xref: /netbsd-src/external/gpl3/gcc/dist/gcc/cfgloopmanip.cc (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 /* Loop manipulation code for GNU compiler.
2    Copyright (C) 2002-2022 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
34 
35 static void copy_loops_to (class loop **, int,
36 			   class loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (class loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
44 
45 /* Checks whether basic block BB is dominated by DATA.  */
46 static bool
rpe_enum_p(const_basic_block bb,const void * data)47 rpe_enum_p (const_basic_block bb, const void *data)
48 {
49   return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
50 }
51 
52 /* Remove basic blocks BBS.  NBBS is the number of the basic blocks.  */
53 
54 static void
remove_bbs(basic_block * bbs,int nbbs)55 remove_bbs (basic_block *bbs, int nbbs)
56 {
57   int i;
58 
59   for (i = 0; i < nbbs; i++)
60     delete_basic_block (bbs[i]);
61 }
62 
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64    into array BBS, that will be allocated large enough to contain them.
65    E->dest must have exactly one predecessor for this to work (it is
66    easy to achieve and we do not put it here because we do not want to
67    alter anything by this function).  The number of basic blocks in the
68    path is returned.  */
69 static int
find_path(edge e,basic_block ** bbs)70 find_path (edge e, basic_block **bbs)
71 {
72   gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
73 
74   /* Find bbs in the path.  */
75   *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76   return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 			     n_basic_blocks_for_fn (cfun), e->dest);
78 }
79 
80 /* Fix placement of basic block BB inside loop hierarchy --
81    Let L be a loop to that BB belongs.  Then every successor of BB must either
82      1) belong to some superloop of loop L, or
83      2) be a header of loop K such that K->outer is superloop of L
84    Returns true if we had to move BB into other loop to enforce this condition,
85    false if the placement of BB was already correct (provided that placements
86    of its successors are correct).  */
87 static bool
fix_bb_placement(basic_block bb)88 fix_bb_placement (basic_block bb)
89 {
90   edge e;
91   edge_iterator ei;
92   class loop *loop = current_loops->tree_root, *act;
93 
94   FOR_EACH_EDGE (e, ei, bb->succs)
95     {
96       if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 	continue;
98 
99       act = e->dest->loop_father;
100       if (act->header == e->dest)
101 	act = loop_outer (act);
102 
103       if (flow_loop_nested_p (loop, act))
104 	loop = act;
105     }
106 
107   if (loop == bb->loop_father)
108     return false;
109 
110   remove_bb_from_loops (bb);
111   add_bb_to_loop (bb, loop);
112 
113   return true;
114 }
115 
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117    of LOOP to that leads at least one exit edge of LOOP, and set it
118    as the immediate superloop of LOOP.  Return true if the immediate superloop
119    of LOOP changed.
120 
121    IRRED_INVALIDATED is set to true if a change in the loop structures might
122    invalidate the information about irreducible regions.  */
123 
124 static bool
fix_loop_placement(class loop * loop,bool * irred_invalidated)125 fix_loop_placement (class loop *loop, bool *irred_invalidated)
126 {
127   unsigned i;
128   edge e;
129   auto_vec<edge> exits = get_loop_exit_edges (loop);
130   class loop *father = current_loops->tree_root, *act;
131   bool ret = false;
132 
133   FOR_EACH_VEC_ELT (exits, i, e)
134     {
135       act = find_common_loop (loop, e->dest->loop_father);
136       if (flow_loop_nested_p (father, act))
137 	father = act;
138     }
139 
140   if (father != loop_outer (loop))
141     {
142       for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 	act->num_nodes -= loop->num_nodes;
144       flow_loop_tree_node_remove (loop);
145       flow_loop_tree_node_add (father, loop);
146 
147       /* The exit edges of LOOP no longer exits its original immediate
148 	 superloops; remove them from the appropriate exit lists.  */
149       FOR_EACH_VEC_ELT (exits, i, e)
150 	{
151 	  /* We may need to recompute irreducible loops.  */
152 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 	    *irred_invalidated = true;
154 	  rescan_loop_exit (e, false, false);
155 	}
156 
157       ret = true;
158     }
159 
160   return ret;
161 }
162 
163 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
164    enforce condition stated in description of fix_bb_placement. We
165    start from basic block FROM that had some of its successors removed, so that
166    his placement no longer has to be correct, and iteratively fix placement of
167    its predecessors that may change if placement of FROM changed.  Also fix
168    placement of subloops of FROM->loop_father, that might also be altered due
169    to this change; the condition for them is similar, except that instead of
170    successors we consider edges coming out of the loops.
171 
172    If the changes may invalidate the information about irreducible regions,
173    IRRED_INVALIDATED is set to true.
174 
175    If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
176    changed loop_father are collected there. */
177 
178 static void
fix_bb_placements(basic_block from,bool * irred_invalidated,bitmap loop_closed_ssa_invalidated)179 fix_bb_placements (basic_block from,
180 		   bool *irred_invalidated,
181 		   bitmap loop_closed_ssa_invalidated)
182 {
183   basic_block *queue, *qtop, *qbeg, *qend;
184   class loop *base_loop, *target_loop;
185   edge e;
186 
187   /* We pass through blocks back-reachable from FROM, testing whether some
188      of their successors moved to outer loop.  It may be necessary to
189      iterate several times, but it is finite, as we stop unless we move
190      the basic block up the loop structure.  The whole story is a bit
191      more complicated due to presence of subloops, those are moved using
192      fix_loop_placement.  */
193 
194   base_loop = from->loop_father;
195   /* If we are already in the outermost loop, the basic blocks cannot be moved
196      outside of it.  If FROM is the header of the base loop, it cannot be moved
197      outside of it, either.  In both cases, we can end now.  */
198   if (base_loop == current_loops->tree_root
199       || from == base_loop->header)
200     return;
201 
202   auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
203   bitmap_clear (in_queue);
204   bitmap_set_bit (in_queue, from->index);
205   /* Prevent us from going out of the base_loop.  */
206   bitmap_set_bit (in_queue, base_loop->header->index);
207 
208   queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
209   qtop = queue + base_loop->num_nodes + 1;
210   qbeg = queue;
211   qend = queue + 1;
212   *qbeg = from;
213 
214   while (qbeg != qend)
215     {
216       edge_iterator ei;
217       from = *qbeg;
218       qbeg++;
219       if (qbeg == qtop)
220 	qbeg = queue;
221       bitmap_clear_bit (in_queue, from->index);
222 
223       if (from->loop_father->header == from)
224 	{
225 	  /* Subloop header, maybe move the loop upward.  */
226 	  if (!fix_loop_placement (from->loop_father, irred_invalidated))
227 	    continue;
228 	  target_loop = loop_outer (from->loop_father);
229 	  if (loop_closed_ssa_invalidated)
230 	    {
231 	      basic_block *bbs = get_loop_body (from->loop_father);
232 	      for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
233 		bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
234 	      free (bbs);
235 	    }
236 	}
237       else
238 	{
239 	  /* Ordinary basic block.  */
240 	  if (!fix_bb_placement (from))
241 	    continue;
242 	  target_loop = from->loop_father;
243 	  if (loop_closed_ssa_invalidated)
244 	    bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
245 	}
246 
247       FOR_EACH_EDGE (e, ei, from->succs)
248 	{
249 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
250 	    *irred_invalidated = true;
251 	}
252 
253       /* Something has changed, insert predecessors into queue.  */
254       FOR_EACH_EDGE (e, ei, from->preds)
