xref: /openbsd-src/gnu/gcc/gcc/tree-ssa-phiopt.c (revision 404b540a9034ac75a6199ad1a32d1bbc7a0d4210)
1 /* Optimization of PHI nodes by converting them into straightline code.
2    Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING.  If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "flags.h"
29 #include "tm_p.h"
30 #include "basic-block.h"
31 #include "timevar.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "tree-pass.h"
35 #include "tree-dump.h"
36 #include "langhooks.h"
37 
38 static unsigned int tree_ssa_phiopt (void);
39 static bool conditional_replacement (basic_block, basic_block,
40 				     edge, edge, tree, tree, tree);
41 static bool value_replacement (basic_block, basic_block,
42 			       edge, edge, tree, tree, tree);
43 static bool minmax_replacement (basic_block, basic_block,
44 				edge, edge, tree, tree, tree);
45 static bool abs_replacement (basic_block, basic_block,
46 			     edge, edge, tree, tree, tree);
47 static void replace_phi_edge_with_variable (basic_block, edge, tree, tree);
48 static basic_block *blocks_in_phiopt_order (void);
49 
50 /* This pass tries to replaces an if-then-else block with an
51    assignment.  We have four kinds of transformations.  Some of these
52    transformations are also performed by the ifcvt RTL optimizer.
53 
54    Conditional Replacement
55    -----------------------
56 
57    This transformation, implemented in conditional_replacement,
58    replaces
59 
60      bb0:
61       if (cond) goto bb2; else goto bb1;
62      bb1:
63      bb2:
64       x = PHI <0 (bb1), 1 (bb0), ...>;
65 
66    with
67 
68      bb0:
69       x' = cond;
70       goto bb2;
71      bb2:
72       x = PHI <x' (bb0), ...>;
73 
74    We remove bb1 as it becomes unreachable.  This occurs often due to
75    gimplification of conditionals.
76 
77    Value Replacement
78    -----------------
79 
80    This transformation, implemented in value_replacement, replaces
81 
82      bb0:
83        if (a != b) goto bb2; else goto bb1;
84      bb1:
85      bb2:
86        x = PHI <a (bb1), b (bb0), ...>;
87 
88    with
89 
90      bb0:
91      bb2:
92        x = PHI <b (bb0), ...>;
93 
94    This opportunity can sometimes occur as a result of other
95    optimizations.
96 
97    ABS Replacement
98    ---------------
99 
100    This transformation, implemented in abs_replacement, replaces
101 
102      bb0:
103        if (a >= 0) goto bb2; else goto bb1;
104      bb1:
105        x = -a;
106      bb2:
107        x = PHI <x (bb1), a (bb0), ...>;
108 
109    with
110 
111      bb0:
112        x' = ABS_EXPR< a >;
113      bb2:
114        x = PHI <x' (bb0), ...>;
115 
116    MIN/MAX Replacement
117    -------------------
118 
119    This transformation, minmax_replacement replaces
120 
121      bb0:
122        if (a <= b) goto bb2; else goto bb1;
123      bb1:
124      bb2:
125        x = PHI <b (bb1), a (bb0), ...>;
126 
127    with
128 
129      bb0:
130        x' = MIN_EXPR (a, b)
131      bb2:
132        x = PHI <x' (bb0), ...>;
133 
134    A similar transformation is done for MAX_EXPR.  */
135 
136 static unsigned int
tree_ssa_phiopt(void)137 tree_ssa_phiopt (void)
138 {
139   basic_block bb;
140   basic_block *bb_order;
141   unsigned n, i;
142   bool cfgchanged = false;
143 
144   /* Search every basic block for COND_EXPR we may be able to optimize.
145 
146      We walk the blocks in order that guarantees that a block with
147      a single predecessor is processed before the predecessor.
