WAPBL */
1370 
1371 	ffs_oldfscompat_read(fs, ump, sblockloc);
1372 	ump->um_maxfilesize = fs->fs_maxfilesize;
1373 
1374 	if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
1375 		uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
1376 		    mp->mnt_stat.f_mntonname, fs->fs_flags,
1377 		    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1378 		if ((mp->mnt_flag & MNT_FORCE) == 0) {
1379 			error = EINVAL;
1380 			DPRINTF("no force %d", error);
1381 			goto out;
1382 		}
1383 	}
1384 
1385 	fs->fs_fmod = 0;
1386 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
1387 		fs->fs_pendingblocks = 0;
1388 		fs->fs_pendinginodes = 0;
1389 	}
1390 
1391 	ump->um_fstype = fstype;
1392 	if (fs->fs_sbsize < SBLOCKSIZE)
1393 		brelse(bp, BC_INVAL);
1394 	else
1395 		brelse(bp, 0);
1396 	bp = NULL;
1397 
1398 	if (ffs_is_appleufs(devvp, fs)) {
1399 #ifdef APPLE_UFS
1400 		ump->um_flags |= UFS_ISAPPLEUFS;
1401 #else
1402 		DPRINTF("AppleUFS not supported");
1403 		error = EINVAL;
1404 		goto out;
1405 #endif
1406 	}
1407 
1408 #if 0
1409 /*
1410  * XXX This code changes the behaviour of mounting dirty filesystems, to
1411  * XXX require "mount -f ..." to mount them.  This doesn't match what
1412  * XXX mount(8) describes and is disabled for now.
1413  */
1414 	/*
1415 	 * If the file system is not clean, don't allow it to be mounted
1416 	 * unless MNT_FORCE is specified.  (Note: MNT_FORCE is always set
1417 	 * for the root file system.)
1418 	 */
1419 	if (fs->fs_flags & FS_DOWAPBL) {
1420 		/*
1421 		 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
1422 		 * bit is set, although there's a window in unmount where it
1423 		 * could be FS_ISCLEAN
1424 		 */
1425 		if ((mp->mnt_flag & MNT_FORCE) == 0 &&
1426 		    (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
1427 			error = EPERM;
1428 			goto out;
1429 		}
1430 	} else
1431 		if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
1432 		    (mp->mnt_flag & MNT_FORCE) == 0) {
1433 			error = EPERM;
1434 			goto out;
1435 		}
1436 #endif
1437 
1438 	/*
1439 	 * Verify that we can access the last block in the fs
1440 	 * if we're mounting read/write.
1441 	 */
1442 	if (!ronly) {
1443 		error = bread(devvp, FFS_FSBTODB(fs, fs->fs_size - 1),
1444 		    fs->fs_fsize, 0, &bp);
1445 		if (error) {
1446 			DPRINTF("bread@0x%jx returned %d",
1447 			    (intmax_t)FFS_FSBTODB(fs, fs->fs_size - 1),
1448 			    error);
1449 			bset = BC_INVAL;
1450 			goto out;
1451 		}
1452 		if (bp->b_bcount != fs->fs_fsize) {
1453 			DPRINTF("bcount %x != fsize %x", bp->b_bcount,
1454 			    fs->fs_fsize);
1455 			error = EINVAL;
1456 			bset = BC_INVAL;
1457 			goto out;
1458 		}
1459 		brelse(bp, BC_INVAL);
1460 		bp = NULL;
1461 	}
1462 
1463 	fs->fs_ronly = ronly;
1464 	/* Don't bump fs_clean if we're replaying journal */
1465 	if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN))) {
1466 		if (ronly == 0) {
1467 			fs->fs_clean =
1468 			    fs->fs_clean == FS_ISCLEAN ? FS_WASCLEAN : 0;
1469 			fs->fs_fmod = 1;
1470 		}
1471 	}
1472 
1473 	bsize = fs->fs_cssize;
1474 	blks = howmany(bsize, fs->fs_fsize);
1475 	if (fs->fs_contigsumsize > 0)
1476 		bsize += fs->fs_ncg * sizeof(int32_t);
1477 	bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1478 	allocsbsize = bsize;
1479 	space = kmem_alloc((u_long)allocsbsize, KM_SLEEP);
1480 	fs->fs_csp = space;
1481 
1482 	for (i = 0; i < blks; i += fs->fs_frag) {
1483 		bsize = fs->fs_bsize;
1484 		if (i + fs->fs_frag > blks)
1485 			bsize = (blks - i) * fs->fs_fsize;
1486 		error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
1487 			      0, &bp);
1488 		if (error) {
1489 			DPRINTF("bread@0x%jx %d",
1490 			    (intmax_t)FFS_FSBTODB(fs, fs->fs_csaddr + i),
1491 			    error);
1492 			goto out1;
1493 		}
1494 #ifdef FFS_EI
1495 		if (needswap)
1496 			ffs_csum_swap((struct csum *)bp->b_data,
1497 				(struct csum *)space, bsize);
1498 		else
1499 #endif
1500 			memcpy(space, bp->b_data, (u_int)bsize);
1501 
1502 		space = (char *)space + bsize;
1503 		brelse(bp, 0);
1504 		bp = NULL;
1505 	}
1506 	if (fs->fs_contigsumsize > 0) {
1507 		fs->fs_maxcluster = lp = space;
1508 		for (i = 0; i < fs->fs_ncg; i++)
1509 			*lp++ = fs->fs_contigsumsize;
1510 		space = lp;
1511 	}
1512 	bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1513 	fs->fs_contigdirs = space;
1514 	space = (char *)space + bsize;
1515 	memset(fs->fs_contigdirs, 0, bsize);
1516 
1517 	/* Compatibility for old filesystems - XXX */
1518 	if (fs->fs_avgfilesize <= 0)
1519 		fs->fs_avgfilesize = AVFILESIZ;
1520 	if (fs->fs_avgfpdir <= 0)
1521 		fs->fs_avgfpdir = AFPDIR;
1522 	fs->fs_active = NULL;
1523 
1524 	mp->mnt_data = ump;
1525 	mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
1526 	mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
1527 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
1528 	mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
1529 	if (UFS_MPISAPPLEUFS(ump)) {
1530 		/* NeXT used to keep short symlinks in the inode even
1531 		 * when using FS_42INODEFMT.  In that case fs->fs_maxsymlinklen
1532 		 * is probably -1, but we still need to be able to identify
1533 		 * short symlinks.