255 	{
256 	  basic_block pred = e->src;
257 	  class loop *nca;
258 
259 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
260 	    *irred_invalidated = true;
261 
262 	  if (bitmap_bit_p (in_queue, pred->index))
263 	    continue;
264 
265 	  /* If it is subloop, then it either was not moved, or
266 	     the path up the loop tree from base_loop do not contain
267 	     it.  */
268 	  nca = find_common_loop (pred->loop_father, base_loop);
269 	  if (pred->loop_father != base_loop
270 	      && (nca == base_loop
271 		  || nca != pred->loop_father))
272 	    pred = pred->loop_father->header;
273 	  else if (!flow_loop_nested_p (target_loop, pred->loop_father))
274 	    {
275 	      /* If PRED is already higher in the loop hierarchy than the
276 		 TARGET_LOOP to that we moved FROM, the change of the position
277 		 of FROM does not affect the position of PRED, so there is no
278 		 point in processing it.  */
279 	      continue;
280 	    }
281 
282 	  if (bitmap_bit_p (in_queue, pred->index))
283 	    continue;
284 
285 	  /* Schedule the basic block.  */
286 	  *qend = pred;
287 	  qend++;
288 	  if (qend == qtop)
289 	    qend = queue;
290 	  bitmap_set_bit (in_queue, pred->index);
291 	}
292     }
293   free (queue);
294 }
295 
296 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
297    and update loop structures and dominators.  Return true if we were able
298    to remove the path, false otherwise (and nothing is affected then).  */
299 bool
remove_path(edge e,bool * irred_invalidated,bitmap loop_closed_ssa_invalidated)300 remove_path (edge e, bool *irred_invalidated,
301 	     bitmap loop_closed_ssa_invalidated)
302 {
303   edge ae;
304   basic_block *rem_bbs, *bord_bbs, from, bb;
305   vec<basic_block> dom_bbs;
306   int i, nrem, n_bord_bbs;
307   bool local_irred_invalidated = false;
308   edge_iterator ei;
309   class loop *l, *f;
310 
311   if (! irred_invalidated)
312     irred_invalidated = &local_irred_invalidated;
313 
314   if (!can_remove_branch_p (e))
315     return false;
316 
317   /* Keep track of whether we need to update information about irreducible
318      regions.  This is the case if the removed area is a part of the
319      irreducible region, or if the set of basic blocks that belong to a loop
320      that is inside an irreducible region is changed, or if such a loop is
321      removed.  */
322   if (e->flags & EDGE_IRREDUCIBLE_LOOP)
323     *irred_invalidated = true;
324 
325   /* We need to check whether basic blocks are dominated by the edge
326      e, but we only have basic block dominators.  This is easy to
327      fix -- when e->dest has exactly one predecessor, this corresponds
328      to blocks dominated by e->dest, if not, split the edge.  */
329   if (!single_pred_p (e->dest))
330     e = single_pred_edge (split_edge (e));
331 
332   /* It may happen that by removing path we remove one or more loops
333      we belong to.  In this case first unloop the loops, then proceed
334      normally.   We may assume that e->dest is not a header of any loop,
335      as it now has exactly one predecessor.  */
336   for (l = e->src->loop_father; loop_outer (l); l = f)
337     {
338       f = loop_outer (l);
339       if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
340         unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
341     }
342 
343   /* Identify the path.  */
344   nrem = find_path (e, &rem_bbs);
345 
346   n_bord_bbs = 0;
347   bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
348   auto_sbitmap seen (last_basic_block_for_fn (cfun));
349   bitmap_clear (seen);
350 
351   /* Find "border" hexes -- i.e. those with predecessor in removed path.  */
352   for (i = 0; i < nrem; i++)
353     bitmap_set_bit (seen, rem_bbs[i]->index);
354   if (!*irred_invalidated)
355     FOR_EACH_EDGE (ae, ei, e->src->succs)
356       if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
357 	  && !bitmap_bit_p (seen, ae->dest->index)
358 	  && ae->flags & EDGE_IRREDUCIBLE_LOOP)
359 	{
360 	  *irred_invalidated = true;
361 	  break;
362 	}
363 
364   for (i = 0; i < nrem; i++)
365     {
366       FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
367 	if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
368 	    && !bitmap_bit_p (seen, ae->dest->index))
369 	  {
370 	    bitmap_set_bit (seen, ae->dest->index);
371 	    bord_bbs[n_bord_bbs++] = ae->dest;
372 
373 	    if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
374 	      *irred_invalidated = true;
375 	  }
376     }
377 
378   /* Remove the path.  */
379   from = e->src;
380   remove_branch (e);
381   dom_bbs.create (0);
382 
383   /* Cancel loops contained in the path.  */
384   for (i = 0; i < nrem; i++)
385     if (rem_bbs[i]->loop_father->header == rem_bbs[i])
386       cancel_loop_tree (rem_bbs[i]->loop_father);
387 
388   remove_bbs (rem_bbs, nrem);
389   free (rem_bbs);
390 
391   /* Find blocks whose dominators may be affected.  */
392   bitmap_clear (seen);
393   for (i = 0; i < n_bord_bbs; i++)
394     {
395       basic_block ldom;
396 
397       bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
398       if (bitmap_bit_p (seen, bb->index))
399 	continue;
400       bitmap_set_bit (seen, bb->index);
401 
402       for (ldom = first_dom_son (CDI_DOMINATORS, bb);
403 	   ldom;
404 	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
405 	if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
406 	  dom_bbs.safe_push (ldom);
407     }
408 
409   /* Recount dominators.  */
410   iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
411   dom_bbs.release ();
412   free (bord_bbs);
413 
414   /* Fix placements of basic blocks inside loops and the placement of
415      loops in the loop tree.  */
416   fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
417   fix_loop_placements (from->loop_father, irred_invalidated);
418 
419   if (local_irred_invalidated
420       && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
421     mark_irreducible_loops ();
422 
423   return true;
424 }
425 
426 /* Creates place for a new LOOP in loops structure of FN.  */
427 
428 void
place_new_loop(struct function * fn,class loop * loop)429 place_new_loop (struct function *fn, class loop *loop)
430 {
431   loop->num = number_of_loops (fn);
432   vec_safe_push (loops_for_fn (fn)->larray, loop);
433 }
434 
435 /* Given LOOP structure with filled header and latch, find the body of the
436    corresponding loop and add it to loops tree.  Insert the LOOP as a son of
437    outer.  */
438 
439 void
add_loop(class loop * loop,class loop * outer)440 add_loop (class loop *loop, class loop *outer)
441 {
442   basic_block *bbs;
443   int i, n;
444   class loop *subloop;
445   edge e;
446   edge_iterator ei;
447 
448   /* Add it to loop structure.  */
449   place_new_loop (cfun, loop);
450   flow_loop_tree_node_add (outer, loop);
451 
452   /* Find its nodes.  */
453   bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
454   n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
455 
456   for (i = 0; i < n; i++)
457     {
458       if (bbs[i]->loop_father == outer)
459 	{
460 	  remove_bb_from_loops (bbs[i]);
461 	  add_bb_to_loop (bbs[i], loop);
462 	  continue;
463 	}
464 
465       loop->num_nodes++;
466 
467       /* If we find a direct subloop of OUTER, move it to LOOP.  */
468       subloop = bbs[i]->loop_father;
469       if (loop_outer (subloop) == outer
470 	  && subloop->header == bbs[i])
471 	{
472 	  flow_loop_tree_node_remove (subloop);
473 	  flow_loop_tree_node_add (loop, subloop);
474 	}
475     }
476 
477   /* Update the information about loop exit edges.  */
478   for (i = 0; i < n; i++)
479     {
480       FOR_EACH_EDGE (e, ei, bbs[i]->succs)
481 	{
482 	  rescan_loop_exit (e, false, false);
483 	}
484     }
485 
486   free (bbs);
487 }
488 
489 /* Scale profile of loop by P.  */
490 
491 void
scale_loop_frequencies(class loop * loop,profile_probability p)492 scale_loop_frequencies (class loop *loop, profile_probability p)
493 {
494   basic_block *bbs;
495 
496   bbs = get_loop_body (loop);
497   scale_bbs_frequencies (bbs, loop->num_nodes, p);
498   free (bbs);
499 }
500 
501 /* Scale profile in LOOP by P.
