1 /* $NetBSD: entry.c,v 1.3 2021/08/14 16:14:58 christos Exp $ */
2
3 /* entry.c - routines for dealing with entries */
4 /* $OpenLDAP$ */
5 /* This work is part of OpenLDAP Software <http://www.openldap.org/>.
6 *
7 * Copyright 1998-2021 The OpenLDAP Foundation.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted only as authorized by the OpenLDAP
12 * Public License.
13 *
14 * A copy of this license is available in the file LICENSE in the
15 * top-level directory of the distribution or, alternatively, at
16 * <http://www.OpenLDAP.org/license.html>.
17 */
18 /* Portions Copyright (c) 1995 Regents of the University of Michigan.
19 * All rights reserved.
20 *
21 * Redistribution and use in source and binary forms are permitted
22 * provided that this notice is preserved and that due credit is given
23 * to the University of Michigan at Ann Arbor. The name of the University
24 * may not be used to endorse or promote products derived from this
25 * software without specific prior written permission. This software
26 * is provided ``as is'' without express or implied warranty.
27 */
28
29 #include <sys/cdefs.h>
30 __RCSID("$NetBSD: entry.c,v 1.3 2021/08/14 16:14:58 christos Exp $");
31
32 #include "portable.h"
33
34 #include <stdio.h>
35
36 #include <ac/ctype.h>
37 #include <ac/errno.h>
38 #include <ac/socket.h>
39 #include <ac/string.h>
40
41 #include "slap.h"
42 #include "ldif.h"
43
44 static char *ebuf; /* buf returned by entry2str */
45 static char *ecur; /* pointer to end of currently used ebuf */
46 static int emaxsize;/* max size of ebuf */
47
48 /*
49 * Empty root entry
50 */
51 const Entry slap_entry_root = {
52 NOID, { 0, "" }, { 0, "" }, NULL, 0, { 0, "" }, NULL
53 };
54
55 /*
56 * these mutexes must be used when calling the entry2str()
57 * routine since it returns a pointer to static data.
58 */
59 ldap_pvt_thread_mutex_t entry2str_mutex;
60
61 static const struct berval dn_bv = BER_BVC("dn");
62
63 /*
64 * Entry free list
65 *
66 * Allocate in chunks, minimum of 1000 at a time.
67 */
68 #define CHUNK_SIZE 1000
69 typedef struct slap_list {
70 struct slap_list *next;
71 } slap_list;
72 static slap_list *entry_chunks;
73 static Entry *entry_list;
74 static ldap_pvt_thread_mutex_t entry_mutex;
75
entry_destroy(void)76 int entry_destroy(void)
77 {
78 slap_list *e;
79 if ( ebuf ) free( ebuf );
80 ebuf = NULL;
81 ecur = NULL;
82 emaxsize = 0;
83
84 for ( e=entry_chunks; e; e=entry_chunks ) {
85 entry_chunks = e->next;
86 free( e );
87 }
88
89 ldap_pvt_thread_mutex_destroy( &entry_mutex );
90 ldap_pvt_thread_mutex_destroy( &entry2str_mutex );
91 return attr_destroy();
92 }
93
94 int
entry_init(void)95 entry_init(void)
96 {
97 ldap_pvt_thread_mutex_init( &entry2str_mutex );
98 ldap_pvt_thread_mutex_init( &entry_mutex );
99 return attr_init();
100 }
101
102 Entry *
str2entry(char * s)103 str2entry( char *s )
104 {
105 return str2entry2( s, 1 );
106 }
107
108 #define bvcasematch(bv1, bv2) (ber_bvstrcasecmp(bv1, bv2) == 0)
109
110 Entry *
str2entry2(char * s,int checkvals)111 str2entry2( char *s, int checkvals )
112 {
113 int rc;
114 Entry *e;
115 struct berval *type, *vals, *nvals;
116 char *freeval;
117 AttributeDescription *ad, *ad_prev;
118 const char *text;
119 char *next;
120 int attr_cnt;
121 int i, lines;
122 Attribute ahead, *atail;
123
124 /*
125 * LDIF is used as the string format.
126 * An entry looks like this:
127 *
128 * dn: <dn>\n
129 * [<attr>:[:] <value>\n]
130 * [<tab><continuedvalue>\n]*
131 * ...
132 *
133 * If a double colon is used after a type, it means the
134 * following value is encoded as a base 64 string. This
135 * happens if the value contains a non-printing character
136 * or newline.