1534 		 */
1535 		ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
1536 		ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
1537 		mp->mnt_iflag |= IMNT_DTYPE;
1538 	} else {
1539 		ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
1540 		ump->um_dirblksiz = UFS_DIRBLKSIZ;
1541 		if (ump->um_maxsymlinklen > 0)
1542 			mp->mnt_iflag |= IMNT_DTYPE;
1543 		else
1544 			mp->mnt_iflag &= ~IMNT_DTYPE;
1545 	}
1546 	mp->mnt_fs_bshift = fs->fs_bshift;
1547 	mp->mnt_dev_bshift = DEV_BSHIFT;	/* XXX */
1548 	mp->mnt_flag |= MNT_LOCAL;
1549 	mp->mnt_iflag |= IMNT_MPSAFE | IMNT_CAN_RWTORO | IMNT_SHRLOOKUP |
1550 	    IMNT_NCLOOKUP;
1551 #ifdef FFS_EI
1552 	if (needswap)
1553 		ump->um_flags |= UFS_NEEDSWAP;
1554 #endif
1555 	error = ffs_acls(mp, fs->fs_flags);
1556 	if (error)
1557 		goto out1;
1558 	ump->um_mountp = mp;
1559 	ump->um_dev = dev;
1560 	ump->um_devvp = devvp;
1561 	ump->um_nindir = fs->fs_nindir;
1562 	ump->um_lognindir = ffs(fs->fs_nindir) - 1;
1563 	ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
1564 	ump->um_seqinc = fs->fs_frag;
1565 	for (i = 0; i < MAXQUOTAS; i++)
1566 		ump->um_quotas[i] = NULLVP;
1567 	spec_node_setmountedfs(devvp, mp);
1568 	if (ronly == 0 && fs->fs_snapinum[0] != 0)
1569 		ffs_snapshot_mount(mp);
1570 #ifdef WAPBL
1571 	if (!ronly) {
1572 		KDASSERT(fs->fs_ronly == 0);
1573 		/*
1574 		 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
1575 		 * needs to create a new log file in-filesystem.
1576 		 */
1577 		error = ffs_statvfs(mp, &mp->mnt_stat);
1578 		if (error) {
1579 			DPRINTF("ffs_statvfs returned %d", error);
1580 			goto out1;
1581 		}
1582 
1583 		error = ffs_wapbl_start(mp);
1584 		if (error) {
1585 			DPRINTF("ffs_wapbl_start returned %d", error);
1586 			goto out1;
1587 		}
1588 	}
1589 #endif /* WAPBL */
1590 	if (ronly == 0) {
1591 #ifdef QUOTA2
1592 		error = ffs_quota2_mount(mp);
1593 		if (error) {
1594 			DPRINTF("ffs_quota2_mount returned %d", error);
1595 			goto out1;
1596 		}
1597 #else
1598 		if (fs->fs_flags & FS_DOQUOTA2) {
1599 			ump->um_flags |= UFS_QUOTA2;
1600 			uprintf("%s: options QUOTA2 not enabled%s\n",
1601 			    mp->mnt_stat.f_mntonname,
1602 			    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1603 			if ((mp->mnt_flag & MNT_FORCE) == 0) {
1604 				error = EINVAL;
1605 				DPRINTF("quota disabled %d", error);
1606 				goto out1;
1607 			}
1608 		}
1609 #endif
1610 	 }
1611 
1612 	if (mp->mnt_flag & MNT_DISCARD)
1613 		ump->um_discarddata = ffs_discard_init(devvp, fs);
1614 
1615 	return (0);
1616 out1:
1617 	kmem_free(fs->fs_csp, allocsbsize);
1618 out:
1619 #ifdef WAPBL
1620 	if (mp->mnt_wapbl_replay) {
1621 		wapbl_replay_stop(mp->mnt_wapbl_replay);
1622 		wapbl_replay_free(mp->mnt_wapbl_replay);
1623 		mp->mnt_wapbl_replay = 0;
1624 	}
1625 #endif
1626 
1627 	if (fs)
1628 		kmem_free(fs, fs->fs_sbsize);
1629 	spec_node_setmountedfs(devvp, NULL);
1630 	if (bp)
1631 		brelse(bp, bset);
1632 	if (ump) {
1633 		if (ump->um_oldfscompat)
1634 			kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
1635 		mutex_destroy(&ump->um_lock);
1636 		kmem_free(ump, sizeof(*ump));
1637 		mp->mnt_data = NULL;
1638 	}
1639 	return (error);
1640 }
1641 
1642 /*
1643  * Sanity checks for loading old filesystem superblocks.
1644  * See ffs_oldfscompat_write below for unwound actions.
1645  *
1646  * XXX - Parts get retired eventually.
1647  * Unfortunately new bits get added.
