1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "COFFLinkerContext.h" 11 #include "Chunks.h" 12 #include "Config.h" 13 #include "DebugTypes.h" 14 #include "Driver.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "lld/Common/DWARF.h" 18 #include "llvm-c/lto.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/BinaryFormat/COFF.h" 22 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h" 23 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" 24 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 25 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h" 26 #include "llvm/DebugInfo/PDB/Native/NativeSession.h" 27 #include "llvm/DebugInfo/PDB/Native/PDBFile.h" 28 #include "llvm/IR/Mangler.h" 29 #include "llvm/LTO/LTO.h" 30 #include "llvm/Object/Binary.h" 31 #include "llvm/Object/COFF.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/Endian.h" 34 #include "llvm/Support/Error.h" 35 #include "llvm/Support/ErrorOr.h" 36 #include "llvm/Support/FileSystem.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Target/TargetOptions.h" 39 #include "llvm/TargetParser/Triple.h" 40 #include <cstring> 41 #include <optional> 42 #include <system_error> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace llvm::COFF; 47 using namespace llvm::codeview; 48 using namespace llvm::object; 49 using namespace llvm::support::endian; 50 using namespace lld; 51 using namespace lld::coff; 52 53 using llvm::Triple; 54 using llvm::support::ulittle32_t; 55 56 // Returns the last element of a path, which is supposed to be a filename. 57 static StringRef getBasename(StringRef path) { 58 return sys::path::filename(path, sys::path::Style::windows); 59 } 60 61 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)". 62 std::string lld::toString(const coff::InputFile *file) { 63 if (!file) 64 return "<internal>"; 65 if (file->parentName.empty()) 66 return std::string(file->getName()); 67 68 return (getBasename(file->parentName) + "(" + getBasename(file->getName()) + 69 ")") 70 .str(); 71 } 72 73 const COFFSyncStream &coff::operator<<(const COFFSyncStream &s, 74 const InputFile *f) { 75 return s << toString(f); 76 } 77 78 /// Checks that Source is compatible with being a weak alias to Target. 79 /// If Source is Undefined and has no weak alias set, makes it a weak 80 /// alias to Target. 81 static void checkAndSetWeakAlias(SymbolTable &symtab, InputFile *f, 82 Symbol *source, Symbol *target, 83 bool isAntiDep) { 84 if (auto *u = dyn_cast<Undefined>(source)) { 85 if (u->weakAlias && u->weakAlias != target) { 86 // Ignore duplicated anti-dependency symbols. 87 if (isAntiDep) 88 return; 89 if (!u->isAntiDep) { 90 // Weak aliases as produced by GCC are named in the form 91 // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name 92 // of another symbol emitted near the weak symbol. 93 // Just use the definition from the first object file that defined 94 // this weak symbol. 95 if (symtab.ctx.config.allowDuplicateWeak) 96 return; 97 symtab.reportDuplicate(source, f); 98 } 99 } 100 u->setWeakAlias(target, isAntiDep); 101 } 102 } 103 104 static bool ignoredSymbolName(StringRef name) { 105 return name == "@feat.00" || name == "@comp.id"; 106 } 107 108 static coff_symbol_generic *cloneSymbol(COFFSymbolRef sym) { 109 if (sym.isBigObj()) { 110 auto *copy = make<coff_symbol32>( 111 *reinterpret_cast<const coff_symbol32 *>(sym.getRawPtr())); 112 return reinterpret_cast<coff_symbol_generic *>(copy); 113 } else { 114 auto *copy = make<coff_symbol16>( 115 *reinterpret_cast<const coff_symbol16 *>(sym.getRawPtr())); 116 return reinterpret_cast<coff_symbol_generic *>(copy); 117 } 118 } 119 120 ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m) 121 : InputFile(ctx.symtab, ArchiveKind, m) {} 122 123 void ArchiveFile::parse() { 124 COFFLinkerContext &ctx = symtab.ctx; 125 // Parse a MemoryBufferRef as an archive file. 126 file = CHECK(Archive::create(mb), this); 127 128 // Try to read symbols from ECSYMBOLS section on ARM64EC. 129 if (ctx.symtabEC) { 130 iterator_range<Archive::symbol_iterator> symbols = 131 CHECK(file->ec_symbols(), this); 132 if (!symbols.empty()) { 133 for (const Archive::Symbol &sym : symbols) 134 ctx.symtabEC->addLazyArchive(this, sym); 135 136 // Read both EC and native symbols on ARM64X. 137 if (!ctx.hybridSymtab) 138 return; 139 } 140 } 141 142 // Read the symbol table to construct Lazy objects. 143 for (const Archive::Symbol &sym : file->symbols()) 144 ctx.symtab.addLazyArchive(this, sym); 145 } 146 147 // Returns a buffer pointing to a member file containing a given symbol. 148 void ArchiveFile::addMember(const Archive::Symbol &sym) { 149 const Archive::Child &c = 150 CHECK(sym.getMember(), "could not get the member for symbol " + 151 toCOFFString(symtab.ctx, sym)); 152 153 // Return an empty buffer if we have already returned the same buffer. 154 // FIXME: Remove this once we resolve all defineds before all undefineds in 155 // ObjFile::initializeSymbols(). 156 if (!seen.insert(c.getChildOffset()).second) 157 return; 158 159 symtab.ctx.driver.enqueueArchiveMember(c, sym, getName()); 160 } 161 162 std::vector<MemoryBufferRef> 163 lld::coff::getArchiveMembers(COFFLinkerContext &ctx, Archive *file) { 164 std::vector<MemoryBufferRef> v; 165 Error err = Error::success(); 166 167 // Thin archives refer to .o files, so --reproduces needs the .o files too. 168 bool addToTar = file->isThin() && ctx.driver.tar; 169 170 for (const Archive::Child &c : file->children(err)) { 171 MemoryBufferRef mbref = 172 CHECK(c.getMemoryBufferRef(), 173 file->getFileName() + 174 ": could not get the buffer for a child of the archive"); 175 if (addToTar) { 176 ctx.driver.tar->append(relativeToRoot(check(c.getFullName())), 177 mbref.getBuffer()); 178 } 179 v.push_back(mbref); 180 } 181 if (err) 182 Fatal(ctx) << file->getFileName() 183 << ": Archive::children failed: " << toString(std::move(err)); 184 return v; 185 } 186 187 ObjFile::ObjFile(SymbolTable &symtab, COFFObjectFile *coffObj, bool lazy) 188 : InputFile(symtab, ObjectKind, coffObj->getMemoryBufferRef(), lazy), 189 coffObj(coffObj) {} 190 191 ObjFile *ObjFile::create(COFFLinkerContext &ctx, MemoryBufferRef m, bool lazy) { 192 // Parse a memory buffer as a COFF file. 193 Expected<std::unique_ptr<Binary>> bin = createBinary(m); 194 if (!bin) 195 Fatal(ctx) << "Could not parse " << m.getBufferIdentifier(); 196 197 auto *obj = dyn_cast<COFFObjectFile>(bin->get()); 198 if (!obj) 199 Fatal(ctx) << m.getBufferIdentifier() << " is not a COFF file"; 200 201 bin->release(); 202 return make<ObjFile>(ctx.getSymtab(MachineTypes(obj->getMachine())), obj, 203 lazy); 204 } 205 206 void ObjFile::parseLazy() { 207 // Native object file. 208 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 209 for (uint32_t i = 0; i < numSymbols; ++i) { 210 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 