1 //===- StraightLineStrengthReduce.cpp - -----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements straight-line strength reduction (SLSR). Unlike loop 10 // strength reduction, this algorithm is designed to reduce arithmetic 11 // redundancy in straight-line code instead of loops. It has proven to be 12 // effective in simplifying arithmetic statements derived from an unrolled loop. 13 // It can also simplify the logic of SeparateConstOffsetFromGEP. 14 // 15 // There are many optimizations we can perform in the domain of SLSR. This file 16 // for now contains only an initial step. Specifically, we look for strength 17 // reduction candidates in the following forms: 18 // 19 // Form 1: B + i * S 20 // Form 2: (B + i) * S 21 // Form 3: &B[i * S] 22 // 23 // where S is an integer variable, and i is a constant integer. If we found two 24 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2 25 // in a simpler way with respect to S1. For example, 26 // 27 // S1: X = B + i * S 28 // S2: Y = B + i' * S => X + (i' - i) * S 29 // 30 // S1: X = (B + i) * S 31 // S2: Y = (B + i') * S => X + (i' - i) * S 32 // 33 // S1: X = &B[i * S] 34 // S2: Y = &B[i' * S] => &X[(i' - i) * S] 35 // 36 // Note: (i' - i) * S is folded to the extent possible. 37 // 38 // This rewriting is in general a good idea. The code patterns we focus on 39 // usually come from loop unrolling, so (i' - i) * S is likely the same 40 // across iterations and can be reused. When that happens, the optimized form 41 // takes only one add starting from the second iteration. 42 // 43 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has 44 // multiple bases, we choose to rewrite S2 with respect to its "immediate" 45 // basis, the basis that is the closest ancestor in the dominator tree. 46 // 47 // TODO: 48 // 49 // - Floating point arithmetics when fast math is enabled. 50 // 51 // - SLSR may decrease ILP at the architecture level. Targets that are very 52 // sensitive to ILP may want to disable it. Having SLSR to consider ILP is 53 // left as future work. 54 // 55 // - When (i' - i) is constant but i and i' are not, we could still perform 56 // SLSR. 57 58 #include "llvm/Transforms/Scalar/StraightLineStrengthReduce.h" 59 #include "llvm/ADT/APInt.h" 60 #include "llvm/ADT/DepthFirstIterator.h" 61 #include "llvm/ADT/SmallVector.h" 62 #include "llvm/Analysis/ScalarEvolution.h" 63 #include "llvm/Analysis/TargetTransformInfo.h" 64 #include "llvm/Analysis/ValueTracking.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/GetElementPtrTypeIterator.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/IR/Instruction.h" 72 #include "llvm/IR/Instructions.h" 73 #include "llvm/IR/Module.h" 74 #include "llvm/IR/Operator.h" 75 #include "llvm/IR/PatternMatch.h" 76 #include "llvm/IR/Type.h" 77 #include "llvm/IR/Value.h" 78 #include "llvm/InitializePasses.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/DebugCounter.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Transforms/Scalar.h" 84 #include "llvm/Transforms/Utils/Local.h" 85 #include <cassert> 86 #include <cstdint> 87 #include <limits> 88 #include <list> 89 #include <vector> 90 91 using namespace llvm; 92 using namespace PatternMatch; 93 94 static const unsigned UnknownAddressSpace = 95 std::numeric_limits<unsigned>::max(); 96 97 DEBUG_COUNTER(StraightLineStrengthReduceCounter, "slsr-counter", 98 "Controls whether rewriteCandidateWithBasis is executed."); 99 100 namespace { 101 102 class StraightLineStrengthReduceLegacyPass : public FunctionPass { 103 const DataLayout *DL = nullptr; 104 105 public: 106 static char ID; 107 108 StraightLineStrengthReduceLegacyPass() : FunctionPass(ID) { 109 initializeStraightLineStrengthReduceLegacyPassPass( 110 *PassRegistry::getPassRegistry()); 111 } 112 113 void getAnalysisUsage(AnalysisUsage &AU) const override { 114 AU.addRequired<DominatorTreeWrapperPass>(); 115 AU.addRequired<ScalarEvolutionWrapperPass>(); 116 AU.addRequired<TargetTransformInfoWrapperPass>(); 117 // We do not modify the shape of the CFG. 118 AU.setPreservesCFG(); 119 } 120 121 bool doInitialization(Module &M) override { 122 DL = &M.getDataLayout(); 123 return false; 124 } 125 126 bool runOnFunction(Function &F) override; 127 }; 128 129 class StraightLineStrengthReduce { 130 public: 131 StraightLineStrengthReduce(const DataLayout *DL, DominatorTree *DT, 132 ScalarEvolution *SE, TargetTransformInfo *TTI) 133 : DL(DL), DT(DT), SE(SE), TTI(TTI) {} 134 135 // SLSR candidate. Such a candidate must be in one of the forms described in 136 // the header comments. 