1648  */
1649 static void
1650 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
1651 {
1652 	off_t maxfilesize;
1653 	int32_t *extrasave;
1654 
1655 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1656 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
1657 		return;
1658 
1659 	if (!ump->um_oldfscompat)
1660 		ump->um_oldfscompat = kmem_alloc(512 + 3*sizeof(int32_t),
1661 		    KM_SLEEP);
1662 
1663 	memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
1664 	extrasave = ump->um_oldfscompat;
1665 	extrasave += 512/sizeof(int32_t);
1666 	extrasave[0] = fs->fs_old_npsect;
1667 	extrasave[1] = fs->fs_old_interleave;
1668 	extrasave[2] = fs->fs_old_trackskew;
1669 
1670 	/* These fields will be overwritten by their
1671 	 * original values in fs_oldfscompat_write, so it is harmless
1672 	 * to modify them here.
1673 	 */
1674 	fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
1675 	fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
1676 	fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
1677 	fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
1678 
1679 	fs->fs_maxbsize = fs->fs_bsize;
1680 	fs->fs_time = fs->fs_old_time;
1681 	fs->fs_size = fs->fs_old_size;
1682 	fs->fs_dsize = fs->fs_old_dsize;
1683 	fs->fs_csaddr = fs->fs_old_csaddr;
1684 	fs->fs_sblockloc = sblockloc;
1685 
1686 	fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
1687 
1688 	if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
1689 		fs->fs_old_nrpos = 8;
1690 		fs->fs_old_npsect = fs->fs_old_nsect;
1691 		fs->fs_old_interleave = 1;
1692 		fs->fs_old_trackskew = 0;
1693 	}
1694 
1695 	if (fs->fs_magic == FS_UFS1_MAGIC &&
1696 	    fs->fs_old_inodefmt < FS_44INODEFMT) {
1697 		fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
1698 		fs->fs_qbmask = ~fs->fs_bmask;
1699 		fs->fs_qfmask = ~fs->fs_fmask;
1700 	}
1701 
1702 	maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
1703 	if (fs->fs_maxfilesize > maxfilesize)
1704 		fs->fs_maxfilesize = maxfilesize;
1705 
1706 	/* Compatibility for old filesystems */
1707 	if (fs->fs_avgfilesize <= 0)
1708 		fs->fs_avgfilesize = AVFILESIZ;
1709 	if (fs->fs_avgfpdir <= 0)
1710 		fs->fs_avgfpdir = AFPDIR;
1711 
1712 #if 0
1713 	if (bigcgs) {
1714 		fs->fs_save_cgsize = fs->fs_cgsize;
1715 		fs->fs_cgsize = fs->fs_bsize;
1716 	}
1717 #endif
1718 }
1719 
1720 /*
1721  * Unwinding superblock updates for old filesystems.
1722  * See ffs_oldfscompat_read above for details.
1723  *
1724  * XXX - Parts get retired eventually.
1725  * Unfortunately new bits get added.
1726  */
1727 static void
1728 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
1729 {
1730 	int32_t *extrasave;
1731 
1732 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1733 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
1734 		return;
1735 
1736 	fs->fs_old_time = fs->fs_time;
1737 	fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
1738 	fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
1739 	fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
1740 	fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
1741 	fs->fs_old_flags = fs->fs_flags;
1742 
1743 #if 0
1744 	if (bigcgs) {
1745 		fs->fs_cgsize = fs->fs_save_cgsize;
1746 	}
1747 #endif
1748 
1749 	memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
1750 	extrasave = ump->um_oldfscompat;
1751 	extrasave += 512/sizeof(int32_t);
1752 	fs->fs_old_npsect = extrasave[0];
1753 	fs->fs_old_interleave = extrasave[1];
1754 	fs->fs_old_trackskew = extrasave[2];
1755 
1756 }
1757 
1758 /*
1759  * unmount vfs operation
1760  */
1761 int
1762 ffs_unmount(struct mount *mp, int mntflags)
1763 {
1764 	struct lwp *l = curlwp;
1765 	struct ufsmount *ump = VFSTOUFS(mp);
1766 	struct fs *fs = ump->um_fs;
1767 	int error, flags;
1768 	u_int32_t bsize;
1769 #ifdef WAPBL
1770 	extern int doforce;
1771 #endif
1772 
1773 	/* The file system is suspended. */
1774 	KASSERT(fstrans_is_owner(mp));
1775 
1776 	if (ump->um_discarddata) {
1777 		ffs_discard_finish(ump->um_discarddata, mntflags);
1778 		ump->um_discarddata = NULL;
1779 	}
1780 
1781 	flags = 0;
1782 	if (mntflags & MNT_FORCE)
1783 		flags |= FORCECLOSE;
1784 	if ((error = ffs_flushfiles(mp, flags, l)) != 0)
1785 		return (error);
1786 	if (fs->fs_ronly == 0 && UFS_WAPBL_BEGIN(mp) == 0) {
1787 		if (ffs_cgupdate(ump, MNT_WAIT) == 0 &&
1788 		    fs->fs_clean & FS_WASCLEAN) {
1789 			mutex_enter(&ump->um_lock);
1790 			fs->fs_clean = FS_ISCLEAN;
1791 			fs->fs_fmod = 0;
1792 			mutex_exit(&ump->um_lock);
1793 			(void) ffs_sbupdate(ump, MNT_WAIT);
1794 		}
1795 		UFS_WAPBL_END(mp);
1796 	}
1797 #ifdef WAPBL
1798 	KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
1799 	if (mp->mnt_wapbl_replay) {
1800 		KDASSERT(fs->fs_ronly);
1801 		wapbl_replay_stop(mp->mnt_wapbl_replay);
1802 		wapbl_replay_free(mp->mnt_wapbl_replay);
1803 		mp->mnt_wapbl_replay = 0;
1804 	}
1805 	error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
1806 	if (error) {
1807 		return error;
1808 	}
1809 #endif /* WAPBL */
1810 
1811 	if (ump->um_devvp->v_type != VBAD)
1812 		spec_node_setmountedfs(ump->um_devvp, NULL);
1813 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1814 	(void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
1815 		NOCRED);
1816 	vput(ump->um_devvp);
1817 
1818 	bsize = fs->fs_cssize;
1819 	if (fs->fs_contigsumsize > 0)
1820 		bsize += fs->fs_ncg * sizeof(int32_t);
1821 	bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1822 	kmem_free(fs->fs_csp, bsize);
1823 
1824 	kmem_free(fs, fs->fs_sbsize);
1825 	if (ump->um_oldfscompat != NULL)
1826 		kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
1827 	mutex_destroy(&ump->um_lock);
1828 	ffs_snapshot_fini(ump);
1829 	kmem_free(ump, sizeof(*ump));
1830 	mp->mnt_data = NULL;
1831 	mp->mnt_flag &= ~MNT_LOCAL;
1832 	return (0);
1833 }
1834 
1835 /*
1836  * Flush out all the files in a filesystem.