211 if (coffSym.isUndefined() || !coffSym.isExternal() || 212 coffSym.isWeakExternal()) 213 continue; 214 StringRef name = check(coffObj->getSymbolName(coffSym)); 215 if (coffSym.isAbsolute() && ignoredSymbolName(name)) 216 continue; 217 symtab.addLazyObject(this, name); 218 if (!lazy) 219 return; 220 i += coffSym.getNumberOfAuxSymbols(); 221 } 222 } 223 224 struct ECMapEntry { 225 ulittle32_t src; 226 ulittle32_t dst; 227 ulittle32_t type; 228 }; 229 230 void ObjFile::initializeECThunks() { 231 for (SectionChunk *chunk : hybmpChunks) { 232 if (chunk->getContents().size() % sizeof(ECMapEntry)) { 233 Err(symtab.ctx) << "Invalid .hybmp chunk size " 234 << chunk->getContents().size(); 235 continue; 236 } 237 238 const uint8_t *end = 239 chunk->getContents().data() + chunk->getContents().size(); 240 for (const uint8_t *iter = chunk->getContents().data(); iter != end; 241 iter += sizeof(ECMapEntry)) { 242 auto entry = reinterpret_cast<const ECMapEntry *>(iter); 243 switch (entry->type) { 244 case Arm64ECThunkType::Entry: 245 symtab.addEntryThunk(getSymbol(entry->src), getSymbol(entry->dst)); 246 break; 247 case Arm64ECThunkType::Exit: 248 symtab.addExitThunk(getSymbol(entry->src), getSymbol(entry->dst)); 249 break; 250 case Arm64ECThunkType::GuestExit: 251 break; 252 default: 253 Warn(symtab.ctx) << "Ignoring unknown EC thunk type " << entry->type; 254 } 255 } 256 } 257 } 258 259 void ObjFile::parse() { 260 // Read section and symbol tables. 261 initializeChunks(); 262 initializeSymbols(); 263 initializeFlags(); 264 initializeDependencies(); 265 initializeECThunks(); 266 } 267 268 const coff_section *ObjFile::getSection(uint32_t i) { 269 auto sec = coffObj->getSection(i); 270 if (!sec) 271 Fatal(symtab.ctx) << "getSection failed: #" << i << ": " << sec.takeError(); 272 return *sec; 273 } 274 275 // We set SectionChunk pointers in the SparseChunks vector to this value 276 // temporarily to mark comdat sections as having an unknown resolution. As we 277 // walk the object file's symbol table, once we visit either a leader symbol or 278 // an associative section definition together with the parent comdat's leader, 279 // we set the pointer to either nullptr (to mark the section as discarded) or a 280 // valid SectionChunk for that section. 281 static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1); 282 283 void ObjFile::initializeChunks() { 284 uint32_t numSections = coffObj->getNumberOfSections(); 285 sparseChunks.resize(numSections + 1); 286 for (uint32_t i = 1; i < numSections + 1; ++i) { 287 const coff_section *sec = getSection(i); 288 if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT) 289 sparseChunks[i] = pendingComdat; 290 else 291 sparseChunks[i] = readSection(i, nullptr, ""); 292 } 293 } 294 295 SectionChunk *ObjFile::readSection(uint32_t sectionNumber, 296 const coff_aux_section_definition *def, 297 StringRef leaderName) { 298 const coff_section *sec = getSection(sectionNumber); 299 300 StringRef name; 301 if (Expected<StringRef> e = coffObj->getSectionName(sec)) 302 name = *e; 303 else 304 Fatal(symtab.ctx) << "getSectionName failed: #" << sectionNumber << ": " 305 << e.takeError(); 306 307 if (name == ".drectve") { 308 ArrayRef<uint8_t> data; 309 cantFail(coffObj->getSectionContents(sec, data)); 310 directives = StringRef((const char *)data.data(), data.size()); 311 return nullptr; 312 } 313 314 if (name == ".llvm_addrsig") { 315 addrsigSec = sec; 316 return nullptr; 317 } 318 319 if (name == ".llvm.call-graph-profile") { 320 callgraphSec = sec; 321 return nullptr; 322 } 323 324 // Object files may have DWARF debug info or MS CodeView debug info 325 // (or both). 326 // 327 // DWARF sections don't need any special handling from the perspective 328 // of the linker; they are just a data section containing relocations. 329 // We can just link them to complete debug info. 330 // 331 // CodeView needs linker support. We need to interpret debug info, 332 // and then write it to a separate .pdb file. 333 334 // Ignore DWARF debug info unless requested to be included. 335 if (!symtab.ctx.config.includeDwarfChunks && name.starts_with(".debug_")) 336 return nullptr; 337 338 if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE) 339 return nullptr; 340 SectionChunk *c; 341 if (isArm64EC(getMachineType())) 342 c = make<SectionChunkEC>(this, sec); 343 else 344 c = make<SectionChunk>(this, sec); 345 if (def) 346 c->checksum = def->CheckSum; 347 348 // CodeView sections are stored to a different vector because they are not 349 // linked in the regular manner. 350 if (c->isCodeView()) 351 debugChunks.push_back(c); 352 else if (name == ".gfids$y") 353 guardFidChunks.push_back(c); 354 else if (name == ".giats$y") 355 guardIATChunks.push_back(c); 356 else if (name == ".gljmp$y") 357 guardLJmpChunks.push_back(c); 358 else if (name == ".gehcont$y") 359 guardEHContChunks.push_back(c); 360 else if (name == ".sxdata") 361 sxDataChunks.push_back(c); 362 else if (isArm64EC(getMachineType()) && name == ".hybmp$x") 363 hybmpChunks.push_back(c); 364 else if (symtab.ctx.config.tailMerge && sec->NumberOfRelocations == 0 && 365 name == ".rdata" && leaderName.starts_with("??_C@")) 366 // COFF sections that look like string literal sections (i.e. no 367 // relocations, in .rdata, leader symbol name matches the MSVC name mangling 368 // for string literals) are subject to string tail merging. 369 MergeChunk::addSection(symtab.ctx, c); 370 else if (name == ".rsrc" || name.starts_with(".rsrc$")) 371 resourceChunks.push_back(c); 372 else if (!(sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_INFO)) 373 chunks.push_back(c); 374 375 return c; 376 } 377 378 void ObjFile::includeResourceChunks() { 379 chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end()); 380 } 381 382 void ObjFile::readAssociativeDefinition( 383 COFFSymbolRef sym, const coff_aux_section_definition *def) { 384 readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj())); 385 } 386 387 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym, 388 const coff_aux_section_definition *def, 389 uint32_t parentIndex) { 390 SectionChunk *parent = sparseChunks[parentIndex]; 391 int32_t sectionNumber = sym.getSectionNumber(); 392 393 auto diag = [&]() { 394 StringRef name = check(coffObj->getSymbolName(sym)); 395 396 StringRef parentName; 397 const coff_section *parentSec = getSection(parentIndex); 398 if (Expected<StringRef> e = coffObj->getSectionName(parentSec)) 399 parentName = *e; 400 Err(symtab.ctx) << toString(this) << ": associative comdat " << name 401 << " (sec " << sectionNumber 402 << ") has invalid reference to section " << parentName 403 << " (sec " << parentIndex << ")"; 404 }; 405 406 if (parent == pendingComdat) { 407 // This can happen if an associative comdat refers to another associative 408 // comdat that appears after it (invalid per COFF spec) or to a section 409 // without any symbols. 