137 */
138
139 Debug( LDAP_DEBUG_TRACE, "=> str2entry: \"%s\"\n",
140 s ? s : "NULL" );
141
142 e = entry_alloc();
143
144 if( e == NULL ) {
145 Debug( LDAP_DEBUG_ANY,
146 "<= str2entry NULL (entry allocation failed)\n" );
147 return( NULL );
148 }
149
150 /* initialize entry */
151 e->e_id = NOID;
152
153 /* dn + attributes */
154 atail = &ahead;
155 ahead.a_next = NULL;
156 ad = NULL;
157 ad_prev = NULL;
158 attr_cnt = 0;
159 next = s;
160
161 lines = ldif_countlines( s );
162 type = ch_calloc( 1, (lines+1)*3*sizeof(struct berval)+lines );
163 vals = type+lines+1;
164 nvals = vals+lines+1;
165 freeval = (char *)(nvals+lines+1);
166 i = -1;
167
168 /* parse into individual values, record DN */
169 while ( (s = ldif_getline( &next )) != NULL ) {
170 int freev;
171 if ( *s == '\n' || *s == '\0' ) {
172 break;
173 }
174 i++;
175 if (i >= lines) {
176 Debug( LDAP_DEBUG_TRACE,
177 "<= str2entry ran past end of entry\n" );
178 goto fail;
179 }
180
181 rc = ldif_parse_line2( s, type+i, vals+i, &freev );
182 freeval[i] = freev;
183 if ( rc ) {
184 Debug( LDAP_DEBUG_TRACE,
185 "<= str2entry NULL (parse_line)\n" );
186 continue;
187 }
188
189 if ( bvcasematch( &type[i], &dn_bv ) ) {
190 if ( e->e_dn != NULL ) {
191 Debug( LDAP_DEBUG_ANY, "str2entry: "
192 "entry %ld has multiple DNs \"%s\" and \"%s\"\n",
193 (long) e->e_id, e->e_dn, vals[i].bv_val );
194 goto fail;
195 }
196
197 rc = dnPrettyNormal( NULL, &vals[i], &e->e_name, &e->e_nname, NULL );
198 if( rc != LDAP_SUCCESS ) {
199 Debug( LDAP_DEBUG_ANY, "str2entry: "
200 "entry %ld has invalid DN \"%s\"\n",
201 (long) e->e_id, vals[i].bv_val );
202 goto fail;
203 }
204 if ( freeval[i] ) free( vals[i].bv_val );
205 vals[i].bv_val = NULL;
206 i--;
207 continue;
208 }
209 }
210 lines = i+1;
211
212 /* check to make sure there was a dn: line */
213 if ( BER_BVISNULL( &e->e_name )) {
214 Debug( LDAP_DEBUG_ANY, "str2entry: entry %ld has no dn\n",
215 (long) e->e_id );
216 goto fail;
217 }
218
219 /* Make sure all attributes with multiple values are contiguous */
220 if ( checkvals ) {
221 int j, k;
222 struct berval bv;
223 int fv;
224
225 for (i=0; i<lines; i++) {
226 for ( j=i+1; j<lines; j++ ) {
227 if ( bvcasematch( type+i, type+j )) {
228 /* out of order, move intervening attributes down */
229 if ( j != i+1 ) {
230 bv = vals[j];
231 fv = freeval[j];
232 for ( k=j; k>i; k-- ) {
233 type[k] = type[k-1];
234 vals[k] = vals[k-1];
235 freeval[k] = freeval[k-1];
236 }
237 k++;
238 type[k] = type[i];
239 vals[k] = bv;
240 freeval[k] = fv;
241 }
242 i++;
243 }
244 }
245 }
246 }
247
248 if ( lines > 0 ) {
249 for ( i=0; i<=lines; i++ ) {
250 ad_prev = ad;
251 if ( !ad || ( i<lines && !bvcasematch( type+i, &ad->ad_cname ))) {
252 ad = NULL;
253 rc = slap_bv2ad( type+i, &ad, &text );
254
255 if( rc != LDAP_SUCCESS ) {
256 int wtool = ( slapMode & (SLAP_TOOL_MODE|SLAP_TOOL_READONLY|SLAP_TOOL_NO_SCHEMA_CHECK) ) == SLAP_TOOL_MODE;
257 Debug( wtool ? LDAP_DEBUG_ANY : LDAP_DEBUG_TRACE,
258 "<= str2entry: str2ad(%s): %s\n", type[i].bv_val, text );
259 if( wtool ) {
260 goto fail;
261 }
262
263 rc = slap_bv2undef_ad( type+i, &ad, &text, 0 );
264 if( rc != LDAP_SUCCESS ) {
265 Debug( LDAP_DEBUG_ANY,
266 "<= str2entry: slap_str2undef_ad(%s): %s\n",
267 type[i].bv_val, text );
268 goto fail;
269 }
270 }
271
272 /* require ';binary' when appropriate (ITS#5071) */