502    If ITERATION_BOUND is non-zero, scale even further if loop is predicted
503    to iterate too many times.
504    Before caling this function, preheader block profile should be already
505    scaled to final count.  This is necessary because loop iterations are
506    determined by comparing header edge count to latch ege count and thus
507    they need to be scaled synchronously.  */
508 
509 void
scale_loop_profile(class loop * loop,profile_probability p,gcov_type iteration_bound)510 scale_loop_profile (class loop *loop, profile_probability p,
511 		    gcov_type iteration_bound)
512 {
513   edge e, preheader_e;
514   edge_iterator ei;
515 
516   if (dump_file && (dump_flags & TDF_DETAILS))
517     {
518       fprintf (dump_file, ";; Scaling loop %i with scale ",
519 	       loop->num);
520       p.dump (dump_file);
521       fprintf (dump_file, " bounding iterations to %i\n",
522 	       (int)iteration_bound);
523     }
524 
525   /* Scale the probabilities.  */
526   scale_loop_frequencies (loop, p);
527 
528   if (iteration_bound == 0)
529     return;
530 
531   gcov_type iterations = expected_loop_iterations_unbounded (loop, NULL, true);
532 
533   if (dump_file && (dump_flags & TDF_DETAILS))
534     {
535       fprintf (dump_file, ";; guessed iterations after scaling %i\n",
536 	       (int)iterations);
537     }
538 
539   /* See if loop is predicted to iterate too many times.  */
540   if (iterations <= iteration_bound)
541     return;
542 
543   preheader_e = loop_preheader_edge (loop);
544 
545   /* We could handle also loops without preheaders, but bounding is
546      currently used only by optimizers that have preheaders constructed.  */
547   gcc_checking_assert (preheader_e);
548   profile_count count_in = preheader_e->count ();
549 
550   if (count_in > profile_count::zero ()
551       && loop->header->count.initialized_p ())
552     {
553       profile_count count_delta = profile_count::zero ();
554 
555       e = single_exit (loop);
556       if (e)
557 	{
558 	  edge other_e;
559 	  FOR_EACH_EDGE (other_e, ei, e->src->succs)
560 	    if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
561 		&& e != other_e)
562 	      break;
563 
564 	  /* Probability of exit must be 1/iterations.  */
565 	  count_delta = e->count ();
566 	  e->probability = profile_probability::always ()
567 				    .apply_scale (1, iteration_bound);
568 	  other_e->probability = e->probability.invert ();
569 
570 	  /* In code below we only handle the following two updates.  */
571 	  if (other_e->dest != loop->header
572 	      && other_e->dest != loop->latch
573 	      && (dump_file && (dump_flags & TDF_DETAILS)))
574 	    {
575 	      fprintf (dump_file, ";; giving up on update of paths from "
576 		       "exit condition to latch\n");
577 	    }
578 	}
579       else
580         if (dump_file && (dump_flags & TDF_DETAILS))
581 	  fprintf (dump_file, ";; Loop has multiple exit edges; "
582 	      		      "giving up on exit condition update\n");
583 
584       /* Roughly speaking we want to reduce the loop body profile by the
585 	 difference of loop iterations.  We however can do better if
586 	 we look at the actual profile, if it is available.  */
587       p = profile_probability::always ();
588 
589       count_in = count_in.apply_scale (iteration_bound, 1);
590       p = count_in.probability_in (loop->header->count);
591       if (!(p > profile_probability::never ()))
592 	p = profile_probability::very_unlikely ();
593 
594       if (p == profile_probability::always ()
595 	  || !p.initialized_p ())
596 	return;
597 
598       /* If latch exists, change its count, since we changed
599 	 probability of exit.  Theoretically we should update everything from
600 	 source of exit edge to latch, but for vectorizer this is enough.  */
601       if (loop->latch && loop->latch != e->src)
602 	loop->latch->count += count_delta;
603 
604       /* Scale the probabilities.  */
605       scale_loop_frequencies (loop, p);
606 
607       /* Change latch's count back.  */
608       if (loop->latch && loop->latch != e->src)
609 	loop->latch->count -= count_delta;
610 
611       if (dump_file && (dump_flags & TDF_DETAILS))
612 	fprintf (dump_file, ";; guessed iterations are now %i\n",
613 		 (int)expected_loop_iterations_unbounded (loop, NULL, true));
614     }
615 }
616 
617 /* Recompute dominance information for basic blocks outside LOOP.  */
618 
619 static void
update_dominators_in_loop(class loop * loop)620 update_dominators_in_loop (class loop *loop)
621 {
622   vec<basic_block> dom_bbs = vNULL;
623   basic_block *body;
624   unsigned i;
625 
626   auto_sbitmap seen (last_basic_block_for_fn (cfun));
627   bitmap_clear (seen);
628   body = get_loop_body (loop);
629 
630   for (i = 0; i < loop->num_nodes; i++)
631     bitmap_set_bit (seen, body[i]->index);
632 
633   for (i = 0; i < loop->num_nodes; i++)
634     {
635       basic_block ldom;
636 
637       for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
638 	   ldom;
639 	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
640 	if (!bitmap_bit_p (seen, ldom->index))
641 	  {
642 	    bitmap_set_bit (seen, ldom->index);
643 	    dom_bbs.safe_push (ldom);
644 	  }
645     }
646 
647   iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
648   free (body);
649   dom_bbs.release ();
650 }
651 
652 /* Creates an if region as shown above. CONDITION is used to create
653    the test for the if.