410 diag(); 411 return; 412 } 413 414 // Check whether the parent is prevailing. If it is, so are we, and we read 415 // the section; otherwise mark it as discarded. 416 if (parent) { 417 SectionChunk *c = readSection(sectionNumber, def, ""); 418 sparseChunks[sectionNumber] = c; 419 if (c) { 420 c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE; 421 parent->addAssociative(c); 422 } 423 } else { 424 sparseChunks[sectionNumber] = nullptr; 425 } 426 } 427 428 void ObjFile::recordPrevailingSymbolForMingw( 429 COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 430 // For comdat symbols in executable sections, where this is the copy 431 // of the section chunk we actually include instead of discarding it, 432 // add the symbol to a map to allow using it for implicitly 433 // associating .[px]data$<func> sections to it. 434 // Use the suffix from the .text$<func> instead of the leader symbol 435 // name, for cases where the names differ (i386 mangling/decorations, 436 // cases where the leader is a weak symbol named .weak.func.default*). 437 int32_t sectionNumber = sym.getSectionNumber(); 438 SectionChunk *sc = sparseChunks[sectionNumber]; 439 if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) { 440 StringRef name = sc->getSectionName().split('$').second; 441 prevailingSectionMap[name] = sectionNumber; 442 } 443 } 444 445 void ObjFile::maybeAssociateSEHForMingw( 446 COFFSymbolRef sym, const coff_aux_section_definition *def, 447 const DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 448 StringRef name = check(coffObj->getSymbolName(sym)); 449 if (name.consume_front(".pdata$") || name.consume_front(".xdata$") || 450 name.consume_front(".eh_frame$")) { 451 // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly 452 // associative to the symbol <func>. 453 auto parentSym = prevailingSectionMap.find(name); 454 if (parentSym != prevailingSectionMap.end()) 455 readAssociativeDefinition(sym, def, parentSym->second); 456 } 457 } 458 459 Symbol *ObjFile::createRegular(COFFSymbolRef sym) { 460 SectionChunk *sc = sparseChunks[sym.getSectionNumber()]; 461 if (sym.isExternal()) { 462 StringRef name = check(coffObj->getSymbolName(sym)); 463 if (sc) 464 return symtab.addRegular(this, name, sym.getGeneric(), sc, 465 sym.getValue()); 466 // For MinGW symbols named .weak.* that point to a discarded section, 467 // don't create an Undefined symbol. If nothing ever refers to the symbol, 468 // everything should be fine. If something actually refers to the symbol 469 // (e.g. the undefined weak alias), linking will fail due to undefined 470 // references at the end. 471 if (symtab.ctx.config.mingw && name.starts_with(".weak.")) 472 return nullptr; 473 return symtab.addUndefined(name, this, false); 474 } 475 if (sc) { 476 const coff_symbol_generic *symGen = sym.getGeneric(); 477 if (sym.isSection()) { 478 auto *customSymGen = cloneSymbol(sym); 479 customSymGen->Value = 0; 480 symGen = customSymGen; 481 } 482 return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 483 /*IsExternal*/ false, symGen, sc); 484 } 485 return nullptr; 486 } 487 488 void ObjFile::initializeSymbols() { 489 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 490 symbols.resize(numSymbols); 491 492 SmallVector<std::pair<Symbol *, const coff_aux_weak_external *>, 8> 493 weakAliases; 494 std::vector<uint32_t> pendingIndexes; 495 pendingIndexes.reserve(numSymbols); 496 497 DenseMap<StringRef, uint32_t> prevailingSectionMap; 498 std::vector<const coff_aux_section_definition *> comdatDefs( 499 coffObj->getNumberOfSections() + 1); 500 COFFLinkerContext &ctx = symtab.ctx; 501 502 for (uint32_t i = 0; i < numSymbols; ++i) { 503 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 504 bool prevailingComdat; 505 if (coffSym.isUndefined()) { 506 symbols[i] = createUndefined(coffSym, false); 507 } else if (coffSym.isWeakExternal()) { 508 auto aux = coffSym.getAux<coff_aux_weak_external>(); 509 bool overrideLazy = true; 510 511 // On ARM64EC, external function calls emit a pair of weak-dependency 512 // aliases: func to #func and #func to the func guess exit thunk 513 // (instead of a single undefined func symbol, which would be emitted on 514 // other targets). Allow such aliases to be overridden by lazy archive 515 // symbols, just as we would for undefined symbols. 516 if (isArm64EC(getMachineType()) && 517 aux->Characteristics == IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY) { 518 COFFSymbolRef targetSym = check(coffObj->getSymbol(aux->TagIndex)); 519 if (!targetSym.isAnyUndefined()) { 520 // If the target is defined, it may be either a guess exit thunk or 521 // the actual implementation. If it's the latter, consider the alias 522 // to be part of the implementation and override potential lazy 523 // archive symbols. 524 StringRef targetName = check(coffObj->getSymbolName(targetSym)); 525 StringRef name = check(coffObj->getSymbolName(coffSym)); 526 std::optional<std::string> mangledName = 527 getArm64ECMangledFunctionName(name); 528 overrideLazy = mangledName == targetName; 529 } else { 530 overrideLazy = false; 531 } 532 } 533 symbols[i] = createUndefined(coffSym, overrideLazy); 534 weakAliases.emplace_back(symbols[i], aux); 535 } else if (std::optional<Symbol *> optSym = 536 createDefined(coffSym, comdatDefs, prevailingComdat)) { 537 symbols[i] = *optSym; 538 if (ctx.config.mingw && prevailingComdat) 539 recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap); 540 } else { 541 // createDefined() returns std::nullopt if a symbol belongs to a section 542 // that was pending at the point when the symbol was read. This can happen 543 // in two cases: 544 // 1) section definition symbol for a comdat leader; 545 // 2) symbol belongs to a comdat section associated with another section. 546 // In both of these cases, we can expect the section to be resolved by 547 // the time we finish visiting the remaining symbols in the symbol 548 // table. So we postpone the handling of this symbol until that time. 549 pendingIndexes.push_back(i); 550 } 551 i += coffSym.getNumberOfAuxSymbols(); 552 } 553 554 for (uint32_t i : pendingIndexes) { 555 COFFSymbolRef sym = check(coffObj->getSymbol(i)); 556 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 557 if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) 558 readAssociativeDefinition(sym, def); 559 else if (ctx.config.mingw) 560 maybeAssociateSEHForMingw(sym, def, prevailingSectionMap); 561 } 562 if (sparseChunks[sym.getSectionNumber()] == pendingComdat) { 563 StringRef name = check(coffObj->getSymbolName(sym)); 564 Log(ctx) << "comdat section " << name 565 << " without leader and unassociated, discarding"; 566 continue; 567 } 568 symbols[i] = createRegular(sym); 569 } 570 571 for (auto &kv : weakAliases) { 572 Symbol *sym = kv.first; 573 const coff_aux_weak_external *aux = kv.second; 574 checkAndSetWeakAlias(symtab, this, sym, symbols[aux->TagIndex], 575 aux->Characteristics == 576 IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY); 577 } 578 579 // Free the memory used by sparseChunks now that symbol loading is finished. 