273 if ( slap_syntax_is_binary( ad->ad_type->sat_syntax ) && !slap_ad_is_binary( ad ) ) {
274 Debug( LDAP_DEBUG_ANY,
275 "str2entry: attributeType %s #%d: "
276 "needs ';binary' transfer as per syntax %s\n",
277 ad->ad_cname.bv_val, 0,
278 ad->ad_type->sat_syntax->ssyn_oid );
279 goto fail;
280 }
281 }
282
283 if (( ad_prev && ad != ad_prev ) || ( i == lines )) {
284 int j, k;
285 atail->a_next = attr_alloc( NULL );
286 atail = atail->a_next;
287 atail->a_flags = 0;
288 atail->a_numvals = attr_cnt;
289 atail->a_desc = ad_prev;
290 atail->a_vals = ch_malloc( (attr_cnt + 1) * sizeof(struct berval));
291 if( ad_prev->ad_type->sat_equality &&
292 ad_prev->ad_type->sat_equality->smr_normalize )
293 atail->a_nvals = ch_malloc( (attr_cnt + 1) * sizeof(struct berval));
294 else
295 atail->a_nvals = NULL;
296 k = i - attr_cnt;
297 for ( j=0; j<attr_cnt; j++ ) {
298 if ( freeval[k] )
299 atail->a_vals[j] = vals[k];
300 else
301 ber_dupbv( atail->a_vals+j, &vals[k] );
302 vals[k].bv_val = NULL;
303 if ( atail->a_nvals ) {
304 atail->a_nvals[j] = nvals[k];
305 nvals[k].bv_val = NULL;
306 }
307 k++;
308 }
309 BER_BVZERO( &atail->a_vals[j] );
310 if ( atail->a_nvals ) {
311 BER_BVZERO( &atail->a_nvals[j] );
312 } else {
313 atail->a_nvals = atail->a_vals;
314 }
315 attr_cnt = 0;
316 /* FIXME: we only need this when migrating from an unsorted DB */
317 if ( atail->a_desc->ad_type->sat_flags & SLAP_AT_SORTED_VAL ) {
318 rc = slap_sort_vals( (Modifications *)atail, &text, &j, NULL );
319 if ( rc == LDAP_SUCCESS ) {
320 atail->a_flags |= SLAP_ATTR_SORTED_VALS;
321 } else if ( rc == LDAP_TYPE_OR_VALUE_EXISTS ) {
322 Debug( LDAP_DEBUG_ANY,
323 "str2entry: attributeType %s value #%d provided more than once\n",
324 atail->a_desc->ad_cname.bv_val, j );
325 goto fail;
326 }
327 }
328 if ( i == lines ) break;
329 }
330
331 if ( BER_BVISNULL( &vals[i] ) ) {
332 Debug( LDAP_DEBUG_ANY,
333 "str2entry: attributeType %s #%d: "
334 "no value\n",
335 ad->ad_cname.bv_val, attr_cnt );
336 goto fail;
337 }
338
339 if ( ad->ad_type->sat_equality &&
340 ad->ad_type->sat_equality->smr_normalize )
341 {
342 rc = ordered_value_normalize(
343 SLAP_MR_VALUE_OF_ATTRIBUTE_SYNTAX,
344 ad,
345 ad->ad_type->sat_equality,
346 &vals[i], &nvals[i], NULL );
347
348 if ( rc ) {
349 Debug( LDAP_DEBUG_ANY,
350 "<= str2entry NULL (smr_normalize %s %d)\n", ad->ad_cname.bv_val, rc );
351 goto fail;
352 }
353 }
354
355 attr_cnt++;
356 }
357 }
358
359 free( type );
360 atail->a_next = NULL;
361 e->e_attrs = ahead.a_next;
362
363 Debug(LDAP_DEBUG_TRACE, "<= str2entry(%s) -> 0x%lx\n",
364 e->e_dn, (unsigned long) e );
365 return( e );
366
367 fail:
368 for ( i=0; i<lines; i++ ) {
369 if ( freeval[i] ) free( vals[i].bv_val );
370 free( nvals[i].bv_val );
371 }
372 free( type );
373 entry_free( e );
374 return NULL;
375 }
376
377
378 #define GRABSIZE BUFSIZ
379
380 #define MAKE_SPACE( n ) { \
381 while ( ecur + (n) > ebuf + emaxsize ) { \
382 ptrdiff_t offset; \
383 offset = (int) (ecur - ebuf); \
384 ebuf = ch_realloc( ebuf, \
385 emaxsize + GRABSIZE ); \
386 emaxsize += GRABSIZE; \
387 ecur = ebuf + offset; \
388 } \
389 }
390
391 /* NOTE: only preserved for binary compatibility */
392 char *
entry2str(Entry * e,int * len)393 entry2str(
394 Entry *e,
395 int *len )
396 {
397 return entry2str_wrap( e, len, LDIF_LINE_WIDTH );
398 }
399
400 char *
entry2str_wrap(Entry * e,int * len,ber_len_t wrap)401 entry2str_wrap(
