1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/param.h> 69 #include <sys/types.h> 70 #ifndef illumos 71 #include <sys/time.h> 72 #endif 73 #include <sys/stat.h> 74 #include <sys/conf.h> 75 #include <sys/systm.h> 76 #include <sys/endian.h> 77 #ifdef illumos 78 #include <sys/ddi.h> 79 #include <sys/sunddi.h> 80 #endif 81 #include <sys/cpuvar.h> 82 #include <sys/kmem.h> 83 #ifdef illumos 84 #include <sys/strsubr.h> 85 #endif 86 #include <sys/sysmacros.h> 87 #include <sys/dtrace_impl.h> 88 #include <sys/atomic.h> 89 #include <sys/cmn_err.h> 90 #ifdef illumos 91 #include <sys/mutex_impl.h> 92 #include <sys/rwlock_impl.h> 93 #endif 94 #include <sys/ctf_api.h> 95 #ifdef illumos 96 #include <sys/panic.h> 97 #include <sys/priv_impl.h> 98 #endif 99 #ifdef illumos 100 #include <sys/cred_impl.h> 101 #include <sys/procfs_isa.h> 102 #endif 103 #include <sys/taskq.h> 104 #ifdef illumos 105 #include <sys/mkdev.h> 106 #include <sys/kdi.h> 107 #endif 108 #include <sys/zone.h> 109 #include <sys/socket.h> 110 #include <netinet/in.h> 111 #include "strtolctype.h" 112 113 /* FreeBSD includes: */ 114 #ifndef illumos 115 #include <sys/callout.h> 116 #include <sys/ctype.h> 117 #include <sys/eventhandler.h> 118 #include <sys/limits.h> 119 #include <sys/linker.h> 120 #include <sys/kdb.h> 121 #include <sys/jail.h> 122 #include <sys/kernel.h> 123 #include <sys/malloc.h> 124 #include <sys/lock.h> 125 #include <sys/mutex.h> 126 #include <sys/ptrace.h> 127 #include <sys/random.h> 128 #include <sys/rwlock.h> 129 #include <sys/sx.h> 130 #include <sys/sysctl.h> 131 132 133 #include <sys/mount.h> 134 #undef AT_UID 135 #undef AT_GID 136 #include <sys/vnode.h> 137 #include <sys/cred.h> 138 139 #include <sys/dtrace_bsd.h> 140 141 #include <netinet/in.h> 142 143 #include "dtrace_cddl.h" 144 #include "dtrace_debug.c" 145 #endif 146 147 #include "dtrace_xoroshiro128_plus.h" 148 149 /* 150 * DTrace Tunable Variables 151 * 152 * The following variables may be tuned by adding a line to /etc/system that 153 * includes both the name of the DTrace module ("dtrace") and the name of the 154 * variable. For example: 155 * 156 * set dtrace:dtrace_destructive_disallow = 1 157 * 158 * In general, the only variables that one should be tuning this way are those 159 * that affect system-wide DTrace behavior, and for which the default behavior 160 * is undesirable. Most of these variables are tunable on a per-consumer 161 * basis using DTrace options, and need not be tuned on a system-wide basis. 162 * When tuning these variables, avoid pathological values; while some attempt 163 * is made to verify the integrity of these variables, they are not considered 164 * part of the supported interface to DTrace, and they are therefore not 165 * checked comprehensively. Further, these variables should not be tuned 166 * dynamically via "mdb -kw" or other means; they should only be tuned via 167 * /etc/system. 168 */ 169 int dtrace_destructive_disallow = 0; 170 #ifndef illumos 171 /* Positive logic version of dtrace_destructive_disallow for loader tunable */ 172 int dtrace_allow_destructive = 1; 173 #endif 174 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 175 size_t dtrace_difo_maxsize = (256 * 1024); 176 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 177 size_t dtrace_statvar_maxsize = (16 * 1024); 178 size_t dtrace_actions_max = (16 * 1024); 179 size_t dtrace_retain_max = 1024; 180 dtrace_optval_t dtrace_helper_actions_max = 128; 181 dtrace_optval_t dtrace_helper_providers_max = 32; 182 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 183 size_t dtrace_strsize_default = 256; 184 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 185 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 186 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 187 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 188 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 189 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 190 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 191 dtrace_optval_t dtrace_nspec_default = 1; 192 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 193 dtrace_optval_t dtrace_stackframes_default = 20; 194 dtrace_optval_t dtrace_ustackframes_default = 20; 195 dtrace_optval_t dtrace_jstackframes_default = 50; 196 dtrace_optval_t dtrace_jstackstrsize_default = 512; 197 int dtrace_msgdsize_max = 128; 198 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 199 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 200 int dtrace_devdepth_max = 32; 201 int dtrace_err_verbose; 202 hrtime_t dtrace_deadman_interval = NANOSEC; 203 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 204 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 205 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 206 #ifndef illumos 207 int dtrace_memstr_max = 4096; 208 int dtrace_bufsize_max_frac = 128; 209 #endif 210 211 /* 212 * DTrace External Variables 213 * 214 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 215 * available to DTrace consumers via the backtick (`) syntax. One of these, 216 * dtrace_zero, is made deliberately so: it is provided as a source of 217 * well-known, zero-filled memory. While this variable is not documented, 218 * it is used by some translators as an implementation detail. 219 */ 220 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 221 222 /* 223 * DTrace Internal Variables 224 */ 225 #ifdef illumos 226 static dev_info_t *dtrace_devi; /* device info */ 227 #endif 228 #ifdef illumos 229 static vmem_t *dtrace_arena; /* probe ID arena */ 230 static vmem_t *dtrace_minor; /* minor number arena */ 231 #else 232 static taskq_t *dtrace_taskq; /* task queue */ 233 static struct unrhdr *dtrace_arena; /* Probe ID number. */ 234 #endif 235 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 236 static int dtrace_nprobes; /* number of probes */ 237 static dtrace_provider_t *dtrace_provider; /* provider list */ 238 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 239 static int dtrace_opens; /* number of opens */ 240 static int dtrace_helpers; /* number of helpers */ 241 static int dtrace_getf; /* number of unpriv getf()s */ 242 #ifdef illumos 243 static void *dtrace_softstate; /* softstate pointer */ 244 #endif 245 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 246 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 247 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 248 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 249 static int dtrace_toxranges; /* number of toxic ranges */ 250 static int dtrace_toxranges_max; /* size of toxic range array */ 251 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 252 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 253 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 254 static kthread_t *dtrace_panicked; /* panicking thread */ 255 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 256 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 257 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 258 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 259 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 260 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 261 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 262 #ifndef illumos 263 static struct mtx dtrace_unr_mtx; 264 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); 265 static eventhandler_tag dtrace_kld_load_tag; 266 static eventhandler_tag dtrace_kld_unload_try_tag; 267 #endif 268 269 /* 270 * DTrace Locking 271 * DTrace is protected by three (relatively coarse-grained) locks: 272 * 273 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 274 * including enabling state, probes, ECBs, consumer state, helper state, 275 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 276 * probe context is lock-free -- synchronization is handled via the 277 * dtrace_sync() cross call mechanism. 278 * 279 * (2) dtrace_provider_lock is required when manipulating provider state, or 280 * when provider state must be held constant. 281 * 282 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 283 * when meta provider state must be held constant. 284 * 285 * The lock ordering between these three locks is dtrace_meta_lock before 286 * dtrace_provider_lock before dtrace_lock. (In particular, there are 287 * several places where dtrace_provider_lock is held by the framework as it 288 * calls into the providers -- which then call back into the framework, 289 * grabbing dtrace_lock.) 290 * 291 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 292 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 293 * role as a coarse-grained lock; it is acquired before both of these locks. 294 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 295 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 296 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 297 * acquired _between_ dtrace_provider_lock and dtrace_lock. 298 */ 299 static kmutex_t dtrace_lock; /* probe state lock */ 300 static kmutex_t dtrace_provider_lock; /* provider state lock */ 301 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 302 303 #ifndef illumos 304 /* XXX FreeBSD hacks. */ 305 #define cr_suid cr_svuid 306 #define cr_sgid cr_svgid 307 #define ipaddr_t in_addr_t 308 #define mod_modname pathname 309 #define vuprintf vprintf 310 #ifndef crgetzoneid 311 #define crgetzoneid(_a) 0 312 #endif 313 #define ttoproc(_a) ((_a)->td_proc) 314 #define SNOCD 0 315 #define CPU_ON_INTR(_a) 0 316 317 #define PRIV_EFFECTIVE (1 << 0) 318 #define PRIV_DTRACE_KERNEL (1 << 1) 319 #define PRIV_DTRACE_PROC (1 << 2) 320 #define PRIV_DTRACE_USER (1 << 3) 321 #define PRIV_PROC_OWNER (1 << 4) 322 #define PRIV_PROC_ZONE (1 << 5) 323 #define PRIV_ALL ~0 324 325 SYSCTL_DECL(_debug_dtrace); 326 SYSCTL_DECL(_kern_dtrace); 327 #endif 328 329 #ifdef illumos 330 #define curcpu CPU->cpu_id 331 #endif 332 333 334 /* 335 * DTrace Provider Variables 336 * 337 * These are the variables relating to DTrace as a provider (that is, the 338 * provider of the BEGIN, END, and ERROR probes). 339 */ 340 static dtrace_pattr_t dtrace_provider_attr = { 341 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 342 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 343 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 344 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 345 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 346 }; 347 348 static void 349 dtrace_nullop(void) 350 {} 351 352 static dtrace_pops_t dtrace_provider_ops = { 353 .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, 354 .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop, 355 .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 356 .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 357 .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 358 .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 359 .dtps_getargdesc = NULL, 360 .dtps_getargval = NULL, 361 .dtps_usermode = NULL, 362 .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 363 }; 364 365 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 366 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 367 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 368 369 /* 370 * DTrace Helper Tracing Variables 371 * 372 * These variables should be set dynamically to enable helper tracing. The 373 * only variables that should be set are dtrace_helptrace_enable (which should 374 * be set to a non-zero value to allocate helper tracing buffers on the next 375 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 376 * non-zero value to deallocate helper tracing buffers on the next close of 377 * /dev/dtrace). When (and only when) helper tracing is disabled, the 378 * buffer size may also be set via dtrace_helptrace_bufsize. 379 */ 380 int dtrace_helptrace_enable = 0; 381 int dtrace_helptrace_disable = 0; 382 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 383 uint32_t dtrace_helptrace_nlocals; 384 static dtrace_helptrace_t *dtrace_helptrace_buffer; 385 static uint32_t dtrace_helptrace_next = 0; 386 static int dtrace_helptrace_wrapped = 0; 387 388 /* 389 * DTrace Error Hashing 390 * 391 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 392 * table. This is very useful for checking coverage of tests that are 393 * expected to induce DIF or DOF processing errors, and may be useful for 394 * debugging problems in the DIF code generator or in DOF generation . The 395 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 396 */ 397 #ifdef DEBUG 398 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 399 static const char *dtrace_errlast; 400 static kthread_t *dtrace_errthread; 401 static kmutex_t dtrace_errlock; 402 #endif 403 404 /* 405 * DTrace Macros and Constants 406 * 407 * These are various macros that are useful in various spots in the 408 * implementation, along with a few random constants that have no meaning 409 * outside of the implementation. There is no real structure to this cpp 410 * mishmash -- but is there ever? 411 */ 412 #define DTRACE_HASHSTR(hash, probe) \ 413 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 414 415 #define DTRACE_HASHNEXT(hash, probe) \ 416 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 417 418 #define DTRACE_HASHPREV(hash, probe) \ 419 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 420 421 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 422 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 423 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 424 425 #define DTRACE_AGGHASHSIZE_SLEW 17 426 427 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 428 429 /* 430 * The key for a thread-local variable consists of the lower 61 bits of the 431 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 432 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 433 * equal to a variable identifier. This is necessary (but not sufficient) to 434 * assure that global associative arrays never collide with thread-local 435 * variables. To guarantee that they cannot collide, we must also define the 436 * order for keying dynamic variables. That order is: 437 * 438 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 439 * 440 * Because the variable-key and the tls-key are in orthogonal spaces, there is 441 * no way for a global variable key signature to match a thread-local key 442 * signature. 443 */ 444 #ifdef illumos 445 #define DTRACE_TLS_THRKEY(where) { \ 446 uint_t intr = 0; \ 447 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 448 for (; actv; actv >>= 1) \ 449 intr++; \ 450 ASSERT(intr < (1 << 3)); \ 451 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 452 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 453 } 454 #else 455 #define DTRACE_TLS_THRKEY(where) { \ 456 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ 457 uint_t intr = 0; \ 458 uint_t actv = _c->cpu_intr_actv; \ 459 for (; actv; actv >>= 1) \ 460 intr++; \ 461 ASSERT(intr < (1 << 3)); \ 462 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ 463 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 464 } 465 #endif 466 467 #define DT_BSWAP_8(x) ((x) & 0xff) 468 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 469 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 470 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 471 472 #define DT_MASK_LO 0x00000000FFFFFFFFULL 473 474 #define DTRACE_STORE(type, tomax, offset, what) \ 475 *((type *)((uintptr_t)(tomax) + (size_t)offset)) = (type)(what); 476 477 #if !defined(__x86) && !defined(__aarch64__) 478 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 479 if (addr & (size - 1)) { \ 480 *flags |= CPU_DTRACE_BADALIGN; \ 481 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 482 return (0); \ 483 } 484 #else 485 #define DTRACE_ALIGNCHECK(addr, size, flags) 486 #endif 487 488 /* 489 * Test whether a range of memory starting at testaddr of size testsz falls 490 * within the range of memory described by addr, sz. We take care to avoid 491 * problems with overflow and underflow of the unsigned quantities, and 492 * disallow all negative sizes. Ranges of size 0 are allowed. 493 */ 494 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 495 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 496 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 497 (testaddr) + (testsz) >= (testaddr)) 498 499 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 500 do { \ 501 if ((remp) != NULL) { \ 502 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 503 } \ 504 } while (0) 505 506 507 /* 508 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 509 * alloc_sz on the righthand side of the comparison in order to avoid overflow 510 * or underflow in the comparison with it. This is simpler than the INRANGE 511 * check above, because we know that the dtms_scratch_ptr is valid in the 512 * range. Allocations of size zero are allowed. 513 */ 514 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 515 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 516 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 517 518 #define DTRACE_INSCRATCHPTR(mstate, ptr, howmany) \ 519 ((ptr) >= (mstate)->dtms_scratch_base && \ 520 (ptr) <= \ 521 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - (howmany))) 522 523 #define DTRACE_LOADFUNC(bits) \ 524 /*CSTYLED*/ \ 525 uint##bits##_t \ 526 dtrace_load##bits(uintptr_t addr) \ 527 { \ 528 size_t size = bits / NBBY; \ 529 /*CSTYLED*/ \ 530 uint##bits##_t rval; \ 531 int i; \ 532 volatile uint16_t *flags = (volatile uint16_t *) \ 533 &cpu_core[curcpu].cpuc_dtrace_flags; \ 534 \ 535 DTRACE_ALIGNCHECK(addr, size, flags); \ 536 \ 537 for (i = 0; i < dtrace_toxranges; i++) { \ 538 if (addr >= dtrace_toxrange[i].dtt_limit) \ 539 continue; \ 540 \ 541 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 542 continue; \ 543 \ 544 /* \ 545 * This address falls within a toxic region; return 0. \ 546 */ \ 547 *flags |= CPU_DTRACE_BADADDR; \ 548 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 549 return (0); \ 550 } \ 551 \ 552 *flags |= CPU_DTRACE_NOFAULT; \ 553 /*CSTYLED*/ \ 554 rval = *((volatile uint##bits##_t *)addr); \ 555 *flags &= ~CPU_DTRACE_NOFAULT; \ 556 \ 557 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 558 } 559 560 #ifdef _LP64 561 #define dtrace_loadptr dtrace_load64 562 #else 563 #define dtrace_loadptr dtrace_load32 564 #endif 565 566 #define DTRACE_DYNHASH_FREE 0 567 #define DTRACE_DYNHASH_SINK 1 568 #define DTRACE_DYNHASH_VALID 2 569 570 #define DTRACE_MATCH_NEXT 0 571 #define DTRACE_MATCH_DONE 1 572 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 573 #define DTRACE_STATE_ALIGN 64 574 575 #define DTRACE_FLAGS2FLT(flags) \ 576 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 577 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 578 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 579 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 580 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 581 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 582 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 583 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 584 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 585 DTRACEFLT_UNKNOWN) 586 587 #define DTRACEACT_ISSTRING(act) \ 588 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 589 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 590 591 /* Function prototype definitions: */ 592 static size_t dtrace_strlen(const char *, size_t); 593 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 594 static void dtrace_enabling_provide(dtrace_provider_t *); 595 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 596 static void dtrace_enabling_matchall(void); 597 static void dtrace_enabling_reap(void); 598 static dtrace_state_t *dtrace_anon_grab(void); 599 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 600 dtrace_state_t *, uint64_t, uint64_t); 601 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 602 static void dtrace_buffer_drop(dtrace_buffer_t *); 603 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 604 static ssize_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 605 dtrace_state_t *, dtrace_mstate_t *); 606 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 607 dtrace_optval_t); 608 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 609 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 610 uint16_t dtrace_load16(uintptr_t); 611 uint32_t dtrace_load32(uintptr_t); 612 uint64_t dtrace_load64(uintptr_t); 613 uint8_t dtrace_load8(uintptr_t); 614 void dtrace_dynvar_clean(dtrace_dstate_t *); 615 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, 616 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); 617 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); 618 static int dtrace_priv_proc(dtrace_state_t *); 619 static void dtrace_getf_barrier(void); 620 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 621 dtrace_mstate_t *, dtrace_vstate_t *); 622 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 623 dtrace_mstate_t *, dtrace_vstate_t *); 624 625 /* 626 * DTrace Probe Context Functions 627 * 628 * These functions are called from probe context. Because probe context is 629 * any context in which C may be called, arbitrarily locks may be held, 630 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 631 * As a result, functions called from probe context may only call other DTrace 632 * support functions -- they may not interact at all with the system at large. 633 * (Note that the ASSERT macro is made probe-context safe by redefining it in 634 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 635 * loads are to be performed from probe context, they _must_ be in terms of 636 * the safe dtrace_load*() variants. 637 * 638 * Some functions in this block are not actually called from probe context; 639 * for these functions, there will be a comment above the function reading 640 * "Note: not called from probe context." 641 */ 642 void 643 dtrace_panic(const char *format, ...) 644 { 645 va_list alist; 646 647 va_start(alist, format); 648 #ifdef __FreeBSD__ 649 vpanic(format, alist); 650 #else 651 dtrace_vpanic(format, alist); 652 #endif 653 va_end(alist); 654 } 655 656 int 657 dtrace_assfail(const char *a, const char *f, int l) 658 { 659 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 660 661 /* 662 * We just need something here that even the most clever compiler 663 * cannot optimize away. 664 */ 665 return (a[(uintptr_t)f]); 666 } 667 668 /* 669 * Atomically increment a specified error counter from probe context. 670 */ 671 static void 672 dtrace_error(uint32_t *counter) 673 { 674 /* 675 * Most counters stored to in probe context are per-CPU counters. 676 * However, there are some error conditions that are sufficiently 677 * arcane that they don't merit per-CPU storage. If these counters 678 * are incremented concurrently on different CPUs, scalability will be 679 * adversely affected -- but we don't expect them to be white-hot in a 680 * correctly constructed enabling... 681 */ 682 uint32_t oval, nval; 683 684 do { 685 oval = *counter; 686 687 if ((nval = oval + 1) == 0) { 688 /* 689 * If the counter would wrap, set it to 1 -- assuring 690 * that the counter is never zero when we have seen 691 * errors. (The counter must be 32-bits because we 692 * aren't guaranteed a 64-bit compare&swap operation.) 693 * To save this code both the infamy of being fingered 694 * by a priggish news story and the indignity of being 695 * the target of a neo-puritan witch trial, we're 696 * carefully avoiding any colorful description of the 697 * likelihood of this condition -- but suffice it to 698 * say that it is only slightly more likely than the 699 * overflow of predicate cache IDs, as discussed in 700 * dtrace_predicate_create(). 701 */ 702 nval = 1; 703 } 704 } while (dtrace_cas32(counter, oval, nval) != oval); 705 } 706 707 /* 708 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 709 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 710 */ 711 /* BEGIN CSTYLED */ 712 DTRACE_LOADFUNC(8) 713 DTRACE_LOADFUNC(16) 714 DTRACE_LOADFUNC(32) 715 DTRACE_LOADFUNC(64) 716 /* END CSTYLED */ 717 718 static int 719 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 720 { 721 if (dest < mstate->dtms_scratch_base) 722 return (0); 723 724 if (dest + size < dest) 725 return (0); 726 727 if (dest + size > mstate->dtms_scratch_ptr) 728 return (0); 729 730 return (1); 731 } 732 733 static int 734 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 735 dtrace_statvar_t **svars, int nsvars) 736 { 737 int i; 738 size_t maxglobalsize, maxlocalsize; 739 740 if (nsvars == 0) 741 return (0); 742 743 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 744 maxlocalsize = maxglobalsize * (mp_maxid + 1); 745 746 for (i = 0; i < nsvars; i++) { 747 dtrace_statvar_t *svar = svars[i]; 748 uint8_t scope; 749 size_t size; 750 751 if (svar == NULL || (size = svar->dtsv_size) == 0) 752 continue; 753 754 scope = svar->dtsv_var.dtdv_scope; 755 756 /* 757 * We verify that our size is valid in the spirit of providing 758 * defense in depth: we want to prevent attackers from using 759 * DTrace to escalate an orthogonal kernel heap corruption bug 760 * into the ability to store to arbitrary locations in memory. 761 */ 762 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 763 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 764 765 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 766 svar->dtsv_size)) { 767 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 768 svar->dtsv_size); 769 return (1); 770 } 771 } 772 773 return (0); 774 } 775 776 /* 777 * Check to see if the address is within a memory region to which a store may 778 * be issued. This includes the DTrace scratch areas, and any DTrace variable 779 * region. The caller of dtrace_canstore() is responsible for performing any 780 * alignment checks that are needed before stores are actually executed. 781 */ 782 static int 783 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 784 dtrace_vstate_t *vstate) 785 { 786 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 787 } 788 789 /* 790 * Implementation of dtrace_canstore which communicates the upper bound of the 791 * allowed memory region. 792 */ 793 static int 794 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 795 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 796 { 797 /* 798 * First, check to see if the address is in scratch space... 799 */ 800 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 801 mstate->dtms_scratch_size)) { 802 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 803 mstate->dtms_scratch_size); 804 return (1); 805 } 806 807 /* 808 * Now check to see if it's a dynamic variable. This check will pick 809 * up both thread-local variables and any global dynamically-allocated 810 * variables. 811 */ 812 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 813 vstate->dtvs_dynvars.dtds_size)) { 814 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 815 uintptr_t base = (uintptr_t)dstate->dtds_base + 816 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 817 uintptr_t chunkoffs; 818 dtrace_dynvar_t *dvar; 819 820 /* 821 * Before we assume that we can store here, we need to make 822 * sure that it isn't in our metadata -- storing to our 823 * dynamic variable metadata would corrupt our state. For 824 * the range to not include any dynamic variable metadata, 825 * it must: 826 * 827 * (1) Start above the hash table that is at the base of 828 * the dynamic variable space 829 * 830 * (2) Have a starting chunk offset that is beyond the 831 * dtrace_dynvar_t that is at the base of every chunk 832 * 833 * (3) Not span a chunk boundary 834 * 835 * (4) Not be in the tuple space of a dynamic variable 836 * 837 */ 838 if (addr < base) 839 return (0); 840 841 chunkoffs = (addr - base) % dstate->dtds_chunksize; 842 843 if (chunkoffs < sizeof (dtrace_dynvar_t)) 844 return (0); 845 846 if (chunkoffs + sz > dstate->dtds_chunksize) 847 return (0); 848 849 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 850 851 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 852 return (0); 853 854 if (chunkoffs < sizeof (dtrace_dynvar_t) + 855 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 856 return (0); 857 858 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 859 return (1); 860 } 861 862 /* 863 * Finally, check the static local and global variables. These checks 864 * take the longest, so we perform them last. 865 */ 866 if (dtrace_canstore_statvar(addr, sz, remain, 867 vstate->dtvs_locals, vstate->dtvs_nlocals)) 868 return (1); 869 870 if (dtrace_canstore_statvar(addr, sz, remain, 871 vstate->dtvs_globals, vstate->dtvs_nglobals)) 872 return (1); 873 874 return (0); 875 } 876 877 878 /* 879 * Convenience routine to check to see if the address is within a memory 880 * region in which a load may be issued given the user's privilege level; 881 * if not, it sets the appropriate error flags and loads 'addr' into the 882 * illegal value slot. 883 * 884 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 885 * appropriate memory access protection. 886 */ 887 static int 888 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 889 dtrace_vstate_t *vstate) 890 { 891 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 892 } 893 894 /* 895 * Implementation of dtrace_canload which communicates the uppoer bound of the 896 * allowed memory region. 897 */ 898 static int 899 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 900 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 901 { 902 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 903 file_t *fp; 904 905 /* 906 * If we hold the privilege to read from kernel memory, then 907 * everything is readable. 908 */ 909 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 910 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 911 return (1); 912 } 913 914 /* 915 * You can obviously read that which you can store. 916 */ 917 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 918 return (1); 919 920 /* 921 * We're allowed to read from our own string table. 922 */ 923 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 924 mstate->dtms_difo->dtdo_strlen)) { 925 DTRACE_RANGE_REMAIN(remain, addr, 926 mstate->dtms_difo->dtdo_strtab, 927 mstate->dtms_difo->dtdo_strlen); 928 return (1); 929 } 930 931 if (vstate->dtvs_state != NULL && 932 dtrace_priv_proc(vstate->dtvs_state)) { 933 proc_t *p; 934 935 /* 936 * When we have privileges to the current process, there are 937 * several context-related kernel structures that are safe to 938 * read, even absent the privilege to read from kernel memory. 939 * These reads are safe because these structures contain only 940 * state that (1) we're permitted to read, (2) is harmless or 941 * (3) contains pointers to additional kernel state that we're 942 * not permitted to read (and as such, do not present an 943 * opportunity for privilege escalation). Finally (and 944 * critically), because of the nature of their relation with 945 * the current thread context, the memory associated with these 946 * structures cannot change over the duration of probe context, 947 * and it is therefore impossible for this memory to be 948 * deallocated and reallocated as something else while it's 949 * being operated upon. 950 */ 951 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 952 DTRACE_RANGE_REMAIN(remain, addr, curthread, 953 sizeof (kthread_t)); 954 return (1); 955 } 956 957 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 958 sz, curthread->t_procp, sizeof (proc_t))) { 959 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 960 sizeof (proc_t)); 961 return (1); 962 } 963 964 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 965 curthread->t_cred, sizeof (cred_t))) { 966 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 967 sizeof (cred_t)); 968 return (1); 969 } 970 971 #ifdef illumos 972 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 973 &(p->p_pidp->pid_id), sizeof (pid_t))) { 974 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 975 sizeof (pid_t)); 976 return (1); 977 } 978 979 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 980 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 981 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 982 offsetof(cpu_t, cpu_pause_thread)); 983 return (1); 984 } 985 #endif 986 } 987 988 if ((fp = mstate->dtms_getf) != NULL) { 989 uintptr_t psz = sizeof (void *); 990 vnode_t *vp; 991 vnodeops_t *op; 992 993 /* 994 * When getf() returns a file_t, the enabling is implicitly 995 * granted the (transient) right to read the returned file_t 996 * as well as the v_path and v_op->vnop_name of the underlying 997 * vnode. These accesses are allowed after a successful 998 * getf() because the members that they refer to cannot change 999 * once set -- and the barrier logic in the kernel's closef() 1000 * path assures that the file_t and its referenced vode_t 1001 * cannot themselves be stale (that is, it impossible for 1002 * either dtms_getf itself or its f_vnode member to reference 1003 * freed memory). 1004 */ 1005 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 1006 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 1007 return (1); 1008 } 1009 1010 if ((vp = fp->f_vnode) != NULL) { 1011 size_t slen; 1012 #ifdef illumos 1013 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 1014 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 1015 psz); 1016 return (1); 1017 } 1018 slen = strlen(vp->v_path) + 1; 1019 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 1020 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 1021 slen); 1022 return (1); 1023 } 1024 #endif 1025 1026 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 1027 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 1028 psz); 1029 return (1); 1030 } 1031 1032 #ifdef illumos 1033 if ((op = vp->v_op) != NULL && 1034 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 1035 DTRACE_RANGE_REMAIN(remain, addr, 1036 &op->vnop_name, psz); 1037 return (1); 1038 } 1039 1040 if (op != NULL && op->vnop_name != NULL && 1041 DTRACE_INRANGE(addr, sz, op->vnop_name, 1042 (slen = strlen(op->vnop_name) + 1))) { 1043 DTRACE_RANGE_REMAIN(remain, addr, 1044 op->vnop_name, slen); 1045 return (1); 1046 } 1047 #endif 1048 } 1049 } 1050 1051 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 1052 *illval = addr; 1053 return (0); 1054 } 1055 1056 /* 1057 * Convenience routine to check to see if a given string is within a memory 1058 * region in which a load may be issued given the user's privilege level; 1059 * this exists so that we don't need to issue unnecessary dtrace_strlen() 1060 * calls in the event that the user has all privileges. 1061 */ 1062 static int 1063 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 1064 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1065 { 1066 size_t rsize; 1067 1068 /* 1069 * If we hold the privilege to read from kernel memory, then 1070 * everything is readable. 1071 */ 1072 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1073 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 1074 return (1); 1075 } 1076 1077 /* 1078 * Even if the caller is uninterested in querying the remaining valid 1079 * range, it is required to ensure that the access is allowed. 1080 */ 1081 if (remain == NULL) { 1082 remain = &rsize; 1083 } 1084 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 1085 size_t strsz; 1086 /* 1087 * Perform the strlen after determining the length of the 1088 * memory region which is accessible. This prevents timing 1089 * information from being used to find NULs in memory which is 1090 * not accessible to the caller. 1091 */ 1092 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 1093 MIN(sz, *remain)); 1094 if (strsz <= *remain) { 1095 return (1); 1096 } 1097 } 1098 1099 return (0); 1100 } 1101 1102 /* 1103 * Convenience routine to check to see if a given variable is within a memory 1104 * region in which a load may be issued given the user's privilege level. 1105 */ 1106 static int 1107 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 1108 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1109 { 1110 size_t sz; 1111 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1112 1113 /* 1114 * Calculate the max size before performing any checks since even 1115 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 1116 * return the max length via 'remain'. 1117 */ 1118 if (type->dtdt_kind == DIF_TYPE_STRING) { 1119 dtrace_state_t *state = vstate->dtvs_state; 1120 1121 if (state != NULL) { 1122 sz = state->dts_options[DTRACEOPT_STRSIZE]; 1123 } else { 1124 /* 1125 * In helper context, we have a NULL state; fall back 1126 * to using the system-wide default for the string size 1127 * in this case. 1128 */ 1129 sz = dtrace_strsize_default; 1130 } 1131 } else { 1132 sz = type->dtdt_size; 1133 } 1134 1135 /* 1136 * If we hold the privilege to read from kernel memory, then 1137 * everything is readable. 1138 */ 1139 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1140 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1141 return (1); 1142 } 1143 1144 if (type->dtdt_kind == DIF_TYPE_STRING) { 1145 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1146 vstate)); 1147 } 1148 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1149 vstate)); 1150 } 1151 1152 /* 1153 * Convert a string to a signed integer using safe loads. 1154 * 1155 * NOTE: This function uses various macros from strtolctype.h to manipulate 1156 * digit values, etc -- these have all been checked to ensure they make 1157 * no additional function calls. 1158 */ 1159 static int64_t 1160 dtrace_strtoll(char *input, int base, size_t limit) 1161 { 1162 uintptr_t pos = (uintptr_t)input; 1163 int64_t val = 0; 1164 int x; 1165 boolean_t neg = B_FALSE; 1166 char c, cc, ccc; 1167 uintptr_t end = pos + limit; 1168 1169 /* 1170 * Consume any whitespace preceding digits. 1171 */ 1172 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1173 pos++; 1174 1175 /* 1176 * Handle an explicit sign if one is present. 1177 */ 1178 if (c == '-' || c == '+') { 1179 if (c == '-') 1180 neg = B_TRUE; 1181 c = dtrace_load8(++pos); 1182 } 1183 1184 /* 1185 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1186 * if present. 1187 */ 1188 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1189 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1190 pos += 2; 1191 c = ccc; 1192 } 1193 1194 /* 1195 * Read in contiguous digits until the first non-digit character. 1196 */ 1197 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1198 c = dtrace_load8(++pos)) 1199 val = val * base + x; 1200 1201 return (neg ? -val : val); 1202 } 1203 1204 /* 1205 * Compare two strings using safe loads. 1206 */ 1207 static int 1208 dtrace_strncmp(char *s1, char *s2, size_t limit) 1209 { 1210 uint8_t c1, c2; 1211 volatile uint16_t *flags; 1212 1213 if (s1 == s2 || limit == 0) 1214 return (0); 1215 1216 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1217 1218 do { 1219 if (s1 == NULL) { 1220 c1 = '\0'; 1221 } else { 1222 c1 = dtrace_load8((uintptr_t)s1++); 1223 } 1224 1225 if (s2 == NULL) { 1226 c2 = '\0'; 1227 } else { 1228 c2 = dtrace_load8((uintptr_t)s2++); 1229 } 1230 1231 if (c1 != c2) 1232 return (c1 - c2); 1233 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1234 1235 return (0); 1236 } 1237 1238 /* 1239 * Compute strlen(s) for a string using safe memory accesses. The additional 1240 * len parameter is used to specify a maximum length to ensure completion. 1241 */ 1242 static size_t 1243 dtrace_strlen(const char *s, size_t lim) 1244 { 1245 uint_t len; 1246 1247 for (len = 0; len != lim; len++) { 1248 if (dtrace_load8((uintptr_t)s++) == '\0') 1249 break; 1250 } 1251 1252 return (len); 1253 } 1254 1255 /* 1256 * Check if an address falls within a toxic region. 1257 */ 1258 static int 1259 dtrace_istoxic(uintptr_t kaddr, size_t size) 1260 { 1261 uintptr_t taddr, tsize; 1262 int i; 1263 1264 for (i = 0; i < dtrace_toxranges; i++) { 1265 taddr = dtrace_toxrange[i].dtt_base; 1266 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1267 1268 if (kaddr - taddr < tsize) { 1269 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1270 cpu_core[curcpu].cpuc_dtrace_illval = kaddr; 1271 return (1); 1272 } 1273 1274 if (taddr - kaddr < size) { 1275 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1276 cpu_core[curcpu].cpuc_dtrace_illval = taddr; 1277 return (1); 1278 } 1279 } 1280 1281 return (0); 1282 } 1283 1284 /* 1285 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1286 * memory specified by the DIF program. The dst is assumed to be safe memory 1287 * that we can store to directly because it is managed by DTrace. As with 1288 * standard bcopy, overlapping copies are handled properly. 1289 */ 1290 static void 1291 dtrace_bcopy(const void *src, void *dst, size_t len) 1292 { 1293 if (len != 0) { 1294 uint8_t *s1 = dst; 1295 const uint8_t *s2 = src; 1296 1297 if (s1 <= s2) { 1298 do { 1299 *s1++ = dtrace_load8((uintptr_t)s2++); 1300 } while (--len != 0); 1301 } else { 1302 s2 += len; 1303 s1 += len; 1304 1305 do { 1306 *--s1 = dtrace_load8((uintptr_t)--s2); 1307 } while (--len != 0); 1308 } 1309 } 1310 } 1311 1312 /* 1313 * Copy src to dst using safe memory accesses, up to either the specified 1314 * length, or the point that a nul byte is encountered. The src is assumed to 1315 * be unsafe memory specified by the DIF program. The dst is assumed to be 1316 * safe memory that we can store to directly because it is managed by DTrace. 1317 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1318 */ 1319 static void 1320 dtrace_strcpy(const void *src, void *dst, size_t len) 1321 { 1322 if (len != 0) { 1323 uint8_t *s1 = dst, c; 1324 const uint8_t *s2 = src; 1325 1326 do { 1327 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1328 } while (--len != 0 && c != '\0'); 1329 } 1330 } 1331 1332 /* 1333 * Copy src to dst, deriving the size and type from the specified (BYREF) 1334 * variable type. The src is assumed to be unsafe memory specified by the DIF 1335 * program. The dst is assumed to be DTrace variable memory that is of the 1336 * specified type; we assume that we can store to directly. 1337 */ 1338 static void 1339 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1340 { 1341 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1342 1343 if (type->dtdt_kind == DIF_TYPE_STRING) { 1344 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1345 } else { 1346 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1347 } 1348 } 1349 1350 /* 1351 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1352 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1353 * safe memory that we can access directly because it is managed by DTrace. 1354 */ 1355 static int 1356 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1357 { 1358 volatile uint16_t *flags; 1359 1360 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1361 1362 if (s1 == s2) 1363 return (0); 1364 1365 if (s1 == NULL || s2 == NULL) 1366 return (1); 1367 1368 if (s1 != s2 && len != 0) { 1369 const uint8_t *ps1 = s1; 1370 const uint8_t *ps2 = s2; 1371 1372 do { 1373 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1374 return (1); 1375 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1376 } 1377 return (0); 1378 } 1379 1380 /* 1381 * Zero the specified region using a simple byte-by-byte loop. Note that this 1382 * is for safe DTrace-managed memory only. 1383 */ 1384 static void 1385 dtrace_bzero(void *dst, size_t len) 1386 { 1387 uchar_t *cp; 1388 1389 for (cp = dst; len != 0; len--) 1390 *cp++ = 0; 1391 } 1392 1393 static void 1394 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1395 { 1396 uint64_t result[2]; 1397 1398 result[0] = addend1[0] + addend2[0]; 1399 result[1] = addend1[1] + addend2[1] + 1400 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1401 1402 sum[0] = result[0]; 1403 sum[1] = result[1]; 1404 } 1405 1406 /* 1407 * Shift the 128-bit value in a by b. If b is positive, shift left. 1408 * If b is negative, shift right. 1409 */ 1410 static void 1411 dtrace_shift_128(uint64_t *a, int b) 1412 { 1413 uint64_t mask; 1414 1415 if (b == 0) 1416 return; 1417 1418 if (b < 0) { 1419 b = -b; 1420 if (b >= 64) { 1421 a[0] = a[1] >> (b - 64); 1422 a[1] = 0; 1423 } else { 1424 a[0] >>= b; 1425 mask = 1LL << (64 - b); 1426 mask -= 1; 1427 a[0] |= ((a[1] & mask) << (64 - b)); 1428 a[1] >>= b; 1429 } 1430 } else { 1431 if (b >= 64) { 1432 a[1] = a[0] << (b - 64); 1433 a[0] = 0; 1434 } else { 1435 a[1] <<= b; 1436 mask = a[0] >> (64 - b); 1437 a[1] |= mask; 1438 a[0] <<= b; 1439 } 1440 } 1441 } 1442 1443 /* 1444 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1445 * use native multiplication on those, and then re-combine into the 1446 * resulting 128-bit value. 1447 * 1448 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1449 * hi1 * hi2 << 64 + 1450 * hi1 * lo2 << 32 + 1451 * hi2 * lo1 << 32 + 1452 * lo1 * lo2 1453 */ 1454 static void 1455 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1456 { 1457 uint64_t hi1, hi2, lo1, lo2; 1458 uint64_t tmp[2]; 1459 1460 hi1 = factor1 >> 32; 1461 hi2 = factor2 >> 32; 1462 1463 lo1 = factor1 & DT_MASK_LO; 1464 lo2 = factor2 & DT_MASK_LO; 1465 1466 product[0] = lo1 * lo2; 1467 product[1] = hi1 * hi2; 1468 1469 tmp[0] = hi1 * lo2; 1470 tmp[1] = 0; 1471 dtrace_shift_128(tmp, 32); 1472 dtrace_add_128(product, tmp, product); 1473 1474 tmp[0] = hi2 * lo1; 1475 tmp[1] = 0; 1476 dtrace_shift_128(tmp, 32); 1477 dtrace_add_128(product, tmp, product); 1478 } 1479 1480 /* 1481 * This privilege check should be used by actions and subroutines to 1482 * verify that the user credentials of the process that enabled the 1483 * invoking ECB match the target credentials 1484 */ 1485 static int 1486 dtrace_priv_proc_common_user(dtrace_state_t *state) 1487 { 1488 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1489 1490 /* 1491 * We should always have a non-NULL state cred here, since if cred 1492 * is null (anonymous tracing), we fast-path bypass this routine. 1493 */ 1494 ASSERT(s_cr != NULL); 1495 1496 if ((cr = CRED()) != NULL && 1497 s_cr->cr_uid == cr->cr_uid && 1498 s_cr->cr_uid == cr->cr_ruid && 1499 s_cr->cr_uid == cr->cr_suid && 1500 s_cr->cr_gid == cr->cr_gid && 1501 s_cr->cr_gid == cr->cr_rgid && 1502 s_cr->cr_gid == cr->cr_sgid) 1503 return (1); 1504 1505 return (0); 1506 } 1507 1508 /* 1509 * This privilege check should be used by actions and subroutines to 1510 * verify that the zone of the process that enabled the invoking ECB 1511 * matches the target credentials 1512 */ 1513 static int 1514 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1515 { 1516 #ifdef illumos 1517 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1518 1519 /* 1520 * We should always have a non-NULL state cred here, since if cred 1521 * is null (anonymous tracing), we fast-path bypass this routine. 1522 */ 1523 ASSERT(s_cr != NULL); 1524 1525 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1526 return (1); 1527 1528 return (0); 1529 #else 1530 return (1); 1531 #endif 1532 } 1533 1534 /* 1535 * This privilege check should be used by actions and subroutines to 1536 * verify that the process has not setuid or changed credentials. 1537 */ 1538 static int 1539 dtrace_priv_proc_common_nocd(void) 1540 { 1541 proc_t *proc; 1542 1543 if ((proc = ttoproc(curthread)) != NULL && 1544 !(proc->p_flag & SNOCD)) 1545 return (1); 1546 1547 return (0); 1548 } 1549 1550 static int 1551 dtrace_priv_proc_destructive(dtrace_state_t *state) 1552 { 1553 int action = state->dts_cred.dcr_action; 1554 1555 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1556 dtrace_priv_proc_common_zone(state) == 0) 1557 goto bad; 1558 1559 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1560 dtrace_priv_proc_common_user(state) == 0) 1561 goto bad; 1562 1563 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1564 dtrace_priv_proc_common_nocd() == 0) 1565 goto bad; 1566 1567 return (1); 1568 1569 bad: 1570 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1571 1572 return (0); 1573 } 1574 1575 static int 1576 dtrace_priv_proc_control(dtrace_state_t *state) 1577 { 1578 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1579 return (1); 1580 1581 if (dtrace_priv_proc_common_zone(state) && 1582 dtrace_priv_proc_common_user(state) && 1583 dtrace_priv_proc_common_nocd()) 1584 return (1); 1585 1586 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1587 1588 return (0); 1589 } 1590 1591 static int 1592 dtrace_priv_proc(dtrace_state_t *state) 1593 { 1594 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1595 return (1); 1596 1597 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1598 1599 return (0); 1600 } 1601 1602 static int 1603 dtrace_priv_kernel(dtrace_state_t *state) 1604 { 1605 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1606 return (1); 1607 1608 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1609 1610 return (0); 1611 } 1612 1613 static int 1614 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1615 { 1616 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1617 return (1); 1618 1619 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1620 1621 return (0); 1622 } 1623 1624 /* 1625 * Determine if the dte_cond of the specified ECB allows for processing of 1626 * the current probe to continue. Note that this routine may allow continued 1627 * processing, but with access(es) stripped from the mstate's dtms_access 1628 * field. 1629 */ 1630 static int 1631 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1632 dtrace_ecb_t *ecb) 1633 { 1634 dtrace_probe_t *probe = ecb->dte_probe; 1635 dtrace_provider_t *prov = probe->dtpr_provider; 1636 dtrace_pops_t *pops = &prov->dtpv_pops; 1637 int mode = DTRACE_MODE_NOPRIV_DROP; 1638 1639 ASSERT(ecb->dte_cond); 1640 1641 #ifdef illumos 1642 if (pops->dtps_mode != NULL) { 1643 mode = pops->dtps_mode(prov->dtpv_arg, 1644 probe->dtpr_id, probe->dtpr_arg); 1645 1646 ASSERT((mode & DTRACE_MODE_USER) || 1647 (mode & DTRACE_MODE_KERNEL)); 1648 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1649 (mode & DTRACE_MODE_NOPRIV_DROP)); 1650 } 1651 1652 /* 1653 * If the dte_cond bits indicate that this consumer is only allowed to 1654 * see user-mode firings of this probe, call the provider's dtps_mode() 1655 * entry point to check that the probe was fired while in a user 1656 * context. If that's not the case, use the policy specified by the 1657 * provider to determine if we drop the probe or merely restrict 1658 * operation. 1659 */ 1660 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1661 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1662 1663 if (!(mode & DTRACE_MODE_USER)) { 1664 if (mode & DTRACE_MODE_NOPRIV_DROP) 1665 return (0); 1666 1667 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1668 } 1669 } 1670 #endif 1671 1672 /* 1673 * This is more subtle than it looks. We have to be absolutely certain 1674 * that CRED() isn't going to change out from under us so it's only 1675 * legit to examine that structure if we're in constrained situations. 1676 * Currently, the only times we'll this check is if a non-super-user 1677 * has enabled the profile or syscall providers -- providers that 1678 * allow visibility of all processes. For the profile case, the check 1679 * above will ensure that we're examining a user context. 1680 */ 1681 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1682 cred_t *cr; 1683 cred_t *s_cr = state->dts_cred.dcr_cred; 1684 proc_t *proc; 1685 1686 ASSERT(s_cr != NULL); 1687 1688 if ((cr = CRED()) == NULL || 1689 s_cr->cr_uid != cr->cr_uid || 1690 s_cr->cr_uid != cr->cr_ruid || 1691 s_cr->cr_uid != cr->cr_suid || 1692 s_cr->cr_gid != cr->cr_gid || 1693 s_cr->cr_gid != cr->cr_rgid || 1694 s_cr->cr_gid != cr->cr_sgid || 1695 (proc = ttoproc(curthread)) == NULL || 1696 (proc->p_flag & SNOCD)) { 1697 if (mode & DTRACE_MODE_NOPRIV_DROP) 1698 return (0); 1699 1700 #ifdef illumos 1701 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1702 #endif 1703 } 1704 } 1705 1706 #ifdef illumos 1707 /* 1708 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1709 * in our zone, check to see if our mode policy is to restrict rather 1710 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1711 * and DTRACE_ACCESS_ARGS 1712 */ 1713 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1714 cred_t *cr; 1715 cred_t *s_cr = state->dts_cred.dcr_cred; 1716 1717 ASSERT(s_cr != NULL); 1718 1719 if ((cr = CRED()) == NULL || 1720 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1721 if (mode & DTRACE_MODE_NOPRIV_DROP) 1722 return (0); 1723 1724 mstate->dtms_access &= 1725 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1726 } 1727 } 1728 #endif 1729 1730 return (1); 1731 } 1732 1733 /* 1734 * Note: not called from probe context. This function is called 1735 * asynchronously (and at a regular interval) from outside of probe context to 1736 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1737 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1738 */ 1739 void 1740 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1741 { 1742 dtrace_dynvar_t *dirty; 1743 dtrace_dstate_percpu_t *dcpu; 1744 dtrace_dynvar_t **rinsep; 1745 int i, j, work = 0; 1746 1747 CPU_FOREACH(i) { 1748 dcpu = &dstate->dtds_percpu[i]; 1749 rinsep = &dcpu->dtdsc_rinsing; 1750 1751 /* 1752 * If the dirty list is NULL, there is no dirty work to do. 1753 */ 1754 if (dcpu->dtdsc_dirty == NULL) 1755 continue; 1756 1757 if (dcpu->dtdsc_rinsing != NULL) { 1758 /* 1759 * If the rinsing list is non-NULL, then it is because 1760 * this CPU was selected to accept another CPU's 1761 * dirty list -- and since that time, dirty buffers 1762 * have accumulated. This is a highly unlikely 1763 * condition, but we choose to ignore the dirty 1764 * buffers -- they'll be picked up a future cleanse. 1765 */ 1766 continue; 1767 } 1768 1769 if (dcpu->dtdsc_clean != NULL) { 1770 /* 1771 * If the clean list is non-NULL, then we're in a 1772 * situation where a CPU has done deallocations (we 1773 * have a non-NULL dirty list) but no allocations (we 1774 * also have a non-NULL clean list). We can't simply 1775 * move the dirty list into the clean list on this 1776 * CPU, yet we also don't want to allow this condition 1777 * to persist, lest a short clean list prevent a 1778 * massive dirty list from being cleaned (which in 1779 * turn could lead to otherwise avoidable dynamic 1780 * drops). To deal with this, we look for some CPU 1781 * with a NULL clean list, NULL dirty list, and NULL 1782 * rinsing list -- and then we borrow this CPU to 1783 * rinse our dirty list. 1784 */ 1785 CPU_FOREACH(j) { 1786 dtrace_dstate_percpu_t *rinser; 1787 1788 rinser = &dstate->dtds_percpu[j]; 1789 1790 if (rinser->dtdsc_rinsing != NULL) 1791 continue; 1792 1793 if (rinser->dtdsc_dirty != NULL) 1794 continue; 1795 1796 if (rinser->dtdsc_clean != NULL) 1797 continue; 1798 1799 rinsep = &rinser->dtdsc_rinsing; 1800 break; 1801 } 1802 1803 if (j > mp_maxid) { 1804 /* 1805 * We were unable to find another CPU that 1806 * could accept this dirty list -- we are 1807 * therefore unable to clean it now. 1808 */ 1809 dtrace_dynvar_failclean++; 1810 continue; 1811 } 1812 } 1813 1814 work = 1; 1815 1816 /* 1817 * Atomically move the dirty list aside. 1818 */ 1819 do { 1820 dirty = dcpu->dtdsc_dirty; 1821 1822 /* 1823 * Before we zap the dirty list, set the rinsing list. 1824 * (This allows for a potential assertion in 1825 * dtrace_dynvar(): if a free dynamic variable appears 1826 * on a hash chain, either the dirty list or the 1827 * rinsing list for some CPU must be non-NULL.) 1828 */ 1829 *rinsep = dirty; 1830 dtrace_membar_producer(); 1831 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1832 dirty, NULL) != dirty); 1833 } 1834 1835 if (!work) { 1836 /* 1837 * We have no work to do; we can simply return. 1838 */ 1839 return; 1840 } 1841 1842 dtrace_sync(); 1843 1844 CPU_FOREACH(i) { 1845 dcpu = &dstate->dtds_percpu[i]; 1846 1847 if (dcpu->dtdsc_rinsing == NULL) 1848 continue; 1849 1850 /* 1851 * We are now guaranteed that no hash chain contains a pointer 1852 * into this dirty list; we can make it clean. 1853 */ 1854 ASSERT(dcpu->dtdsc_clean == NULL); 1855 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1856 dcpu->dtdsc_rinsing = NULL; 1857 } 1858 1859 /* 1860 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1861 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1862 * This prevents a race whereby a CPU incorrectly decides that 1863 * the state should be something other than DTRACE_DSTATE_CLEAN 1864 * after dtrace_dynvar_clean() has completed. 1865 */ 1866 dtrace_sync(); 1867 1868 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1869 } 1870 1871 /* 1872 * Depending on the value of the op parameter, this function looks-up, 1873 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1874 * allocation is requested, this function will return a pointer to a 1875 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1876 * variable can be allocated. If NULL is returned, the appropriate counter 1877 * will be incremented. 