148      This ensures that we collapse inner ifs before visiting the
149      outer ones, and also that we do not try to visit a removed
150      block.  */
151   bb_order = blocks_in_phiopt_order ();
152   n = n_basic_blocks - NUM_FIXED_BLOCKS;
153 
154   for (i = 0; i < n; i++)
155     {
156       tree cond_expr;
157       tree phi;
158       basic_block bb1, bb2;
159       edge e1, e2;
160       tree arg0, arg1;
161 
162       bb = bb_order[i];
163 
164       cond_expr = last_stmt (bb);
165       /* Check to see if the last statement is a COND_EXPR.  */
166       if (!cond_expr
167           || TREE_CODE (cond_expr) != COND_EXPR)
168         continue;
169 
170       e1 = EDGE_SUCC (bb, 0);
171       bb1 = e1->dest;
172       e2 = EDGE_SUCC (bb, 1);
173       bb2 = e2->dest;
174 
175       /* We cannot do the optimization on abnormal edges.  */
176       if ((e1->flags & EDGE_ABNORMAL) != 0
177           || (e2->flags & EDGE_ABNORMAL) != 0)
178        continue;
179 
180       /* If either bb1's succ or bb2 or bb2's succ is non NULL.  */
181       if (EDGE_COUNT (bb1->succs) == 0
182           || bb2 == NULL
183 	  || EDGE_COUNT (bb2->succs) == 0)
184         continue;
185 
186       /* Find the bb which is the fall through to the other.  */
187       if (EDGE_SUCC (bb1, 0)->dest == bb2)
188         ;
189       else if (EDGE_SUCC (bb2, 0)->dest == bb1)
190         {
191 	  basic_block bb_tmp = bb1;
192 	  edge e_tmp = e1;
193 	  bb1 = bb2;
194 	  bb2 = bb_tmp;
195 	  e1 = e2;
196 	  e2 = e_tmp;
197 	}
198       else
199         continue;
200 
201       e1 = EDGE_SUCC (bb1, 0);
202 
203       /* Make sure that bb1 is just a fall through.  */
204       if (!single_succ_p (bb1)
205 	  || (e1->flags & EDGE_FALLTHRU) == 0)
206         continue;
207 
208       /* Also make sure that bb1 only have one predecessor and that it
209 	 is bb.  */
210       if (!single_pred_p (bb1)
211           || single_pred (bb1) != bb)
212 	continue;
213 
214       phi = phi_nodes (bb2);
215 
216       /* Check to make sure that there is only one PHI node.
217          TODO: we could do it with more than one iff the other PHI nodes
218 	 have the same elements for these two edges.  */
219       if (!phi || PHI_CHAIN (phi) != NULL)
220 	continue;
221 
222       arg0 = PHI_ARG_DEF_TREE (phi, e1->dest_idx);
223       arg1 = PHI_ARG_DEF_TREE (phi, e2->dest_idx);
224 
225       /* Something is wrong if we cannot find the arguments in the PHI
226 	 node.  */
227       gcc_assert (arg0 != NULL && arg1 != NULL);
228 
229       /* Do the replacement of conditional if it can be done.  */
230       if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
231 	cfgchanged = true;
232       else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
233 	cfgchanged = true;
234       else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
235 	cfgchanged = true;
236       else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
237 	cfgchanged = true;
238     }
239 
240   free (bb_order);
241 
242   /* If the CFG has changed, we should cleanup the CFG. */
243   return cfgchanged ? TODO_cleanup_cfg : 0;
244 }
245 
246 /* Returns the list of basic blocks in the function in an order that guarantees
247    that if a block X has just a single predecessor Y, then Y is after X in the
248    ordering.  */
249 
250 static basic_block *
blocks_in_phiopt_order(void)251 blocks_in_phiopt_order (void)
252 {
253   basic_block x, y;
254   basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
255   unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
256   unsigned np, i;
257   sbitmap visited = sbitmap_alloc (last_basic_block);
258 
259 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
260 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
261 
262   sbitmap_zero (visited);
263 
264   MARK_VISITED (ENTRY_BLOCK_PTR);
265   FOR_EACH_BB (x)
266     {
267       if (VISITED_P (x))
268 	continue;
269 
270       /* Walk the predecessors of x as long as they have precisely one
271 	 predecessor and add them to the list, so that they get stored
272 	 after x.  */
273       for (y = x, np = 1;
274 	   single_pred_p (y) && !VISITED_P (single_pred (y));
275 	   y = single_pred (y))
276 	np++;
277       for (y = x, i = n - np;
278 	   single_pred_p (y) && !VISITED_P (single_pred (y));
279 	   y = single_pred (y), i++)
280 	{
281 	  order[i] = y;
282 	  MARK_VISITED (y);
283 	}
284       order[i] = y;
285       MARK_VISITED (y);
286 
287       gcc_assert (i == n - 1);
288       n -= np;
289     }
290 
291   sbitmap_free (visited);
292   gcc_assert (n == 0);
293   return order;
294 
295 #undef MARK_VISITED
296 #undef VISITED_P
297 }
298 
299 /* Return TRUE if block BB has no executable statements, otherwise return
300    FALSE.  */
301 bool
empty_block_p(basic_block bb)302 empty_block_p (basic_block bb)
303 {
304   block_stmt_iterator bsi;
305 
306   /* BB must have no executable statements.  */
307   bsi = bsi_start (bb);
308   while (!bsi_end_p (bsi)
309 	  && (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR
310 	      || IS_EMPTY_STMT (bsi_stmt (bsi))))
311     bsi_next (&bsi);
312 
313   if (!bsi_end_p (bsi))
314     return false;
315 
316   return true;
317 }
318 
319 /* Replace PHI node element whose edge is E in block BB with variable NEW.