402 Entry *e,
403 int *len,
404 ber_len_t wrap )
405 {
406 Attribute *a;
407 struct berval *bv;
408 int i;
409 ber_len_t tmplen;
410
411 assert( e != NULL );
412
413 /*
414 * In string format, an entry looks like this:
415 * dn: <dn>\n
416 * [<attr>: <value>\n]*
417 */
418
419 ecur = ebuf;
420
421 /* put the dn */
422 if ( e->e_dn != NULL ) {
423 /* put "dn: <dn>" */
424 tmplen = e->e_name.bv_len;
425 MAKE_SPACE( LDIF_SIZE_NEEDED( 2, tmplen ));
426 ldif_sput_wrap( &ecur, LDIF_PUT_VALUE, "dn", e->e_dn, tmplen, wrap );
427 }
428
429 /* put the attributes */
430 for ( a = e->e_attrs; a != NULL; a = a->a_next ) {
431 /* put "<type>:[:] <value>" line for each value */
432 for ( i = 0; a->a_vals[i].bv_val != NULL; i++ ) {
433 bv = &a->a_vals[i];
434 tmplen = a->a_desc->ad_cname.bv_len;
435 MAKE_SPACE( LDIF_SIZE_NEEDED( tmplen, bv->bv_len ));
436 ldif_sput_wrap( &ecur, LDIF_PUT_VALUE,
437 a->a_desc->ad_cname.bv_val,
438 bv->bv_val, bv->bv_len, wrap );
439 }
440 }
441 MAKE_SPACE( 1 );
442 *ecur = '\0';
443 *len = ecur - ebuf;
444
445 return( ebuf );
446 }
447
448 void
entry_clean(Entry * e)449 entry_clean( Entry *e )
450 {
451 /* free an entry structure */
452 assert( e != NULL );
453
454 /* e_private must be freed by the caller */
455 assert( e->e_private == NULL );
456
457 e->e_id = 0;
458
459 /* free DNs */
460 if ( !BER_BVISNULL( &e->e_name ) ) {
461 free( e->e_name.bv_val );
462 BER_BVZERO( &e->e_name );
463 }
464 if ( !BER_BVISNULL( &e->e_nname ) ) {
465 free( e->e_nname.bv_val );
466 BER_BVZERO( &e->e_nname );
467 }
468
469 if ( !BER_BVISNULL( &e->e_bv ) ) {
470 free( e->e_bv.bv_val );
471 BER_BVZERO( &e->e_bv );
472 }
473
474 /* free attributes */
475 if ( e->e_attrs ) {
476 attrs_free( e->e_attrs );
477 e->e_attrs = NULL;
478 }
479
480 e->e_ocflags = 0;
481 }
482
483 void
entry_free(Entry * e)484 entry_free( Entry *e )
485 {
486 entry_clean( e );
487
488 ldap_pvt_thread_mutex_lock( &entry_mutex );
489 e->e_private = entry_list;
490 entry_list = e;
491 ldap_pvt_thread_mutex_unlock( &entry_mutex );
492 }
493
494 /* These parameters work well on AMD64 */
495 #if 0
496 #define STRIDE 8
497 #define STRIPE 5
498 #else
499 #define STRIDE 1
500 #define STRIPE 1
501 #endif
502 #define STRIDE_FACTOR (STRIDE*STRIPE)
503
504 int
entry_prealloc(int num)505 entry_prealloc( int num )
506 {
507 Entry *e, **prev, *tmp;
508 slap_list *s;
509 int i, j;
510
511 if (!num) return 0;
512
513 #if STRIDE_FACTOR > 1
514 /* Round up to our stride factor */
515 num += STRIDE_FACTOR-1;
516 num /= STRIDE_FACTOR;
517 num *= STRIDE_FACTOR;
518 #endif
519
520 s = ch_calloc( 1, sizeof(slap_list) + num * sizeof(Entry));
521 s->next = entry_chunks;
522 entry_chunks = s;
523
524 prev = &tmp;
525 for (i=0; i<STRIPE; i++) {
526 e = (Entry *)(s+1);
527 e += i;
528 for (j=i; j<num; j+= STRIDE) {
529 *prev = e;
530 prev = (Entry **)&e->e_private;
531 e += STRIDE;
532 }
533 }
534 *prev = entry_list;
535 entry_list = (Entry *)(s+1);
536
537 return 0;
538 }
539
540 Entry *
entry_alloc(void)541 entry_alloc( void )
542 {
543 Entry *e;
544
545 ldap_pvt_thread_mutex_lock( &entry_mutex );
546 if ( !entry_list )
547 entry_prealloc( CHUNK_SIZE );
548 e = entry_list;
549 entry_list = e->e_private;
550 e->e_private = NULL;
551 ldap_pvt_thread_mutex_unlock( &entry_mutex );
552
553 return e;
554 }
555
556
557 /*
558 * These routines are used only by Backend.