654 
655    |
656    |     -------------                 -------------
657    |     |  pred_bb  |                 |  pred_bb  |
658    |     -------------                 -------------
659    |           |                             |
660    |           |                             | ENTRY_EDGE
661    |           | ENTRY_EDGE                  V
662    |           |             ====>     -------------
663    |           |                       |  cond_bb  |
664    |           |                       | CONDITION |
665    |           |                       -------------
666    |           V                        /         \
667    |     -------------         e_false /           \ e_true
668    |     |  succ_bb  |                V             V
669    |     -------------         -----------       -----------
670    |                           | false_bb |      | true_bb |
671    |                           -----------       -----------
672    |                                   \           /
673    |                                    \         /
674    |                                     V       V
675    |                                   -------------
676    |                                   |  join_bb  |
677    |                                   -------------
678    |                                         | exit_edge (result)
679    |                                         V
680    |                                    -----------
681    |                                    | succ_bb |
682    |                                    -----------
683    |
684  */
685 
686 edge
create_empty_if_region_on_edge(edge entry_edge,tree condition)687 create_empty_if_region_on_edge (edge entry_edge, tree condition)
688 {
689 
690   basic_block cond_bb, true_bb, false_bb, join_bb;
691   edge e_true, e_false, exit_edge;
692   gcond *cond_stmt;
693   tree simple_cond;
694   gimple_stmt_iterator gsi;
695 
696   cond_bb = split_edge (entry_edge);
697 
698   /* Insert condition in cond_bb.  */
699   gsi = gsi_last_bb (cond_bb);
700   simple_cond =
701     force_gimple_operand_gsi (&gsi, condition, true, NULL,
702 			      false, GSI_NEW_STMT);
703   cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
704   gsi = gsi_last_bb (cond_bb);
705   gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
706 
707   join_bb = split_edge (single_succ_edge (cond_bb));
708 
709   e_true = single_succ_edge (cond_bb);
710   true_bb = split_edge (e_true);
711 
712   e_false = make_edge (cond_bb, join_bb, 0);
713   false_bb = split_edge (e_false);
714 
715   e_true->flags &= ~EDGE_FALLTHRU;
716   e_true->flags |= EDGE_TRUE_VALUE;
717   e_false->flags &= ~EDGE_FALLTHRU;
718   e_false->flags |= EDGE_FALSE_VALUE;
719 
720   set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
721   set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
722   set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
723   set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
724 
725   exit_edge = single_succ_edge (join_bb);
726 
727   if (single_pred_p (exit_edge->dest))
728     set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
729 
730   return exit_edge;
731 }
732 
733 /* create_empty_loop_on_edge
734    |
735    |    - pred_bb -                   ------ pred_bb ------
736    |   |           |                 | iv0 = initial_value |
737    |    -----|-----                   ---------|-----------
738    |         |                       ______    | entry_edge
739    |         | entry_edge           /      |   |
740    |         |             ====>   |      -V---V- loop_header -------------
741    |         V                     |     | iv_before = phi (iv0, iv_after) |
742    |    - succ_bb -                |      ---|-----------------------------
743    |   |           |               |         |
744    |    -----------                |      ---V--- loop_body ---------------
745    |                               |     | iv_after = iv_before + stride   |
746    |                               |     | if (iv_before < upper_bound)    |
747    |                               |      ---|--------------\--------------
748    |                               |         |               \ exit_e
749    |                               |         V                \
750    |                               |       - loop_latch -      V- succ_bb -
751    |                               |      |              |     |           |
752    |                               |       /-------------       -----------
753    |                                \ ___ /
754 
755    Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
756    that is used before the increment of IV. IV_BEFORE should be used for
757    adding code to the body that uses the IV.  OUTER is the outer loop in
758    which the new loop should be inserted.
759 
760    Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
761    inserted on the loop entry edge.  This implies that this function
762    should be used only when the UPPER_BOUND expression is a loop
763    invariant.  */
764 
765 class loop *
create_empty_loop_on_edge(edge entry_edge,tree initial_value,tree stride,tree upper_bound,tree iv,tree * iv_before,tree * iv_after,class loop * outer)766 create_empty_loop_on_edge (edge entry_edge,
767 			   tree initial_value,
768 			   tree stride, tree upper_bound,
769 			   tree iv,
770 			   tree *iv_before,
771 			   tree *iv_after,
772 			   class loop *outer)
773 {
774   basic_block loop_header, loop_latch, succ_bb, pred_bb;
775   class loop *loop;
776   gimple_stmt_iterator gsi;
777   gimple_seq stmts;
778   gcond *cond_expr;
779   tree exit_test;
780   edge exit_e;
781 
782   gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
783 
784   /* Create header, latch and wire up the loop.  */
785   pred_bb = entry_edge->src;
786   loop_header = split_edge (entry_edge);
787   loop_latch = split_edge (single_succ_edge (loop_header));
788   succ_bb = single_succ (loop_latch);
789   make_edge (loop_header, succ_bb, 0);
790   redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
791 
792   /* Set immediate dominator information.  */
793   set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
794   set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
795   set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
796 
797   /* Initialize a loop structure and put it in a loop hierarchy.  */
798   loop = alloc_loop ();
799   loop->header = loop_header;
800   loop->latch = loop_latch;
801   add_loop (loop, outer);
802 
803   /* TODO: Fix counts.  */
804   scale_loop_frequencies (loop, profile_probability::even ());
805 
806   /* Update dominators.  */
807   update_dominators_in_loop (loop);
808 
809   /* Modify edge flags.  */
810   exit_e = single_exit (loop);
811   exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
812   single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
813 
814   /* Construct IV code in loop.  */
815   initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
816   if (stmts)
817     {
818       gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
819       gsi_commit_edge_inserts ();
820     }
821 
822   upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
823   if (stmts)
824     {
825       gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
826       gsi_commit_edge_inserts ();
827     }
828 
829   gsi = gsi_last_bb (loop_header);
830   create_iv (initial_value, stride, iv, loop, &gsi, false,
831 	     iv_before, iv_after);
832 
833   /* Insert loop exit condition.  */
834   cond_expr = gimple_build_cond
835     (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
836 
837   exit_test = gimple_cond_lhs (cond_expr);
838   exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
839 					false, GSI_NEW_STMT);
840   gimple_cond_set_lhs (cond_expr, exit_test);
841   gsi = gsi_last_bb (exit_e->src);
842   gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
843 
844   split_block_after_labels (loop_header);
845 
846   return loop;
847 }
848 
849 /* Remove the latch edge of a LOOP and update loops to indicate that
850    the LOOP was removed.  After this function, original loop latch will
851    have no successor, which caller is expected to fix somehow.
852 
853    If this may cause the information about irreducible regions to become
854    invalid, IRRED_INVALIDATED is set to true.
855 
856    LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
857    basic blocks that had non-trivial update on their loop_father.*/
858 
859 void
unloop(class loop * loop,bool * irred_invalidated,bitmap loop_closed_ssa_invalidated)860 unloop (class loop *loop, bool *irred_invalidated,
861 	bitmap loop_closed_ssa_invalidated)
862 {
863   basic_block *body;
864   class loop *ploop;
865   unsigned i, n;
866   basic_block latch = loop->latch;
867   bool dummy = false;
868 
869   if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
870     *irred_invalidated = true;
871 
872   /* This is relatively straightforward.  The dominators are unchanged, as
873      loop header dominates loop latch, so the only thing we have to care of
874      is the placement of loops and basic blocks inside the loop tree.  We
875      move them all to the loop->outer, and then let fix_bb_placements do
876      its work.  */
877 
878   body = get_loop_body (loop);
879   n = loop->num_nodes;
880   for (i = 0; i < n; i++)
881     if (body[i]->loop_father == loop)
882       {
883 	remove_bb_from_loops (body[i]);
884 	add_bb_to_loop (body[i], loop_outer (loop));
885       }
886   free (body);
887 
888   while (loop->inner)
889     {
890       ploop = loop->inner;
891       flow_loop_tree_node_remove (ploop);
892       flow_loop_tree_node_add (loop_outer (loop), ploop);
893     }
894 
895   /* Remove the loop and free its data.  */
896   delete_loop (loop);
897 
898   remove_edge (single_succ_edge (latch));
899 
900   /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
901      there is an irreducible region inside the cancelled loop, the flags will
902      be still correct.  */
903   fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
904 }
905 
906 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
907    condition stated in description of fix_loop_placement holds for them.
908    It is used in case when we removed some edges coming out of LOOP, which
909    may cause the right placement of LOOP inside loop tree to change.