320    Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
321    is known to have two edges, one of which must reach BB).  */
322 
323 static void
replace_phi_edge_with_variable(basic_block cond_block,edge e,tree phi,tree new)324 replace_phi_edge_with_variable (basic_block cond_block,
325 				edge e, tree phi, tree new)
326 {
327   basic_block bb = bb_for_stmt (phi);
328   basic_block block_to_remove;
329   block_stmt_iterator bsi;
330 
331   /* Change the PHI argument to new.  */
332   SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new);
333 
334   /* Remove the empty basic block.  */
335   if (EDGE_SUCC (cond_block, 0)->dest == bb)
336     {
337       EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
338       EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
339       EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
340       EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
341 
342       block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
343     }
344   else
345     {
346       EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
347       EDGE_SUCC (cond_block, 1)->flags
348 	&= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
349       EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
350       EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
351 
352       block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
353     }
354   delete_basic_block (block_to_remove);
355 
356   /* Eliminate the COND_EXPR at the end of COND_BLOCK.  */
357   bsi = bsi_last (cond_block);
358   bsi_remove (&bsi, true);
359 
360   if (dump_file && (dump_flags & TDF_DETAILS))
361     fprintf (dump_file,
362 	      "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
363 	      cond_block->index,
364 	      bb->index);
365 }
366 
367 /*  The function conditional_replacement does the main work of doing the
368     conditional replacement.  Return true if the replacement is done.
369     Otherwise return false.
370     BB is the basic block where the replacement is going to be done on.  ARG0
371     is argument 0 from PHI.  Likewise for ARG1.  */
372 
373 static bool
conditional_replacement(basic_block cond_bb,basic_block middle_bb,edge e0,edge e1,tree phi,tree arg0,tree arg1)374 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
375 			 edge e0, edge e1, tree phi,
376 			 tree arg0, tree arg1)
377 {
378   tree result;
379   tree old_result = NULL;
380   tree new, cond;
381   block_stmt_iterator bsi;
382   edge true_edge, false_edge;
383   tree new_var = NULL;
384   tree new_var1;
385 
386   /* The PHI arguments have the constants 0 and 1, then convert
387      it to the conditional.  */
388   if ((integer_zerop (arg0) && integer_onep (arg1))
389       || (integer_zerop (arg1) && integer_onep (arg0)))
390     ;
391   else
392     return false;
393 
394   if (!empty_block_p (middle_bb))
395     return false;
396 
397   /* If the condition is not a naked SSA_NAME and its type does not
398      match the type of the result, then we have to create a new
399      variable to optimize this case as it would likely create
400      non-gimple code when the condition was converted to the
401      result's type.  */
402   cond = COND_EXPR_COND (last_stmt (cond_bb));
403   result = PHI_RESULT (phi);
404   if (TREE_CODE (cond) != SSA_NAME
405       && !lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
406     {
407       tree tmp;
408 
409       if (!COMPARISON_CLASS_P (cond))
410 	return false;
411 
412       tmp = create_tmp_var (TREE_TYPE (cond), NULL);
413       add_referenced_var (tmp);
414       new_var = make_ssa_name (tmp, NULL);
415       old_result = cond;
416       cond = new_var;
417     }
418 
419   /* If the condition was a naked SSA_NAME and the type is not the
420      same as the type of the result, then convert the type of the
421      condition.  */
422   if (!lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
423     cond = fold_convert (TREE_TYPE (result), cond);
424 
425   /* We need to know which is the true edge and which is the false
426      edge so that we know when to invert the condition below.  */
427   extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
428 
429   /* Insert our new statement at the end of conditional block before the
430      COND_EXPR.  */
431   bsi = bsi_last (cond_bb);
432   bsi_insert_before (&bsi, build_empty_stmt (), BSI_NEW_STMT);
433 
434   if (old_result)
435     {
436       tree new1;
437 
438       new1 = build2 (TREE_CODE (old_result), TREE_TYPE (old_result),
439 		     TREE_OPERAND (old_result, 0),
440 		     TREE_OPERAND (old_result, 1));
441 
442       new1 = build2 (MODIFY_EXPR, TREE_TYPE (old_result), new_var, new1);
443       SSA_NAME_DEF_STMT (new_var) = new1;
444 
445       bsi_insert_after (&bsi, new1, BSI_NEW_STMT);
446     }
447 
448   new_var1 = duplicate_ssa_name (PHI_RESULT (phi), NULL);
449 
450 
451   /* At this point we know we have a COND_EXPR with two successors.