580 decltype(sparseChunks)().swap(sparseChunks); 581 } 582 583 Symbol *ObjFile::createUndefined(COFFSymbolRef sym, bool overrideLazy) { 584 StringRef name = check(coffObj->getSymbolName(sym)); 585 Symbol *s = symtab.addUndefined(name, this, overrideLazy); 586 587 // Add an anti-dependency alias for undefined AMD64 symbols on the ARM64EC 588 // target. 589 if (symtab.isEC() && getMachineType() == AMD64) { 590 auto u = dyn_cast<Undefined>(s); 591 if (u && !u->weakAlias) { 592 if (std::optional<std::string> mangledName = 593 getArm64ECMangledFunctionName(name)) { 594 Symbol *m = symtab.addUndefined(saver().save(*mangledName), this, 595 /*overrideLazy=*/false); 596 u->setWeakAlias(m, /*antiDep=*/true); 597 } 598 } 599 } 600 return s; 601 } 602 603 static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj, 604 int32_t section) { 605 uint32_t numSymbols = obj->getNumberOfSymbols(); 606 for (uint32_t i = 0; i < numSymbols; ++i) { 607 COFFSymbolRef sym = check(obj->getSymbol(i)); 608 if (sym.getSectionNumber() != section) 609 continue; 610 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) 611 return def; 612 } 613 return nullptr; 614 } 615 616 void ObjFile::handleComdatSelection( 617 COFFSymbolRef sym, COMDATType &selection, bool &prevailing, 618 DefinedRegular *leader, 619 const llvm::object::coff_aux_section_definition *def) { 620 if (prevailing) 621 return; 622 // There's already an existing comdat for this symbol: `Leader`. 623 // Use the comdats's selection field to determine if the new 624 // symbol in `Sym` should be discarded, produce a duplicate symbol 625 // error, etc. 626 627 SectionChunk *leaderChunk = leader->getChunk(); 628 COMDATType leaderSelection = leaderChunk->selection; 629 COFFLinkerContext &ctx = symtab.ctx; 630 631 assert(leader->data && "Comdat leader without SectionChunk?"); 632 if (isa<BitcodeFile>(leader->file)) { 633 // If the leader is only a LTO symbol, we don't know e.g. its final size 634 // yet, so we can't do the full strict comdat selection checking yet. 635 selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY; 636 } 637 638 if ((selection == IMAGE_COMDAT_SELECT_ANY && 639 leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) || 640 (selection == IMAGE_COMDAT_SELECT_LARGEST && 641 leaderSelection == IMAGE_COMDAT_SELECT_ANY)) { 642 // cl.exe picks "any" for vftables when building with /GR- and 643 // "largest" when building with /GR. To be able to link object files 644 // compiled with each flag, "any" and "largest" are merged as "largest". 645 leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST; 646 } 647 648 // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as". 649 // Clang on the other hand picks "any". To be able to link two object files 650 // with a __declspec(selectany) declaration, one compiled with gcc and the 651 // other with clang, we merge them as proper "same size as" 652 if (ctx.config.mingw && ((selection == IMAGE_COMDAT_SELECT_ANY && 653 leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) || 654 (selection == IMAGE_COMDAT_SELECT_SAME_SIZE && 655 leaderSelection == IMAGE_COMDAT_SELECT_ANY))) { 656 leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE; 657 } 658 659 // Other than that, comdat selections must match. This is a bit more 660 // strict than link.exe which allows merging "any" and "largest" if "any" 661 // is the first symbol the linker sees, and it allows merging "largest" 662 // with everything (!) if "largest" is the first symbol the linker sees. 663 // Making this symmetric independent of which selection is seen first 664 // seems better though. 665 // (This behavior matches ModuleLinker::getComdatResult().) 666 if (selection != leaderSelection) { 667 Log(ctx) << "conflicting comdat type for " << leader << ": " 668 << (int)leaderSelection << " in " << leader->getFile() << " and " 669 << (int)selection << " in " << this; 670 symtab.reportDuplicate(leader, this); 671 return; 672 } 673 674 switch (selection) { 675 case IMAGE_COMDAT_SELECT_NODUPLICATES: 676 symtab.reportDuplicate(leader, this); 677 break; 678 679 case IMAGE_COMDAT_SELECT_ANY: 680 // Nothing to do. 681 break; 682 683 case IMAGE_COMDAT_SELECT_SAME_SIZE: 684 if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) { 685 if (!ctx.config.mingw) { 686 symtab.reportDuplicate(leader, this); 687 } else { 688 const coff_aux_section_definition *leaderDef = nullptr; 689 if (leaderChunk->file) 690 leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(), 691 leaderChunk->getSectionNumber()); 692 if (!leaderDef || leaderDef->Length != def->Length) 693 symtab.reportDuplicate(leader, this); 694 } 695 } 696 break; 697 698 case IMAGE_COMDAT_SELECT_EXACT_MATCH: { 699 SectionChunk newChunk(this, getSection(sym)); 700 // link.exe only compares section contents here and doesn't complain 701 // if the two comdat sections have e.g. different alignment. 702 // Match that. 703 if (leaderChunk->getContents() != newChunk.getContents()) 704 symtab.reportDuplicate(leader, this, &newChunk, sym.getValue()); 705 break; 706 } 707 708 case IMAGE_COMDAT_SELECT_ASSOCIATIVE: 709 // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE. 710 // (This means lld-link doesn't produce duplicate symbol errors for 711 // associative comdats while link.exe does, but associate comdats 712 // are never extern in practice.) 713 llvm_unreachable("createDefined not called for associative comdats"); 714 715 case IMAGE_COMDAT_SELECT_LARGEST: 716 if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) { 717 // Replace the existing comdat symbol with the new one. 718 StringRef name = check(coffObj->getSymbolName(sym)); 719 // FIXME: This is incorrect: With /opt:noref, the previous sections 720 // make it into the final executable as well. Correct handling would 721 // be to undo reading of the whole old section that's being replaced, 722 // or doing one pass that determines what the final largest comdat 723 // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading 724 // only the largest one. 725 replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true, 726 /*IsExternal*/ true, sym.getGeneric(), 727 nullptr); 728 prevailing = true; 729 } 730 break; 731 732 case IMAGE_COMDAT_SELECT_NEWEST: 733 llvm_unreachable("should have been rejected earlier"); 734 } 735 } 736 737 std::optional<Symbol *> ObjFile::createDefined( 738 COFFSymbolRef sym, 739 std::vector<const coff_aux_section_definition *> &comdatDefs, 740 bool &prevailing) { 741 prevailing = false; 742 auto getName = [&]() { return check(coffObj->getSymbolName(sym)); }; 743 744 if (sym.isCommon()) { 745 auto *c = make<CommonChunk>(sym); 746 chunks.push_back(c); 747 return symtab.addCommon(this, getName(), sym.getValue(), sym.getGeneric(), 748 c); 749 } 750 751 COFFLinkerContext &ctx = symtab.ctx; 752 if (sym.isAbsolute()) { 753 StringRef name = getName(); 754 755 if (name == "@feat.00") 756 feat00Flags = sym.getValue(); 757 // Skip special symbols. 