1878 */ 1879 dtrace_dynvar_t * 1880 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1881 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1882 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1883 { 1884 uint64_t hashval = DTRACE_DYNHASH_VALID; 1885 dtrace_dynhash_t *hash = dstate->dtds_hash; 1886 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1887 processorid_t me = curcpu, cpu = me; 1888 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1889 size_t bucket, ksize; 1890 size_t chunksize = dstate->dtds_chunksize; 1891 uintptr_t kdata, lock, nstate; 1892 uint_t i; 1893 1894 ASSERT(nkeys != 0); 1895 1896 /* 1897 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1898 * algorithm. For the by-value portions, we perform the algorithm in 1899 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1900 * bit, and seems to have only a minute effect on distribution. For 1901 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1902 * over each referenced byte. It's painful to do this, but it's much 1903 * better than pathological hash distribution. The efficacy of the 1904 * hashing algorithm (and a comparison with other algorithms) may be 1905 * found by running the ::dtrace_dynstat MDB dcmd. 1906 */ 1907 for (i = 0; i < nkeys; i++) { 1908 if (key[i].dttk_size == 0) { 1909 uint64_t val = key[i].dttk_value; 1910 1911 hashval += (val >> 48) & 0xffff; 1912 hashval += (hashval << 10); 1913 hashval ^= (hashval >> 6); 1914 1915 hashval += (val >> 32) & 0xffff; 1916 hashval += (hashval << 10); 1917 hashval ^= (hashval >> 6); 1918 1919 hashval += (val >> 16) & 0xffff; 1920 hashval += (hashval << 10); 1921 hashval ^= (hashval >> 6); 1922 1923 hashval += val & 0xffff; 1924 hashval += (hashval << 10); 1925 hashval ^= (hashval >> 6); 1926 } else { 1927 /* 1928 * This is incredibly painful, but it beats the hell 1929 * out of the alternative. 1930 */ 1931 uint64_t j, size = key[i].dttk_size; 1932 uintptr_t base = (uintptr_t)key[i].dttk_value; 1933 1934 if (!dtrace_canload(base, size, mstate, vstate)) 1935 break; 1936 1937 for (j = 0; j < size; j++) { 1938 hashval += dtrace_load8(base + j); 1939 hashval += (hashval << 10); 1940 hashval ^= (hashval >> 6); 1941 } 1942 } 1943 } 1944 1945 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1946 return (NULL); 1947 1948 hashval += (hashval << 3); 1949 hashval ^= (hashval >> 11); 1950 hashval += (hashval << 15); 1951 1952 /* 1953 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1954 * comes out to be one of our two sentinel hash values. If this 1955 * actually happens, we set the hashval to be a value known to be a 1956 * non-sentinel value. 1957 */ 1958 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1959 hashval = DTRACE_DYNHASH_VALID; 1960 1961 /* 1962 * Yes, it's painful to do a divide here. If the cycle count becomes 1963 * important here, tricks can be pulled to reduce it. (However, it's 1964 * critical that hash collisions be kept to an absolute minimum; 1965 * they're much more painful than a divide.) It's better to have a 1966 * solution that generates few collisions and still keeps things 1967 * relatively simple. 1968 */ 1969 bucket = hashval % dstate->dtds_hashsize; 1970 1971 if (op == DTRACE_DYNVAR_DEALLOC) { 1972 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1973 1974 for (;;) { 1975 while ((lock = *lockp) & 1) 1976 continue; 1977 1978 if (dtrace_casptr((volatile void *)lockp, 1979 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) 1980 break; 1981 } 1982 1983 dtrace_membar_producer(); 1984 } 1985 1986 top: 1987 prev = NULL; 1988 lock = hash[bucket].dtdh_lock; 1989 1990 dtrace_membar_consumer(); 1991 1992 start = hash[bucket].dtdh_chain; 1993 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1994 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1995 op != DTRACE_DYNVAR_DEALLOC)); 1996 1997 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1998 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1999 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 2000 2001 if (dvar->dtdv_hashval != hashval) { 2002 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 2003 /* 2004 * We've reached the sink, and therefore the 2005 * end of the hash chain; we can kick out of 2006 * the loop knowing that we have seen a valid 2007 * snapshot of state. 2008 */ 2009 ASSERT(dvar->dtdv_next == NULL); 2010 ASSERT(dvar == &dtrace_dynhash_sink); 2011 break; 2012 } 2013 2014 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 2015 /* 2016 * We've gone off the rails: somewhere along 2017 * the line, one of the members of this hash 2018 * chain was deleted. Note that we could also 2019 * detect this by simply letting this loop run 2020 * to completion, as we would eventually hit 2021 * the end of the dirty list. However, we 2022 * want to avoid running the length of the 2023 * dirty list unnecessarily (it might be quite 2024 * long), so we catch this as early as 2025 * possible by detecting the hash marker. In 2026 * this case, we simply set dvar to NULL and 2027 * break; the conditional after the loop will 2028 * send us back to top. 2029 */ 2030 dvar = NULL; 2031 break; 2032 } 2033 2034 goto next; 2035 } 2036 2037 if (dtuple->dtt_nkeys != nkeys) 2038 goto next; 2039 2040 for (i = 0; i < nkeys; i++, dkey++) { 2041 if (dkey->dttk_size != key[i].dttk_size) 2042 goto next; /* size or type mismatch */ 2043 2044 if (dkey->dttk_size != 0) { 2045 if (dtrace_bcmp( 2046 (void *)(uintptr_t)key[i].dttk_value, 2047 (void *)(uintptr_t)dkey->dttk_value, 2048 dkey->dttk_size)) 2049 goto next; 2050 } else { 2051 if (dkey->dttk_value != key[i].dttk_value) 2052 goto next; 2053 } 2054 } 2055 2056 if (op != DTRACE_DYNVAR_DEALLOC) 2057 return (dvar); 2058 2059 ASSERT(dvar->dtdv_next == NULL || 2060 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 2061 2062 if (prev != NULL) { 2063 ASSERT(hash[bucket].dtdh_chain != dvar); 2064 ASSERT(start != dvar); 2065 ASSERT(prev->dtdv_next == dvar); 2066 prev->dtdv_next = dvar->dtdv_next; 2067 } else { 2068 if (dtrace_casptr(&hash[bucket].dtdh_chain, 2069 start, dvar->dtdv_next) != start) { 2070 /* 2071 * We have failed to atomically swing the 2072 * hash table head pointer, presumably because 2073 * of a conflicting allocation on another CPU. 2074 * We need to reread the hash chain and try 2075 * again. 2076 */ 2077 goto top; 2078 } 2079 } 2080 2081 dtrace_membar_producer(); 2082 2083 /* 2084 * Now set the hash value to indicate that it's free. 2085 */ 2086 ASSERT(hash[bucket].dtdh_chain != dvar); 2087 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2088 2089 dtrace_membar_producer(); 2090 2091 /* 2092 * Set the next pointer to point at the dirty list, and 2093 * atomically swing the dirty pointer to the newly freed dvar. 2094 */ 2095 do { 2096 next = dcpu->dtdsc_dirty; 2097 dvar->dtdv_next = next; 2098 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 2099 2100 /* 2101 * Finally, unlock this hash bucket. 2102 */ 2103 ASSERT(hash[bucket].dtdh_lock == lock); 2104 ASSERT(lock & 1); 2105 hash[bucket].dtdh_lock++; 2106 2107 return (NULL); 2108 next: 2109 prev = dvar; 2110 continue; 2111 } 2112 2113 if (dvar == NULL) { 2114 /* 2115 * If dvar is NULL, it is because we went off the rails: 2116 * one of the elements that we traversed in the hash chain 2117 * was deleted while we were traversing it. In this case, 2118 * we assert that we aren't doing a dealloc (deallocs lock 2119 * the hash bucket to prevent themselves from racing with 2120 * one another), and retry the hash chain traversal. 2121 */ 2122 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 2123 goto top; 2124 } 2125 2126 if (op != DTRACE_DYNVAR_ALLOC) { 2127 /* 2128 * If we are not to allocate a new variable, we want to 2129 * return NULL now. Before we return, check that the value 2130 * of the lock word hasn't changed. If it has, we may have 2131 * seen an inconsistent snapshot. 2132 */ 2133 if (op == DTRACE_DYNVAR_NOALLOC) { 2134 if (hash[bucket].dtdh_lock != lock) 2135 goto top; 2136 } else { 2137 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2138 ASSERT(hash[bucket].dtdh_lock == lock); 2139 ASSERT(lock & 1); 2140 hash[bucket].dtdh_lock++; 2141 } 2142 2143 return (NULL); 2144 } 2145 2146 /* 2147 * We need to allocate a new dynamic variable. The size we need is the 2148 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2149 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2150 * the size of any referred-to data (dsize). We then round the final 2151 * size up to the chunksize for allocation. 2152 */ 2153 for (ksize = 0, i = 0; i < nkeys; i++) 2154 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2155 2156 /* 2157 * This should be pretty much impossible, but could happen if, say, 2158 * strange DIF specified the tuple. Ideally, this should be an 2159 * assertion and not an error condition -- but that requires that the 2160 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2161 * bullet-proof. (That is, it must not be able to be fooled by 2162 * malicious DIF.) Given the lack of backwards branches in DIF, 2163 * solving this would presumably not amount to solving the Halting 2164 * Problem -- but it still seems awfully hard. 2165 */ 2166 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2167 ksize + dsize > chunksize) { 2168 dcpu->dtdsc_drops++; 2169 return (NULL); 2170 } 2171 2172 nstate = DTRACE_DSTATE_EMPTY; 2173 2174 do { 2175 retry: 2176 free = dcpu->dtdsc_free; 2177 2178 if (free == NULL) { 2179 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2180 void *rval; 2181 2182 if (clean == NULL) { 2183 /* 2184 * We're out of dynamic variable space on 2185 * this CPU. Unless we have tried all CPUs, 2186 * we'll try to allocate from a different 2187 * CPU. 2188 */ 2189 switch (dstate->dtds_state) { 2190 case DTRACE_DSTATE_CLEAN: { 2191 void *sp = &dstate->dtds_state; 2192 2193 if (++cpu > mp_maxid) 2194 cpu = 0; 2195 2196 if (dcpu->dtdsc_dirty != NULL && 2197 nstate == DTRACE_DSTATE_EMPTY) 2198 nstate = DTRACE_DSTATE_DIRTY; 2199 2200 if (dcpu->dtdsc_rinsing != NULL) 2201 nstate = DTRACE_DSTATE_RINSING; 2202 2203 dcpu = &dstate->dtds_percpu[cpu]; 2204 2205 if (cpu != me) 2206 goto retry; 2207 2208 (void) dtrace_cas32(sp, 2209 DTRACE_DSTATE_CLEAN, nstate); 2210 2211 /* 2212 * To increment the correct bean 2213 * counter, take another lap. 2214 */ 2215 goto retry; 2216 } 2217 2218 case DTRACE_DSTATE_DIRTY: 2219 dcpu->dtdsc_dirty_drops++; 2220 break; 2221 2222 case DTRACE_DSTATE_RINSING: 2223 dcpu->dtdsc_rinsing_drops++; 2224 break; 2225 2226 case DTRACE_DSTATE_EMPTY: 2227 dcpu->dtdsc_drops++; 2228 break; 2229 } 2230 2231 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2232 return (NULL); 2233 } 2234 2235 /* 2236 * The clean list appears to be non-empty. We want to 2237 * move the clean list to the free list; we start by 2238 * moving the clean pointer aside. 2239 */ 2240 if (dtrace_casptr(&dcpu->dtdsc_clean, 2241 clean, NULL) != clean) { 2242 /* 2243 * We are in one of two situations: 2244 * 2245 * (a) The clean list was switched to the 2246 * free list by another CPU. 2247 * 2248 * (b) The clean list was added to by the 2249 * cleansing cyclic. 2250 * 2251 * In either of these situations, we can 2252 * just reattempt the free list allocation. 2253 */ 2254 goto retry; 2255 } 2256 2257 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2258 2259 /* 2260 * Now we'll move the clean list to our free list. 2261 * It's impossible for this to fail: the only way 2262 * the free list can be updated is through this 2263 * code path, and only one CPU can own the clean list. 2264 * Thus, it would only be possible for this to fail if 2265 * this code were racing with dtrace_dynvar_clean(). 2266 * (That is, if dtrace_dynvar_clean() updated the clean 2267 * list, and we ended up racing to update the free 2268 * list.) This race is prevented by the dtrace_sync() 2269 * in dtrace_dynvar_clean() -- which flushes the 2270 * owners of the clean lists out before resetting 2271 * the clean lists. 2272 */ 2273 dcpu = &dstate->dtds_percpu[me]; 2274 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2275 ASSERT(rval == NULL); 2276 goto retry; 2277 } 2278 2279 dvar = free; 2280 new_free = dvar->dtdv_next; 2281 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2282 2283 /* 2284 * We have now allocated a new chunk. We copy the tuple keys into the 2285 * tuple array and copy any referenced key data into the data space 2286 * following the tuple array. As we do this, we relocate dttk_value 2287 * in the final tuple to point to the key data address in the chunk. 2288 */ 2289 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2290 dvar->dtdv_data = (void *)(kdata + ksize); 2291 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2292 2293 for (i = 0; i < nkeys; i++) { 2294 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2295 size_t kesize = key[i].dttk_size; 2296 2297 if (kesize != 0) { 2298 dtrace_bcopy( 2299 (const void *)(uintptr_t)key[i].dttk_value, 2300 (void *)kdata, kesize); 2301 dkey->dttk_value = kdata; 2302 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2303 } else { 2304 dkey->dttk_value = key[i].dttk_value; 2305 } 2306 2307 dkey->dttk_size = kesize; 2308 } 2309 2310 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2311 dvar->dtdv_hashval = hashval; 2312 dvar->dtdv_next = start; 2313 2314 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2315 return (dvar); 2316 2317 /* 2318 * The cas has failed. Either another CPU is adding an element to 2319 * this hash chain, or another CPU is deleting an element from this 2320 * hash chain. The simplest way to deal with both of these cases 2321 * (though not necessarily the most efficient) is to free our 2322 * allocated block and re-attempt it all. Note that the free is 2323 * to the dirty list and _not_ to the free list. This is to prevent 2324 * races with allocators, above. 2325 */ 2326 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2327 2328 dtrace_membar_producer(); 2329 2330 do { 2331 free = dcpu->dtdsc_dirty; 2332 dvar->dtdv_next = free; 2333 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2334 2335 goto top; 2336 } 2337 2338 /*ARGSUSED*/ 2339 static void 2340 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2341 { 2342 if ((int64_t)nval < (int64_t)*oval) 2343 *oval = nval; 2344 } 2345 2346 /*ARGSUSED*/ 2347 static void 2348 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2349 { 2350 if ((int64_t)nval > (int64_t)*oval) 2351 *oval = nval; 2352 } 2353 2354 static void 2355 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2356 { 2357 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2358 int64_t val = (int64_t)nval; 2359 2360 if (val < 0) { 2361 for (i = 0; i < zero; i++) { 2362 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2363 quanta[i] += incr; 2364 return; 2365 } 2366 } 2367 } else { 2368 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2369 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2370 quanta[i - 1] += incr; 2371 return; 2372 } 2373 } 2374 2375 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2376 return; 2377 } 2378 2379 ASSERT(0); 2380 } 2381 2382 static void 2383 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2384 { 2385 uint64_t arg = *lquanta++; 2386 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2387 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2388 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2389 int32_t val = (int32_t)nval, level; 2390 2391 ASSERT(step != 0); 2392 ASSERT(levels != 0); 2393 2394 if (val < base) { 2395 /* 2396 * This is an underflow. 2397 */ 2398 lquanta[0] += incr; 2399 return; 2400 } 2401 2402 level = (val - base) / step; 2403 2404 if (level < levels) { 2405 lquanta[level + 1] += incr; 2406 return; 2407 } 2408 2409 /* 2410 * This is an overflow. 2411 */ 2412 lquanta[levels + 1] += incr; 2413 } 2414 2415 static int 2416 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2417 uint16_t high, uint16_t nsteps, int64_t value) 2418 { 2419 int64_t this = 1, last, next; 2420 int base = 1, order; 2421 2422 ASSERT(factor <= nsteps); 2423 ASSERT(nsteps % factor == 0); 2424 2425 for (order = 0; order < low; order++) 2426 this *= factor; 2427 2428 /* 2429 * If our value is less than our factor taken to the power of the 2430 * low order of magnitude, it goes into the zeroth bucket. 2431 */ 2432 if (value < (last = this)) 2433 return (0); 2434 2435 for (this *= factor; order <= high; order++) { 2436 int nbuckets = this > nsteps ? nsteps : this; 2437 2438 if ((next = this * factor) < this) { 2439 /* 2440 * We should not generally get log/linear quantizations 2441 * with a high magnitude that allows 64-bits to 2442 * overflow, but we nonetheless protect against this 2443 * by explicitly checking for overflow, and clamping 2444 * our value accordingly. 2445 */ 2446 value = this - 1; 2447 } 2448 2449 if (value < this) { 2450 /* 2451 * If our value lies within this order of magnitude, 2452 * determine its position by taking the offset within 2453 * the order of magnitude, dividing by the bucket 2454 * width, and adding to our (accumulated) base. 2455 */ 2456 return (base + (value - last) / (this / nbuckets)); 2457 } 2458 2459 base += nbuckets - (nbuckets / factor); 2460 last = this; 2461 this = next; 2462 } 2463 2464 /* 2465 * Our value is greater than or equal to our factor taken to the 2466 * power of one plus the high magnitude -- return the top bucket. 2467 */ 2468 return (base); 2469 } 2470 2471 static void 2472 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2473 { 2474 uint64_t arg = *llquanta++; 2475 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2476 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2477 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2478 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2479 2480 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2481 low, high, nsteps, nval)] += incr; 2482 } 2483 2484 /*ARGSUSED*/ 2485 static void 2486 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2487 { 2488 data[0]++; 2489 data[1] += nval; 2490 } 2491 2492 /*ARGSUSED*/ 2493 static void 2494 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2495 { 2496 int64_t snval = (int64_t)nval; 2497 uint64_t tmp[2]; 2498 2499 data[0]++; 2500 data[1] += nval; 2501 2502 /* 2503 * What we want to say here is: 2504 * 2505 * data[2] += nval * nval; 2506 * 2507 * But given that nval is 64-bit, we could easily overflow, so 2508 * we do this as 128-bit arithmetic. 2509 */ 2510 if (snval < 0) 2511 snval = -snval; 2512 2513 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2514 dtrace_add_128(data + 2, tmp, data + 2); 2515 } 2516 2517 /*ARGSUSED*/ 2518 static void 2519 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2520 { 2521 *oval = *oval + 1; 2522 } 2523 2524 /*ARGSUSED*/ 2525 static void 2526 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2527 { 2528 *oval += nval; 2529 } 2530 2531 /* 2532 * Aggregate given the tuple in the principal data buffer, and the aggregating 2533 * action denoted by the specified dtrace_aggregation_t. The aggregation 2534 * buffer is specified as the buf parameter. This routine does not return 2535 * failure; if there is no space in the aggregation buffer, the data will be 2536 * dropped, and a corresponding counter incremented. 2537 */ 2538 static void 2539 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2540 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2541 { 2542 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2543 uint32_t i, ndx, size, fsize; 2544 uint32_t align = sizeof (uint64_t) - 1; 2545 dtrace_aggbuffer_t *agb; 2546 dtrace_aggkey_t *key; 2547 uint32_t hashval = 0, limit, isstr; 2548 caddr_t tomax, data, kdata; 2549 dtrace_actkind_t action; 2550 dtrace_action_t *act; 2551 size_t offs; 2552 2553 if (buf == NULL) 2554 return; 2555 2556 if (!agg->dtag_hasarg) { 2557 /* 2558 * Currently, only quantize() and lquantize() take additional 2559 * arguments, and they have the same semantics: an increment 2560 * value that defaults to 1 when not present. If additional 2561 * aggregating actions take arguments, the setting of the 2562 * default argument value will presumably have to become more 2563 * sophisticated... 2564 */ 2565 arg = 1; 2566 } 2567 2568 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2569 size = rec->dtrd_offset - agg->dtag_base; 2570 fsize = size + rec->dtrd_size; 2571 2572 ASSERT(dbuf->dtb_tomax != NULL); 2573 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2574 2575 if ((tomax = buf->dtb_tomax) == NULL) { 2576 dtrace_buffer_drop(buf); 2577 return; 2578 } 2579 2580 /* 2581 * The metastructure is always at the bottom of the buffer. 2582 */ 2583 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2584 sizeof (dtrace_aggbuffer_t)); 2585 2586 if (buf->dtb_offset == 0) { 2587 /* 2588 * We just kludge up approximately 1/8th of the size to be 2589 * buckets. If this guess ends up being routinely 2590 * off-the-mark, we may need to dynamically readjust this 2591 * based on past performance. 2592 */ 2593 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2594 2595 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2596 (uintptr_t)tomax || hashsize == 0) { 2597 /* 2598 * We've been given a ludicrously small buffer; 2599 * increment our drop count and leave. 2600 */ 2601 dtrace_buffer_drop(buf); 2602 return; 2603 } 2604 2605 /* 2606 * And now, a pathetic attempt to try to get a an odd (or 2607 * perchance, a prime) hash size for better hash distribution. 2608 */ 2609 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2610 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2611 2612 agb->dtagb_hashsize = hashsize; 2613 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2614 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2615 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2616 2617 for (i = 0; i < agb->dtagb_hashsize; i++) 2618 agb->dtagb_hash[i] = NULL; 2619 } 2620 2621 ASSERT(agg->dtag_first != NULL); 2622 ASSERT(agg->dtag_first->dta_intuple); 2623 2624 /* 2625 * Calculate the hash value based on the key. Note that we _don't_ 2626 * include the aggid in the hashing (but we will store it as part of 2627 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2628 * algorithm: a simple, quick algorithm that has no known funnels, and 2629 * gets good distribution in practice. The efficacy of the hashing 2630 * algorithm (and a comparison with other algorithms) may be found by 2631 * running the ::dtrace_aggstat MDB dcmd. 2632 */ 2633 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2634 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2635 limit = i + act->dta_rec.dtrd_size; 2636 ASSERT(limit <= size); 2637 isstr = DTRACEACT_ISSTRING(act); 2638 2639 for (; i < limit; i++) { 2640 hashval += data[i]; 2641 hashval += (hashval << 10); 2642 hashval ^= (hashval >> 6); 2643 2644 if (isstr && data[i] == '\0') 2645 break; 2646 } 2647 } 2648 2649 hashval += (hashval << 3); 2650 hashval ^= (hashval >> 11); 2651 hashval += (hashval << 15); 2652 2653 /* 2654 * Yes, the divide here is expensive -- but it's generally the least 2655 * of the performance issues given the amount of data that we iterate 2656 * over to compute hash values, compare data, etc. 2657 */ 2658 ndx = hashval % agb->dtagb_hashsize; 2659 2660 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2661 ASSERT((caddr_t)key >= tomax); 2662 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2663 2664 if (hashval != key->dtak_hashval || key->dtak_size != size) 2665 continue; 2666 2667 kdata = key->dtak_data; 2668 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2669 2670 for (act = agg->dtag_first; act->dta_intuple; 2671 act = act->dta_next) { 2672 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2673 limit = i + act->dta_rec.dtrd_size; 2674 ASSERT(limit <= size); 2675 isstr = DTRACEACT_ISSTRING(act); 2676 2677 for (; i < limit; i++) { 2678 if (kdata[i] != data[i]) 2679 goto next; 2680 2681 if (isstr && data[i] == '\0') 2682 break; 2683 } 2684 } 2685 2686 if (action != key->dtak_action) { 2687 /* 2688 * We are aggregating on the same value in the same 2689 * aggregation with two different aggregating actions. 2690 * (This should have been picked up in the compiler, 2691 * so we may be dealing with errant or devious DIF.) 2692 * This is an error condition; we indicate as much, 2693 * and return. 2694 */ 2695 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2696 return; 2697 } 2698 2699 /* 2700 * This is a hit: we need to apply the aggregator to 2701 * the value at this key. 2702 */ 2703 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2704 return; 2705 next: 2706 continue; 2707 } 2708 2709 /* 2710 * We didn't find it. We need to allocate some zero-filled space, 2711 * link it into the hash table appropriately, and apply the aggregator 2712 * to the (zero-filled) value. 2713 */ 2714 offs = buf->dtb_offset; 2715 while (offs & (align - 1)) 2716 offs += sizeof (uint32_t); 2717 2718 /* 2719 * If we don't have enough room to both allocate a new key _and_ 2720 * its associated data, increment the drop count and return. 2721 */ 2722 if ((uintptr_t)tomax + offs + fsize > 2723 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2724 dtrace_buffer_drop(buf); 2725 return; 2726 } 2727 2728 /*CONSTCOND*/ 2729 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2730 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2731 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2732 2733 key->dtak_data = kdata = tomax + offs; 2734 buf->dtb_offset = offs + fsize; 2735 2736 /* 2737 * Now copy the data across. 2738 */ 2739 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2740 2741 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2742 kdata[i] = data[i]; 2743 2744 /* 2745 * Because strings are not zeroed out by default, we need to iterate 2746 * looking for actions that store strings, and we need to explicitly 2747 * pad these strings out with zeroes. 2748 */ 2749 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2750 int nul; 2751 2752 if (!DTRACEACT_ISSTRING(act)) 2753 continue; 2754 2755 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2756 limit = i + act->dta_rec.dtrd_size; 2757 ASSERT(limit <= size); 2758 2759 for (nul = 0; i < limit; i++) { 2760 if (nul) { 2761 kdata[i] = '\0'; 2762 continue; 2763 } 2764 2765 if (data[i] != '\0') 2766 continue; 2767 2768 nul = 1; 2769 } 2770 } 2771 2772 for (i = size; i < fsize; i++) 2773 kdata[i] = 0; 2774 2775 key->dtak_hashval = hashval; 2776 key->dtak_size = size; 2777 key->dtak_action = action; 2778 key->dtak_next = agb->dtagb_hash[ndx]; 2779 agb->dtagb_hash[ndx] = key; 2780 2781 /* 2782 * Finally, apply the aggregator. 2783 */ 2784 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2785 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2786 } 2787 2788 /* 2789 * Given consumer state, this routine finds a speculation in the INACTIVE 2790 * state and transitions it into the ACTIVE state. If there is no speculation 2791 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2792 * incremented -- it is up to the caller to take appropriate action. 2793 */ 2794 static int 2795 dtrace_speculation(dtrace_state_t *state) 2796 { 2797 int i = 0; 2798 dtrace_speculation_state_t curstate; 2799 uint32_t *stat = &state->dts_speculations_unavail, count; 2800 2801 while (i < state->dts_nspeculations) { 2802 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2803 2804 curstate = spec->dtsp_state; 2805 2806 if (curstate != DTRACESPEC_INACTIVE) { 2807 if (curstate == DTRACESPEC_COMMITTINGMANY || 2808 curstate == DTRACESPEC_COMMITTING || 2809 curstate == DTRACESPEC_DISCARDING) 2810 stat = &state->dts_speculations_busy; 2811 i++; 2812 continue; 2813 } 2814 2815 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2816 curstate, DTRACESPEC_ACTIVE) == curstate) 2817 return (i + 1); 2818 } 2819 2820 /* 2821 * We couldn't find a speculation. If we found as much as a single 2822 * busy speculation buffer, we'll attribute this failure as "busy" 2823 * instead of "unavail". 2824 */ 2825 do { 2826 count = *stat; 2827 } while (dtrace_cas32(stat, count, count + 1) != count); 2828 2829 return (0); 2830 } 2831 2832 /* 2833 * This routine commits an active speculation. If the specified speculation 2834 * is not in a valid state to perform a commit(), this routine will silently do 2835 * nothing. The state of the specified speculation is transitioned according 2836 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2837 */ 2838 static void 2839 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2840 dtrace_specid_t which) 2841 { 2842 dtrace_speculation_t *spec; 2843 dtrace_buffer_t *src, *dest; 2844 uintptr_t daddr, saddr, dlimit, slimit; 2845 dtrace_speculation_state_t curstate, new = 0; 2846 ssize_t offs; 2847 uint64_t timestamp; 2848 2849 if (which == 0) 2850 return; 2851 2852 if (which > state->dts_nspeculations) { 2853 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2854 return; 2855 } 2856 2857 spec = &state->dts_speculations[which - 1]; 2858 src = &spec->dtsp_buffer[cpu]; 2859 dest = &state->dts_buffer[cpu]; 2860 2861 do { 2862 curstate = spec->dtsp_state; 2863 2864 if (curstate == DTRACESPEC_COMMITTINGMANY) 2865 break; 2866 2867 switch (curstate) { 2868 case DTRACESPEC_INACTIVE: 2869 case DTRACESPEC_DISCARDING: 2870 return; 2871 2872 case DTRACESPEC_COMMITTING: 2873 /* 2874 * This is only possible if we are (a) commit()'ing 2875 * without having done a prior speculate() on this CPU 2876 * and (b) racing with another commit() on a different 2877 * CPU. There's nothing to do -- we just assert that 2878 * our offset is 0. 2879 */ 2880 ASSERT(src->dtb_offset == 0); 2881 return; 2882 2883 case DTRACESPEC_ACTIVE: 2884 new = DTRACESPEC_COMMITTING; 2885 break; 2886 2887 case DTRACESPEC_ACTIVEONE: 2888 /* 2889 * This speculation is active on one CPU. If our 2890 * buffer offset is non-zero, we know that the one CPU 2891 * must be us. Otherwise, we are committing on a 2892 * different CPU from the speculate(), and we must 2893 * rely on being asynchronously cleaned. 2894 */ 2895 if (src->dtb_offset != 0) { 2896 new = DTRACESPEC_COMMITTING; 2897 break; 2898 } 2899 /*FALLTHROUGH*/ 2900 2901 case DTRACESPEC_ACTIVEMANY: 2902 new = DTRACESPEC_COMMITTINGMANY; 2903 break; 2904 2905 default: 2906 ASSERT(0); 2907 } 2908 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2909 curstate, new) != curstate); 2910 2911 /* 2912 * We have set the state to indicate that we are committing this 2913 * speculation. Now reserve the necessary space in the destination 2914 * buffer. 2915 */ 2916 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2917 sizeof (uint64_t), state, NULL)) < 0) { 2918 dtrace_buffer_drop(dest); 2919 goto out; 2920 } 2921 2922 /* 2923 * We have sufficient space to copy the speculative buffer into the 2924 * primary buffer. First, modify the speculative buffer, filling 2925 * in the timestamp of all entries with the curstate time. The data 2926 * must have the commit() time rather than the time it was traced, 2927 * so that all entries in the primary buffer are in timestamp order. 2928 */ 2929 timestamp = dtrace_gethrtime(); 2930 saddr = (uintptr_t)src->dtb_tomax; 2931 slimit = saddr + src->dtb_offset; 2932 while (saddr < slimit) { 2933 size_t size; 2934 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2935 2936 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2937 saddr += sizeof (dtrace_epid_t); 2938 continue; 2939 } 2940 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2941 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2942 2943 ASSERT3U(saddr + size, <=, slimit); 2944 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2945 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2946 2947 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2948 2949 saddr += size; 2950 } 2951 2952 /* 2953 * Copy the buffer across. (Note that this is a 2954 * highly subobtimal bcopy(); in the unlikely event that this becomes 2955 * a serious performance issue, a high-performance DTrace-specific 2956 * bcopy() should obviously be invented.) 2957 */ 2958 daddr = (uintptr_t)dest->dtb_tomax + offs; 2959 dlimit = daddr + src->dtb_offset; 2960 saddr = (uintptr_t)src->dtb_tomax; 2961 2962 /* 2963 * First, the aligned portion. 2964 */ 2965 while (dlimit - daddr >= sizeof (uint64_t)) { 2966 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2967 2968 daddr += sizeof (uint64_t); 2969 saddr += sizeof (uint64_t); 2970 } 2971 2972 /* 2973 * Now any left-over bit... 2974 */ 2975 while (dlimit - daddr) 2976 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2977 2978 /* 2979 * Finally, commit the reserved space in the destination buffer. 2980 */ 2981 dest->dtb_offset = offs + src->dtb_offset; 2982 2983 out: 2984 /* 2985 * If we're lucky enough to be the only active CPU on this speculation 2986 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2987 */ 2988 if (curstate == DTRACESPEC_ACTIVE || 2989 (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2990 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2991 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2992 2993 ASSERT(rval == DTRACESPEC_COMMITTING); 2994 } 2995 2996 src->dtb_offset = 0; 2997 src->dtb_xamot_drops += src->dtb_drops; 2998 src->dtb_drops = 0; 2999 } 3000 3001 /* 3002 * This routine discards an active speculation. If the specified speculation 3003 * is not in a valid state to perform a discard(), this routine will silently 3004 * do nothing. The state of the specified speculation is transitioned 3005 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 3006 */ 3007 static void 3008 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 3009 dtrace_specid_t which) 3010 { 3011 dtrace_speculation_t *spec; 3012 dtrace_speculation_state_t curstate, new = 0; 3013 dtrace_buffer_t *buf; 3014 3015 if (which == 0) 3016 return; 3017 3018 if (which > state->dts_nspeculations) { 3019 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3020 return; 3021 } 3022 3023 spec = &state->dts_speculations[which - 1]; 3024 buf = &spec->dtsp_buffer[cpu]; 3025 3026 do { 3027 curstate = spec->dtsp_state; 3028 3029 switch (curstate) { 3030 case DTRACESPEC_INACTIVE: 3031 case DTRACESPEC_COMMITTINGMANY: 3032 case DTRACESPEC_COMMITTING: 3033 case DTRACESPEC_DISCARDING: 3034 return; 3035 3036 case DTRACESPEC_ACTIVE: 3037 case DTRACESPEC_ACTIVEMANY: 3038 new = DTRACESPEC_DISCARDING; 3039 break; 3040 3041 case DTRACESPEC_ACTIVEONE: 3042 if (buf->dtb_offset != 0) { 3043 new = DTRACESPEC_INACTIVE; 3044 } else { 3045 new = DTRACESPEC_DISCARDING; 3046 } 3047 break; 3048 3049 default: 3050 ASSERT(0); 3051 } 3052 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3053 curstate, new) != curstate); 3054 3055 buf->dtb_offset = 0; 3056 buf->dtb_drops = 0; 3057 } 3058 3059 /* 3060 * Note: not called from probe context. This function is called 3061 * asynchronously from cross call context to clean any speculations that are 3062 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 3063 * transitioned back to the INACTIVE state until all CPUs have cleaned the 3064 * speculation. 3065 */ 3066 static void 3067 dtrace_speculation_clean_here(dtrace_state_t *state) 3068 { 3069 dtrace_icookie_t cookie; 3070 processorid_t cpu = curcpu; 3071 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 3072 dtrace_specid_t i; 3073 3074 cookie = dtrace_interrupt_disable(); 3075 3076 if (dest->dtb_tomax == NULL) { 3077 dtrace_interrupt_enable(cookie); 3078 return; 3079 } 3080 3081 for (i = 0; i < state->dts_nspeculations; i++) { 3082 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3083 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 3084 3085 if (src->dtb_tomax == NULL) 3086 continue; 3087 3088 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 3089 src->dtb_offset = 0; 3090 continue; 3091 } 3092 3093 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3094 continue; 3095 3096 if (src->dtb_offset == 0) 3097 continue; 3098 3099 dtrace_speculation_commit(state, cpu, i + 1); 3100 } 3101 3102 dtrace_interrupt_enable(cookie); 3103 } 3104 3105 /* 3106 * Note: not called from probe context. This function is called 3107 * asynchronously (and at a regular interval) to clean any speculations that 3108 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 3109 * is work to be done, it cross calls all CPUs to perform that work; 3110 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 3111 * INACTIVE state until they have been cleaned by all CPUs. 3112 */ 3113 static void 3114 dtrace_speculation_clean(dtrace_state_t *state) 3115 { 3116 int work = 0, rv; 3117 dtrace_specid_t i; 3118 3119 for (i = 0; i < state->dts_nspeculations; i++) { 3120 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3121 3122 ASSERT(!spec->dtsp_cleaning); 3123 3124 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 3125 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3126 continue; 3127 3128 work++; 3129 spec->dtsp_cleaning = 1; 3130 } 3131 3132 if (!work) 3133 return; 3134 3135 dtrace_xcall(DTRACE_CPUALL, 3136 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3137 3138 /* 3139 * We now know that all CPUs have committed or discarded their 3140 * speculation buffers, as appropriate. We can now set the state 3141 * to inactive. 3142 */ 3143 for (i = 0; i < state->dts_nspeculations; i++) { 3144 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3145 dtrace_speculation_state_t curstate, new; 3146 3147 if (!spec->dtsp_cleaning) 3148 continue; 3149 3150 curstate = spec->dtsp_state; 3151 ASSERT(curstate == DTRACESPEC_DISCARDING || 3152 curstate == DTRACESPEC_COMMITTINGMANY); 3153 3154 new = DTRACESPEC_INACTIVE; 3155 3156 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new); 3157 ASSERT(rv == curstate); 3158 spec->dtsp_cleaning = 0; 3159 } 3160 } 3161 3162 /* 3163 * Called as part of a speculate() to get the speculative buffer associated 3164 * with a given speculation. Returns NULL if the specified speculation is not 3165 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3166 * the active CPU is not the specified CPU -- the speculation will be 3167 * atomically transitioned into the ACTIVEMANY state. 3168 */ 3169 static dtrace_buffer_t * 3170 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3171 dtrace_specid_t which) 3172 { 3173 dtrace_speculation_t *spec; 3174 dtrace_speculation_state_t curstate, new = 0; 3175 dtrace_buffer_t *buf; 3176 3177 if (which == 0) 3178 return (NULL); 3179 3180 if (which > state->dts_nspeculations) { 3181 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3182 return (NULL); 3183 } 3184 3185 spec = &state->dts_speculations[which - 1]; 3186 buf = &spec->dtsp_buffer[cpuid]; 3187 3188 do { 3189 curstate = spec->dtsp_state; 3190 3191 switch (curstate) { 3192 case DTRACESPEC_INACTIVE: 3193 case DTRACESPEC_COMMITTINGMANY: 3194 case DTRACESPEC_DISCARDING: 3195 return (NULL); 3196 3197 case DTRACESPEC_COMMITTING: 3198 ASSERT(buf->dtb_offset == 0); 3199 return (NULL); 3200 3201 case DTRACESPEC_ACTIVEONE: 3202 /* 3203 * This speculation is currently active on one CPU. 3204 * Check the offset in the buffer; if it's non-zero, 3205 * that CPU must be us (and we leave the state alone). 3206 * If it's zero, assume that we're starting on a new 3207 * CPU -- and change the state to indicate that the 3208 * speculation is active on more than one CPU. 3209 */ 3210 if (buf->dtb_offset != 0) 3211 return (buf); 3212 3213 new = DTRACESPEC_ACTIVEMANY; 3214 break; 3215 3216 case DTRACESPEC_ACTIVEMANY: 3217 return (buf); 3218 3219 case DTRACESPEC_ACTIVE: 3220 new = DTRACESPEC_ACTIVEONE; 3221 break; 3222 3223 default: 3224 ASSERT(0); 3225 } 3226 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3227 curstate, new) != curstate); 3228 3229 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3230 return (buf); 3231 } 3232 3233 /* 3234 * Return a string. In the event that the user lacks the privilege to access 3235 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3236 * don't fail access checking. 3237 * 3238 * dtrace_dif_variable() uses this routine as a helper for various 3239 * builtin values such as 'execname' and 'probefunc.' 3240 */ 3241 uintptr_t 3242 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3243 dtrace_mstate_t *mstate) 3244 { 3245 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3246 uintptr_t ret; 3247 size_t strsz; 3248 3249 /* 3250 * The easy case: this probe is allowed to read all of memory, so 3251 * we can just return this as a vanilla pointer. 3252 */ 3253 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3254 return (addr); 3255 3256 /* 3257 * This is the tougher case: we copy the string in question from 3258 * kernel memory into scratch memory and return it that way: this 3259 * ensures that we won't trip up when access checking tests the 3260 * BYREF return value. 3261 */ 3262 strsz = dtrace_strlen((char *)addr, size) + 1; 3263 3264 if (mstate->dtms_scratch_ptr + strsz > 3265 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3266 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3267 return (0); 3268 } 3269 3270 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3271 strsz); 3272 ret = mstate->dtms_scratch_ptr; 3273 mstate->dtms_scratch_ptr += strsz; 3274 return (ret); 3275 } 3276 3277 /* 3278 * Return a string from a memoy address which is known to have one or 3279 * more concatenated, individually zero terminated, sub-strings. 3280 * In the event that the user lacks the privilege to access 3281 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3282 * don't fail access checking. 3283 * 3284 * dtrace_dif_variable() uses this routine as a helper for various 3285 * builtin values such as 'execargs'. 3286 */ 3287 static uintptr_t 3288 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, 3289 dtrace_mstate_t *mstate) 3290 { 3291 char *p; 3292 size_t i; 3293 uintptr_t ret; 3294 3295 if (mstate->dtms_scratch_ptr + strsz > 3296 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3297 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3298 return (0); 3299 } 3300 3301 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3302 strsz); 3303 3304 /* Replace sub-string termination characters with a space. */ 3305 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; 3306 p++, i++) 3307 if (*p == '\0') 3308 *p = ' '; 3309 3310 ret = mstate->dtms_scratch_ptr; 3311 mstate->dtms_scratch_ptr += strsz; 3312 return (ret); 3313 } 3314 3315 /* 3316 * This function implements the DIF emulator's variable lookups. The emulator 3317 * passes a reserved variable identifier and optional built-in array index. 3318 */ 3319 static uint64_t 3320 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3321 uint64_t ndx) 3322 { 3323 /* 3324 * If we're accessing one of the uncached arguments, we'll turn this 3325 * into a reference in the args array. 3326 */ 3327 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3328 ndx = v - DIF_VAR_ARG0; 3329 v = DIF_VAR_ARGS; 3330 } 3331 3332 switch (v) { 3333 case DIF_VAR_ARGS: 3334 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3335 if (ndx >= sizeof (mstate->dtms_arg) / 3336 sizeof (mstate->dtms_arg[0])) { 3337 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3338 dtrace_provider_t *pv; 3339 uint64_t val; 3340 3341 pv = mstate->dtms_probe->dtpr_provider; 3342 if (pv->dtpv_pops.dtps_getargval != NULL) 3343 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3344 mstate->dtms_probe->dtpr_id, 3345 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3346 else 3347 val = dtrace_getarg(ndx, aframes); 3348 3349 /* 3350 * This is regrettably required to keep the compiler 3351 * from tail-optimizing the call to dtrace_getarg(). 3352 * The condition always evaluates to true, but the 3353 * compiler has no way of figuring that out a priori. 3354 * (None of this would be necessary if the compiler 3355 * could be relied upon to _always_ tail-optimize 3356 * the call to dtrace_getarg() -- but it can't.) 3357 */ 3358 if (mstate->dtms_probe != NULL) 3359 return (val); 3360 3361 ASSERT(0); 3362 } 3363 3364 return (mstate->dtms_arg[ndx]); 3365 3366 case DIF_VAR_REGS: 3367 case DIF_VAR_UREGS: { 3368 struct trapframe *tframe; 3369 3370 if (!dtrace_priv_proc(state)) 3371 return (0); 3372 3373 if (v == DIF_VAR_REGS) 3374 tframe = curthread->t_dtrace_trapframe; 3375 else 3376 tframe = curthread->td_frame; 3377 3378 if (tframe == NULL) { 3379 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3380 cpu_core[curcpu].cpuc_dtrace_illval = 0; 3381 return (0); 3382 } 3383 3384 return (dtrace_getreg(tframe, ndx)); 3385 } 3386 3387 case DIF_VAR_CURTHREAD: 3388 if (!dtrace_priv_proc(state)) 3389 return (0); 3390 return ((uint64_t)(uintptr_t)curthread); 3391 3392 case DIF_VAR_TIMESTAMP: 3393 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3394 mstate->dtms_timestamp = dtrace_gethrtime(); 3395 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3396 } 3397 return (mstate->dtms_timestamp); 3398 3399 case DIF_VAR_VTIMESTAMP: 3400 ASSERT(dtrace_vtime_references != 0); 3401 return (curthread->t_dtrace_vtime); 3402 3403 case DIF_VAR_WALLTIMESTAMP: 3404 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3405 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3406 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3407 } 3408 return (mstate->dtms_walltimestamp); 3409 3410 #ifdef illumos 3411 case DIF_VAR_IPL: 3412 if (!dtrace_priv_kernel(state)) 3413 return (0); 3414 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3415 mstate->dtms_ipl = dtrace_getipl(); 3416 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3417 } 3418 return (mstate->dtms_ipl); 3419 #endif 3420 3421 case DIF_VAR_EPID: 3422 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3423 return (mstate->dtms_epid); 3424 3425 case DIF_VAR_ID: 3426 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3427 return (mstate->dtms_probe->dtpr_id); 3428 3429 case DIF_VAR_STACKDEPTH: 3430 if (!dtrace_priv_kernel(state)) 3431 return (0); 3432 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3433 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3434 3435 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3436 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3437 } 3438 return (mstate->dtms_stackdepth); 3439 3440 case DIF_VAR_USTACKDEPTH: 3441 if (!dtrace_priv_proc(state)) 3442 return (0); 3443 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3444 /* 3445 * See comment in DIF_VAR_PID. 3446 */ 3447 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3448 CPU_ON_INTR(CPU)) { 3449 mstate->dtms_ustackdepth = 0; 3450 } else { 3451 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3452 mstate->dtms_ustackdepth = 3453 dtrace_getustackdepth(); 3454 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3455 } 3456 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3457 } 3458 return (mstate->dtms_ustackdepth); 3459 3460 case DIF_VAR_CALLER: 3461 if (!dtrace_priv_kernel(state)) 3462 return (0); 3463 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3464 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3465 3466 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3467 /* 3468 * If this is an unanchored probe, we are 3469 * required to go through the slow path: 3470 * dtrace_caller() only guarantees correct 3471 * results for anchored probes. 3472 */ 3473 pc_t caller[2] = {0, 0}; 3474 3475 dtrace_getpcstack(caller, 2, aframes, 3476 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3477 mstate->dtms_caller = caller[1]; 3478 } else if ((mstate->dtms_caller = 3479 dtrace_caller(aframes)) == -1) { 3480 /* 3481 * We have failed to do this the quick way; 3482 * we must resort to the slower approach of 3483 * calling dtrace_getpcstack(). 3484 */ 3485 pc_t caller = 0; 3486 3487 dtrace_getpcstack(&caller, 1, aframes, NULL); 3488 mstate->dtms_caller = caller; 3489 } 3490 3491 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3492 } 3493 return (mstate->dtms_caller); 3494 3495 case DIF_VAR_UCALLER: 3496 if (!dtrace_priv_proc(state)) 3497 return (0); 3498 3499 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3500 uint64_t ustack[3]; 3501 3502 /* 3503 * dtrace_getupcstack() fills in the first uint64_t 3504 * with the current PID. The second uint64_t will 3505 * be the program counter at user-level. The third 3506 * uint64_t will contain the caller, which is what 3507 * we're after. 3508 */ 3509 ustack[2] = 0; 3510 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3511 dtrace_getupcstack(ustack, 3); 3512 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3513 mstate->dtms_ucaller = ustack[2]; 3514 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3515 } 3516 3517 return (mstate->dtms_ucaller); 3518 3519 case DIF_VAR_PROBEPROV: 3520 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3521 return (dtrace_dif_varstr( 3522 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3523 state, mstate)); 3524 3525 case DIF_VAR_PROBEMOD: 3526 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3527 return (dtrace_dif_varstr( 3528 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3529 state, mstate)); 3530 3531 case DIF_VAR_PROBEFUNC: 3532 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3533 return (dtrace_dif_varstr( 3534 (uintptr_t)mstate->dtms_probe->dtpr_func, 3535 state, mstate)); 3536 3537 case DIF_VAR_PROBENAME: 3538 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3539 return (dtrace_dif_varstr( 3540 (uintptr_t)mstate->dtms_probe->dtpr_name, 3541 state, mstate)); 3542 3543 case DIF_VAR_PID: 3544 if (!dtrace_priv_proc(state)) 3545 return (0); 3546 3547 #ifdef illumos 3548 /* 3549 * Note that we are assuming that an unanchored probe is 3550 * always due to a high-level interrupt. (And we're assuming 3551 * that there is only a single high level interrupt.) 3552 */ 3553 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3554 return (pid0.pid_id); 3555 3556 /* 3557 * It is always safe to dereference one's own t_procp pointer: 3558 * it always points to a valid, allocated proc structure. 3559 * Further, it is always safe to dereference the p_pidp member 3560 * of one's own proc structure. (These are truisms becuase 3561 * threads and processes don't clean up their own state -- 3562 * they leave that task to whomever reaps them.) 3563 */ 3564 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3565 #else 3566 return ((uint64_t)curproc->p_pid); 3567 #endif 3568 3569 case DIF_VAR_PPID: 3570 if (!dtrace_priv_proc(state)) 3571 return (0); 3572 3573 #ifdef illumos 3574 /* 3575 * See comment in DIF_VAR_PID. 3576 */ 3577 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3578 return (pid0.pid_id); 3579 3580 /* 3581 * It is always safe to dereference one's own t_procp pointer: 3582 * it always points to a valid, allocated proc structure. 3583 * (This is true because threads don't clean up their own 3584 * state -- they leave that task to whomever reaps them.) 3585 */ 3586 return ((uint64_t)curthread->t_procp->p_ppid); 3587 #else 3588 if (curproc->p_pid == proc0.p_pid) 3589 return (curproc->p_pid); 3590 else 3591 return (curproc->p_pptr->p_pid); 3592 #endif 3593 3594 case DIF_VAR_TID: 3595 #ifdef illumos 3596 /* 3597 * See comment in DIF_VAR_PID. 3598 */ 3599 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3600 return (0); 3601 #endif 3602 3603 return ((uint64_t)curthread->t_tid); 3604 3605 case DIF_VAR_EXECARGS: { 3606 struct pargs *p_args = curthread->td_proc->p_args; 3607 3608 if (p_args == NULL) 3609 return(0); 3610 3611 return (dtrace_dif_varstrz( 3612 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); 3613 } 3614 3615 case DIF_VAR_EXECNAME: 3616 #ifdef illumos 3617 if (!dtrace_priv_proc(state)) 3618 return (0); 3619 3620 /* 3621 * See comment in DIF_VAR_PID. 3622 */ 3623 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3624 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3625 3626 /* 3627 * It is always safe to dereference one's own t_procp pointer: 3628 * it always points to a valid, allocated proc structure. 3629 * (This is true because threads don't clean up their own 3630 * state -- they leave that task to whomever reaps them.) 3631 */ 3632 return (dtrace_dif_varstr( 3633 (uintptr_t)curthread->t_procp->p_user.u_comm, 3634 state, mstate)); 3635 #else 3636 return (dtrace_dif_varstr( 3637 (uintptr_t) curthread->td_proc->p_comm, state, mstate)); 3638 #endif 3639 3640 case DIF_VAR_ZONENAME: 3641 #ifdef illumos 3642 if (!dtrace_priv_proc(state)) 3643 return (0); 3644 3645 /* 3646 * See comment in DIF_VAR_PID. 3647 */ 3648 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3649 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3650 3651 /* 3652 * It is always safe to dereference one's own t_procp pointer: 3653 * it always points to a valid, allocated proc structure. 3654 * (This is true because threads don't clean up their own 3655 * state -- they leave that task to whomever reaps them.) 3656 */ 3657 return (dtrace_dif_varstr( 3658 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3659 state, mstate)); 3660 #elif defined(__FreeBSD__) 3661 /* 3662 * On FreeBSD, we introduce compatibility to zonename by falling through 3663 * into jailname. 3664 */ 3665 case DIF_VAR_JAILNAME: 3666 if (!dtrace_priv_kernel(state)) 3667 return (0); 3668 3669 return (dtrace_dif_varstr( 3670 (uintptr_t)curthread->td_ucred->cr_prison->pr_name, 3671 state, mstate)); 3672 3673 case DIF_VAR_JID: 3674 if (!dtrace_priv_kernel(state)) 3675 return (0); 3676 3677 return ((uint64_t)curthread->td_ucred->cr_prison->pr_id); 3678 #else 3679 return (0); 3680 #endif 3681 3682 case DIF_VAR_UID: 3683 if (!dtrace_priv_proc(state)) 3684 return (0); 3685 3686 #ifdef illumos 3687 /* 3688 * See comment in DIF_VAR_PID. 3689 */ 3690 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3691 return ((uint64_t)p0.p_cred->cr_uid); 3692 3693 /* 3694 * It is always safe to dereference one's own t_procp pointer: 3695 * it always points to a valid, allocated proc structure. 3696 * (This is true because threads don't clean up their own 3697 * state -- they leave that task to whomever reaps them.) 3698 * 3699 * Additionally, it is safe to dereference one's own process 3700 * credential, since this is never NULL after process birth. 3701 */ 3702 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3703 #else 3704 return ((uint64_t)curthread->td_ucred->cr_uid); 3705 #endif 3706 3707 case DIF_VAR_GID: 3708 if (!dtrace_priv_proc(state)) 3709 return (0); 3710 3711 #ifdef illumos 3712 /* 3713 * See comment in DIF_VAR_PID. 3714 */ 3715 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3716 return ((uint64_t)p0.p_cred->cr_gid); 3717 3718 /* 3719 * It is always safe to dereference one's own t_procp pointer: 3720 * it always points to a valid, allocated proc structure. 3721 * (This is true because threads don't clean up their own 3722 * state -- they leave that task to whomever reaps them.) 3723 * 3724 * Additionally, it is safe to dereference one's own process 3725 * credential, since this is never NULL after process birth. 3726 */ 3727 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3728 #else 3729 return ((uint64_t)curthread->td_ucred->cr_gid); 3730 #endif 3731 3732 case DIF_VAR_ERRNO: { 3733 #ifdef illumos 3734 klwp_t *lwp; 3735 if (!dtrace_priv_proc(state)) 3736 return (0); 3737 3738 /* 3739 * See comment in DIF_VAR_PID. 3740 */ 3741 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3742 return (0); 3743 3744 /* 3745 * It is always safe to dereference one's own t_lwp pointer in 3746 * the event that this pointer is non-NULL. (This is true 3747 * because threads and lwps don't clean up their own state -- 3748 * they leave that task to whomever reaps them.) 3749 */ 3750 if ((lwp = curthread->t_lwp) == NULL) 3751 return (0); 3752 3753 return ((uint64_t)lwp->lwp_errno); 3754 #else 3755 return (curthread->td_errno); 3756 #endif 3757 } 3758 #ifndef illumos 3759 case DIF_VAR_CPU: { 3760 return curcpu; 3761 } 3762 #endif 3763 default: 3764 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3765 return (0); 3766 } 3767 } 3768 3769 3770 typedef enum dtrace_json_state { 3771 DTRACE_JSON_REST = 1, 3772 DTRACE_JSON_OBJECT, 3773 DTRACE_JSON_STRING, 3774 DTRACE_JSON_STRING_ESCAPE, 3775 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3776 DTRACE_JSON_COLON, 3777 DTRACE_JSON_COMMA, 3778 DTRACE_JSON_VALUE, 3779 DTRACE_JSON_IDENTIFIER, 3780 DTRACE_JSON_NUMBER, 3781 DTRACE_JSON_NUMBER_FRAC, 3782 DTRACE_JSON_NUMBER_EXP, 3783 DTRACE_JSON_COLLECT_OBJECT 3784 } dtrace_json_state_t; 3785 3786 /* 3787 * This function possesses just enough knowledge about JSON to extract a single 3788 * value from a JSON string and store it in the scratch buffer. It is able 3789 * to extract nested object values, and members of arrays by index. 3790 * 3791 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3792 * be looked up as we descend into the object tree. e.g. 3793 * 3794 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3795 * with nelems = 5. 3796 * 3797 * The run time of this function must be bounded above by strsize to limit the 3798 * amount of work done in probe context. As such, it is implemented as a 3799 * simple state machine, reading one character at a time using safe loads 3800 * until we find the requested element, hit a parsing error or run off the 3801 * end of the object or string. 3802 * 3803 * As there is no way for a subroutine to return an error without interrupting 3804 * clause execution, we simply return NULL in the event of a missing key or any 3805 * other error condition. Each NULL return in this function is commented with 3806 * the error condition it represents -- parsing or otherwise. 3807 * 3808 * The set of states for the state machine closely matches the JSON 3809 * specification (http://json.org/). Briefly: 3810 * 3811 * DTRACE_JSON_REST: 3812 * Skip whitespace until we find either a top-level Object, moving 3813 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3814 * 3815 * DTRACE_JSON_OBJECT: 3816 * Locate the next key String in an Object. Sets a flag to denote 3817 * the next String as a key string and moves to DTRACE_JSON_STRING. 