137 struct Candidate { 138 enum Kind { 139 Invalid, // reserved for the default constructor 140 Add, // B + i * S 141 Mul, // (B + i) * S 142 GEP, // &B[..][i * S][..] 143 }; 144 145 Candidate() = default; 146 Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, 147 Instruction *I) 148 : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {} 149 150 Kind CandidateKind = Invalid; 151 152 const SCEV *Base = nullptr; 153 154 // Note that Index and Stride of a GEP candidate do not necessarily have the 155 // same integer type. In that case, during rewriting, Stride will be 156 // sign-extended or truncated to Index's type. 157 ConstantInt *Index = nullptr; 158 159 Value *Stride = nullptr; 160 161 // The instruction this candidate corresponds to. It helps us to rewrite a 162 // candidate with respect to its immediate basis. Note that one instruction 163 // can correspond to multiple candidates depending on how you associate the 164 // expression. For instance, 165 // 166 // (a + 1) * (b + 2) 167 // 168 // can be treated as 169 // 170 // <Base: a, Index: 1, Stride: b + 2> 171 // 172 // or 173 // 174 // <Base: b, Index: 2, Stride: a + 1> 175 Instruction *Ins = nullptr; 176 177 // Points to the immediate basis of this candidate, or nullptr if we cannot 178 // find any basis for this candidate. 179 Candidate *Basis = nullptr; 180 }; 181 182 bool runOnFunction(Function &F); 183 184 private: 185 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they 186 // share the same base and stride. 187 bool isBasisFor(const Candidate &Basis, const Candidate &C); 188 189 // Returns whether the candidate can be folded into an addressing mode. 190 bool isFoldable(const Candidate &C, TargetTransformInfo *TTI, 191 const DataLayout *DL); 192 193 // Returns true if C is already in a simplest form and not worth being 194 // rewritten. 195 bool isSimplestForm(const Candidate &C); 196 197 // Checks whether I is in a candidate form. If so, adds all the matching forms 198 // to Candidates, and tries to find the immediate basis for each of them. 199 void allocateCandidatesAndFindBasis(Instruction *I); 200 201 // Allocate candidates and find bases for Add instructions. 202 void allocateCandidatesAndFindBasisForAdd(Instruction *I); 203 204 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a 205 // candidate. 206 void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS, 207 Instruction *I); 208 // Allocate candidates and find bases for Mul instructions. 209 void allocateCandidatesAndFindBasisForMul(Instruction *I); 210 211 // Splits LHS into Base + Index and, if succeeds, calls 212 // allocateCandidatesAndFindBasis. 213 void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS, 214 Instruction *I); 215 216 // Allocate candidates and find bases for GetElementPtr instructions. 217 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP); 218 219 // A helper function that scales Idx with ElementSize before invoking 220 // allocateCandidatesAndFindBasis. 221 void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx, 222 Value *S, uint64_t ElementSize, 223 Instruction *I); 224 225 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate 226 // basis. 227 void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B, 228 ConstantInt *Idx, Value *S, 229 Instruction *I); 230 231 // Rewrites candidate C with respect to Basis. 