910 
911    IRRED_INVALIDATED is set to true if a change in the loop structures might
912    invalidate the information about irreducible regions.  */
913 
914 static void
fix_loop_placements(class loop * loop,bool * irred_invalidated)915 fix_loop_placements (class loop *loop, bool *irred_invalidated)
916 {
917   class loop *outer;
918 
919   while (loop_outer (loop))
920     {
921       outer = loop_outer (loop);
922       if (!fix_loop_placement (loop, irred_invalidated))
923 	break;
924 
925       /* Changing the placement of a loop in the loop tree may alter the
926 	 validity of condition 2) of the description of fix_bb_placement
927 	 for its preheader, because the successor is the header and belongs
928 	 to the loop.  So call fix_bb_placements to fix up the placement
929 	 of the preheader and (possibly) of its predecessors.  */
930       fix_bb_placements (loop_preheader_edge (loop)->src,
931 			 irred_invalidated, NULL);
932       loop = outer;
933     }
934 }
935 
936 /* Duplicate loop bounds and other information we store about
937    the loop into its duplicate.  */
938 
939 void
copy_loop_info(class loop * loop,class loop * target)940 copy_loop_info (class loop *loop, class loop *target)
941 {
942   gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
943   target->any_upper_bound = loop->any_upper_bound;
944   target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
945   target->any_likely_upper_bound = loop->any_likely_upper_bound;
946   target->nb_iterations_likely_upper_bound
947     = loop->nb_iterations_likely_upper_bound;
948   target->any_estimate = loop->any_estimate;
949   target->nb_iterations_estimate = loop->nb_iterations_estimate;
950   target->estimate_state = loop->estimate_state;
951   target->safelen = loop->safelen;
952   target->simdlen = loop->simdlen;
953   target->constraints = loop->constraints;
954   target->can_be_parallel = loop->can_be_parallel;
955   target->warned_aggressive_loop_optimizations
956     |= loop->warned_aggressive_loop_optimizations;
957   target->dont_vectorize = loop->dont_vectorize;
958   target->force_vectorize = loop->force_vectorize;
959   target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
960   target->finite_p = loop->finite_p;
961   target->unroll = loop->unroll;
962   target->owned_clique = loop->owned_clique;
963 }
964 
965 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
966    created loop into loops structure.  If AFTER is non-null
967    the new loop is added at AFTER->next, otherwise in front of TARGETs
968    sibling list.  */
969 class loop *
duplicate_loop(class loop * loop,class loop * target,class loop * after)970 duplicate_loop (class loop *loop, class loop *target, class loop *after)
971 {
972   class loop *cloop;
973   cloop = alloc_loop ();
974   place_new_loop (cfun, cloop);
975 
976   copy_loop_info (loop, cloop);
977 
978   /* Mark the new loop as copy of LOOP.  */
979   set_loop_copy (loop, cloop);
980 
981   /* Add it to target.  */
982   flow_loop_tree_node_add (target, cloop, after);
983 
984   return cloop;
985 }
986 
987 /* Copies structure of subloops of LOOP into TARGET loop, placing
988    newly created loops into loop tree at the end of TARGETs sibling
989    list in the original order.  */
990 void
duplicate_subloops(class loop * loop,class loop * target)991 duplicate_subloops (class loop *loop, class loop *target)
992 {
993   class loop *aloop, *cloop, *tail;
994 
995   for (tail = target->inner; tail && tail->next; tail = tail->next)
996     ;
997   for (aloop = loop->inner; aloop; aloop = aloop->next)
998     {
999       cloop = duplicate_loop (aloop, target, tail);
1000       tail = cloop;
1001       gcc_assert(!tail->next);
1002       duplicate_subloops (aloop, cloop);
1003     }
1004 }
1005 
1006 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1007    into TARGET loop, placing newly created loops into loop tree adding
1008    them to TARGETs sibling list at the end in order.  */
1009 static void
copy_loops_to(class loop ** copied_loops,int n,class loop * target)1010 copy_loops_to (class loop **copied_loops, int n, class loop *target)
1011 {
1012   class loop *aloop, *tail;
1013   int i;
1014 
1015   for (tail = target->inner; tail && tail->next; tail = tail->next)
1016     ;
1017   for (i = 0; i < n; i++)
1018     {
1019       aloop = duplicate_loop (copied_loops[i], target, tail);
1020       tail = aloop;
1021       gcc_assert(!tail->next);
1022       duplicate_subloops (copied_loops[i], aloop);
1023     }
1024 }
1025 
1026 /* Redirects edge E to basic block DEST.  */
1027 static void
loop_redirect_edge(edge e,basic_block dest)1028 loop_redirect_edge (edge e, basic_block dest)
1029 {
1030   if (e->dest == dest)
1031     return;
1032 
1033   redirect_edge_and_branch_force (e, dest);
1034 }
1035 
1036 /* Check whether LOOP's body can be duplicated.  */
1037 bool
can_duplicate_loop_p(const class loop * loop)1038 can_duplicate_loop_p (const class loop *loop)
1039 {
1040   int ret;
1041   basic_block *bbs = get_loop_body (loop);
1042 
1043   ret = can_copy_bbs_p (bbs, loop->num_nodes);
1044   free (bbs);
1045 
1046   return ret;
1047 }
1048 
1049 /* Duplicates body of LOOP to given edge E NDUPL times.  Takes care of updating
1050    loop structure and dominators (order of inner subloops is retained).