1837  */
1838 int
1839 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
1840 {
1841 	extern int doforce;
1842 	struct ufsmount *ump;
1843 	int error;
1844 
1845 	if (!doforce)
1846 		flags &= ~FORCECLOSE;
1847 	ump = VFSTOUFS(mp);
1848 #ifdef QUOTA
1849 	if ((error = quota1_umount(mp, flags)) != 0)
1850 		return (error);
1851 #endif
1852 #ifdef QUOTA2
1853 	if ((error = quota2_umount(mp, flags)) != 0)
1854 		return (error);
1855 #endif
1856 #ifdef UFS_EXTATTR
1857 	if (ump->um_fstype == UFS1) {
1858 		if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_STARTED)
1859 			ufs_extattr_stop(mp, l);
1860 		if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_INITIALIZED)
1861 			ufs_extattr_uepm_destroy(&ump->um_extattr);
1862 		mp->mnt_flag &= ~MNT_EXTATTR;
1863 	}
1864 #endif
1865 	if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
1866 		return (error);
1867 	ffs_snapshot_unmount(mp);
1868 	/*
1869 	 * Flush all the files.
1870 	 */
1871 	error = vflush(mp, NULLVP, flags);
1872 	if (error)
1873 		return (error);
1874 	/*
1875 	 * Flush filesystem metadata.
1876 	 */
1877 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1878 	error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
1879 	VOP_UNLOCK(ump->um_devvp);
1880 	if (flags & FORCECLOSE) /* XXXDBJ */
1881 		error = 0;
1882 
1883 #ifdef WAPBL
1884 	if (error)
1885 		return error;
1886 	if (mp->mnt_wapbl) {
1887 		error = wapbl_flush(mp->mnt_wapbl, 1);
1888 		if (flags & FORCECLOSE)
1889 			error = 0;
1890 	}
1891 #endif
1892 
1893 	return (error);
1894 }
1895 
1896 /*
1897  * Get file system statistics.
1898  */
1899 int
1900 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
1901 {
1902 	struct ufsmount *ump;
1903 	struct fs *fs;
1904 
1905 	ump = VFSTOUFS(mp);
1906 	fs = ump->um_fs;
1907 	mutex_enter(&ump->um_lock);
1908 	sbp->f_bsize = fs->fs_bsize;
1909 	sbp->f_frsize = fs->fs_fsize;
1910 	sbp->f_iosize = fs->fs_bsize;
1911 	sbp->f_blocks = fs->fs_dsize;
1912 	sbp->f_bfree = ffs_blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
1913 	    fs->fs_cstotal.cs_nffree + FFS_DBTOFSB(fs, fs->fs_pendingblocks);
1914 	sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
1915 	    fs->fs_minfree) / (u_int64_t) 100;
1916 	if (sbp->f_bfree > sbp->f_bresvd)
1917 		sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1918 	else
1919 		sbp->f_bavail = 0;
1920 	sbp->f_files =  fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO;
1921 	sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
1922 	sbp->f_favail = sbp->f_ffree;
1923 	sbp->f_fresvd = 0;
1924 	mutex_exit(&ump->um_lock);
1925 	copy_statvfs_info(sbp, mp);
1926 
1927 	return (0);
1928 }
1929 
1930 struct ffs_sync_ctx {
1931 	int waitfor;
1932 };
1933 
1934 static bool
1935 ffs_sync_selector(void *cl, struct vnode *vp)
1936 {
1937 	struct ffs_sync_ctx *c = cl;
1938 	struct inode *ip;
1939 
1940 	KASSERT(mutex_owned(vp->v_interlock));
1941 
1942 	ip = VTOI(vp);
1943 	/*
1944 	 * Skip the vnode/inode if inaccessible.
1945 	 */
1946 	if (ip == NULL || vp->v_type == VNON)
1947 		return false;
1948 
1949 	/*
1950 	 * We deliberately update inode times here.  This will
1951 	 * prevent a massive queue of updates accumulating, only
1952 	 * to be handled by a call to unmount.
1953 	 *
1954 	 * XXX It would be better to have the syncer trickle these
1955 	 * out.  Adjustment needed to allow registering vnodes for
1956 	 * sync when the vnode is clean, but the inode dirty.  Or
1957 	 * have ufs itself trickle out inode updates.
1958 	 *
1959 	 * If doing a lazy sync, we don't care about metadata or
1960 	 * data updates, because they are handled by each vnode's
1961 	 * synclist entry.  In this case we are only interested in
1962 	 * writing back modified inodes.