758 if (ignoredSymbolName(name)) 759 return nullptr; 760 761 if (sym.isExternal()) 762 return symtab.addAbsolute(name, sym); 763 return make<DefinedAbsolute>(ctx, name, sym); 764 } 765 766 int32_t sectionNumber = sym.getSectionNumber(); 767 if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG) 768 return nullptr; 769 770 if (sym.isEmptySectionDeclaration()) { 771 // As there is no coff_section in the object file for these, make a 772 // new virtual one, with everything zeroed out (i.e. an empty section), 773 // with only the name and characteristics set. 774 StringRef name = getName(); 775 auto *hdr = make<coff_section>(); 776 memset(hdr, 0, sizeof(*hdr)); 777 strncpy(hdr->Name, name.data(), 778 std::min(name.size(), (size_t)COFF::NameSize)); 779 // The Value field in a section symbol may contain the characteristics, 780 // or it may be zero, where we make something up (that matches what is 781 // used in .idata sections in the regular object files in import libraries). 782 if (sym.getValue()) 783 hdr->Characteristics = sym.getValue() | IMAGE_SCN_ALIGN_4BYTES; 784 else 785 hdr->Characteristics = IMAGE_SCN_CNT_INITIALIZED_DATA | 786 IMAGE_SCN_MEM_READ | IMAGE_SCN_MEM_WRITE | 787 IMAGE_SCN_ALIGN_4BYTES; 788 auto *sc = make<SectionChunk>(this, hdr); 789 chunks.push_back(sc); 790 791 auto *symGen = cloneSymbol(sym); 792 // Ignore the Value offset of these symbols, as it may be a bitmask. 793 symGen->Value = 0; 794 return make<DefinedRegular>(this, /*name=*/"", /*isCOMDAT=*/false, 795 /*isExternal=*/false, symGen, sc); 796 } 797 798 if (llvm::COFF::isReservedSectionNumber(sectionNumber)) 799 Fatal(ctx) << toString(this) << ": " << getName() 800 << " should not refer to special section " 801 << Twine(sectionNumber); 802 803 if ((uint32_t)sectionNumber >= sparseChunks.size()) 804 Fatal(ctx) << toString(this) << ": " << getName() 805 << " should not refer to non-existent section " 806 << Twine(sectionNumber); 807 808 // Comdat handling. 809 // A comdat symbol consists of two symbol table entries. 810 // The first symbol entry has the name of the section (e.g. .text), fixed 811 // values for the other fields, and one auxiliary record. 812 // The second symbol entry has the name of the comdat symbol, called the 813 // "comdat leader". 814 // When this function is called for the first symbol entry of a comdat, 815 // it sets comdatDefs and returns std::nullopt, and when it's called for the 816 // second symbol entry it reads comdatDefs and then sets it back to nullptr. 817 818 // Handle comdat leader. 819 if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) { 820 comdatDefs[sectionNumber] = nullptr; 821 DefinedRegular *leader; 822 823 if (sym.isExternal()) { 824 std::tie(leader, prevailing) = 825 symtab.addComdat(this, getName(), sym.getGeneric()); 826 } else { 827 leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 828 /*IsExternal*/ false, sym.getGeneric()); 829 prevailing = true; 830 } 831 832 if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES || 833 // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe 834 // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either. 835 def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) { 836 Fatal(ctx) << "unknown comdat type " 837 << std::to_string((int)def->Selection) << " for " << getName() 838 << " in " << toString(this); 839 } 840 COMDATType selection = (COMDATType)def->Selection; 841 842 if (leader->isCOMDAT) 843 handleComdatSelection(sym, selection, prevailing, leader, def); 844 845 if (prevailing) { 846 SectionChunk *c = readSection(sectionNumber, def, getName()); 847 sparseChunks[sectionNumber] = c; 848 if (!c) 849 return nullptr; 850 c->sym = cast<DefinedRegular>(leader); 851 c->selection = selection; 852 cast<DefinedRegular>(leader)->data = &c->repl; 853 } else { 854 sparseChunks[sectionNumber] = nullptr; 855 } 856 return leader; 857 } 858 859 // Prepare to handle the comdat leader symbol by setting the section's 860 // ComdatDefs pointer if we encounter a non-associative comdat. 861 if (sparseChunks[sectionNumber] == pendingComdat) { 862 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 863 if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE) 864 comdatDefs[sectionNumber] = def; 865 } 866 return std::nullopt; 867 } 868 869 return createRegular(sym); 870 } 871 872 MachineTypes ObjFile::getMachineType() const { 873 return static_cast<MachineTypes>(coffObj->getMachine()); 874 } 875 876 ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) { 877 if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName)) 878 return sec->consumeDebugMagic(); 879 return {}; 880 } 881 882 // OBJ files systematically store critical information in a .debug$S stream, 883 // even if the TU was compiled with no debug info. At least two records are 884 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the 885 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is 886 // currently used to initialize the hotPatchable member. 887 void ObjFile::initializeFlags() { 888 ArrayRef<uint8_t> data = getDebugSection(".debug$S"); 889 if (data.empty()) 890 return; 891 892 DebugSubsectionArray subsections; 893 894 BinaryStreamReader reader(data, llvm::endianness::little); 895 ExitOnError exitOnErr; 896 exitOnErr(reader.readArray(subsections, data.size())); 897 898 for (const DebugSubsectionRecord &ss : subsections) { 899 if (ss.kind() != DebugSubsectionKind::Symbols) 900 continue; 901 902 unsigned offset = 0; 903 904 // Only parse the first two records. We are only looking for S_OBJNAME 905 // and S_COMPILE3, and they usually appear at the beginning of the 906 // stream. 907 for (unsigned i = 0; i < 2; ++i) { 908 Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset); 909 if (!sym) { 910 consumeError(sym.takeError()); 911 return; 912 } 913 if (sym->kind() == SymbolKind::S_COMPILE3) { 914 auto cs = 915 cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get())); 916 hotPatchable = 917 (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None; 918 } 919 if (sym->kind() == SymbolKind::S_OBJNAME) { 920 auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>( 921 sym.get())); 922 if (objName.Signature) 923 pchSignature = objName.Signature; 924 } 925 offset += sym->length(); 926 } 927 } 928 } 929 930 // Depending on the compilation flags, OBJs can refer to external files, 931 // necessary to merge this OBJ into the final PDB. We currently support two 932 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu. 933 // And PDB type servers, when compiling with /Zi. This function extracts these 934 // dependencies and makes them available as a TpiSource interface (see 935 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular 936 // output even with /Yc and /Yu and with /Zi. 937 void ObjFile::initializeDependencies() { 938 COFFLinkerContext &ctx = symtab.ctx; 939 if (!ctx.config.debug) 940 return; 941 942 bool isPCH = false; 943 944 ArrayRef<uint8_t> data = getDebugSection(".debug$P"); 945 if (!data.empty()) 946 isPCH = true; 947 else 948 data = getDebugSection(".debug$T"); 949 950 // symbols but no types, make a plain, empty TpiSource anyway, because it 951 // simplifies adding the symbols later. 