559 *
560 * the Entry has three entry points (ways to find things):
561 *
562 * by entry e.g., if you already have an entry from the cache
563 * and want to delete it. (really by entry ptr)
564 * by dn e.g., when looking for the base object of a search
565 * by id e.g., for search candidates
566 *
567 * these correspond to three different avl trees that are maintained.
568 */
569
570 int
entry_cmp(Entry * e1,Entry * e2)571 entry_cmp( Entry *e1, Entry *e2 )
572 {
573 return SLAP_PTRCMP( e1, e2 );
574 }
575
576 int
entry_dn_cmp(const void * v_e1,const void * v_e2)577 entry_dn_cmp( const void *v_e1, const void *v_e2 )
578 {
579 /* compare their normalized UPPERCASED dn's */
580 const Entry *e1 = v_e1, *e2 = v_e2;
581
582 return ber_bvcmp( &e1->e_nname, &e2->e_nname );
583 }
584
585 int
entry_id_cmp(const void * v_e1,const void * v_e2)586 entry_id_cmp( const void *v_e1, const void *v_e2 )
587 {
588 const Entry *e1 = v_e1, *e2 = v_e2;
589 return( e1->e_id < e2->e_id ? -1 : (e1->e_id > e2->e_id ? 1 : 0) );
590 }
591
592 /* This is like a ber_len */
593 #define entry_lenlen(l) (((l) < 0x80) ? 1 : ((l) < 0x100) ? 2 : \
594 ((l) < 0x10000) ? 3 : ((l) < 0x1000000) ? 4 : 5)
595
596 static void
entry_putlen(unsigned char ** buf,ber_len_t len)597 entry_putlen(unsigned char **buf, ber_len_t len)
598 {
599 ber_len_t lenlen = entry_lenlen(len);
600
601 if (lenlen == 1) {
602 **buf = (unsigned char) len;
603 } else {
604 int i;
605 **buf = 0x80 | ((unsigned char) lenlen - 1);
606 for (i=lenlen-1; i>0; i--) {
607 (*buf)[i] = (unsigned char) len;
608 len >>= 8;
609 }
610 }
611 *buf += lenlen;
612 }
613
614 static ber_len_t
entry_getlen(unsigned char ** buf)615 entry_getlen(unsigned char **buf)
616 {
617 ber_len_t len;
618 int i;
619
620 len = *(*buf)++;
621 if (len <= 0x7f)
622 return len;
623 i = len & 0x7f;
624 len = 0;
625 for (;i > 0; i--) {
626 len <<= 8;
627 len |= *(*buf)++;
628 }
629 return len;
630 }
631
632 /* Count up the sizes of the components of an entry */
entry_partsize(Entry * e,ber_len_t * plen,int * pnattrs,int * pnvals,int norm)633 void entry_partsize(Entry *e, ber_len_t *plen,
634 int *pnattrs, int *pnvals, int norm)
635 {
636 ber_len_t len, dnlen, ndnlen;
637 int i, nat = 0, nval = 0;
638 Attribute *a;
639
640 dnlen = e->e_name.bv_len;
641 len = dnlen + 1; /* trailing NUL byte */
642 len += entry_lenlen(dnlen);
643 if (norm) {
644 ndnlen = e->e_nname.bv_len;
645 len += ndnlen + 1;
646 len += entry_lenlen(ndnlen);
647 }
648 for (a=e->e_attrs; a; a=a->a_next) {
649 /* For AttributeDesc, we only store the attr name */
650 nat++;
651 len += a->a_desc->ad_cname.bv_len+1;
652 len += entry_lenlen(a->a_desc->ad_cname.bv_len);
653 for (i=0; a->a_vals[i].bv_val; i++) {
654 nval++;
655 len += a->a_vals[i].bv_len + 1;
656 len += entry_lenlen(a->a_vals[i].bv_len);
657 }
658 len += entry_lenlen(i);
659 nval++; /* empty berval at end */
660 if (norm && a->a_nvals != a->a_vals) {
661 for (i=0; a->a_nvals[i].bv_val; i++) {
662 nval++;
663 len += a->a_nvals[i].bv_len + 1;
664 len += entry_lenlen(a->a_nvals[i].bv_len);
665 }
666 len += entry_lenlen(i); /* i nvals */
667 nval++;
668 } else {
669 len += entry_lenlen(0); /* 0 nvals */
670 }
671 }
672 len += entry_lenlen(nat);
673 len += entry_lenlen(nval);
674 *plen = len;
675 *pnattrs = nat;
676 *pnvals = nval;
677 }
678
679 /* Add up the size of the entry for a flattened buffer */
entry_flatsize(Entry * e,int norm)680 ber_len_t entry_flatsize(Entry *e, int norm)
681 {
682 ber_len_t len;
683 int nattrs, nvals;
684
685 entry_partsize(e, &len, &nattrs, &nvals, norm);
686 len += sizeof(Entry) + (nattrs * sizeof(Attribute)) +
687 (nvals * sizeof(struct berval));
688 return len;
689 }
690
691 /* Flatten an Entry into a buffer. The buffer is filled with just the
692 * strings/bervals of all the entry components. Each field is preceded
693 * by its length, encoded the way ber_put_len works. Every field is NUL
694 * terminated. The entire buffer size is precomputed so that a single
695 * malloc can be performed. The entry size is also recorded,
696 * to aid in entry_decode.