3818 * 3819 * DTRACE_JSON_COLON: 3820 * Skip whitespace until we find the colon that separates key Strings 3821 * from their values. Once found, move to DTRACE_JSON_VALUE. 3822 * 3823 * DTRACE_JSON_VALUE: 3824 * Detects the type of the next value (String, Number, Identifier, Object 3825 * or Array) and routes to the states that process that type. Here we also 3826 * deal with the element selector list if we are requested to traverse down 3827 * into the object tree. 3828 * 3829 * DTRACE_JSON_COMMA: 3830 * Skip whitespace until we find the comma that separates key-value pairs 3831 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3832 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3833 * states return to this state at the end of their value, unless otherwise 3834 * noted. 3835 * 3836 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3837 * Processes a Number literal from the JSON, including any exponent 3838 * component that may be present. Numbers are returned as strings, which 3839 * may be passed to strtoll() if an integer is required. 3840 * 3841 * DTRACE_JSON_IDENTIFIER: 3842 * Processes a "true", "false" or "null" literal in the JSON. 3843 * 3844 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3845 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3846 * Processes a String literal from the JSON, whether the String denotes 3847 * a key, a value or part of a larger Object. Handles all escape sequences 3848 * present in the specification, including four-digit unicode characters, 3849 * but merely includes the escape sequence without converting it to the 3850 * actual escaped character. If the String is flagged as a key, we 3851 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3852 * 3853 * DTRACE_JSON_COLLECT_OBJECT: 3854 * This state collects an entire Object (or Array), correctly handling 3855 * embedded strings. If the full element selector list matches this nested 3856 * object, we return the Object in full as a string. If not, we use this 3857 * state to skip to the next value at this level and continue processing. 3858 * 3859 * NOTE: This function uses various macros from strtolctype.h to manipulate 3860 * digit values, etc -- these have all been checked to ensure they make 3861 * no additional function calls. 3862 */ 3863 static char * 3864 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3865 char *dest) 3866 { 3867 dtrace_json_state_t state = DTRACE_JSON_REST; 3868 int64_t array_elem = INT64_MIN; 3869 int64_t array_pos = 0; 3870 uint8_t escape_unicount = 0; 3871 boolean_t string_is_key = B_FALSE; 3872 boolean_t collect_object = B_FALSE; 3873 boolean_t found_key = B_FALSE; 3874 boolean_t in_array = B_FALSE; 3875 uint32_t braces = 0, brackets = 0; 3876 char *elem = elemlist; 3877 char *dd = dest; 3878 uintptr_t cur; 3879 3880 for (cur = json; cur < json + size; cur++) { 3881 char cc = dtrace_load8(cur); 3882 if (cc == '\0') 3883 return (NULL); 3884 3885 switch (state) { 3886 case DTRACE_JSON_REST: 3887 if (isspace(cc)) 3888 break; 3889 3890 if (cc == '{') { 3891 state = DTRACE_JSON_OBJECT; 3892 break; 3893 } 3894 3895 if (cc == '[') { 3896 in_array = B_TRUE; 3897 array_pos = 0; 3898 array_elem = dtrace_strtoll(elem, 10, size); 3899 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3900 state = DTRACE_JSON_VALUE; 3901 break; 3902 } 3903 3904 /* 3905 * ERROR: expected to find a top-level object or array. 3906 */ 3907 return (NULL); 3908 case DTRACE_JSON_OBJECT: 3909 if (isspace(cc)) 3910 break; 3911 3912 if (cc == '"') { 3913 state = DTRACE_JSON_STRING; 3914 string_is_key = B_TRUE; 3915 break; 3916 } 3917 3918 /* 3919 * ERROR: either the object did not start with a key 3920 * string, or we've run off the end of the object 3921 * without finding the requested key. 3922 */ 3923 return (NULL); 3924 case DTRACE_JSON_STRING: 3925 if (cc == '\\') { 3926 *dd++ = '\\'; 3927 state = DTRACE_JSON_STRING_ESCAPE; 3928 break; 3929 } 3930 3931 if (cc == '"') { 3932 if (collect_object) { 3933 /* 3934 * We don't reset the dest here, as 3935 * the string is part of a larger 3936 * object being collected. 3937 */ 3938 *dd++ = cc; 3939 collect_object = B_FALSE; 3940 state = DTRACE_JSON_COLLECT_OBJECT; 3941 break; 3942 } 3943 *dd = '\0'; 3944 dd = dest; /* reset string buffer */ 3945 if (string_is_key) { 3946 if (dtrace_strncmp(dest, elem, 3947 size) == 0) 3948 found_key = B_TRUE; 3949 } else if (found_key) { 3950 if (nelems > 1) { 3951 /* 3952 * We expected an object, not 3953 * this string. 3954 */ 3955 return (NULL); 3956 } 3957 return (dest); 3958 } 3959 state = string_is_key ? DTRACE_JSON_COLON : 3960 DTRACE_JSON_COMMA; 3961 string_is_key = B_FALSE; 3962 break; 3963 } 3964 3965 *dd++ = cc; 3966 break; 3967 case DTRACE_JSON_STRING_ESCAPE: 3968 *dd++ = cc; 3969 if (cc == 'u') { 3970 escape_unicount = 0; 3971 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3972 } else { 3973 state = DTRACE_JSON_STRING; 3974 } 3975 break; 3976 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3977 if (!isxdigit(cc)) { 3978 /* 3979 * ERROR: invalid unicode escape, expected 3980 * four valid hexidecimal digits. 3981 */ 3982 return (NULL); 3983 } 3984 3985 *dd++ = cc; 3986 if (++escape_unicount == 4) 3987 state = DTRACE_JSON_STRING; 3988 break; 3989 case DTRACE_JSON_COLON: 3990 if (isspace(cc)) 3991 break; 3992 3993 if (cc == ':') { 3994 state = DTRACE_JSON_VALUE; 3995 break; 3996 } 3997 3998 /* 3999 * ERROR: expected a colon. 4000 */ 4001 return (NULL); 4002 case DTRACE_JSON_COMMA: 4003 if (isspace(cc)) 4004 break; 4005 4006 if (cc == ',') { 4007 if (in_array) { 4008 state = DTRACE_JSON_VALUE; 4009 if (++array_pos == array_elem) 4010 found_key = B_TRUE; 4011 } else { 4012 state = DTRACE_JSON_OBJECT; 4013 } 4014 break; 4015 } 4016 4017 /* 4018 * ERROR: either we hit an unexpected character, or 4019 * we reached the end of the object or array without 4020 * finding the requested key. 4021 */ 4022 return (NULL); 4023 case DTRACE_JSON_IDENTIFIER: 4024 if (islower(cc)) { 4025 *dd++ = cc; 4026 break; 4027 } 4028 4029 *dd = '\0'; 4030 dd = dest; /* reset string buffer */ 4031 4032 if (dtrace_strncmp(dest, "true", 5) == 0 || 4033 dtrace_strncmp(dest, "false", 6) == 0 || 4034 dtrace_strncmp(dest, "null", 5) == 0) { 4035 if (found_key) { 4036 if (nelems > 1) { 4037 /* 4038 * ERROR: We expected an object, 4039 * not this identifier. 4040 */ 4041 return (NULL); 4042 } 4043 return (dest); 4044 } else { 4045 cur--; 4046 state = DTRACE_JSON_COMMA; 4047 break; 4048 } 4049 } 4050 4051 /* 4052 * ERROR: we did not recognise the identifier as one 4053 * of those in the JSON specification. 4054 */ 4055 return (NULL); 4056 case DTRACE_JSON_NUMBER: 4057 if (cc == '.') { 4058 *dd++ = cc; 4059 state = DTRACE_JSON_NUMBER_FRAC; 4060 break; 4061 } 4062 4063 if (cc == 'x' || cc == 'X') { 4064 /* 4065 * ERROR: specification explicitly excludes 4066 * hexidecimal or octal numbers. 4067 */ 4068 return (NULL); 4069 } 4070 4071 /* FALLTHRU */ 4072 case DTRACE_JSON_NUMBER_FRAC: 4073 if (cc == 'e' || cc == 'E') { 4074 *dd++ = cc; 4075 state = DTRACE_JSON_NUMBER_EXP; 4076 break; 4077 } 4078 4079 if (cc == '+' || cc == '-') { 4080 /* 4081 * ERROR: expect sign as part of exponent only. 4082 */ 4083 return (NULL); 4084 } 4085 /* FALLTHRU */ 4086 case DTRACE_JSON_NUMBER_EXP: 4087 if (isdigit(cc) || cc == '+' || cc == '-') { 4088 *dd++ = cc; 4089 break; 4090 } 4091 4092 *dd = '\0'; 4093 dd = dest; /* reset string buffer */ 4094 if (found_key) { 4095 if (nelems > 1) { 4096 /* 4097 * ERROR: We expected an object, not 4098 * this number. 4099 */ 4100 return (NULL); 4101 } 4102 return (dest); 4103 } 4104 4105 cur--; 4106 state = DTRACE_JSON_COMMA; 4107 break; 4108 case DTRACE_JSON_VALUE: 4109 if (isspace(cc)) 4110 break; 4111 4112 if (cc == '{' || cc == '[') { 4113 if (nelems > 1 && found_key) { 4114 in_array = cc == '[' ? B_TRUE : B_FALSE; 4115 /* 4116 * If our element selector directs us 4117 * to descend into this nested object, 4118 * then move to the next selector 4119 * element in the list and restart the 4120 * state machine. 4121 */ 4122 while (*elem != '\0') 4123 elem++; 4124 elem++; /* skip the inter-element NUL */ 4125 nelems--; 4126 dd = dest; 4127 if (in_array) { 4128 state = DTRACE_JSON_VALUE; 4129 array_pos = 0; 4130 array_elem = dtrace_strtoll( 4131 elem, 10, size); 4132 found_key = array_elem == 0 ? 4133 B_TRUE : B_FALSE; 4134 } else { 4135 found_key = B_FALSE; 4136 state = DTRACE_JSON_OBJECT; 4137 } 4138 break; 4139 } 4140 4141 /* 4142 * Otherwise, we wish to either skip this 4143 * nested object or return it in full. 4144 */ 4145 if (cc == '[') 4146 brackets = 1; 4147 else 4148 braces = 1; 4149 *dd++ = cc; 4150 state = DTRACE_JSON_COLLECT_OBJECT; 4151 break; 4152 } 4153 4154 if (cc == '"') { 4155 state = DTRACE_JSON_STRING; 4156 break; 4157 } 4158 4159 if (islower(cc)) { 4160 /* 4161 * Here we deal with true, false and null. 4162 */ 4163 *dd++ = cc; 4164 state = DTRACE_JSON_IDENTIFIER; 4165 break; 4166 } 4167 4168 if (cc == '-' || isdigit(cc)) { 4169 *dd++ = cc; 4170 state = DTRACE_JSON_NUMBER; 4171 break; 4172 } 4173 4174 /* 4175 * ERROR: unexpected character at start of value. 4176 */ 4177 return (NULL); 4178 case DTRACE_JSON_COLLECT_OBJECT: 4179 if (cc == '\0') 4180 /* 4181 * ERROR: unexpected end of input. 4182 */ 4183 return (NULL); 4184 4185 *dd++ = cc; 4186 if (cc == '"') { 4187 collect_object = B_TRUE; 4188 state = DTRACE_JSON_STRING; 4189 break; 4190 } 4191 4192 if (cc == ']') { 4193 if (brackets-- == 0) { 4194 /* 4195 * ERROR: unbalanced brackets. 4196 */ 4197 return (NULL); 4198 } 4199 } else if (cc == '}') { 4200 if (braces-- == 0) { 4201 /* 4202 * ERROR: unbalanced braces. 4203 */ 4204 return (NULL); 4205 } 4206 } else if (cc == '{') { 4207 braces++; 4208 } else if (cc == '[') { 4209 brackets++; 4210 } 4211 4212 if (brackets == 0 && braces == 0) { 4213 if (found_key) { 4214 *dd = '\0'; 4215 return (dest); 4216 } 4217 dd = dest; /* reset string buffer */ 4218 state = DTRACE_JSON_COMMA; 4219 } 4220 break; 4221 } 4222 } 4223 return (NULL); 4224 } 4225 4226 /* 4227 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4228 * Notice that we don't bother validating the proper number of arguments or 4229 * their types in the tuple stack. This isn't needed because all argument 4230 * interpretation is safe because of our load safety -- the worst that can 4231 * happen is that a bogus program can obtain bogus results. 4232 */ 4233 static void 4234 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4235 dtrace_key_t *tupregs, int nargs, 4236 dtrace_mstate_t *mstate, dtrace_state_t *state) 4237 { 4238 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 4239 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 4240 dtrace_vstate_t *vstate = &state->dts_vstate; 4241 4242 #ifdef illumos 4243 union { 4244 mutex_impl_t mi; 4245 uint64_t mx; 4246 } m; 4247 4248 union { 4249 krwlock_t ri; 4250 uintptr_t rw; 4251 } r; 4252 #else 4253 struct thread *lowner; 4254 union { 4255 struct lock_object *li; 4256 uintptr_t lx; 4257 } l; 4258 #endif 4259 4260 switch (subr) { 4261 case DIF_SUBR_RAND: 4262 regs[rd] = dtrace_xoroshiro128_plus_next( 4263 state->dts_rstate[curcpu]); 4264 break; 4265 4266 #ifdef illumos 4267 case DIF_SUBR_MUTEX_OWNED: 4268 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4269 mstate, vstate)) { 4270 regs[rd] = 0; 4271 break; 4272 } 4273 4274 m.mx = dtrace_load64(tupregs[0].dttk_value); 4275 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4276 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4277 else 4278 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4279 break; 4280 4281 case DIF_SUBR_MUTEX_OWNER: 4282 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4283 mstate, vstate)) { 4284 regs[rd] = 0; 4285 break; 4286 } 4287 4288 m.mx = dtrace_load64(tupregs[0].dttk_value); 4289 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4290 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4291 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4292 else 4293 regs[rd] = 0; 4294 break; 4295 4296 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4297 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4298 mstate, vstate)) { 4299 regs[rd] = 0; 4300 break; 4301 } 4302 4303 m.mx = dtrace_load64(tupregs[0].dttk_value); 4304 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4305 break; 4306 4307 case DIF_SUBR_MUTEX_TYPE_SPIN: 4308 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4309 mstate, vstate)) { 4310 regs[rd] = 0; 4311 break; 4312 } 4313 4314 m.mx = dtrace_load64(tupregs[0].dttk_value); 4315 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4316 break; 4317 4318 case DIF_SUBR_RW_READ_HELD: { 4319 uintptr_t tmp; 4320 4321 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4322 mstate, vstate)) { 4323 regs[rd] = 0; 4324 break; 4325 } 4326 4327 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4328 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4329 break; 4330 } 4331 4332 case DIF_SUBR_RW_WRITE_HELD: 4333 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4334 mstate, vstate)) { 4335 regs[rd] = 0; 4336 break; 4337 } 4338 4339 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4340 regs[rd] = _RW_WRITE_HELD(&r.ri); 4341 break; 4342 4343 case DIF_SUBR_RW_ISWRITER: 4344 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4345 mstate, vstate)) { 4346 regs[rd] = 0; 4347 break; 4348 } 4349 4350 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4351 regs[rd] = _RW_ISWRITER(&r.ri); 4352 break; 4353 4354 #else /* !illumos */ 4355 case DIF_SUBR_MUTEX_OWNED: 4356 if (!dtrace_canload(tupregs[0].dttk_value, 4357 sizeof (struct lock_object), mstate, vstate)) { 4358 regs[rd] = 0; 4359 break; 4360 } 4361 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4362 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4363 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4364 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4365 break; 4366 4367 case DIF_SUBR_MUTEX_OWNER: 4368 if (!dtrace_canload(tupregs[0].dttk_value, 4369 sizeof (struct lock_object), mstate, vstate)) { 4370 regs[rd] = 0; 4371 break; 4372 } 4373 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4374 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4375 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4376 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4377 regs[rd] = (uintptr_t)lowner; 4378 break; 4379 4380 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4381 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4382 mstate, vstate)) { 4383 regs[rd] = 0; 4384 break; 4385 } 4386 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4387 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4388 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0; 4389 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4390 break; 4391 4392 case DIF_SUBR_MUTEX_TYPE_SPIN: 4393 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4394 mstate, vstate)) { 4395 regs[rd] = 0; 4396 break; 4397 } 4398 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4399 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4400 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; 4401 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4402 break; 4403 4404 case DIF_SUBR_RW_READ_HELD: 4405 case DIF_SUBR_SX_SHARED_HELD: 4406 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4407 mstate, vstate)) { 4408 regs[rd] = 0; 4409 break; 4410 } 4411 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4412 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4413 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4414 lowner == NULL; 4415 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4416 break; 4417 4418 case DIF_SUBR_RW_WRITE_HELD: 4419 case DIF_SUBR_SX_EXCLUSIVE_HELD: 4420 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4421 mstate, vstate)) { 4422 regs[rd] = 0; 4423 break; 4424 } 4425 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4426 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4427 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4428 lowner != NULL; 4429 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4430 break; 4431 4432 case DIF_SUBR_RW_ISWRITER: 4433 case DIF_SUBR_SX_ISEXCLUSIVE: 4434 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4435 mstate, vstate)) { 4436 regs[rd] = 0; 4437 break; 4438 } 4439 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4440 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4441 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4442 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4443 regs[rd] = (lowner == curthread); 4444 break; 4445 #endif /* illumos */ 4446 4447 case DIF_SUBR_BCOPY: { 4448 /* 4449 * We need to be sure that the destination is in the scratch 4450 * region -- no other region is allowed. 4451 */ 4452 uintptr_t src = tupregs[0].dttk_value; 4453 uintptr_t dest = tupregs[1].dttk_value; 4454 size_t size = tupregs[2].dttk_value; 4455 4456 if (!dtrace_inscratch(dest, size, mstate)) { 4457 *flags |= CPU_DTRACE_BADADDR; 4458 *illval = regs[rd]; 4459 break; 4460 } 4461 4462 if (!dtrace_canload(src, size, mstate, vstate)) { 4463 regs[rd] = 0; 4464 break; 4465 } 4466 4467 dtrace_bcopy((void *)src, (void *)dest, size); 4468 break; 4469 } 4470 4471 case DIF_SUBR_ALLOCA: 4472 case DIF_SUBR_COPYIN: { 4473 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4474 uint64_t size = 4475 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4476 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4477 4478 /* 4479 * This action doesn't require any credential checks since 4480 * probes will not activate in user contexts to which the 4481 * enabling user does not have permissions. 4482 */ 4483 4484 /* 4485 * Rounding up the user allocation size could have overflowed 4486 * a large, bogus allocation (like -1ULL) to 0. 4487 */ 4488 if (scratch_size < size || 4489 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4490 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4491 regs[rd] = 0; 4492 break; 4493 } 4494 4495 if (subr == DIF_SUBR_COPYIN) { 4496 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4497 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4498 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4499 } 4500 4501 mstate->dtms_scratch_ptr += scratch_size; 4502 regs[rd] = dest; 4503 break; 4504 } 4505 4506 case DIF_SUBR_COPYINTO: { 4507 uint64_t size = tupregs[1].dttk_value; 4508 uintptr_t dest = tupregs[2].dttk_value; 4509 4510 /* 4511 * This action doesn't require any credential checks since 4512 * probes will not activate in user contexts to which the 4513 * enabling user does not have permissions. 4514 */ 4515 if (!dtrace_inscratch(dest, size, mstate)) { 4516 *flags |= CPU_DTRACE_BADADDR; 4517 *illval = regs[rd]; 4518 break; 4519 } 4520 4521 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4522 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4523 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4524 break; 4525 } 4526 4527 case DIF_SUBR_COPYINSTR: { 4528 uintptr_t dest = mstate->dtms_scratch_ptr; 4529 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4530 4531 if (nargs > 1 && tupregs[1].dttk_value < size) 4532 size = tupregs[1].dttk_value + 1; 4533 4534 /* 4535 * This action doesn't require any credential checks since 4536 * probes will not activate in user contexts to which the 4537 * enabling user does not have permissions. 4538 */ 4539 if (!DTRACE_INSCRATCH(mstate, size)) { 4540 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4541 regs[rd] = 0; 4542 break; 4543 } 4544 4545 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4546 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4547 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4548 4549 ((char *)dest)[size - 1] = '\0'; 4550 mstate->dtms_scratch_ptr += size; 4551 regs[rd] = dest; 4552 break; 4553 } 4554 4555 #ifdef illumos 4556 case DIF_SUBR_MSGSIZE: 4557 case DIF_SUBR_MSGDSIZE: { 4558 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4559 uintptr_t wptr, rptr; 4560 size_t count = 0; 4561 int cont = 0; 4562 4563 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4564 4565 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4566 vstate)) { 4567 regs[rd] = 0; 4568 break; 4569 } 4570 4571 wptr = dtrace_loadptr(baddr + 4572 offsetof(mblk_t, b_wptr)); 4573 4574 rptr = dtrace_loadptr(baddr + 4575 offsetof(mblk_t, b_rptr)); 4576 4577 if (wptr < rptr) { 4578 *flags |= CPU_DTRACE_BADADDR; 4579 *illval = tupregs[0].dttk_value; 4580 break; 4581 } 4582 4583 daddr = dtrace_loadptr(baddr + 4584 offsetof(mblk_t, b_datap)); 4585 4586 baddr = dtrace_loadptr(baddr + 4587 offsetof(mblk_t, b_cont)); 4588 4589 /* 4590 * We want to prevent against denial-of-service here, 4591 * so we're only going to search the list for 4592 * dtrace_msgdsize_max mblks. 4593 */ 4594 if (cont++ > dtrace_msgdsize_max) { 4595 *flags |= CPU_DTRACE_ILLOP; 4596 break; 4597 } 4598 4599 if (subr == DIF_SUBR_MSGDSIZE) { 4600 if (dtrace_load8(daddr + 4601 offsetof(dblk_t, db_type)) != M_DATA) 4602 continue; 4603 } 4604 4605 count += wptr - rptr; 4606 } 4607 4608 if (!(*flags & CPU_DTRACE_FAULT)) 4609 regs[rd] = count; 4610 4611 break; 4612 } 4613 #endif 4614 4615 case DIF_SUBR_PROGENYOF: { 4616 pid_t pid = tupregs[0].dttk_value; 4617 proc_t *p; 4618 int rval = 0; 4619 4620 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4621 4622 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4623 #ifdef illumos 4624 if (p->p_pidp->pid_id == pid) { 4625 #else 4626 if (p->p_pid == pid) { 4627 #endif 4628 rval = 1; 4629 break; 4630 } 4631 } 4632 4633 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4634 4635 regs[rd] = rval; 4636 break; 4637 } 4638 4639 case DIF_SUBR_SPECULATION: 4640 regs[rd] = dtrace_speculation(state); 4641 break; 4642 4643 case DIF_SUBR_COPYOUT: { 4644 uintptr_t kaddr = tupregs[0].dttk_value; 4645 uintptr_t uaddr = tupregs[1].dttk_value; 4646 uint64_t size = tupregs[2].dttk_value; 4647 4648 if (!dtrace_destructive_disallow && 4649 dtrace_priv_proc_control(state) && 4650 !dtrace_istoxic(kaddr, size) && 4651 dtrace_canload(kaddr, size, mstate, vstate)) { 4652 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4653 dtrace_copyout(kaddr, uaddr, size, flags); 4654 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4655 } 4656 break; 4657 } 4658 4659 case DIF_SUBR_COPYOUTSTR: { 4660 uintptr_t kaddr = tupregs[0].dttk_value; 4661 uintptr_t uaddr = tupregs[1].dttk_value; 4662 uint64_t size = tupregs[2].dttk_value; 4663 size_t lim; 4664 4665 if (!dtrace_destructive_disallow && 4666 dtrace_priv_proc_control(state) && 4667 !dtrace_istoxic(kaddr, size) && 4668 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4669 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4670 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4671 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4672 } 4673 break; 4674 } 4675 4676 case DIF_SUBR_STRLEN: { 4677 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4678 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4679 size_t lim; 4680 4681 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4682 regs[rd] = 0; 4683 break; 4684 } 4685 4686 regs[rd] = dtrace_strlen((char *)addr, lim); 4687 break; 4688 } 4689 4690 case DIF_SUBR_STRCHR: 4691 case DIF_SUBR_STRRCHR: { 4692 /* 4693 * We're going to iterate over the string looking for the 4694 * specified character. We will iterate until we have reached 4695 * the string length or we have found the character. If this 4696 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4697 * of the specified character instead of the first. 4698 */ 4699 uintptr_t addr = tupregs[0].dttk_value; 4700 uintptr_t addr_limit; 4701 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4702 size_t lim; 4703 char c, target = (char)tupregs[1].dttk_value; 4704 4705 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4706 regs[rd] = 0; 4707 break; 4708 } 4709 addr_limit = addr + lim; 4710 4711 for (regs[rd] = 0; addr < addr_limit; addr++) { 4712 if ((c = dtrace_load8(addr)) == target) { 4713 regs[rd] = addr; 4714 4715 if (subr == DIF_SUBR_STRCHR) 4716 break; 4717 } 4718 4719 if (c == '\0') 4720 break; 4721 } 4722 break; 4723 } 4724 4725 case DIF_SUBR_STRSTR: 4726 case DIF_SUBR_INDEX: 4727 case DIF_SUBR_RINDEX: { 4728 /* 4729 * We're going to iterate over the string looking for the 4730 * specified string. We will iterate until we have reached 4731 * the string length or we have found the string. (Yes, this 4732 * is done in the most naive way possible -- but considering 4733 * that the string we're searching for is likely to be 4734 * relatively short, the complexity of Rabin-Karp or similar 4735 * hardly seems merited.) 4736 */ 4737 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4738 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4739 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4740 size_t len = dtrace_strlen(addr, size); 4741 size_t sublen = dtrace_strlen(substr, size); 4742 char *limit = addr + len, *orig = addr; 4743 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4744 int inc = 1; 4745 4746 regs[rd] = notfound; 4747 4748 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4749 regs[rd] = 0; 4750 break; 4751 } 4752 4753 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4754 vstate)) { 4755 regs[rd] = 0; 4756 break; 4757 } 4758 4759 /* 4760 * strstr() and index()/rindex() have similar semantics if 4761 * both strings are the empty string: strstr() returns a 4762 * pointer to the (empty) string, and index() and rindex() 4763 * both return index 0 (regardless of any position argument). 4764 */ 4765 if (sublen == 0 && len == 0) { 4766 if (subr == DIF_SUBR_STRSTR) 4767 regs[rd] = (uintptr_t)addr; 4768 else 4769 regs[rd] = 0; 4770 break; 4771 } 4772 4773 if (subr != DIF_SUBR_STRSTR) { 4774 if (subr == DIF_SUBR_RINDEX) { 4775 limit = orig - 1; 4776 addr += len; 4777 inc = -1; 4778 } 4779 4780 /* 4781 * Both index() and rindex() take an optional position 4782 * argument that denotes the starting position. 4783 */ 4784 if (nargs == 3) { 4785 int64_t pos = (int64_t)tupregs[2].dttk_value; 4786 4787 /* 4788 * If the position argument to index() is 4789 * negative, Perl implicitly clamps it at 4790 * zero. This semantic is a little surprising 4791 * given the special meaning of negative 4792 * positions to similar Perl functions like 4793 * substr(), but it appears to reflect a 4794 * notion that index() can start from a 4795 * negative index and increment its way up to 4796 * the string. Given this notion, Perl's 4797 * rindex() is at least self-consistent in 4798 * that it implicitly clamps positions greater 4799 * than the string length to be the string 4800 * length. Where Perl completely loses 4801 * coherence, however, is when the specified 4802 * substring is the empty string (""). In 4803 * this case, even if the position is 4804 * negative, rindex() returns 0 -- and even if 4805 * the position is greater than the length, 4806 * index() returns the string length. These 4807 * semantics violate the notion that index() 4808 * should never return a value less than the 4809 * specified position and that rindex() should 4810 * never return a value greater than the 4811 * specified position. (One assumes that 4812 * these semantics are artifacts of Perl's 4813 * implementation and not the results of 4814 * deliberate design -- it beggars belief that 4815 * even Larry Wall could desire such oddness.) 4816 * While in the abstract one would wish for 4817 * consistent position semantics across 4818 * substr(), index() and rindex() -- or at the 4819 * very least self-consistent position 4820 * semantics for index() and rindex() -- we 4821 * instead opt to keep with the extant Perl 4822 * semantics, in all their broken glory. (Do 4823 * we have more desire to maintain Perl's 4824 * semantics than Perl does? Probably.) 4825 */ 4826 if (subr == DIF_SUBR_RINDEX) { 4827 if (pos < 0) { 4828 if (sublen == 0) 4829 regs[rd] = 0; 4830 break; 4831 } 4832 4833 if (pos > len) 4834 pos = len; 4835 } else { 4836 if (pos < 0) 4837 pos = 0; 4838 4839 if (pos >= len) { 4840 if (sublen == 0) 4841 regs[rd] = len; 4842 break; 4843 } 4844 } 4845 4846 addr = orig + pos; 4847 } 4848 } 4849 4850 for (regs[rd] = notfound; addr != limit; addr += inc) { 4851 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4852 if (subr != DIF_SUBR_STRSTR) { 4853 /* 4854 * As D index() and rindex() are 4855 * modeled on Perl (and not on awk), 4856 * we return a zero-based (and not a 4857 * one-based) index. (For you Perl 4858 * weenies: no, we're not going to add 4859 * $[ -- and shouldn't you be at a con 4860 * or something?) 4861 */ 4862 regs[rd] = (uintptr_t)(addr - orig); 4863 break; 4864 } 4865 4866 ASSERT(subr == DIF_SUBR_STRSTR); 4867 regs[rd] = (uintptr_t)addr; 4868 break; 4869 } 4870 } 4871 4872 break; 4873 } 4874 4875 case DIF_SUBR_STRTOK: { 4876 uintptr_t addr = tupregs[0].dttk_value; 4877 uintptr_t tokaddr = tupregs[1].dttk_value; 4878 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4879 uintptr_t limit, toklimit; 4880 size_t clim; 4881 uint8_t c = 0, tokmap[32]; /* 256 / 8 */ 4882 char *dest = (char *)mstate->dtms_scratch_ptr; 4883 int i; 4884 4885 /* 4886 * Check both the token buffer and (later) the input buffer, 4887 * since both could be non-scratch addresses. 4888 */ 4889 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4890 regs[rd] = 0; 4891 break; 4892 } 4893 toklimit = tokaddr + clim; 4894 4895 if (!DTRACE_INSCRATCH(mstate, size)) { 4896 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4897 regs[rd] = 0; 4898 break; 4899 } 4900 4901 if (addr == 0) { 4902 /* 4903 * If the address specified is NULL, we use our saved 4904 * strtok pointer from the mstate. Note that this 4905 * means that the saved strtok pointer is _only_ 4906 * valid within multiple enablings of the same probe -- 4907 * it behaves like an implicit clause-local variable. 4908 */ 4909 addr = mstate->dtms_strtok; 4910 limit = mstate->dtms_strtok_limit; 4911 } else { 4912 /* 4913 * If the user-specified address is non-NULL we must 4914 * access check it. This is the only time we have 4915 * a chance to do so, since this address may reside 4916 * in the string table of this clause-- future calls 4917 * (when we fetch addr from mstate->dtms_strtok) 4918 * would fail this access check. 4919 */ 4920 if (!dtrace_strcanload(addr, size, &clim, mstate, 4921 vstate)) { 4922 regs[rd] = 0; 4923 break; 4924 } 4925 limit = addr + clim; 4926 } 4927 4928 /* 4929 * First, zero the token map, and then process the token 4930 * string -- setting a bit in the map for every character 4931 * found in the token string. 4932 */ 4933 for (i = 0; i < sizeof (tokmap); i++) 4934 tokmap[i] = 0; 4935 4936 for (; tokaddr < toklimit; tokaddr++) { 4937 if ((c = dtrace_load8(tokaddr)) == '\0') 4938 break; 4939 4940 ASSERT((c >> 3) < sizeof (tokmap)); 4941 tokmap[c >> 3] |= (1 << (c & 0x7)); 4942 } 4943 4944 for (; addr < limit; addr++) { 4945 /* 4946 * We're looking for a character that is _not_ 4947 * contained in the token string. 4948 */ 4949 if ((c = dtrace_load8(addr)) == '\0') 4950 break; 4951 4952 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4953 break; 4954 } 4955 4956 if (c == '\0') { 4957 /* 4958 * We reached the end of the string without finding 4959 * any character that was not in the token string. 4960 * We return NULL in this case, and we set the saved 4961 * address to NULL as well. 4962 */ 4963 regs[rd] = 0; 4964 mstate->dtms_strtok = 0; 4965 mstate->dtms_strtok_limit = 0; 4966 break; 4967 } 4968 4969 /* 4970 * From here on, we're copying into the destination string. 4971 */ 4972 for (i = 0; addr < limit && i < size - 1; addr++) { 4973 if ((c = dtrace_load8(addr)) == '\0') 4974 break; 4975 4976 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4977 break; 4978 4979 ASSERT(i < size); 4980 dest[i++] = c; 4981 } 4982 4983 ASSERT(i < size); 4984 dest[i] = '\0'; 4985 regs[rd] = (uintptr_t)dest; 4986 mstate->dtms_scratch_ptr += size; 4987 mstate->dtms_strtok = addr; 4988 mstate->dtms_strtok_limit = limit; 4989 break; 4990 } 4991 4992 case DIF_SUBR_SUBSTR: { 4993 uintptr_t s = tupregs[0].dttk_value; 4994 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4995 char *d = (char *)mstate->dtms_scratch_ptr; 4996 int64_t index = (int64_t)tupregs[1].dttk_value; 4997 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4998 size_t len = dtrace_strlen((char *)s, size); 4999 int64_t i; 5000 5001 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5002 regs[rd] = 0; 5003 break; 5004 } 5005 5006 if (!DTRACE_INSCRATCH(mstate, size)) { 5007 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5008 regs[rd] = 0; 5009 break; 5010 } 5011 5012 if (nargs <= 2) 5013 remaining = (int64_t)size; 5014 5015 if (index < 0) { 5016 index += len; 5017 5018 if (index < 0 && index + remaining > 0) { 5019 remaining += index; 5020 index = 0; 5021 } 5022 } 5023 5024 if (index >= len || index < 0) { 5025 remaining = 0; 5026 } else if (remaining < 0) { 5027 remaining += len - index; 5028 } else if (index + remaining > size) { 5029 remaining = size - index; 5030 } 5031 5032 for (i = 0; i < remaining; i++) { 5033 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 5034 break; 5035 } 5036 5037 d[i] = '\0'; 5038 5039 mstate->dtms_scratch_ptr += size; 5040 regs[rd] = (uintptr_t)d; 5041 break; 5042 } 5043 5044 case DIF_SUBR_JSON: { 5045 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5046 uintptr_t json = tupregs[0].dttk_value; 5047 size_t jsonlen = dtrace_strlen((char *)json, size); 5048 uintptr_t elem = tupregs[1].dttk_value; 5049 size_t elemlen = dtrace_strlen((char *)elem, size); 5050 5051 char *dest = (char *)mstate->dtms_scratch_ptr; 5052 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 5053 char *ee = elemlist; 5054 int nelems = 1; 5055 uintptr_t cur; 5056 5057 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 5058 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 5059 regs[rd] = 0; 5060 break; 5061 } 5062 5063 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 5064 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5065 regs[rd] = 0; 5066 break; 5067 } 5068 5069 /* 5070 * Read the element selector and split it up into a packed list 5071 * of strings. 5072 */ 5073 for (cur = elem; cur < elem + elemlen; cur++) { 5074 char cc = dtrace_load8(cur); 5075 5076 if (cur == elem && cc == '[') { 5077 /* 5078 * If the first element selector key is 5079 * actually an array index then ignore the 5080 * bracket. 5081 */ 5082 continue; 5083 } 5084 5085 if (cc == ']') 5086 continue; 5087 5088 if (cc == '.' || cc == '[') { 5089 nelems++; 5090 cc = '\0'; 5091 } 5092 5093 *ee++ = cc; 5094 } 5095 *ee++ = '\0'; 5096 5097 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 5098 nelems, dest)) != 0) 5099 mstate->dtms_scratch_ptr += jsonlen + 1; 5100 break; 5101 } 5102 5103 case DIF_SUBR_TOUPPER: 5104 case DIF_SUBR_TOLOWER: { 5105 uintptr_t s = tupregs[0].dttk_value; 5106 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5107 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5108 size_t len = dtrace_strlen((char *)s, size); 5109 char lower, upper, convert; 5110 int64_t i; 5111 5112 if (subr == DIF_SUBR_TOUPPER) { 5113 lower = 'a'; 5114 upper = 'z'; 5115 convert = 'A'; 5116 } else { 5117 lower = 'A'; 5118 upper = 'Z'; 5119 convert = 'a'; 5120 } 5121 5122 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5123 regs[rd] = 0; 5124 break; 5125 } 5126 5127 if (!DTRACE_INSCRATCH(mstate, size)) { 5128 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5129 regs[rd] = 0; 5130 break; 5131 } 5132 5133 for (i = 0; i < size - 1; i++) { 5134 if ((c = dtrace_load8(s + i)) == '\0') 5135 break; 5136 5137 if (c >= lower && c <= upper) 5138 c = convert + (c - lower); 5139 5140 dest[i] = c; 5141 } 5142 5143 ASSERT(i < size); 5144 dest[i] = '\0'; 5145 regs[rd] = (uintptr_t)dest; 5146 mstate->dtms_scratch_ptr += size; 5147 break; 5148 } 5149 5150 #ifdef illumos 5151 case DIF_SUBR_GETMAJOR: 5152 #ifdef _LP64 5153 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 5154 #else 5155 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 5156 #endif 5157 break; 5158 5159 case DIF_SUBR_GETMINOR: 5160 #ifdef _LP64 5161 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 5162 #else 5163 regs[rd] = tupregs[0].dttk_value & MAXMIN; 5164 #endif 5165 break; 5166 5167 case DIF_SUBR_DDI_PATHNAME: { 5168 /* 5169 * This one is a galactic mess. We are going to roughly 5170 * emulate ddi_pathname(), but it's made more complicated 5171 * by the fact that we (a) want to include the minor name and 5172 * (b) must proceed iteratively instead of recursively. 5173 */ 5174 uintptr_t dest = mstate->dtms_scratch_ptr; 5175 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5176 char *start = (char *)dest, *end = start + size - 1; 5177 uintptr_t daddr = tupregs[0].dttk_value; 5178 int64_t minor = (int64_t)tupregs[1].dttk_value; 5179 char *s; 5180 int i, len, depth = 0; 5181 5182 /* 5183 * Due to all the pointer jumping we do and context we must 5184 * rely upon, we just mandate that the user must have kernel 5185 * read privileges to use this routine. 5186 */ 5187 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 5188 *flags |= CPU_DTRACE_KPRIV; 5189 *illval = daddr; 5190 regs[rd] = 0; 5191 } 5192 5193 if (!DTRACE_INSCRATCH(mstate, size)) { 5194 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5195 regs[rd] = 0; 5196 break; 5197 } 5198 5199 *end = '\0'; 5200 5201 /* 5202 * We want to have a name for the minor. In order to do this, 5203 * we need to walk the minor list from the devinfo. We want 5204 * to be sure that we don't infinitely walk a circular list, 5205 * so we check for circularity by sending a scout pointer 5206 * ahead two elements for every element that we iterate over; 5207 * if the list is circular, these will ultimately point to the 5208 * same element. You may recognize this little trick as the 5209 * answer to a stupid interview question -- one that always 5210 * seems to be asked by those who had to have it laboriously 5211 * explained to them, and who can't even concisely describe 5212 * the conditions under which one would be forced to resort to 5213 * this technique. Needless to say, those conditions are 5214 * found here -- and probably only here. Is this the only use 5215 * of this infamous trick in shipping, production code? If it 5216 * isn't, it probably should be... 5217 */ 5218 if (minor != -1) { 5219 uintptr_t maddr = dtrace_loadptr(daddr + 5220 offsetof(struct dev_info, devi_minor)); 5221 5222 uintptr_t next = offsetof(struct ddi_minor_data, next); 5223 uintptr_t name = offsetof(struct ddi_minor_data, 5224 d_minor) + offsetof(struct ddi_minor, name); 5225 uintptr_t dev = offsetof(struct ddi_minor_data, 5226 d_minor) + offsetof(struct ddi_minor, dev); 5227 uintptr_t scout; 5228 5229 if (maddr != NULL) 5230 scout = dtrace_loadptr(maddr + next); 5231 5232 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5233 uint64_t m; 5234 #ifdef _LP64 5235 m = dtrace_load64(maddr + dev) & MAXMIN64; 5236 #else 5237 m = dtrace_load32(maddr + dev) & MAXMIN; 5238 #endif 5239 if (m != minor) { 5240 maddr = dtrace_loadptr(maddr + next); 5241 5242 if (scout == NULL) 5243 continue; 5244 5245 scout = dtrace_loadptr(scout + next); 5246 5247 if (scout == NULL) 5248 continue; 5249 5250 scout = dtrace_loadptr(scout + next); 5251 5252 if (scout == NULL) 5253 continue; 5254 5255 if (scout == maddr) { 5256 *flags |= CPU_DTRACE_ILLOP; 5257 break; 5258 } 5259 5260 continue; 5261 } 5262 5263 /* 5264 * We have the minor data. Now we need to 5265 * copy the minor's name into the end of the 5266 * pathname. 5267 */ 5268 s = (char *)dtrace_loadptr(maddr + name); 5269 len = dtrace_strlen(s, size); 5270 5271 if (*flags & CPU_DTRACE_FAULT) 5272 break; 5273 5274 if (len != 0) { 5275 if ((end -= (len + 1)) < start) 5276 break; 5277 5278 *end = ':'; 5279 } 5280 5281 for (i = 1; i <= len; i++) 5282 end[i] = dtrace_load8((uintptr_t)s++); 5283 break; 5284 } 5285 } 5286 5287 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5288 ddi_node_state_t devi_state; 5289 5290 devi_state = dtrace_load32(daddr + 5291 offsetof(struct dev_info, devi_node_state)); 5292 5293 if (*flags & CPU_DTRACE_FAULT) 5294 break; 5295 5296 if (devi_state >= DS_INITIALIZED) { 5297 s = (char *)dtrace_loadptr(daddr + 5298 offsetof(struct dev_info, devi_addr)); 5299 len = dtrace_strlen(s, size); 5300 5301 if (*flags & CPU_DTRACE_FAULT) 5302 break; 5303 5304 if (len != 0) { 5305 if ((end -= (len + 1)) < start) 5306 break; 5307 5308 *end = '@'; 5309 } 5310 5311 for (i = 1; i <= len; i++) 5312 end[i] = dtrace_load8((uintptr_t)s++); 5313 } 5314 5315 /* 5316 * Now for the node name... 5317 */ 5318 s = (char *)dtrace_loadptr(daddr + 5319 offsetof(struct dev_info, devi_node_name)); 5320 5321 daddr = dtrace_loadptr(daddr + 5322 offsetof(struct dev_info, devi_parent)); 5323 5324 /* 5325 * If our parent is NULL (that is, if we're the root 5326 * node), we're going to use the special path 5327 * "devices". 5328 */ 5329 if (daddr == 0) 5330 s = "devices"; 5331 5332 len = dtrace_strlen(s, size); 5333 if (*flags & CPU_DTRACE_FAULT) 5334 break; 5335 5336 if ((end -= (len + 1)) < start) 5337 break; 5338 5339 for (i = 1; i <= len; i++) 5340 end[i] = dtrace_load8((uintptr_t)s++); 5341 *end = '/'; 5342 5343 if (depth++ > dtrace_devdepth_max) { 5344 *flags |= CPU_DTRACE_ILLOP; 5345 break; 5346 } 5347 } 5348 5349 if (end < start) 5350 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5351 5352 if (daddr == 0) { 5353 regs[rd] = (uintptr_t)end; 5354 mstate->dtms_scratch_ptr += size; 5355 } 5356 5357 break; 5358 } 5359 #endif 5360 5361 case DIF_SUBR_STRJOIN: { 5362 char *d = (char *)mstate->dtms_scratch_ptr; 5363 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5364 uintptr_t s1 = tupregs[0].dttk_value; 5365 uintptr_t s2 = tupregs[1].dttk_value; 5366 int i = 0, j = 0; 5367 size_t lim1, lim2; 5368 char c; 5369 5370 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5371 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5372 regs[rd] = 0; 5373 break; 5374 } 5375 5376 if (!DTRACE_INSCRATCH(mstate, size)) { 5377 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5378 regs[rd] = 0; 5379 break; 5380 } 5381 5382 for (;;) { 5383 if (i >= size) { 5384 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5385 regs[rd] = 0; 5386 break; 5387 } 5388 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5389 if ((d[i++] = c) == '\0') { 5390 i--; 5391 break; 5392 } 5393 } 5394 5395 for (;;) { 5396 if (i >= size) { 5397 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5398 regs[rd] = 0; 5399 break; 5400 } 5401 5402 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5403 if ((d[i++] = c) == '\0') 5404 break; 5405 } 5406 5407 if (i < size) { 5408 mstate->dtms_scratch_ptr += i; 5409 regs[rd] = (uintptr_t)d; 5410 } 5411 5412 break; 5413 } 5414 5415 case DIF_SUBR_STRTOLL: { 5416 uintptr_t s = tupregs[0].dttk_value; 5417 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5418 size_t lim; 5419 int base = 10; 5420 5421 if (nargs > 1) { 5422 if ((base = tupregs[1].dttk_value) <= 1 || 5423 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5424 *flags |= CPU_DTRACE_ILLOP; 5425 break; 5426 } 5427 } 5428 5429 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5430 regs[rd] = INT64_MIN; 5431 break; 5432 } 5433 5434 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5435 break; 5436 } 5437 5438 case DIF_SUBR_LLTOSTR: { 5439 int64_t i = (int64_t)tupregs[0].dttk_value; 5440 uint64_t val, digit; 5441 uint64_t size = 65; /* enough room for 2^64 in binary */ 5442 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5443 int base = 10; 5444 5445 if (nargs > 1) { 5446 if ((base = tupregs[1].dttk_value) <= 1 || 5447 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5448 *flags |= CPU_DTRACE_ILLOP; 5449 break; 5450 } 5451 } 5452 5453 val = (base == 10 && i < 0) ? i * -1 : i; 5454 5455 if (!DTRACE_INSCRATCH(mstate, size)) { 5456 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5457 regs[rd] = 0; 5458 break; 5459 } 5460 5461 for (*end-- = '\0'; val; val /= base) { 5462 if ((digit = val % base) <= '9' - '0') { 5463 *end-- = '0' + digit; 5464 } else { 5465 *end-- = 'a' + (digit - ('9' - '0') - 1); 5466 } 5467 } 5468 5469 if (i == 0 && base == 16) 5470 *end-- = '0'; 5471 5472 if (base == 16) 5473 *end-- = 'x'; 5474 5475 if (i == 0 || base == 8 || base == 16) 5476 *end-- = '0'; 5477 5478 if (i < 0 && base == 10) 5479 *end-- = '-'; 5480 5481 regs[rd] = (uintptr_t)end + 1; 5482 mstate->dtms_scratch_ptr += size; 5483 break; 5484 } 5485 5486 case DIF_SUBR_HTONS: 5487 case DIF_SUBR_NTOHS: 5488 #if BYTE_ORDER == BIG_ENDIAN 5489 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5490 #else 5491 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5492 #endif 5493 break; 5494 5495 5496 case DIF_SUBR_HTONL: 5497 case DIF_SUBR_NTOHL: 5498 #if BYTE_ORDER == BIG_ENDIAN 5499 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5500 #else 5501 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5502 #endif 5503 break; 5504 5505 5506 case DIF_SUBR_HTONLL: 5507 case DIF_SUBR_NTOHLL: 5508 #if BYTE_ORDER == BIG_ENDIAN 5509 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5510 #else 5511 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5512 #endif 5513 break; 5514 5515 5516 case DIF_SUBR_DIRNAME: 5517 case DIF_SUBR_BASENAME: { 5518 char *dest = (char *)mstate->dtms_scratch_ptr; 5519 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5520 uintptr_t src = tupregs[0].dttk_value; 5521 int i, j, len = dtrace_strlen((char *)src, size); 5522 int lastbase = -1, firstbase = -1, lastdir = -1; 5523 int start, end; 5524 5525 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5526 regs[rd] = 0; 5527 break; 5528 } 5529 5530 if (!DTRACE_INSCRATCH(mstate, size)) { 5531 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5532 regs[rd] = 0; 5533 break; 5534 } 5535 5536 /* 5537 * The basename and dirname for a zero-length string is 5538 * defined to be "." 5539 */ 5540 if (len == 0) { 5541 len = 1; 5542 src = (uintptr_t)"."; 5543 } 5544 5545 /* 5546 * Start from the back of the string, moving back toward the 5547 * front until we see a character that isn't a slash. That 5548 * character is the last character in the basename. 5549 */ 5550 for (i = len - 1; i >= 0; i--) { 5551 if (dtrace_load8(src + i) != '/') 5552 break; 5553 } 5554 5555 if (i >= 0) 5556 lastbase = i; 5557 5558 /* 5559 * Starting from the last character in the basename, move 5560 * towards the front until we find a slash. The character 5561 * that we processed immediately before that is the first 5562 * character in the basename. 5563 */ 5564 for (; i >= 0; i--) { 5565 if (dtrace_load8(src + i) == '/') 5566 break; 5567 } 5568 5569 if (i >= 0) 5570 firstbase = i + 1; 5571 5572 /* 5573 * Now keep going until we find a non-slash character. That 5574 * character is the last character in the dirname. 5575 */ 5576 for (; i >= 0; i--) { 5577 if (dtrace_load8(src + i) != '/') 5578 break; 5579 } 5580 5581 if (i >= 0) 5582 lastdir = i; 5583 5584 ASSERT(!(lastbase == -1 && firstbase != -1)); 5585 ASSERT(!(firstbase == -1 && lastdir != -1)); 5586 5587 if (lastbase == -1) { 5588 /* 5589 * We didn't find a non-slash character. We know that 5590 * the length is non-zero, so the whole string must be 5591 * slashes. In either the dirname or the basename 5592 * case, we return '/'. 5593 */ 5594 ASSERT(firstbase == -1); 5595 firstbase = lastbase = lastdir = 0; 5596 } 5597 5598 if (firstbase == -1) { 5599 /* 5600 * The entire string consists only of a basename 5601 * component. If we're looking for dirname, we need 5602 * to change our string to be just "."; if we're 5603 * looking for a basename, we'll just set the first 5604 * character of the basename to be 0. 5605 */ 5606 if (subr == DIF_SUBR_DIRNAME) { 5607 ASSERT(lastdir == -1); 5608 src = (uintptr_t)"."; 5609 lastdir = 0; 5610 } else { 5611 firstbase = 0; 5612 } 5613 } 5614 5615 if (subr == DIF_SUBR_DIRNAME) { 5616 if (lastdir == -1) { 5617 /* 5618 * We know that we have a slash in the name -- 5619 * or lastdir would be set to 0, above. And 5620 * because lastdir is -1, we know that this 5621 * slash must be the first character. (That 5622 * is, the full string must be of the form 5623 * "/basename".) In this case, the last 5624 * character of the directory name is 0. 5625 */ 5626 lastdir = 0; 5627 } 5628 5629 start = 0; 5630 end = lastdir; 5631 } else { 5632 ASSERT(subr == DIF_SUBR_BASENAME); 5633 ASSERT(firstbase != -1 && lastbase != -1); 5634 start = firstbase; 5635 end = lastbase; 5636 } 5637 5638 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5639 dest[j] = dtrace_load8(src + i); 5640 5641 dest[j] = '\0'; 5642 regs[rd] = (uintptr_t)dest; 5643 mstate->dtms_scratch_ptr += size; 5644 break; 5645 } 5646 5647 case DIF_SUBR_GETF: { 5648 uintptr_t fd = tupregs[0].dttk_value; 5649 struct filedesc *fdp; 5650 file_t *fp; 5651 5652 if (!dtrace_priv_proc(state)) { 5653 regs[rd] = 0; 5654 break; 5655 } 5656 fdp = curproc->p_fd; 5657 FILEDESC_SLOCK(fdp); 5658 /* 5659 * XXXMJG this looks broken as no ref is taken. 5660 */ 5661 fp = fget_noref(fdp, fd); 5662 mstate->dtms_getf = fp; 5663 regs[rd] = (uintptr_t)fp; 5664 FILEDESC_SUNLOCK(fdp); 5665 break; 5666 } 5667 5668 case DIF_SUBR_CLEANPATH: { 5669 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5670 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5671 uintptr_t src = tupregs[0].dttk_value; 5672 size_t lim; 5673 int i = 0, j = 0; 5674 #ifdef illumos 5675 zone_t *z; 5676 #endif 5677 5678 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5679 regs[rd] = 0; 5680 break; 5681 } 5682 5683 if (!DTRACE_INSCRATCH(mstate, size)) { 5684 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5685 regs[rd] = 0; 5686 break; 5687 } 5688 5689 /* 5690 * Move forward, loading each character. 5691 */ 5692 do { 5693 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5694 next: 5695 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5696 break; 5697 5698 if (c != '/') { 5699 dest[j++] = c; 5700 continue; 5701 } 5702 5703 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5704 5705 if (c == '/') { 5706 /* 5707 * We have two slashes -- we can just advance 5708 * to the next character. 5709 */ 5710 goto next; 5711 } 5712 5713 if (c != '.') { 5714 /* 5715 * This is not "." and it's not ".." -- we can 5716 * just store the "/" and this character and 5717 * drive on. 5718 */ 5719 dest[j++] = '/'; 5720 dest[j++] = c; 5721 continue; 5722 } 5723 5724 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5725 5726 if (c == '/') { 5727 /* 5728 * This is a "/./" component. We're not going 5729 * to store anything in the destination buffer; 5730 * we're just going to go to the next component. 5731 */ 5732 goto next; 5733 } 5734 5735 if (c != '.') { 5736 /* 5737 * This is not ".." -- we can just store the 5738 * "/." and this character and continue 5739 * processing. 5740 */ 5741 dest[j++] = '/'; 5742 dest[j++] = '.'; 5743 dest[j++] = c; 5744 continue; 5745 } 5746 5747 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5748 5749 if (c != '/' && c != '\0') { 5750 /* 5751 * This is not ".." -- it's "..[mumble]". 5752 * We'll store the "/.." and this character 5753 * and continue processing. 5754 */ 5755 dest[j++] = '/'; 5756 dest[j++] = '.'; 5757 dest[j++] = '.'; 5758 dest[j++] = c; 5759 continue; 5760 } 5761 5762 /* 5763 * This is "/../" or "/..\0". We need to back up 5764 * our destination pointer until we find a "/". 5765 */ 5766 i--; 5767 while (j != 0 && dest[--j] != '/') 5768 continue; 5769 5770 if (c == '\0') 5771 dest[++j] = '/'; 5772 } while (c != '\0'); 5773 5774 dest[j] = '\0'; 5775 5776 #ifdef illumos 5777 if (mstate->dtms_getf != NULL && 5778 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5779 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5780 /* 5781 * If we've done a getf() as a part of this ECB and we 5782 * don't have kernel access (and we're not in the global 5783 * zone), check if the path we cleaned up begins with 5784 * the zone's root path, and trim it off if so. Note 5785 * that this is an output cleanliness issue, not a 5786 * security issue: knowing one's zone root path does 5787 * not enable privilege escalation. 5788 */ 5789 if (strstr(dest, z->zone_rootpath) == dest) 5790 dest += strlen(z->zone_rootpath) - 1; 5791 } 5792 #endif 5793 5794 regs[rd] = (uintptr_t)dest; 5795 mstate->dtms_scratch_ptr += size; 5796 break; 5797 } 5798 5799 case DIF_SUBR_INET_NTOA: 5800 case DIF_SUBR_INET_NTOA6: 5801 case DIF_SUBR_INET_NTOP: { 5802 size_t size; 5803 int af, argi, i; 5804 char *base, *end; 5805 5806 if (subr == DIF_SUBR_INET_NTOP) { 5807 af = (int)tupregs[0].dttk_value; 5808 argi = 1; 5809 } else { 5810 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5811 argi = 0; 5812 } 5813 5814 if (af == AF_INET) { 5815 ipaddr_t ip4; 5816 uint8_t *ptr8, val; 5817 5818 if (!dtrace_canload(tupregs[argi].dttk_value, 5819 sizeof (ipaddr_t), mstate, vstate)) { 5820 regs[rd] = 0; 5821 break; 5822 } 5823 5824 /* 5825 * Safely load the IPv4 address. 5826 */ 5827 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5828 5829 /* 5830 * Check an IPv4 string will fit in scratch. 5831 */ 5832 size = INET_ADDRSTRLEN; 5833 if (!DTRACE_INSCRATCH(mstate, size)) { 5834 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5835 regs[rd] = 0; 5836 break; 5837 } 5838 base = (char *)mstate->dtms_scratch_ptr; 5839 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5840 5841 /* 5842 * Stringify as a dotted decimal quad. 5843 */ 5844 *end-- = '\0'; 5845 ptr8 = (uint8_t *)&ip4; 5846 for (i = 3; i >= 0; i--) { 5847 val = ptr8[i]; 5848 5849 if (val == 0) { 5850 *end-- = '0'; 5851 } else { 5852 for (; val; val /= 10) { 5853 *end-- = '0' + (val % 10); 5854 } 5855 } 5856 5857 if (i > 0) 5858 *end-- = '.'; 5859 } 5860 ASSERT(end + 1 >= base); 5861 5862 } else if (af == AF_INET6) { 5863 struct in6_addr ip6; 5864 int firstzero, tryzero, numzero, v6end; 5865 uint16_t val; 5866 const char digits[] = "0123456789abcdef"; 5867 5868 /* 5869 * Stringify using RFC 1884 convention 2 - 16 bit 5870 * hexadecimal values with a zero-run compression. 5871 * Lower case hexadecimal digits are used. 5872 * eg, fe80::214:4fff:fe0b:76c8. 5873 * The IPv4 embedded form is returned for inet_ntop, 5874 * just the IPv4 string is returned for inet_ntoa6. 5875 */ 5876 5877 if (!dtrace_canload(tupregs[argi].dttk_value, 5878 sizeof (struct in6_addr), mstate, vstate)) { 5879 regs[rd] = 0; 5880 break; 5881 } 5882 5883 /* 5884 * Safely load the IPv6 address. 5885 */ 5886 dtrace_bcopy( 5887 (void *)(uintptr_t)tupregs[argi].dttk_value, 5888 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5889 5890 /* 5891 * Check an IPv6 string will fit in scratch. 5892 */ 5893 size = INET6_ADDRSTRLEN; 5894 if (!DTRACE_INSCRATCH(mstate, size)) { 5895 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5896 regs[rd] = 0; 5897 break; 5898 } 5899 base = (char *)mstate->dtms_scratch_ptr; 5900 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5901 *end-- = '\0'; 5902 5903 /* 5904 * Find the longest run of 16 bit zero values 5905 * for the single allowed zero compression - "::". 5906 */ 5907 firstzero = -1; 5908 tryzero = -1; 5909 numzero = 1; 5910 for (i = 0; i < sizeof (struct in6_addr); i++) { 5911 #ifdef illumos 5912 if (ip6._S6_un._S6_u8[i] == 0 && 5913 #else 5914 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5915 #endif 5916 tryzero == -1 && i % 2 == 0) { 5917 tryzero = i; 5918 continue; 5919 } 5920 5921 if (tryzero != -1 && 5922 #ifdef illumos 5923 (ip6._S6_un._S6_u8[i] != 0 || 5924 #else 5925 (ip6.__u6_addr.__u6_addr8[i] != 0 || 5926 #endif 5927 i == sizeof (struct in6_addr) - 1)) { 5928 5929 if (i - tryzero <= numzero) { 5930 tryzero = -1; 5931 continue; 5932 } 5933 5934 firstzero = tryzero; 5935 numzero = i - i % 2 - tryzero; 5936 tryzero = -1; 5937 5938 #ifdef illumos 5939 if (ip6._S6_un._S6_u8[i] == 0 && 5940 #else 5941 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5942 #endif 5943 i == sizeof (struct in6_addr) - 1) 5944 numzero += 2; 5945 } 5946 } 5947 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5948 5949 /* 5950 * Check for an IPv4 embedded address. 5951 */ 5952 v6end = sizeof (struct in6_addr) - 2; 5953 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5954 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5955 for (i = sizeof (struct in6_addr) - 1; 5956 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5957 ASSERT(end >= base); 5958 5959 #ifdef illumos 5960 val = ip6._S6_un._S6_u8[i]; 5961 #else 5962 val = ip6.__u6_addr.__u6_addr8[i]; 5963 #endif 5964 5965 if (val == 0) { 5966 *end-- = '0'; 5967 } else { 5968 for (; val; val /= 10) { 5969 *end-- = '0' + val % 10; 5970 } 5971 } 5972 5973 if (i > DTRACE_V4MAPPED_OFFSET) 5974 *end-- = '.'; 5975 } 5976 5977 if (subr == DIF_SUBR_INET_NTOA6) 5978 goto inetout; 5979 5980 /* 5981 * Set v6end to skip the IPv4 address that 5982 * we have already stringified. 5983 */ 5984 v6end = 10; 5985 } 5986 5987 /* 5988 * Build the IPv6 string by working through the 5989 * address in reverse. 5990 */ 5991 for (i = v6end; i >= 0; i -= 2) { 5992 ASSERT(end >= base); 5993 5994 if (i == firstzero + numzero - 2) { 5995 *end-- = ':'; 5996 *end-- = ':'; 5997 i -= numzero - 2; 5998 continue; 5999 } 6000 6001 if (i < 14 && i != firstzero - 2) 6002 *end-- = ':'; 6003 6004 #ifdef illumos 6005 val = (ip6._S6_un._S6_u8[i] << 8) + 6006 ip6._S6_un._S6_u8[i + 1]; 6007 #else 6008 val = (ip6.__u6_addr.