232 void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis); 233 234 // A helper function that factors ArrayIdx to a product of a stride and a 235 // constant index, and invokes allocateCandidatesAndFindBasis with the 236 // factorings. 237 void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, 238 GetElementPtrInst *GEP); 239 240 // Emit code that computes the "bump" from Basis to C. 241 static Value *emitBump(const Candidate &Basis, const Candidate &C, 242 IRBuilder<> &Builder, const DataLayout *DL); 243 244 const DataLayout *DL = nullptr; 245 DominatorTree *DT = nullptr; 246 ScalarEvolution *SE; 247 TargetTransformInfo *TTI = nullptr; 248 std::list<Candidate> Candidates; 249 250 // Temporarily holds all instructions that are unlinked (but not deleted) by 251 // rewriteCandidateWithBasis. These instructions will be actually removed 252 // after all rewriting finishes. 253 std::vector<Instruction *> UnlinkedInstructions; 254 }; 255 256 } // end anonymous namespace 257 258 char StraightLineStrengthReduceLegacyPass::ID = 0; 259 260 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduceLegacyPass, "slsr", 261 "Straight line strength reduction", false, false) 262 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 263 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 264 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 265 INITIALIZE_PASS_END(StraightLineStrengthReduceLegacyPass, "slsr", 266 "Straight line strength reduction", false, false) 267 268 FunctionPass *llvm::createStraightLineStrengthReducePass() { 269 return new StraightLineStrengthReduceLegacyPass(); 270 } 271 272 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis, 273 const Candidate &C) { 274 return (Basis.Ins != C.Ins && // skip the same instruction 275 // They must have the same type too. Basis.Base == C.Base 276 // doesn't guarantee their types are the same (PR23975). 277 Basis.Ins->getType() == C.Ins->getType() && 278 // Basis must dominate C in order to rewrite C with respect to Basis. 279 DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) && 280 // They share the same base, stride, and candidate kind. 281 Basis.Base == C.Base && Basis.Stride == C.Stride && 282 Basis.CandidateKind == C.CandidateKind); 283 } 284 285 static bool isGEPFoldable(GetElementPtrInst *GEP, 286 const TargetTransformInfo *TTI) { 287 SmallVector<const Value *, 4> Indices(GEP->indices()); 288 return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), 289 Indices) == TargetTransformInfo::TCC_Free; 290 } 291 292 // Returns whether (Base + Index * Stride) can be folded to an addressing mode. 293 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride, 294 TargetTransformInfo *TTI) { 295 // Index->getSExtValue() may crash if Index is wider than 64-bit. 296 return Index->getBitWidth() <= 64 && 297 TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true, 298 Index->getSExtValue(), UnknownAddressSpace); 299 } 300 301 bool StraightLineStrengthReduce::isFoldable(const Candidate &C, 302 TargetTransformInfo *TTI, 303 const DataLayout *DL) { 304 if (C.CandidateKind == Candidate::Add) 305 return isAddFoldable(C.Base, C.Index, C.Stride, TTI); 306 if (C.CandidateKind == Candidate::GEP) 307 return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI); 308 return false; 309 } 310 311 // Returns true if GEP has zero or one non-zero index. 312 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) { 313 unsigned NumNonZeroIndices = 0; 314 for (Use &Idx : GEP->indices()) { 315 ConstantInt *ConstIdx = dyn_cast<ConstantInt>(Idx); 316 if (ConstIdx == nullptr || !ConstIdx->isZero()) 317 ++NumNonZeroIndices; 318 } 319 return NumNonZeroIndices <= 1; 320 } 321 322 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) { 323 if (C.CandidateKind == Candidate::Add) { 324 // B + 1 * S or B + (-1) * S 325 return C.Index->isOne() || C.Index->isMinusOne(); 326 } 327 if (C.CandidateKind == Candidate::Mul) { 328 // (B + 0) * S 329 return C.Index->isZero(); 330 } 331 if (C.CandidateKind == Candidate::GEP) { 332 // (char*)B + S or (char*)B - S 333 return ((C.Index->isOne() || C.Index->isMinusOne()) && 334 hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins))); 335 } 336 return false; 337 } 338 339 // TODO: We currently implement an algorithm whose time complexity is linear in 340 // the number of existing candidates. However, we could do better by using 341 // ScopedHashTable. Specifically, while traversing the dominator tree, we could 342 // maintain all the candidates that dominate the basic block being traversed in 343 // a ScopedHashTable. This hash table is indexed by the base and the stride of 344 // a candidate. Therefore, finding the immediate basis of a candidate boils down 345 // to one hash-table look up. 346 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( 347 Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, 348 Instruction *I) { 349 Candidate C(CT, B, Idx, S, I); 350 // SLSR can complicate an instruction in two cases: 351 // 352 // 1. If we can fold I into an addressing mode, computing I is likely free or 353 // takes only one instruction. 354 // 355 // 2. I is already in a simplest form. For example, when 356 // X = B + 8 * S 357 // Y = B + S, 358 // rewriting Y to X - 7 * S is probably a bad idea. 359 // 360 // In the above cases, we still add I to the candidate list so that I can be 361 // the basis of other candidates, but we leave I's basis blank so that I 362 // won't be rewritten. 363 if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) { 364 // Try to compute the immediate basis of C. 365 unsigned NumIterations = 0; 366 // Limit the scan radius to avoid running in quadratice time. 367 static const unsigned MaxNumIterations = 50; 368 for (auto Basis = Candidates.rbegin(); 369 Basis != Candidates.rend() && NumIterations < MaxNumIterations; 370 ++Basis, ++NumIterations) { 371 if (isBasisFor(*Basis, C)) { 372 C.Basis = &(*Basis); 373 break; 374 } 375 } 376 } 377 // Regardless of whether we find a basis for C, we need to push C to the 378 // candidate list so that it can be the basis of other candidates. 379 Candidates.push_back(C); 380 } 381 382 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( 383 Instruction *I) { 384 switch (I->getOpcode()) { 385 case Instruction::Add: 386 allocateCandidatesAndFindBasisForAdd(I); 387 break; 388 case Instruction::Mul: 389 allocateCandidatesAndFindBasisForMul(I); 390 break; 391 case Instruction::GetElementPtr: 392 allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I)); 393 break; 394 } 395 } 396 397 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( 398 Instruction *I) { 399 // Try matching B + i * S. 400 if (!isa<IntegerType>(I->getType())) 401 return; 402 403 assert(I->getNumOperands() == 2 && "isn't I an add?"); 404 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); 405 allocateCandidatesAndFindBasisForAdd(LHS, RHS, I); 406 if (LHS != RHS) 407 allocateCandidatesAndFindBasisForAdd(RHS, LHS, I); 408 } 409 410 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( 411 Value *LHS, Value *RHS, Instruction *I) { 412 Value *S = nullptr; 413 ConstantInt *Idx = nullptr; 414 if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) { 415 // I = LHS + RHS = LHS + Idx * S 416 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); 417 } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) { 418 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx) 419 APInt One(Idx->getBitWidth(), 1); 420 Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue()); 421 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); 422 } else { 423 // At least, I = LHS + 1 * RHS 424 ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1); 425 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS, 426 I); 427 } 428 } 429 430 // Returns true if A matches B + C where C is constant. 431 static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) { 432 return match(A, m_c_Add(m_Value(B), m_ConstantInt(C))); 433 } 434 435 // Returns true if A matches B | C where C is constant. 