1963 	 */
1964 	if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
1965 	    IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
1966 	    (c->waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
1967 	    (vp->v_iflag & VI_ONWORKLST) == 0)))
1968 		return false;
1969 
1970 	return true;
1971 }
1972 
1973 /*
1974  * Go through the disk queues to initiate sandbagged IO;
1975  * go through the inodes to write those that have been modified;
1976  * initiate the writing of the super block if it has been modified.
1977  */
1978 int
1979 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1980 {
1981 	struct vnode *vp;
1982 	struct ufsmount *ump = VFSTOUFS(mp);
1983 	struct fs *fs;
1984 	struct vnode_iterator *marker;
1985 	int error, allerror = 0;
1986 	struct ffs_sync_ctx ctx;
1987 
1988 	fs = ump->um_fs;
1989 	if (fs->fs_fmod != 0 && fs->fs_ronly != 0) {		/* XXX */
1990 		panic("%s: rofs mod, fs=%s", __func__, fs->fs_fsmnt);
1991 	}
1992 
1993 	/*
1994 	 * Write back each (modified) inode.
1995 	 */
1996 	vfs_vnode_iterator_init(mp, &marker);
1997 
1998 	ctx.waitfor = waitfor;
1999 	while ((vp = vfs_vnode_iterator_next(marker, ffs_sync_selector, &ctx)))
2000 	{
2001 		error = vn_lock(vp,
2002 		    LK_EXCLUSIVE | (waitfor == MNT_LAZY ? LK_NOWAIT : 0));
2003 		if (error) {
2004 			vrele(vp);
2005 			continue;
2006 		}
2007 		if (waitfor == MNT_LAZY) {
2008 			error = UFS_WAPBL_BEGIN(vp->v_mount);
2009 			if (!error) {
2010 				error = ffs_update(vp, NULL, NULL,
2011 				    UPDATE_CLOSE);
2012 				UFS_WAPBL_END(vp->v_mount);
2013 			}
2014 		} else {
2015 			error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
2016 			    (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
2017 		}
2018 		if (error)
2019 			allerror = error;
2020 		vput(vp);
2021 	}
2022 	vfs_vnode_iterator_destroy(marker);
2023 
2024 	/*
2025 	 * Force stale file system control information to be flushed.
2026 	 */
2027 	if (waitfor != MNT_LAZY)  {
2028 		bool need_devvp_fsync;
2029 
2030 		mutex_enter(ump->um_devvp->v_interlock);
2031 		need_devvp_fsync = (ump->um_devvp->v_numoutput > 0 ||
2032 		    !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd));
2033 		mutex_exit(ump->um_devvp->v_interlock);
2034 		if (need_devvp_fsync) {
2035 			int flags = FSYNC_NOLOG;
2036 
2037 			if (waitfor == MNT_WAIT)
2038 				flags |= FSYNC_WAIT;
2039 
2040 			vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
2041 			if ((error = VOP_FSYNC(ump->um_devvp, cred, flags, 0,
2042 				    0)) != 0)
2043 				allerror = error;
2044 			VOP_UNLOCK(ump->um_devvp);
2045 		}
2046 	}
2047 #if defined(QUOTA) || defined(QUOTA2)
2048 	qsync(mp);
2049 #endif
2050 	/*
2051 	 * Write back modified superblock.
2052 	 */
2053 	error = UFS_WAPBL_BEGIN(mp);
2054 	if (error) {
2055 		allerror = error;
2056 	} else {
2057 		mutex_enter(&ump->um_lock);
2058 		if (fs->fs_fmod != 0) {
2059 			fs->fs_fmod = 0;
2060 			fs->fs_time = time_second;
2061 			mutex_exit(&ump->um_lock);
2062 			if ((error = ffs_cgupdate(ump, waitfor)))
2063 				allerror = error;
2064 		} else {
2065 			mutex_exit(&ump->um_lock);
2066 		}
2067 		UFS_WAPBL_END(mp);
2068 	}
2069 
2070 #ifdef WAPBL
2071 	if (mp->mnt_wapbl) {
2072 		error = wapbl_flush(mp->mnt_wapbl, (waitfor == MNT_WAIT));
2073 		if (error)
2074 			allerror = error;
2075 	}
2076 #endif
2077 
2078 	return (allerror);
2079 }
2080 
2081 /*
2082  * Load inode from disk and initialize vnode.
2083  */
2084 static int
2085 ffs_init_vnode(struct ufsmount *ump, struct vnode *vp, ino_t ino)
2086 {
2087 	struct fs *fs;
2088 	struct inode *ip;
2089 	struct buf *bp;
2090 	int error;
2091 
2092 	fs = ump->um_fs;
2093 
2094 	/* Read in the disk contents for the inode. */
2095 	error = bread(ump->um_devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ino)),
2096 		      (int)fs->fs_bsize, 0, &bp);
2097 	if (error)
2098 		return error;
2099 
2100 	/* Allocate and initialize inode. */
2101 	ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
2102 	memset(ip, 0, sizeof(struct inode));
2103 	ip->i_ump = ump;
2104 	ip->i_fs = fs;
2105 	ip->i_dev = ump->um_dev;
2106 	ip->i_number = ino;
2107 	if (ump->um_fstype == UFS1)
2108 		ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
2109 		    PR_WAITOK);
2110 	else
2111 		ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
2112 		    PR_WAITOK);
2113 	ffs_load_inode(bp, ip, fs, ino);
2114 	brelse(bp, 0);
2115 	ip->i_vnode = vp;
2116 #if defined(QUOTA) || defined(QUOTA2)
2117 	ufsquota_init(ip);
2118 #endif
2119 
2120 	/* Initialise vnode with this inode. */
2121 	vp->v_tag = VT_UFS;
2122 	vp->v_op = ffs_vnodeop_p;
2123 	vp->v_data = ip;
2124 
2125 	/* Initialize genfs node. */
2126 	genfs_node_init(vp, &ffs_genfsops);
2127 
2128 	return 0;
2129 }
2130 
2131 /*
2132  * Undo ffs_init_vnode().