__u6_addr8[i] << 8) + 6009 ip6.__u6_addr.__u6_addr8[i + 1]; 6010 #endif 6011 6012 if (val == 0) { 6013 *end-- = '0'; 6014 } else { 6015 for (; val; val /= 16) { 6016 *end-- = digits[val % 16]; 6017 } 6018 } 6019 } 6020 ASSERT(end + 1 >= base); 6021 6022 } else { 6023 /* 6024 * The user didn't use AH_INET or AH_INET6. 6025 */ 6026 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6027 regs[rd] = 0; 6028 break; 6029 } 6030 6031 inetout: regs[rd] = (uintptr_t)end + 1; 6032 mstate->dtms_scratch_ptr += size; 6033 break; 6034 } 6035 6036 case DIF_SUBR_MEMREF: { 6037 uintptr_t size = 2 * sizeof(uintptr_t); 6038 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 6039 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; 6040 6041 /* address and length */ 6042 memref[0] = tupregs[0].dttk_value; 6043 memref[1] = tupregs[1].dttk_value; 6044 6045 regs[rd] = (uintptr_t) memref; 6046 mstate->dtms_scratch_ptr += scratch_size; 6047 break; 6048 } 6049 6050 #ifndef illumos 6051 case DIF_SUBR_MEMSTR: { 6052 char *str = (char *)mstate->dtms_scratch_ptr; 6053 uintptr_t mem = tupregs[0].dttk_value; 6054 char c = tupregs[1].dttk_value; 6055 size_t size = tupregs[2].dttk_value; 6056 uint8_t n; 6057 int i; 6058 6059 regs[rd] = 0; 6060 6061 if (size == 0) 6062 break; 6063 6064 if (!dtrace_canload(mem, size - 1, mstate, vstate)) 6065 break; 6066 6067 if (!DTRACE_INSCRATCH(mstate, size)) { 6068 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6069 break; 6070 } 6071 6072 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) { 6073 *flags |= CPU_DTRACE_ILLOP; 6074 break; 6075 } 6076 6077 for (i = 0; i < size - 1; i++) { 6078 n = dtrace_load8(mem++); 6079 str[i] = (n == 0) ? c : n; 6080 } 6081 str[size - 1] = 0; 6082 6083 regs[rd] = (uintptr_t)str; 6084 mstate->dtms_scratch_ptr += size; 6085 break; 6086 } 6087 #endif 6088 } 6089 } 6090 6091 /* 6092 * Emulate the execution of DTrace IR instructions specified by the given 6093 * DIF object. This function is deliberately void of assertions as all of 6094 * the necessary checks are handled by a call to dtrace_difo_validate(). 6095 */ 6096 static uint64_t 6097 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 6098 dtrace_vstate_t *vstate, dtrace_state_t *state) 6099 { 6100 const dif_instr_t *text = difo->dtdo_buf; 6101 const uint_t textlen = difo->dtdo_len; 6102 const char *strtab = difo->dtdo_strtab; 6103 const uint64_t *inttab = difo->dtdo_inttab; 6104 6105 uint64_t rval = 0; 6106 dtrace_statvar_t *svar; 6107 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 6108 dtrace_difv_t *v; 6109 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 6110 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 6111 6112 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 6113 uint64_t regs[DIF_DIR_NREGS]; 6114 uint64_t *tmp; 6115 6116 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 6117 int64_t cc_r; 6118 uint_t pc = 0, id, opc = 0; 6119 uint8_t ttop = 0; 6120 dif_instr_t instr; 6121 uint_t r1, r2, rd; 6122 6123 /* 6124 * We stash the current DIF object into the machine state: we need it 6125 * for subsequent access checking. 6126 */ 6127 mstate->dtms_difo = difo; 6128 6129 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 6130 6131 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 6132 opc = pc; 6133 6134 instr = text[pc++]; 6135 r1 = DIF_INSTR_R1(instr); 6136 r2 = DIF_INSTR_R2(instr); 6137 rd = DIF_INSTR_RD(instr); 6138 6139 switch (DIF_INSTR_OP(instr)) { 6140 case DIF_OP_OR: 6141 regs[rd] = regs[r1] | regs[r2]; 6142 break; 6143 case DIF_OP_XOR: 6144 regs[rd] = regs[r1] ^ regs[r2]; 6145 break; 6146 case DIF_OP_AND: 6147 regs[rd] = regs[r1] & regs[r2]; 6148 break; 6149 case DIF_OP_SLL: 6150 regs[rd] = regs[r1] << regs[r2]; 6151 break; 6152 case DIF_OP_SRL: 6153 regs[rd] = regs[r1] >> regs[r2]; 6154 break; 6155 case DIF_OP_SUB: 6156 regs[rd] = regs[r1] - regs[r2]; 6157 break; 6158 case DIF_OP_ADD: 6159 regs[rd] = regs[r1] + regs[r2]; 6160 break; 6161 case DIF_OP_MUL: 6162 regs[rd] = regs[r1] * regs[r2]; 6163 break; 6164 case DIF_OP_SDIV: 6165 if (regs[r2] == 0) { 6166 regs[rd] = 0; 6167 *flags |= CPU_DTRACE_DIVZERO; 6168 } else { 6169 regs[rd] = (int64_t)regs[r1] / 6170 (int64_t)regs[r2]; 6171 } 6172 break; 6173 6174 case DIF_OP_UDIV: 6175 if (regs[r2] == 0) { 6176 regs[rd] = 0; 6177 *flags |= CPU_DTRACE_DIVZERO; 6178 } else { 6179 regs[rd] = regs[r1] / regs[r2]; 6180 } 6181 break; 6182 6183 case DIF_OP_SREM: 6184 if (regs[r2] == 0) { 6185 regs[rd] = 0; 6186 *flags |= CPU_DTRACE_DIVZERO; 6187 } else { 6188 regs[rd] = (int64_t)regs[r1] % 6189 (int64_t)regs[r2]; 6190 } 6191 break; 6192 6193 case DIF_OP_UREM: 6194 if (regs[r2] == 0) { 6195 regs[rd] = 0; 6196 *flags |= CPU_DTRACE_DIVZERO; 6197 } else { 6198 regs[rd] = regs[r1] % regs[r2]; 6199 } 6200 break; 6201 6202 case DIF_OP_NOT: 6203 regs[rd] = ~regs[r1]; 6204 break; 6205 case DIF_OP_MOV: 6206 regs[rd] = regs[r1]; 6207 break; 6208 case DIF_OP_CMP: 6209 cc_r = regs[r1] - regs[r2]; 6210 cc_n = cc_r < 0; 6211 cc_z = cc_r == 0; 6212 cc_v = 0; 6213 cc_c = regs[r1] < regs[r2]; 6214 break; 6215 case DIF_OP_TST: 6216 cc_n = cc_v = cc_c = 0; 6217 cc_z = regs[r1] == 0; 6218 break; 6219 case DIF_OP_BA: 6220 pc = DIF_INSTR_LABEL(instr); 6221 break; 6222 case DIF_OP_BE: 6223 if (cc_z) 6224 pc = DIF_INSTR_LABEL(instr); 6225 break; 6226 case DIF_OP_BNE: 6227 if (cc_z == 0) 6228 pc = DIF_INSTR_LABEL(instr); 6229 break; 6230 case DIF_OP_BG: 6231 if ((cc_z | (cc_n ^ cc_v)) == 0) 6232 pc = DIF_INSTR_LABEL(instr); 6233 break; 6234 case DIF_OP_BGU: 6235 if ((cc_c | cc_z) == 0) 6236 pc = DIF_INSTR_LABEL(instr); 6237 break; 6238 case DIF_OP_BGE: 6239 if ((cc_n ^ cc_v) == 0) 6240 pc = DIF_INSTR_LABEL(instr); 6241 break; 6242 case DIF_OP_BGEU: 6243 if (cc_c == 0) 6244 pc = DIF_INSTR_LABEL(instr); 6245 break; 6246 case DIF_OP_BL: 6247 if (cc_n ^ cc_v) 6248 pc = DIF_INSTR_LABEL(instr); 6249 break; 6250 case DIF_OP_BLU: 6251 if (cc_c) 6252 pc = DIF_INSTR_LABEL(instr); 6253 break; 6254 case DIF_OP_BLE: 6255 if (cc_z | (cc_n ^ cc_v)) 6256 pc = DIF_INSTR_LABEL(instr); 6257 break; 6258 case DIF_OP_BLEU: 6259 if (cc_c | cc_z) 6260 pc = DIF_INSTR_LABEL(instr); 6261 break; 6262 case DIF_OP_RLDSB: 6263 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6264 break; 6265 /*FALLTHROUGH*/ 6266 case DIF_OP_LDSB: 6267 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 6268 break; 6269 case DIF_OP_RLDSH: 6270 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6271 break; 6272 /*FALLTHROUGH*/ 6273 case DIF_OP_LDSH: 6274 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 6275 break; 6276 case DIF_OP_RLDSW: 6277 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6278 break; 6279 /*FALLTHROUGH*/ 6280 case DIF_OP_LDSW: 6281 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 6282 break; 6283 case DIF_OP_RLDUB: 6284 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6285 break; 6286 /*FALLTHROUGH*/ 6287 case DIF_OP_LDUB: 6288 regs[rd] = dtrace_load8(regs[r1]); 6289 break; 6290 case DIF_OP_RLDUH: 6291 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6292 break; 6293 /*FALLTHROUGH*/ 6294 case DIF_OP_LDUH: 6295 regs[rd] = dtrace_load16(regs[r1]); 6296 break; 6297 case DIF_OP_RLDUW: 6298 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6299 break; 6300 /*FALLTHROUGH*/ 6301 case DIF_OP_LDUW: 6302 regs[rd] = dtrace_load32(regs[r1]); 6303 break; 6304 case DIF_OP_RLDX: 6305 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 6306 break; 6307 /*FALLTHROUGH*/ 6308 case DIF_OP_LDX: 6309 regs[rd] = dtrace_load64(regs[r1]); 6310 break; 6311 case DIF_OP_ULDSB: 6312 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6313 regs[rd] = (int8_t) 6314 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6315 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6316 break; 6317 case DIF_OP_ULDSH: 6318 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6319 regs[rd] = (int16_t) 6320 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6321 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6322 break; 6323 case DIF_OP_ULDSW: 6324 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6325 regs[rd] = (int32_t) 6326 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6327 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6328 break; 6329 case DIF_OP_ULDUB: 6330 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6331 regs[rd] = 6332 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6333 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6334 break; 6335 case DIF_OP_ULDUH: 6336 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6337 regs[rd] = 6338 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6339 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6340 break; 6341 case DIF_OP_ULDUW: 6342 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6343 regs[rd] = 6344 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6345 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6346 break; 6347 case DIF_OP_ULDX: 6348 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6349 regs[rd] = 6350 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6351 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6352 break; 6353 case DIF_OP_RET: 6354 rval = regs[rd]; 6355 pc = textlen; 6356 break; 6357 case DIF_OP_NOP: 6358 break; 6359 case DIF_OP_SETX: 6360 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6361 break; 6362 case DIF_OP_SETS: 6363 regs[rd] = (uint64_t)(uintptr_t) 6364 (strtab + DIF_INSTR_STRING(instr)); 6365 break; 6366 case DIF_OP_SCMP: { 6367 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6368 uintptr_t s1 = regs[r1]; 6369 uintptr_t s2 = regs[r2]; 6370 size_t lim1, lim2; 6371 6372 /* 6373 * If one of the strings is NULL then the limit becomes 6374 * 0 which compares 0 characters in dtrace_strncmp() 6375 * resulting in a false positive. dtrace_strncmp() 6376 * treats a NULL as an empty 1-char string. 6377 */ 6378 lim1 = lim2 = 1; 6379 6380 if (s1 != 0 && 6381 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6382 break; 6383 if (s2 != 0 && 6384 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6385 break; 6386 6387 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6388 MIN(lim1, lim2)); 6389 6390 cc_n = cc_r < 0; 6391 cc_z = cc_r == 0; 6392 cc_v = cc_c = 0; 6393 break; 6394 } 6395 case DIF_OP_LDGA: 6396 regs[rd] = dtrace_dif_variable(mstate, state, 6397 r1, regs[r2]); 6398 break; 6399 case DIF_OP_LDGS: 6400 id = DIF_INSTR_VAR(instr); 6401 6402 if (id >= DIF_VAR_OTHER_UBASE) { 6403 uintptr_t a; 6404 6405 id -= DIF_VAR_OTHER_UBASE; 6406 svar = vstate->dtvs_globals[id]; 6407 ASSERT(svar != NULL); 6408 v = &svar->dtsv_var; 6409 6410 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6411 regs[rd] = svar->dtsv_data; 6412 break; 6413 } 6414 6415 a = (uintptr_t)svar->dtsv_data; 6416 6417 if (*(uint8_t *)a == UINT8_MAX) { 6418 /* 6419 * If the 0th byte is set to UINT8_MAX 6420 * then this is to be treated as a 6421 * reference to a NULL variable. 6422 */ 6423 regs[rd] = 0; 6424 } else { 6425 regs[rd] = a + sizeof (uint64_t); 6426 } 6427 6428 break; 6429 } 6430 6431 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6432 break; 6433 6434 case DIF_OP_STGS: 6435 id = DIF_INSTR_VAR(instr); 6436 6437 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6438 id -= DIF_VAR_OTHER_UBASE; 6439 6440 VERIFY(id < vstate->dtvs_nglobals); 6441 svar = vstate->dtvs_globals[id]; 6442 ASSERT(svar != NULL); 6443 v = &svar->dtsv_var; 6444 6445 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6446 uintptr_t a = (uintptr_t)svar->dtsv_data; 6447 size_t lim; 6448 6449 ASSERT(a != 0); 6450 ASSERT(svar->dtsv_size != 0); 6451 6452 if (regs[rd] == 0) { 6453 *(uint8_t *)a = UINT8_MAX; 6454 break; 6455 } else { 6456 *(uint8_t *)a = 0; 6457 a += sizeof (uint64_t); 6458 } 6459 if (!dtrace_vcanload( 6460 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6461 &lim, mstate, vstate)) 6462 break; 6463 6464 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6465 (void *)a, &v->dtdv_type, lim); 6466 break; 6467 } 6468 6469 svar->dtsv_data = regs[rd]; 6470 break; 6471 6472 case DIF_OP_LDTA: 6473 /* 6474 * There are no DTrace built-in thread-local arrays at 6475 * present. This opcode is saved for future work. 6476 */ 6477 *flags |= CPU_DTRACE_ILLOP; 6478 regs[rd] = 0; 6479 break; 6480 6481 case DIF_OP_LDLS: 6482 id = DIF_INSTR_VAR(instr); 6483 6484 if (id < DIF_VAR_OTHER_UBASE) { 6485 /* 6486 * For now, this has no meaning. 6487 */ 6488 regs[rd] = 0; 6489 break; 6490 } 6491 6492 id -= DIF_VAR_OTHER_UBASE; 6493 6494 ASSERT(id < vstate->dtvs_nlocals); 6495 ASSERT(vstate->dtvs_locals != NULL); 6496 6497 svar = vstate->dtvs_locals[id]; 6498 ASSERT(svar != NULL); 6499 v = &svar->dtsv_var; 6500 6501 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6502 uintptr_t a = (uintptr_t)svar->dtsv_data; 6503 size_t sz = v->dtdv_type.dtdt_size; 6504 size_t lim; 6505 6506 sz += sizeof (uint64_t); 6507 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz); 6508 a += curcpu * sz; 6509 6510 if (*(uint8_t *)a == UINT8_MAX) { 6511 /* 6512 * If the 0th byte is set to UINT8_MAX 6513 * then this is to be treated as a 6514 * reference to a NULL variable. 6515 */ 6516 regs[rd] = 0; 6517 } else { 6518 regs[rd] = a + sizeof (uint64_t); 6519 } 6520 6521 break; 6522 } 6523 6524 ASSERT(svar->dtsv_size == 6525 (mp_maxid + 1) * sizeof (uint64_t)); 6526 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6527 regs[rd] = tmp[curcpu]; 6528 break; 6529 6530 case DIF_OP_STLS: 6531 id = DIF_INSTR_VAR(instr); 6532 6533 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6534 id -= DIF_VAR_OTHER_UBASE; 6535 VERIFY(id < vstate->dtvs_nlocals); 6536 6537 ASSERT(vstate->dtvs_locals != NULL); 6538 svar = vstate->dtvs_locals[id]; 6539 ASSERT(svar != NULL); 6540 v = &svar->dtsv_var; 6541 6542 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6543 uintptr_t a = (uintptr_t)svar->dtsv_data; 6544 size_t sz = v->dtdv_type.dtdt_size; 6545 size_t lim; 6546 6547 sz += sizeof (uint64_t); 6548 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz); 6549 a += curcpu * sz; 6550 6551 if (regs[rd] == 0) { 6552 *(uint8_t *)a = UINT8_MAX; 6553 break; 6554 } else { 6555 *(uint8_t *)a = 0; 6556 a += sizeof (uint64_t); 6557 } 6558 6559 if (!dtrace_vcanload( 6560 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6561 &lim, mstate, vstate)) 6562 break; 6563 6564 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6565 (void *)a, &v->dtdv_type, lim); 6566 break; 6567 } 6568 6569 ASSERT(svar->dtsv_size == 6570 (mp_maxid + 1) * sizeof (uint64_t)); 6571 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6572 tmp[curcpu] = regs[rd]; 6573 break; 6574 6575 case DIF_OP_LDTS: { 6576 dtrace_dynvar_t *dvar; 6577 dtrace_key_t *key; 6578 6579 id = DIF_INSTR_VAR(instr); 6580 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6581 id -= DIF_VAR_OTHER_UBASE; 6582 v = &vstate->dtvs_tlocals[id]; 6583 6584 key = &tupregs[DIF_DTR_NREGS]; 6585 key[0].dttk_value = (uint64_t)id; 6586 key[0].dttk_size = 0; 6587 DTRACE_TLS_THRKEY(key[1].dttk_value); 6588 key[1].dttk_size = 0; 6589 6590 dvar = dtrace_dynvar(dstate, 2, key, 6591 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6592 mstate, vstate); 6593 6594 if (dvar == NULL) { 6595 regs[rd] = 0; 6596 break; 6597 } 6598 6599 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6600 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6601 } else { 6602 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6603 } 6604 6605 break; 6606 } 6607 6608 case DIF_OP_STTS: { 6609 dtrace_dynvar_t *dvar; 6610 dtrace_key_t *key; 6611 6612 id = DIF_INSTR_VAR(instr); 6613 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6614 id -= DIF_VAR_OTHER_UBASE; 6615 VERIFY(id < vstate->dtvs_ntlocals); 6616 6617 key = &tupregs[DIF_DTR_NREGS]; 6618 key[0].dttk_value = (uint64_t)id; 6619 key[0].dttk_size = 0; 6620 DTRACE_TLS_THRKEY(key[1].dttk_value); 6621 key[1].dttk_size = 0; 6622 v = &vstate->dtvs_tlocals[id]; 6623 6624 dvar = dtrace_dynvar(dstate, 2, key, 6625 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6626 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6627 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6628 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6629 6630 /* 6631 * Given that we're storing to thread-local data, 6632 * we need to flush our predicate cache. 6633 */ 6634 curthread->t_predcache = 0; 6635 6636 if (dvar == NULL) 6637 break; 6638 6639 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6640 size_t lim; 6641 6642 if (!dtrace_vcanload( 6643 (void *)(uintptr_t)regs[rd], 6644 &v->dtdv_type, &lim, mstate, vstate)) 6645 break; 6646 6647 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6648 dvar->dtdv_data, &v->dtdv_type, lim); 6649 } else { 6650 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6651 } 6652 6653 break; 6654 } 6655 6656 case DIF_OP_SRA: 6657 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6658 break; 6659 6660 case DIF_OP_CALL: 6661 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6662 regs, tupregs, ttop, mstate, state); 6663 break; 6664 6665 case DIF_OP_PUSHTR: 6666 if (ttop == DIF_DTR_NREGS) { 6667 *flags |= CPU_DTRACE_TUPOFLOW; 6668 break; 6669 } 6670 6671 if (r1 == DIF_TYPE_STRING) { 6672 /* 6673 * If this is a string type and the size is 0, 6674 * we'll use the system-wide default string 6675 * size. Note that we are _not_ looking at 6676 * the value of the DTRACEOPT_STRSIZE option; 6677 * had this been set, we would expect to have 6678 * a non-zero size value in the "pushtr". 6679 */ 6680 tupregs[ttop].dttk_size = 6681 dtrace_strlen((char *)(uintptr_t)regs[rd], 6682 regs[r2] ? regs[r2] : 6683 dtrace_strsize_default) + 1; 6684 } else { 6685 if (regs[r2] > LONG_MAX) { 6686 *flags |= CPU_DTRACE_ILLOP; 6687 break; 6688 } 6689 6690 tupregs[ttop].dttk_size = regs[r2]; 6691 } 6692 6693 tupregs[ttop++].dttk_value = regs[rd]; 6694 break; 6695 6696 case DIF_OP_PUSHTV: 6697 if (ttop == DIF_DTR_NREGS) { 6698 *flags |= CPU_DTRACE_TUPOFLOW; 6699 break; 6700 } 6701 6702 tupregs[ttop].dttk_value = regs[rd]; 6703 tupregs[ttop++].dttk_size = 0; 6704 break; 6705 6706 case DIF_OP_POPTS: 6707 if (ttop != 0) 6708 ttop--; 6709 break; 6710 6711 case DIF_OP_FLUSHTS: 6712 ttop = 0; 6713 break; 6714 6715 case DIF_OP_LDGAA: 6716 case DIF_OP_LDTAA: { 6717 dtrace_dynvar_t *dvar; 6718 dtrace_key_t *key = tupregs; 6719 uint_t nkeys = ttop; 6720 6721 id = DIF_INSTR_VAR(instr); 6722 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6723 id -= DIF_VAR_OTHER_UBASE; 6724 6725 key[nkeys].dttk_value = (uint64_t)id; 6726 key[nkeys++].dttk_size = 0; 6727 6728 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6729 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6730 key[nkeys++].dttk_size = 0; 6731 VERIFY(id < vstate->dtvs_ntlocals); 6732 v = &vstate->dtvs_tlocals[id]; 6733 } else { 6734 VERIFY(id < vstate->dtvs_nglobals); 6735 v = &vstate->dtvs_globals[id]->dtsv_var; 6736 } 6737 6738 dvar = dtrace_dynvar(dstate, nkeys, key, 6739 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6740 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6741 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6742 6743 if (dvar == NULL) { 6744 regs[rd] = 0; 6745 break; 6746 } 6747 6748 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6749 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6750 } else { 6751 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6752 } 6753 6754 break; 6755 } 6756 6757 case DIF_OP_STGAA: 6758 case DIF_OP_STTAA: { 6759 dtrace_dynvar_t *dvar; 6760 dtrace_key_t *key = tupregs; 6761 uint_t nkeys = ttop; 6762 6763 id = DIF_INSTR_VAR(instr); 6764 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6765 id -= DIF_VAR_OTHER_UBASE; 6766 6767 key[nkeys].dttk_value = (uint64_t)id; 6768 key[nkeys++].dttk_size = 0; 6769 6770 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6771 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6772 key[nkeys++].dttk_size = 0; 6773 VERIFY(id < vstate->dtvs_ntlocals); 6774 v = &vstate->dtvs_tlocals[id]; 6775 } else { 6776 VERIFY(id < vstate->dtvs_nglobals); 6777 v = &vstate->dtvs_globals[id]->dtsv_var; 6778 } 6779 6780 dvar = dtrace_dynvar(dstate, nkeys, key, 6781 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6782 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6783 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6784 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6785 6786 if (dvar == NULL) 6787 break; 6788 6789 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6790 size_t lim; 6791 6792 if (!dtrace_vcanload( 6793 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6794 &lim, mstate, vstate)) 6795 break; 6796 6797 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6798 dvar->dtdv_data, &v->dtdv_type, lim); 6799 } else { 6800 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6801 } 6802 6803 break; 6804 } 6805 6806 case DIF_OP_ALLOCS: { 6807 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6808 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6809 6810 /* 6811 * Rounding up the user allocation size could have 6812 * overflowed large, bogus allocations (like -1ULL) to 6813 * 0. 6814 */ 6815 if (size < regs[r1] || 6816 !DTRACE_INSCRATCH(mstate, size)) { 6817 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6818 regs[rd] = 0; 6819 break; 6820 } 6821 6822 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6823 mstate->dtms_scratch_ptr += size; 6824 regs[rd] = ptr; 6825 break; 6826 } 6827 6828 case DIF_OP_COPYS: 6829 if (!dtrace_canstore(regs[rd], regs[r2], 6830 mstate, vstate)) { 6831 *flags |= CPU_DTRACE_BADADDR; 6832 *illval = regs[rd]; 6833 break; 6834 } 6835 6836 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6837 break; 6838 6839 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6840 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6841 break; 6842 6843 case DIF_OP_STB: 6844 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6845 *flags |= CPU_DTRACE_BADADDR; 6846 *illval = regs[rd]; 6847 break; 6848 } 6849 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6850 break; 6851 6852 case DIF_OP_STH: 6853 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6854 *flags |= CPU_DTRACE_BADADDR; 6855 *illval = regs[rd]; 6856 break; 6857 } 6858 if (regs[rd] & 1) { 6859 *flags |= CPU_DTRACE_BADALIGN; 6860 *illval = regs[rd]; 6861 break; 6862 } 6863 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6864 break; 6865 6866 case DIF_OP_STW: 6867 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6868 *flags |= CPU_DTRACE_BADADDR; 6869 *illval = regs[rd]; 6870 break; 6871 } 6872 if (regs[rd] & 3) { 6873 *flags |= CPU_DTRACE_BADALIGN; 6874 *illval = regs[rd]; 6875 break; 6876 } 6877 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6878 break; 6879 6880 case DIF_OP_STX: 6881 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6882 *flags |= CPU_DTRACE_BADADDR; 6883 *illval = regs[rd]; 6884 break; 6885 } 6886 if (regs[rd] & 7) { 6887 *flags |= CPU_DTRACE_BADALIGN; 6888 *illval = regs[rd]; 6889 break; 6890 } 6891 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6892 break; 6893 } 6894 } 6895 6896 if (!(*flags & CPU_DTRACE_FAULT)) 6897 return (rval); 6898 6899 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6900 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6901 6902 return (0); 6903 } 6904 6905 static void 6906 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6907 { 6908 dtrace_probe_t *probe = ecb->dte_probe; 6909 dtrace_provider_t *prov = probe->dtpr_provider; 6910 char c[DTRACE_FULLNAMELEN + 80], *str; 6911 char *msg = "dtrace: breakpoint action at probe "; 6912 char *ecbmsg = " (ecb "; 6913 uintptr_t val = (uintptr_t)ecb; 6914 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6915 6916 if (dtrace_destructive_disallow) 6917 return; 6918 6919 /* 6920 * It's impossible to be taking action on the NULL probe. 6921 */ 6922 ASSERT(probe != NULL); 6923 6924 /* 6925 * This is a poor man's (destitute man's?) sprintf(): we want to 6926 * print the provider name, module name, function name and name of 6927 * the probe, along with the hex address of the ECB with the breakpoint 6928 * action -- all of which we must place in the character buffer by 6929 * hand. 6930 */ 6931 while (*msg != '\0') 6932 c[i++] = *msg++; 6933 6934 for (str = prov->dtpv_name; *str != '\0'; str++) 6935 c[i++] = *str; 6936 c[i++] = ':'; 6937 6938 for (str = probe->dtpr_mod; *str != '\0'; str++) 6939 c[i++] = *str; 6940 c[i++] = ':'; 6941 6942 for (str = probe->dtpr_func; *str != '\0'; str++) 6943 c[i++] = *str; 6944 c[i++] = ':'; 6945 6946 for (str = probe->dtpr_name; *str != '\0'; str++) 6947 c[i++] = *str; 6948 6949 while (*ecbmsg != '\0') 6950 c[i++] = *ecbmsg++; 6951 6952 while (shift >= 0) { 6953 size_t mask = (size_t)0xf << shift; 6954 6955 if (val >= ((size_t)1 << shift)) 6956 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6957 shift -= 4; 6958 } 6959 6960 c[i++] = ')'; 6961 c[i] = '\0'; 6962 6963 #ifdef illumos 6964 debug_enter(c); 6965 #else 6966 kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); 6967 #endif 6968 } 6969 6970 static void 6971 dtrace_action_panic(dtrace_ecb_t *ecb) 6972 { 6973 dtrace_probe_t *probe = ecb->dte_probe; 6974 6975 /* 6976 * It's impossible to be taking action on the NULL probe. 6977 */ 6978 ASSERT(probe != NULL); 6979 6980 if (dtrace_destructive_disallow) 6981 return; 6982 6983 if (dtrace_panicked != NULL) 6984 return; 6985 6986 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6987 return; 6988 6989 /* 6990 * We won the right to panic. (We want to be sure that only one 6991 * thread calls panic() from dtrace_probe(), and that panic() is 6992 * called exactly once.) 6993 */ 6994 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6995 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6996 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6997 } 6998 6999 static void 7000 dtrace_action_raise(uint64_t sig) 7001 { 7002 if (dtrace_destructive_disallow) 7003 return; 7004 7005 if (sig >= NSIG) { 7006 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 7007 return; 7008 } 7009 7010 #ifdef illumos 7011 /* 7012 * raise() has a queue depth of 1 -- we ignore all subsequent 7013 * invocations of the raise() action. 7014 */ 7015 if (curthread->t_dtrace_sig == 0) 7016 curthread->t_dtrace_sig = (uint8_t)sig; 7017 7018 curthread->t_sig_check = 1; 7019 aston(curthread); 7020 #else 7021 struct proc *p = curproc; 7022 PROC_LOCK(p); 7023 kern_psignal(p, sig); 7024 PROC_UNLOCK(p); 7025 #endif 7026 } 7027 7028 static void 7029 dtrace_action_stop(void) 7030 { 7031 if (dtrace_destructive_disallow) 7032 return; 7033 7034 #ifdef illumos 7035 if (!curthread->t_dtrace_stop) { 7036 curthread->t_dtrace_stop = 1; 7037 curthread->t_sig_check = 1; 7038 aston(curthread); 7039 } 7040 #else 7041 struct proc *p = curproc; 7042 PROC_LOCK(p); 7043 kern_psignal(p, SIGSTOP); 7044 PROC_UNLOCK(p); 7045 #endif 7046 } 7047 7048 static void 7049 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 7050 { 7051 hrtime_t now; 7052 volatile uint16_t *flags; 7053 #ifdef illumos 7054 cpu_t *cpu = CPU; 7055 #else 7056 cpu_t *cpu = &solaris_cpu[curcpu]; 7057 #endif 7058 7059 if (dtrace_destructive_disallow) 7060 return; 7061 7062 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7063 7064 now = dtrace_gethrtime(); 7065 7066 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 7067 /* 7068 * We need to advance the mark to the current time. 7069 */ 7070 cpu->cpu_dtrace_chillmark = now; 7071 cpu->cpu_dtrace_chilled = 0; 7072 } 7073 7074 /* 7075 * Now check to see if the requested chill time would take us over 7076 * the maximum amount of time allowed in the chill interval. (Or 7077 * worse, if the calculation itself induces overflow.) 7078 */ 7079 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 7080 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 7081 *flags |= CPU_DTRACE_ILLOP; 7082 return; 7083 } 7084 7085 while (dtrace_gethrtime() - now < val) 7086 continue; 7087 7088 /* 7089 * Normally, we assure that the value of the variable "timestamp" does 7090 * not change within an ECB. The presence of chill() represents an 7091 * exception to this rule, however. 7092 */ 7093 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 7094 cpu->cpu_dtrace_chilled += val; 7095 } 7096 7097 static void 7098 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 7099 uint64_t *buf, uint64_t arg) 7100 { 7101 int nframes = DTRACE_USTACK_NFRAMES(arg); 7102 int strsize = DTRACE_USTACK_STRSIZE(arg); 7103 uint64_t *pcs = &buf[1], *fps; 7104 char *str = (char *)&pcs[nframes]; 7105 int size, offs = 0, i, j; 7106 size_t rem; 7107 uintptr_t old = mstate->dtms_scratch_ptr, saved; 7108 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 7109 char *sym; 7110 7111 /* 7112 * Should be taking a faster path if string space has not been 7113 * allocated. 7114 */ 7115 ASSERT(strsize != 0); 7116 7117 /* 7118 * We will first allocate some temporary space for the frame pointers. 7119 */ 7120 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 7121 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 7122 (nframes * sizeof (uint64_t)); 7123 7124 if (!DTRACE_INSCRATCH(mstate, size)) { 7125 /* 7126 * Not enough room for our frame pointers -- need to indicate 7127 * that we ran out of scratch space. 7128 */ 7129 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 7130 return; 7131 } 7132 7133 mstate->dtms_scratch_ptr += size; 7134 saved = mstate->dtms_scratch_ptr; 7135 7136 /* 7137 * Now get a stack with both program counters and frame pointers. 7138 */ 7139 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7140 dtrace_getufpstack(buf, fps, nframes + 1); 7141 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7142 7143 /* 7144 * If that faulted, we're cooked. 7145 */ 7146 if (*flags & CPU_DTRACE_FAULT) 7147 goto out; 7148 7149 /* 7150 * Now we want to walk up the stack, calling the USTACK helper. For 7151 * each iteration, we restore the scratch pointer. 7152 */ 7153 for (i = 0; i < nframes; i++) { 7154 mstate->dtms_scratch_ptr = saved; 7155 7156 if (offs >= strsize) 7157 break; 7158 7159 sym = (char *)(uintptr_t)dtrace_helper( 7160 DTRACE_HELPER_ACTION_USTACK, 7161 mstate, state, pcs[i], fps[i]); 7162 7163 /* 7164 * If we faulted while running the helper, we're going to 7165 * clear the fault and null out the corresponding string. 7166 */ 7167 if (*flags & CPU_DTRACE_FAULT) { 7168 *flags &= ~CPU_DTRACE_FAULT; 7169 str[offs++] = '\0'; 7170 continue; 7171 } 7172 7173 if (sym == NULL) { 7174 str[offs++] = '\0'; 7175 continue; 7176 } 7177 7178 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 7179 &(state->dts_vstate))) { 7180 str[offs++] = '\0'; 7181 continue; 7182 } 7183 7184 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7185 7186 /* 7187 * Now copy in the string that the helper returned to us. 7188 */ 7189 for (j = 0; offs + j < strsize && j < rem; j++) { 7190 if ((str[offs + j] = sym[j]) == '\0') 7191 break; 7192 } 7193 7194 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7195 7196 offs += j + 1; 7197 } 7198 7199 if (offs >= strsize) { 7200 /* 7201 * If we didn't have room for all of the strings, we don't 7202 * abort processing -- this needn't be a fatal error -- but we 7203 * still want to increment a counter (dts_stkstroverflows) to 7204 * allow this condition to be warned about. (If this is from 7205 * a jstack() action, it is easily tuned via jstackstrsize.) 7206 */ 7207 dtrace_error(&state->dts_stkstroverflows); 7208 } 7209 7210 while (offs < strsize) 7211 str[offs++] = '\0'; 7212 7213 out: 7214 mstate->dtms_scratch_ptr = old; 7215 } 7216 7217 static void 7218 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 7219 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 7220 { 7221 volatile uint16_t *flags; 7222 uint64_t val = *valp; 7223 size_t valoffs = *valoffsp; 7224 7225 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7226 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 7227 7228 /* 7229 * If this is a string, we're going to only load until we find the zero 7230 * byte -- after which we'll store zero bytes. 7231 */ 7232 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 7233 char c = '\0' + 1; 7234 size_t s; 7235 7236 for (s = 0; s < size; s++) { 7237 if (c != '\0' && dtkind == DIF_TF_BYREF) { 7238 c = dtrace_load8(val++); 7239 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 7240 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7241 c = dtrace_fuword8((void *)(uintptr_t)val++); 7242 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7243 if (*flags & CPU_DTRACE_FAULT) 7244 break; 7245 } 7246 7247 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 7248 7249 if (c == '\0' && intuple) 7250 break; 7251 } 7252 } else { 7253 uint8_t c; 7254 while (valoffs < end) { 7255 if (dtkind == DIF_TF_BYREF) { 7256 c = dtrace_load8(val++); 7257 } else if (dtkind == DIF_TF_BYUREF) { 7258 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7259 c = dtrace_fuword8((void *)(uintptr_t)val++); 7260 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7261 if (*flags & CPU_DTRACE_FAULT) 7262 break; 7263 } 7264 7265 DTRACE_STORE(uint8_t, tomax, 7266 valoffs++, c); 7267 } 7268 } 7269 7270 *valp = val; 7271 *valoffsp = valoffs; 7272 } 7273 7274 /* 7275 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is 7276 * defined, we also assert that we are not recursing unless the probe ID is an 7277 * error probe. 7278 */ 7279 static dtrace_icookie_t 7280 dtrace_probe_enter(dtrace_id_t id) 7281 { 7282 dtrace_icookie_t cookie; 7283 7284 cookie = dtrace_interrupt_disable(); 7285 7286 /* 7287 * Unless this is an ERROR probe, we are not allowed to recurse in 7288 * dtrace_probe(). Recursing into DTrace probe usually means that a 7289 * function is instrumented that should not have been instrumented or 7290 * that the ordering guarantee of the records will be violated, 7291 * resulting in unexpected output. If there is an exception to this 7292 * assertion, a new case should be added. 7293 */ 7294 ASSERT(curthread->t_dtrace_inprobe == 0 || 7295 id == dtrace_probeid_error); 7296 curthread->t_dtrace_inprobe = 1; 7297 7298 return (cookie); 7299 } 7300 7301 /* 7302 * Clears the per-thread inprobe flag and enables interrupts. 7303 */ 7304 static void 7305 dtrace_probe_exit(dtrace_icookie_t cookie) 7306 { 7307 7308 curthread->t_dtrace_inprobe = 0; 7309 dtrace_interrupt_enable(cookie); 7310 } 7311 7312 /* 7313 * If you're looking for the epicenter of DTrace, you just found it. This 7314 * is the function called by the provider to fire a probe -- from which all 7315 * subsequent probe-context DTrace activity emanates. 7316 */ 7317 void 7318 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 7319 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 7320 { 7321 processorid_t cpuid; 7322 dtrace_icookie_t cookie; 7323 dtrace_probe_t *probe; 7324 dtrace_mstate_t mstate; 7325 dtrace_ecb_t *ecb; 7326 dtrace_action_t *act; 7327 intptr_t offs; 7328 size_t size; 7329 int vtime, onintr; 7330 volatile uint16_t *flags; 7331 hrtime_t now; 7332 7333 if (KERNEL_PANICKED()) 7334 return; 7335 7336 #ifdef illumos 7337 /* 7338 * Kick out immediately if this CPU is still being born (in which case 7339 * curthread will be set to -1) or the current thread can't allow 7340 * probes in its current context. 7341 */ 7342 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 7343 return; 7344 #endif 7345 7346 cookie = dtrace_probe_enter(id); 7347 probe = dtrace_probes[id - 1]; 7348 cpuid = curcpu; 7349 onintr = CPU_ON_INTR(CPU); 7350 7351 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 7352 probe->dtpr_predcache == curthread->t_predcache) { 7353 /* 7354 * We have hit in the predicate cache; we know that 7355 * this predicate would evaluate to be false. 7356 */ 7357 dtrace_probe_exit(cookie); 7358 return; 7359 } 7360 7361 #ifdef illumos 7362 if (panic_quiesce) { 7363 #else 7364 if (KERNEL_PANICKED()) { 7365 #endif 7366 /* 7367 * We don't trace anything if we're panicking. 7368 */ 7369 dtrace_probe_exit(cookie); 7370 return; 7371 } 7372 7373 now = mstate.dtms_timestamp = dtrace_gethrtime(); 7374 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP; 7375 vtime = dtrace_vtime_references != 0; 7376 7377 if (vtime && curthread->t_dtrace_start) 7378 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 7379 7380 mstate.dtms_difo = NULL; 7381 mstate.dtms_probe = probe; 7382 mstate.dtms_strtok = 0; 7383 mstate.dtms_arg[0] = arg0; 7384 mstate.dtms_arg[1] = arg1; 7385 mstate.dtms_arg[2] = arg2; 7386 mstate.dtms_arg[3] = arg3; 7387 mstate.dtms_arg[4] = arg4; 7388 7389 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 7390 7391 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 7392 dtrace_predicate_t *pred = ecb->dte_predicate; 7393 dtrace_state_t *state = ecb->dte_state; 7394 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 7395 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 7396 dtrace_vstate_t *vstate = &state->dts_vstate; 7397 dtrace_provider_t *prov = probe->dtpr_provider; 7398 uint64_t tracememsize = 0; 7399 int committed = 0; 7400 caddr_t tomax; 7401 7402 /* 7403 * A little subtlety with the following (seemingly innocuous) 7404 * declaration of the automatic 'val': by looking at the 7405 * code, you might think that it could be declared in the 7406 * action processing loop, below. (That is, it's only used in 7407 * the action processing loop.) However, it must be declared 7408 * out of that scope because in the case of DIF expression 7409 * arguments to aggregating actions, one iteration of the 7410 * action loop will use the last iteration's value. 7411 */ 7412 uint64_t val = 0; 7413 7414 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7415 mstate.dtms_getf = NULL; 7416 7417 *flags &= ~CPU_DTRACE_ERROR; 7418 7419 if (prov == dtrace_provider) { 7420 /* 7421 * If dtrace itself is the provider of this probe, 7422 * we're only going to continue processing the ECB if 7423 * arg0 (the dtrace_state_t) is equal to the ECB's 7424 * creating state. (This prevents disjoint consumers 7425 * from seeing one another's metaprobes.) 7426 */ 7427 if (arg0 != (uint64_t)(uintptr_t)state) 7428 continue; 7429 } 7430 7431 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7432 /* 7433 * We're not currently active. If our provider isn't 7434 * the dtrace pseudo provider, we're not interested. 7435 */ 7436 if (prov != dtrace_provider) 7437 continue; 7438 7439 /* 7440 * Now we must further check if we are in the BEGIN 7441 * probe. If we are, we will only continue processing 7442 * if we're still in WARMUP -- if one BEGIN enabling 7443 * has invoked the exit() action, we don't want to 7444 * evaluate subsequent BEGIN enablings. 7445 */ 7446 if (probe->dtpr_id == dtrace_probeid_begin && 7447 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7448 ASSERT(state->dts_activity == 7449 DTRACE_ACTIVITY_DRAINING); 7450 continue; 7451 } 7452 } 7453 7454 if (ecb->dte_cond) { 7455 /* 7456 * If the dte_cond bits indicate that this 7457 * consumer is only allowed to see user-mode firings 7458 * of this probe, call the provider's dtps_usermode() 7459 * entry point to check that the probe was fired 7460 * while in a user context. Skip this ECB if that's 7461 * not the case. 7462 */ 7463 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 7464 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 7465 probe->dtpr_id, probe->dtpr_arg) == 0) 7466 continue; 7467 7468 #ifdef illumos 7469 /* 7470 * This is more subtle than it looks. We have to be 7471 * absolutely certain that CRED() isn't going to 7472 * change out from under us so it's only legit to 7473 * examine that structure if we're in constrained 7474 * situations. Currently, the only times we'll this 7475 * check is if a non-super-user has enabled the 7476 * profile or syscall providers -- providers that 7477 * allow visibility of all processes. For the 7478 * profile case, the check above will ensure that 7479 * we're examining a user context. 7480 */ 7481 if (ecb->dte_cond & DTRACE_COND_OWNER) { 7482 cred_t *cr; 7483 cred_t *s_cr = 7484 ecb->dte_state->dts_cred.dcr_cred; 7485 proc_t *proc; 7486 7487 ASSERT(s_cr != NULL); 7488 7489 if ((cr = CRED()) == NULL || 7490 s_cr->cr_uid != cr->cr_uid || 7491 s_cr->cr_uid != cr->cr_ruid || 7492 s_cr->cr_uid != cr->cr_suid || 7493 s_cr->cr_gid != cr->cr_gid || 7494 s_cr->cr_gid != cr->cr_rgid || 7495 s_cr->cr_gid != cr->cr_sgid || 7496 (proc = ttoproc(curthread)) == NULL || 7497 (proc->p_flag & SNOCD)) 7498 continue; 7499 } 7500 7501 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 7502 cred_t *cr; 7503 cred_t *s_cr = 7504 ecb->dte_state->dts_cred.dcr_cred; 7505 7506 ASSERT(s_cr != NULL); 7507 7508 if ((cr = CRED()) == NULL || 7509 s_cr->cr_zone->zone_id != 7510 cr->cr_zone->zone_id) 7511 continue; 7512 } 7513 #endif 7514 } 7515 7516 if (now - state->dts_alive > dtrace_deadman_timeout) { 7517 /* 7518 * We seem to be dead. Unless we (a) have kernel 7519 * destructive permissions (b) have explicitly enabled 7520 * destructive actions and (c) destructive actions have 7521 * not been disabled, we're going to transition into 7522 * the KILLED state, from which no further processing 7523 * on this state will be performed. 7524 */ 7525 if (!dtrace_priv_kernel_destructive(state) || 7526 !state->dts_cred.dcr_destructive || 7527 dtrace_destructive_disallow) { 7528 void *activity = &state->dts_activity; 7529 dtrace_activity_t curstate; 7530 7531 do { 7532 curstate = state->dts_activity; 7533 } while (dtrace_cas32(activity, curstate, 7534 DTRACE_ACTIVITY_KILLED) != curstate); 7535 7536 continue; 7537 } 7538 } 7539 7540 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7541 ecb->dte_alignment, state, &mstate)) < 0) 7542 continue; 7543 7544 tomax = buf->dtb_tomax; 7545 ASSERT(tomax != NULL); 7546 7547 if (ecb->dte_size != 0) { 7548 dtrace_rechdr_t dtrh; 7549 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7550 mstate.dtms_timestamp = dtrace_gethrtime(); 7551 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7552 } 7553 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7554 dtrh.dtrh_epid = ecb->dte_epid; 7555 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7556 mstate.dtms_timestamp); 7557 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7558 } 7559 7560 mstate.dtms_epid = ecb->dte_epid; 7561 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7562 7563 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7564 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 7565 else 7566 mstate.dtms_access = 0; 7567 7568 if (pred != NULL) { 7569 dtrace_difo_t *dp = pred->dtp_difo; 7570 uint64_t rval; 7571 7572 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7573 7574 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7575 dtrace_cacheid_t cid = probe->dtpr_predcache; 7576 7577 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7578 /* 7579 * Update the predicate cache... 7580 */ 7581 ASSERT(cid == pred->dtp_cacheid); 7582 curthread->t_predcache = cid; 7583 } 7584 7585 continue; 7586 } 7587 } 7588 7589 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7590 act != NULL; act = act->dta_next) { 7591 size_t valoffs; 7592 dtrace_difo_t *dp; 7593 dtrace_recdesc_t *rec = &act->dta_rec; 7594 7595 size = rec->dtrd_size; 7596 valoffs = offs + rec->dtrd_offset; 7597 7598 if (DTRACEACT_ISAGG(act->dta_kind)) { 7599 uint64_t v = 0xbad; 7600 dtrace_aggregation_t *agg; 7601 7602 agg = (dtrace_aggregation_t *)act; 7603 7604 if ((dp = act->dta_difo) != NULL) 7605 v = dtrace_dif_emulate(dp, 7606 &mstate, vstate, state); 7607 7608 if (*flags & CPU_DTRACE_ERROR) 7609 continue; 7610 7611 /* 7612 * Note that we always pass the expression 7613 * value from the previous iteration of the 7614 * action loop. This value will only be used 7615 * if there is an expression argument to the 7616 * aggregating action, denoted by the 7617 * dtag_hasarg field. 7618 */ 7619 dtrace_aggregate(agg, buf, 7620 offs, aggbuf, v, val); 7621 continue; 7622 } 7623 7624 switch (act->dta_kind) { 7625 case DTRACEACT_STOP: 7626 if (dtrace_priv_proc_destructive(state)) 7627 dtrace_action_stop(); 7628 continue; 7629 7630 case DTRACEACT_BREAKPOINT: 7631 if (dtrace_priv_kernel_destructive(state)) 7632 dtrace_action_breakpoint(ecb); 7633 continue; 7634 7635 case DTRACEACT_PANIC: 7636 if (dtrace_priv_kernel_destructive(state)) 7637 dtrace_action_panic(ecb); 7638 continue; 7639 7640 case DTRACEACT_STACK: 7641 if (!dtrace_priv_kernel(state)) 7642 continue; 7643 7644 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7645 size / sizeof (pc_t), probe->dtpr_aframes, 7646 DTRACE_ANCHORED(probe) ? NULL : 7647 (uint32_t *)arg0); 7648 continue; 7649 7650 case DTRACEACT_JSTACK: 7651 case DTRACEACT_USTACK: 7652 if (!dtrace_priv_proc(state)) 7653 continue; 7654 7655 /* 7656 * See comment in DIF_VAR_PID. 7657 */ 7658 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7659 CPU_ON_INTR(CPU)) { 7660 int depth = DTRACE_USTACK_NFRAMES( 7661 rec->dtrd_arg) + 1; 7662 7663 dtrace_bzero((void *)(tomax + valoffs), 7664 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7665 + depth * sizeof (uint64_t)); 7666 7667 continue; 7668 } 7669 7670 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7671 curproc->p_dtrace_helpers != NULL) { 7672 /* 7673 * This is the slow path -- we have 7674 * allocated string space, and we're 7675 * getting the stack of a process that 7676 * has helpers. Call into a separate 7677 * routine to perform this processing. 7678 */ 7679 dtrace_action_ustack(&mstate, state, 7680 (uint64_t *)(tomax + valoffs), 7681 rec->dtrd_arg); 7682 continue; 7683 } 7684 7685 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7686 dtrace_getupcstack((uint64_t *) 7687 (tomax + valoffs), 7688 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7689 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7690 continue; 7691 7692 default: 7693 break; 7694 } 7695 7696 dp = act->dta_difo; 7697 ASSERT(dp != NULL); 7698 7699 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7700 7701 if (*flags & CPU_DTRACE_ERROR) 7702 continue; 7703 7704 switch (act->dta_kind) { 7705 case DTRACEACT_SPECULATE: { 7706 dtrace_rechdr_t *dtrh; 7707 7708 ASSERT(buf == &state->dts_buffer[cpuid]); 7709 buf = dtrace_speculation_buffer(state, 7710 cpuid, val); 7711 7712 if (buf == NULL) { 7713 *flags |= CPU_DTRACE_DROP; 7714 continue; 7715 } 7716 7717 offs = dtrace_buffer_reserve(buf, 7718 ecb->dte_needed, ecb->dte_alignment, 7719 state, NULL); 7720 7721 if (offs < 0) { 7722 *flags |= CPU_DTRACE_DROP; 7723 continue; 7724 } 7725 7726 tomax = buf->dtb_tomax; 7727 ASSERT(tomax != NULL); 7728 7729 if (ecb->dte_size == 0) 7730 continue; 7731 7732 ASSERT3U(ecb->dte_size, >=, 7733 sizeof (dtrace_rechdr_t)); 7734 dtrh = ((void *)(tomax + offs)); 7735 dtrh->dtrh_epid = ecb->dte_epid; 7736 /* 7737 * When the speculation is committed, all of 7738 * the records in the speculative buffer will 7739 * have their timestamps set to the commit 7740 * time. Until then, it is set to a sentinel 7741 * value, for debugability. 7742 */ 7743 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7744 continue; 7745 } 7746 7747 case DTRACEACT_PRINTM: { 7748 /* 7749 * printm() assumes that the DIF returns a 7750 * pointer returned by memref(). memref() is a 7751 * subroutine that is used to get around the 7752 * single-valued returns of DIF and is assumed 7753 * to always be allocated in the scratch space. 7754 * Therefore, we need to validate that the 7755 * pointer given to printm() is in the scratch 7756 * space in order to avoid a potential panic. 7757 */ 7758 uintptr_t *memref = (uintptr_t *)(uintptr_t) val; 7759 7760 if (!DTRACE_INSCRATCHPTR(&mstate, 7761 (uintptr_t)memref, 2 * sizeof(uintptr_t))) { 7762 *flags |= CPU_DTRACE_BADADDR; 7763 continue; 7764 } 7765 7766 /* Get the size from the memref. */ 7767 size = memref[1]; 7768 7769 /* 7770 * Check if the size exceeds the allocated 7771 * buffer size. 7772 */ 7773 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 7774 /* Flag a drop! */ 7775 *flags |= CPU_DTRACE_DROP; 7776 continue; 7777 } 7778 7779 /* Store the size in the buffer first. */ 7780 DTRACE_STORE(uintptr_t, tomax, 7781 valoffs, size); 7782 7783 /* 7784 * Offset the buffer address to the start 7785 * of the data. 7786 */ 7787 valoffs += sizeof(uintptr_t); 7788 7789 /* 7790 * Reset to the memory address rather than 7791 * the memref array, then let the BYREF 7792 * code below do the work to store the 7793 * memory data in the buffer. 7794 */ 7795 val = memref[0]; 7796 break; 7797 } 7798 7799 case DTRACEACT_CHILL: 7800 if (dtrace_priv_kernel_destructive(state)) 7801 dtrace_action_chill(&mstate, val); 7802 continue; 7803 7804 case DTRACEACT_RAISE: 7805 if (dtrace_priv_proc_destructive(state)) 7806 dtrace_action_raise(val); 7807 continue; 7808 7809 case DTRACEACT_COMMIT: 7810 ASSERT(!committed); 7811 7812 /* 7813 * We need to commit our buffer state. 7814 */ 7815 if (ecb->dte_size) 7816 buf->dtb_offset = offs + ecb->dte_size; 7817 buf = &state->dts_buffer[cpuid]; 7818 dtrace_speculation_commit(state, cpuid, val); 7819 committed = 1; 7820 continue; 7821 7822 case DTRACEACT_DISCARD: 7823 dtrace_speculation_discard(state, cpuid, val); 7824 continue; 7825 7826 case DTRACEACT_DIFEXPR: 7827 case DTRACEACT_LIBACT: 7828 case DTRACEACT_PRINTF: 7829 case DTRACEACT_PRINTA: 7830 case DTRACEACT_SYSTEM: 7831 case DTRACEACT_FREOPEN: 7832 case DTRACEACT_TRACEMEM: 7833 break; 7834 7835 case DTRACEACT_TRACEMEM_DYNSIZE: 7836 tracememsize = val; 7837 break; 7838 7839 case DTRACEACT_SYM: 7840 case DTRACEACT_MOD: 7841 if (!dtrace_priv_kernel(state)) 7842 continue; 7843 break; 7844 7845 case DTRACEACT_USYM: 7846 case DTRACEACT_UMOD: 7847 case DTRACEACT_UADDR: { 7848 #ifdef illumos 7849 struct pid *pid = curthread->t_procp->p_pidp; 7850 #endif 7851 7852 if (!dtrace_priv_proc(state)) 7853 continue; 7854 7855 DTRACE_STORE(uint64_t, tomax, 7856 #ifdef illumos 7857 valoffs, (uint64_t)pid->pid_id); 7858 #else 7859 valoffs, (uint64_t) curproc->p_pid); 7860 #endif 7861 DTRACE_STORE(uint64_t, tomax, 7862 valoffs + sizeof (uint64_t), val); 7863 7864 continue; 7865 } 7866 7867 case DTRACEACT_EXIT: { 7868 /* 7869 * For the exit action, we are going to attempt 7870 * to atomically set our activity to be 7871 * draining. If this fails (either because 7872 * another CPU has beat us to the exit action, 7873 * or because our current activity is something 7874 * other than ACTIVE or WARMUP), we will 7875 * continue. This assures that the exit action 7876 * can be successfully recorded at most once 7877 * when we're in the ACTIVE state. If we're 7878 * encountering the exit() action while in 7879 * COOLDOWN, however, we want to honor the new 7880 * status code. (We know that we're the only 7881 * thread in COOLDOWN, so there is no race.) 7882 */ 7883 void *activity = &state->dts_activity; 7884 dtrace_activity_t curstate = state->dts_activity; 7885 7886 if (curstate == DTRACE_ACTIVITY_COOLDOWN) 7887 break; 7888 7889 if (curstate != DTRACE_ACTIVITY_WARMUP) 7890 curstate = DTRACE_ACTIVITY_ACTIVE; 7891 7892 if (dtrace_cas32(activity, curstate, 7893 DTRACE_ACTIVITY_DRAINING) != curstate) { 7894 *flags |= CPU_DTRACE_DROP; 7895 continue; 7896 } 7897 7898 break; 7899 } 7900 7901 default: 7902 ASSERT(0); 7903 } 7904 7905 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7906 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7907 uintptr_t end = valoffs + size; 7908 7909 if (tracememsize != 0 && 7910 valoffs + tracememsize < end) { 7911 end = valoffs + tracememsize; 7912 tracememsize = 0; 7913 } 7914 7915 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7916 !dtrace_vcanload((void *)(uintptr_t)val, 7917 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7918 continue; 7919 7920 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7921 &val, end, act->dta_intuple, 7922 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7923 DIF_TF_BYREF: DIF_TF_BYUREF); 7924 continue; 7925 } 7926 7927 switch (size) { 7928 case 0: 7929 break; 7930 7931 case sizeof (uint8_t): 7932 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7933 break; 7934 case sizeof (uint16_t): 7935 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7936 break; 7937 case sizeof (uint32_t): 7938 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7939 break; 7940 case sizeof (uint64_t): 7941 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7942 break; 7943 default: 7944 /* 7945 * Any other size should have been returned by 7946 * reference, not by value. 7947 */ 7948 ASSERT(0); 7949 break; 7950 } 7951 } 7952 7953 if (*flags & CPU_DTRACE_DROP) 7954 continue; 7955 7956 if (*flags & CPU_DTRACE_FAULT) { 7957 int ndx; 7958 dtrace_action_t *err; 7959 7960 buf->dtb_errors++; 7961 7962 if (probe->dtpr_id == dtrace_probeid_error) { 7963 /* 7964 * There's nothing we can do -- we had an 7965 * error on the error probe. We bump an 7966 * error counter to at least indicate that 7967 * this condition happened. 7968 */ 7969 dtrace_error(&state->dts_dblerrors); 7970 continue; 7971 } 7972 7973 if (vtime) { 7974 /* 7975 * Before recursing on dtrace_probe(), we 7976 * need to explicitly clear out our start 7977 * time to prevent it from being accumulated 7978 * into t_dtrace_vtime. 7979 */ 7980 curthread->t_dtrace_start = 0; 7981 } 7982 7983 /* 7984 * Iterate over the actions to figure out which action 7985 * we were processing when we experienced the error. 7986 * Note that act points _past_ the faulting action; if 7987 * act is ecb->dte_action, the fault was in the 7988 * predicate, if it's ecb->dte_action->dta_next it's 7989 * in action #1, and so on. 7990 */ 7991 for (err = ecb->dte_action, ndx = 0; 7992 err != act; err = err->dta_next, ndx++) 7993 continue; 7994 7995 dtrace_probe_error(state, ecb->dte_epid, ndx, 7996 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7997 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7998 cpu_core[cpuid].cpuc_dtrace_illval); 7999 8000 continue; 8001 } 8002 8003 if (!committed) 8004 buf->dtb_offset = offs + ecb->dte_size; 8005 } 8006 8007 if (vtime) 8008 curthread->t_dtrace_start = dtrace_gethrtime(); 8009 8010 dtrace_probe_exit(cookie); 8011 } 8012 8013 /* 8014 * DTrace Probe Hashing Functions 8015 * 8016 * The functions in this section (and indeed, the functions in remaining 8017 * sections) are not _called_ from probe context. (Any exceptions to this are 8018 * marked with a "Note:".) Rather, they are called from elsewhere in the 8019 * DTrace framework to look-up probes in, add probes to and remove probes from 8020 * the DTrace probe hashes. (Each probe is hashed by each element of the 8021 * probe tuple -- allowing for fast lookups, regardless of what was 8022 * specified.) 8023 */ 8024 static uint_t 8025 dtrace_hash_str(const char *p) 8026 { 8027 unsigned int g; 8028 uint_t hval = 0; 8029 8030 while (*p) { 8031 hval = (hval << 4) + *p++; 8032 if ((g = (hval & 0xf0000000)) != 0) 8033 hval ^= g >> 24; 8034 hval &= ~g; 8035 } 8036 return (hval); 8037 } 8038 8039 static dtrace_hash_t * 8040 dtrace_hash_create(size_t stroffs, size_t nextoffs, size_t prevoffs) 8041 { 8042 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 8043 8044 hash->dth_stroffs = stroffs; 8045 hash->dth_nextoffs = nextoffs; 8046 hash->dth_prevoffs = prevoffs; 8047 8048 hash->dth_size = 1; 8049 hash->dth_mask = hash->dth_size - 1; 8050 8051 hash->dth_tab = kmem_zalloc(hash->dth_size * 8052 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 8053 8054 return (hash); 8055 } 8056 8057 static void 8058 dtrace_hash_destroy(dtrace_hash_t *hash) 8059 { 8060 #ifdef DEBUG 8061 int i; 8062 8063 for (i = 0; i < hash->dth_size; i++) 8064 ASSERT(hash->dth_tab[i] == NULL); 8065 #endif 8066 8067 kmem_free(hash->dth_tab, 8068 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 8069 kmem_free(hash, sizeof (dtrace_hash_t)); 8070 } 8071 8072 static void 8073 dtrace_hash_resize(dtrace_hash_t *hash) 8074 { 8075 int size = hash->dth_size, i, ndx; 8076 int new_size = hash->dth_size << 1; 8077 int new_mask = new_size - 1; 8078 dtrace_hashbucket_t **new_tab, *bucket, *next; 8079 8080 ASSERT((new_size & new_mask) == 0); 8081 8082 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 8083 8084 for (i = 0; i < size; i++) { 8085 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 8086 dtrace_probe_t *probe = bucket->dthb_chain; 8087 8088 ASSERT(probe != NULL); 8089 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 8090 8091 next = bucket->dthb_next; 8092 bucket->dthb_next = new_tab[ndx]; 8093 new_tab[ndx] = bucket; 8094 } 8095 } 8096 8097 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 8098 hash->dth_tab = new_tab; 8099 hash->dth_size = new_size; 8100 hash->dth_mask = new_mask; 8101 } 8102 8103 static void 8104 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 8105 { 8106 int hashval = DTRACE_HASHSTR(hash, new); 8107 int ndx = hashval & hash->dth_mask; 8108 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8109 dtrace_probe_t **nextp, **prevp; 8110 8111 for (; bucket != NULL; bucket = bucket->dthb_next) { 8112 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 8113 goto add; 8114 } 8115 8116 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 8117 dtrace_hash_resize(hash); 8118 dtrace_hash_add(hash, new); 8119 return; 8120 } 8121 8122 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 8123 bucket->dthb_next = hash->dth_tab[ndx]; 8124 hash->dth_tab[ndx] = bucket; 8125 hash->dth_nbuckets++; 8126 8127 add: 8128 nextp = DTRACE_HASHNEXT(hash, new); 8129 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 8130 *nextp = bucket->dthb_chain; 8131 8132 if (bucket->dthb_chain != NULL) { 8133 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 8134 ASSERT(*prevp == NULL); 8135 *prevp = new; 8136 } 8137 8138 bucket->dthb_chain = new; 8139 bucket->dthb_len++; 8140 } 8141 8142 static dtrace_probe_t * 8143 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 8144 { 8145 int hashval = DTRACE_HASHSTR(hash, template); 8146 int ndx = hashval & hash->dth_mask; 8147 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8148 8149 for (; bucket != NULL; bucket = bucket->dthb_next) { 8150 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8151 return (bucket->dthb_chain); 8152 } 8153 8154 return (NULL); 8155 } 8156 8157 static int 8158 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 8159 { 8160 int hashval = DTRACE_HASHSTR(hash, template); 8161 int ndx = hashval & hash->dth_mask; 8162 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8163 8164 for (; bucket != NULL; bucket = bucket->dthb_next) { 8165 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8166 return (bucket->dthb_len); 8167 } 8168 8169 return (0); 8170 } 8171 8172 static void 8173 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 8174 { 8175 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 8176 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8177 8178 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 8179 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 8180 8181 /* 8182 * Find the bucket that we're removing this probe from. 8183 */ 8184 for (; bucket != NULL; bucket = bucket->dthb_next) { 8185 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 8186 break; 8187 } 8188 8189 ASSERT(bucket != NULL); 8190 8191 if (*prevp == NULL) { 8192 if (*nextp == NULL) { 8193 /* 8194 * The removed probe was the only probe on this 8195 * bucket; we need to remove the bucket. 