952 if (data.empty()) { 953 if (!debugChunks.empty()) 954 debugTypesObj = makeTpiSource(ctx, this); 955 return; 956 } 957 958 // Get the first type record. It will indicate if this object uses a type 959 // server (/Zi) or a PCH file (/Yu). 960 CVTypeArray types; 961 BinaryStreamReader reader(data, llvm::endianness::little); 962 cantFail(reader.readArray(types, reader.getLength())); 963 CVTypeArray::Iterator firstType = types.begin(); 964 if (firstType == types.end()) 965 return; 966 967 // Remember the .debug$T or .debug$P section. 968 debugTypes = data; 969 970 // This object file is a PCH file that others will depend on. 971 if (isPCH) { 972 debugTypesObj = makePrecompSource(ctx, this); 973 return; 974 } 975 976 // This object file was compiled with /Zi. Enqueue the PDB dependency. 977 if (firstType->kind() == LF_TYPESERVER2) { 978 TypeServer2Record ts = cantFail( 979 TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data())); 980 debugTypesObj = makeUseTypeServerSource(ctx, this, ts); 981 enqueuePdbFile(ts.getName(), this); 982 return; 983 } 984 985 // This object was compiled with /Yu. It uses types from another object file 986 // with a matching signature. 987 if (firstType->kind() == LF_PRECOMP) { 988 PrecompRecord precomp = cantFail( 989 TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data())); 990 // We're better off trusting the LF_PRECOMP signature. In some cases the 991 // S_OBJNAME record doesn't contain a valid PCH signature. 992 if (precomp.Signature) 993 pchSignature = precomp.Signature; 994 debugTypesObj = makeUsePrecompSource(ctx, this, precomp); 995 // Drop the LF_PRECOMP record from the input stream. 996 debugTypes = debugTypes.drop_front(firstType->RecordData.size()); 997 return; 998 } 999 1000 // This is a plain old object file. 1001 debugTypesObj = makeTpiSource(ctx, this); 1002 } 1003 1004 // The casing of the PDB path stamped in the OBJ can differ from the actual path 1005 // on disk. With this, we ensure to always use lowercase as a key for the 1006 // pdbInputFileInstances map, at least on Windows. 1007 static std::string normalizePdbPath(StringRef path) { 1008 #if defined(_WIN32) 1009 return path.lower(); 1010 #else // LINUX 1011 return std::string(path); 1012 #endif 1013 } 1014 1015 // If existing, return the actual PDB path on disk. 1016 static std::optional<std::string> 1017 findPdbPath(StringRef pdbPath, ObjFile *dependentFile, StringRef outputPath) { 1018 // Ensure the file exists before anything else. In some cases, if the path 1019 // points to a removable device, Driver::enqueuePath() would fail with an 1020 // error (EAGAIN, "resource unavailable try again") which we want to skip 1021 // silently. 1022 if (llvm::sys::fs::exists(pdbPath)) 1023 return normalizePdbPath(pdbPath); 1024 1025 StringRef objPath = !dependentFile->parentName.empty() 1026 ? dependentFile->parentName 1027 : dependentFile->getName(); 1028 1029 // Currently, type server PDBs are only created by MSVC cl, which only runs 1030 // on Windows, so we can assume type server paths are Windows style. 1031 StringRef pdbName = sys::path::filename(pdbPath, sys::path::Style::windows); 1032 1033 // Check if the PDB is in the same folder as the OBJ. 1034 SmallString<128> path; 1035 sys::path::append(path, sys::path::parent_path(objPath), pdbName); 1036 if (llvm::sys::fs::exists(path)) 1037 return normalizePdbPath(path); 1038 1039 // Check if the PDB is in the output folder. 1040 path.clear(); 1041 sys::path::append(path, sys::path::parent_path(outputPath), pdbName); 1042 if (llvm::sys::fs::exists(path)) 1043 return normalizePdbPath(path); 1044 1045 return std::nullopt; 1046 } 1047 1048 PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m) 1049 : InputFile(ctx.symtab, PDBKind, m) {} 1050 1051 PDBInputFile::~PDBInputFile() = default; 1052 1053 PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx, 1054 StringRef path, 1055 ObjFile *fromFile) { 1056 auto p = findPdbPath(path.str(), fromFile, ctx.config.outputFile); 1057 if (!p) 1058 return nullptr; 1059 auto it = ctx.pdbInputFileInstances.find(*p); 1060 if (it != ctx.pdbInputFileInstances.end()) 1061 return it->second; 1062 return nullptr; 1063 } 1064 1065 void PDBInputFile::parse() { 1066 symtab.ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this; 1067 1068 std::unique_ptr<pdb::IPDBSession> thisSession; 1069 Error E = pdb::NativeSession::createFromPdb( 1070 MemoryBuffer::getMemBuffer(mb, false), thisSession); 1071 if (E) { 1072 loadErrorStr.emplace(toString(std::move(E))); 1073 return; // fail silently at this point - the error will be handled later, 1074 // when merging the debug type stream 1075 } 1076 1077 session.reset(static_cast<pdb::NativeSession *>(thisSession.release())); 1078 1079 pdb::PDBFile &pdbFile = session->getPDBFile(); 1080 auto expectedInfo = pdbFile.getPDBInfoStream(); 1081 // All PDB Files should have an Info stream. 1082 if (!expectedInfo) { 1083 loadErrorStr.emplace(toString(expectedInfo.takeError())); 1084 return; 1085 } 1086 debugTypesObj = makeTypeServerSource(symtab.ctx, this); 1087 } 1088 1089 // Used only for DWARF debug info, which is not common (except in MinGW 1090 // environments). This returns an optional pair of file name and line 1091 // number for where the variable was defined. 1092 std::optional<std::pair<StringRef, uint32_t>> 1093 ObjFile::getVariableLocation(StringRef var) { 1094 if (!dwarf) { 1095 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 1096 if (!dwarf) 1097 return std::nullopt; 1098 } 1099 if (symtab.machine == I386) 1100 var.consume_front("_"); 1101 std::optional<std::pair<std::string, unsigned>> ret = 1102 dwarf->getVariableLoc(var); 1103 if (!ret) 1104 return std::nullopt; 1105 return std::make_pair(saver().save(ret->first), ret->second); 1106 } 1107 1108 // Used only for DWARF debug info, which is not common (except in MinGW 1109 // environments). 