2133  */
2134 static void
2135 ffs_deinit_vnode(struct ufsmount *ump, struct vnode *vp)
2136 {
2137 	struct inode *ip = VTOI(vp);
2138 
2139 	genfs_node_destroy(vp);
2140 	vp->v_data = NULL;
2141 
2142 	if (ump->um_fstype == UFS1)
2143 		pool_cache_put(ffs_dinode1_cache, ip->i_din.ffs1_din);
2144 	else
2145 		pool_cache_put(ffs_dinode2_cache, ip->i_din.ffs2_din);
2146 	pool_cache_put(ffs_inode_cache, ip);
2147 }
2148 
2149 /*
2150  * Read an inode from disk and initialize this vnode / inode pair.
2151  * Caller assures no other thread will try to load this inode.
2152  */
2153 int
2154 ffs_loadvnode(struct mount *mp, struct vnode *vp,
2155     const void *key, size_t key_len, const void **new_key)
2156 {
2157 	ino_t ino;
2158 	struct fs *fs;
2159 	struct inode *ip;
2160 	struct ufsmount *ump;
2161 	int error;
2162 
2163 	KASSERT(key_len == sizeof(ino));
2164 	memcpy(&ino, key, key_len);
2165 	ump = VFSTOUFS(mp);
2166 	fs = ump->um_fs;
2167 
2168 	error = ffs_init_vnode(ump, vp, ino);
2169 	if (error)
2170 		return error;
2171 
2172 	ip = VTOI(vp);
2173 	if (ip->i_mode == 0) {
2174 		ffs_deinit_vnode(ump, vp);
2175 
2176 		return ENOENT;
2177 	}
2178 
2179 	/* Initialize the vnode from the inode. */
2180 	ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
2181 
2182 	/* Finish inode initialization.  */
2183 	ip->i_devvp = ump->um_devvp;
2184 	vref(ip->i_devvp);
2185 
2186 	/*
2187 	 * Ensure that uid and gid are correct. This is a temporary
2188 	 * fix until fsck has been changed to do the update.
2189 	 */
2190 
2191 	if (fs->fs_magic == FS_UFS1_MAGIC &&			/* XXX */
2192 	    fs->fs_old_inodefmt < FS_44INODEFMT) {		/* XXX */
2193 		ip->i_uid = ip->i_ffs1_ouid;			/* XXX */
2194 		ip->i_gid = ip->i_ffs1_ogid;			/* XXX */
2195 	}							/* XXX */
2196 	uvm_vnp_setsize(vp, ip->i_size);
2197 	cache_enter_id(vp, ip->i_mode, ip->i_uid, ip->i_gid, !HAS_ACLS(ip));
2198 	*new_key = &ip->i_number;
2199 	return 0;
2200 }
2201 
2202 /*
2203  * Create a new inode on disk and initialize this vnode / inode pair.
2204  */
2205 int
2206 ffs_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
2207     struct vattr *vap, kauth_cred_t cred, void *extra,
2208     size_t *key_len, const void **new_key)
2209 {
2210 	ino_t ino;
2211 	struct fs *fs;
2212 	struct inode *ip;
2213 	struct timespec ts;
2214 	struct ufsmount *ump;
2215 	int error, mode;
2216 
2217 	KASSERT(dvp->v_mount == mp);
2218 	KASSERT(vap->va_type != VNON);
2219 
2220 	*key_len = sizeof(ino);
2221 	ump = VFSTOUFS(mp);
2222 	fs = ump->um_fs;
2223 	mode = MAKEIMODE(vap->va_type, vap->va_mode);
2224 
2225 	/* Allocate fresh inode. */
2226 	error = ffs_valloc(dvp, mode, cred, &ino);
2227 	if (error)
2228 		return error;
2229 
2230 	/* Attach inode to vnode. */
2231 	error = ffs_init_vnode(ump, vp, ino);
2232 	if (error) {
2233 		if (UFS_WAPBL_BEGIN(mp) == 0) {
2234 			ffs_vfree(dvp, ino, mode);
2235 			UFS_WAPBL_END(mp);
2236 		}
2237 		return error;
2238 	}
2239 
2240 	ip = VTOI(vp);
2241 	if (ip->i_mode) {
2242 		panic("%s: dup alloc ino=%" PRId64 " on %s: mode %o/%o "
2243 		    "gen %x/%x size %" PRIx64 " blocks %" PRIx64,
2244 		    __func__, ino, fs->fs_fsmnt, DIP(ip, mode), ip->i_mode,
2245 		    DIP(ip, gen), ip->i_gen, DIP(ip, size), DIP(ip, blocks));
2246 	}
2247 	if (DIP(ip, size) || DIP(ip, blocks)) {
2248 		printf("%s: ino=%" PRId64 " on %s: "
2249 		    "gen %x/%x has non zero blocks %" PRIx64 " or size %"
2250 		    PRIx64 "\n",
2251 		    __func__, ino, fs->fs_fsmnt, DIP(ip, gen), ip->i_gen,
2252 		    DIP(ip, blocks), DIP(ip, size));
2253 		if ((ip)->i_ump->um_fstype == UFS1)
2254 			panic("%s: dirty filesystem?", __func__);
2255 		DIP_ASSIGN(ip, blocks, 0);
2256 		DIP_ASSIGN(ip, size, 0);
2257 	}
2258 
2259 	/* Set uid / gid. */
2260 	if (cred == NOCRED || cred == FSCRED) {
2261 		ip->i_gid = 0;
2262 		ip->i_uid = 0;
2263 	} else {
2264 		ip->i_gid = VTOI(dvp)->i_gid;