8196 */ 8197 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 8198 8199 ASSERT(bucket->dthb_chain == probe); 8200 ASSERT(b != NULL); 8201 8202 if (b == bucket) { 8203 hash->dth_tab[ndx] = bucket->dthb_next; 8204 } else { 8205 while (b->dthb_next != bucket) 8206 b = b->dthb_next; 8207 b->dthb_next = bucket->dthb_next; 8208 } 8209 8210 ASSERT(hash->dth_nbuckets > 0); 8211 hash->dth_nbuckets--; 8212 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 8213 return; 8214 } 8215 8216 bucket->dthb_chain = *nextp; 8217 } else { 8218 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 8219 } 8220 8221 if (*nextp != NULL) 8222 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 8223 } 8224 8225 /* 8226 * DTrace Utility Functions 8227 * 8228 * These are random utility functions that are _not_ called from probe context. 8229 */ 8230 static int 8231 dtrace_badattr(const dtrace_attribute_t *a) 8232 { 8233 return (a->dtat_name > DTRACE_STABILITY_MAX || 8234 a->dtat_data > DTRACE_STABILITY_MAX || 8235 a->dtat_class > DTRACE_CLASS_MAX); 8236 } 8237 8238 /* 8239 * Return a duplicate copy of a string. If the specified string is NULL, 8240 * this function returns a zero-length string. 8241 */ 8242 static char * 8243 dtrace_strdup(const char *str) 8244 { 8245 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 8246 8247 if (str != NULL) 8248 (void) strcpy(new, str); 8249 8250 return (new); 8251 } 8252 8253 #define DTRACE_ISALPHA(c) \ 8254 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 8255 8256 static int 8257 dtrace_badname(const char *s) 8258 { 8259 char c; 8260 8261 if (s == NULL || (c = *s++) == '\0') 8262 return (0); 8263 8264 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 8265 return (1); 8266 8267 while ((c = *s++) != '\0') { 8268 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 8269 c != '-' && c != '_' && c != '.' && c != '`') 8270 return (1); 8271 } 8272 8273 return (0); 8274 } 8275 8276 static void 8277 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 8278 { 8279 uint32_t priv; 8280 8281 #ifdef illumos 8282 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 8283 /* 8284 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 8285 */ 8286 priv = DTRACE_PRIV_ALL; 8287 } else { 8288 *uidp = crgetuid(cr); 8289 *zoneidp = crgetzoneid(cr); 8290 8291 priv = 0; 8292 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 8293 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 8294 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 8295 priv |= DTRACE_PRIV_USER; 8296 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 8297 priv |= DTRACE_PRIV_PROC; 8298 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 8299 priv |= DTRACE_PRIV_OWNER; 8300 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 8301 priv |= DTRACE_PRIV_ZONEOWNER; 8302 } 8303 #else 8304 priv = DTRACE_PRIV_ALL; 8305 #endif 8306 8307 *privp = priv; 8308 } 8309 8310 #ifdef DTRACE_ERRDEBUG 8311 static void 8312 dtrace_errdebug(const char *str) 8313 { 8314 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; 8315 int occupied = 0; 8316 8317 mutex_enter(&dtrace_errlock); 8318 dtrace_errlast = str; 8319 dtrace_errthread = curthread; 8320 8321 while (occupied++ < DTRACE_ERRHASHSZ) { 8322 if (dtrace_errhash[hval].dter_msg == str) { 8323 dtrace_errhash[hval].dter_count++; 8324 goto out; 8325 } 8326 8327 if (dtrace_errhash[hval].dter_msg != NULL) { 8328 hval = (hval + 1) % DTRACE_ERRHASHSZ; 8329 continue; 8330 } 8331 8332 dtrace_errhash[hval].dter_msg = str; 8333 dtrace_errhash[hval].dter_count = 1; 8334 goto out; 8335 } 8336 8337 panic("dtrace: undersized error hash"); 8338 out: 8339 mutex_exit(&dtrace_errlock); 8340 } 8341 #endif 8342 8343 /* 8344 * DTrace Matching Functions 8345 * 8346 * These functions are used to match groups of probes, given some elements of 8347 * a probe tuple, or some globbed expressions for elements of a probe tuple. 8348 */ 8349 static int 8350 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 8351 zoneid_t zoneid) 8352 { 8353 if (priv != DTRACE_PRIV_ALL) { 8354 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 8355 uint32_t match = priv & ppriv; 8356 8357 /* 8358 * No PRIV_DTRACE_* privileges... 8359 */ 8360 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 8361 DTRACE_PRIV_KERNEL)) == 0) 8362 return (0); 8363 8364 /* 8365 * No matching bits, but there were bits to match... 8366 */ 8367 if (match == 0 && ppriv != 0) 8368 return (0); 8369 8370 /* 8371 * Need to have permissions to the process, but don't... 8372 */ 8373 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 8374 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 8375 return (0); 8376 } 8377 8378 /* 8379 * Need to be in the same zone unless we possess the 8380 * privilege to examine all zones. 8381 */ 8382 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 8383 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 8384 return (0); 8385 } 8386 } 8387 8388 return (1); 8389 } 8390 8391 /* 8392 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 8393 * consists of input pattern strings and an ops-vector to evaluate them. 8394 * This function returns >0 for match, 0 for no match, and <0 for error. 8395 */ 8396 static int 8397 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 8398 uint32_t priv, uid_t uid, zoneid_t zoneid) 8399 { 8400 dtrace_provider_t *pvp = prp->dtpr_provider; 8401 int rv; 8402 8403 if (pvp->dtpv_defunct) 8404 return (0); 8405 8406 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 8407 return (rv); 8408 8409 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 8410 return (rv); 8411 8412 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 8413 return (rv); 8414 8415 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 8416 return (rv); 8417 8418 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 8419 return (0); 8420 8421 return (rv); 8422 } 8423 8424 /* 8425 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 8426 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 8427 * libc's version, the kernel version only applies to 8-bit ASCII strings. 8428 * In addition, all of the recursion cases except for '*' matching have been 8429 * unwound. For '*', we still implement recursive evaluation, but a depth 8430 * counter is maintained and matching is aborted if we recurse too deep. 8431 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 8432 */ 8433 static int 8434 dtrace_match_glob(const char *s, const char *p, int depth) 8435 { 8436 const char *olds; 8437 char s1, c; 8438 int gs; 8439 8440 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 8441 return (-1); 8442 8443 if (s == NULL) 8444 s = ""; /* treat NULL as empty string */ 8445 8446 top: 8447 olds = s; 8448 s1 = *s++; 8449 8450 if (p == NULL) 8451 return (0); 8452 8453 if ((c = *p++) == '\0') 8454 return (s1 == '\0'); 8455 8456 switch (c) { 8457 case '[': { 8458 int ok = 0, notflag = 0; 8459 char lc = '\0'; 8460 8461 if (s1 == '\0') 8462 return (0); 8463 8464 if (*p == '!') { 8465 notflag = 1; 8466 p++; 8467 } 8468 8469 if ((c = *p++) == '\0') 8470 return (0); 8471 8472 do { 8473 if (c == '-' && lc != '\0' && *p != ']') { 8474 if ((c = *p++) == '\0') 8475 return (0); 8476 if (c == '\\' && (c = *p++) == '\0') 8477 return (0); 8478 8479 if (notflag) { 8480 if (s1 < lc || s1 > c) 8481 ok++; 8482 else 8483 return (0); 8484 } else if (lc <= s1 && s1 <= c) 8485 ok++; 8486 8487 } else if (c == '\\' && (c = *p++) == '\0') 8488 return (0); 8489 8490 lc = c; /* save left-hand 'c' for next iteration */ 8491 8492 if (notflag) { 8493 if (s1 != c) 8494 ok++; 8495 else 8496 return (0); 8497 } else if (s1 == c) 8498 ok++; 8499 8500 if ((c = *p++) == '\0') 8501 return (0); 8502 8503 } while (c != ']'); 8504 8505 if (ok) 8506 goto top; 8507 8508 return (0); 8509 } 8510 8511 case '\\': 8512 if ((c = *p++) == '\0') 8513 return (0); 8514 /*FALLTHRU*/ 8515 8516 default: 8517 if (c != s1) 8518 return (0); 8519 /*FALLTHRU*/ 8520 8521 case '?': 8522 if (s1 != '\0') 8523 goto top; 8524 return (0); 8525 8526 case '*': 8527 while (*p == '*') 8528 p++; /* consecutive *'s are identical to a single one */ 8529 8530 if (*p == '\0') 8531 return (1); 8532 8533 for (s = olds; *s != '\0'; s++) { 8534 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8535 return (gs); 8536 } 8537 8538 return (0); 8539 } 8540 } 8541 8542 /*ARGSUSED*/ 8543 static int 8544 dtrace_match_string(const char *s, const char *p, int depth) 8545 { 8546 return (s != NULL && strcmp(s, p) == 0); 8547 } 8548 8549 /*ARGSUSED*/ 8550 static int 8551 dtrace_match_nul(const char *s, const char *p, int depth) 8552 { 8553 return (1); /* always match the empty pattern */ 8554 } 8555 8556 /*ARGSUSED*/ 8557 static int 8558 dtrace_match_nonzero(const char *s, const char *p, int depth) 8559 { 8560 return (s != NULL && s[0] != '\0'); 8561 } 8562 8563 static int 8564 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8565 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8566 { 8567 dtrace_probe_t template, *probe; 8568 dtrace_hash_t *hash = NULL; 8569 int len, best = INT_MAX, nmatched = 0; 8570 dtrace_id_t i; 8571 8572 ASSERT(MUTEX_HELD(&dtrace_lock)); 8573 8574 /* 8575 * If the probe ID is specified in the key, just lookup by ID and 8576 * invoke the match callback once if a matching probe is found. 8577 */ 8578 if (pkp->dtpk_id != DTRACE_IDNONE) { 8579 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8580 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8581 (void) (*matched)(probe, arg); 8582 nmatched++; 8583 } 8584 return (nmatched); 8585 } 8586 8587 template.dtpr_mod = (char *)pkp->dtpk_mod; 8588 template.dtpr_func = (char *)pkp->dtpk_func; 8589 template.dtpr_name = (char *)pkp->dtpk_name; 8590 8591 /* 8592 * We want to find the most distinct of the module name, function 8593 * name, and name. So for each one that is not a glob pattern or 8594 * empty string, we perform a lookup in the corresponding hash and 8595 * use the hash table with the fewest collisions to do our search. 8596 */ 8597 if (pkp->dtpk_mmatch == &dtrace_match_string && 8598 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8599 best = len; 8600 hash = dtrace_bymod; 8601 } 8602 8603 if (pkp->dtpk_fmatch == &dtrace_match_string && 8604 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8605 best = len; 8606 hash = dtrace_byfunc; 8607 } 8608 8609 if (pkp->dtpk_nmatch == &dtrace_match_string && 8610 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8611 best = len; 8612 hash = dtrace_byname; 8613 } 8614 8615 /* 8616 * If we did not select a hash table, iterate over every probe and 8617 * invoke our callback for each one that matches our input probe key. 8618 */ 8619 if (hash == NULL) { 8620 for (i = 0; i < dtrace_nprobes; i++) { 8621 if ((probe = dtrace_probes[i]) == NULL || 8622 dtrace_match_probe(probe, pkp, priv, uid, 8623 zoneid) <= 0) 8624 continue; 8625 8626 nmatched++; 8627 8628 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8629 break; 8630 } 8631 8632 return (nmatched); 8633 } 8634 8635 /* 8636 * If we selected a hash table, iterate over each probe of the same key 8637 * name and invoke the callback for every probe that matches the other 8638 * attributes of our input probe key. 8639 */ 8640 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8641 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8642 8643 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8644 continue; 8645 8646 nmatched++; 8647 8648 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8649 break; 8650 } 8651 8652 return (nmatched); 8653 } 8654 8655 /* 8656 * Return the function pointer dtrace_probecmp() should use to compare the 8657 * specified pattern with a string. For NULL or empty patterns, we select 8658 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8659 * For non-empty non-glob strings, we use dtrace_match_string(). 8660 */ 8661 static dtrace_probekey_f * 8662 dtrace_probekey_func(const char *p) 8663 { 8664 char c; 8665 8666 if (p == NULL || *p == '\0') 8667 return (&dtrace_match_nul); 8668 8669 while ((c = *p++) != '\0') { 8670 if (c == '[' || c == '?' || c == '*' || c == '\\') 8671 return (&dtrace_match_glob); 8672 } 8673 8674 return (&dtrace_match_string); 8675 } 8676 8677 /* 8678 * Build a probe comparison key for use with dtrace_match_probe() from the 8679 * given probe description. By convention, a null key only matches anchored 8680 * probes: if each field is the empty string, reset dtpk_fmatch to 8681 * dtrace_match_nonzero(). 8682 */ 8683 static void 8684 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8685 { 8686 pkp->dtpk_prov = pdp->dtpd_provider; 8687 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8688 8689 pkp->dtpk_mod = pdp->dtpd_mod; 8690 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8691 8692 pkp->dtpk_func = pdp->dtpd_func; 8693 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8694 8695 pkp->dtpk_name = pdp->dtpd_name; 8696 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8697 8698 pkp->dtpk_id = pdp->dtpd_id; 8699 8700 if (pkp->dtpk_id == DTRACE_IDNONE && 8701 pkp->dtpk_pmatch == &dtrace_match_nul && 8702 pkp->dtpk_mmatch == &dtrace_match_nul && 8703 pkp->dtpk_fmatch == &dtrace_match_nul && 8704 pkp->dtpk_nmatch == &dtrace_match_nul) 8705 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8706 } 8707 8708 /* 8709 * DTrace Provider-to-Framework API Functions 8710 * 8711 * These functions implement much of the Provider-to-Framework API, as 8712 * described in <sys/dtrace.h>. The parts of the API not in this section are 8713 * the functions in the API for probe management (found below), and 8714 * dtrace_probe() itself (found above). 8715 */ 8716 8717 /* 8718 * Register the calling provider with the DTrace framework. This should 8719 * generally be called by DTrace providers in their attach(9E) entry point. 8720 */ 8721 int 8722 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8723 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8724 { 8725 dtrace_provider_t *provider; 8726 8727 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8728 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8729 "arguments", name ? name : "<NULL>"); 8730 return (EINVAL); 8731 } 8732 8733 if (name[0] == '\0' || dtrace_badname(name)) { 8734 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8735 "provider name", name); 8736 return (EINVAL); 8737 } 8738 8739 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8740 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8741 pops->dtps_destroy == NULL || 8742 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8743 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8744 "provider ops", name); 8745 return (EINVAL); 8746 } 8747 8748 if (dtrace_badattr(&pap->dtpa_provider) || 8749 dtrace_badattr(&pap->dtpa_mod) || 8750 dtrace_badattr(&pap->dtpa_func) || 8751 dtrace_badattr(&pap->dtpa_name) || 8752 dtrace_badattr(&pap->dtpa_args)) { 8753 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8754 "provider attributes", name); 8755 return (EINVAL); 8756 } 8757 8758 if (priv & ~DTRACE_PRIV_ALL) { 8759 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8760 "privilege attributes", name); 8761 return (EINVAL); 8762 } 8763 8764 if ((priv & DTRACE_PRIV_KERNEL) && 8765 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8766 pops->dtps_usermode == NULL) { 8767 cmn_err(CE_WARN, "failed to register provider '%s': need " 8768 "dtps_usermode() op for given privilege attributes", name); 8769 return (EINVAL); 8770 } 8771 8772 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8773 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8774 (void) strcpy(provider->dtpv_name, name); 8775 8776 provider->dtpv_attr = *pap; 8777 provider->dtpv_priv.dtpp_flags = priv; 8778 if (cr != NULL) { 8779 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8780 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8781 } 8782 provider->dtpv_pops = *pops; 8783 8784 if (pops->dtps_provide == NULL) { 8785 ASSERT(pops->dtps_provide_module != NULL); 8786 provider->dtpv_pops.dtps_provide = 8787 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; 8788 } 8789 8790 if (pops->dtps_provide_module == NULL) { 8791 ASSERT(pops->dtps_provide != NULL); 8792 provider->dtpv_pops.dtps_provide_module = 8793 (void (*)(void *, modctl_t *))dtrace_nullop; 8794 } 8795 8796 if (pops->dtps_suspend == NULL) { 8797 ASSERT(pops->dtps_resume == NULL); 8798 provider->dtpv_pops.dtps_suspend = 8799 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8800 provider->dtpv_pops.dtps_resume = 8801 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8802 } 8803 8804 provider->dtpv_arg = arg; 8805 *idp = (dtrace_provider_id_t)provider; 8806 8807 if (pops == &dtrace_provider_ops) { 8808 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8809 ASSERT(MUTEX_HELD(&dtrace_lock)); 8810 ASSERT(dtrace_anon.dta_enabling == NULL); 8811 8812 /* 8813 * We make sure that the DTrace provider is at the head of 8814 * the provider chain. 8815 */ 8816 provider->dtpv_next = dtrace_provider; 8817 dtrace_provider = provider; 8818 return (0); 8819 } 8820 8821 mutex_enter(&dtrace_provider_lock); 8822 mutex_enter(&dtrace_lock); 8823 8824 /* 8825 * If there is at least one provider registered, we'll add this 8826 * provider after the first provider. 8827 */ 8828 if (dtrace_provider != NULL) { 8829 provider->dtpv_next = dtrace_provider->dtpv_next; 8830 dtrace_provider->dtpv_next = provider; 8831 } else { 8832 dtrace_provider = provider; 8833 } 8834 8835 if (dtrace_retained != NULL) { 8836 dtrace_enabling_provide(provider); 8837 8838 /* 8839 * Now we need to call dtrace_enabling_matchall() -- which 8840 * will acquire cpu_lock and dtrace_lock. We therefore need 8841 * to drop all of our locks before calling into it... 8842 */ 8843 mutex_exit(&dtrace_lock); 8844 mutex_exit(&dtrace_provider_lock); 8845 dtrace_enabling_matchall(); 8846 8847 return (0); 8848 } 8849 8850 mutex_exit(&dtrace_lock); 8851 mutex_exit(&dtrace_provider_lock); 8852 8853 return (0); 8854 } 8855 8856 /* 8857 * Unregister the specified provider from the DTrace framework. This should 8858 * generally be called by DTrace providers in their detach(9E) entry point. 8859 */ 8860 int 8861 dtrace_unregister(dtrace_provider_id_t id) 8862 { 8863 dtrace_provider_t *old = (dtrace_provider_t *)id; 8864 dtrace_provider_t *prev = NULL; 8865 int i, self = 0, noreap = 0; 8866 dtrace_probe_t *probe, *first = NULL; 8867 8868 if (old->dtpv_pops.dtps_enable == 8869 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 8870 /* 8871 * If DTrace itself is the provider, we're called with locks 8872 * already held. 8873 */ 8874 ASSERT(old == dtrace_provider); 8875 #ifdef illumos 8876 ASSERT(dtrace_devi != NULL); 8877 #endif 8878 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8879 ASSERT(MUTEX_HELD(&dtrace_lock)); 8880 self = 1; 8881 8882 if (dtrace_provider->dtpv_next != NULL) { 8883 /* 8884 * There's another provider here; return failure. 8885 */ 8886 return (EBUSY); 8887 } 8888 } else { 8889 mutex_enter(&dtrace_provider_lock); 8890 #ifdef illumos 8891 mutex_enter(&mod_lock); 8892 #endif 8893 mutex_enter(&dtrace_lock); 8894 } 8895 8896 /* 8897 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8898 * probes, we refuse to let providers slither away, unless this 8899 * provider has already been explicitly invalidated. 8900 */ 8901 if (!old->dtpv_defunct && 8902 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8903 dtrace_anon.dta_state->dts_necbs > 0))) { 8904 if (!self) { 8905 mutex_exit(&dtrace_lock); 8906 #ifdef illumos 8907 mutex_exit(&mod_lock); 8908 #endif 8909 mutex_exit(&dtrace_provider_lock); 8910 } 8911 return (EBUSY); 8912 } 8913 8914 /* 8915 * Attempt to destroy the probes associated with this provider. 8916 */ 8917 for (i = 0; i < dtrace_nprobes; i++) { 8918 if ((probe = dtrace_probes[i]) == NULL) 8919 continue; 8920 8921 if (probe->dtpr_provider != old) 8922 continue; 8923 8924 if (probe->dtpr_ecb == NULL) 8925 continue; 8926 8927 /* 8928 * If we are trying to unregister a defunct provider, and the 8929 * provider was made defunct within the interval dictated by 8930 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8931 * attempt to reap our enablings. To denote that the provider 8932 * should reattempt to unregister itself at some point in the 8933 * future, we will return a differentiable error code (EAGAIN 8934 * instead of EBUSY) in this case. 8935 */ 8936 if (dtrace_gethrtime() - old->dtpv_defunct > 8937 dtrace_unregister_defunct_reap) 8938 noreap = 1; 8939 8940 if (!self) { 8941 mutex_exit(&dtrace_lock); 8942 #ifdef illumos 8943 mutex_exit(&mod_lock); 8944 #endif 8945 mutex_exit(&dtrace_provider_lock); 8946 } 8947 8948 if (noreap) 8949 return (EBUSY); 8950 8951 (void) taskq_dispatch(dtrace_taskq, 8952 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8953 8954 return (EAGAIN); 8955 } 8956 8957 /* 8958 * All of the probes for this provider are disabled; we can safely 8959 * remove all of them from their hash chains and from the probe array. 8960 */ 8961 for (i = 0; i < dtrace_nprobes; i++) { 8962 if ((probe = dtrace_probes[i]) == NULL) 8963 continue; 8964 8965 if (probe->dtpr_provider != old) 8966 continue; 8967 8968 dtrace_probes[i] = NULL; 8969 8970 dtrace_hash_remove(dtrace_bymod, probe); 8971 dtrace_hash_remove(dtrace_byfunc, probe); 8972 dtrace_hash_remove(dtrace_byname, probe); 8973 8974 if (first == NULL) { 8975 first = probe; 8976 probe->dtpr_nextmod = NULL; 8977 } else { 8978 probe->dtpr_nextmod = first; 8979 first = probe; 8980 } 8981 } 8982 8983 /* 8984 * The provider's probes have been removed from the hash chains and 8985 * from the probe array. Now issue a dtrace_sync() to be sure that 8986 * everyone has cleared out from any probe array processing. 8987 */ 8988 dtrace_sync(); 8989 8990 for (probe = first; probe != NULL; probe = first) { 8991 first = probe->dtpr_nextmod; 8992 8993 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8994 probe->dtpr_arg); 8995 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8996 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8997 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8998 #ifdef illumos 8999 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 9000 #else 9001 free_unr(dtrace_arena, probe->dtpr_id); 9002 #endif 9003 kmem_free(probe, sizeof (dtrace_probe_t)); 9004 } 9005 9006 if ((prev = dtrace_provider) == old) { 9007 #ifdef illumos 9008 ASSERT(self || dtrace_devi == NULL); 9009 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 9010 #endif 9011 dtrace_provider = old->dtpv_next; 9012 } else { 9013 while (prev != NULL && prev->dtpv_next != old) 9014 prev = prev->dtpv_next; 9015 9016 if (prev == NULL) { 9017 panic("attempt to unregister non-existent " 9018 "dtrace provider %p\n", (void *)id); 9019 } 9020 9021 prev->dtpv_next = old->dtpv_next; 9022 } 9023 9024 if (!self) { 9025 mutex_exit(&dtrace_lock); 9026 #ifdef illumos 9027 mutex_exit(&mod_lock); 9028 #endif 9029 mutex_exit(&dtrace_provider_lock); 9030 } 9031 9032 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 9033 kmem_free(old, sizeof (dtrace_provider_t)); 9034 9035 return (0); 9036 } 9037 9038 /* 9039 * Invalidate the specified provider. All subsequent probe lookups for the 9040 * specified provider will fail, but its probes will not be removed. 9041 */ 9042 void 9043 dtrace_invalidate(dtrace_provider_id_t id) 9044 { 9045 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 9046 9047 ASSERT(pvp->dtpv_pops.dtps_enable != 9048 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9049 9050 mutex_enter(&dtrace_provider_lock); 9051 mutex_enter(&dtrace_lock); 9052 9053 pvp->dtpv_defunct = dtrace_gethrtime(); 9054 9055 mutex_exit(&dtrace_lock); 9056 mutex_exit(&dtrace_provider_lock); 9057 } 9058 9059 /* 9060 * Indicate whether or not DTrace has attached. 9061 */ 9062 int 9063 dtrace_attached(void) 9064 { 9065 /* 9066 * dtrace_provider will be non-NULL iff the DTrace driver has 9067 * attached. (It's non-NULL because DTrace is always itself a 9068 * provider.) 9069 */ 9070 return (dtrace_provider != NULL); 9071 } 9072 9073 /* 9074 * Remove all the unenabled probes for the given provider. This function is 9075 * not unlike dtrace_unregister(), except that it doesn't remove the provider 9076 * -- just as many of its associated probes as it can. 9077 */ 9078 int 9079 dtrace_condense(dtrace_provider_id_t id) 9080 { 9081 dtrace_provider_t *prov = (dtrace_provider_t *)id; 9082 int i; 9083 dtrace_probe_t *probe; 9084 9085 /* 9086 * Make sure this isn't the dtrace provider itself. 9087 */ 9088 ASSERT(prov->dtpv_pops.dtps_enable != 9089 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9090 9091 mutex_enter(&dtrace_provider_lock); 9092 mutex_enter(&dtrace_lock); 9093 9094 /* 9095 * Attempt to destroy the probes associated with this provider. 9096 */ 9097 for (i = 0; i < dtrace_nprobes; i++) { 9098 if ((probe = dtrace_probes[i]) == NULL) 9099 continue; 9100 9101 if (probe->dtpr_provider != prov) 9102 continue; 9103 9104 if (probe->dtpr_ecb != NULL) 9105 continue; 9106 9107 dtrace_probes[i] = NULL; 9108 9109 dtrace_hash_remove(dtrace_bymod, probe); 9110 dtrace_hash_remove(dtrace_byfunc, probe); 9111 dtrace_hash_remove(dtrace_byname, probe); 9112 9113 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 9114 probe->dtpr_arg); 9115 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 9116 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 9117 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 9118 kmem_free(probe, sizeof (dtrace_probe_t)); 9119 #ifdef illumos 9120 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 9121 #else 9122 free_unr(dtrace_arena, i + 1); 9123 #endif 9124 } 9125 9126 mutex_exit(&dtrace_lock); 9127 mutex_exit(&dtrace_provider_lock); 9128 9129 return (0); 9130 } 9131 9132 /* 9133 * DTrace Probe Management Functions 9134 * 9135 * The functions in this section perform the DTrace probe management, 9136 * including functions to create probes, look-up probes, and call into the 9137 * providers to request that probes be provided. Some of these functions are 9138 * in the Provider-to-Framework API; these functions can be identified by the 9139 * fact that they are not declared "static". 9140 */ 9141 9142 /* 9143 * Create a probe with the specified module name, function name, and name. 9144 */ 9145 dtrace_id_t 9146 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 9147 const char *func, const char *name, int aframes, void *arg) 9148 { 9149 dtrace_probe_t *probe, **probes; 9150 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 9151 dtrace_id_t id; 9152 9153 if (provider == dtrace_provider) { 9154 ASSERT(MUTEX_HELD(&dtrace_lock)); 9155 } else { 9156 mutex_enter(&dtrace_lock); 9157 } 9158 9159 #ifdef illumos 9160 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 9161 VM_BESTFIT | VM_SLEEP); 9162 #else 9163 id = alloc_unr(dtrace_arena); 9164 #endif 9165 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 9166 9167 probe->dtpr_id = id; 9168 probe->dtpr_gen = dtrace_probegen++; 9169 probe->dtpr_mod = dtrace_strdup(mod); 9170 probe->dtpr_func = dtrace_strdup(func); 9171 probe->dtpr_name = dtrace_strdup(name); 9172 probe->dtpr_arg = arg; 9173 probe->dtpr_aframes = aframes; 9174 probe->dtpr_provider = provider; 9175 9176 dtrace_hash_add(dtrace_bymod, probe); 9177 dtrace_hash_add(dtrace_byfunc, probe); 9178 dtrace_hash_add(dtrace_byname, probe); 9179 9180 if (id - 1 >= dtrace_nprobes) { 9181 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 9182 size_t nsize = osize << 1; 9183 9184 if (nsize == 0) { 9185 ASSERT(osize == 0); 9186 ASSERT(dtrace_probes == NULL); 9187 nsize = sizeof (dtrace_probe_t *); 9188 } 9189 9190 probes = kmem_zalloc(nsize, KM_SLEEP); 9191 9192 if (dtrace_probes == NULL) { 9193 ASSERT(osize == 0); 9194 dtrace_probes = probes; 9195 dtrace_nprobes = 1; 9196 } else { 9197 dtrace_probe_t **oprobes = dtrace_probes; 9198 9199 bcopy(oprobes, probes, osize); 9200 dtrace_membar_producer(); 9201 dtrace_probes = probes; 9202 9203 dtrace_sync(); 9204 9205 /* 9206 * All CPUs are now seeing the new probes array; we can 9207 * safely free the old array. 9208 */ 9209 kmem_free(oprobes, osize); 9210 dtrace_nprobes <<= 1; 9211 } 9212 9213 ASSERT(id - 1 < dtrace_nprobes); 9214 } 9215 9216 ASSERT(dtrace_probes[id - 1] == NULL); 9217 dtrace_probes[id - 1] = probe; 9218 9219 if (provider != dtrace_provider) 9220 mutex_exit(&dtrace_lock); 9221 9222 return (id); 9223 } 9224 9225 static dtrace_probe_t * 9226 dtrace_probe_lookup_id(dtrace_id_t id) 9227 { 9228 ASSERT(MUTEX_HELD(&dtrace_lock)); 9229 9230 if (id == 0 || id > dtrace_nprobes) 9231 return (NULL); 9232 9233 return (dtrace_probes[id - 1]); 9234 } 9235 9236 static int 9237 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 9238 { 9239 *((dtrace_id_t *)arg) = probe->dtpr_id; 9240 9241 return (DTRACE_MATCH_DONE); 9242 } 9243 9244 /* 9245 * Look up a probe based on provider and one or more of module name, function 9246 * name and probe name. 9247 */ 9248 dtrace_id_t 9249 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, 9250 char *func, char *name) 9251 { 9252 dtrace_probekey_t pkey; 9253 dtrace_id_t id; 9254 int match; 9255 9256 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 9257 pkey.dtpk_pmatch = &dtrace_match_string; 9258 pkey.dtpk_mod = mod; 9259 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 9260 pkey.dtpk_func = func; 9261 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 9262 pkey.dtpk_name = name; 9263 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 9264 pkey.dtpk_id = DTRACE_IDNONE; 9265 9266 mutex_enter(&dtrace_lock); 9267 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 9268 dtrace_probe_lookup_match, &id); 9269 mutex_exit(&dtrace_lock); 9270 9271 ASSERT(match == 1 || match == 0); 9272 return (match ? id : 0); 9273 } 9274 9275 /* 9276 * Returns the probe argument associated with the specified probe. 9277 */ 9278 void * 9279 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 9280 { 9281 dtrace_probe_t *probe; 9282 void *rval = NULL; 9283 9284 mutex_enter(&dtrace_lock); 9285 9286 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 9287 probe->dtpr_provider == (dtrace_provider_t *)id) 9288 rval = probe->dtpr_arg; 9289 9290 mutex_exit(&dtrace_lock); 9291 9292 return (rval); 9293 } 9294 9295 /* 9296 * Copy a probe into a probe description. 9297 */ 9298 static void 9299 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 9300 { 9301 bzero(pdp, sizeof (dtrace_probedesc_t)); 9302 pdp->dtpd_id = prp->dtpr_id; 9303 9304 (void) strncpy(pdp->dtpd_provider, 9305 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 9306 9307 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 9308 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 9309 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 9310 } 9311 9312 /* 9313 * Called to indicate that a probe -- or probes -- should be provided by a 9314 * specfied provider. If the specified description is NULL, the provider will 9315 * be told to provide all of its probes. (This is done whenever a new 9316 * consumer comes along, or whenever a retained enabling is to be matched.) If 9317 * the specified description is non-NULL, the provider is given the 9318 * opportunity to dynamically provide the specified probe, allowing providers 9319 * to support the creation of probes on-the-fly. (So-called _autocreated_ 9320 * probes.) If the provider is NULL, the operations will be applied to all 9321 * providers; if the provider is non-NULL the operations will only be applied 9322 * to the specified provider. The dtrace_provider_lock must be held, and the 9323 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 9324 * will need to grab the dtrace_lock when it reenters the framework through 9325 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 9326 */ 9327 static void 9328 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 9329 { 9330 #ifdef illumos 9331 modctl_t *ctl; 9332 #endif 9333 int all = 0; 9334 9335 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9336 9337 if (prv == NULL) { 9338 all = 1; 9339 prv = dtrace_provider; 9340 } 9341 9342 do { 9343 /* 9344 * First, call the blanket provide operation. 9345 */ 9346 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 9347 9348 #ifdef illumos 9349 /* 9350 * Now call the per-module provide operation. We will grab 9351 * mod_lock to prevent the list from being modified. Note 9352 * that this also prevents the mod_busy bits from changing. 9353 * (mod_busy can only be changed with mod_lock held.) 9354 */ 9355 mutex_enter(&mod_lock); 9356 9357 ctl = &modules; 9358 do { 9359 if (ctl->mod_busy || ctl->mod_mp == NULL) 9360 continue; 9361 9362 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 9363 9364 } while ((ctl = ctl->mod_next) != &modules); 9365 9366 mutex_exit(&mod_lock); 9367 #endif 9368 } while (all && (prv = prv->dtpv_next) != NULL); 9369 } 9370 9371 #ifdef illumos 9372 /* 9373 * Iterate over each probe, and call the Framework-to-Provider API function 9374 * denoted by offs. 9375 */ 9376 static void 9377 dtrace_probe_foreach(uintptr_t offs) 9378 { 9379 dtrace_provider_t *prov; 9380 void (*func)(void *, dtrace_id_t, void *); 9381 dtrace_probe_t *probe; 9382 dtrace_icookie_t cookie; 9383 int i; 9384 9385 /* 9386 * We disable interrupts to walk through the probe array. This is 9387 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 9388 * won't see stale data. 9389 */ 9390 cookie = dtrace_interrupt_disable(); 9391 9392 for (i = 0; i < dtrace_nprobes; i++) { 9393 if ((probe = dtrace_probes[i]) == NULL) 9394 continue; 9395 9396 if (probe->dtpr_ecb == NULL) { 9397 /* 9398 * This probe isn't enabled -- don't call the function. 9399 */ 9400 continue; 9401 } 9402 9403 prov = probe->dtpr_provider; 9404 func = *((void(**)(void *, dtrace_id_t, void *)) 9405 ((uintptr_t)&prov->dtpv_pops + offs)); 9406 9407 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 9408 } 9409 9410 dtrace_interrupt_enable(cookie); 9411 } 9412 #endif 9413 9414 static int 9415 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 9416 { 9417 dtrace_probekey_t pkey; 9418 uint32_t priv; 9419 uid_t uid; 9420 zoneid_t zoneid; 9421 9422 ASSERT(MUTEX_HELD(&dtrace_lock)); 9423 dtrace_ecb_create_cache = NULL; 9424 9425 if (desc == NULL) { 9426 /* 9427 * If we're passed a NULL description, we're being asked to 9428 * create an ECB with a NULL probe. 9429 */ 9430 (void) dtrace_ecb_create_enable(NULL, enab); 9431 return (0); 9432 } 9433 9434 dtrace_probekey(desc, &pkey); 9435 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 9436 &priv, &uid, &zoneid); 9437 9438 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 9439 enab)); 9440 } 9441 9442 /* 9443 * DTrace Helper Provider Functions 9444 */ 9445 static void 9446 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 9447 { 9448 attr->dtat_name = DOF_ATTR_NAME(dofattr); 9449 attr->dtat_data = DOF_ATTR_DATA(dofattr); 9450 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 9451 } 9452 9453 static void 9454 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 9455 const dof_provider_t *dofprov, char *strtab) 9456 { 9457 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 9458 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 9459 dofprov->dofpv_provattr); 9460 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 9461 dofprov->dofpv_modattr); 9462 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 9463 dofprov->dofpv_funcattr); 9464 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 9465 dofprov->dofpv_nameattr); 9466 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 9467 dofprov->dofpv_argsattr); 9468 } 9469 9470 static void 9471 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9472 { 9473 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9474 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9475 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 9476 dof_provider_t *provider; 9477 dof_probe_t *probe; 9478 uint32_t *off, *enoff; 9479 uint8_t *arg; 9480 char *strtab; 9481 uint_t i, nprobes; 9482 dtrace_helper_provdesc_t dhpv; 9483 dtrace_helper_probedesc_t dhpb; 9484 dtrace_meta_t *meta = dtrace_meta_pid; 9485 dtrace_mops_t *mops = &meta->dtm_mops; 9486 void *parg; 9487 9488 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9489 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9490 provider->dofpv_strtab * dof->dofh_secsize); 9491 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9492 provider->dofpv_probes * dof->dofh_secsize); 9493 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9494 provider->dofpv_prargs * dof->dofh_secsize); 9495 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9496 provider->dofpv_proffs * dof->dofh_secsize); 9497 9498 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9499 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 9500 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 9501 enoff = NULL; 9502 9503 /* 9504 * See dtrace_helper_provider_validate(). 9505 */ 9506 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 9507 provider->dofpv_prenoffs != DOF_SECT_NONE) { 9508 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9509 provider->dofpv_prenoffs * dof->dofh_secsize); 9510 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 9511 } 9512 9513 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 9514 9515 /* 9516 * Create the provider. 9517 */ 9518 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9519 9520 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9521 return; 9522 9523 meta->dtm_count++; 9524 9525 /* 9526 * Create the probes. 9527 */ 9528 for (i = 0; i < nprobes; i++) { 9529 probe = (dof_probe_t *)(uintptr_t)(daddr + 9530 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9531 9532 /* See the check in dtrace_helper_provider_validate(). */ 9533 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) 9534 continue; 9535 9536 dhpb.dthpb_mod = dhp->dofhp_mod; 9537 dhpb.dthpb_func = strtab + probe->dofpr_func; 9538 dhpb.dthpb_name = strtab + probe->dofpr_name; 9539 dhpb.dthpb_base = probe->dofpr_addr; 9540 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9541 dhpb.dthpb_noffs = probe->dofpr_noffs; 9542 if (enoff != NULL) { 9543 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9544 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9545 } else { 9546 dhpb.dthpb_enoffs = NULL; 9547 dhpb.dthpb_nenoffs = 0; 9548 } 9549 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9550 dhpb.dthpb_nargc = probe->dofpr_nargc; 9551 dhpb.dthpb_xargc = probe->dofpr_xargc; 9552 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9553 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9554 9555 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9556 } 9557 } 9558 9559 static void 9560 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9561 { 9562 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9563 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9564 int i; 9565 9566 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9567 9568 for (i = 0; i < dof->dofh_secnum; i++) { 9569 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9570 dof->dofh_secoff + i * dof->dofh_secsize); 9571 9572 if (sec->dofs_type != DOF_SECT_PROVIDER) 9573 continue; 9574 9575 dtrace_helper_provide_one(dhp, sec, pid); 9576 } 9577 9578 /* 9579 * We may have just created probes, so we must now rematch against 9580 * any retained enablings. Note that this call will acquire both 9581 * cpu_lock and dtrace_lock; the fact that we are holding 9582 * dtrace_meta_lock now is what defines the ordering with respect to 9583 * these three locks. 9584 */ 9585 dtrace_enabling_matchall(); 9586 } 9587 9588 static void 9589 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9590 { 9591 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9592 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9593 dof_sec_t *str_sec; 9594 dof_provider_t *provider; 9595 char *strtab; 9596 dtrace_helper_provdesc_t dhpv; 9597 dtrace_meta_t *meta = dtrace_meta_pid; 9598 dtrace_mops_t *mops = &meta->dtm_mops; 9599 9600 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9601 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9602 provider->dofpv_strtab * dof->dofh_secsize); 9603 9604 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9605 9606 /* 9607 * Create the provider. 9608 */ 9609 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9610 9611 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9612 9613 meta->dtm_count--; 9614 } 9615 9616 static void 9617 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9618 { 9619 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9620 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9621 int i; 9622 9623 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9624 9625 for (i = 0; i < dof->dofh_secnum; i++) { 9626 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9627 dof->dofh_secoff + i * dof->dofh_secsize); 9628 9629 if (sec->dofs_type != DOF_SECT_PROVIDER) 9630 continue; 9631 9632 dtrace_helper_provider_remove_one(dhp, sec, pid); 9633 } 9634 } 9635 9636 /* 9637 * DTrace Meta Provider-to-Framework API Functions 9638 * 9639 * These functions implement the Meta Provider-to-Framework API, as described 9640 * in <sys/dtrace.h>. 9641 */ 9642 int 9643 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9644 dtrace_meta_provider_id_t *idp) 9645 { 9646 dtrace_meta_t *meta; 9647 dtrace_helpers_t *help, *next; 9648 int i; 9649 9650 *idp = DTRACE_METAPROVNONE; 9651 9652 /* 9653 * We strictly don't need the name, but we hold onto it for 9654 * debuggability. All hail error queues! 9655 */ 9656 if (name == NULL) { 9657 cmn_err(CE_WARN, "failed to register meta-provider: " 9658 "invalid name"); 9659 return (EINVAL); 9660 } 9661 9662 if (mops == NULL || 9663 mops->dtms_create_probe == NULL || 9664 mops->dtms_provide_pid == NULL || 9665 mops->dtms_remove_pid == NULL) { 9666 cmn_err(CE_WARN, "failed to register meta-register %s: " 9667 "invalid ops", name); 9668 return (EINVAL); 9669 } 9670 9671 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9672 meta->dtm_mops = *mops; 9673 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9674 (void) strcpy(meta->dtm_name, name); 9675 meta->dtm_arg = arg; 9676 9677 mutex_enter(&dtrace_meta_lock); 9678 mutex_enter(&dtrace_lock); 9679 9680 if (dtrace_meta_pid != NULL) { 9681 mutex_exit(&dtrace_lock); 9682 mutex_exit(&dtrace_meta_lock); 9683 cmn_err(CE_WARN, "failed to register meta-register %s: " 9684 "user-land meta-provider exists", name); 9685 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9686 kmem_free(meta, sizeof (dtrace_meta_t)); 9687 return (EINVAL); 9688 } 9689 9690 dtrace_meta_pid = meta; 9691 *idp = (dtrace_meta_provider_id_t)meta; 9692 9693 /* 9694 * If there are providers and probes ready to go, pass them 9695 * off to the new meta provider now. 9696 */ 9697 9698 help = dtrace_deferred_pid; 9699 dtrace_deferred_pid = NULL; 9700 9701 mutex_exit(&dtrace_lock); 9702 9703 while (help != NULL) { 9704 for (i = 0; i < help->dthps_nprovs; i++) { 9705 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9706 help->dthps_pid); 9707 } 9708 9709 next = help->dthps_next; 9710 help->dthps_next = NULL; 9711 help->dthps_prev = NULL; 9712 help->dthps_deferred = 0; 9713 help = next; 9714 } 9715 9716 mutex_exit(&dtrace_meta_lock); 9717 9718 return (0); 9719 } 9720 9721 int 9722 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9723 { 9724 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9725 9726 mutex_enter(&dtrace_meta_lock); 9727 mutex_enter(&dtrace_lock); 9728 9729 if (old == dtrace_meta_pid) { 9730 pp = &dtrace_meta_pid; 9731 } else { 9732 panic("attempt to unregister non-existent " 9733 "dtrace meta-provider %p\n", (void *)old); 9734 } 9735 9736 if (old->dtm_count != 0) { 9737 mutex_exit(&dtrace_lock); 9738 mutex_exit(&dtrace_meta_lock); 9739 return (EBUSY); 9740 } 9741 9742 *pp = NULL; 9743 9744 mutex_exit(&dtrace_lock); 9745 mutex_exit(&dtrace_meta_lock); 9746 9747 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9748 kmem_free(old, sizeof (dtrace_meta_t)); 9749 9750 return (0); 9751 } 9752 9753 9754 /* 9755 * DTrace DIF Object Functions 9756 */ 9757 static int 9758 dtrace_difo_err(uint_t pc, const char *format, ...) 9759 { 9760 if (dtrace_err_verbose) { 9761 va_list alist; 9762 9763 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9764 va_start(alist, format); 9765 (void) vuprintf(format, alist); 9766 va_end(alist); 9767 } 9768 9769 #ifdef DTRACE_ERRDEBUG 9770 dtrace_errdebug(format); 9771 #endif 9772 return (1); 9773 } 9774 9775 /* 9776 * Validate a DTrace DIF object by checking the IR instructions. The following 9777 * rules are currently enforced by dtrace_difo_validate(): 9778 * 9779 * 1. Each instruction must have a valid opcode 9780 * 2. Each register, string, variable, or subroutine reference must be valid 9781 * 3. No instruction can modify register %r0 (must be zero) 9782 * 4. All instruction reserved bits must be set to zero 9783 * 5. The last instruction must be a "ret" instruction 9784 * 6. All branch targets must reference a valid instruction _after_ the branch 9785 */ 9786 static int 9787 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9788 cred_t *cr) 9789 { 9790 int err = 0, i; 9791 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9792 int kcheckload; 9793 uint_t pc; 9794 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9795 9796 kcheckload = cr == NULL || 9797 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9798 9799 dp->dtdo_destructive = 0; 9800 9801 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9802 dif_instr_t instr = dp->dtdo_buf[pc]; 9803 9804 uint_t r1 = DIF_INSTR_R1(instr); 9805 uint_t r2 = DIF_INSTR_R2(instr); 9806 uint_t rd = DIF_INSTR_RD(instr); 9807 uint_t rs = DIF_INSTR_RS(instr); 9808 uint_t label = DIF_INSTR_LABEL(instr); 9809 uint_t v = DIF_INSTR_VAR(instr); 9810 uint_t subr = DIF_INSTR_SUBR(instr); 9811 uint_t type = DIF_INSTR_TYPE(instr); 9812 uint_t op = DIF_INSTR_OP(instr); 9813 9814 switch (op) { 9815 case DIF_OP_OR: 9816 case DIF_OP_XOR: 9817 case DIF_OP_AND: 9818 case DIF_OP_SLL: 9819 case DIF_OP_SRL: 9820 case DIF_OP_SRA: 9821 case DIF_OP_SUB: 9822 case DIF_OP_ADD: 9823 case DIF_OP_MUL: 9824 case DIF_OP_SDIV: 9825 case DIF_OP_UDIV: 9826 case DIF_OP_SREM: 9827 case DIF_OP_UREM: 9828 case DIF_OP_COPYS: 9829 if (r1 >= nregs) 9830 err += efunc(pc, "invalid register %u\n", r1); 9831 if (r2 >= nregs) 9832 err += efunc(pc, "invalid register %u\n", r2); 9833 if (rd >= nregs) 9834 err += efunc(pc, "invalid register %u\n", rd); 9835 if (rd == 0) 9836 err += efunc(pc, "cannot write to %%r0\n"); 9837 break; 9838 case DIF_OP_NOT: 9839 case DIF_OP_MOV: 9840 case DIF_OP_ALLOCS: 9841 if (r1 >= nregs) 9842 err += efunc(pc, "invalid register %u\n", r1); 9843 if (r2 != 0) 9844 err += efunc(pc, "non-zero reserved bits\n"); 9845 if (rd >= nregs) 9846 err += efunc(pc, "invalid register %u\n", rd); 9847 if (rd == 0) 9848 err += efunc(pc, "cannot write to %%r0\n"); 9849 break; 9850 case DIF_OP_LDSB: 9851 case DIF_OP_LDSH: 9852 case DIF_OP_LDSW: 9853 case DIF_OP_LDUB: 9854 case DIF_OP_LDUH: 9855 case DIF_OP_LDUW: 9856 case DIF_OP_LDX: 9857 if (r1 >= nregs) 9858 err += efunc(pc, "invalid register %u\n", r1); 9859 if (r2 != 0) 9860 err += efunc(pc, "non-zero reserved bits\n"); 9861 if (rd >= nregs) 9862 err += efunc(pc, "invalid register %u\n", rd); 9863 if (rd == 0) 9864 err += efunc(pc, "cannot write to %%r0\n"); 9865 if (kcheckload) 9866 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9867 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9868 break; 9869 case DIF_OP_RLDSB: 9870 case DIF_OP_RLDSH: 9871 case DIF_OP_RLDSW: 9872 case DIF_OP_RLDUB: 9873 case DIF_OP_RLDUH: 9874 case DIF_OP_RLDUW: 9875 case DIF_OP_RLDX: 9876 if (r1 >= nregs) 9877 err += efunc(pc, "invalid register %u\n", r1); 9878 if (r2 != 0) 9879 err += efunc(pc, "non-zero reserved bits\n"); 9880 if (rd >= nregs) 9881 err += efunc(pc, "invalid register %u\n", rd); 9882 if (rd == 0) 9883 err += efunc(pc, "cannot write to %%r0\n"); 9884 break; 9885 case DIF_OP_ULDSB: 9886 case DIF_OP_ULDSH: 9887 case DIF_OP_ULDSW: 9888 case DIF_OP_ULDUB: 9889 case DIF_OP_ULDUH: 9890 case DIF_OP_ULDUW: 9891 case DIF_OP_ULDX: 9892 if (r1 >= nregs) 9893 err += efunc(pc, "invalid register %u\n", r1); 9894 if (r2 != 0) 9895 err += efunc(pc, "non-zero reserved bits\n"); 9896 if (rd >= nregs) 9897 err += efunc(pc, "invalid register %u\n", rd); 9898 if (rd == 0) 9899 err += efunc(pc, "cannot write to %%r0\n"); 9900 break; 9901 case DIF_OP_STB: 9902 case DIF_OP_STH: 9903 case DIF_OP_STW: 9904 case DIF_OP_STX: 9905 if (r1 >= nregs) 9906 err += efunc(pc, "invalid register %u\n", r1); 9907 if (r2 != 0) 9908 err += efunc(pc, "non-zero reserved bits\n"); 9909 if (rd >= nregs) 9910 err += efunc(pc, "invalid register %u\n", rd); 9911 if (rd == 0) 9912 err += efunc(pc, "cannot write to 0 address\n"); 9913 break; 9914 case DIF_OP_CMP: 9915 case DIF_OP_SCMP: 9916 if (r1 >= nregs) 9917 err += efunc(pc, "invalid register %u\n", r1); 9918 if (r2 >= nregs) 9919 err += efunc(pc, "invalid register %u\n", r2); 9920 if (rd != 0) 9921 err += efunc(pc, "non-zero reserved bits\n"); 9922 break; 9923 case DIF_OP_TST: 9924 if (r1 >= nregs) 9925 err += efunc(pc, "invalid register %u\n", r1); 9926 if (r2 != 0 || rd != 0) 9927 err += efunc(pc, "non-zero reserved bits\n"); 9928 break; 9929 case DIF_OP_BA: 9930 case DIF_OP_BE: 9931 case DIF_OP_BNE: 9932 case DIF_OP_BG: 9933 case DIF_OP_BGU: 9934 case DIF_OP_BGE: 9935 case DIF_OP_BGEU: 9936 case DIF_OP_BL: 9937 case DIF_OP_BLU: 9938 case DIF_OP_BLE: 9939 case DIF_OP_BLEU: 9940 if (label >= dp->dtdo_len) { 9941 err += efunc(pc, "invalid branch target %u\n", 9942 label); 9943 } 9944 if (label <= pc) { 9945 err += efunc(pc, "backward branch to %u\n", 9946 label); 9947 } 9948 break; 9949 case DIF_OP_RET: 9950 if (r1 != 0 || r2 != 0) 9951 err += efunc(pc, "non-zero reserved bits\n"); 9952 if (rd >= nregs) 9953 err += efunc(pc, "invalid register %u\n", rd); 9954 break; 9955 case DIF_OP_NOP: 9956 case DIF_OP_POPTS: 9957 case DIF_OP_FLUSHTS: 9958 if (r1 != 0 || r2 != 0 || rd != 0) 9959 err += efunc(pc, "non-zero reserved bits\n"); 9960 break; 9961 case DIF_OP_SETX: 9962 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9963 err += efunc(pc, "invalid integer ref %u\n", 9964 DIF_INSTR_INTEGER(instr)); 9965 } 9966 if (rd >= nregs) 9967 err += efunc(pc, "invalid register %u\n", rd); 9968 if (rd == 0) 9969 err += efunc(pc, "cannot write to %%r0\n"); 9970 break; 9971 case DIF_OP_SETS: 9972 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9973 err += efunc(pc, "invalid string ref %u\n", 9974 DIF_INSTR_STRING(instr)); 9975 } 9976 if (rd >= nregs) 9977 err += efunc(pc, "invalid register %u\n", rd); 9978 if (rd == 0) 9979 err += efunc(pc, "cannot write to %%r0\n"); 9980 break; 9981 case DIF_OP_LDGA: 9982 case DIF_OP_LDTA: 9983 if (r1 > DIF_VAR_ARRAY_MAX) 9984 err += efunc(pc, "invalid array %u\n", r1); 9985 if (r2 >= nregs) 9986 err += efunc(pc, "invalid register %u\n", r2); 9987 if (rd >= nregs) 9988 err += efunc(pc, "invalid register %u\n", rd); 9989 if (rd == 0) 9990 err += efunc(pc, "cannot write to %%r0\n"); 9991 break; 9992 case DIF_OP_LDGS: 9993 case DIF_OP_LDTS: 9994 case DIF_OP_LDLS: 9995 case DIF_OP_LDGAA: 9996 case DIF_OP_LDTAA: 9997 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9998 err += efunc(pc, "invalid variable %u\n", v); 9999 if (rd >= nregs) 10000 err += efunc(pc, "invalid register %u\n", rd); 10001 if (rd == 0) 10002 err += efunc(pc, "cannot write to %%r0\n"); 10003 break; 10004 case DIF_OP_STGS: 10005 case DIF_OP_STTS: 10006 case DIF_OP_STLS: 10007 case DIF_OP_STGAA: 10008 case DIF_OP_STTAA: 10009 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 10010 err += efunc(pc, "invalid variable %u\n", v); 10011 if (rs >= nregs) 10012 err += efunc(pc, "invalid register %u\n", rd); 10013 break; 10014 case DIF_OP_CALL: 10015 if (subr > DIF_SUBR_MAX) 10016 err += efunc(pc, "invalid subr %u\n", subr); 10017 if (rd >= nregs) 10018 err += efunc(pc, "invalid register %u\n", rd); 10019 if (rd == 0) 10020 err += efunc(pc, "cannot write to %%r0\n"); 10021 10022 if (subr == DIF_SUBR_COPYOUT || 10023 subr == DIF_SUBR_COPYOUTSTR) { 10024 dp->dtdo_destructive = 1; 10025 } 10026 10027 if (subr == DIF_SUBR_GETF) { 10028 #ifdef __FreeBSD__ 10029 err += efunc(pc, "getf() not supported"); 10030 #else 10031 /* 10032 * If we have a getf() we need to record that 10033 * in our state. Note that our state can be 10034 * NULL if this is a helper -- but in that 10035 * case, the call to getf() is itself illegal, 10036 * and will be caught (slightly later) when 10037 * the helper is validated. 10038 */ 10039 if (vstate->dtvs_state != NULL) 10040 vstate->dtvs_state->dts_getf++; 10041 #endif 10042 } 10043 10044 break; 10045 case DIF_OP_PUSHTR: 10046 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 10047 err += efunc(pc, "invalid ref type %u\n", type); 10048 if (r2 >= nregs) 10049 err += efunc(pc, "invalid register %u\n", r2); 10050 if (rs >= nregs) 10051 err += efunc(pc, "invalid register %u\n", rs); 10052 break; 10053 case DIF_OP_PUSHTV: 10054 if (type != DIF_TYPE_CTF) 10055 err += efunc(pc, "invalid val type %u\n", type); 10056 if (r2 >= nregs) 10057 err += efunc(pc, "invalid register %u\n", r2); 10058 if (rs >= nregs) 10059 err += efunc(pc, "invalid register %u\n", rs); 10060 break; 10061 default: 10062 err += efunc(pc, "invalid opcode %u\n", 10063 DIF_INSTR_OP(instr)); 10064 } 10065 } 10066 10067 if (dp->dtdo_len != 0 && 10068 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 10069 err += efunc(dp->dtdo_len - 1, 10070 "expected 'ret' as last DIF instruction\n"); 10071 } 10072 10073 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 10074 /* 10075 * If we're not returning by reference, the size must be either 10076 * 0 or the size of one of the base types. 10077 */ 10078 switch (dp->dtdo_rtype.dtdt_size) { 10079 case 0: 10080 case sizeof (uint8_t): 10081 case sizeof (uint16_t): 10082 case sizeof (uint32_t): 10083 case sizeof (uint64_t): 10084 break; 10085 10086 default: 10087 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 10088 } 10089 } 10090 10091 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 10092 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 10093 dtrace_diftype_t *vt, *et; 10094 uint_t id, ndx; 10095 10096 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 10097 v->dtdv_scope != DIFV_SCOPE_THREAD && 10098 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 10099 err += efunc(i, "unrecognized variable scope %d\n", 10100 v->dtdv_scope); 10101 break; 10102 } 10103 10104 if (v->dtdv_kind != DIFV_KIND_ARRAY && 10105 v->dtdv_kind != DIFV_KIND_SCALAR) { 10106 err += efunc(i, "unrecognized variable type %d\n", 10107 v->dtdv_kind); 10108 break; 10109 } 10110 10111 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 10112 err += efunc(i, "%d exceeds variable id limit\n", id); 10113 break; 10114 } 10115 10116 if (id < DIF_VAR_OTHER_UBASE) 10117 continue; 10118 10119 /* 10120 * For user-defined variables, we need to check that this 10121 * definition is identical to any previous definition that we 10122 * encountered. 