697 */
entry_encode(Entry * e,struct berval * bv)698 int entry_encode(Entry *e, struct berval *bv)
699 {
700 ber_len_t len, dnlen, ndnlen, i;
701 int nattrs, nvals;
702 Attribute *a;
703 unsigned char *ptr;
704
705 Debug( LDAP_DEBUG_TRACE, "=> entry_encode(0x%08lx): %s\n",
706 (long) e->e_id, e->e_dn );
707
708 dnlen = e->e_name.bv_len;
709 ndnlen = e->e_nname.bv_len;
710
711 entry_partsize( e, &len, &nattrs, &nvals, 1 );
712
713 bv->bv_len = len;
714 bv->bv_val = ch_malloc(len);
715 ptr = (unsigned char *)bv->bv_val;
716 entry_putlen(&ptr, nattrs);
717 entry_putlen(&ptr, nvals);
718 entry_putlen(&ptr, dnlen);
719 AC_MEMCPY(ptr, e->e_dn, dnlen);
720 ptr += dnlen;
721 *ptr++ = '\0';
722 entry_putlen(&ptr, ndnlen);
723 AC_MEMCPY(ptr, e->e_ndn, ndnlen);
724 ptr += ndnlen;
725 *ptr++ = '\0';
726
727 for (a=e->e_attrs; a; a=a->a_next) {
728 entry_putlen(&ptr, a->a_desc->ad_cname.bv_len);
729 AC_MEMCPY(ptr, a->a_desc->ad_cname.bv_val,
730 a->a_desc->ad_cname.bv_len);
731 ptr += a->a_desc->ad_cname.bv_len;
732 *ptr++ = '\0';
733 if (a->a_vals) {
734 for (i=0; a->a_vals[i].bv_val; i++);
735 assert( i == a->a_numvals );
736 entry_putlen(&ptr, i);
737 for (i=0; a->a_vals[i].bv_val; i++) {
738 entry_putlen(&ptr, a->a_vals[i].bv_len);
739 AC_MEMCPY(ptr, a->a_vals[i].bv_val,
740 a->a_vals[i].bv_len);
741 ptr += a->a_vals[i].bv_len;
742 *ptr++ = '\0';
743 }
744 if (a->a_nvals != a->a_vals) {
745 entry_putlen(&ptr, i);
746 for (i=0; a->a_nvals[i].bv_val; i++) {
747 entry_putlen(&ptr, a->a_nvals[i].bv_len);
748 AC_MEMCPY(ptr, a->a_nvals[i].bv_val,
749 a->a_nvals[i].bv_len);
750 ptr += a->a_nvals[i].bv_len;
751 *ptr++ = '\0';
752 }
753 } else {
754 entry_putlen(&ptr, 0);
755 }
756 }
757 }
758
759 Debug( LDAP_DEBUG_TRACE, "<= entry_encode(0x%08lx): %s\n",
760 (long) e->e_id, e->e_dn );
761
762 return 0;
763 }
764
765 /* Retrieve an Entry that was stored using entry_encode above.
766 * First entry_header must be called to decode the size of the entry.
767 * Then a single block of memory must be malloc'd to accommodate the
768 * bervals and the bulk data. Next the bulk data is retrieved from
769 * the DB and parsed by entry_decode.
770 *
771 * Note: everything is stored in a single contiguous block, so
772 * you can not free individual attributes or names from this
773 * structure. Attempting to do so will likely corrupt memory.
774 */
entry_header(EntryHeader * eh)775 int entry_header(EntryHeader *eh)
776 {
777 unsigned char *ptr = (unsigned char *)eh->bv.bv_val;
778
779 /* Some overlays can create empty entries
780 * so don't check for zeros here.