436 static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) { 437 return match(A, m_c_Or(m_Value(B), m_ConstantInt(C))); 438 } 439 440 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( 441 Value *LHS, Value *RHS, Instruction *I) { 442 Value *B = nullptr; 443 ConstantInt *Idx = nullptr; 444 if (matchesAdd(LHS, B, Idx)) { 445 // If LHS is in the form of "Base + Index", then I is in the form of 446 // "(Base + Index) * RHS". 447 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); 448 } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) { 449 // If LHS is in the form of "Base | Index" and Base and Index have no common 450 // bits set, then 451 // Base | Index = Base + Index 452 // and I is thus in the form of "(Base + Index) * RHS". 453 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); 454 } else { 455 // Otherwise, at least try the form (LHS + 0) * RHS. 456 ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0); 457 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS, 458 I); 459 } 460 } 461 462 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( 463 Instruction *I) { 464 // Try matching (B + i) * S. 465 // TODO: we could extend SLSR to float and vector types. 466 if (!isa<IntegerType>(I->getType())) 467 return; 468 469 assert(I->getNumOperands() == 2 && "isn't I a mul?"); 470 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); 471 allocateCandidatesAndFindBasisForMul(LHS, RHS, I); 472 if (LHS != RHS) { 473 // Symmetrically, try to split RHS to Base + Index. 474 allocateCandidatesAndFindBasisForMul(RHS, LHS, I); 475 } 476 } 477 478 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( 479 const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, 480 Instruction *I) { 481 // I = B + sext(Idx *nsw S) * ElementSize 482 // = B + (sext(Idx) * sext(S)) * ElementSize 483 // = B + (sext(Idx) * ElementSize) * sext(S) 484 // Casting to IntegerType is safe because we skipped vector GEPs. 485 IntegerType *PtrIdxTy = cast<IntegerType>(DL->getIndexType(I->getType())); 486 ConstantInt *ScaledIdx = ConstantInt::get( 487 PtrIdxTy, Idx->getSExtValue() * (int64_t)ElementSize, true); 488 allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I); 489 } 490 491 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx, 492 const SCEV *Base, 493 uint64_t ElementSize, 494 GetElementPtrInst *GEP) { 495 // At least, ArrayIdx = ArrayIdx *nsw 1. 496 allocateCandidatesAndFindBasisForGEP( 497 Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1), 498 ArrayIdx, ElementSize, GEP); 499 Value *LHS = nullptr; 500 ConstantInt *RHS = nullptr; 501 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx 502 // itself. This would allow us to handle the shl case for free. However, 503 // matching SCEVs has two issues: 504 // 505 // 1. this would complicate rewriting because the rewriting procedure 506 // would have to translate SCEVs back to IR instructions. This translation 507 // is difficult when LHS is further evaluated to a composite SCEV. 508 // 509 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends 510 // to strip nsw/nuw flags which are critical for SLSR to trace into 511 // sext'ed multiplication. 512 if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) { 513 // SLSR is currently unsafe if i * S may overflow. 514 // GEP = Base + sext(LHS *nsw RHS) * ElementSize 515 allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP); 516 } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) { 517 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize 518 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize 519 APInt One(RHS->getBitWidth(), 1); 520 ConstantInt *PowerOf2 = 521 ConstantInt::get(RHS->getContext(), One << RHS->getValue()); 522 allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP); 523 } 524 } 525 526 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( 527 GetElementPtrInst *GEP) { 528 // TODO: handle vector GEPs 529 if (GEP->getType()->isVectorTy()) 530 return; 531 532 SmallVector<const SCEV *, 