10123 */ 10124 ndx = id - DIF_VAR_OTHER_UBASE; 10125 10126 switch (v->dtdv_scope) { 10127 case DIFV_SCOPE_GLOBAL: 10128 if (maxglobal == -1 || ndx > maxglobal) 10129 maxglobal = ndx; 10130 10131 if (ndx < vstate->dtvs_nglobals) { 10132 dtrace_statvar_t *svar; 10133 10134 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 10135 existing = &svar->dtsv_var; 10136 } 10137 10138 break; 10139 10140 case DIFV_SCOPE_THREAD: 10141 if (maxtlocal == -1 || ndx > maxtlocal) 10142 maxtlocal = ndx; 10143 10144 if (ndx < vstate->dtvs_ntlocals) 10145 existing = &vstate->dtvs_tlocals[ndx]; 10146 break; 10147 10148 case DIFV_SCOPE_LOCAL: 10149 if (maxlocal == -1 || ndx > maxlocal) 10150 maxlocal = ndx; 10151 10152 if (ndx < vstate->dtvs_nlocals) { 10153 dtrace_statvar_t *svar; 10154 10155 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 10156 existing = &svar->dtsv_var; 10157 } 10158 10159 break; 10160 } 10161 10162 vt = &v->dtdv_type; 10163 10164 if (vt->dtdt_flags & DIF_TF_BYREF) { 10165 if (vt->dtdt_size == 0) { 10166 err += efunc(i, "zero-sized variable\n"); 10167 break; 10168 } 10169 10170 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 10171 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 10172 vt->dtdt_size > dtrace_statvar_maxsize) { 10173 err += efunc(i, "oversized by-ref static\n"); 10174 break; 10175 } 10176 } 10177 10178 if (existing == NULL || existing->dtdv_id == 0) 10179 continue; 10180 10181 ASSERT(existing->dtdv_id == v->dtdv_id); 10182 ASSERT(existing->dtdv_scope == v->dtdv_scope); 10183 10184 if (existing->dtdv_kind != v->dtdv_kind) 10185 err += efunc(i, "%d changed variable kind\n", id); 10186 10187 et = &existing->dtdv_type; 10188 10189 if (vt->dtdt_flags != et->dtdt_flags) { 10190 err += efunc(i, "%d changed variable type flags\n", id); 10191 break; 10192 } 10193 10194 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 10195 err += efunc(i, "%d changed variable type size\n", id); 10196 break; 10197 } 10198 } 10199 10200 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 10201 dif_instr_t instr = dp->dtdo_buf[pc]; 10202 10203 uint_t v = DIF_INSTR_VAR(instr); 10204 uint_t op = DIF_INSTR_OP(instr); 10205 10206 switch (op) { 10207 case DIF_OP_LDGS: 10208 case DIF_OP_LDGAA: 10209 case DIF_OP_STGS: 10210 case DIF_OP_STGAA: 10211 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 10212 err += efunc(pc, "invalid variable %u\n", v); 10213 break; 10214 case DIF_OP_LDTS: 10215 case DIF_OP_LDTAA: 10216 case DIF_OP_STTS: 10217 case DIF_OP_STTAA: 10218 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 10219 err += efunc(pc, "invalid variable %u\n", v); 10220 break; 10221 case DIF_OP_LDLS: 10222 case DIF_OP_STLS: 10223 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 10224 err += efunc(pc, "invalid variable %u\n", v); 10225 break; 10226 default: 10227 break; 10228 } 10229 } 10230 10231 return (err); 10232 } 10233 10234 /* 10235 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 10236 * are much more constrained than normal DIFOs. Specifically, they may 10237 * not: 10238 * 10239 * 1. Make calls to subroutines other than copyin(), copyinstr() or 10240 * miscellaneous string routines 10241 * 2. Access DTrace variables other than the args[] array, and the 10242 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 10243 * 3. Have thread-local variables. 10244 * 4. Have dynamic variables. 10245 */ 10246 static int 10247 dtrace_difo_validate_helper(dtrace_difo_t *dp) 10248 { 10249 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 10250 int err = 0; 10251 uint_t pc; 10252 10253 for (pc = 0; pc < dp->dtdo_len; pc++) { 10254 dif_instr_t instr = dp->dtdo_buf[pc]; 10255 10256 uint_t v = DIF_INSTR_VAR(instr); 10257 uint_t subr = DIF_INSTR_SUBR(instr); 10258 uint_t op = DIF_INSTR_OP(instr); 10259 10260 switch (op) { 10261 case DIF_OP_OR: 10262 case DIF_OP_XOR: 10263 case DIF_OP_AND: 10264 case DIF_OP_SLL: 10265 case DIF_OP_SRL: 10266 case DIF_OP_SRA: 10267 case DIF_OP_SUB: 10268 case DIF_OP_ADD: 10269 case DIF_OP_MUL: 10270 case DIF_OP_SDIV: 10271 case DIF_OP_UDIV: 10272 case DIF_OP_SREM: 10273 case DIF_OP_UREM: 10274 case DIF_OP_COPYS: 10275 case DIF_OP_NOT: 10276 case DIF_OP_MOV: 10277 case DIF_OP_RLDSB: 10278 case DIF_OP_RLDSH: 10279 case DIF_OP_RLDSW: 10280 case DIF_OP_RLDUB: 10281 case DIF_OP_RLDUH: 10282 case DIF_OP_RLDUW: 10283 case DIF_OP_RLDX: 10284 case DIF_OP_ULDSB: 10285 case DIF_OP_ULDSH: 10286 case DIF_OP_ULDSW: 10287 case DIF_OP_ULDUB: 10288 case DIF_OP_ULDUH: 10289 case DIF_OP_ULDUW: 10290 case DIF_OP_ULDX: 10291 case DIF_OP_STB: 10292 case DIF_OP_STH: 10293 case DIF_OP_STW: 10294 case DIF_OP_STX: 10295 case DIF_OP_ALLOCS: 10296 case DIF_OP_CMP: 10297 case DIF_OP_SCMP: 10298 case DIF_OP_TST: 10299 case DIF_OP_BA: 10300 case DIF_OP_BE: 10301 case DIF_OP_BNE: 10302 case DIF_OP_BG: 10303 case DIF_OP_BGU: 10304 case DIF_OP_BGE: 10305 case DIF_OP_BGEU: 10306 case DIF_OP_BL: 10307 case DIF_OP_BLU: 10308 case DIF_OP_BLE: 10309 case DIF_OP_BLEU: 10310 case DIF_OP_RET: 10311 case DIF_OP_NOP: 10312 case DIF_OP_POPTS: 10313 case DIF_OP_FLUSHTS: 10314 case DIF_OP_SETX: 10315 case DIF_OP_SETS: 10316 case DIF_OP_LDGA: 10317 case DIF_OP_LDLS: 10318 case DIF_OP_STGS: 10319 case DIF_OP_STLS: 10320 case DIF_OP_PUSHTR: 10321 case DIF_OP_PUSHTV: 10322 break; 10323 10324 case DIF_OP_LDGS: 10325 if (v >= DIF_VAR_OTHER_UBASE) 10326 break; 10327 10328 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 10329 break; 10330 10331 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 10332 v == DIF_VAR_PPID || v == DIF_VAR_TID || 10333 v == DIF_VAR_EXECARGS || 10334 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 10335 v == DIF_VAR_UID || v == DIF_VAR_GID) 10336 break; 10337 10338 err += efunc(pc, "illegal variable %u\n", v); 10339 break; 10340 10341 case DIF_OP_LDTA: 10342 case DIF_OP_LDTS: 10343 case DIF_OP_LDGAA: 10344 case DIF_OP_LDTAA: 10345 err += efunc(pc, "illegal dynamic variable load\n"); 10346 break; 10347 10348 case DIF_OP_STTS: 10349 case DIF_OP_STGAA: 10350 case DIF_OP_STTAA: 10351 err += efunc(pc, "illegal dynamic variable store\n"); 10352 break; 10353 10354 case DIF_OP_CALL: 10355 if (subr == DIF_SUBR_ALLOCA || 10356 subr == DIF_SUBR_BCOPY || 10357 subr == DIF_SUBR_COPYIN || 10358 subr == DIF_SUBR_COPYINTO || 10359 subr == DIF_SUBR_COPYINSTR || 10360 subr == DIF_SUBR_INDEX || 10361 subr == DIF_SUBR_INET_NTOA || 10362 subr == DIF_SUBR_INET_NTOA6 || 10363 subr == DIF_SUBR_INET_NTOP || 10364 subr == DIF_SUBR_JSON || 10365 subr == DIF_SUBR_LLTOSTR || 10366 subr == DIF_SUBR_STRTOLL || 10367 subr == DIF_SUBR_RINDEX || 10368 subr == DIF_SUBR_STRCHR || 10369 subr == DIF_SUBR_STRJOIN || 10370 subr == DIF_SUBR_STRRCHR || 10371 subr == DIF_SUBR_STRSTR || 10372 subr == DIF_SUBR_HTONS || 10373 subr == DIF_SUBR_HTONL || 10374 subr == DIF_SUBR_HTONLL || 10375 subr == DIF_SUBR_NTOHS || 10376 subr == DIF_SUBR_NTOHL || 10377 subr == DIF_SUBR_NTOHLL || 10378 subr == DIF_SUBR_MEMREF) 10379 break; 10380 #ifdef __FreeBSD__ 10381 if (subr == DIF_SUBR_MEMSTR) 10382 break; 10383 #endif 10384 10385 err += efunc(pc, "invalid subr %u\n", subr); 10386 break; 10387 10388 default: 10389 err += efunc(pc, "invalid opcode %u\n", 10390 DIF_INSTR_OP(instr)); 10391 } 10392 } 10393 10394 return (err); 10395 } 10396 10397 /* 10398 * Returns 1 if the expression in the DIF object can be cached on a per-thread 10399 * basis; 0 if not. 10400 */ 10401 static int 10402 dtrace_difo_cacheable(dtrace_difo_t *dp) 10403 { 10404 int i; 10405 10406 if (dp == NULL) 10407 return (0); 10408 10409 for (i = 0; i < dp->dtdo_varlen; i++) { 10410 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10411 10412 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 10413 continue; 10414 10415 switch (v->dtdv_id) { 10416 case DIF_VAR_CURTHREAD: 10417 case DIF_VAR_PID: 10418 case DIF_VAR_TID: 10419 case DIF_VAR_EXECARGS: 10420 case DIF_VAR_EXECNAME: 10421 case DIF_VAR_ZONENAME: 10422 break; 10423 10424 default: 10425 return (0); 10426 } 10427 } 10428 10429 /* 10430 * This DIF object may be cacheable. Now we need to look for any 10431 * array loading instructions, any memory loading instructions, or 10432 * any stores to thread-local variables. 10433 */ 10434 for (i = 0; i < dp->dtdo_len; i++) { 10435 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 10436 10437 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 10438 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 10439 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 10440 op == DIF_OP_LDGA || op == DIF_OP_STTS) 10441 return (0); 10442 } 10443 10444 return (1); 10445 } 10446 10447 static void 10448 dtrace_difo_hold(dtrace_difo_t *dp) 10449 { 10450 int i; 10451 10452 ASSERT(MUTEX_HELD(&dtrace_lock)); 10453 10454 dp->dtdo_refcnt++; 10455 ASSERT(dp->dtdo_refcnt != 0); 10456 10457 /* 10458 * We need to check this DIF object for references to the variable 10459 * DIF_VAR_VTIMESTAMP. 10460 */ 10461 for (i = 0; i < dp->dtdo_varlen; i++) { 10462 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10463 10464 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10465 continue; 10466 10467 if (dtrace_vtime_references++ == 0) 10468 dtrace_vtime_enable(); 10469 } 10470 } 10471 10472 /* 10473 * This routine calculates the dynamic variable chunksize for a given DIF 10474 * object. The calculation is not fool-proof, and can probably be tricked by 10475 * malicious DIF -- but it works for all compiler-generated DIF. Because this 10476 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 10477 * if a dynamic variable size exceeds the chunksize. 10478 */ 10479 static void 10480 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10481 { 10482 uint64_t sval = 0; 10483 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 10484 const dif_instr_t *text = dp->dtdo_buf; 10485 uint_t pc, srd = 0; 10486 uint_t ttop = 0; 10487 size_t size, ksize; 10488 uint_t id, i; 10489 10490 for (pc = 0; pc < dp->dtdo_len; pc++) { 10491 dif_instr_t instr = text[pc]; 10492 uint_t op = DIF_INSTR_OP(instr); 10493 uint_t rd = DIF_INSTR_RD(instr); 10494 uint_t r1 = DIF_INSTR_R1(instr); 10495 uint_t nkeys = 0; 10496 uchar_t scope = 0; 10497 10498 dtrace_key_t *key = tupregs; 10499 10500 switch (op) { 10501 case DIF_OP_SETX: 10502 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 10503 srd = rd; 10504 continue; 10505 10506 case DIF_OP_STTS: 10507 key = &tupregs[DIF_DTR_NREGS]; 10508 key[0].dttk_size = 0; 10509 key[1].dttk_size = 0; 10510 nkeys = 2; 10511 scope = DIFV_SCOPE_THREAD; 10512 break; 10513 10514 case DIF_OP_STGAA: 10515 case DIF_OP_STTAA: 10516 nkeys = ttop; 10517 10518 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10519 key[nkeys++].dttk_size = 0; 10520 10521 key[nkeys++].dttk_size = 0; 10522 10523 if (op == DIF_OP_STTAA) { 10524 scope = DIFV_SCOPE_THREAD; 10525 } else { 10526 scope = DIFV_SCOPE_GLOBAL; 10527 } 10528 10529 break; 10530 10531 case DIF_OP_PUSHTR: 10532 if (ttop == DIF_DTR_NREGS) 10533 return; 10534 10535 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10536 /* 10537 * If the register for the size of the "pushtr" 10538 * is %r0 (or the value is 0) and the type is 10539 * a string, we'll use the system-wide default 10540 * string size. 10541 */ 10542 tupregs[ttop++].dttk_size = 10543 dtrace_strsize_default; 10544 } else { 10545 if (srd == 0) 10546 return; 10547 10548 if (sval > LONG_MAX) 10549 return; 10550 10551 tupregs[ttop++].dttk_size = sval; 10552 } 10553 10554 break; 10555 10556 case DIF_OP_PUSHTV: 10557 if (ttop == DIF_DTR_NREGS) 10558 return; 10559 10560 tupregs[ttop++].dttk_size = 0; 10561 break; 10562 10563 case DIF_OP_FLUSHTS: 10564 ttop = 0; 10565 break; 10566 10567 case DIF_OP_POPTS: 10568 if (ttop != 0) 10569 ttop--; 10570 break; 10571 } 10572 10573 sval = 0; 10574 srd = 0; 10575 10576 if (nkeys == 0) 10577 continue; 10578 10579 /* 10580 * We have a dynamic variable allocation; calculate its size. 10581 */ 10582 for (ksize = 0, i = 0; i < nkeys; i++) 10583 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10584 10585 size = sizeof (dtrace_dynvar_t); 10586 size += sizeof (dtrace_key_t) * (nkeys - 1); 10587 size += ksize; 10588 10589 /* 10590 * Now we need to determine the size of the stored data. 10591 */ 10592 id = DIF_INSTR_VAR(instr); 10593 10594 for (i = 0; i < dp->dtdo_varlen; i++) { 10595 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10596 10597 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10598 size += v->dtdv_type.dtdt_size; 10599 break; 10600 } 10601 } 10602 10603 if (i == dp->dtdo_varlen) 10604 return; 10605 10606 /* 10607 * We have the size. If this is larger than the chunk size 10608 * for our dynamic variable state, reset the chunk size. 10609 */ 10610 size = P2ROUNDUP(size, sizeof (uint64_t)); 10611 10612 /* 10613 * Before setting the chunk size, check that we're not going 10614 * to set it to a negative value... 10615 */ 10616 if (size > LONG_MAX) 10617 return; 10618 10619 /* 10620 * ...and make certain that we didn't badly overflow. 10621 */ 10622 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10623 return; 10624 10625 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10626 vstate->dtvs_dynvars.dtds_chunksize = size; 10627 } 10628 } 10629 10630 static void 10631 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10632 { 10633 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10634 uint_t id; 10635 10636 ASSERT(MUTEX_HELD(&dtrace_lock)); 10637 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10638 10639 for (i = 0; i < dp->dtdo_varlen; i++) { 10640 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10641 dtrace_statvar_t *svar, ***svarp = NULL; 10642 size_t dsize = 0; 10643 uint8_t scope = v->dtdv_scope; 10644 int *np = NULL; 10645 10646 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10647 continue; 10648 10649 id -= DIF_VAR_OTHER_UBASE; 10650 10651 switch (scope) { 10652 case DIFV_SCOPE_THREAD: 10653 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10654 dtrace_difv_t *tlocals; 10655 10656 if ((ntlocals = (otlocals << 1)) == 0) 10657 ntlocals = 1; 10658 10659 osz = otlocals * sizeof (dtrace_difv_t); 10660 nsz = ntlocals * sizeof (dtrace_difv_t); 10661 10662 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10663 10664 if (osz != 0) { 10665 bcopy(vstate->dtvs_tlocals, 10666 tlocals, osz); 10667 kmem_free(vstate->dtvs_tlocals, osz); 10668 } 10669 10670 vstate->dtvs_tlocals = tlocals; 10671 vstate->dtvs_ntlocals = ntlocals; 10672 } 10673 10674 vstate->dtvs_tlocals[id] = *v; 10675 continue; 10676 10677 case DIFV_SCOPE_LOCAL: 10678 np = &vstate->dtvs_nlocals; 10679 svarp = &vstate->dtvs_locals; 10680 10681 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10682 dsize = (mp_maxid + 1) * 10683 (v->dtdv_type.dtdt_size + 10684 sizeof (uint64_t)); 10685 else 10686 dsize = (mp_maxid + 1) * sizeof (uint64_t); 10687 10688 break; 10689 10690 case DIFV_SCOPE_GLOBAL: 10691 np = &vstate->dtvs_nglobals; 10692 svarp = &vstate->dtvs_globals; 10693 10694 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10695 dsize = v->dtdv_type.dtdt_size + 10696 sizeof (uint64_t); 10697 10698 break; 10699 10700 default: 10701 ASSERT(0); 10702 } 10703 10704 while (id >= (oldsvars = *np)) { 10705 dtrace_statvar_t **statics; 10706 int newsvars, oldsize, newsize; 10707 10708 if ((newsvars = (oldsvars << 1)) == 0) 10709 newsvars = 1; 10710 10711 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10712 newsize = newsvars * sizeof (dtrace_statvar_t *); 10713 10714 statics = kmem_zalloc(newsize, KM_SLEEP); 10715 10716 if (oldsize != 0) { 10717 bcopy(*svarp, statics, oldsize); 10718 kmem_free(*svarp, oldsize); 10719 } 10720 10721 *svarp = statics; 10722 *np = newsvars; 10723 } 10724 10725 if ((svar = (*svarp)[id]) == NULL) { 10726 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10727 svar->dtsv_var = *v; 10728 10729 if ((svar->dtsv_size = dsize) != 0) { 10730 svar->dtsv_data = (uint64_t)(uintptr_t) 10731 kmem_zalloc(dsize, KM_SLEEP); 10732 } 10733 10734 (*svarp)[id] = svar; 10735 } 10736 10737 svar->dtsv_refcnt++; 10738 } 10739 10740 dtrace_difo_chunksize(dp, vstate); 10741 dtrace_difo_hold(dp); 10742 } 10743 10744 static dtrace_difo_t * 10745 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10746 { 10747 dtrace_difo_t *new; 10748 size_t sz; 10749 10750 ASSERT(dp->dtdo_buf != NULL); 10751 ASSERT(dp->dtdo_refcnt != 0); 10752 10753 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10754 10755 ASSERT(dp->dtdo_buf != NULL); 10756 sz = dp->dtdo_len * sizeof (dif_instr_t); 10757 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10758 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10759 new->dtdo_len = dp->dtdo_len; 10760 10761 if (dp->dtdo_strtab != NULL) { 10762 ASSERT(dp->dtdo_strlen != 0); 10763 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10764 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10765 new->dtdo_strlen = dp->dtdo_strlen; 10766 } 10767 10768 if (dp->dtdo_inttab != NULL) { 10769 ASSERT(dp->dtdo_intlen != 0); 10770 sz = dp->dtdo_intlen * sizeof (uint64_t); 10771 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10772 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10773 new->dtdo_intlen = dp->dtdo_intlen; 10774 } 10775 10776 if (dp->dtdo_vartab != NULL) { 10777 ASSERT(dp->dtdo_varlen != 0); 10778 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10779 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10780 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10781 new->dtdo_varlen = dp->dtdo_varlen; 10782 } 10783 10784 dtrace_difo_init(new, vstate); 10785 return (new); 10786 } 10787 10788 static void 10789 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10790 { 10791 int i; 10792 10793 ASSERT(dp->dtdo_refcnt == 0); 10794 10795 for (i = 0; i < dp->dtdo_varlen; i++) { 10796 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10797 dtrace_statvar_t *svar, **svarp = NULL; 10798 uint_t id; 10799 uint8_t scope = v->dtdv_scope; 10800 int *np = NULL; 10801 10802 switch (scope) { 10803 case DIFV_SCOPE_THREAD: 10804 continue; 10805 10806 case DIFV_SCOPE_LOCAL: 10807 np = &vstate->dtvs_nlocals; 10808 svarp = vstate->dtvs_locals; 10809 break; 10810 10811 case DIFV_SCOPE_GLOBAL: 10812 np = &vstate->dtvs_nglobals; 10813 svarp = vstate->dtvs_globals; 10814 break; 10815 10816 default: 10817 ASSERT(0); 10818 } 10819 10820 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10821 continue; 10822 10823 id -= DIF_VAR_OTHER_UBASE; 10824 ASSERT(id < *np); 10825 10826 svar = svarp[id]; 10827 ASSERT(svar != NULL); 10828 ASSERT(svar->dtsv_refcnt > 0); 10829 10830 if (--svar->dtsv_refcnt > 0) 10831 continue; 10832 10833 if (svar->dtsv_size != 0) { 10834 ASSERT(svar->dtsv_data != 0); 10835 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10836 svar->dtsv_size); 10837 } 10838 10839 kmem_free(svar, sizeof (dtrace_statvar_t)); 10840 svarp[id] = NULL; 10841 } 10842 10843 if (dp->dtdo_buf != NULL) 10844 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10845 if (dp->dtdo_inttab != NULL) 10846 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10847 if (dp->dtdo_strtab != NULL) 10848 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10849 if (dp->dtdo_vartab != NULL) 10850 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10851 10852 kmem_free(dp, sizeof (dtrace_difo_t)); 10853 } 10854 10855 static void 10856 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10857 { 10858 int i; 10859 10860 ASSERT(MUTEX_HELD(&dtrace_lock)); 10861 ASSERT(dp->dtdo_refcnt != 0); 10862 10863 for (i = 0; i < dp->dtdo_varlen; i++) { 10864 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10865 10866 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10867 continue; 10868 10869 ASSERT(dtrace_vtime_references > 0); 10870 if (--dtrace_vtime_references == 0) 10871 dtrace_vtime_disable(); 10872 } 10873 10874 if (--dp->dtdo_refcnt == 0) 10875 dtrace_difo_destroy(dp, vstate); 10876 } 10877 10878 /* 10879 * DTrace Format Functions 10880 */ 10881 static uint16_t 10882 dtrace_format_add(dtrace_state_t *state, char *str) 10883 { 10884 char *fmt, **new; 10885 uint16_t ndx, len = strlen(str) + 1; 10886 10887 fmt = kmem_zalloc(len, KM_SLEEP); 10888 bcopy(str, fmt, len); 10889 10890 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10891 if (state->dts_formats[ndx] == NULL) { 10892 state->dts_formats[ndx] = fmt; 10893 return (ndx + 1); 10894 } 10895 } 10896 10897 if (state->dts_nformats == USHRT_MAX) { 10898 /* 10899 * This is only likely if a denial-of-service attack is being 10900 * attempted. As such, it's okay to fail silently here. 10901 */ 10902 kmem_free(fmt, len); 10903 return (0); 10904 } 10905 10906 /* 10907 * For simplicity, we always resize the formats array to be exactly the 10908 * number of formats. 10909 */ 10910 ndx = state->dts_nformats++; 10911 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10912 10913 if (state->dts_formats != NULL) { 10914 ASSERT(ndx != 0); 10915 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10916 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10917 } 10918 10919 state->dts_formats = new; 10920 state->dts_formats[ndx] = fmt; 10921 10922 return (ndx + 1); 10923 } 10924 10925 static void 10926 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10927 { 10928 char *fmt; 10929 10930 ASSERT(state->dts_formats != NULL); 10931 ASSERT(format <= state->dts_nformats); 10932 ASSERT(state->dts_formats[format - 1] != NULL); 10933 10934 fmt = state->dts_formats[format - 1]; 10935 kmem_free(fmt, strlen(fmt) + 1); 10936 state->dts_formats[format - 1] = NULL; 10937 } 10938 10939 static void 10940 dtrace_format_destroy(dtrace_state_t *state) 10941 { 10942 int i; 10943 10944 if (state->dts_nformats == 0) { 10945 ASSERT(state->dts_formats == NULL); 10946 return; 10947 } 10948 10949 ASSERT(state->dts_formats != NULL); 10950 10951 for (i = 0; i < state->dts_nformats; i++) { 10952 char *fmt = state->dts_formats[i]; 10953 10954 if (fmt == NULL) 10955 continue; 10956 10957 kmem_free(fmt, strlen(fmt) + 1); 10958 } 10959 10960 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10961 state->dts_nformats = 0; 10962 state->dts_formats = NULL; 10963 } 10964 10965 /* 10966 * DTrace Predicate Functions 10967 */ 10968 static dtrace_predicate_t * 10969 dtrace_predicate_create(dtrace_difo_t *dp) 10970 { 10971 dtrace_predicate_t *pred; 10972 10973 ASSERT(MUTEX_HELD(&dtrace_lock)); 10974 ASSERT(dp->dtdo_refcnt != 0); 10975 10976 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10977 pred->dtp_difo = dp; 10978 pred->dtp_refcnt = 1; 10979 10980 if (!dtrace_difo_cacheable(dp)) 10981 return (pred); 10982 10983 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10984 /* 10985 * This is only theoretically possible -- we have had 2^32 10986 * cacheable predicates on this machine. We cannot allow any 10987 * more predicates to become cacheable: as unlikely as it is, 10988 * there may be a thread caching a (now stale) predicate cache 10989 * ID. (N.B.: the temptation is being successfully resisted to 10990 * have this cmn_err() "Holy shit -- we executed this code!") 10991 */ 10992 return (pred); 10993 } 10994 10995 pred->dtp_cacheid = dtrace_predcache_id++; 10996 10997 return (pred); 10998 } 10999 11000 static void 11001 dtrace_predicate_hold(dtrace_predicate_t *pred) 11002 { 11003 ASSERT(MUTEX_HELD(&dtrace_lock)); 11004 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 11005 ASSERT(pred->dtp_refcnt > 0); 11006 11007 pred->dtp_refcnt++; 11008 } 11009 11010 static void 11011 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 11012 { 11013 dtrace_difo_t *dp = pred->dtp_difo; 11014 11015 ASSERT(MUTEX_HELD(&dtrace_lock)); 11016 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 11017 ASSERT(pred->dtp_refcnt > 0); 11018 11019 if (--pred->dtp_refcnt == 0) { 11020 dtrace_difo_release(pred->dtp_difo, vstate); 11021 kmem_free(pred, sizeof (dtrace_predicate_t)); 11022 } 11023 } 11024 11025 /* 11026 * DTrace Action Description Functions 11027 */ 11028 static dtrace_actdesc_t * 11029 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 11030 uint64_t uarg, uint64_t arg) 11031 { 11032 dtrace_actdesc_t *act; 11033 11034 #ifdef illumos 11035 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 11036 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 11037 #endif 11038 11039 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 11040 act->dtad_kind = kind; 11041 act->dtad_ntuple = ntuple; 11042 act->dtad_uarg = uarg; 11043 act->dtad_arg = arg; 11044 act->dtad_refcnt = 1; 11045 11046 return (act); 11047 } 11048 11049 static void 11050 dtrace_actdesc_hold(dtrace_actdesc_t *act) 11051 { 11052 ASSERT(act->dtad_refcnt >= 1); 11053 act->dtad_refcnt++; 11054 } 11055 11056 static void 11057 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 11058 { 11059 dtrace_actkind_t kind = act->dtad_kind; 11060 dtrace_difo_t *dp; 11061 11062 ASSERT(act->dtad_refcnt >= 1); 11063 11064 if (--act->dtad_refcnt != 0) 11065 return; 11066 11067 if ((dp = act->dtad_difo) != NULL) 11068 dtrace_difo_release(dp, vstate); 11069 11070 if (DTRACEACT_ISPRINTFLIKE(kind)) { 11071 char *str = (char *)(uintptr_t)act->dtad_arg; 11072 11073 #ifdef illumos 11074 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 11075 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 11076 #endif 11077 11078 if (str != NULL) 11079 kmem_free(str, strlen(str) + 1); 11080 } 11081 11082 kmem_free(act, sizeof (dtrace_actdesc_t)); 11083 } 11084 11085 /* 11086 * DTrace ECB Functions 11087 */ 11088 static dtrace_ecb_t * 11089 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 11090 { 11091 dtrace_ecb_t *ecb; 11092 dtrace_epid_t epid; 11093 11094 ASSERT(MUTEX_HELD(&dtrace_lock)); 11095 11096 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 11097 ecb->dte_predicate = NULL; 11098 ecb->dte_probe = probe; 11099 11100 /* 11101 * The default size is the size of the default action: recording 11102 * the header. 11103 */ 11104 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 11105 ecb->dte_alignment = sizeof (dtrace_epid_t); 11106 11107 epid = state->dts_epid++; 11108 11109 if (epid - 1 >= state->dts_necbs) { 11110 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 11111 int necbs = state->dts_necbs << 1; 11112 11113 ASSERT(epid == state->dts_necbs + 1); 11114 11115 if (necbs == 0) { 11116 ASSERT(oecbs == NULL); 11117 necbs = 1; 11118 } 11119 11120 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 11121 11122 if (oecbs != NULL) 11123 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 11124 11125 dtrace_membar_producer(); 11126 state->dts_ecbs = ecbs; 11127 11128 if (oecbs != NULL) { 11129 /* 11130 * If this state is active, we must dtrace_sync() 11131 * before we can free the old dts_ecbs array: we're 11132 * coming in hot, and there may be active ring 11133 * buffer processing (which indexes into the dts_ecbs 11134 * array) on another CPU. 11135 */ 11136 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11137 dtrace_sync(); 11138 11139 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 11140 } 11141 11142 dtrace_membar_producer(); 11143 state->dts_necbs = necbs; 11144 } 11145 11146 ecb->dte_state = state; 11147 11148 ASSERT(state->dts_ecbs[epid - 1] == NULL); 11149 dtrace_membar_producer(); 11150 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 11151 11152 return (ecb); 11153 } 11154 11155 static void 11156 dtrace_ecb_enable(dtrace_ecb_t *ecb) 11157 { 11158 dtrace_probe_t *probe = ecb->dte_probe; 11159 11160 ASSERT(MUTEX_HELD(&cpu_lock)); 11161 ASSERT(MUTEX_HELD(&dtrace_lock)); 11162 ASSERT(ecb->dte_next == NULL); 11163 11164 if (probe == NULL) { 11165 /* 11166 * This is the NULL probe -- there's nothing to do. 11167 */ 11168 return; 11169 } 11170 11171 if (probe->dtpr_ecb == NULL) { 11172 dtrace_provider_t *prov = probe->dtpr_provider; 11173 11174 /* 11175 * We're the first ECB on this probe. 11176 */ 11177 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 11178 11179 if (ecb->dte_predicate != NULL) 11180 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 11181 11182 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 11183 probe->dtpr_id, probe->dtpr_arg); 11184 } else { 11185 /* 11186 * This probe is already active. Swing the last pointer to 11187 * point to the new ECB, and issue a dtrace_sync() to assure 11188 * that all CPUs have seen the change. 11189 */ 11190 ASSERT(probe->dtpr_ecb_last != NULL); 11191 probe->dtpr_ecb_last->dte_next = ecb; 11192 probe->dtpr_ecb_last = ecb; 11193 probe->dtpr_predcache = 0; 11194 11195 dtrace_sync(); 11196 } 11197 } 11198 11199 static int 11200 dtrace_ecb_resize(dtrace_ecb_t *ecb) 11201 { 11202 dtrace_action_t *act; 11203 uint32_t curneeded = UINT32_MAX; 11204 uint32_t aggbase = UINT32_MAX; 11205 11206 /* 11207 * If we record anything, we always record the dtrace_rechdr_t. (And 11208 * we always record it first.) 11209 */ 11210 ecb->dte_size = sizeof (dtrace_rechdr_t); 11211 ecb->dte_alignment = sizeof (dtrace_epid_t); 11212 11213 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11214 dtrace_recdesc_t *rec = &act->dta_rec; 11215 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 11216 11217 ecb->dte_alignment = MAX(ecb->dte_alignment, 11218 rec->dtrd_alignment); 11219 11220 if (DTRACEACT_ISAGG(act->dta_kind)) { 11221 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11222 11223 ASSERT(rec->dtrd_size != 0); 11224 ASSERT(agg->dtag_first != NULL); 11225 ASSERT(act->dta_prev->dta_intuple); 11226 ASSERT(aggbase != UINT32_MAX); 11227 ASSERT(curneeded != UINT32_MAX); 11228 11229 agg->dtag_base = aggbase; 11230 11231 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11232 rec->dtrd_offset = curneeded; 11233 if (curneeded + rec->dtrd_size < curneeded) 11234 return (EINVAL); 11235 curneeded += rec->dtrd_size; 11236 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 11237 11238 aggbase = UINT32_MAX; 11239 curneeded = UINT32_MAX; 11240 } else if (act->dta_intuple) { 11241 if (curneeded == UINT32_MAX) { 11242 /* 11243 * This is the first record in a tuple. Align 11244 * curneeded to be at offset 4 in an 8-byte 11245 * aligned block. 11246 */ 11247 ASSERT(act->dta_prev == NULL || 11248 !act->dta_prev->dta_intuple); 11249 ASSERT3U(aggbase, ==, UINT32_MAX); 11250 curneeded = P2PHASEUP(ecb->dte_size, 11251 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 11252 11253 aggbase = curneeded - sizeof (dtrace_aggid_t); 11254 ASSERT(IS_P2ALIGNED(aggbase, 11255 sizeof (uint64_t))); 11256 } 11257 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11258 rec->dtrd_offset = curneeded; 11259 if (curneeded + rec->dtrd_size < curneeded) 11260 return (EINVAL); 11261 curneeded += rec->dtrd_size; 11262 } else { 11263 /* tuples must be followed by an aggregation */ 11264 ASSERT(act->dta_prev == NULL || 11265 !act->dta_prev->dta_intuple); 11266 11267 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 11268 rec->dtrd_alignment); 11269 rec->dtrd_offset = ecb->dte_size; 11270 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 11271 return (EINVAL); 11272 ecb->dte_size += rec->dtrd_size; 11273 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 11274 } 11275 } 11276 11277 if ((act = ecb->dte_action) != NULL && 11278 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 11279 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 11280 /* 11281 * If the size is still sizeof (dtrace_rechdr_t), then all 11282 * actions store no data; set the size to 0. 11283 */ 11284 ecb->dte_size = 0; 11285 } 11286 11287 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 11288 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 11289 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 11290 ecb->dte_needed); 11291 return (0); 11292 } 11293 11294 static dtrace_action_t * 11295 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11296 { 11297 dtrace_aggregation_t *agg; 11298 size_t size = sizeof (uint64_t); 11299 int ntuple = desc->dtad_ntuple; 11300 dtrace_action_t *act; 11301 dtrace_recdesc_t *frec; 11302 dtrace_aggid_t aggid; 11303 dtrace_state_t *state = ecb->dte_state; 11304 11305 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 11306 agg->dtag_ecb = ecb; 11307 11308 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 11309 11310 switch (desc->dtad_kind) { 11311 case DTRACEAGG_MIN: 11312 agg->dtag_initial = INT64_MAX; 11313 agg->dtag_aggregate = dtrace_aggregate_min; 11314 break; 11315 11316 case DTRACEAGG_MAX: 11317 agg->dtag_initial = INT64_MIN; 11318 agg->dtag_aggregate = dtrace_aggregate_max; 11319 break; 11320 11321 case DTRACEAGG_COUNT: 11322 agg->dtag_aggregate = dtrace_aggregate_count; 11323 break; 11324 11325 case DTRACEAGG_QUANTIZE: 11326 agg->dtag_aggregate = dtrace_aggregate_quantize; 11327 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 11328 sizeof (uint64_t); 11329 break; 11330 11331 case DTRACEAGG_LQUANTIZE: { 11332 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 11333 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 11334 11335 agg->dtag_initial = desc->dtad_arg; 11336 agg->dtag_aggregate = dtrace_aggregate_lquantize; 11337 11338 if (step == 0 || levels == 0) 11339 goto err; 11340 11341 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 11342 break; 11343 } 11344 11345 case DTRACEAGG_LLQUANTIZE: { 11346 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 11347 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 11348 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 11349 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 11350 int64_t v; 11351 11352 agg->dtag_initial = desc->dtad_arg; 11353 agg->dtag_aggregate = dtrace_aggregate_llquantize; 11354 11355 if (factor < 2 || low >= high || nsteps < factor) 11356 goto err; 11357 11358 /* 11359 * Now check that the number of steps evenly divides a power 11360 * of the factor. (This assures both integer bucket size and 11361 * linearity within each magnitude.) 11362 */ 11363 for (v = factor; v < nsteps; v *= factor) 11364 continue; 11365 11366 if ((v % nsteps) || (nsteps % factor)) 11367 goto err; 11368 11369 size = (dtrace_aggregate_llquantize_bucket(factor, 11370 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 11371 break; 11372 } 11373 11374 case DTRACEAGG_AVG: 11375 agg->dtag_aggregate = dtrace_aggregate_avg; 11376 size = sizeof (uint64_t) * 2; 11377 break; 11378 11379 case DTRACEAGG_STDDEV: 11380 agg->dtag_aggregate = dtrace_aggregate_stddev; 11381 size = sizeof (uint64_t) * 4; 11382 break; 11383 11384 case DTRACEAGG_SUM: 11385 agg->dtag_aggregate = dtrace_aggregate_sum; 11386 break; 11387 11388 default: 11389 goto err; 11390 } 11391 11392 agg->dtag_action.dta_rec.dtrd_size = size; 11393 11394 if (ntuple == 0) 11395 goto err; 11396 11397 /* 11398 * We must make sure that we have enough actions for the n-tuple. 11399 */ 11400 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 11401 if (DTRACEACT_ISAGG(act->dta_kind)) 11402 break; 11403 11404 if (--ntuple == 0) { 11405 /* 11406 * This is the action with which our n-tuple begins. 11407 */ 11408 agg->dtag_first = act; 11409 goto success; 11410 } 11411 } 11412 11413 /* 11414 * This n-tuple is short by ntuple elements. Return failure. 11415 */ 11416 ASSERT(ntuple != 0); 11417 err: 11418 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11419 return (NULL); 11420 11421 success: 11422 /* 11423 * If the last action in the tuple has a size of zero, it's actually 11424 * an expression argument for the aggregating action. 11425 */ 11426 ASSERT(ecb->dte_action_last != NULL); 11427 act = ecb->dte_action_last; 11428 11429 if (act->dta_kind == DTRACEACT_DIFEXPR) { 11430 ASSERT(act->dta_difo != NULL); 11431 11432 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 11433 agg->dtag_hasarg = 1; 11434 } 11435 11436 /* 11437 * We need to allocate an id for this aggregation. 11438 */ 11439 #ifdef illumos 11440 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 11441 VM_BESTFIT | VM_SLEEP); 11442 #else 11443 aggid = alloc_unr(state->dts_aggid_arena); 11444 #endif 11445 11446 if (aggid - 1 >= state->dts_naggregations) { 11447 dtrace_aggregation_t **oaggs = state->dts_aggregations; 11448 dtrace_aggregation_t **aggs; 11449 int naggs = state->dts_naggregations << 1; 11450 int onaggs = state->dts_naggregations; 11451 11452 ASSERT(aggid == state->dts_naggregations + 1); 11453 11454 if (naggs == 0) { 11455 ASSERT(oaggs == NULL); 11456 naggs = 1; 11457 } 11458 11459 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 11460 11461 if (oaggs != NULL) { 11462 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 11463 kmem_free(oaggs, onaggs * sizeof (*aggs)); 11464 } 11465 11466 state->dts_aggregations = aggs; 11467 state->dts_naggregations = naggs; 11468 } 11469 11470 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 11471 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 11472 11473 frec = &agg->dtag_first->dta_rec; 11474 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 11475 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 11476 11477 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 11478 ASSERT(!act->dta_intuple); 11479 act->dta_intuple = 1; 11480 } 11481 11482 return (&agg->dtag_action); 11483 } 11484 11485 static void 11486 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 11487 { 11488 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11489 dtrace_state_t *state = ecb->dte_state; 11490 dtrace_aggid_t aggid = agg->dtag_id; 11491 11492 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 11493 #ifdef illumos 11494 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 11495 #else 11496 free_unr(state->dts_aggid_arena, aggid); 11497 #endif 11498 11499 ASSERT(state->dts_aggregations[aggid - 1] == agg); 11500 state->dts_aggregations[aggid - 1] = NULL; 11501 11502 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11503 } 11504 11505 static int 11506 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11507 { 11508 dtrace_action_t *action, *last; 11509 dtrace_difo_t *dp = desc->dtad_difo; 11510 uint32_t size = 0, align = sizeof (uint8_t), mask; 11511 uint16_t format = 0; 11512 dtrace_recdesc_t *rec; 11513 dtrace_state_t *state = ecb->dte_state; 11514 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; 11515 uint64_t arg = desc->dtad_arg; 11516 11517 ASSERT(MUTEX_HELD(&dtrace_lock)); 11518 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 11519 11520 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 11521 /* 11522 * If this is an aggregating action, there must be neither 11523 * a speculate nor a commit on the action chain. 11524 */ 11525 dtrace_action_t *act; 11526 11527 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11528 if (act->dta_kind == DTRACEACT_COMMIT) 11529 return (EINVAL); 11530 11531 if (act->dta_kind == DTRACEACT_SPECULATE) 11532 return (EINVAL); 11533 } 11534 11535 action = dtrace_ecb_aggregation_create(ecb, desc); 11536 11537 if (action == NULL) 11538 return (EINVAL); 11539 } else { 11540 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11541 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11542 dp != NULL && dp->dtdo_destructive)) { 11543 state->dts_destructive = 1; 11544 } 11545 11546 switch (desc->dtad_kind) { 11547 case DTRACEACT_PRINTF: 11548 case DTRACEACT_PRINTA: 11549 case DTRACEACT_SYSTEM: 11550 case DTRACEACT_FREOPEN: 11551 case DTRACEACT_DIFEXPR: 11552 /* 11553 * We know that our arg is a string -- turn it into a 11554 * format. 11555 */ 11556 if (arg == 0) { 11557 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11558 desc->dtad_kind == DTRACEACT_DIFEXPR); 11559 format = 0; 11560 } else { 11561 ASSERT(arg != 0); 11562 #ifdef illumos 11563 ASSERT(arg > KERNELBASE); 11564 #endif 11565 format = dtrace_format_add(state, 11566 (char *)(uintptr_t)arg); 11567 } 11568 11569 /*FALLTHROUGH*/ 11570 case DTRACEACT_LIBACT: 11571 case DTRACEACT_TRACEMEM: 11572 case DTRACEACT_TRACEMEM_DYNSIZE: 11573 if (dp == NULL) 11574 return (EINVAL); 11575 11576 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11577 break; 11578 11579 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11580 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11581 return (EINVAL); 11582 11583 size = opt[DTRACEOPT_STRSIZE]; 11584 } 11585 11586 break; 11587 11588 case DTRACEACT_STACK: 11589 if ((nframes = arg) == 0) { 11590 nframes = opt[DTRACEOPT_STACKFRAMES]; 11591 ASSERT(nframes > 0); 11592 arg = nframes; 11593 } 11594 11595 size = nframes * sizeof (pc_t); 11596 break; 11597 11598 case DTRACEACT_JSTACK: 11599 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11600 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11601 11602 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11603 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11604 11605 arg = DTRACE_USTACK_ARG(nframes, strsize); 11606 11607 /*FALLTHROUGH*/ 11608 case DTRACEACT_USTACK: 11609 if (desc->dtad_kind != DTRACEACT_JSTACK && 11610 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11611 strsize = DTRACE_USTACK_STRSIZE(arg); 11612 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11613 ASSERT(nframes > 0); 11614 arg = DTRACE_USTACK_ARG(nframes, strsize); 11615 } 11616 11617 /* 11618 * Save a slot for the pid. 11619 */ 11620 size = (nframes + 1) * sizeof (uint64_t); 11621 size += DTRACE_USTACK_STRSIZE(arg); 11622 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11623 11624 break; 11625 11626 case DTRACEACT_SYM: 11627 case DTRACEACT_MOD: 11628 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11629 sizeof (uint64_t)) || 11630 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11631 return (EINVAL); 11632 break; 11633 11634 case DTRACEACT_USYM: 11635 case DTRACEACT_UMOD: 11636 case DTRACEACT_UADDR: 11637 if (dp == NULL || 11638 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11639 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11640 return (EINVAL); 11641 11642 /* 11643 * We have a slot for the pid, plus a slot for the 11644 * argument. To keep things simple (aligned with 11645 * bitness-neutral sizing), we store each as a 64-bit 11646 * quantity. 11647 */ 11648 size = 2 * sizeof (uint64_t); 11649 break; 11650 11651 case DTRACEACT_STOP: 11652 case DTRACEACT_BREAKPOINT: 11653 case DTRACEACT_PANIC: 11654 break; 11655 11656 case DTRACEACT_CHILL: 11657 case DTRACEACT_DISCARD: 11658 case DTRACEACT_RAISE: 11659 if (dp == NULL) 11660 return (EINVAL); 11661 break; 11662 11663 case DTRACEACT_EXIT: 11664 if (dp == NULL || 11665 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11666 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11667 return (EINVAL); 11668 break; 11669 11670 case DTRACEACT_SPECULATE: 11671 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11672 return (EINVAL); 11673 11674 if (dp == NULL) 11675 return (EINVAL); 11676 11677 state->dts_speculates = 1; 11678 break; 11679 11680 case DTRACEACT_PRINTM: 11681 size = dp->dtdo_rtype.dtdt_size; 11682 break; 11683 11684 case DTRACEACT_COMMIT: { 11685 dtrace_action_t *act = ecb->dte_action; 11686 11687 for (; act != NULL; act = act->dta_next) { 11688 if (act->dta_kind == DTRACEACT_COMMIT) 11689 return (EINVAL); 11690 } 11691 11692 if (dp == NULL) 11693 return (EINVAL); 11694 break; 11695 } 11696 11697 default: 11698 return (EINVAL); 11699 } 11700 11701 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11702 /* 11703 * If this is a data-storing action or a speculate, 11704 * we must be sure that there isn't a commit on the 11705 * action chain. 11706 */ 11707 dtrace_action_t *act = ecb->dte_action; 11708 11709 for (; act != NULL; act = act->dta_next) { 11710 if (act->dta_kind == DTRACEACT_COMMIT) 11711 return (EINVAL); 11712 } 11713 } 11714 11715 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11716 action->dta_rec.dtrd_size = size; 11717 } 11718 11719 action->dta_refcnt = 1; 11720 rec = &action->dta_rec; 11721 size = rec->dtrd_size; 11722 11723 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11724 if (!(size & mask)) { 11725 align = mask + 1; 11726 break; 11727 } 11728 } 11729 11730 action->dta_kind = desc->dtad_kind; 11731 11732 if ((action->dta_difo = dp) != NULL) 11733 dtrace_difo_hold(dp); 11734 11735 rec->dtrd_action = action->dta_kind; 11736 rec->dtrd_arg = arg; 11737 rec->dtrd_uarg = desc->dtad_uarg; 11738 rec->dtrd_alignment = (uint16_t)align; 11739 rec->dtrd_format = format; 11740 11741 if ((last = ecb->dte_action_last) != NULL) { 11742 ASSERT(ecb->dte_action != NULL); 11743 action->dta_prev = last; 11744 last->dta_next = action; 11745 } else { 11746 ASSERT(ecb->dte_action == NULL); 11747 ecb->dte_action = action; 11748 } 11749 11750 ecb->dte_action_last = action; 11751 11752 return (0); 11753 } 11754 11755 static void 11756 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11757 { 11758 dtrace_action_t *act = ecb->dte_action, *next; 11759 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11760 dtrace_difo_t *dp; 11761 uint16_t format; 11762 11763 if (act != NULL && act->dta_refcnt > 1) { 11764 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11765 act->dta_refcnt--; 11766 } else { 11767 for (; act != NULL; act = next) { 11768 next = act->dta_next; 11769 ASSERT(next != NULL || act == ecb->dte_action_last); 11770 ASSERT(act->dta_refcnt == 1); 11771 11772 if ((format = act->dta_rec.dtrd_format) != 0) 11773 dtrace_format_remove(ecb->dte_state, format); 11774 11775 if ((dp = act->dta_difo) != NULL) 11776 dtrace_difo_release(dp, vstate); 11777 11778 if (DTRACEACT_ISAGG(act->dta_kind)) { 11779 dtrace_ecb_aggregation_destroy(ecb, act); 11780 } else { 11781 kmem_free(act, sizeof (dtrace_action_t)); 11782 } 11783 } 11784 } 11785 11786 ecb->dte_action = NULL; 11787 ecb->dte_action_last = NULL; 11788 ecb->dte_size = 0; 11789 } 11790 11791 static void 11792 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11793 { 11794 /* 11795 * We disable the ECB by removing it from its probe. 11796 */ 11797 dtrace_ecb_t *pecb, *prev = NULL; 11798 dtrace_probe_t *probe = ecb->dte_probe; 11799 11800 ASSERT(MUTEX_HELD(&dtrace_lock)); 11801 11802 if (probe == NULL) { 11803 /* 11804 * This is the NULL probe; there is nothing to disable. 11805 */ 11806 return; 11807 } 11808 11809 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11810 if (pecb == ecb) 11811 break; 11812 prev = pecb; 11813 } 11814 11815 ASSERT(pecb != NULL); 11816 11817 if (prev == NULL) { 11818 probe->dtpr_ecb = ecb->dte_next; 11819 } else { 11820 prev->dte_next = ecb->dte_next; 11821 } 11822 11823 if (ecb == probe->dtpr_ecb_last) { 11824 ASSERT(ecb->dte_next == NULL); 11825 probe->dtpr_ecb_last = prev; 11826 } 11827 11828 /* 11829 * The ECB has been disconnected from the probe; now sync to assure 11830 * that all CPUs have seen the change before returning. 11831 */ 11832 dtrace_sync(); 11833 11834 if (probe->dtpr_ecb == NULL) { 11835 /* 11836 * That was the last ECB on the probe; clear the predicate 11837 * cache ID for the probe, disable it and sync one more time 11838 * to assure that we'll never hit it again. 11839 */ 11840 dtrace_provider_t *prov = probe->dtpr_provider; 11841 11842 ASSERT(ecb->dte_next == NULL); 11843 ASSERT(probe->dtpr_ecb_last == NULL); 11844 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11845 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11846 probe->dtpr_id, probe->dtpr_arg); 11847 dtrace_sync(); 11848 } else { 11849 /* 11850 * There is at least one ECB remaining on the probe. If there 11851 * is _exactly_ one, set the probe's predicate cache ID to be 11852 * the predicate cache ID of the remaining ECB. 11853 */ 11854 ASSERT(probe->dtpr_ecb_last != NULL); 11855 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11856 11857 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11858 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11859 11860 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11861 11862 if (p != NULL) 11863 probe->dtpr_predcache = p->dtp_cacheid; 11864 } 11865 11866 ecb->dte_next = NULL; 11867 } 11868 } 11869 11870 static void 11871 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11872 { 11873 dtrace_state_t *state = ecb->dte_state; 11874 dtrace_vstate_t *vstate = &state->dts_vstate; 11875 dtrace_predicate_t *pred; 11876 dtrace_epid_t epid = ecb->dte_epid; 11877 11878 ASSERT(MUTEX_HELD(&dtrace_lock)); 11879 ASSERT(ecb->dte_next == NULL); 11880 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11881 11882 if ((pred = ecb->dte_predicate) != NULL) 11883 dtrace_predicate_release(pred, vstate); 11884 11885 dtrace_ecb_action_remove(ecb); 11886 11887 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11888 state->dts_ecbs[epid - 1] = NULL; 11889 11890 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11891 } 11892 11893 static dtrace_ecb_t * 11894 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11895 dtrace_enabling_t *enab) 11896 { 11897 dtrace_ecb_t *ecb; 11898 dtrace_predicate_t *pred; 11899 dtrace_actdesc_t *act; 11900 dtrace_provider_t *prov; 11901 dtrace_ecbdesc_t *desc = enab->dten_current; 11902 11903 ASSERT(MUTEX_HELD(&dtrace_lock)); 11904 ASSERT(state != NULL); 11905 11906 ecb = dtrace_ecb_add(state, probe); 11907 ecb->dte_uarg = desc->dted_uarg; 11908 11909 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11910 dtrace_predicate_hold(pred); 11911 ecb->dte_predicate = pred; 11912 } 11913 11914 if (probe != NULL) { 11915 /* 11916 * If the provider shows more leg than the consumer is old 11917 * enough to see, we need to enable the appropriate implicit 11918 * predicate bits to prevent the ecb from activating at 11919 * revealing times. 11920 * 11921 * Providers specifying DTRACE_PRIV_USER at register time 11922 * are stating that they need the /proc-style privilege 11923 * model to be enforced, and this is what DTRACE_COND_OWNER 11924 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11925 */ 11926 prov = probe->dtpr_provider; 11927 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11928 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11929 ecb->dte_cond |= DTRACE_COND_OWNER; 11930 11931 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11932 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11933 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11934 11935 /* 11936 * If the provider shows us kernel innards and the user 11937 * is lacking sufficient privilege, enable the 11938 * DTRACE_COND_USERMODE implicit predicate. 11939 */ 11940 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11941 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11942 ecb->dte_cond |= DTRACE_COND_USERMODE; 11943 } 11944 11945 if (dtrace_ecb_create_cache != NULL) { 11946 /* 11947 * If we have a cached ecb, we'll use its action list instead 11948 * of creating our own (saving both time and space). 11949 */ 11950 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11951 dtrace_action_t *act = cached->dte_action; 11952 11953 if (act != NULL) { 11954 ASSERT(act->dta_refcnt > 0); 11955 act->dta_refcnt++; 11956 ecb->dte_action = act; 11957 ecb->dte_action_last = cached->dte_action_last; 11958 ecb->dte_needed = cached->dte_needed; 11959 ecb->dte_size = cached->dte_size; 11960 ecb->dte_alignment = cached->dte_alignment; 11961 } 11962 11963 return (ecb); 11964 } 11965 11966 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11967 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11968 dtrace_ecb_destroy(ecb); 11969 return (NULL); 11970 } 11971 } 11972 11973 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11974 dtrace_ecb_destroy(ecb); 11975 return (NULL); 11976 } 11977 11978 return (dtrace_ecb_create_cache = ecb); 11979 } 11980 11981 static int 11982 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11983 { 11984 dtrace_ecb_t *ecb; 11985 dtrace_enabling_t *enab = arg; 11986 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11987 11988 ASSERT(state != NULL); 11989 11990 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11991 /* 11992 * This probe was created in a generation for which this 11993 * enabling has previously created ECBs; we don't want to 11994 * enable it again, so just kick out. 11995 */ 11996 return (DTRACE_MATCH_NEXT); 11997 } 11998 11999 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 12000 return (DTRACE_MATCH_DONE); 12001 12002 dtrace_ecb_enable(ecb); 12003 return (DTRACE_MATCH_NEXT); 12004 } 12005 12006 static dtrace_ecb_t * 12007 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 12008 { 12009 dtrace_ecb_t *ecb; 12010 12011 ASSERT(MUTEX_HELD(&dtrace_lock)); 12012 12013 if (id == 0 || id > state->dts_necbs) 12014 return (NULL); 12015 12016 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 12017 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 12018 12019 return (state->dts_ecbs[id - 1]); 12020 } 12021 12022 static dtrace_aggregation_t * 12023 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 12024 { 12025 dtrace_aggregation_t *agg; 12026 12027 ASSERT(MUTEX_HELD(&dtrace_lock)); 12028 12029 if (id == 0 || id > state->dts_naggregations) 12030 return (NULL); 12031 12032 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 12033 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 12034 agg->dtag_id == id); 12035 12036 return (state->dts_aggregations[id - 1]); 12037 } 12038 12039 /* 12040 * DTrace Buffer Functions 12041 * 12042 * The following functions manipulate DTrace buffers. Most of these functions 12043 * are called in the context of establishing or processing consumer state; 12044 * exceptions are explicitly noted. 12045 */ 12046 12047 /* 12048 * Note: called from cross call context. This function switches the two 12049 * buffers on a given CPU. The atomicity of this operation is assured by 12050 * disabling interrupts while the actual switch takes place; the disabling of 12051 * interrupts serializes the execution with any execution of dtrace_probe() on 12052 * the same CPU. 12053 */ 12054 static void 12055 dtrace_buffer_switch(dtrace_buffer_t *buf) 12056 { 12057 caddr_t tomax = buf->dtb_tomax; 12058 caddr_t xamot = buf->dtb_xamot; 12059 dtrace_icookie_t cookie; 12060 hrtime_t now; 12061 12062 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12063 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 12064 12065 cookie = dtrace_interrupt_disable(); 12066 now = dtrace_gethrtime(); 12067 buf->dtb_tomax = xamot; 12068 buf->dtb_xamot = tomax; 12069 buf->dtb_xamot_drops = buf->dtb_drops; 12070 buf->dtb_xamot_offset = buf->dtb_offset; 12071 buf->dtb_xamot_errors = buf->dtb_errors; 12072 buf->dtb_xamot_flags = buf->dtb_flags; 12073 buf->dtb_offset = 0; 12074 buf->dtb_drops = 0; 12075 buf->dtb_errors = 0; 12076 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 12077 buf->dtb_interval = now - buf->dtb_switched; 12078 buf->dtb_switched = now; 12079 dtrace_interrupt_enable(cookie); 12080 } 12081 12082 /* 12083 * Note: called from cross call context. This function activates a buffer 12084 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 12085 * is guaranteed by the disabling of interrupts. 12086 */ 12087 static void 12088 dtrace_buffer_activate(dtrace_state_t *state) 12089 { 12090 dtrace_buffer_t *buf; 12091 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 12092 12093 buf = &state->dts_buffer[curcpu]; 12094 12095 if (buf->dtb_tomax != NULL) { 12096 /* 12097 * We might like to assert that the buffer is marked inactive, 12098 * but this isn't necessarily true: the buffer for the CPU 12099 * that processes the BEGIN probe has its buffer activated 12100 * manually. In this case, we take the (harmless) action 12101 * re-clearing the bit INACTIVE bit. 12102 */ 12103 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 12104 } 12105 12106 dtrace_interrupt_enable(cookie); 12107 } 12108 12109 #ifdef __FreeBSD__ 12110 /* 12111 * Activate the specified per-CPU buffer. This is used instead of 12112 * dtrace_buffer_activate() when APs have not yet started, i.e. when 12113 * activating anonymous state. 12114 */ 12115 static void 12116 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu) 12117 { 12118 12119 if (state->dts_buffer[cpu].dtb_tomax != NULL) 12120 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12121 } 12122 #endif 12123 12124 static int 12125 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 12126 processorid_t cpu, int *factor) 12127 { 12128 #ifdef illumos 12129 cpu_t *cp; 12130 #endif 12131 dtrace_buffer_t *buf; 12132 int allocated = 0, desired = 0; 12133 12134 #ifdef illumos 12135 ASSERT(MUTEX_HELD(&cpu_lock)); 12136 ASSERT(MUTEX_HELD(&dtrace_lock)); 12137 12138 *factor = 1; 12139 12140 if (size > dtrace_nonroot_maxsize && 12141 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 12142 return (EFBIG); 12143 12144 cp = cpu_list; 12145 12146 do { 12147 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12148 continue; 12149 12150 buf = &bufs[cp->cpu_id]; 12151 12152 /* 12153 * If there is already a buffer allocated for this CPU, it 12154 * is only possible that this is a DR event. In this case, 12155 */ 12156 if (buf->dtb_tomax != NULL) { 12157 ASSERT(buf->dtb_size == size); 12158 continue; 12159 } 12160 12161 ASSERT(buf->dtb_xamot == NULL); 12162 12163 if ((buf->dtb_tomax = kmem_zalloc(size, 12164 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12165 goto err; 12166 12167 buf->dtb_size = size; 12168 buf->dtb_flags = flags; 12169 buf->dtb_offset = 0; 12170 buf->dtb_drops = 0; 12171 12172 if (flags & DTRACEBUF_NOSWITCH) 12173 continue; 12174 12175 if ((buf->dtb_xamot = kmem_zalloc(size, 12176 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12177 goto err; 12178 } while ((cp = cp->cpu_next) != cpu_list); 12179 12180 return (0); 12181 12182 err: 12183 cp = cpu_list; 12184 12185 do { 12186 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12187 continue; 12188 12189 buf = &bufs[cp->cpu_id]; 12190 desired += 2; 12191 12192 if (buf->dtb_xamot != NULL) { 12193 ASSERT(buf->dtb_tomax != NULL); 12194 ASSERT(buf->dtb_size == size); 12195 kmem_free(buf->dtb_xamot, size); 12196 allocated++; 12197 } 12198 12199 if (buf->dtb_tomax != NULL) { 12200 ASSERT(buf->dtb_size == size); 12201 kmem_free(buf->dtb_tomax, size); 12202 allocated++; 12203 } 12204 12205 buf->dtb_tomax = NULL; 12206 buf->dtb_xamot = NULL; 12207 buf->dtb_size = 0; 12208 } while ((cp = cp->cpu_next) != cpu_list); 12209 #else 12210 int i; 12211 12212 *factor = 1; 12213 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 12214 defined(__mips__) || defined(__powerpc__) || defined(__riscv) 12215 /* 12216 * FreeBSD isn't good at limiting the amount of memory we 12217 * ask to malloc, so let's place a limit here before trying 12218 * to do something that might well end in tears at bedtime. 