781 */
782 eh->nattrs = entry_getlen(&ptr);
783 eh->nvals = entry_getlen(&ptr);
784 eh->data = (char *)ptr;
785 return LDAP_SUCCESS;
786 }
787
788 int
entry_decode_dn(EntryHeader * eh,struct berval * dn,struct berval * ndn)789 entry_decode_dn( EntryHeader *eh, struct berval *dn, struct berval *ndn )
790 {
791 int i;
792 unsigned char *ptr = (unsigned char *)eh->bv.bv_val;
793
794 assert( dn != NULL || ndn != NULL );
795
796 ptr = (unsigned char *)eh->data;
797 i = entry_getlen(&ptr);
798 if ( dn != NULL ) {
799 dn->bv_val = (char *) ptr;
800 dn->bv_len = i;
801 }
802
803 if ( ndn != NULL ) {
804 ptr += i + 1;
805 i = entry_getlen(&ptr);
806 ndn->bv_val = (char *) ptr;
807 ndn->bv_len = i;
808 }
809
810 Debug( LDAP_DEBUG_TRACE,
811 "entry_decode_dn: \"%s\"\n",
812 dn ? dn->bv_val : ndn->bv_val );
813
814 return 0;
815 }
816
817 #ifdef SLAP_ZONE_ALLOC
entry_decode(EntryHeader * eh,Entry ** e,void * ctx)818 int entry_decode(EntryHeader *eh, Entry **e, void *ctx)
819 #else
820 int entry_decode(EntryHeader *eh, Entry **e)
821 #endif
822 {
823 int i, j, nattrs, nvals;
824 int rc;
825 Attribute *a;
826 Entry *x;
827 const char *text;
828 AttributeDescription *ad;
829 unsigned char *ptr = (unsigned char *)eh->bv.bv_val;
830 BerVarray bptr;
831
832 nattrs = eh->nattrs;
833 nvals = eh->nvals;
834 x = entry_alloc();
835 x->e_attrs = attrs_alloc( nattrs );
836 ptr = (unsigned char *)eh->data;
837 i = entry_getlen(&ptr);
838 x->e_name.bv_val = (char *) ptr;
839 x->e_name.bv_len = i;
840 ptr += i+1;
841 i = entry_getlen(&ptr);
842 x->e_nname.bv_val = (char *) ptr;
843 x->e_nname.bv_len = i;
844 ptr += i+1;
845 Debug( LDAP_DEBUG_TRACE,
846 "entry_decode: \"%s\"\n",
847 x->e_dn );
848 x->e_bv = eh->bv;
849
850 a = x->e_attrs;
851 bptr = (BerVarray)eh->bv.bv_val;
852
853 while ((i = entry_getlen(&ptr))) {
854 struct berval bv;
855 bv.bv_len = i;
856 bv.bv_val = (char *) ptr;
857 ad = NULL;
858 rc = slap_bv2ad( &bv, &ad, &text );
859
860 if( rc != LDAP_SUCCESS ) {
861 Debug( LDAP_DEBUG_TRACE,
862 "<= entry_decode: str2ad(%s): %s\n", ptr, text );
863 rc = slap_bv2undef_ad( &bv, &ad, &text, 0 );
864
865 if( rc != LDAP_SUCCESS ) {
866 Debug( LDAP_DEBUG_ANY,
867 "<= entry_decode: slap_str2undef_ad(%s): %s\n",
868 ptr, text );
869 return rc;
870 }
871 }
872 ptr += i + 1;
873 a->a_desc = ad;
874 a->a_flags = SLAP_ATTR_DONT_FREE_DATA | SLAP_ATTR_DONT_FREE_VALS;
875 j = entry_getlen(&ptr);
876 a->a_numvals = j;
877 a->a_vals = bptr;
878
879 while (j) {
880 i = entry_getlen(&ptr);
881 bptr->bv_len = i;
882 bptr->bv_val = (char *)ptr;
883 ptr += i+1;
884 bptr++;
885 j--;
886 }
887 bptr->bv_val = NULL;
888 bptr->bv_len = 0;
889 bptr++;
890
891 j = entry_getlen(&ptr);
892 if (j) {
893 a->a_nvals = bptr;
894 while (j) {
895 i = entry_getlen(&ptr);
896 bptr->bv_len = i;
897 bptr->bv_val = (char *)ptr;
898 ptr += i+1;
899 bptr++;
900 j--;
901 }
902 bptr->bv_val = NULL;
903 bptr->bv_len = 0;
904 bptr++;
905 } else {
906 a->a_nvals = a->a_vals;
907 }
908 /* FIXME: This is redundant once a sorted entry is saved into the DB */
909 if ( a->a_desc->ad_type->sat_flags & SLAP_AT_SORTED_VAL ) {
910 rc = slap_sort_vals( (Modifications *)a, &text, &j, NULL );
911 if ( rc == LDAP_SUCCESS ) {