2265 		ip->i_uid = kauth_cred_geteuid(cred);
2266 	}
2267 	DIP_ASSIGN(ip, gid, ip->i_gid);
2268 	DIP_ASSIGN(ip, uid, ip->i_uid);
2269 
2270 #if defined(QUOTA) || defined(QUOTA2)
2271 	error = UFS_WAPBL_BEGIN(mp);
2272 	if (error) {
2273 		ffs_deinit_vnode(ump, vp);
2274 
2275 		return error;
2276 	}
2277 	error = chkiq(ip, 1, cred, 0);
2278 	if (error) {
2279 		ffs_vfree(dvp, ino, mode);
2280 		UFS_WAPBL_END(mp);
2281 		ffs_deinit_vnode(ump, vp);
2282 
2283 		return error;
2284 	}
2285 	UFS_WAPBL_END(mp);
2286 #endif
2287 
2288 	/* Set type and finalize. */
2289 	ip->i_flags = 0;
2290 	DIP_ASSIGN(ip, flags, 0);
2291 	ip->i_mode = mode;
2292 	DIP_ASSIGN(ip, mode, mode);
2293 	if (vap->va_rdev != VNOVAL) {
2294 		/*
2295 		 * Want to be able to use this to make badblock
2296 		 * inodes, so don't truncate the dev number.
2297 		 */
2298 		if (ump->um_fstype == UFS1)
2299 			ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
2300 			    UFS_MPNEEDSWAP(ump));
2301 		else
2302 			ip->i_ffs2_rdev = ufs_rw64(vap->va_rdev,
2303 			    UFS_MPNEEDSWAP(ump));
2304 	}
2305 	ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
2306 	ip->i_devvp = ump->um_devvp;
2307 	vref(ip->i_devvp);
2308 
2309 	/* Set up a new generation number for this inode.  */
2310 	ip->i_gen++;
2311 	DIP_ASSIGN(ip, gen, ip->i_gen);
2312 	if (fs->fs_magic == FS_UFS2_MAGIC) {
2313 		vfs_timestamp(&ts);
2314 		ip->i_ffs2_birthtime = ts.tv_sec;
2315 		ip->i_ffs2_birthnsec = ts.tv_nsec;
2316 	}
2317 
2318 	uvm_vnp_setsize(vp, ip->i_size);
2319 	cache_enter_id(vp, ip->i_mode, ip->i_uid, ip->i_gid, !HAS_ACLS(ip));
2320 	*new_key = &ip->i_number;
2321 	return 0;
2322 }
2323 
2324 /*
2325  * File handle to vnode
2326  *
2327  * Have to be really careful about stale file handles:
2328  * - check that the inode number is valid
2329  * - call ffs_vget() to get the locked inode
2330  * - check for an unallocated inode (i_mode == 0)
2331  * - check that the given client host has export rights and return
2332  *   those rights via. exflagsp and credanonp
2333  */
2334 int
2335 ffs_fhtovp(struct mount *mp, struct fid *fhp, int lktype, struct vnode **vpp)
2336 {
2337 	struct ufid ufh;
2338 	int error;
2339 
2340 	if (fhp->fid_len != sizeof(struct ufid))
2341 		return EINVAL;
2342 
2343 	memcpy(&ufh, fhp, sizeof(ufh));
2344 	if ((error = ffs_checkrange(mp, ufh.ufid_ino)) != 0)
2345 		return error;
2346 
2347 	return (ufs_fhtovp(mp, &ufh, lktype, vpp));
2348 }
2349 
2350 /*
2351  * Vnode pointer to File handle
2352  */
2353 /* ARGSUSED */
2354 int
2355 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
2356 {
2357 	struct inode *ip;
2358 	struct ufid ufh;
2359 
2360 	if (*fh_size < sizeof(struct ufid)) {
2361 		*fh_size = sizeof(struct ufid);
2362 		return E2BIG;
2363 	}
2364 	ip = VTOI(vp);
2365 	*fh_size = sizeof(struct ufid);
2366 	memset(&ufh, 0, sizeof(ufh));
2367 	ufh.ufid_len = sizeof(struct ufid);
2368 	ufh.ufid_ino = ip->i_number;
2369 	ufh.ufid_gen = ip->i_gen;
2370 	memcpy(fhp, &ufh, sizeof(ufh));
2371 	return (0);
2372 }
2373 
2374 void
2375 ffs_init(void)
2376 {
2377 	if (ffs_initcount++ > 0)
2378 		return;
2379 
2380 	ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
2381 	    "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
2382 	ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
2383 	    "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
2384 	ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
2385 	    "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
2386 	ufs_init();
2387 }
2388 
2389 void
2390 ffs_reinit(void)
2391 {
2392 	ufs_reinit();
2393 }
2394 
2395 void
2396 ffs_done(void)
2397 {
2398 	if (--ffs_initcount > 0)
2399 		return;
2400 
2401 	ufs_done();
2402 	pool_cache_destroy(ffs_dinode2_cache);
2403 	pool_cache_destroy(ffs_dinode1_cache);
2404 	pool_cache_destroy(ffs_inode_cache);
2405 }
2406 
2407 /*
2408  * Write a superblock and associated information back to disk.