12219 */ 12220 int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus; 12221 if (size > physmem * PAGE_SIZE / bufsize_percpu_frac) 12222 return (ENOMEM); 12223 #endif 12224 12225 ASSERT(MUTEX_HELD(&dtrace_lock)); 12226 CPU_FOREACH(i) { 12227 if (cpu != DTRACE_CPUALL && cpu != i) 12228 continue; 12229 12230 buf = &bufs[i]; 12231 12232 /* 12233 * If there is already a buffer allocated for this CPU, it 12234 * is only possible that this is a DR event. In this case, 12235 * the buffer size must match our specified size. 12236 */ 12237 if (buf->dtb_tomax != NULL) { 12238 ASSERT(buf->dtb_size == size); 12239 continue; 12240 } 12241 12242 ASSERT(buf->dtb_xamot == NULL); 12243 12244 if ((buf->dtb_tomax = kmem_zalloc(size, 12245 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12246 goto err; 12247 12248 buf->dtb_size = size; 12249 buf->dtb_flags = flags; 12250 buf->dtb_offset = 0; 12251 buf->dtb_drops = 0; 12252 12253 if (flags & DTRACEBUF_NOSWITCH) 12254 continue; 12255 12256 if ((buf->dtb_xamot = kmem_zalloc(size, 12257 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12258 goto err; 12259 } 12260 12261 return (0); 12262 12263 err: 12264 /* 12265 * Error allocating memory, so free the buffers that were 12266 * allocated before the failed allocation. 12267 */ 12268 CPU_FOREACH(i) { 12269 if (cpu != DTRACE_CPUALL && cpu != i) 12270 continue; 12271 12272 buf = &bufs[i]; 12273 desired += 2; 12274 12275 if (buf->dtb_xamot != NULL) { 12276 ASSERT(buf->dtb_tomax != NULL); 12277 ASSERT(buf->dtb_size == size); 12278 kmem_free(buf->dtb_xamot, size); 12279 allocated++; 12280 } 12281 12282 if (buf->dtb_tomax != NULL) { 12283 ASSERT(buf->dtb_size == size); 12284 kmem_free(buf->dtb_tomax, size); 12285 allocated++; 12286 } 12287 12288 buf->dtb_tomax = NULL; 12289 buf->dtb_xamot = NULL; 12290 buf->dtb_size = 0; 12291 12292 } 12293 #endif 12294 *factor = desired / (allocated > 0 ? allocated : 1); 12295 12296 return (ENOMEM); 12297 } 12298 12299 /* 12300 * Note: called from probe context. This function just increments the drop 12301 * count on a buffer. It has been made a function to allow for the 12302 * possibility of understanding the source of mysterious drop counts. (A 12303 * problem for which one may be particularly disappointed that DTrace cannot 12304 * be used to understand DTrace.) 12305 */ 12306 static void 12307 dtrace_buffer_drop(dtrace_buffer_t *buf) 12308 { 12309 buf->dtb_drops++; 12310 } 12311 12312 /* 12313 * Note: called from probe context. This function is called to reserve space 12314 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 12315 * mstate. Returns the new offset in the buffer, or a negative value if an 12316 * error has occurred. 12317 */ 12318 static ssize_t 12319 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 12320 dtrace_state_t *state, dtrace_mstate_t *mstate) 12321 { 12322 ssize_t offs = buf->dtb_offset, soffs; 12323 intptr_t woffs; 12324 caddr_t tomax; 12325 size_t total; 12326 12327 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 12328 return (-1); 12329 12330 if ((tomax = buf->dtb_tomax) == NULL) { 12331 dtrace_buffer_drop(buf); 12332 return (-1); 12333 } 12334 12335 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 12336 while (offs & (align - 1)) { 12337 /* 12338 * Assert that our alignment is off by a number which 12339 * is itself sizeof (uint32_t) aligned. 12340 */ 12341 ASSERT(!((align - (offs & (align - 1))) & 12342 (sizeof (uint32_t) - 1))); 12343 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12344 offs += sizeof (uint32_t); 12345 } 12346 12347 if ((soffs = offs + needed) > buf->dtb_size) { 12348 dtrace_buffer_drop(buf); 12349 return (-1); 12350 } 12351 12352 if (mstate == NULL) 12353 return (offs); 12354 12355 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 12356 mstate->dtms_scratch_size = buf->dtb_size - soffs; 12357 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12358 12359 return (offs); 12360 } 12361 12362 if (buf->dtb_flags & DTRACEBUF_FILL) { 12363 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 12364 (buf->dtb_flags & DTRACEBUF_FULL)) 12365 return (-1); 12366 goto out; 12367 } 12368 12369 total = needed + (offs & (align - 1)); 12370 12371 /* 12372 * For a ring buffer, life is quite a bit more complicated. Before 12373 * we can store any padding, we need to adjust our wrapping offset. 12374 * (If we've never before wrapped or we're not about to, no adjustment 12375 * is required.) 12376 */ 12377 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 12378 offs + total > buf->dtb_size) { 12379 woffs = buf->dtb_xamot_offset; 12380 12381 if (offs + total > buf->dtb_size) { 12382 /* 12383 * We can't fit in the end of the buffer. First, a 12384 * sanity check that we can fit in the buffer at all. 12385 */ 12386 if (total > buf->dtb_size) { 12387 dtrace_buffer_drop(buf); 12388 return (-1); 12389 } 12390 12391 /* 12392 * We're going to be storing at the top of the buffer, 12393 * so now we need to deal with the wrapped offset. We 12394 * only reset our wrapped offset to 0 if it is 12395 * currently greater than the current offset. If it 12396 * is less than the current offset, it is because a 12397 * previous allocation induced a wrap -- but the 12398 * allocation didn't subsequently take the space due 12399 * to an error or false predicate evaluation. In this 12400 * case, we'll just leave the wrapped offset alone: if 12401 * the wrapped offset hasn't been advanced far enough 12402 * for this allocation, it will be adjusted in the 12403 * lower loop. 12404 */ 12405 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 12406 if (woffs >= offs) 12407 woffs = 0; 12408 } else { 12409 woffs = 0; 12410 } 12411 12412 /* 12413 * Now we know that we're going to be storing to the 12414 * top of the buffer and that there is room for us 12415 * there. We need to clear the buffer from the current 12416 * offset to the end (there may be old gunk there). 12417 */ 12418 while (offs < buf->dtb_size) 12419 tomax[offs++] = 0; 12420 12421 /* 12422 * We need to set our offset to zero. And because we 12423 * are wrapping, we need to set the bit indicating as 12424 * much. We can also adjust our needed space back 12425 * down to the space required by the ECB -- we know 12426 * that the top of the buffer is aligned. 12427 */ 12428 offs = 0; 12429 total = needed; 12430 buf->dtb_flags |= DTRACEBUF_WRAPPED; 12431 } else { 12432 /* 12433 * There is room for us in the buffer, so we simply 12434 * need to check the wrapped offset. 12435 */ 12436 if (woffs < offs) { 12437 /* 12438 * The wrapped offset is less than the offset. 12439 * This can happen if we allocated buffer space 12440 * that induced a wrap, but then we didn't 12441 * subsequently take the space due to an error 12442 * or false predicate evaluation. This is 12443 * okay; we know that _this_ allocation isn't 12444 * going to induce a wrap. We still can't 12445 * reset the wrapped offset to be zero, 12446 * however: the space may have been trashed in 12447 * the previous failed probe attempt. But at 12448 * least the wrapped offset doesn't need to 12449 * be adjusted at all... 12450 */ 12451 goto out; 12452 } 12453 } 12454 12455 while (offs + total > woffs) { 12456 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 12457 size_t size; 12458 12459 if (epid == DTRACE_EPIDNONE) { 12460 size = sizeof (uint32_t); 12461 } else { 12462 ASSERT3U(epid, <=, state->dts_necbs); 12463 ASSERT(state->dts_ecbs[epid - 1] != NULL); 12464 12465 size = state->dts_ecbs[epid - 1]->dte_size; 12466 } 12467 12468 ASSERT(woffs + size <= buf->dtb_size); 12469 ASSERT(size != 0); 12470 12471 if (woffs + size == buf->dtb_size) { 12472 /* 12473 * We've reached the end of the buffer; we want 12474 * to set the wrapped offset to 0 and break 12475 * out. However, if the offs is 0, then we're 12476 * in a strange edge-condition: the amount of 12477 * space that we want to reserve plus the size 12478 * of the record that we're overwriting is 12479 * greater than the size of the buffer. This 12480 * is problematic because if we reserve the 12481 * space but subsequently don't consume it (due 12482 * to a failed predicate or error) the wrapped 12483 * offset will be 0 -- yet the EPID at offset 0 12484 * will not be committed. This situation is 12485 * relatively easy to deal with: if we're in 12486 * this case, the buffer is indistinguishable 12487 * from one that hasn't wrapped; we need only 12488 * finish the job by clearing the wrapped bit, 12489 * explicitly setting the offset to be 0, and 12490 * zero'ing out the old data in the buffer. 12491 */ 12492 if (offs == 0) { 12493 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 12494 buf->dtb_offset = 0; 12495 woffs = total; 12496 12497 while (woffs < buf->dtb_size) 12498 tomax[woffs++] = 0; 12499 } 12500 12501 woffs = 0; 12502 break; 12503 } 12504 12505 woffs += size; 12506 } 12507 12508 /* 12509 * We have a wrapped offset. It may be that the wrapped offset 12510 * has become zero -- that's okay. 12511 */ 12512 buf->dtb_xamot_offset = woffs; 12513 } 12514 12515 out: 12516 /* 12517 * Now we can plow the buffer with any necessary padding. 12518 */ 12519 while (offs & (align - 1)) { 12520 /* 12521 * Assert that our alignment is off by a number which 12522 * is itself sizeof (uint32_t) aligned. 12523 */ 12524 ASSERT(!((align - (offs & (align - 1))) & 12525 (sizeof (uint32_t) - 1))); 12526 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12527 offs += sizeof (uint32_t); 12528 } 12529 12530 if (buf->dtb_flags & DTRACEBUF_FILL) { 12531 if (offs + needed > buf->dtb_size - state->dts_reserve) { 12532 buf->dtb_flags |= DTRACEBUF_FULL; 12533 return (-1); 12534 } 12535 } 12536 12537 if (mstate == NULL) 12538 return (offs); 12539 12540 /* 12541 * For ring buffers and fill buffers, the scratch space is always 12542 * the inactive buffer. 12543 */ 12544 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 12545 mstate->dtms_scratch_size = buf->dtb_size; 12546 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12547 12548 return (offs); 12549 } 12550 12551 static void 12552 dtrace_buffer_polish(dtrace_buffer_t *buf) 12553 { 12554 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 12555 ASSERT(MUTEX_HELD(&dtrace_lock)); 12556 12557 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 12558 return; 12559 12560 /* 12561 * We need to polish the ring buffer. There are three cases: 12562 * 12563 * - The first (and presumably most common) is that there is no gap 12564 * between the buffer offset and the wrapped offset. In this case, 12565 * there is nothing in the buffer that isn't valid data; we can 12566 * mark the buffer as polished and return. 12567 * 12568 * - The second (less common than the first but still more common 12569 * than the third) is that there is a gap between the buffer offset 12570 * and the wrapped offset, and the wrapped offset is larger than the 12571 * buffer offset. This can happen because of an alignment issue, or 12572 * can happen because of a call to dtrace_buffer_reserve() that 12573 * didn't subsequently consume the buffer space. In this case, 12574 * we need to zero the data from the buffer offset to the wrapped 12575 * offset. 12576 * 12577 * - The third (and least common) is that there is a gap between the 12578 * buffer offset and the wrapped offset, but the wrapped offset is 12579 * _less_ than the buffer offset. This can only happen because a 12580 * call to dtrace_buffer_reserve() induced a wrap, but the space 12581 * was not subsequently consumed. In this case, we need to zero the 12582 * space from the offset to the end of the buffer _and_ from the 12583 * top of the buffer to the wrapped offset. 12584 */ 12585 if (buf->dtb_offset < buf->dtb_xamot_offset) { 12586 bzero(buf->dtb_tomax + buf->dtb_offset, 12587 buf->dtb_xamot_offset - buf->dtb_offset); 12588 } 12589 12590 if (buf->dtb_offset > buf->dtb_xamot_offset) { 12591 bzero(buf->dtb_tomax + buf->dtb_offset, 12592 buf->dtb_size - buf->dtb_offset); 12593 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 12594 } 12595 } 12596 12597 /* 12598 * This routine determines if data generated at the specified time has likely 12599 * been entirely consumed at user-level. This routine is called to determine 12600 * if an ECB on a defunct probe (but for an active enabling) can be safely 12601 * disabled and destroyed. 12602 */ 12603 static int 12604 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 12605 { 12606 int i; 12607 12608 CPU_FOREACH(i) { 12609 dtrace_buffer_t *buf = &bufs[i]; 12610 12611 if (buf->dtb_size == 0) 12612 continue; 12613 12614 if (buf->dtb_flags & DTRACEBUF_RING) 12615 return (0); 12616 12617 if (!buf->dtb_switched && buf->dtb_offset != 0) 12618 return (0); 12619 12620 if (buf->dtb_switched - buf->dtb_interval < when) 12621 return (0); 12622 } 12623 12624 return (1); 12625 } 12626 12627 static void 12628 dtrace_buffer_free(dtrace_buffer_t *bufs) 12629 { 12630 int i; 12631 12632 CPU_FOREACH(i) { 12633 dtrace_buffer_t *buf = &bufs[i]; 12634 12635 if (buf->dtb_tomax == NULL) { 12636 ASSERT(buf->dtb_xamot == NULL); 12637 ASSERT(buf->dtb_size == 0); 12638 continue; 12639 } 12640 12641 if (buf->dtb_xamot != NULL) { 12642 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12643 kmem_free(buf->dtb_xamot, buf->dtb_size); 12644 } 12645 12646 kmem_free(buf->dtb_tomax, buf->dtb_size); 12647 buf->dtb_size = 0; 12648 buf->dtb_tomax = NULL; 12649 buf->dtb_xamot = NULL; 12650 } 12651 } 12652 12653 /* 12654 * DTrace Enabling Functions 12655 */ 12656 static dtrace_enabling_t * 12657 dtrace_enabling_create(dtrace_vstate_t *vstate) 12658 { 12659 dtrace_enabling_t *enab; 12660 12661 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12662 enab->dten_vstate = vstate; 12663 12664 return (enab); 12665 } 12666 12667 static void 12668 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12669 { 12670 dtrace_ecbdesc_t **ndesc; 12671 size_t osize, nsize; 12672 12673 /* 12674 * We can't add to enablings after we've enabled them, or after we've 12675 * retained them. 12676 */ 12677 ASSERT(enab->dten_probegen == 0); 12678 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12679 12680 if (enab->dten_ndesc < enab->dten_maxdesc) { 12681 enab->dten_desc[enab->dten_ndesc++] = ecb; 12682 return; 12683 } 12684 12685 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12686 12687 if (enab->dten_maxdesc == 0) { 12688 enab->dten_maxdesc = 1; 12689 } else { 12690 enab->dten_maxdesc <<= 1; 12691 } 12692 12693 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12694 12695 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12696 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12697 bcopy(enab->dten_desc, ndesc, osize); 12698 if (enab->dten_desc != NULL) 12699 kmem_free(enab->dten_desc, osize); 12700 12701 enab->dten_desc = ndesc; 12702 enab->dten_desc[enab->dten_ndesc++] = ecb; 12703 } 12704 12705 static void 12706 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12707 dtrace_probedesc_t *pd) 12708 { 12709 dtrace_ecbdesc_t *new; 12710 dtrace_predicate_t *pred; 12711 dtrace_actdesc_t *act; 12712 12713 /* 12714 * We're going to create a new ECB description that matches the 12715 * specified ECB in every way, but has the specified probe description. 12716 */ 12717 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12718 12719 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12720 dtrace_predicate_hold(pred); 12721 12722 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12723 dtrace_actdesc_hold(act); 12724 12725 new->dted_action = ecb->dted_action; 12726 new->dted_pred = ecb->dted_pred; 12727 new->dted_probe = *pd; 12728 new->dted_uarg = ecb->dted_uarg; 12729 12730 dtrace_enabling_add(enab, new); 12731 } 12732 12733 static void 12734 dtrace_enabling_dump(dtrace_enabling_t *enab) 12735 { 12736 int i; 12737 12738 for (i = 0; i < enab->dten_ndesc; i++) { 12739 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12740 12741 #ifdef __FreeBSD__ 12742 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i, 12743 desc->dtpd_provider, desc->dtpd_mod, 12744 desc->dtpd_func, desc->dtpd_name); 12745 #else 12746 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12747 desc->dtpd_provider, desc->dtpd_mod, 12748 desc->dtpd_func, desc->dtpd_name); 12749 #endif 12750 } 12751 } 12752 12753 static void 12754 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12755 { 12756 int i; 12757 dtrace_ecbdesc_t *ep; 12758 dtrace_vstate_t *vstate = enab->dten_vstate; 12759 12760 ASSERT(MUTEX_HELD(&dtrace_lock)); 12761 12762 for (i = 0; i < enab->dten_ndesc; i++) { 12763 dtrace_actdesc_t *act, *next; 12764 dtrace_predicate_t *pred; 12765 12766 ep = enab->dten_desc[i]; 12767 12768 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12769 dtrace_predicate_release(pred, vstate); 12770 12771 for (act = ep->dted_action; act != NULL; act = next) { 12772 next = act->dtad_next; 12773 dtrace_actdesc_release(act, vstate); 12774 } 12775 12776 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12777 } 12778 12779 if (enab->dten_desc != NULL) 12780 kmem_free(enab->dten_desc, 12781 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12782 12783 /* 12784 * If this was a retained enabling, decrement the dts_nretained count 12785 * and take it off of the dtrace_retained list. 12786 */ 12787 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12788 dtrace_retained == enab) { 12789 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12790 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12791 enab->dten_vstate->dtvs_state->dts_nretained--; 12792 dtrace_retained_gen++; 12793 } 12794 12795 if (enab->dten_prev == NULL) { 12796 if (dtrace_retained == enab) { 12797 dtrace_retained = enab->dten_next; 12798 12799 if (dtrace_retained != NULL) 12800 dtrace_retained->dten_prev = NULL; 12801 } 12802 } else { 12803 ASSERT(enab != dtrace_retained); 12804 ASSERT(dtrace_retained != NULL); 12805 enab->dten_prev->dten_next = enab->dten_next; 12806 } 12807 12808 if (enab->dten_next != NULL) { 12809 ASSERT(dtrace_retained != NULL); 12810 enab->dten_next->dten_prev = enab->dten_prev; 12811 } 12812 12813 kmem_free(enab, sizeof (dtrace_enabling_t)); 12814 } 12815 12816 static int 12817 dtrace_enabling_retain(dtrace_enabling_t *enab) 12818 { 12819 dtrace_state_t *state; 12820 12821 ASSERT(MUTEX_HELD(&dtrace_lock)); 12822 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12823 ASSERT(enab->dten_vstate != NULL); 12824 12825 state = enab->dten_vstate->dtvs_state; 12826 ASSERT(state != NULL); 12827 12828 /* 12829 * We only allow each state to retain dtrace_retain_max enablings. 12830 */ 12831 if (state->dts_nretained >= dtrace_retain_max) 12832 return (ENOSPC); 12833 12834 state->dts_nretained++; 12835 dtrace_retained_gen++; 12836 12837 if (dtrace_retained == NULL) { 12838 dtrace_retained = enab; 12839 return (0); 12840 } 12841 12842 enab->dten_next = dtrace_retained; 12843 dtrace_retained->dten_prev = enab; 12844 dtrace_retained = enab; 12845 12846 return (0); 12847 } 12848 12849 static int 12850 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12851 dtrace_probedesc_t *create) 12852 { 12853 dtrace_enabling_t *new, *enab; 12854 int found = 0, err = ENOENT; 12855 12856 ASSERT(MUTEX_HELD(&dtrace_lock)); 12857 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12858 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12859 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12860 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12861 12862 new = dtrace_enabling_create(&state->dts_vstate); 12863 12864 /* 12865 * Iterate over all retained enablings, looking for enablings that 12866 * match the specified state. 12867 */ 12868 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12869 int i; 12870 12871 /* 12872 * dtvs_state can only be NULL for helper enablings -- and 12873 * helper enablings can't be retained. 12874 */ 12875 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12876 12877 if (enab->dten_vstate->dtvs_state != state) 12878 continue; 12879 12880 /* 12881 * Now iterate over each probe description; we're looking for 12882 * an exact match to the specified probe description. 12883 */ 12884 for (i = 0; i < enab->dten_ndesc; i++) { 12885 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12886 dtrace_probedesc_t *pd = &ep->dted_probe; 12887 12888 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12889 continue; 12890 12891 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12892 continue; 12893 12894 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12895 continue; 12896 12897 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12898 continue; 12899 12900 /* 12901 * We have a winning probe! Add it to our growing 12902 * enabling. 12903 */ 12904 found = 1; 12905 dtrace_enabling_addlike(new, ep, create); 12906 } 12907 } 12908 12909 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12910 dtrace_enabling_destroy(new); 12911 return (err); 12912 } 12913 12914 return (0); 12915 } 12916 12917 static void 12918 dtrace_enabling_retract(dtrace_state_t *state) 12919 { 12920 dtrace_enabling_t *enab, *next; 12921 12922 ASSERT(MUTEX_HELD(&dtrace_lock)); 12923 12924 /* 12925 * Iterate over all retained enablings, destroy the enablings retained 12926 * for the specified state. 12927 */ 12928 for (enab = dtrace_retained; enab != NULL; enab = next) { 12929 next = enab->dten_next; 12930 12931 /* 12932 * dtvs_state can only be NULL for helper enablings -- and 12933 * helper enablings can't be retained. 12934 */ 12935 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12936 12937 if (enab->dten_vstate->dtvs_state == state) { 12938 ASSERT(state->dts_nretained > 0); 12939 dtrace_enabling_destroy(enab); 12940 } 12941 } 12942 12943 ASSERT(state->dts_nretained == 0); 12944 } 12945 12946 static int 12947 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12948 { 12949 int i = 0; 12950 int matched = 0; 12951 12952 ASSERT(MUTEX_HELD(&cpu_lock)); 12953 ASSERT(MUTEX_HELD(&dtrace_lock)); 12954 12955 for (i = 0; i < enab->dten_ndesc; i++) { 12956 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12957 12958 enab->dten_current = ep; 12959 enab->dten_error = 0; 12960 12961 matched += dtrace_probe_enable(&ep->dted_probe, enab); 12962 12963 if (enab->dten_error != 0) { 12964 /* 12965 * If we get an error half-way through enabling the 12966 * probes, we kick out -- perhaps with some number of 12967 * them enabled. Leaving enabled probes enabled may 12968 * be slightly confusing for user-level, but we expect 12969 * that no one will attempt to actually drive on in 12970 * the face of such errors. If this is an anonymous 12971 * enabling (indicated with a NULL nmatched pointer), 12972 * we cmn_err() a message. We aren't expecting to 12973 * get such an error -- such as it can exist at all, 12974 * it would be a result of corrupted DOF in the driver 12975 * properties. 12976 */ 12977 if (nmatched == NULL) { 12978 cmn_err(CE_WARN, "dtrace_enabling_match() " 12979 "error on %p: %d", (void *)ep, 12980 enab->dten_error); 12981 } 12982 12983 return (enab->dten_error); 12984 } 12985 } 12986 12987 enab->dten_probegen = dtrace_probegen; 12988 if (nmatched != NULL) 12989 *nmatched = matched; 12990 12991 return (0); 12992 } 12993 12994 static void 12995 dtrace_enabling_matchall(void) 12996 { 12997 dtrace_enabling_t *enab; 12998 12999 mutex_enter(&cpu_lock); 13000 mutex_enter(&dtrace_lock); 13001 13002 /* 13003 * Iterate over all retained enablings to see if any probes match 13004 * against them. We only perform this operation on enablings for which 13005 * we have sufficient permissions by virtue of being in the global zone 13006 * or in the same zone as the DTrace client. Because we can be called 13007 * after dtrace_detach() has been called, we cannot assert that there 13008 * are retained enablings. We can safely load from dtrace_retained, 13009 * however: the taskq_destroy() at the end of dtrace_detach() will 13010 * block pending our completion. 13011 */ 13012 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13013 #ifdef illumos 13014 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 13015 13016 if (INGLOBALZONE(curproc) || 13017 cr != NULL && getzoneid() == crgetzoneid(cr)) 13018 #endif 13019 (void) dtrace_enabling_match(enab, NULL); 13020 } 13021 13022 mutex_exit(&dtrace_lock); 13023 mutex_exit(&cpu_lock); 13024 } 13025 13026 /* 13027 * If an enabling is to be enabled without having matched probes (that is, if 13028 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 13029 * enabling must be _primed_ by creating an ECB for every ECB description. 13030 * This must be done to assure that we know the number of speculations, the 13031 * number of aggregations, the minimum buffer size needed, etc. before we 13032 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 13033 * enabling any probes, we create ECBs for every ECB decription, but with a 13034 * NULL probe -- which is exactly what this function does. 13035 */ 13036 static void 13037 dtrace_enabling_prime(dtrace_state_t *state) 13038 { 13039 dtrace_enabling_t *enab; 13040 int i; 13041 13042 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13043 ASSERT(enab->dten_vstate->dtvs_state != NULL); 13044 13045 if (enab->dten_vstate->dtvs_state != state) 13046 continue; 13047 13048 /* 13049 * We don't want to prime an enabling more than once, lest 13050 * we allow a malicious user to induce resource exhaustion. 13051 * (The ECBs that result from priming an enabling aren't 13052 * leaked -- but they also aren't deallocated until the 13053 * consumer state is destroyed.) 13054 */ 13055 if (enab->dten_primed) 13056 continue; 13057 13058 for (i = 0; i < enab->dten_ndesc; i++) { 13059 enab->dten_current = enab->dten_desc[i]; 13060 (void) dtrace_probe_enable(NULL, enab); 13061 } 13062 13063 enab->dten_primed = 1; 13064 } 13065 } 13066 13067 /* 13068 * Called to indicate that probes should be provided due to retained 13069 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 13070 * must take an initial lap through the enabling calling the dtps_provide() 13071 * entry point explicitly to allow for autocreated probes. 13072 */ 13073 static void 13074 dtrace_enabling_provide(dtrace_provider_t *prv) 13075 { 13076 int i, all = 0; 13077 dtrace_probedesc_t desc; 13078 dtrace_genid_t gen; 13079 13080 ASSERT(MUTEX_HELD(&dtrace_lock)); 13081 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 13082 13083 if (prv == NULL) { 13084 all = 1; 13085 prv = dtrace_provider; 13086 } 13087 13088 do { 13089 dtrace_enabling_t *enab; 13090 void *parg = prv->dtpv_arg; 13091 13092 retry: 13093 gen = dtrace_retained_gen; 13094 for (enab = dtrace_retained; enab != NULL; 13095 enab = enab->dten_next) { 13096 for (i = 0; i < enab->dten_ndesc; i++) { 13097 desc = enab->dten_desc[i]->dted_probe; 13098 mutex_exit(&dtrace_lock); 13099 prv->dtpv_pops.dtps_provide(parg, &desc); 13100 mutex_enter(&dtrace_lock); 13101 /* 13102 * Process the retained enablings again if 13103 * they have changed while we weren't holding 13104 * dtrace_lock. 13105 */ 13106 if (gen != dtrace_retained_gen) 13107 goto retry; 13108 } 13109 } 13110 } while (all && (prv = prv->dtpv_next) != NULL); 13111 13112 mutex_exit(&dtrace_lock); 13113 dtrace_probe_provide(NULL, all ? NULL : prv); 13114 mutex_enter(&dtrace_lock); 13115 } 13116 13117 /* 13118 * Called to reap ECBs that are attached to probes from defunct providers. 13119 */ 13120 static void 13121 dtrace_enabling_reap(void) 13122 { 13123 dtrace_provider_t *prov; 13124 dtrace_probe_t *probe; 13125 dtrace_ecb_t *ecb; 13126 hrtime_t when; 13127 int i; 13128 13129 mutex_enter(&cpu_lock); 13130 mutex_enter(&dtrace_lock); 13131 13132 for (i = 0; i < dtrace_nprobes; i++) { 13133 if ((probe = dtrace_probes[i]) == NULL) 13134 continue; 13135 13136 if (probe->dtpr_ecb == NULL) 13137 continue; 13138 13139 prov = probe->dtpr_provider; 13140 13141 if ((when = prov->dtpv_defunct) == 0) 13142 continue; 13143 13144 /* 13145 * We have ECBs on a defunct provider: we want to reap these 13146 * ECBs to allow the provider to unregister. The destruction 13147 * of these ECBs must be done carefully: if we destroy the ECB 13148 * and the consumer later wishes to consume an EPID that 13149 * corresponds to the destroyed ECB (and if the EPID metadata 13150 * has not been previously consumed), the consumer will abort 13151 * processing on the unknown EPID. To reduce (but not, sadly, 13152 * eliminate) the possibility of this, we will only destroy an 13153 * ECB for a defunct provider if, for the state that 13154 * corresponds to the ECB: 13155 * 13156 * (a) There is no speculative tracing (which can effectively 13157 * cache an EPID for an arbitrary amount of time). 13158 * 13159 * (b) The principal buffers have been switched twice since the 13160 * provider became defunct. 13161 * 13162 * (c) The aggregation buffers are of zero size or have been 13163 * switched twice since the provider became defunct. 13164 * 13165 * We use dts_speculates to determine (a) and call a function 13166 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 13167 * that as soon as we've been unable to destroy one of the ECBs 13168 * associated with the probe, we quit trying -- reaping is only 13169 * fruitful in as much as we can destroy all ECBs associated 13170 * with the defunct provider's probes. 13171 */ 13172 while ((ecb = probe->dtpr_ecb) != NULL) { 13173 dtrace_state_t *state = ecb->dte_state; 13174 dtrace_buffer_t *buf = state->dts_buffer; 13175 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 13176 13177 if (state->dts_speculates) 13178 break; 13179 13180 if (!dtrace_buffer_consumed(buf, when)) 13181 break; 13182 13183 if (!dtrace_buffer_consumed(aggbuf, when)) 13184 break; 13185 13186 dtrace_ecb_disable(ecb); 13187 ASSERT(probe->dtpr_ecb != ecb); 13188 dtrace_ecb_destroy(ecb); 13189 } 13190 } 13191 13192 mutex_exit(&dtrace_lock); 13193 mutex_exit(&cpu_lock); 13194 } 13195 13196 /* 13197 * DTrace DOF Functions 13198 */ 13199 /*ARGSUSED*/ 13200 static void 13201 dtrace_dof_error(dof_hdr_t *dof, const char *str) 13202 { 13203 if (dtrace_err_verbose) 13204 cmn_err(CE_WARN, "failed to process DOF: %s", str); 13205 13206 #ifdef DTRACE_ERRDEBUG 13207 dtrace_errdebug(str); 13208 #endif 13209 } 13210 13211 /* 13212 * Create DOF out of a currently enabled state. Right now, we only create 13213 * DOF containing the run-time options -- but this could be expanded to create 13214 * complete DOF representing the enabled state. 13215 */ 13216 static dof_hdr_t * 13217 dtrace_dof_create(dtrace_state_t *state) 13218 { 13219 dof_hdr_t *dof; 13220 dof_sec_t *sec; 13221 dof_optdesc_t *opt; 13222 int i, len = sizeof (dof_hdr_t) + 13223 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 13224 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13225 13226 ASSERT(MUTEX_HELD(&dtrace_lock)); 13227 13228 dof = kmem_zalloc(len, KM_SLEEP); 13229 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 13230 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 13231 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 13232 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 13233 13234 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 13235 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 13236 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 13237 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 13238 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 13239 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 13240 13241 dof->dofh_flags = 0; 13242 dof->dofh_hdrsize = sizeof (dof_hdr_t); 13243 dof->dofh_secsize = sizeof (dof_sec_t); 13244 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 13245 dof->dofh_secoff = sizeof (dof_hdr_t); 13246 dof->dofh_loadsz = len; 13247 dof->dofh_filesz = len; 13248 dof->dofh_pad = 0; 13249 13250 /* 13251 * Fill in the option section header... 13252 */ 13253 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 13254 sec->dofs_type = DOF_SECT_OPTDESC; 13255 sec->dofs_align = sizeof (uint64_t); 13256 sec->dofs_flags = DOF_SECF_LOAD; 13257 sec->dofs_entsize = sizeof (dof_optdesc_t); 13258 13259 opt = (dof_optdesc_t *)((uintptr_t)sec + 13260 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 13261 13262 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 13263 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13264 13265 for (i = 0; i < DTRACEOPT_MAX; i++) { 13266 opt[i].dofo_option = i; 13267 opt[i].dofo_strtab = DOF_SECIDX_NONE; 13268 opt[i].dofo_value = state->dts_options[i]; 13269 } 13270 13271 return (dof); 13272 } 13273 13274 static dof_hdr_t * 13275 dtrace_dof_copyin(uintptr_t uarg, int *errp) 13276 { 13277 dof_hdr_t hdr, *dof; 13278 13279 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13280 13281 /* 13282 * First, we're going to copyin() the sizeof (dof_hdr_t). 13283 */ 13284 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 13285 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13286 *errp = EFAULT; 13287 return (NULL); 13288 } 13289 13290 /* 13291 * Now we'll allocate the entire DOF and copy it in -- provided 13292 * that the length isn't outrageous. 13293 */ 13294 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13295 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13296 *errp = E2BIG; 13297 return (NULL); 13298 } 13299 13300 if (hdr.dofh_loadsz < sizeof (hdr)) { 13301 dtrace_dof_error(&hdr, "invalid load size"); 13302 *errp = EINVAL; 13303 return (NULL); 13304 } 13305 13306 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 13307 13308 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 13309 dof->dofh_loadsz != hdr.dofh_loadsz) { 13310 kmem_free(dof, hdr.dofh_loadsz); 13311 *errp = EFAULT; 13312 return (NULL); 13313 } 13314 13315 return (dof); 13316 } 13317 13318 #ifdef __FreeBSD__ 13319 static dof_hdr_t * 13320 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp) 13321 { 13322 dof_hdr_t hdr, *dof; 13323 struct thread *td; 13324 size_t loadsz; 13325 13326 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13327 13328 td = curthread; 13329 13330 /* 13331 * First, we're going to copyin() the sizeof (dof_hdr_t). 13332 */ 13333 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) { 13334 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13335 *errp = EFAULT; 13336 return (NULL); 13337 } 13338 13339 /* 13340 * Now we'll allocate the entire DOF and copy it in -- provided 13341 * that the length isn't outrageous. 13342 */ 13343 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13344 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13345 *errp = E2BIG; 13346 return (NULL); 13347 } 13348 loadsz = (size_t)hdr.dofh_loadsz; 13349 13350 if (loadsz < sizeof (hdr)) { 13351 dtrace_dof_error(&hdr, "invalid load size"); 13352 *errp = EINVAL; 13353 return (NULL); 13354 } 13355 13356 dof = kmem_alloc(loadsz, KM_SLEEP); 13357 13358 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz || 13359 dof->dofh_loadsz != loadsz) { 13360 kmem_free(dof, hdr.dofh_loadsz); 13361 *errp = EFAULT; 13362 return (NULL); 13363 } 13364 13365 return (dof); 13366 } 13367 13368 static __inline uchar_t 13369 dtrace_dof_char(char c) 13370 { 13371 13372 switch (c) { 13373 case '0': 13374 case '1': 13375 case '2': 13376 case '3': 13377 case '4': 13378 case '5': 13379 case '6': 13380 case '7': 13381 case '8': 13382 case '9': 13383 return (c - '0'); 13384 case 'A': 13385 case 'B': 13386 case 'C': 13387 case 'D': 13388 case 'E': 13389 case 'F': 13390 return (c - 'A' + 10); 13391 case 'a': 13392 case 'b': 13393 case 'c': 13394 case 'd': 13395 case 'e': 13396 case 'f': 13397 return (c - 'a' + 10); 13398 } 13399 /* Should not reach here. */ 13400 return (UCHAR_MAX); 13401 } 13402 #endif /* __FreeBSD__ */ 13403 13404 static dof_hdr_t * 13405 dtrace_dof_property(const char *name) 13406 { 13407 #ifdef __FreeBSD__ 13408 uint8_t *dofbuf; 13409 u_char *data, *eol; 13410 caddr_t doffile; 13411 size_t bytes, len, i; 13412 dof_hdr_t *dof; 13413 u_char c1, c2; 13414 13415 dof = NULL; 13416 13417 doffile = preload_search_by_type("dtrace_dof"); 13418 if (doffile == NULL) 13419 return (NULL); 13420 13421 data = preload_fetch_addr(doffile); 13422 len = preload_fetch_size(doffile); 13423 for (;;) { 13424 /* Look for the end of the line. All lines end in a newline. */ 13425 eol = memchr(data, '\n', len); 13426 if (eol == NULL) 13427 return (NULL); 13428 13429 if (strncmp(name, data, strlen(name)) == 0) 13430 break; 13431 13432 eol++; /* skip past the newline */ 13433 len -= eol - data; 13434 data = eol; 13435 } 13436 13437 /* We've found the data corresponding to the specified key. */ 13438 13439 data += strlen(name) + 1; /* skip past the '=' */ 13440 len = eol - data; 13441 if (len % 2 != 0) { 13442 dtrace_dof_error(NULL, "invalid DOF encoding length"); 13443 goto doferr; 13444 } 13445 bytes = len / 2; 13446 if (bytes < sizeof(dof_hdr_t)) { 13447 dtrace_dof_error(NULL, "truncated header"); 13448 goto doferr; 13449 } 13450 13451 /* 13452 * Each byte is represented by the two ASCII characters in its hex 13453 * representation. 13454 */ 13455 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK); 13456 for (i = 0; i < bytes; i++) { 13457 c1 = dtrace_dof_char(data[i * 2]); 13458 c2 = dtrace_dof_char(data[i * 2 + 1]); 13459 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) { 13460 dtrace_dof_error(NULL, "invalid hex char in DOF"); 13461 goto doferr; 13462 } 13463 dofbuf[i] = c1 * 16 + c2; 13464 } 13465 13466 dof = (dof_hdr_t *)dofbuf; 13467 if (bytes < dof->dofh_loadsz) { 13468 dtrace_dof_error(NULL, "truncated DOF"); 13469 goto doferr; 13470 } 13471 13472 if (dof->dofh_loadsz >= dtrace_dof_maxsize) { 13473 dtrace_dof_error(NULL, "oversized DOF"); 13474 goto doferr; 13475 } 13476 13477 return (dof); 13478 13479 doferr: 13480 free(dof, M_SOLARIS); 13481 return (NULL); 13482 #else /* __FreeBSD__ */ 13483 uchar_t *buf; 13484 uint64_t loadsz; 13485 unsigned int len, i; 13486 dof_hdr_t *dof; 13487 13488 /* 13489 * Unfortunately, array of values in .conf files are always (and 13490 * only) interpreted to be integer arrays. We must read our DOF 13491 * as an integer array, and then squeeze it into a byte array. 13492 */ 13493 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 13494 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 13495 return (NULL); 13496 13497 for (i = 0; i < len; i++) 13498 buf[i] = (uchar_t)(((int *)buf)[i]); 13499 13500 if (len < sizeof (dof_hdr_t)) { 13501 ddi_prop_free(buf); 13502 dtrace_dof_error(NULL, "truncated header"); 13503 return (NULL); 13504 } 13505 13506 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 13507 ddi_prop_free(buf); 13508 dtrace_dof_error(NULL, "truncated DOF"); 13509 return (NULL); 13510 } 13511 13512 if (loadsz >= dtrace_dof_maxsize) { 13513 ddi_prop_free(buf); 13514 dtrace_dof_error(NULL, "oversized DOF"); 13515 return (NULL); 13516 } 13517 13518 dof = kmem_alloc(loadsz, KM_SLEEP); 13519 bcopy(buf, dof, loadsz); 13520 ddi_prop_free(buf); 13521 13522 return (dof); 13523 #endif /* !__FreeBSD__ */ 13524 } 13525 13526 static void 13527 dtrace_dof_destroy(dof_hdr_t *dof) 13528 { 13529 kmem_free(dof, dof->dofh_loadsz); 13530 } 13531 13532 /* 13533 * Return the dof_sec_t pointer corresponding to a given section index. If the 13534 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 13535 * a type other than DOF_SECT_NONE is specified, the header is checked against 13536 * this type and NULL is returned if the types do not match. 13537 */ 13538 static dof_sec_t * 13539 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 13540 { 13541 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 13542 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 13543 13544 if (i >= dof->dofh_secnum) { 13545 dtrace_dof_error(dof, "referenced section index is invalid"); 13546 return (NULL); 13547 } 13548 13549 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 13550 dtrace_dof_error(dof, "referenced section is not loadable"); 13551 return (NULL); 13552 } 13553 13554 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 13555 dtrace_dof_error(dof, "referenced section is the wrong type"); 13556 return (NULL); 13557 } 13558 13559 return (sec); 13560 } 13561 13562 static dtrace_probedesc_t * 13563 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 13564 { 13565 dof_probedesc_t *probe; 13566 dof_sec_t *strtab; 13567 uintptr_t daddr = (uintptr_t)dof; 13568 uintptr_t str; 13569 size_t size; 13570 13571 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 13572 dtrace_dof_error(dof, "invalid probe section"); 13573 return (NULL); 13574 } 13575 13576 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13577 dtrace_dof_error(dof, "bad alignment in probe description"); 13578 return (NULL); 13579 } 13580 13581 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 13582 dtrace_dof_error(dof, "truncated probe description"); 13583 return (NULL); 13584 } 13585 13586 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 13587 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 13588 13589 if (strtab == NULL) 13590 return (NULL); 13591 13592 str = daddr + strtab->dofs_offset; 13593 size = strtab->dofs_size; 13594 13595 if (probe->dofp_provider >= strtab->dofs_size) { 13596 dtrace_dof_error(dof, "corrupt probe provider"); 13597 return (NULL); 13598 } 13599 13600 (void) strncpy(desc->dtpd_provider, 13601 (char *)(str + probe->dofp_provider), 13602 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 13603 13604 if (probe->dofp_mod >= strtab->dofs_size) { 13605 dtrace_dof_error(dof, "corrupt probe module"); 13606 return (NULL); 13607 } 13608 13609 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 13610 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 13611 13612 if (probe->dofp_func >= strtab->dofs_size) { 13613 dtrace_dof_error(dof, "corrupt probe function"); 13614 return (NULL); 13615 } 13616 13617 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 13618 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 13619 13620 if (probe->dofp_name >= strtab->dofs_size) { 13621 dtrace_dof_error(dof, "corrupt probe name"); 13622 return (NULL); 13623 } 13624 13625 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 13626 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 13627 13628 return (desc); 13629 } 13630 13631 static dtrace_difo_t * 13632 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13633 cred_t *cr) 13634 { 13635 dtrace_difo_t *dp; 13636 size_t ttl = 0; 13637 dof_difohdr_t *dofd; 13638 uintptr_t daddr = (uintptr_t)dof; 13639 size_t max = dtrace_difo_maxsize; 13640 int i, l, n; 13641 13642 static const struct { 13643 int section; 13644 int bufoffs; 13645 int lenoffs; 13646 int entsize; 13647 int align; 13648 const char *msg; 13649 } difo[] = { 13650 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 13651 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 13652 sizeof (dif_instr_t), "multiple DIF sections" }, 13653 13654 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 13655 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 13656 sizeof (uint64_t), "multiple integer tables" }, 13657 13658 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 13659 offsetof(dtrace_difo_t, dtdo_strlen), 0, 13660 sizeof (char), "multiple string tables" }, 13661 13662 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 13663 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 13664 sizeof (uint_t), "multiple variable tables" }, 13665 13666 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 13667 }; 13668 13669 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 13670 dtrace_dof_error(dof, "invalid DIFO header section"); 13671 return (NULL); 13672 } 13673 13674 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13675 dtrace_dof_error(dof, "bad alignment in DIFO header"); 13676 return (NULL); 13677 } 13678 13679 if (sec->dofs_size < sizeof (dof_difohdr_t) || 13680 sec->dofs_size % sizeof (dof_secidx_t)) { 13681 dtrace_dof_error(dof, "bad size in DIFO header"); 13682 return (NULL); 13683 } 13684 13685 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13686 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 13687 13688 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 13689 dp->dtdo_rtype = dofd->dofd_rtype; 13690 13691 for (l = 0; l < n; l++) { 13692 dof_sec_t *subsec; 13693 void **bufp; 13694 uint32_t *lenp; 13695 13696 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 13697 dofd->dofd_links[l])) == NULL) 13698 goto err; /* invalid section link */ 13699 13700 if (ttl + subsec->dofs_size > max) { 13701 dtrace_dof_error(dof, "exceeds maximum size"); 13702 goto err; 13703 } 13704 13705 ttl += subsec->dofs_size; 13706 13707 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 13708 if (subsec->dofs_type != difo[i].section) 13709 continue; 13710 13711 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 13712 dtrace_dof_error(dof, "section not loaded"); 13713 goto err; 13714 } 13715 13716 if (subsec->dofs_align != difo[i].align) { 13717 dtrace_dof_error(dof, "bad alignment"); 13718 goto err; 13719 } 13720 13721 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 13722 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 13723 13724 if (*bufp != NULL) { 13725 dtrace_dof_error(dof, difo[i].msg); 13726 goto err; 13727 } 13728 13729 if (difo[i].entsize != subsec->dofs_entsize) { 13730 dtrace_dof_error(dof, "entry size mismatch"); 13731 goto err; 13732 } 13733 13734 if (subsec->dofs_entsize != 0 && 13735 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 13736 dtrace_dof_error(dof, "corrupt entry size"); 13737 goto err; 13738 } 13739 13740 *lenp = subsec->dofs_size; 13741 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 13742 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 13743 *bufp, subsec->dofs_size); 13744 13745 if (subsec->dofs_entsize != 0) 13746 *lenp /= subsec->dofs_entsize; 13747 13748 break; 13749 } 13750 13751 /* 13752 * If we encounter a loadable DIFO sub-section that is not 13753 * known to us, assume this is a broken program and fail. 13754 */ 13755 if (difo[i].section == DOF_SECT_NONE && 13756 (subsec->dofs_flags & DOF_SECF_LOAD)) { 13757 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 13758 goto err; 13759 } 13760 } 13761 13762 if (dp->dtdo_buf == NULL) { 13763 /* 13764 * We can't have a DIF object without DIF text. 13765 */ 13766 dtrace_dof_error(dof, "missing DIF text"); 13767 goto err; 13768 } 13769 13770 /* 13771 * Before we validate the DIF object, run through the variable table 13772 * looking for the strings -- if any of their size are under, we'll set 13773 * their size to be the system-wide default string size. Note that 13774 * this should _not_ happen if the "strsize" option has been set -- 13775 * in this case, the compiler should have set the size to reflect the 13776 * setting of the option. 13777 */ 13778 for (i = 0; i < dp->dtdo_varlen; i++) { 13779 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 13780 dtrace_diftype_t *t = &v->dtdv_type; 13781 13782 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 13783 continue; 13784 13785 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 13786 t->dtdt_size = dtrace_strsize_default; 13787 } 13788 13789 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 13790 goto err; 13791 13792 dtrace_difo_init(dp, vstate); 13793 return (dp); 13794 13795 err: 13796 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 13797 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 13798 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 13799 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 13800 13801 kmem_free(dp, sizeof (dtrace_difo_t)); 13802 return (NULL); 13803 } 13804 13805 static dtrace_predicate_t * 13806 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13807 cred_t *cr) 13808 { 13809 dtrace_difo_t *dp; 13810 13811 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13812 return (NULL); 13813 13814 return (dtrace_predicate_create(dp)); 13815 } 13816 13817 static dtrace_actdesc_t * 13818 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13819 cred_t *cr) 13820 { 13821 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13822 dof_actdesc_t *desc; 13823 dof_sec_t *difosec; 13824 size_t offs; 13825 uintptr_t daddr = (uintptr_t)dof; 13826 uint64_t arg; 13827 dtrace_actkind_t kind; 13828 13829 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13830 dtrace_dof_error(dof, "invalid action section"); 13831 return (NULL); 13832 } 13833 13834 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13835 dtrace_dof_error(dof, "truncated action description"); 13836 return (NULL); 13837 } 13838 13839 if (sec->dofs_align != sizeof (uint64_t)) { 13840 dtrace_dof_error(dof, "bad alignment in action description"); 13841 return (NULL); 13842 } 13843 13844 if (sec->dofs_size < sec->dofs_entsize) { 13845 dtrace_dof_error(dof, "section entry size exceeds total size"); 13846 return (NULL); 13847 } 13848 13849 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13850 dtrace_dof_error(dof, "bad entry size in action description"); 13851 return (NULL); 13852 } 13853 13854 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13855 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13856 return (NULL); 13857 } 13858 13859 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13860 desc = (dof_actdesc_t *)(daddr + 13861 (uintptr_t)sec->dofs_offset + offs); 13862 kind = (dtrace_actkind_t)desc->dofa_kind; 13863 13864 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13865 (kind != DTRACEACT_PRINTA || 13866 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13867 (kind == DTRACEACT_DIFEXPR && 13868 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13869 dof_sec_t *strtab; 13870 char *str, *fmt; 13871 uint64_t i; 13872 13873 /* 13874 * The argument to these actions is an index into the 13875 * DOF string table. For printf()-like actions, this 13876 * is the format string. For print(), this is the 13877 * CTF type of the expression result. 13878 */ 13879 if ((strtab = dtrace_dof_sect(dof, 13880 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13881 goto err; 13882 13883 str = (char *)((uintptr_t)dof + 13884 (uintptr_t)strtab->dofs_offset); 13885 13886 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13887 if (str[i] == '\0') 13888 break; 13889 } 13890 13891 if (i >= strtab->dofs_size) { 13892 dtrace_dof_error(dof, "bogus format string"); 13893 goto err; 13894 } 13895 13896 if (i == desc->dofa_arg) { 13897 dtrace_dof_error(dof, "empty format string"); 13898 goto err; 13899 } 13900 13901 i -= desc->dofa_arg; 13902 fmt = kmem_alloc(i + 1, KM_SLEEP); 13903 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13904 arg = (uint64_t)(uintptr_t)fmt; 13905 } else { 13906 if (kind == DTRACEACT_PRINTA) { 13907 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13908 arg = 0; 13909 } else { 13910 arg = desc->dofa_arg; 13911 } 13912 } 13913 13914 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13915 desc->dofa_uarg, arg); 13916 13917 if (last != NULL) { 13918 last->dtad_next = act; 13919 } else { 13920 first = act; 13921 } 13922 13923 last = act; 13924 13925 if (desc->dofa_difo == DOF_SECIDX_NONE) 13926 continue; 13927 13928 if ((difosec = dtrace_dof_sect(dof, 13929 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13930 goto err; 13931 13932 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13933 13934 if (act->dtad_difo == NULL) 13935 goto err; 13936 } 13937 13938 ASSERT(first != NULL); 13939 return (first); 13940 13941 err: 13942 for (act = first; act != NULL; act = next) { 13943 next = act->dtad_next; 13944 dtrace_actdesc_release(act, vstate); 13945 } 13946 13947 return (NULL); 13948 } 13949 13950 static dtrace_ecbdesc_t * 13951 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13952 cred_t *cr) 13953 { 13954 dtrace_ecbdesc_t *ep; 13955 dof_ecbdesc_t *ecb; 13956 dtrace_probedesc_t *desc; 13957 dtrace_predicate_t *pred = NULL; 13958 13959 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13960 dtrace_dof_error(dof, "truncated ECB description"); 13961 return (NULL); 13962 } 13963 13964 if (sec->dofs_align != sizeof (uint64_t)) { 13965 dtrace_dof_error(dof, "bad alignment in ECB description"); 13966 return (NULL); 13967 } 13968 13969 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13970 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13971 13972 if (sec == NULL) 13973 return (NULL); 13974 13975 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13976 ep->dted_uarg = ecb->dofe_uarg; 13977 desc = &ep->dted_probe; 13978 13979 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13980 goto err; 13981 13982 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13983 if ((sec = dtrace_dof_sect(dof, 13984 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13985 goto err; 13986 13987 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13988 goto err; 13989 13990 ep->dted_pred.dtpdd_predicate = pred; 13991 } 13992 13993 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13994 if ((sec = dtrace_dof_sect(dof, 13995 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13996 goto err; 13997 13998 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 13999 14000 if (ep->dted_action == NULL) 14001 goto err; 14002 } 14003 14004 return (ep); 14005 14006 err: 14007 if (pred != NULL) 14008 dtrace_predicate_release(pred, vstate); 14009 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 14010 return (NULL); 14011 } 14012 14013 /* 14014 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 14015 * specified DOF. SETX relocations are computed using 'ubase', the base load 14016 * address of the object containing the DOF, and DOFREL relocations are relative 14017 * to the relocation offset within the DOF. 14018 */ 14019 static int 14020 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase, 14021 uint64_t udaddr) 14022 { 14023 uintptr_t daddr = (uintptr_t)dof; 14024 uintptr_t ts_end; 14025 dof_relohdr_t *dofr = 14026 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 14027 dof_sec_t *ss, *rs, *ts; 14028 dof_relodesc_t *r; 14029 uint_t i, n; 14030 14031 if (sec->dofs_size < sizeof (dof_relohdr_t) || 14032 sec->dofs_align != sizeof (dof_secidx_t)) { 14033 dtrace_dof_error(dof, "invalid relocation header"); 14034 return (-1); 14035 } 14036 14037 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 14038 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 14039 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 14040 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 14041 14042 if (ss == NULL || rs == NULL || ts == NULL) 14043 return (-1); /* dtrace_dof_error() has been called already */ 14044 14045 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 14046 rs->dofs_align != sizeof (uint64_t)) { 14047 dtrace_dof_error(dof, "invalid relocation section"); 14048 return (-1); 14049 } 14050 14051 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 14052 n = rs->dofs_size / rs->dofs_entsize; 14053 14054 for (i = 0; i < n; i++) { 14055 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 14056 14057 switch (r->dofr_type) { 14058 case DOF_RELO_NONE: 14059 break; 14060 case DOF_RELO_SETX: 14061 case DOF_RELO_DOFREL: 14062 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 14063 sizeof (uint64_t) > ts->dofs_size) { 14064 dtrace_dof_error(dof, "bad relocation offset"); 14065 return (-1); 14066 } 14067 14068 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 14069 dtrace_dof_error(dof, "bad relocation offset"); 14070 return (-1); 14071 } 14072 14073 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 14074 dtrace_dof_error(dof, "misaligned setx relo"); 14075 return (-1); 14076 } 14077 14078 if (r->dofr_type == DOF_RELO_SETX) 14079 *(uint64_t *)taddr += ubase; 14080 else 14081 *(uint64_t *)taddr += 14082 udaddr + ts->dofs_offset + r->dofr_offset; 14083 break; 14084 default: 14085 dtrace_dof_error(dof, "invalid relocation type"); 14086 return (-1); 14087 } 14088 14089 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 14090 } 14091 14092 return (0); 14093 } 14094 14095 /* 14096 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 14097 * header: it should be at the front of a memory region that is at least 14098 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 14099 * size. It need not be validated in any other way. 14100 */ 14101 static int 14102 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 14103 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes) 14104 { 14105 uint64_t len = dof->dofh_loadsz, seclen; 14106 uintptr_t daddr = (uintptr_t)dof; 14107 dtrace_ecbdesc_t *ep; 14108 dtrace_enabling_t *enab; 14109 uint_t i; 14110 14111 ASSERT(MUTEX_HELD(&dtrace_lock)); 14112 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 14113 14114 /* 14115 * Check the DOF header identification bytes. In addition to checking 14116 * valid settings, we also verify that unused bits/bytes are zeroed so 14117 * we can use them later without fear of regressing existing binaries. 