912 a->a_flags |= SLAP_ATTR_SORTED_VALS;
913 } else if ( rc == LDAP_TYPE_OR_VALUE_EXISTS ) {
914 /* should never happen */
915 Debug( LDAP_DEBUG_ANY,
916 "entry_decode: attributeType %s value #%d provided more than once\n",
917 a->a_desc->ad_cname.bv_val, j );
918 return rc;
919 }
920 }
921 a = a->a_next;
922 nattrs--;
923 if ( !nattrs )
924 break;
925 }
926
927 Debug(LDAP_DEBUG_TRACE, "<= entry_decode(%s)\n",
928 x->e_dn );
929 *e = x;
930 return 0;
931 }
932
933 Entry *
entry_dup2(Entry * dest,Entry * source)934 entry_dup2( Entry *dest, Entry *source )
935 {
936 assert( dest != NULL );
937 assert( source != NULL );
938
939 assert( dest->e_private == NULL );
940
941 dest->e_id = source->e_id;
942 ber_dupbv( &dest->e_name, &source->e_name );
943 ber_dupbv( &dest->e_nname, &source->e_nname );
944 dest->e_attrs = attrs_dup( source->e_attrs );
945 dest->e_ocflags = source->e_ocflags;
946
947 return dest;
948 }
949
950 Entry *
entry_dup(Entry * e)951 entry_dup( Entry *e )
952 {
953 return entry_dup2( entry_alloc(), e );
954 }
955
956 #if 1
957 /* Duplicates an entry using a single malloc. Saves CPU time, increases
958 * heap usage because a single large malloc is harder to satisfy than
959 * lots of small ones, and the freed space isn't as easily reusable.
960 *
961 * Probably not worth using this function.
962 */
entry_dup_bv(Entry * e)963 Entry *entry_dup_bv( Entry *e )
964 {
965 ber_len_t len;
966 int nattrs, nvals;
967 Entry *ret;
968 struct berval *bvl;
969 char *ptr;
970 Attribute *src, *dst;
971
972 ret = entry_alloc();
973
974 entry_partsize(e, &len, &nattrs, &nvals, 1);
975 ret->e_id = e->e_id;
976 ret->e_attrs = attrs_alloc( nattrs );
977 ret->e_ocflags = e->e_ocflags;
978 ret->e_bv.bv_len = len + nvals * sizeof(struct berval);
979 ret->e_bv.bv_val = ch_malloc( ret->e_bv.bv_len );
980
981 bvl = (struct berval *)ret->e_bv.bv_val;
982 ptr = (char *)(bvl + nvals);
983
984 ret->e_name.bv_len = e->e_name.bv_len;
985 ret->e_name.bv_val = ptr;
986 AC_MEMCPY( ptr, e->e_name.bv_val, e->e_name.bv_len );
987 ptr += e->e_name.bv_len;
988 *ptr++ = '\0';
989
990 ret->e_nname.bv_len = e->e_nname.bv_len;
991 ret->e_nname.bv_val = ptr;
992 AC_MEMCPY( ptr, e->e_nname.bv_val, e->e_nname.bv_len );
993 ptr += e->e_name.bv_len;
994 *ptr++ = '\0';
995
996 dst = ret->e_attrs;
997 for (src = e->e_attrs; src; src=src->a_next,dst=dst->a_next ) {
998 int i;
999 dst->a_desc = src->a_desc;
1000 dst->a_flags = SLAP_ATTR_DONT_FREE_DATA | SLAP_ATTR_DONT_FREE_VALS;
1001 dst->a_vals = bvl;
1002 dst->a_numvals = src->a_numvals;
1003 for ( i=0; src->a_vals[i].bv_val; i++ ) {
1004 bvl->bv_len = src->a_vals[i].bv_len;
1005 bvl->bv_val = ptr;
1006 AC_MEMCPY( ptr, src->a_vals[i].bv_val, bvl->bv_len );
1007 ptr += bvl->bv_len;
1008 *ptr++ = '\0';
1009 bvl++;
1010 }
1011 BER_BVZERO(bvl);
1012 bvl++;
1013 if ( src->a_vals != src->a_nvals ) {
1014 dst->a_nvals = bvl;
1015 for ( i=0; src->a_nvals[i].bv_val; i++ ) {
1016 bvl->bv_len = src->a_nvals[i].bv_len;
1017 bvl->bv_val = ptr;
1018 AC_MEMCPY( ptr, src->a_nvals[i].bv_val, bvl->bv_len );
1019 ptr += bvl->bv_len;
1020 *ptr++ = '\0';
1021 bvl++;
1022 }
1023 BER_BVZERO(bvl);
1024 bvl++;
1025 }
1026 }
1027 return ret;
1028 }
1029 #endif
1030