452      One successor is BB, the other successor is an empty block which
453      falls through into BB.
454 
455      There is a single PHI node at the join point (BB) and its arguments
456      are constants (0, 1).
457 
458      So, given the condition COND, and the two PHI arguments, we can
459      rewrite this PHI into non-branching code:
460 
461        dest = (COND) or dest = COND'
462 
463      We use the condition as-is if the argument associated with the
464      true edge has the value one or the argument associated with the
465      false edge as the value zero.  Note that those conditions are not
466      the same since only one of the outgoing edges from the COND_EXPR
467      will directly reach BB and thus be associated with an argument.  */
468   if ((e0 == true_edge && integer_onep (arg0))
469       || (e0 == false_edge && integer_zerop (arg0))
470       || (e1 == true_edge && integer_onep (arg1))
471       || (e1 == false_edge && integer_zerop (arg1)))
472     {
473       new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
474     }
475   else
476     {
477       tree cond1 = invert_truthvalue (cond);
478 
479       cond = cond1;
480 
481       /* If what we get back is a conditional expression, there is no
482 	  way that it can be gimple.  */
483       if (TREE_CODE (cond) == COND_EXPR)
484 	{
485 	  release_ssa_name (new_var1);
486 	  return false;
487 	}
488 
489       /* If COND is not something we can expect to be reducible to a GIMPLE
490 	 condition, return early.  */
491       if (is_gimple_cast (cond))
492 	cond1 = TREE_OPERAND (cond, 0);
493       if (TREE_CODE (cond1) == TRUTH_NOT_EXPR
494 	  && !is_gimple_val (TREE_OPERAND (cond1, 0)))
495 	{
496 	  release_ssa_name (new_var1);
497 	  return false;
498 	}
499 
500       /* If what we get back is not gimple try to create it as gimple by
501 	 using a temporary variable.  */
502       if (is_gimple_cast (cond)
503 	  && !is_gimple_val (TREE_OPERAND (cond, 0)))
504 	{
505 	  tree op0, tmp, cond_tmp;
506 
507 	  /* Only "real" casts are OK here, not everything that is
508 	     acceptable to is_gimple_cast.  Make sure we don't do
509 	     anything stupid here.  */
510 	  gcc_assert (TREE_CODE (cond) == NOP_EXPR
511 		      || TREE_CODE (cond) == CONVERT_EXPR);
512 
513 	  op0 = TREE_OPERAND (cond, 0);
514 	  tmp = create_tmp_var (TREE_TYPE (op0), NULL);
515 	  add_referenced_var (tmp);
516 	  cond_tmp = make_ssa_name (tmp, NULL);
517 	  new = build2 (MODIFY_EXPR, TREE_TYPE (cond_tmp), cond_tmp, op0);
518 	  SSA_NAME_DEF_STMT (cond_tmp) = new;
519 
520 	  bsi_insert_after (&bsi, new, BSI_NEW_STMT);
521 	  cond = fold_convert (TREE_TYPE (result), cond_tmp);
522 	}
523 
524       new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
525     }
526 
527   bsi_insert_after (&bsi, new, BSI_NEW_STMT);
528 
529   SSA_NAME_DEF_STMT (new_var1) = new;
530 
531   replace_phi_edge_with_variable (cond_bb, e1, phi, new_var1);
532 
533   /* Note that we optimized this PHI.  */
534   return true;
535 }
536 
537 /*  The function value_replacement does the main work of doing the value
538     replacement.  Return true if the replacement is done.  Otherwise return
539     false.