1110 std::optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset, 1111 uint32_t sectionIndex) { 1112 if (!dwarf) { 1113 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 1114 if (!dwarf) 1115 return std::nullopt; 1116 } 1117 1118 return dwarf->getDILineInfo(offset, sectionIndex); 1119 } 1120 1121 void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) { 1122 auto p = findPdbPath(path.str(), fromFile, symtab.ctx.config.outputFile); 1123 if (!p) 1124 return; 1125 auto it = symtab.ctx.pdbInputFileInstances.emplace(*p, nullptr); 1126 if (!it.second) 1127 return; // already scheduled for load 1128 symtab.ctx.driver.enqueuePDB(*p); 1129 } 1130 1131 ImportFile::ImportFile(COFFLinkerContext &ctx, MemoryBufferRef m) 1132 : InputFile(ctx.getSymtab(getMachineType(m)), ImportKind, m), 1133 live(!ctx.config.doGC) {} 1134 1135 MachineTypes ImportFile::getMachineType(MemoryBufferRef m) { 1136 uint16_t machine = 1137 reinterpret_cast<const coff_import_header *>(m.getBufferStart())->Machine; 1138 return MachineTypes(machine); 1139 } 1140 1141 bool ImportFile::isSameImport(const ImportFile *other) const { 1142 if (!externalName.empty()) 1143 return other->externalName == externalName; 1144 return hdr->OrdinalHint == other->hdr->OrdinalHint; 1145 } 1146 1147 ImportThunkChunk *ImportFile::makeImportThunk() { 1148 switch (hdr->Machine) { 1149 case AMD64: 1150 return make<ImportThunkChunkX64>(symtab.ctx, impSym); 1151 case I386: 1152 return make<ImportThunkChunkX86>(symtab.ctx, impSym); 1153 case ARM64: 1154 return make<ImportThunkChunkARM64>(symtab.ctx, impSym, ARM64); 1155 case ARMNT: 1156 return make<ImportThunkChunkARM>(symtab.ctx, impSym); 1157 } 1158 llvm_unreachable("unknown machine type"); 1159 } 1160 1161 void ImportFile::parse() { 1162 const auto *hdr = 1163 reinterpret_cast<const coff_import_header *>(mb.getBufferStart()); 1164 1165 // Check if the total size is valid. 1166 if (mb.getBufferSize() < sizeof(*hdr) || 1167 mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData) 1168 Fatal(symtab.ctx) << "broken import library"; 1169 1170 // Read names and create an __imp_ symbol. 1171 StringRef buf = mb.getBuffer().substr(sizeof(*hdr)); 1172 auto split = buf.split('\0'); 1173 buf = split.second; 1174 StringRef name; 1175 if (isArm64EC(hdr->Machine)) { 1176 if (std::optional<std::string> demangledName = 1177 getArm64ECDemangledFunctionName(split.first)) 1178 name = saver().save(*demangledName); 1179 } 1180 if (name.empty()) 1181 name = saver().save(split.first); 1182 StringRef impName = saver().save("__imp_" + name); 1183 dllName = buf.split('\0').first; 1184 StringRef extName; 1185 switch (hdr->getNameType()) { 1186 case IMPORT_ORDINAL: 1187 extName = ""; 1188 break; 1189 case IMPORT_NAME: 1190 extName = name; 1191 break; 1192 case IMPORT_NAME_NOPREFIX: 1193 extName = ltrim1(name, "?@_"); 1194 break; 1195 case IMPORT_NAME_UNDECORATE: 1196 extName = ltrim1(name, "?@_"); 1197 extName = extName.substr(0, extName.find('@')); 1198 break; 1199 case IMPORT_NAME_EXPORTAS: 1200 extName = buf.substr(dllName.size() + 1).split('\0').first; 1201 break; 1202 } 1203 1204 this->hdr = hdr; 1205 externalName = extName; 1206 1207 bool isCode = hdr->getType() == llvm::COFF::IMPORT_CODE; 1208 1209 if (!symtab.isEC()) { 1210 impSym = symtab.addImportData(impName, this, location); 1211 } else { 1212 // In addition to the regular IAT, ARM64EC also contains an auxiliary IAT, 1213 // which holds addresses that are guaranteed to be callable directly from 1214 // ARM64 code. Function symbol naming is swapped: __imp_ symbols refer to 1215 // the auxiliary IAT, while __imp_aux_ symbols refer to the regular IAT. For 1216 // data imports, the naming is reversed. 1217 StringRef auxImpName = saver().save("__imp_aux_" + name); 1218 if (isCode) { 1219 impSym = symtab.addImportData(auxImpName, this, location); 1220 impECSym = symtab.addImportData(impName, this, auxLocation); 1221 } else { 1222 impSym = symtab.addImportData(impName, this, location); 1223 impECSym = symtab.addImportData(auxImpName, this, auxLocation); 1224 } 1225 if (!impECSym) 1226 return; 1227 1228 StringRef auxImpCopyName = saver().save("__auximpcopy_" + name); 1229 auxImpCopySym = symtab.addImportData(auxImpCopyName, this, auxCopyLocation); 1230 if (!auxImpCopySym) 1231 return; 1232 } 1233 // If this was a duplicate, we logged an error but may continue; 1234 // in this case, impSym is nullptr. 1235 if (!impSym) 1236 return; 1237 1238 if (hdr->getType() == llvm::COFF::IMPORT_CONST) 1239 static_cast<void>(symtab.addImportData(name, this, location)); 1240 1241 // If type is function, we need to create a thunk which jump to an 1242 // address pointed by the __imp_ symbol. (This allows you to call 1243 // DLL functions just like regular non-DLL functions.) 1244 if (isCode) { 1245 if (!symtab.isEC()) { 1246 thunkSym = symtab.addImportThunk(name, impSym, makeImportThunk()); 1247 } else { 1248 thunkSym = symtab.addImportThunk( 1249 name, impSym, make<ImportThunkChunkX64>(symtab.ctx, impSym)); 1250 1251 if (std::optional<std::string> mangledName = 1252 getArm64ECMangledFunctionName(name)) { 1253 StringRef auxThunkName = saver().save(*mangledName); 1254 auxThunkSym = symtab.addImportThunk( 1255 auxThunkName, impECSym, 1256 make<ImportThunkChunkARM64>(symtab.ctx, impECSym, ARM64EC)); 1257 } 1258 1259 StringRef impChkName = saver().save("__impchk_" + name); 1260 impchkThunk = make<ImportThunkChunkARM64EC>(this); 1261 impchkThunk->sym = symtab.addImportThunk(impChkName, impSym, impchkThunk); 1262 symtab.ctx.driver.pullArm64ECIcallHelper(); 1263 } 1264 } 1265 } 1266 1267 BitcodeFile::BitcodeFile(SymbolTable &symtab, MemoryBufferRef mb, 1268 std::unique_ptr<lto::InputFile> &o, bool lazy) 1269 : InputFile(symtab, BitcodeKind, mb, lazy) { 1270 obj.swap(o); 1271 } 1272 1273 BitcodeFile *BitcodeFile::create(COFFLinkerContext &ctx, MemoryBufferRef mb, 1274 StringRef archiveName, 1275 uint64_t offsetInArchive, bool lazy) { 1276 std::string path = mb.getBufferIdentifier().str(); 1277 if (ctx.config.thinLTOIndexOnly) 1278 path = replaceThinLTOSuffix(mb.getBufferIdentifier(), 1279 ctx.config.thinLTOObjectSuffixReplace.first, 1280 ctx.config.thinLTOObjectSuffixReplace.second); 1281 1282 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1283 // name. If two archives define two members with the same name, this 1284 // causes a collision which result in only one of the objects being taken 1285 // into consideration at LTO time (which very likely causes undefined 1286 // symbols later in the link stage). So we append file offset to make 1287 // filename unique. 