1051    E's destination must be LOOP header for this to work, i.e. it must be entry
1052    or latch edge of this loop; these are unique, as the loops must have
1053    preheaders for this function to work correctly (in case E is latch, the
1054    function unrolls the loop, if E is entry edge, it peels the loop).  Store
1055    edges created by copying ORIG edge from copies corresponding to set bits in
1056    WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1057    are numbered in order given by control flow through them) into TO_REMOVE
1058    array.  Returns false if duplication is
1059    impossible.  */
1060 
1061 bool
duplicate_loop_body_to_header_edge(class loop * loop,edge e,unsigned int ndupl,sbitmap wont_exit,edge orig,vec<edge> * to_remove,int flags)1062 duplicate_loop_body_to_header_edge (class loop *loop, edge e,
1063 				    unsigned int ndupl, sbitmap wont_exit,
1064 				    edge orig, vec<edge> *to_remove, int flags)
1065 {
1066   class loop *target, *aloop;
1067   class loop **orig_loops;
1068   unsigned n_orig_loops;
1069   basic_block header = loop->header, latch = loop->latch;
1070   basic_block *new_bbs, *bbs, *first_active;
1071   basic_block new_bb, bb, first_active_latch = NULL;
1072   edge ae, latch_edge;
1073   edge spec_edges[2], new_spec_edges[2];
1074   const int SE_LATCH = 0;
1075   const int SE_ORIG = 1;
1076   unsigned i, j, n;
1077   int is_latch = (latch == e->src);
1078   profile_probability *scale_step = NULL;
1079   profile_probability scale_main = profile_probability::always ();
1080   profile_probability scale_act = profile_probability::always ();
1081   profile_count after_exit_num = profile_count::zero (),
1082 	        after_exit_den = profile_count::zero ();
1083   bool scale_after_exit = false;
1084   int add_irreducible_flag;
1085   basic_block place_after;
1086   bitmap bbs_to_scale = NULL;
1087   bitmap_iterator bi;
1088 
1089   gcc_assert (e->dest == loop->header);
1090   gcc_assert (ndupl > 0);
1091 
1092   if (orig)
1093     {
1094       /* Orig must be edge out of the loop.  */
1095       gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1096       gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1097     }
1098 
1099   n = loop->num_nodes;
1100   bbs = get_loop_body_in_dom_order (loop);
1101   gcc_assert (bbs[0] == loop->header);
1102   gcc_assert (bbs[n  - 1] == loop->latch);
1103 
1104   /* Check whether duplication is possible.  */
1105   if (!can_copy_bbs_p (bbs, loop->num_nodes))
1106     {
1107       free (bbs);
1108       return false;
1109     }
1110   new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1111 
1112   /* In case we are doing loop peeling and the loop is in the middle of
1113      irreducible region, the peeled copies will be inside it too.  */
1114   add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1115   gcc_assert (!is_latch || !add_irreducible_flag);
1116 
1117   /* Find edge from latch.  */
1118   latch_edge = loop_latch_edge (loop);
1119 
1120   if (flags & DLTHE_FLAG_UPDATE_FREQ)
1121     {
1122       /* Calculate coefficients by that we have to scale counts
1123 	 of duplicated loop bodies.  */
1124       profile_count count_in = header->count;
1125       profile_count count_le = latch_edge->count ();
1126       profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1127       profile_probability prob_pass_thru = count_le.probability_in (count_in);
1128       profile_probability prob_pass_wont_exit =
1129 	      (count_le + count_out_orig).probability_in (count_in);
1130 
1131       if (orig && orig->probability.initialized_p ()
1132 	  && !(orig->probability == profile_probability::always ()))
1133 	{
1134 	  /* The blocks that are dominated by a removed exit edge ORIG have
1135 	     frequencies scaled by this.  */
1136 	  if (orig->count ().initialized_p ())
1137 	    {
1138 	      after_exit_num = orig->src->count;
1139 	      after_exit_den = after_exit_num - orig->count ();
1140 	      scale_after_exit = true;
1141 	    }
1142 	  bbs_to_scale = BITMAP_ALLOC (NULL);
1143 	  for (i = 0; i < n; i++)
1144 	    {
1145 	      if (bbs[i] != orig->src
1146 		  && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1147 		bitmap_set_bit (bbs_to_scale, i);
1148 	    }
1149 	}
1150 
1151       scale_step = XNEWVEC (profile_probability, ndupl);
1152 
1153       for (i = 1; i <= ndupl; i++)
1154 	scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1155 				? prob_pass_wont_exit
1156 				: prob_pass_thru;
1157 
1158       /* Complete peeling is special as the probability of exit in last
1159 	 copy becomes 1.  */
1160       if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1161 	{
1162 	  profile_count wanted_count = e->count ();
1163 
1164 	  gcc_assert (!is_latch);
1165 	  /* First copy has count of incoming edge.  Each subsequent
1166 	     count should be reduced by prob_pass_wont_exit.  Caller
1167 	     should've managed the flags so all except for original loop
1168 	     has won't exist set.  */
1169 	  scale_act = wanted_count.probability_in (count_in);
1170 	  /* Now simulate the duplication adjustments and compute header
1171 	     frequency of the last copy.  */
1172 	  for (i = 0; i < ndupl; i++)
1173 	    wanted_count = wanted_count.apply_probability (scale_step [i]);
1174 	  scale_main = wanted_count.probability_in (count_in);
1175 	}
1176       /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1177 	 First iteration will be original loop followed by duplicated bodies.
1178 	 It is necessary to scale down the original so we get right overall
1179 	 number of iterations.  */
1180       else if (is_latch)
1181 	{
1182 	  profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1183 							? prob_pass_wont_exit
1184 							: prob_pass_thru;
1185 	  profile_probability p = prob_pass_main;
1186 	  profile_count scale_main_den = count_in;
1187 	  for (i = 0; i < ndupl; i++)
1188 	    {
1189 	      scale_main_den += count_in.apply_probability (p);
1190 	      p = p * scale_step[i];
1191 	    }
1192 	  /* If original loop is executed COUNT_IN times, the unrolled
1193 	     loop will account SCALE_MAIN_DEN times.  */
1194 	  scale_main = count_in.probability_in (scale_main_den);
1195 	  scale_act = scale_main * prob_pass_main;
1196 	}
1197       else
1198 	{
1199 	  profile_count preheader_count = e->count ();
1200 	  for (i = 0; i < ndupl; i++)
1201 	    scale_main = scale_main * scale_step[i];
1202 	  scale_act = preheader_count.probability_in (count_in);
1203 	}
1204     }
1205 
1206   /* Loop the new bbs will belong to.  */
1207   target = e->src->loop_father;
1208 
1209   /* Original loops.  */
1210   n_orig_loops = 0;
1211   for (aloop = loop->inner; aloop; aloop = aloop->next)
1212     n_orig_loops++;
1213   orig_loops = XNEWVEC (class loop *, n_orig_loops);
1214   for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1215     orig_loops[i] = aloop;
1216 
1217   set_loop_copy (loop, target);
1218 
1219   first_active = XNEWVEC (basic_block, n);
1220   if (is_latch)
1221     {
1222       memcpy (first_active, bbs, n * sizeof (basic_block));
1223       first_active_latch = latch;
1224     }
1225 
1226   spec_edges[SE_ORIG] = orig;
1227   spec_edges[SE_LATCH] = latch_edge;
1228 
1229   place_after = e->src;
1230   for (j = 0; j < ndupl; j++)
1231     {
1232       /* Copy loops.  */
1233       copy_loops_to (orig_loops, n_orig_loops, target);
1234 
1235       /* Copy bbs.  */
1236       copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1237 		place_after, true);
1238       place_after = new_spec_edges[SE_LATCH]->src;
1239 
1240       if (flags & DLTHE_RECORD_COPY_NUMBER)
1241 	for (i = 0; i < n; i++)
1242 	  {
1243 	    gcc_assert (!new_bbs[i]->aux);
1244 	    new_bbs[i]->aux = (void *)(size_t)(j + 1);
1245 	  }
1246 
1247       /* Note whether the blocks and edges belong to an irreducible loop.  */
1248       if (add_irreducible_flag)
1249 	{
1250 	  for (i = 0; i < n; i++)
1251 	    new_bbs[i]->flags |= BB_DUPLICATED;
1252 	  for (i = 0; i < n; i++)
1253 	    {
1254 	      edge_iterator ei;
1255 	      new_bb = new_bbs[i];
1256 	      if (new_bb->loop_father == target)
1257 		new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1258 
1259 	      FOR_EACH_EDGE (ae, ei, new_bb->succs)
1260 		if ((ae->dest->flags & BB_DUPLICATED)
1261 		    && (ae->src->loop_father == target
1262 			|| ae->dest->loop_father == target))
1263 		  ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1264 	    }
1265 	  for (i = 0; i < n; i++)
1266 	    new_bbs[i]->flags &= ~BB_DUPLICATED;
1267 	}
1268 
1269       /* Redirect the special edges.  */
1270       if (is_latch)
1271 	{
1272 	  redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1273 	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1274 					  loop->header);
1275 	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1276 	  latch = loop->latch = new_bbs[n - 1];
1277 	  e = latch_edge = new_spec_edges[SE_LATCH];
1278 	}
1279       else