540     BB is the basic block where the replacement is going to be done on.  ARG0
541     is argument 0 from the PHI.  Likewise for ARG1.  */
542 
543 static bool
value_replacement(basic_block cond_bb,basic_block middle_bb,edge e0,edge e1,tree phi,tree arg0,tree arg1)544 value_replacement (basic_block cond_bb, basic_block middle_bb,
545 		   edge e0, edge e1, tree phi,
546 		   tree arg0, tree arg1)
547 {
548   tree cond;
549   edge true_edge, false_edge;
550 
551   /* If the type says honor signed zeros we cannot do this
552      optimization.  */
553   if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
554     return false;
555 
556   if (!empty_block_p (middle_bb))
557     return false;
558 
559   cond = COND_EXPR_COND (last_stmt (cond_bb));
560 
561   /* This transformation is only valid for equality comparisons.  */
562   if (TREE_CODE (cond) != NE_EXPR && TREE_CODE (cond) != EQ_EXPR)
563     return false;
564 
565   /* We need to know which is the true edge and which is the false
566       edge so that we know if have abs or negative abs.  */
567   extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
568 
569   /* At this point we know we have a COND_EXPR with two successors.
570      One successor is BB, the other successor is an empty block which
571      falls through into BB.
572 
573      The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
574 
575      There is a single PHI node at the join point (BB) with two arguments.
576 
577      We now need to verify that the two arguments in the PHI node match
578      the two arguments to the equality comparison.  */
579 
580   if ((operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 0))
581        && operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 1)))
582       || (operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 0))
583 	  && operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 1))))
584     {
585       edge e;
586       tree arg;
587 
588       /* For NE_EXPR, we want to build an assignment result = arg where
589 	 arg is the PHI argument associated with the true edge.  For
590 	 EQ_EXPR we want the PHI argument associated with the false edge.  */
591       e = (TREE_CODE (cond) == NE_EXPR ? true_edge : false_edge);
592 
593       /* Unfortunately, E may not reach BB (it may instead have gone to
594 	 OTHER_BLOCK).  If that is the case, then we want the single outgoing
595 	 edge from OTHER_BLOCK which reaches BB and represents the desired
596 	 path from COND_BLOCK.  */
597       if (e->dest == middle_bb)
598 	e = single_succ_edge (e->dest);
599 
600       /* Now we know the incoming edge to BB that has the argument for the
601 	 RHS of our new assignment statement.  */
602       if (e0 == e)
603 	arg = arg0;
604       else
605 	arg = arg1;
606 
607       replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
608 
609       /* Note that we optimized this PHI.  */
610       return true;
611     }
612   return false;
613 }
614 
615 /*  The function minmax_replacement does the main work of doing the minmax
616     replacement.  Return true if the replacement is done.  Otherwise return
617     false.
618     BB is the basic block where the replacement is going to be done on.  ARG0
619     is argument 0 from the PHI.  Likewise for ARG1.  */
620 
621 static bool
minmax_replacement(basic_block cond_bb,basic_block middle_bb,edge e0,edge e1,tree phi,tree arg0,tree arg1)622 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
623 		    edge e0, edge e1, tree phi,
624 		    tree arg0, tree arg1)
625 {
626   tree result, type;
627   tree cond, new;
628   edge true_edge, false_edge;
629   enum tree_code cmp, minmax, ass_code;
630   tree smaller, larger, arg_true, arg_false;
631   block_stmt_iterator bsi, bsi_from;
632 
633   type = TREE_TYPE (PHI_RESULT (phi));
634 
635   /* The optimization may be unsafe due to NaNs.  */
636   if (HONOR_NANS (TYPE_MODE (type)))
637     return false;
638 