2409  */
2410 int
2411 ffs_sbupdate(struct ufsmount *mp, int waitfor)
2412 {
2413 	struct fs *fs = mp->um_fs;
2414 	struct fs *bfs;
2415 	struct buf *bp;
2416 	int error;
2417 
2418 	error = ffs_getblk(mp->um_devvp,
2419 	    fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
2420 	    fs->fs_sbsize, false, &bp);
2421 	if (error)
2422 		return error;
2423 
2424 	mutex_enter(&mp->um_lock);
2425 	memcpy(bp->b_data, fs, fs->fs_sbsize);
2426 	mutex_exit(&mp->um_lock);
2427 
2428 	bfs = (struct fs *)bp->b_data;
2429 
2430 	bfs->fs_flags &= ~FS_INTERNAL;
2431 	ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
2432 	if (mp->um_flags & UFS_EA) {
2433 		KASSERT(bfs->fs_magic == FS_UFS2_MAGIC);
2434 		bfs->fs_magic = FS_UFS2EA_MAGIC;
2435 	}
2436 #ifdef FFS_EI
2437 	if (mp->um_flags & UFS_NEEDSWAP)
2438 		ffs_sb_swap(bfs, bfs);
2439 #endif
2440 
2441 	if (waitfor == MNT_WAIT)
2442 		error = bwrite(bp);
2443 	else
2444 		bawrite(bp);
2445 	return (error);
2446 }
2447 
2448 int
2449 ffs_cgupdate(struct ufsmount *mp, int waitfor)
2450 {
2451 	struct fs *fs = mp->um_fs;
2452 	struct buf *bp;
2453 	int blks;
2454 	void *space;
2455 	int i, size, error = 0, allerror = 0;
2456 
2457 	UFS_WAPBL_JLOCK_ASSERT(mp->um_mountp);
2458 
2459 	allerror = ffs_sbupdate(mp, waitfor);
2460 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
2461 	space = fs->fs_csp;
2462 	for (i = 0; i < blks; i += fs->fs_frag) {
2463 		size = fs->fs_bsize;
2464 		if (i + fs->fs_frag > blks)
2465 			size = (blks - i) * fs->fs_fsize;
2466 		error = ffs_getblk(mp->um_devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i),
2467 		    FFS_NOBLK, size, false, &bp);
2468 		if (error)
2469 			break;
2470 #ifdef FFS_EI
2471 		if (mp->um_flags & UFS_NEEDSWAP)
2472 			ffs_csum_swap((struct csum*)space,
2473 			    (struct csum*)bp->b_data, size);
2474 		else
2475 #endif
2476 			memcpy(bp->b_data, space, (u_int)size);
2477 		space = (char *)space + size;
2478 		if (waitfor == MNT_WAIT)
2479 			error = bwrite(bp);
2480 		else
2481 			bawrite(bp);
2482 	}
2483 	if (!allerror && error)
2484 		allerror = error;
2485 	return (allerror);
2486 }
2487 
2488 int
2489 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
2490     int attrnamespace, const char *attrname)
2491 {
2492 #ifdef UFS_EXTATTR
2493 	/*
2494 	 * File-backed extended attributes are only supported on UFS1.
2495 	 * UFS2 has native extended attributes.
2496 	 */
2497 	if (VFSTOUFS(mp)->um_fstype == UFS1)
2498 		return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
2499 #endif
2500 	return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
2501 }
2502 
2503 /*
2504  * Synch vnode for a mounted file system.
2505  */
2506 static int
2507 ffs_vfs_fsync(vnode_t *vp, int flags)
2508 {
2509 	int error, i, pflags;
2510 #ifdef WAPBL
2511 	struct mount *mp;
2512 #endif
2513 
2514 	KASSERT(vp->v_type == VBLK);
2515 	KASSERT(spec_node_getmountedfs(vp) != NULL);
2516 
2517 	/*
2518 	 * Flush all dirty data associated with the vnode.
2519 	 */
2520 	pflags = PGO_ALLPAGES | PGO_CLEANIT;
2521 	if ((flags & FSYNC_WAIT) != 0)
2522 		pflags |= PGO_SYNCIO;
2523 	rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
2524 	error = VOP_PUTPAGES(vp, 0, 0, pflags);
2525 	if (error)
2526 		return error;
2527 
2528 #ifdef WAPBL
2529 	mp = spec_node_getmountedfs(vp);
2530 	if (mp && mp->mnt_wapbl) {
2531 		/*
2532 		 * Don't bother writing out metadata if the syncer is
2533 		 * making the request.  We will let the sync vnode
2534 		 * write it out in a single burst through a call to
2535 		 * VFS_SYNC().
2536 		 */
2537 		if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
2538 			return 0;
2539 
2540 		/*
2541 		 * Don't flush the log if the vnode being flushed
2542 		 * contains no dirty buffers that could be in the log.
2543 		 */
2544 		if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
2545 			error = wapbl_flush(mp->mnt_wapbl, 0);
2546 			if (error)
2547 				return error;
2548 		}
2549 
2550 		if ((flags & FSYNC_WAIT) != 0) {
2551 			mutex_enter(vp->v_interlock);
2552 			while (vp->v_numoutput)
2553 				cv_wait(&vp->v_cv, vp->v_interlock);
2554 			mutex_exit(vp->v_interlock);
2555 		}
2556 
2557 		return 0;
2558 	}
2559 #endif /* WAPBL */
2560 
2561 	error = vflushbuf(vp, flags);
2562 	if (error == 0 && (flags & FSYNC_CACHE) != 0) {
2563 		i = 1;
2564 		(void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
2565 		    kauth_cred_get());
2566 	}
2567 
2568 	return error;
2569 }
2570