1280 	{
1281 	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1282 					  loop->header);
1283 	  redirect_edge_and_branch_force (e, new_bbs[0]);
1284 	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1285 	  e = new_spec_edges[SE_LATCH];
1286 	}
1287 
1288       /* Record exit edge in this copy.  */
1289       if (orig && bitmap_bit_p (wont_exit, j + 1))
1290 	{
1291 	  if (to_remove)
1292 	    to_remove->safe_push (new_spec_edges[SE_ORIG]);
1293 	  force_edge_cold (new_spec_edges[SE_ORIG], true);
1294 
1295 	  /* Scale the frequencies of the blocks dominated by the exit.  */
1296 	  if (bbs_to_scale && scale_after_exit)
1297 	    {
1298 	      EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1299 		scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1300 						     after_exit_den);
1301 	    }
1302 	}
1303 
1304       /* Record the first copy in the control flow order if it is not
1305 	 the original loop (i.e. in case of peeling).  */
1306       if (!first_active_latch)
1307 	{
1308 	  memcpy (first_active, new_bbs, n * sizeof (basic_block));
1309 	  first_active_latch = new_bbs[n - 1];
1310 	}
1311 
1312       /* Set counts and frequencies.  */
1313       if (flags & DLTHE_FLAG_UPDATE_FREQ)
1314 	{
1315 	  scale_bbs_frequencies (new_bbs, n, scale_act);
1316 	  scale_act = scale_act * scale_step[j];
1317 	}
1318     }
1319   free (new_bbs);
1320   free (orig_loops);
1321 
1322   /* Record the exit edge in the original loop body, and update the frequencies.  */
1323   if (orig && bitmap_bit_p (wont_exit, 0))
1324     {
1325       if (to_remove)
1326 	to_remove->safe_push (orig);
1327       force_edge_cold (orig, true);
1328 
1329       /* Scale the frequencies of the blocks dominated by the exit.  */
1330       if (bbs_to_scale && scale_after_exit)
1331 	{
1332 	  EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1333 	    scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1334 						 after_exit_den);
1335 	}
1336     }
1337 
1338   /* Update the original loop.  */
1339   if (!is_latch)
1340     set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1341   if (flags & DLTHE_FLAG_UPDATE_FREQ)
1342     {
1343       scale_bbs_frequencies (bbs, n, scale_main);
1344       free (scale_step);
1345     }
1346 
1347   /* Update dominators of outer blocks if affected.  */
1348   for (i = 0; i < n; i++)
1349     {
1350       basic_block dominated, dom_bb;
1351       unsigned j;
1352 
1353       bb = bbs[i];
1354       bb->aux = 0;
1355 
1356       auto_vec<basic_block> dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1357       FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1358 	{
1359 	  if (flow_bb_inside_loop_p (loop, dominated))
1360 	    continue;
1361 	  dom_bb = nearest_common_dominator (
1362 			CDI_DOMINATORS, first_active[i], first_active_latch);
1363 	  set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1364 	}
1365     }
1366   free (first_active);
1367 
1368   free (bbs);
1369   BITMAP_FREE (bbs_to_scale);
1370 
1371   return true;
1372 }
1373 
1374 /* A callback for make_forwarder block, to redirect all edges except for
1375    MFB_KJ_EDGE to the entry part.  E is the edge for that we should decide
1376    whether to redirect it.  */
1377 
1378 edge mfb_kj_edge;
1379 bool
mfb_keep_just(edge e)1380 mfb_keep_just (edge e)
1381 {
1382   return e != mfb_kj_edge;
1383 }
1384 
1385 /* True when a candidate preheader BLOCK has predecessors from LOOP.  */
1386 
1387 static bool
has_preds_from_loop(basic_block block,class loop * loop)1388 has_preds_from_loop (basic_block block, class loop *loop)
1389 {
1390   edge e;
1391   edge_iterator ei;
1392 
1393   FOR_EACH_EDGE (e, ei, block->preds)
1394     if (e->src->loop_father == loop)
1395       return true;
1396   return false;
1397 }
1398 
1399 /* Creates a pre-header for a LOOP.  Returns newly created block.  Unless
1400    CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1401    entry; otherwise we also force preheader block to have only one successor.
1402    When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1403    to be a fallthru predecessor to the loop header and to have only
1404    predecessors from outside of the loop.
1405    The function also updates dominators.  */
1406 
1407 basic_block
create_preheader(class loop * loop,int flags)1408 create_preheader (class loop *loop, int flags)
1409 {
1410   edge e;
1411   basic_block dummy;
1412   int nentry = 0;
1413   bool irred = false;
1414   bool latch_edge_was_fallthru;
1415   edge one_succ_pred = NULL, single_entry = NULL;
1416   edge_iterator ei;
1417 
1418   FOR_EACH_EDGE (e, ei, loop->header->preds)
1419     {
1420       if (e->src == loop->latch)
1421 	continue;
1422       irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1423       nentry++;
1424       single_entry = e;
1425       if (single_succ_p (e->src))
1426 	one_succ_pred = e;
1427     }
1428   gcc_assert (nentry);
1429   if (nentry == 1)
1430     {
1431       bool need_forwarder_block = false;
1432 
1433       /* We do not allow entry block to be the loop preheader, since we
1434 	     cannot emit code there.  */
1435       if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1436         need_forwarder_block = true;
1437       else
1438         {
1439           /* If we want simple preheaders, also force the preheader to have
1440 	     just a single successor and a normal edge.  */
1441           if ((flags & CP_SIMPLE_PREHEADERS)
1442 	      && ((single_entry->flags & EDGE_COMPLEX)
1443 		  || !single_succ_p (single_entry->src)))
1444             need_forwarder_block = true;
1445           /* If we want fallthru preheaders, also create forwarder block when
1446              preheader ends with a jump or has predecessors from loop.  */
1447           else if ((flags & CP_FALLTHRU_PREHEADERS)
1448                    && (JUMP_P (BB_END (single_entry->src))
1449                        || has_preds_from_loop (single_entry->src, loop)))
1450             need_forwarder_block = true;
1451         }
1452       if (! need_forwarder_block)
1453 	return NULL;
1454     }
1455 
1456   mfb_kj_edge = loop_latch_edge (loop);
1457   latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1458   if (nentry == 1
1459       && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1460   	  || (single_entry->flags & EDGE_CROSSING) == 0))
1461     dummy = split_edge (single_entry);
1462   else
1463     {
1464       edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1465       dummy = fallthru->src;
1466       loop->header = fallthru->dest;
1467     }
1468 
1469   /* Try to be clever in placing the newly created preheader.  The idea is to
1470      avoid breaking any "fallthruness" relationship between blocks.
1471 
1472      The preheader was created just before the header and all incoming edges
1473      to the header were redirected to the preheader, except the latch edge.
1474      So the only problematic case is when this latch edge was a fallthru
1475      edge: it is not anymore after the preheader creation so we have broken
1476      the fallthruness.  We're therefore going to look for a better place.  */
1477   if (latch_edge_was_fallthru)
1478     {
1479       if (one_succ_pred)
1480 	e = one_succ_pred;
1481       else
1482 	e = EDGE_PRED (dummy, 0);
1483 
1484       move_block_after (dummy, e->src);
1485     }
1486 
1487   if (irred)
1488     {
1489       dummy->flags |= BB_IRREDUCIBLE_LOOP;
1490       single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1491     }
1492 
1493   if (dump_file)
1494     fprintf (dump_file, "Created preheader block for loop %i\n",
1495 	     loop->num);
1496 
1497   if (flags & CP_FALLTHRU_PREHEADERS)
1498     gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1499                 && !JUMP_P (BB_END (dummy)));
1500 
1501   return dummy;
1502 }
1503 
1504 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader.  */
1505 
1506 void
create_preheaders(int flags)1507 create_preheaders (int flags)
1508 {
1509   if (!current_loops)
1510     return;
1511 
1512   for (auto loop : loops_list (cfun, 0))
1513     create_preheader (loop, flags);
1514   loops_state_set (LOOPS_HAVE_PREHEADERS);
1515 }
1516 
1517 /* Forces all loop latches to have only single successor.  */
1518 
1519 void
force_single_succ_latches(void)1520 force_single_succ_latches (void)
1521 {
1522   edge e;
1523 
1524   for (auto loop : loops_list (cfun, 0))
1525     {
1526       if (loop->latch != loop->header && single_succ_p (loop->latch))
1527 	continue;
1528 
1529       e = find_edge (loop->latch, loop->header);
1530       gcc_checking_assert (e != NULL);
1531 
1532       split_edge (e);
1533     }
1534   loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1535 }
1536 
1537 /* This function is called from loop_version.  It splits the entry edge
1538    of the loop we want to version, adds the versioning condition, and
1539    adjust the edges to the two versions of the loop appropriately.