639   cond = COND_EXPR_COND (last_stmt (cond_bb));
640   cmp = TREE_CODE (cond);
641   result = PHI_RESULT (phi);
642 
643   /* This transformation is only valid for order comparisons.  Record which
644      operand is smaller/larger if the result of the comparison is true.  */
645   if (cmp == LT_EXPR || cmp == LE_EXPR)
646     {
647       smaller = TREE_OPERAND (cond, 0);
648       larger = TREE_OPERAND (cond, 1);
649     }
650   else if (cmp == GT_EXPR || cmp == GE_EXPR)
651     {
652       smaller = TREE_OPERAND (cond, 1);
653       larger = TREE_OPERAND (cond, 0);
654     }
655   else
656     return false;
657 
658   /* We need to know which is the true edge and which is the false
659       edge so that we know if have abs or negative abs.  */
660   extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
661 
662   /* Forward the edges over the middle basic block.  */
663   if (true_edge->dest == middle_bb)
664     true_edge = EDGE_SUCC (true_edge->dest, 0);
665   if (false_edge->dest == middle_bb)
666     false_edge = EDGE_SUCC (false_edge->dest, 0);
667 
668   if (true_edge == e0)
669     {
670       gcc_assert (false_edge == e1);
671       arg_true = arg0;
672       arg_false = arg1;
673     }
674   else
675     {
676       gcc_assert (false_edge == e0);
677       gcc_assert (true_edge == e1);
678       arg_true = arg1;
679       arg_false = arg0;
680     }
681 
682   if (empty_block_p (middle_bb))
683     {
684       if (operand_equal_for_phi_arg_p (arg_true, smaller)
685 	  && operand_equal_for_phi_arg_p (arg_false, larger))
686 	{
687 	  /* Case
688 
689 	     if (smaller < larger)
690 	     rslt = smaller;
691 	     else
692 	     rslt = larger;  */
693 	  minmax = MIN_EXPR;
694 	}
695       else if (operand_equal_for_phi_arg_p (arg_false, smaller)
696 	       && operand_equal_for_phi_arg_p (arg_true, larger))
697 	minmax = MAX_EXPR;
698       else
699 	return false;
700     }
701   else
702     {
703       /* Recognize the following case, assuming d <= u:
704 
705 	 if (a <= u)
706 	   b = MAX (a, d);
707 	 x = PHI <b, u>
708 
709 	 This is equivalent to
710 
711 	 b = MAX (a, d);
712 	 x = MIN (b, u);  */
713 
714       tree assign = last_and_only_stmt (middle_bb);
715       tree lhs, rhs, op0, op1, bound;
716 
717       if (!assign
718 	  || TREE_CODE (assign) != MODIFY_EXPR)
719 	return false;
720 
721       lhs = TREE_OPERAND (assign, 0);
722       rhs = TREE_OPERAND (assign, 1);
723       ass_code = TREE_CODE (rhs);
724       if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
725 	return false;
726       op0 = TREE_OPERAND (rhs, 0);
727       op1 = TREE_OPERAND (rhs, 1);
728 
729       if (true_edge->src == middle_bb)
730 	{
731 	  /* We got here if the condition is true, i.e., SMALLER < LARGER.  */
732 	  if (!operand_equal_for_phi_arg_p (lhs, arg_true))
733 	    return false;
734 
735 	  if (operand_equal_for_phi_arg_p (arg_false, larger))
736 	    {
737 	      /* Case
738 
739 		 if (smaller < larger)
740 		   {
741 		     r' = MAX_EXPR (smaller, bound)
742 		   }
743 		 r = PHI <r', larger>  --> to be turned to MIN_EXPR.  */
744 	      if (ass_code != MAX_EXPR)
745 		return false;
746 
747 	      minmax = MIN_EXPR;
748 	      if (operand_equal_for_phi_arg_p (op0, smaller))
749 		bound = op1;
750 	      else if (operand_equal_for_phi_arg_p (op1, smaller))
751 		bound = op0;
752 	      else
753 		return false;
754 
755 	      /* We need BOUND <= LARGER.  */
756 	      if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
757 						  bound, larger)))
758 		return false;
759 	    }
760 	  else if (operand_equal_for_phi_arg_p (arg_false, smaller))
761 	    {
762 	      /* Case
763 
764 		 if (smaller < larger)
765 		   {
766 		     r' = MIN_EXPR (larger, bound)
767 		   }
768 		 r = PHI <r', smaller>  --> to be turned to MAX_EXPR.  */
769 	      if (ass_code != MIN_EXPR)
770 		return false;
771 
772 	      minmax = MAX_EXPR;
773 	      if (operand_equal_for_phi_arg_p (op0, larger))