1288 MemoryBufferRef mbref(mb.getBuffer(), 1289 saver().save(archiveName.empty() 1290 ? path 1291 : archiveName + 1292 sys::path::filename(path) + 1293 utostr(offsetInArchive))); 1294 1295 std::unique_ptr<lto::InputFile> obj = check(lto::InputFile::create(mbref)); 1296 return make<BitcodeFile>(ctx.getSymtab(getMachineType(obj.get())), mb, obj, 1297 lazy); 1298 } 1299 1300 BitcodeFile::~BitcodeFile() = default; 1301 1302 void BitcodeFile::parse() { 1303 llvm::StringSaver &saver = lld::saver(); 1304 1305 std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size()); 1306 for (size_t i = 0; i != obj->getComdatTable().size(); ++i) 1307 // FIXME: Check nodeduplicate 1308 comdat[i] = 1309 symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first)); 1310 for (const lto::InputFile::Symbol &objSym : obj->symbols()) { 1311 StringRef symName = saver.save(objSym.getName()); 1312 int comdatIndex = objSym.getComdatIndex(); 1313 Symbol *sym; 1314 SectionChunk *fakeSC = nullptr; 1315 if (objSym.isExecutable()) 1316 fakeSC = &symtab.ctx.ltoTextSectionChunk.chunk; 1317 else 1318 fakeSC = &symtab.ctx.ltoDataSectionChunk.chunk; 1319 if (objSym.isUndefined()) { 1320 sym = symtab.addUndefined(symName, this, false); 1321 if (objSym.isWeak()) 1322 sym->deferUndefined = true; 1323 // If one LTO object file references (i.e. has an undefined reference to) 1324 // a symbol with an __imp_ prefix, the LTO compilation itself sees it 1325 // as unprefixed but with a dllimport attribute instead, and doesn't 1326 // understand the relation to a concrete IR symbol with the __imp_ prefix. 1327 // 1328 // For such cases, mark the symbol as used in a regular object (i.e. the 1329 // symbol must be retained) so that the linker can associate the 1330 // references in the end. If the symbol is defined in an import library 1331 // or in a regular object file, this has no effect, but if it is defined 1332 // in another LTO object file, this makes sure it is kept, to fulfill 1333 // the reference when linking the output of the LTO compilation. 1334 if (symName.starts_with("__imp_")) 1335 sym->isUsedInRegularObj = true; 1336 } else if (objSym.isCommon()) { 1337 sym = symtab.addCommon(this, symName, objSym.getCommonSize()); 1338 } else if (objSym.isWeak() && objSym.isIndirect()) { 1339 // Weak external. 1340 sym = symtab.addUndefined(symName, this, true); 1341 std::string fallback = std::string(objSym.getCOFFWeakExternalFallback()); 1342 Symbol *alias = symtab.addUndefined(saver.save(fallback)); 1343 checkAndSetWeakAlias(symtab, this, sym, alias, false); 1344 } else if (comdatIndex != -1) { 1345 if (symName == obj->getComdatTable()[comdatIndex].first) { 1346 sym = comdat[comdatIndex].first; 1347 if (cast<DefinedRegular>(sym)->data == nullptr) 1348 cast<DefinedRegular>(sym)->data = &fakeSC->repl; 1349 } else if (comdat[comdatIndex].second) { 1350 sym = symtab.addRegular(this, symName, nullptr, fakeSC); 1351 } else { 1352 sym = symtab.addUndefined(symName, this, false); 1353 } 1354 } else { 1355 sym = 1356 symtab.addRegular(this, symName, nullptr, fakeSC, 0, objSym.isWeak()); 1357 } 1358 symbols.push_back(sym); 1359 if (objSym.isUsed()) 1360 symtab.ctx.config.gcroot.push_back(sym); 1361 } 1362 directives = saver.save(obj->getCOFFLinkerOpts()); 1363 } 1364 1365 void BitcodeFile::parseLazy() { 1366 for (const lto::InputFile::Symbol &sym : obj->symbols()) 1367 if (!sym.isUndefined()) { 1368 symtab.addLazyObject(this, sym.getName()); 1369 if (!lazy) 1370 return; 1371 } 1372 } 1373 1374 MachineTypes BitcodeFile::getMachineType(const llvm::lto::InputFile *obj) { 1375 Triple t(obj->getTargetTriple()); 1376 switch (t.getArch()) { 1377 case Triple::x86_64: 1378 return AMD64; 1379 case Triple::x86: 1380 return I386; 1381 case Triple::arm: 1382 case Triple::thumb: 1383 return ARMNT; 1384 case Triple::aarch64: 1385 return t.isWindowsArm64EC() ? ARM64EC : ARM64; 1386 default: 1387 return IMAGE_FILE_MACHINE_UNKNOWN; 1388 } 1389 } 1390 1391 std::string lld::coff::replaceThinLTOSuffix(StringRef path, StringRef suffix, 1392 StringRef repl) { 1393 if (path.consume_back(suffix)) 1394 return (path + repl).str(); 1395 return std::string(path); 1396 } 1397 1398 static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) { 1399 for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) { 1400 const coff_section *sec = CHECK(coffObj->getSection(i), file); 1401 if (rva >= sec->VirtualAddress && 1402 rva <= sec->VirtualAddress + sec->VirtualSize) { 1403 return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0; 1404 } 1405 } 1406 return false; 1407 } 1408 1409 void DLLFile::parse() { 1410 // Parse a memory buffer as a PE-COFF executable. 1411 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); 1412 1413 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { 1414 bin.release(); 1415 coffObj.reset(obj); 1416 } else { 1417 Err(symtab.ctx) << toString(this) << " is not a COFF file"; 1418 return; 1419 } 1420 1421 if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) { 1422 Err(symtab.ctx) << toString(this) << " is not a PE-COFF executable"; 1423 return; 1424 } 1425 1426 for (const auto &exp : coffObj->export_directories()) { 1427 StringRef dllName, symbolName; 1428 uint32_t exportRVA; 1429 checkError(exp.getDllName(dllName)); 1430 checkError(exp.getSymbolName(symbolName)); 1431 checkError(exp.getExportRVA(exportRVA)); 1432 1433 if (symbolName.empty()) 1434 continue; 1435 1436 bool code = isRVACode(coffObj.get(), exportRVA, this); 1437 1438 Symbol *s = make<Symbol>(); 1439 s->dllName = dllName; 1440 s->symbolName = symbolName; 1441 s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA; 1442 s->nameType = ImportNameType::IMPORT_NAME; 1443 1444 if (coffObj->getMachine() == I386) { 1445 s->symbolName = symbolName = saver().save("_" + symbolName); 1446 s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX; 1447 } 1448 1449 StringRef impName = saver().save("__imp_" + symbolName); 1450 symtab.addLazyDLLSymbol(this, s, impName); 1451 if (code) 1452 symtab.addLazyDLLSymbol(this, s, symbolName); 1453 } 1454 } 1455 1456 MachineTypes DLLFile::getMachineType() const { 1457 if (coffObj) 1458 return static_cast<MachineTypes>(coffObj->getMachine()); 1459 return IMAGE_FILE_MACHINE_UNKNOWN; 1460 } 1461 1462 void DLLFile::makeImport(DLLFile::Symbol *s) { 1463 if (!seen.insert(s->symbolName).second) 1464 return; 1465 1466 size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs 1467 size_t size = sizeof(coff_import_header) + impSize; 1468 char *buf = bAlloc().Allocate<char>(size); 1469 memset(buf, 0, size); 1470 char *p = buf; 1471 auto *imp = reinterpret_cast<coff_import_header *>(p); 1472 p += sizeof(*imp); 1473 imp->Sig2 = 0xFFFF; 1474 imp->Machine = coffObj->getMachine(); 1475 imp->SizeOfData = impSize; 1476 imp->OrdinalHint = 0; // Only linking by name 1477 imp->TypeInfo = (s->nameType << 2) | s->importType; 1478 1479 // Write symbol name and DLL name. 1480 memcpy(p, s->symbolName.data(), s->symbolName.size()); 1481 p += s->symbolName.size() + 1; 1482 memcpy(p, s->dllName.data(), s->dllName.size()); 1483 MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName); 1484 ImportFile *impFile = make<ImportFile>(symtab.ctx, mbref); 1485 symtab.ctx.driver.addFile(impFile); 1486 } 1487