1540    e is an incoming edge. Returns the basic block containing the
1541    condition.
1542 
1543    --- edge e ---- > [second_head]
1544 
1545    Split it and insert new conditional expression and adjust edges.
1546 
1547     --- edge e ---> [cond expr] ---> [first_head]
1548 			|
1549 			+---------> [second_head]
1550 
1551   THEN_PROB is the probability of then branch of the condition.
1552   ELSE_PROB is the probability of else branch. Note that they may be both
1553   REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1554   IFN_LOOP_DIST_ALIAS.  */
1555 
1556 static basic_block
lv_adjust_loop_entry_edge(basic_block first_head,basic_block second_head,edge e,void * cond_expr,profile_probability then_prob,profile_probability else_prob)1557 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1558 			   edge e, void *cond_expr,
1559 			   profile_probability then_prob,
1560 			   profile_probability else_prob)
1561 {
1562   basic_block new_head = NULL;
1563   edge e1;
1564 
1565   gcc_assert (e->dest == second_head);
1566 
1567   /* Split edge 'e'. This will create a new basic block, where we can
1568      insert conditional expr.  */
1569   new_head = split_edge (e);
1570 
1571   lv_add_condition_to_bb (first_head, second_head, new_head,
1572 			  cond_expr);
1573 
1574   /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there.  */
1575   e = single_succ_edge (new_head);
1576   e1 = make_edge (new_head, first_head,
1577 		  current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1578   e1->probability = then_prob;
1579   e->probability = else_prob;
1580 
1581   set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1582   set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1583 
1584   /* Adjust loop header phi nodes.  */
1585   lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1586 
1587   return new_head;
1588 }
1589 
1590 /* Main entry point for Loop Versioning transformation.
1591 
1592    This transformation given a condition and a loop, creates
1593    -if (condition) { loop_copy1 } else { loop_copy2 },
1594    where loop_copy1 is the loop transformed in one way, and loop_copy2
1595    is the loop transformed in another way (or unchanged). COND_EXPR
1596    may be a run time test for things that were not resolved by static
1597    analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1598 
1599    If non-NULL, CONDITION_BB is set to the basic block containing the
1600    condition.
1601 
1602    THEN_PROB is the probability of the then edge of the if.  THEN_SCALE
1603    is the ratio by that the frequencies in the original loop should
1604    be scaled.  ELSE_SCALE is the ratio by that the frequencies in the
1605    new loop should be scaled.
1606 
1607    If PLACE_AFTER is true, we place the new loop after LOOP in the
1608    instruction stream, otherwise it is placed before LOOP.  */
1609 
1610 class loop *
loop_version(class loop * loop,void * cond_expr,basic_block * condition_bb,profile_probability then_prob,profile_probability else_prob,profile_probability then_scale,profile_probability else_scale,bool place_after)1611 loop_version (class loop *loop,
1612 	      void *cond_expr, basic_block *condition_bb,
1613 	      profile_probability then_prob, profile_probability else_prob,
1614 	      profile_probability then_scale, profile_probability else_scale,
1615 	      bool place_after)
1616 {
1617   basic_block first_head, second_head;
1618   edge entry, latch_edge;
1619   int irred_flag;
1620   class loop *nloop;
1621   basic_block cond_bb;
1622 
1623   /* Record entry and latch edges for the loop */
1624   entry = loop_preheader_edge (loop);
1625   irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1626   entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1627 
1628   /* Note down head of loop as first_head.  */
1629   first_head = entry->dest;
1630 
1631   /* 1) Duplicate loop on the entry edge.  */
1632   if (!cfg_hook_duplicate_loop_body_to_header_edge (loop, entry, 1, NULL, NULL,
1633 						    NULL, 0))
1634     {
1635       entry->flags |= irred_flag;
1636       return NULL;
1637     }
1638 
1639   /* 2) loopify the duplicated new loop. */
1640   latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1641   nloop = alloc_loop ();
1642   class loop *outer = loop_outer (latch_edge->dest->loop_father);
1643   edge new_header_edge = single_pred_edge (get_bb_copy (loop->header));
1644   nloop->header = new_header_edge->dest;
1645   nloop->latch = latch_edge->src;
1646   loop_redirect_edge (latch_edge, nloop->header);
1647 
1648   /* Compute new loop.  */
1649   add_loop (nloop, outer);
1650   copy_loop_info (loop, nloop);
1651   set_loop_copy (loop, nloop);
1652 
1653   /* loopify redirected latch_edge. Update its PENDING_STMTS.  */
1654   lv_flush_pending_stmts (latch_edge);
1655 
1656   /* After duplication entry edge now points to new loop head block.
1657      Note down new head as second_head.  */
1658   second_head = entry->dest;
1659 
1660   /* 3) Split loop entry edge and insert new block with cond expr.  */
1661   cond_bb =  lv_adjust_loop_entry_edge (first_head, second_head,
1662 					entry, cond_expr, then_prob, else_prob);
1663   if (condition_bb)
1664     *condition_bb = cond_bb;
1665 
1666   if (!cond_bb)
1667     {
1668       entry->flags |= irred_flag;
1669       return NULL;
1670     }
1671 
1672   /* Add cond_bb to appropriate loop.  */
1673   if (cond_bb->loop_father)
1674     remove_bb_from_loops (cond_bb);
1675   add_bb_to_loop (cond_bb, outer);
1676 
1677   /* 4) Scale the original loop and new loop frequency.  */
1678   scale_loop_frequencies (loop, then_scale);
1679   scale_loop_frequencies (nloop, else_scale);
1680   update_dominators_in_loop (loop);
1681   update_dominators_in_loop (nloop);
1682 
1683   /* Adjust irreducible flag.  */
1684   if (irred_flag)
1685     {
1686       cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1687       loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1688       loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1689       single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1690     }
1691 
1692   if (place_after)
1693     {
1694       basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1695       unsigned i;
1696 
1697       after = loop->latch;
1698 
1699       for (i = 0; i < nloop->num_nodes; i++)
1700 	{
1701 	  move_block_after (bbs[i], after);
1702 	  after = bbs[i];
1703 	}
1704       free (bbs);
1705     }
1706 
1707   /* At this point condition_bb is loop preheader with two successors,
1708      first_head and second_head.   Make sure that loop preheader has only
1709      one successor.  */
1710   split_edge (loop_preheader_edge (loop));
1711   split_edge (loop_preheader_edge (nloop));
1712 
1713   return nloop;
1714 }
1715