4> IndexExprs; 533 for (Use &Idx : GEP->indices()) 534 IndexExprs.push_back(SE->getSCEV(Idx)); 535 536 gep_type_iterator GTI = gep_type_begin(GEP); 537 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { 538 if (GTI.isStruct()) 539 continue; 540 541 const SCEV *OrigIndexExpr = IndexExprs[I - 1]; 542 IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType()); 543 544 // The base of this candidate is GEP's base plus the offsets of all 545 // indices except this current one. 546 const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs); 547 Value *ArrayIdx = GEP->getOperand(I); 548 uint64_t ElementSize = GTI.getSequentialElementStride(*DL); 549 if (ArrayIdx->getType()->getIntegerBitWidth() <= 550 DL->getIndexSizeInBits(GEP->getAddressSpace())) { 551 // Skip factoring if ArrayIdx is wider than the index size, because 552 // ArrayIdx is implicitly truncated to the index size. 553 factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP); 554 } 555 // When ArrayIdx is the sext of a value, we try to factor that value as 556 // well. Handling this case is important because array indices are 557 // typically sign-extended to the pointer index size. 558 Value *TruncatedArrayIdx = nullptr; 559 if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) && 560 TruncatedArrayIdx->getType()->getIntegerBitWidth() <= 561 DL->getIndexSizeInBits(GEP->getAddressSpace())) { 562 // Skip factoring if TruncatedArrayIdx is wider than the pointer size, 563 // because TruncatedArrayIdx is implicitly truncated to the pointer size. 564 factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP); 565 } 566 567 IndexExprs[I - 1] = OrigIndexExpr; 568 } 569 } 570 571 // A helper function that unifies the bitwidth of A and B. 572 static void unifyBitWidth(APInt &A, APInt &B) { 573 if (A.getBitWidth() < B.getBitWidth()) 574 A = A.sext(B.getBitWidth()); 575 else if (A.getBitWidth() > B.getBitWidth()) 576 B = B.sext(A.getBitWidth()); 577 } 578 579 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis, 580 const Candidate &C, 581 IRBuilder<> &Builder, 582 const DataLayout *DL) { 583 APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue(); 584 unifyBitWidth(Idx, BasisIdx); 585 APInt IndexOffset = Idx - BasisIdx; 586 587 // Compute Bump = C - Basis = (i' - i) * S. 588 // Common case 1: if (i' - i) is 1, Bump = S. 589 if (IndexOffset == 1) 590 return C.Stride; 591 // Common case 2: if (i' - i) is -1, Bump = -S. 592 if (IndexOffset.isAllOnes()) 593 return Builder.CreateNeg(C.Stride); 594 595 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may 596 // have different bit widths. 597 IntegerType *DeltaType = 598 IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth()); 599 Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType); 600 if (IndexOffset.isPowerOf2()) { 601 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i). 602 ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2()); 603 return Builder.CreateShl(ExtendedStride, Exponent); 604 } 605 if (IndexOffset.isNegatedPowerOf2()) { 606 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i). 607 ConstantInt *Exponent = 608 ConstantInt::get(DeltaType, (-IndexOffset).logBase2()); 609 return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent)); 610 } 611 Constant *Delta = ConstantInt::get(DeltaType, IndexOffset); 612 return Builder.CreateMul(ExtendedStride, Delta); 613 } 614 615 void StraightLineStrengthReduce::rewriteCandidateWithBasis( 616 const Candidate &C, const Candidate &Basis) { 617 if (!DebugCounter::shouldExecute(StraightLineStrengthReduceCounter)) 618 return; 619 620 assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base && 621 C.Stride == Basis.Stride); 622 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the 623 // basis of a candidate cannot be unlinked before the candidate. 624 assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked"); 625 626 // An instruction can correspond to multiple candidates. Therefore, instead of 627 // simply deleting an instruction when we rewrite it, we mark its parent as 628 // nullptr (i.e. unlink it) so that we can skip the candidates whose 629 // instruction is already rewritten. 