774 		bound = op1;
775 	      else if (operand_equal_for_phi_arg_p (op1, larger))
776 		bound = op0;
777 	      else
778 		return false;
779 
780 	      /* We need BOUND >= SMALLER.  */
781 	      if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
782 						  bound, smaller)))
783 		return false;
784 	    }
785 	  else
786 	    return false;
787 	}
788       else
789 	{
790 	  /* We got here if the condition is false, i.e., SMALLER > LARGER.  */
791 	  if (!operand_equal_for_phi_arg_p (lhs, arg_false))
792 	    return false;
793 
794 	  if (operand_equal_for_phi_arg_p (arg_true, larger))
795 	    {
796 	      /* Case
797 
798 		 if (smaller > larger)
799 		   {
800 		     r' = MIN_EXPR (smaller, bound)
801 		   }
802 		 r = PHI <r', larger>  --> to be turned to MAX_EXPR.  */
803 	      if (ass_code != MIN_EXPR)
804 		return false;
805 
806 	      minmax = MAX_EXPR;
807 	      if (operand_equal_for_phi_arg_p (op0, smaller))
808 		bound = op1;
809 	      else if (operand_equal_for_phi_arg_p (op1, smaller))
810 		bound = op0;
811 	      else
812 		return false;
813 
814 	      /* We need BOUND >= LARGER.  */
815 	      if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
816 						  bound, larger)))
817 		return false;
818 	    }
819 	  else if (operand_equal_for_phi_arg_p (arg_true, smaller))
820 	    {
821 	      /* Case
822 
823 		 if (smaller > larger)
824 		   {
825 		     r' = MAX_EXPR (larger, bound)
826 		   }
827 		 r = PHI <r', smaller>  --> to be turned to MIN_EXPR.  */
828 	      if (ass_code != MAX_EXPR)
829 		return false;
830 
831 	      minmax = MIN_EXPR;
832 	      if (operand_equal_for_phi_arg_p (op0, larger))
833 		bound = op1;
834 	      else if (operand_equal_for_phi_arg_p (op1, larger))
835 		bound = op0;
836 	      else
837 		return false;
838 
839 	      /* We need BOUND <= SMALLER.  */
840 	      if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
841 						  bound, smaller)))
842 		return false;
843 	    }
844 	  else
845 	    return false;
846 	}
847 
848       /* Move the statement from the middle block.  */
849       bsi = bsi_last (cond_bb);
850       bsi_from = bsi_last (middle_bb);
851       bsi_move_before (&bsi_from, &bsi);
852     }
853 
854   /* Emit the statement to compute min/max.  */
855   result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
856   new = build2 (MODIFY_EXPR, type, result,
857 		build2 (minmax, type, arg0, arg1));
858   SSA_NAME_DEF_STMT (result) = new;
859   bsi = bsi_last (cond_bb);
860   bsi_insert_before (&bsi, new, BSI_NEW_STMT);
861 
862   replace_phi_edge_with_variable (cond_bb, e1, phi, result);
863   return true;
864 }
865 
866 /*  The function absolute_replacement does the main work of doing the absolute
867     replacement.  Return true if the replacement is done.  Otherwise return
868     false.
869     bb is the basic block where the replacement is going to be done on.  arg0
870     is argument 0 from the phi.  Likewise for arg1.  */
871 
872 static bool
abs_replacement(basic_block cond_bb,basic_block middle_bb,edge e0 ATTRIBUTE_UNUSED,edge e1,tree phi,tree arg0,tree arg1)873 abs_replacement (basic_block cond_bb, basic_block middle_bb,
874 		 edge e0 ATTRIBUTE_UNUSED, edge e1,
875 		 tree phi, tree arg0, tree arg1)
876 {
877   tree result;
878   tree new, cond;
879   block_stmt_iterator bsi;
880   edge true_edge, false_edge;
881   tree assign;
882   edge e;
883   tree rhs, lhs;
884   bool negate;
885   enum tree_code cond_code;
886 
887   /* If the type says honor signed zeros we cannot do this
888      optimization.  */
889   if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
890     return false;
891 
892   /* OTHER_BLOCK must have only one executable statement which must have the
893      form arg0 = -arg1 or arg1 = -arg0.  */
894 
895   assign = last_and_only_stmt (middle_bb);
896   /* If we did not find the proper negation assignment, then we can not
897      optimize.  */