630 if (!C.Ins->getParent()) 631 return; 632 633 IRBuilder<> Builder(C.Ins); 634 Value *Bump = emitBump(Basis, C, Builder, DL); 635 Value *Reduced = nullptr; // equivalent to but weaker than C.Ins 636 switch (C.CandidateKind) { 637 case Candidate::Add: 638 case Candidate::Mul: { 639 // C = Basis + Bump 640 Value *NegBump; 641 if (match(Bump, m_Neg(m_Value(NegBump)))) { 642 // If Bump is a neg instruction, emit C = Basis - (-Bump). 643 Reduced = Builder.CreateSub(Basis.Ins, NegBump); 644 // We only use the negative argument of Bump, and Bump itself may be 645 // trivially dead. 646 RecursivelyDeleteTriviallyDeadInstructions(Bump); 647 } else { 648 // It's tempting to preserve nsw on Bump and/or Reduced. However, it's 649 // usually unsound, e.g., 650 // 651 // X = (-2 +nsw 1) *nsw INT_MAX 652 // Y = (-2 +nsw 3) *nsw INT_MAX 653 // => 654 // Y = X + 2 * INT_MAX 655 // 656 // Neither + and * in the resultant expression are nsw. 657 Reduced = Builder.CreateAdd(Basis.Ins, Bump); 658 } 659 break; 660 } 661 case Candidate::GEP: { 662 bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds(); 663 // C = (char *)Basis + Bump 664 Reduced = Builder.CreatePtrAdd(Basis.Ins, Bump, "", InBounds); 665 break; 666 } 667 default: 668 llvm_unreachable("C.CandidateKind is invalid"); 669 }; 670 Reduced->takeName(C.Ins); 671 C.Ins->replaceAllUsesWith(Reduced); 672 // Unlink C.Ins so that we can skip other candidates also corresponding to 673 // C.Ins. The actual deletion is postponed to the end of runOnFunction. 674 C.Ins->removeFromParent(); 675 UnlinkedInstructions.push_back(C.Ins); 676 } 677 678 bool StraightLineStrengthReduceLegacyPass::runOnFunction(Function &F) { 679 if (skipFunction(F)) 680 return false; 681 682 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 683 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 684 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 685 return StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F); 686 } 687 688 bool StraightLineStrengthReduce::runOnFunction(Function &F) { 689 // Traverse the dominator tree in the depth-first order. This order makes sure 690 // all bases of a candidate are in Candidates when we process it. 691 for (const auto Node : depth_first(DT)) 692 for (auto &I : *(Node->getBlock())) 693 allocateCandidatesAndFindBasis(&I); 694 695 // Rewrite candidates in the reverse depth-first order. This order makes sure 696 // a candidate being rewritten is not a basis for any other candidate. 697 while (!Candidates.empty()) { 698 const Candidate &C = Candidates.back(); 699 if (C.Basis != nullptr) { 700 rewriteCandidateWithBasis(C, *C.Basis); 701 } 702 Candidates.pop_back(); 703 } 704 705 // Delete all unlink instructions. 706 for (auto *UnlinkedInst : UnlinkedInstructions) { 707 for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) { 708 Value *Op = UnlinkedInst->getOperand(I); 709 UnlinkedInst->setOperand(I, nullptr); 710 RecursivelyDeleteTriviallyDeadInstructions(Op); 711 } 712 UnlinkedInst->deleteValue(); 713 } 714 bool Ret = !UnlinkedInstructions.empty(); 715 UnlinkedInstructions.clear(); 716 return Ret; 717 } 718 719 namespace llvm { 720 721 PreservedAnalyses 722 StraightLineStrengthReducePass::run(Function &F, FunctionAnalysisManager &AM) { 723 const DataLayout *DL = &F.getDataLayout(); 724 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 725 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 726 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 727 728 if (!StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F)) 729 return PreservedAnalyses::all(); 730 731 PreservedAnalyses PA; 732 PA.preserveSet<CFGAnalyses>(); 733 PA.preserve<DominatorTreeAnalysis>(); 734 PA.preserve<ScalarEvolutionAnalysis>(); 735 PA.preserve<TargetIRAnalysis>(); 736 return PA; 737 } 738 739 } // namespace llvm 740