898   if (assign == NULL)
899     return false;
900 
901   /* If we got here, then we have found the only executable statement
902      in OTHER_BLOCK.  If it is anything other than arg = -arg1 or
903      arg1 = -arg0, then we can not optimize.  */
904   if (TREE_CODE (assign) != MODIFY_EXPR)
905     return false;
906 
907   lhs = TREE_OPERAND (assign, 0);
908   rhs = TREE_OPERAND (assign, 1);
909 
910   if (TREE_CODE (rhs) != NEGATE_EXPR)
911     return false;
912 
913   rhs = TREE_OPERAND (rhs, 0);
914 
915   /* The assignment has to be arg0 = -arg1 or arg1 = -arg0.  */
916   if (!(lhs == arg0 && rhs == arg1)
917       && !(lhs == arg1 && rhs == arg0))
918     return false;
919 
920   cond = COND_EXPR_COND (last_stmt (cond_bb));
921   result = PHI_RESULT (phi);
922 
923   /* Only relationals comparing arg[01] against zero are interesting.  */
924   cond_code = TREE_CODE (cond);
925   if (cond_code != GT_EXPR && cond_code != GE_EXPR
926       && cond_code != LT_EXPR && cond_code != LE_EXPR)
927     return false;
928 
929   /* Make sure the conditional is arg[01] OP y.  */
930   if (TREE_OPERAND (cond, 0) != rhs)
931     return false;
932 
933   if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))
934 	       ? real_zerop (TREE_OPERAND (cond, 1))
935 	       : integer_zerop (TREE_OPERAND (cond, 1)))
936     ;
937   else
938     return false;
939 
940   /* We need to know which is the true edge and which is the false
941      edge so that we know if have abs or negative abs.  */
942   extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
943 
944   /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
945      will need to negate the result.  Similarly for LT_EXPR/LE_EXPR if
946      the false edge goes to OTHER_BLOCK.  */
947   if (cond_code == GT_EXPR || cond_code == GE_EXPR)
948     e = true_edge;
949   else
950     e = false_edge;
951 
952   if (e->dest == middle_bb)
953     negate = true;
954   else
955     negate = false;
956 
957   result = duplicate_ssa_name (result, NULL);
958 
959   if (negate)
960     {
961       tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
962       add_referenced_var (tmp);
963       lhs = make_ssa_name (tmp, NULL);
964     }
965   else
966     lhs = result;
967 
968   /* Build the modify expression with abs expression.  */
969   new = build2 (MODIFY_EXPR, TREE_TYPE (lhs),
970 		lhs, build1 (ABS_EXPR, TREE_TYPE (lhs), rhs));
971   SSA_NAME_DEF_STMT (lhs) = new;
972 
973   bsi = bsi_last (cond_bb);
974   bsi_insert_before (&bsi, new, BSI_NEW_STMT);
975 
976   if (negate)
977     {
978       /* Get the right BSI.  We want to insert after the recently
979 	 added ABS_EXPR statement (which we know is the first statement
980 	 in the block.  */
981       new = build2 (MODIFY_EXPR, TREE_TYPE (result),
982 		    result, build1 (NEGATE_EXPR, TREE_TYPE (lhs), lhs));
983       SSA_NAME_DEF_STMT (result) = new;
984 
985       bsi_insert_after (&bsi, new, BSI_NEW_STMT);
986     }
987 
988   replace_phi_edge_with_variable (cond_bb, e1, phi, result);
989 
990   /* Note that we optimized this PHI.  */
991   return true;
992 }
993 
994 
995 /* Always do these optimizations if we have SSA
996    trees to work on.  */
997 static bool
gate_phiopt(void)998 gate_phiopt (void)
999 {
1000   return 1;
1001 }
1002 
1003 struct tree_opt_pass pass_phiopt =
1004 {
1005   "phiopt",				/* name */
1006   gate_phiopt,				/* gate */
1007   tree_ssa_phiopt,			/* execute */
1008   NULL,					/* sub */
1009   NULL,					/* next */
1010   0,					/* static_pass_number */
1011   TV_TREE_PHIOPT,			/* tv_id */
1012   PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
1013   0,					/* properties_provided */
1014   0,					/* properties_destroyed */
1015   0,					/* todo_flags_start */
1016   TODO_dump_func
1017     | TODO_ggc_collect
1018     | TODO_verify_ssa
1019     | TODO_verify_flow
1020     | TODO_verify_stmts,		/* todo_flags_finish */
1021   0					/* letter */
1022 };
1023