14118 */ 14119 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 14120 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 14121 dtrace_dof_error(dof, "DOF magic string mismatch"); 14122 return (-1); 14123 } 14124 14125 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 14126 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 14127 dtrace_dof_error(dof, "DOF has invalid data model"); 14128 return (-1); 14129 } 14130 14131 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 14132 dtrace_dof_error(dof, "DOF encoding mismatch"); 14133 return (-1); 14134 } 14135 14136 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14137 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 14138 dtrace_dof_error(dof, "DOF version mismatch"); 14139 return (-1); 14140 } 14141 14142 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 14143 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 14144 return (-1); 14145 } 14146 14147 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 14148 dtrace_dof_error(dof, "DOF uses too many integer registers"); 14149 return (-1); 14150 } 14151 14152 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 14153 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 14154 return (-1); 14155 } 14156 14157 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 14158 if (dof->dofh_ident[i] != 0) { 14159 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 14160 return (-1); 14161 } 14162 } 14163 14164 if (dof->dofh_flags & ~DOF_FL_VALID) { 14165 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 14166 return (-1); 14167 } 14168 14169 if (dof->dofh_secsize == 0) { 14170 dtrace_dof_error(dof, "zero section header size"); 14171 return (-1); 14172 } 14173 14174 /* 14175 * Check that the section headers don't exceed the amount of DOF 14176 * data. Note that we cast the section size and number of sections 14177 * to uint64_t's to prevent possible overflow in the multiplication. 14178 */ 14179 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 14180 14181 if (dof->dofh_secoff > len || seclen > len || 14182 dof->dofh_secoff + seclen > len) { 14183 dtrace_dof_error(dof, "truncated section headers"); 14184 return (-1); 14185 } 14186 14187 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 14188 dtrace_dof_error(dof, "misaligned section headers"); 14189 return (-1); 14190 } 14191 14192 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 14193 dtrace_dof_error(dof, "misaligned section size"); 14194 return (-1); 14195 } 14196 14197 /* 14198 * Take an initial pass through the section headers to be sure that 14199 * the headers don't have stray offsets. If the 'noprobes' flag is 14200 * set, do not permit sections relating to providers, probes, or args. 14201 */ 14202 for (i = 0; i < dof->dofh_secnum; i++) { 14203 dof_sec_t *sec = (dof_sec_t *)(daddr + 14204 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14205 14206 if (noprobes) { 14207 switch (sec->dofs_type) { 14208 case DOF_SECT_PROVIDER: 14209 case DOF_SECT_PROBES: 14210 case DOF_SECT_PRARGS: 14211 case DOF_SECT_PROFFS: 14212 dtrace_dof_error(dof, "illegal sections " 14213 "for enabling"); 14214 return (-1); 14215 } 14216 } 14217 14218 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 14219 !(sec->dofs_flags & DOF_SECF_LOAD)) { 14220 dtrace_dof_error(dof, "loadable section with load " 14221 "flag unset"); 14222 return (-1); 14223 } 14224 14225 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14226 continue; /* just ignore non-loadable sections */ 14227 14228 if (!ISP2(sec->dofs_align)) { 14229 dtrace_dof_error(dof, "bad section alignment"); 14230 return (-1); 14231 } 14232 14233 if (sec->dofs_offset & (sec->dofs_align - 1)) { 14234 dtrace_dof_error(dof, "misaligned section"); 14235 return (-1); 14236 } 14237 14238 if (sec->dofs_offset > len || sec->dofs_size > len || 14239 sec->dofs_offset + sec->dofs_size > len) { 14240 dtrace_dof_error(dof, "corrupt section header"); 14241 return (-1); 14242 } 14243 14244 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 14245 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 14246 dtrace_dof_error(dof, "non-terminating string table"); 14247 return (-1); 14248 } 14249 } 14250 14251 /* 14252 * Take a second pass through the sections and locate and perform any 14253 * relocations that are present. We do this after the first pass to 14254 * be sure that all sections have had their headers validated. 14255 */ 14256 for (i = 0; i < dof->dofh_secnum; i++) { 14257 dof_sec_t *sec = (dof_sec_t *)(daddr + 14258 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14259 14260 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14261 continue; /* skip sections that are not loadable */ 14262 14263 switch (sec->dofs_type) { 14264 case DOF_SECT_URELHDR: 14265 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0) 14266 return (-1); 14267 break; 14268 } 14269 } 14270 14271 if ((enab = *enabp) == NULL) 14272 enab = *enabp = dtrace_enabling_create(vstate); 14273 14274 for (i = 0; i < dof->dofh_secnum; i++) { 14275 dof_sec_t *sec = (dof_sec_t *)(daddr + 14276 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14277 14278 if (sec->dofs_type != DOF_SECT_ECBDESC) 14279 continue; 14280 14281 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 14282 dtrace_enabling_destroy(enab); 14283 *enabp = NULL; 14284 return (-1); 14285 } 14286 14287 dtrace_enabling_add(enab, ep); 14288 } 14289 14290 return (0); 14291 } 14292 14293 /* 14294 * Process DOF for any options. This routine assumes that the DOF has been 14295 * at least processed by dtrace_dof_slurp(). 14296 */ 14297 static int 14298 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 14299 { 14300 int i, rval; 14301 uint32_t entsize; 14302 size_t offs; 14303 dof_optdesc_t *desc; 14304 14305 for (i = 0; i < dof->dofh_secnum; i++) { 14306 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 14307 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14308 14309 if (sec->dofs_type != DOF_SECT_OPTDESC) 14310 continue; 14311 14312 if (sec->dofs_align != sizeof (uint64_t)) { 14313 dtrace_dof_error(dof, "bad alignment in " 14314 "option description"); 14315 return (EINVAL); 14316 } 14317 14318 if ((entsize = sec->dofs_entsize) == 0) { 14319 dtrace_dof_error(dof, "zeroed option entry size"); 14320 return (EINVAL); 14321 } 14322 14323 if (entsize < sizeof (dof_optdesc_t)) { 14324 dtrace_dof_error(dof, "bad option entry size"); 14325 return (EINVAL); 14326 } 14327 14328 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 14329 desc = (dof_optdesc_t *)((uintptr_t)dof + 14330 (uintptr_t)sec->dofs_offset + offs); 14331 14332 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 14333 dtrace_dof_error(dof, "non-zero option string"); 14334 return (EINVAL); 14335 } 14336 14337 if (desc->dofo_value == DTRACEOPT_UNSET) { 14338 dtrace_dof_error(dof, "unset option"); 14339 return (EINVAL); 14340 } 14341 14342 if ((rval = dtrace_state_option(state, 14343 desc->dofo_option, desc->dofo_value)) != 0) { 14344 dtrace_dof_error(dof, "rejected option"); 14345 return (rval); 14346 } 14347 } 14348 } 14349 14350 return (0); 14351 } 14352 14353 /* 14354 * DTrace Consumer State Functions 14355 */ 14356 static int 14357 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 14358 { 14359 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 14360 void *base; 14361 uintptr_t limit; 14362 dtrace_dynvar_t *dvar, *next, *start; 14363 int i; 14364 14365 ASSERT(MUTEX_HELD(&dtrace_lock)); 14366 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 14367 14368 bzero(dstate, sizeof (dtrace_dstate_t)); 14369 14370 if ((dstate->dtds_chunksize = chunksize) == 0) 14371 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 14372 14373 VERIFY(dstate->dtds_chunksize < LONG_MAX); 14374 14375 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 14376 size = min; 14377 14378 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 14379 return (ENOMEM); 14380 14381 dstate->dtds_size = size; 14382 dstate->dtds_base = base; 14383 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 14384 bzero(dstate->dtds_percpu, 14385 (mp_maxid + 1) * sizeof (dtrace_dstate_percpu_t)); 14386 14387 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 14388 14389 if (hashsize != 1 && (hashsize & 1)) 14390 hashsize--; 14391 14392 dstate->dtds_hashsize = hashsize; 14393 dstate->dtds_hash = dstate->dtds_base; 14394 14395 /* 14396 * Set all of our hash buckets to point to the single sink, and (if 14397 * it hasn't already been set), set the sink's hash value to be the 14398 * sink sentinel value. The sink is needed for dynamic variable 14399 * lookups to know that they have iterated over an entire, valid hash 14400 * chain. 14401 */ 14402 for (i = 0; i < hashsize; i++) 14403 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 14404 14405 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 14406 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 14407 14408 /* 14409 * Determine number of active CPUs. Divide free list evenly among 14410 * active CPUs. 14411 */ 14412 start = (dtrace_dynvar_t *) 14413 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 14414 limit = (uintptr_t)base + size; 14415 14416 VERIFY((uintptr_t)start < limit); 14417 VERIFY((uintptr_t)start >= (uintptr_t)base); 14418 14419 maxper = (limit - (uintptr_t)start) / (mp_maxid + 1); 14420 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 14421 14422 CPU_FOREACH(i) { 14423 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 14424 14425 /* 14426 * If we don't even have enough chunks to make it once through 14427 * NCPUs, we're just going to allocate everything to the first 14428 * CPU. And if we're on the last CPU, we're going to allocate 14429 * whatever is left over. In either case, we set the limit to 14430 * be the limit of the dynamic variable space. 14431 */ 14432 if (maxper == 0 || i == mp_maxid) { 14433 limit = (uintptr_t)base + size; 14434 start = NULL; 14435 } else { 14436 limit = (uintptr_t)start + maxper; 14437 start = (dtrace_dynvar_t *)limit; 14438 } 14439 14440 VERIFY(limit <= (uintptr_t)base + size); 14441 14442 for (;;) { 14443 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 14444 dstate->dtds_chunksize); 14445 14446 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 14447 break; 14448 14449 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 14450 (uintptr_t)dvar <= (uintptr_t)base + size); 14451 dvar->dtdv_next = next; 14452 dvar = next; 14453 } 14454 14455 if (maxper == 0) 14456 break; 14457 } 14458 14459 return (0); 14460 } 14461 14462 static void 14463 dtrace_dstate_fini(dtrace_dstate_t *dstate) 14464 { 14465 ASSERT(MUTEX_HELD(&cpu_lock)); 14466 14467 if (dstate->dtds_base == NULL) 14468 return; 14469 14470 kmem_free(dstate->dtds_base, dstate->dtds_size); 14471 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 14472 } 14473 14474 static void 14475 dtrace_vstate_fini(dtrace_vstate_t *vstate) 14476 { 14477 /* 14478 * Logical XOR, where are you? 14479 */ 14480 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 14481 14482 if (vstate->dtvs_nglobals > 0) { 14483 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 14484 sizeof (dtrace_statvar_t *)); 14485 } 14486 14487 if (vstate->dtvs_ntlocals > 0) { 14488 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 14489 sizeof (dtrace_difv_t)); 14490 } 14491 14492 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 14493 14494 if (vstate->dtvs_nlocals > 0) { 14495 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 14496 sizeof (dtrace_statvar_t *)); 14497 } 14498 } 14499 14500 #ifdef illumos 14501 static void 14502 dtrace_state_clean(dtrace_state_t *state) 14503 { 14504 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14505 return; 14506 14507 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14508 dtrace_speculation_clean(state); 14509 } 14510 14511 static void 14512 dtrace_state_deadman(dtrace_state_t *state) 14513 { 14514 hrtime_t now; 14515 14516 dtrace_sync(); 14517 14518 now = dtrace_gethrtime(); 14519 14520 if (state != dtrace_anon.dta_state && 14521 now - state->dts_laststatus >= dtrace_deadman_user) 14522 return; 14523 14524 /* 14525 * We must be sure that dts_alive never appears to be less than the 14526 * value upon entry to dtrace_state_deadman(), and because we lack a 14527 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14528 * store INT64_MAX to it, followed by a memory barrier, followed by 14529 * the new value. This assures that dts_alive never appears to be 14530 * less than its true value, regardless of the order in which the 14531 * stores to the underlying storage are issued. 14532 */ 14533 state->dts_alive = INT64_MAX; 14534 dtrace_membar_producer(); 14535 state->dts_alive = now; 14536 } 14537 #else /* !illumos */ 14538 static void 14539 dtrace_state_clean(void *arg) 14540 { 14541 dtrace_state_t *state = arg; 14542 dtrace_optval_t *opt = state->dts_options; 14543 14544 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14545 return; 14546 14547 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14548 dtrace_speculation_clean(state); 14549 14550 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14551 dtrace_state_clean, state); 14552 } 14553 14554 static void 14555 dtrace_state_deadman(void *arg) 14556 { 14557 dtrace_state_t *state = arg; 14558 hrtime_t now; 14559 14560 dtrace_sync(); 14561 14562 dtrace_debug_output(); 14563 14564 now = dtrace_gethrtime(); 14565 14566 if (state != dtrace_anon.dta_state && 14567 now - state->dts_laststatus >= dtrace_deadman_user) 14568 return; 14569 14570 /* 14571 * We must be sure that dts_alive never appears to be less than the 14572 * value upon entry to dtrace_state_deadman(), and because we lack a 14573 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14574 * store INT64_MAX to it, followed by a memory barrier, followed by 14575 * the new value. This assures that dts_alive never appears to be 14576 * less than its true value, regardless of the order in which the 14577 * stores to the underlying storage are issued. 14578 */ 14579 state->dts_alive = INT64_MAX; 14580 dtrace_membar_producer(); 14581 state->dts_alive = now; 14582 14583 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14584 dtrace_state_deadman, state); 14585 } 14586 #endif /* illumos */ 14587 14588 static dtrace_state_t * 14589 #ifdef illumos 14590 dtrace_state_create(dev_t *devp, cred_t *cr) 14591 #else 14592 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused) 14593 #endif 14594 { 14595 #ifdef illumos 14596 minor_t minor; 14597 major_t major; 14598 #else 14599 cred_t *cr = NULL; 14600 int m = 0; 14601 #endif 14602 char c[30]; 14603 dtrace_state_t *state; 14604 dtrace_optval_t *opt; 14605 int bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t), i; 14606 int cpu_it; 14607 14608 ASSERT(MUTEX_HELD(&dtrace_lock)); 14609 ASSERT(MUTEX_HELD(&cpu_lock)); 14610 14611 #ifdef illumos 14612 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 14613 VM_BESTFIT | VM_SLEEP); 14614 14615 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 14616 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14617 return (NULL); 14618 } 14619 14620 state = ddi_get_soft_state(dtrace_softstate, minor); 14621 #else 14622 if (dev != NULL) { 14623 cr = dev->si_cred; 14624 m = dev2unit(dev); 14625 } 14626 14627 /* Allocate memory for the state. */ 14628 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); 14629 #endif 14630 14631 state->dts_epid = DTRACE_EPIDNONE + 1; 14632 14633 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); 14634 #ifdef illumos 14635 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 14636 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14637 14638 if (devp != NULL) { 14639 major = getemajor(*devp); 14640 } else { 14641 major = ddi_driver_major(dtrace_devi); 14642 } 14643 14644 state->dts_dev = makedevice(major, minor); 14645 14646 if (devp != NULL) 14647 *devp = state->dts_dev; 14648 #else 14649 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); 14650 state->dts_dev = dev; 14651 #endif 14652 14653 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 14654 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 14655 14656 /* 14657 * Allocate and initialise the per-process per-CPU random state. 14658 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is 14659 * assumed to be seeded at this point (if from Fortuna seed file). 14660 */ 14661 arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t)); 14662 for (cpu_it = 1; cpu_it <= mp_maxid; cpu_it++) { 14663 /* 14664 * Each CPU is assigned a 2^64 period, non-overlapping 14665 * subsequence. 14666 */ 14667 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it - 1], 14668 state->dts_rstate[cpu_it]); 14669 } 14670 14671 #ifdef illumos 14672 state->dts_cleaner = CYCLIC_NONE; 14673 state->dts_deadman = CYCLIC_NONE; 14674 #else 14675 callout_init(&state->dts_cleaner, 1); 14676 callout_init(&state->dts_deadman, 1); 14677 #endif 14678 state->dts_vstate.dtvs_state = state; 14679 14680 for (i = 0; i < DTRACEOPT_MAX; i++) 14681 state->dts_options[i] = DTRACEOPT_UNSET; 14682 14683 /* 14684 * Set the default options. 14685 */ 14686 opt = state->dts_options; 14687 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 14688 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 14689 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 14690 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 14691 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 14692 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 14693 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 14694 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 14695 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 14696 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 14697 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 14698 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 14699 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 14700 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 14701 14702 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 14703 14704 /* 14705 * Depending on the user credentials, we set flag bits which alter probe 14706 * visibility or the amount of destructiveness allowed. In the case of 14707 * actual anonymous tracing, or the possession of all privileges, all of 14708 * the normal checks are bypassed. 14709 */ 14710 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 14711 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 14712 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 14713 } else { 14714 /* 14715 * Set up the credentials for this instantiation. We take a 14716 * hold on the credential to prevent it from disappearing on 14717 * us; this in turn prevents the zone_t referenced by this 14718 * credential from disappearing. This means that we can 14719 * examine the credential and the zone from probe context. 14720 */ 14721 crhold(cr); 14722 state->dts_cred.dcr_cred = cr; 14723 14724 /* 14725 * CRA_PROC means "we have *some* privilege for dtrace" and 14726 * unlocks the use of variables like pid, zonename, etc. 14727 */ 14728 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 14729 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14730 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 14731 } 14732 14733 /* 14734 * dtrace_user allows use of syscall and profile providers. 14735 * If the user also has proc_owner and/or proc_zone, we 14736 * extend the scope to include additional visibility and 14737 * destructive power. 14738 */ 14739 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 14740 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 14741 state->dts_cred.dcr_visible |= 14742 DTRACE_CRV_ALLPROC; 14743 14744 state->dts_cred.dcr_action |= 14745 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14746 } 14747 14748 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 14749 state->dts_cred.dcr_visible |= 14750 DTRACE_CRV_ALLZONE; 14751 14752 state->dts_cred.dcr_action |= 14753 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14754 } 14755 14756 /* 14757 * If we have all privs in whatever zone this is, 14758 * we can do destructive things to processes which 14759 * have altered credentials. 14760 */ 14761 #ifdef illumos 14762 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14763 cr->cr_zone->zone_privset)) { 14764 state->dts_cred.dcr_action |= 14765 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14766 } 14767 #endif 14768 } 14769 14770 /* 14771 * Holding the dtrace_kernel privilege also implies that 14772 * the user has the dtrace_user privilege from a visibility 14773 * perspective. But without further privileges, some 14774 * destructive actions are not available. 14775 */ 14776 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 14777 /* 14778 * Make all probes in all zones visible. However, 14779 * this doesn't mean that all actions become available 14780 * to all zones. 14781 */ 14782 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 14783 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 14784 14785 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 14786 DTRACE_CRA_PROC; 14787 /* 14788 * Holding proc_owner means that destructive actions 14789 * for *this* zone are allowed. 14790 */ 14791 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14792 state->dts_cred.dcr_action |= 14793 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14794 14795 /* 14796 * Holding proc_zone means that destructive actions 14797 * for this user/group ID in all zones is allowed. 14798 */ 14799 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14800 state->dts_cred.dcr_action |= 14801 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14802 14803 #ifdef illumos 14804 /* 14805 * If we have all privs in whatever zone this is, 14806 * we can do destructive things to processes which 14807 * have altered credentials. 14808 */ 14809 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14810 cr->cr_zone->zone_privset)) { 14811 state->dts_cred.dcr_action |= 14812 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14813 } 14814 #endif 14815 } 14816 14817 /* 14818 * Holding the dtrace_proc privilege gives control over fasttrap 14819 * and pid providers. We need to grant wider destructive 14820 * privileges in the event that the user has proc_owner and/or 14821 * proc_zone. 14822 */ 14823 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14824 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14825 state->dts_cred.dcr_action |= 14826 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14827 14828 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14829 state->dts_cred.dcr_action |= 14830 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14831 } 14832 } 14833 14834 return (state); 14835 } 14836 14837 static int 14838 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 14839 { 14840 dtrace_optval_t *opt = state->dts_options, size; 14841 processorid_t cpu = 0; 14842 int flags = 0, rval, factor, divisor = 1; 14843 14844 ASSERT(MUTEX_HELD(&dtrace_lock)); 14845 ASSERT(MUTEX_HELD(&cpu_lock)); 14846 ASSERT(which < DTRACEOPT_MAX); 14847 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 14848 (state == dtrace_anon.dta_state && 14849 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 14850 14851 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 14852 return (0); 14853 14854 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 14855 cpu = opt[DTRACEOPT_CPU]; 14856 14857 if (which == DTRACEOPT_SPECSIZE) 14858 flags |= DTRACEBUF_NOSWITCH; 14859 14860 if (which == DTRACEOPT_BUFSIZE) { 14861 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 14862 flags |= DTRACEBUF_RING; 14863 14864 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 14865 flags |= DTRACEBUF_FILL; 14866 14867 if (state != dtrace_anon.dta_state || 14868 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14869 flags |= DTRACEBUF_INACTIVE; 14870 } 14871 14872 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 14873 /* 14874 * The size must be 8-byte aligned. If the size is not 8-byte 14875 * aligned, drop it down by the difference. 14876 */ 14877 if (size & (sizeof (uint64_t) - 1)) 14878 size -= size & (sizeof (uint64_t) - 1); 14879 14880 if (size < state->dts_reserve) { 14881 /* 14882 * Buffers always must be large enough to accommodate 14883 * their prereserved space. We return E2BIG instead 14884 * of ENOMEM in this case to allow for user-level 14885 * software to differentiate the cases. 14886 */ 14887 return (E2BIG); 14888 } 14889 14890 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 14891 14892 if (rval != ENOMEM) { 14893 opt[which] = size; 14894 return (rval); 14895 } 14896 14897 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14898 return (rval); 14899 14900 for (divisor = 2; divisor < factor; divisor <<= 1) 14901 continue; 14902 } 14903 14904 return (ENOMEM); 14905 } 14906 14907 static int 14908 dtrace_state_buffers(dtrace_state_t *state) 14909 { 14910 dtrace_speculation_t *spec = state->dts_speculations; 14911 int rval, i; 14912 14913 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14914 DTRACEOPT_BUFSIZE)) != 0) 14915 return (rval); 14916 14917 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14918 DTRACEOPT_AGGSIZE)) != 0) 14919 return (rval); 14920 14921 for (i = 0; i < state->dts_nspeculations; i++) { 14922 if ((rval = dtrace_state_buffer(state, 14923 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14924 return (rval); 14925 } 14926 14927 return (0); 14928 } 14929 14930 static void 14931 dtrace_state_prereserve(dtrace_state_t *state) 14932 { 14933 dtrace_ecb_t *ecb; 14934 dtrace_probe_t *probe; 14935 14936 state->dts_reserve = 0; 14937 14938 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14939 return; 14940 14941 /* 14942 * If our buffer policy is a "fill" buffer policy, we need to set the 14943 * prereserved space to be the space required by the END probes. 14944 */ 14945 probe = dtrace_probes[dtrace_probeid_end - 1]; 14946 ASSERT(probe != NULL); 14947 14948 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14949 if (ecb->dte_state != state) 14950 continue; 14951 14952 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14953 } 14954 } 14955 14956 static int 14957 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14958 { 14959 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14960 dtrace_speculation_t *spec; 14961 dtrace_buffer_t *buf; 14962 #ifdef illumos 14963 cyc_handler_t hdlr; 14964 cyc_time_t when; 14965 #endif 14966 int rval = 0, i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t); 14967 dtrace_icookie_t cookie; 14968 14969 mutex_enter(&cpu_lock); 14970 mutex_enter(&dtrace_lock); 14971 14972 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14973 rval = EBUSY; 14974 goto out; 14975 } 14976 14977 /* 14978 * Before we can perform any checks, we must prime all of the 14979 * retained enablings that correspond to this state. 14980 */ 14981 dtrace_enabling_prime(state); 14982 14983 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14984 rval = EACCES; 14985 goto out; 14986 } 14987 14988 dtrace_state_prereserve(state); 14989 14990 /* 14991 * Now we want to do is try to allocate our speculations. 14992 * We do not automatically resize the number of speculations; if 14993 * this fails, we will fail the operation. 14994 */ 14995 nspec = opt[DTRACEOPT_NSPEC]; 14996 ASSERT(nspec != DTRACEOPT_UNSET); 14997 14998 if (nspec > INT_MAX) { 14999 rval = ENOMEM; 15000 goto out; 15001 } 15002 15003 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 15004 KM_NOSLEEP | KM_NORMALPRI); 15005 15006 if (spec == NULL) { 15007 rval = ENOMEM; 15008 goto out; 15009 } 15010 15011 state->dts_speculations = spec; 15012 state->dts_nspeculations = (int)nspec; 15013 15014 for (i = 0; i < nspec; i++) { 15015 if ((buf = kmem_zalloc(bufsize, 15016 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 15017 rval = ENOMEM; 15018 goto err; 15019 } 15020 15021 spec[i].dtsp_buffer = buf; 15022 } 15023 15024 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 15025 if (dtrace_anon.dta_state == NULL) { 15026 rval = ENOENT; 15027 goto out; 15028 } 15029 15030 if (state->dts_necbs != 0) { 15031 rval = EALREADY; 15032 goto out; 15033 } 15034 15035 state->dts_anon = dtrace_anon_grab(); 15036 ASSERT(state->dts_anon != NULL); 15037 state = state->dts_anon; 15038 15039 /* 15040 * We want "grabanon" to be set in the grabbed state, so we'll 15041 * copy that option value from the grabbing state into the 15042 * grabbed state. 15043 */ 15044 state->dts_options[DTRACEOPT_GRABANON] = 15045 opt[DTRACEOPT_GRABANON]; 15046 15047 *cpu = dtrace_anon.dta_beganon; 15048 15049 /* 15050 * If the anonymous state is active (as it almost certainly 15051 * is if the anonymous enabling ultimately matched anything), 15052 * we don't allow any further option processing -- but we 15053 * don't return failure. 15054 */ 15055 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15056 goto out; 15057 } 15058 15059 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 15060 opt[DTRACEOPT_AGGSIZE] != 0) { 15061 if (state->dts_aggregations == NULL) { 15062 /* 15063 * We're not going to create an aggregation buffer 15064 * because we don't have any ECBs that contain 15065 * aggregations -- set this option to 0. 15066 */ 15067 opt[DTRACEOPT_AGGSIZE] = 0; 15068 } else { 15069 /* 15070 * If we have an aggregation buffer, we must also have 15071 * a buffer to use as scratch. 15072 */ 15073 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 15074 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 15075 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 15076 } 15077 } 15078 } 15079 15080 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 15081 opt[DTRACEOPT_SPECSIZE] != 0) { 15082 if (!state->dts_speculates) { 15083 /* 15084 * We're not going to create speculation buffers 15085 * because we don't have any ECBs that actually 15086 * speculate -- set the speculation size to 0. 15087 */ 15088 opt[DTRACEOPT_SPECSIZE] = 0; 15089 } 15090 } 15091 15092 /* 15093 * The bare minimum size for any buffer that we're actually going to 15094 * do anything to is sizeof (uint64_t). 15095 */ 15096 sz = sizeof (uint64_t); 15097 15098 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 15099 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 15100 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 15101 /* 15102 * A buffer size has been explicitly set to 0 (or to a size 15103 * that will be adjusted to 0) and we need the space -- we 15104 * need to return failure. We return ENOSPC to differentiate 15105 * it from failing to allocate a buffer due to failure to meet 15106 * the reserve (for which we return E2BIG). 15107 */ 15108 rval = ENOSPC; 15109 goto out; 15110 } 15111 15112 if ((rval = dtrace_state_buffers(state)) != 0) 15113 goto err; 15114 15115 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 15116 sz = dtrace_dstate_defsize; 15117 15118 do { 15119 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 15120 15121 if (rval == 0) 15122 break; 15123 15124 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 15125 goto err; 15126 } while (sz >>= 1); 15127 15128 opt[DTRACEOPT_DYNVARSIZE] = sz; 15129 15130 if (rval != 0) 15131 goto err; 15132 15133 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 15134 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 15135 15136 if (opt[DTRACEOPT_CLEANRATE] == 0) 15137 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15138 15139 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 15140 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 15141 15142 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 15143 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15144 15145 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 15146 #ifdef illumos 15147 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 15148 hdlr.cyh_arg = state; 15149 hdlr.cyh_level = CY_LOW_LEVEL; 15150 15151 when.cyt_when = 0; 15152 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 15153 15154 state->dts_cleaner = cyclic_add(&hdlr, &when); 15155 15156 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 15157 hdlr.cyh_arg = state; 15158 hdlr.cyh_level = CY_LOW_LEVEL; 15159 15160 when.cyt_when = 0; 15161 when.cyt_interval = dtrace_deadman_interval; 15162 15163 state->dts_deadman = cyclic_add(&hdlr, &when); 15164 #else 15165 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 15166 dtrace_state_clean, state); 15167 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 15168 dtrace_state_deadman, state); 15169 #endif 15170 15171 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 15172 15173 #ifdef illumos 15174 if (state->dts_getf != 0 && 15175 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15176 /* 15177 * We don't have kernel privs but we have at least one call 15178 * to getf(); we need to bump our zone's count, and (if 15179 * this is the first enabling to have an unprivileged call 15180 * to getf()) we need to hook into closef(). 15181 */ 15182 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 15183 15184 if (dtrace_getf++ == 0) { 15185 ASSERT(dtrace_closef == NULL); 15186 dtrace_closef = dtrace_getf_barrier; 15187 } 15188 } 15189 #endif 15190 15191 /* 15192 * Now it's time to actually fire the BEGIN probe. We need to disable 15193 * interrupts here both to record the CPU on which we fired the BEGIN 15194 * probe (the data from this CPU will be processed first at user 15195 * level) and to manually activate the buffer for this CPU. 15196 */ 15197 cookie = dtrace_interrupt_disable(); 15198 *cpu = curcpu; 15199 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 15200 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 15201 15202 dtrace_probe(dtrace_probeid_begin, 15203 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15204 dtrace_interrupt_enable(cookie); 15205 /* 15206 * We may have had an exit action from a BEGIN probe; only change our 15207 * state to ACTIVE if we're still in WARMUP. 15208 */ 15209 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 15210 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 15211 15212 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 15213 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 15214 15215 #ifdef __FreeBSD__ 15216 /* 15217 * We enable anonymous tracing before APs are started, so we must 15218 * activate buffers using the current CPU. 15219 */ 15220 if (state == dtrace_anon.dta_state) { 15221 CPU_FOREACH(i) 15222 dtrace_buffer_activate_cpu(state, i); 15223 } else 15224 dtrace_xcall(DTRACE_CPUALL, 15225 (dtrace_xcall_t)dtrace_buffer_activate, state); 15226 #else 15227 /* 15228 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 15229 * want each CPU to transition its principal buffer out of the 15230 * INACTIVE state. Doing this assures that no CPU will suddenly begin 15231 * processing an ECB halfway down a probe's ECB chain; all CPUs will 15232 * atomically transition from processing none of a state's ECBs to 15233 * processing all of them. 15234 */ 15235 dtrace_xcall(DTRACE_CPUALL, 15236 (dtrace_xcall_t)dtrace_buffer_activate, state); 15237 #endif 15238 goto out; 15239 15240 err: 15241 dtrace_buffer_free(state->dts_buffer); 15242 dtrace_buffer_free(state->dts_aggbuffer); 15243 15244 if ((nspec = state->dts_nspeculations) == 0) { 15245 ASSERT(state->dts_speculations == NULL); 15246 goto out; 15247 } 15248 15249 spec = state->dts_speculations; 15250 ASSERT(spec != NULL); 15251 15252 for (i = 0; i < state->dts_nspeculations; i++) { 15253 if ((buf = spec[i].dtsp_buffer) == NULL) 15254 break; 15255 15256 dtrace_buffer_free(buf); 15257 kmem_free(buf, bufsize); 15258 } 15259 15260 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15261 state->dts_nspeculations = 0; 15262 state->dts_speculations = NULL; 15263 15264 out: 15265 mutex_exit(&dtrace_lock); 15266 mutex_exit(&cpu_lock); 15267 15268 return (rval); 15269 } 15270 15271 static int 15272 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 15273 { 15274 dtrace_icookie_t cookie; 15275 15276 ASSERT(MUTEX_HELD(&dtrace_lock)); 15277 15278 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 15279 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 15280 return (EINVAL); 15281 15282 /* 15283 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 15284 * to be sure that every CPU has seen it. See below for the details 15285 * on why this is done. 15286 */ 15287 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 15288 dtrace_sync(); 15289 15290 /* 15291 * By this point, it is impossible for any CPU to be still processing 15292 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 15293 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 15294 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 15295 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 15296 * iff we're in the END probe. 15297 */ 15298 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 15299 dtrace_sync(); 15300 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 15301 15302 /* 15303 * Finally, we can release the reserve and call the END probe. We 15304 * disable interrupts across calling the END probe to allow us to 15305 * return the CPU on which we actually called the END probe. This 15306 * allows user-land to be sure that this CPU's principal buffer is 15307 * processed last. 15308 */ 15309 state->dts_reserve = 0; 15310 15311 cookie = dtrace_interrupt_disable(); 15312 *cpu = curcpu; 15313 dtrace_probe(dtrace_probeid_end, 15314 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15315 dtrace_interrupt_enable(cookie); 15316 15317 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 15318 dtrace_sync(); 15319 15320 #ifdef illumos 15321 if (state->dts_getf != 0 && 15322 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15323 /* 15324 * We don't have kernel privs but we have at least one call 15325 * to getf(); we need to lower our zone's count, and (if 15326 * this is the last enabling to have an unprivileged call 15327 * to getf()) we need to clear the closef() hook. 15328 */ 15329 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 15330 ASSERT(dtrace_closef == dtrace_getf_barrier); 15331 ASSERT(dtrace_getf > 0); 15332 15333 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 15334 15335 if (--dtrace_getf == 0) 15336 dtrace_closef = NULL; 15337 } 15338 #endif 15339 15340 return (0); 15341 } 15342 15343 static int 15344 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 15345 dtrace_optval_t val) 15346 { 15347 ASSERT(MUTEX_HELD(&dtrace_lock)); 15348 15349 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15350 return (EBUSY); 15351 15352 if (option >= DTRACEOPT_MAX) 15353 return (EINVAL); 15354 15355 if (option != DTRACEOPT_CPU && val < 0) 15356 return (EINVAL); 15357 15358 switch (option) { 15359 case DTRACEOPT_DESTRUCTIVE: 15360 if (dtrace_destructive_disallow) 15361 return (EACCES); 15362 15363 state->dts_cred.dcr_destructive = 1; 15364 break; 15365 15366 case DTRACEOPT_BUFSIZE: 15367 case DTRACEOPT_DYNVARSIZE: 15368 case DTRACEOPT_AGGSIZE: 15369 case DTRACEOPT_SPECSIZE: 15370 case DTRACEOPT_STRSIZE: 15371 if (val < 0) 15372 return (EINVAL); 15373 15374 if (val >= LONG_MAX) { 15375 /* 15376 * If this is an otherwise negative value, set it to 15377 * the highest multiple of 128m less than LONG_MAX. 15378 * Technically, we're adjusting the size without 15379 * regard to the buffer resizing policy, but in fact, 15380 * this has no effect -- if we set the buffer size to 15381 * ~LONG_MAX and the buffer policy is ultimately set to 15382 * be "manual", the buffer allocation is guaranteed to 15383 * fail, if only because the allocation requires two 15384 * buffers. (We set the the size to the highest 15385 * multiple of 128m because it ensures that the size 15386 * will remain a multiple of a megabyte when 15387 * repeatedly halved -- all the way down to 15m.) 15388 */ 15389 val = LONG_MAX - (1 << 27) + 1; 15390 } 15391 } 15392 15393 state->dts_options[option] = val; 15394 15395 return (0); 15396 } 15397 15398 static void 15399 dtrace_state_destroy(dtrace_state_t *state) 15400 { 15401 dtrace_ecb_t *ecb; 15402 dtrace_vstate_t *vstate = &state->dts_vstate; 15403 #ifdef illumos 15404 minor_t minor = getminor(state->dts_dev); 15405 #endif 15406 int i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t); 15407 dtrace_speculation_t *spec = state->dts_speculations; 15408 int nspec = state->dts_nspeculations; 15409 uint32_t match; 15410 15411 ASSERT(MUTEX_HELD(&dtrace_lock)); 15412 ASSERT(MUTEX_HELD(&cpu_lock)); 15413 15414 /* 15415 * First, retract any retained enablings for this state. 15416 */ 15417 dtrace_enabling_retract(state); 15418 ASSERT(state->dts_nretained == 0); 15419 15420 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 15421 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 15422 /* 15423 * We have managed to come into dtrace_state_destroy() on a 15424 * hot enabling -- almost certainly because of a disorderly 15425 * shutdown of a consumer. (That is, a consumer that is 15426 * exiting without having called dtrace_stop().) In this case, 15427 * we're going to set our activity to be KILLED, and then 15428 * issue a sync to be sure that everyone is out of probe 15429 * context before we start blowing away ECBs. 15430 */ 15431 state->dts_activity = DTRACE_ACTIVITY_KILLED; 15432 dtrace_sync(); 15433 } 15434 15435 /* 15436 * Release the credential hold we took in dtrace_state_create(). 15437 */ 15438 if (state->dts_cred.dcr_cred != NULL) 15439 crfree(state->dts_cred.dcr_cred); 15440 15441 /* 15442 * Now we can safely disable and destroy any enabled probes. Because 15443 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 15444 * (especially if they're all enabled), we take two passes through the 15445 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 15446 * in the second we disable whatever is left over. 15447 */ 15448 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 15449 for (i = 0; i < state->dts_necbs; i++) { 15450 if ((ecb = state->dts_ecbs[i]) == NULL) 15451 continue; 15452 15453 if (match && ecb->dte_probe != NULL) { 15454 dtrace_probe_t *probe = ecb->dte_probe; 15455 dtrace_provider_t *prov = probe->dtpr_provider; 15456 15457 if (!(prov->dtpv_priv.dtpp_flags & match)) 15458 continue; 15459 } 15460 15461 dtrace_ecb_disable(ecb); 15462 dtrace_ecb_destroy(ecb); 15463 } 15464 15465 if (!match) 15466 break; 15467 } 15468 15469 /* 15470 * Before we free the buffers, perform one more sync to assure that 15471 * every CPU is out of probe context. 15472 */ 15473 dtrace_sync(); 15474 15475 dtrace_buffer_free(state->dts_buffer); 15476 dtrace_buffer_free(state->dts_aggbuffer); 15477 15478 for (i = 0; i < nspec; i++) 15479 dtrace_buffer_free(spec[i].dtsp_buffer); 15480 15481 #ifdef illumos 15482 if (state->dts_cleaner != CYCLIC_NONE) 15483 cyclic_remove(state->dts_cleaner); 15484 15485 if (state->dts_deadman != CYCLIC_NONE) 15486 cyclic_remove(state->dts_deadman); 15487 #else 15488 callout_stop(&state->dts_cleaner); 15489 callout_drain(&state->dts_cleaner); 15490 callout_stop(&state->dts_deadman); 15491 callout_drain(&state->dts_deadman); 15492 #endif 15493 15494 dtrace_dstate_fini(&vstate->dtvs_dynvars); 15495 dtrace_vstate_fini(vstate); 15496 if (state->dts_ecbs != NULL) 15497 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 15498 15499 if (state->dts_aggregations != NULL) { 15500 #ifdef DEBUG 15501 for (i = 0; i < state->dts_naggregations; i++) 15502 ASSERT(state->dts_aggregations[i] == NULL); 15503 #endif 15504 ASSERT(state->dts_naggregations > 0); 15505 kmem_free(state->dts_aggregations, 15506 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 15507 } 15508 15509 kmem_free(state->dts_buffer, bufsize); 15510 kmem_free(state->dts_aggbuffer, bufsize); 15511 15512 for (i = 0; i < nspec; i++) 15513 kmem_free(spec[i].dtsp_buffer, bufsize); 15514 15515 if (spec != NULL) 15516 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15517 15518 dtrace_format_destroy(state); 15519 15520 if (state->dts_aggid_arena != NULL) { 15521 #ifdef illumos 15522 vmem_destroy(state->dts_aggid_arena); 15523 #else 15524 delete_unrhdr(state->dts_aggid_arena); 15525 #endif 15526 state->dts_aggid_arena = NULL; 15527 } 15528 #ifdef illumos 15529 ddi_soft_state_free(dtrace_softstate, minor); 15530 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 15531 #endif 15532 } 15533 15534 /* 15535 * DTrace Anonymous Enabling Functions 15536 */ 15537 static dtrace_state_t * 15538 dtrace_anon_grab(void) 15539 { 15540 dtrace_state_t *state; 15541 15542 ASSERT(MUTEX_HELD(&dtrace_lock)); 15543 15544 if ((state = dtrace_anon.dta_state) == NULL) { 15545 ASSERT(dtrace_anon.dta_enabling == NULL); 15546 return (NULL); 15547 } 15548 15549 ASSERT(dtrace_anon.dta_enabling != NULL); 15550 ASSERT(dtrace_retained != NULL); 15551 15552 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 15553 dtrace_anon.dta_enabling = NULL; 15554 dtrace_anon.dta_state = NULL; 15555 15556 return (state); 15557 } 15558 15559 static void 15560 dtrace_anon_property(void) 15561 { 15562 int i, rv; 15563 dtrace_state_t *state; 15564 dof_hdr_t *dof; 15565 char c[32]; /* enough for "dof-data-" + digits */ 15566 15567 ASSERT(MUTEX_HELD(&dtrace_lock)); 15568 ASSERT(MUTEX_HELD(&cpu_lock)); 15569 15570 for (i = 0; ; i++) { 15571 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 15572 15573 dtrace_err_verbose = 1; 15574 15575 if ((dof = dtrace_dof_property(c)) == NULL) { 15576 dtrace_err_verbose = 0; 15577 break; 15578 } 15579 15580 #ifdef illumos 15581 /* 15582 * We want to create anonymous state, so we need to transition 15583 * the kernel debugger to indicate that DTrace is active. If 15584 * this fails (e.g. because the debugger has modified text in 15585 * some way), we won't continue with the processing. 15586 */ 15587 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15588 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 15589 "enabling ignored."); 15590 dtrace_dof_destroy(dof); 15591 break; 15592 } 15593 #endif 15594 15595 /* 15596 * If we haven't allocated an anonymous state, we'll do so now. 15597 */ 15598 if ((state = dtrace_anon.dta_state) == NULL) { 15599 state = dtrace_state_create(NULL, NULL); 15600 dtrace_anon.dta_state = state; 15601 15602 if (state == NULL) { 15603 /* 15604 * This basically shouldn't happen: the only 15605 * failure mode from dtrace_state_create() is a 15606 * failure of ddi_soft_state_zalloc() that 15607 * itself should never happen. Still, the 15608 * interface allows for a failure mode, and 15609 * we want to fail as gracefully as possible: 15610 * we'll emit an error message and cease 15611 * processing anonymous state in this case. 15612 */ 15613 cmn_err(CE_WARN, "failed to create " 15614 "anonymous state"); 15615 dtrace_dof_destroy(dof); 15616 break; 15617 } 15618 } 15619 15620 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 15621 &dtrace_anon.dta_enabling, 0, 0, B_TRUE); 15622 15623 if (rv == 0) 15624 rv = dtrace_dof_options(dof, state); 15625 15626 dtrace_err_verbose = 0; 15627 dtrace_dof_destroy(dof); 15628 15629 if (rv != 0) { 15630 /* 15631 * This is malformed DOF; chuck any anonymous state 15632 * that we created. 15633 */ 15634 ASSERT(dtrace_anon.dta_enabling == NULL); 15635 dtrace_state_destroy(state); 15636 dtrace_anon.dta_state = NULL; 15637 break; 15638 } 15639 15640 ASSERT(dtrace_anon.dta_enabling != NULL); 15641 } 15642 15643 if (dtrace_anon.dta_enabling != NULL) { 15644 int rval; 15645 15646 /* 15647 * dtrace_enabling_retain() can only fail because we are 15648 * trying to retain more enablings than are allowed -- but 15649 * we only have one anonymous enabling, and we are guaranteed 15650 * to be allowed at least one retained enabling; we assert 15651 * that dtrace_enabling_retain() returns success. 15652 */ 15653 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 15654 ASSERT(rval == 0); 15655 15656 dtrace_enabling_dump(dtrace_anon.dta_enabling); 15657 } 15658 } 15659 15660 /* 15661 * DTrace Helper Functions 15662 */ 15663 static void 15664 dtrace_helper_trace(dtrace_helper_action_t *helper, 15665 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 15666 { 15667 uint32_t size, next, nnext, i; 15668 dtrace_helptrace_t *ent, *buffer; 15669 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags; 15670 15671 if ((buffer = dtrace_helptrace_buffer) == NULL) 15672 return; 15673 15674 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 15675 15676 /* 15677 * What would a tracing framework be without its own tracing 15678 * framework? (Well, a hell of a lot simpler, for starters...) 15679 */ 15680 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 15681 sizeof (uint64_t) - sizeof (uint64_t); 15682 15683 /* 15684 * Iterate until we can allocate a slot in the trace buffer. 15685 */ 15686 do { 15687 next = dtrace_helptrace_next; 15688 15689 if (next + size < dtrace_helptrace_bufsize) { 15690 nnext = next + size; 15691 } else { 15692 nnext = size; 15693 } 15694 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 15695 15696 /* 15697 * We have our slot; fill it in. 15698 */ 15699 if (nnext == size) { 15700 dtrace_helptrace_wrapped++; 15701 next = 0; 15702 } 15703 15704 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 15705 ent->dtht_helper = helper; 15706 ent->dtht_where = where; 15707 ent->dtht_nlocals = vstate->dtvs_nlocals; 15708 15709 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 15710 mstate->dtms_fltoffs : -1; 15711 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 15712 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval; 15713 15714 for (i = 0; i < vstate->dtvs_nlocals; i++) { 15715 dtrace_statvar_t *svar; 15716 15717 if ((svar = vstate->dtvs_locals[i]) == NULL) 15718 continue; 15719 15720 ASSERT(svar->dtsv_size >= (mp_maxid + 1) * sizeof (uint64_t)); 15721 ent->dtht_locals[i] = 15722 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu]; 15723 } 15724 } 15725 15726 static uint64_t 15727 dtrace_helper(int which, dtrace_mstate_t *mstate, 15728 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 15729 { 15730 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 15731 uint64_t sarg0 = mstate->dtms_arg[0]; 15732 uint64_t sarg1 = mstate->dtms_arg[1]; 15733 uint64_t rval = 0; 15734 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 15735 dtrace_helper_action_t *helper; 15736 dtrace_vstate_t *vstate; 15737 dtrace_difo_t *pred; 15738 int i, trace = dtrace_helptrace_buffer != NULL; 15739 15740 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 15741 15742 if (helpers == NULL) 15743 return (0); 15744 15745 if ((helper = helpers->dthps_actions[which]) == NULL) 15746 return (0); 15747 15748 vstate = &helpers->dthps_vstate; 15749 mstate->dtms_arg[0] = arg0; 15750 mstate->dtms_arg[1] = arg1; 15751 15752 /* 15753 * Now iterate over each helper. If its predicate evaluates to 'true', 15754 * we'll call the corresponding actions. Note that the below calls 15755 * to dtrace_dif_emulate() may set faults in machine state. This is 15756 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 15757 * the stored DIF offset with its own (which is the desired behavior). 15758 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 15759 * from machine state; this is okay, too. 15760 */ 15761 for (; helper != NULL; helper = helper->dtha_next) { 15762 if ((pred = helper->dtha_predicate) != NULL) { 15763 if (trace) 15764 dtrace_helper_trace(helper, mstate, vstate, 0); 15765 15766 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 15767 goto next; 15768 15769 if (*flags & CPU_DTRACE_FAULT) 15770 goto err; 15771 } 15772 15773 for (i = 0; i < helper->dtha_nactions; i++) { 15774 if (trace) 15775 dtrace_helper_trace(helper, 15776 mstate, vstate, i + 1); 15777 15778 rval = dtrace_dif_emulate(helper->dtha_actions[i], 15779 mstate, vstate, state); 15780 15781 if (*flags & CPU_DTRACE_FAULT) 15782 goto err; 15783 } 15784 15785 next: 15786 if (trace) 15787 dtrace_helper_trace(helper, mstate, vstate, 15788 DTRACE_HELPTRACE_NEXT); 15789 } 15790 15791 if (trace) 15792 dtrace_helper_trace(helper, mstate, vstate, 15793 DTRACE_HELPTRACE_DONE); 15794 15795 /* 15796 * Restore the arg0 that we saved upon entry. 15797 */ 15798 mstate->dtms_arg[0] = sarg0; 15799 mstate->dtms_arg[1] = sarg1; 15800 15801 return (rval); 15802 15803 err: 15804 if (trace) 15805 dtrace_helper_trace(helper, mstate, vstate, 15806 DTRACE_HELPTRACE_ERR); 15807 15808 /* 15809 * Restore the arg0 that we saved upon entry. 15810 */ 15811 mstate->dtms_arg[0] = sarg0; 15812 mstate->dtms_arg[1] = sarg1; 15813 15814 return (0); 15815 } 15816 15817 static void 15818 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 15819 dtrace_vstate_t *vstate) 15820 { 15821 int i; 15822 15823 if (helper->dtha_predicate != NULL) 15824 dtrace_difo_release(helper->dtha_predicate, vstate); 15825 15826 for (i = 0; i < helper->dtha_nactions; i++) { 15827 ASSERT(helper->dtha_actions[i] != NULL); 15828 dtrace_difo_release(helper->dtha_actions[i], vstate); 15829 } 15830 15831 kmem_free(helper->dtha_actions, 15832 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 15833 kmem_free(helper, sizeof (dtrace_helper_action_t)); 15834 } 15835 15836 static int 15837 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen) 15838 { 15839 proc_t *p = curproc; 15840 dtrace_vstate_t *vstate; 15841 int i; 15842 15843 if (help == NULL) 15844 help = p->p_dtrace_helpers; 15845 15846 ASSERT(MUTEX_HELD(&dtrace_lock)); 15847 15848 if (help == NULL || gen > help->dthps_generation) 15849 return (EINVAL); 15850 15851 vstate = &help->dthps_vstate; 15852 15853 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15854 dtrace_helper_action_t *last = NULL, *h, *next; 15855 15856 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15857 next = h->dtha_next; 15858 15859 if (h->dtha_generation == gen) { 15860 if (last != NULL) { 15861 last->dtha_next = next; 15862 } else { 15863 help->dthps_actions[i] = next; 15864 } 15865 15866 dtrace_helper_action_destroy(h, vstate); 15867 } else { 15868 last = h; 15869 } 15870 } 15871 } 15872 15873 /* 15874 * Interate until we've cleared out all helper providers with the 15875 * given generation number. 15876 */ 15877 for (;;) { 15878 dtrace_helper_provider_t *prov; 15879 15880 /* 15881 * Look for a helper provider with the right generation. We 15882 * have to start back at the beginning of the list each time 15883 * because we drop dtrace_lock. It's unlikely that we'll make 15884 * more than two passes. 15885 */ 15886 for (i = 0; i < help->dthps_nprovs; i++) { 15887 prov = help->dthps_provs[i]; 15888 15889 if (prov->dthp_generation == gen) 15890 break; 15891 } 15892 15893 /* 15894 * If there were no matches, we're done. 15895 */ 15896 if (i == help->dthps_nprovs) 15897 break; 15898 15899 /* 15900 * Move the last helper provider into this slot. 15901 */ 15902 help->dthps_nprovs--; 15903 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 15904 help->dthps_provs[help->dthps_nprovs] = NULL; 15905 15906 mutex_exit(&dtrace_lock); 15907 15908 /* 15909 * If we have a meta provider, remove this helper provider. 15910 */ 15911 mutex_enter(&dtrace_meta_lock); 15912 if (dtrace_meta_pid != NULL) { 15913 ASSERT(dtrace_deferred_pid == NULL); 15914 dtrace_helper_provider_remove(&prov->dthp_prov, 15915 p->p_pid); 15916 } 15917 mutex_exit(&dtrace_meta_lock); 15918 15919 dtrace_helper_provider_destroy(prov); 15920 15921 mutex_enter(&dtrace_lock); 15922 } 15923 15924 return (0); 15925 } 15926 15927 static int 15928 dtrace_helper_validate(dtrace_helper_action_t *helper) 15929 { 15930 int err = 0, i; 15931 dtrace_difo_t *dp; 15932 15933 if ((dp = helper->dtha_predicate) != NULL) 15934 err += dtrace_difo_validate_helper(dp); 15935 15936 for (i = 0; i < helper->dtha_nactions; i++) 15937 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 15938 15939 return (err == 0); 15940 } 15941 15942 static int 15943 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep, 15944 dtrace_helpers_t *help) 15945 { 15946 dtrace_helper_action_t *helper, *last; 15947 dtrace_actdesc_t *act; 15948 dtrace_vstate_t *vstate; 15949 dtrace_predicate_t *pred; 15950 int count = 0, nactions = 0, i; 15951 15952 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 15953 return (EINVAL); 15954 15955 last = help->dthps_actions[which]; 15956 vstate = &help->dthps_vstate; 15957 15958 for (count = 0; last != NULL; last = last->dtha_next) { 15959 count++; 15960 if (last->dtha_next == NULL) 15961 break; 15962 } 15963 15964 /* 15965 * If we already have dtrace_helper_actions_max helper actions for this 15966 * helper action type, we'll refuse to add a new one. 15967 */ 15968 if (count >= dtrace_helper_actions_max) 15969 return (ENOSPC); 15970 15971 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 15972 helper->dtha_generation = help->dthps_generation; 15973 15974 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15975 ASSERT(pred->dtp_difo != NULL); 15976 dtrace_difo_hold(pred->dtp_difo); 15977 helper->dtha_predicate = pred->dtp_difo; 15978 } 15979 15980 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15981 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15982 goto err; 15983 15984 if (act->dtad_difo == NULL) 15985 goto err; 15986 15987 nactions++; 15988 } 15989 15990 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 15991 (helper->dtha_nactions = nactions), KM_SLEEP); 15992 15993 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 15994 dtrace_difo_hold(act->dtad_difo); 15995 helper->dtha_actions[i++] = act->dtad_difo; 15996 } 15997 15998 if (!dtrace_helper_validate(helper)) 15999 goto err; 16000 16001 if (last == NULL) { 16002 help->dthps_actions[which] = helper; 16003 } else { 16004 last->dtha_next = helper; 16005 } 16006 16007 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 16008 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 16009 dtrace_helptrace_next = 0; 16010 } 16011 16012 return (0); 16013 err: 16014 dtrace_helper_action_destroy(helper, vstate); 16015 return (EINVAL); 16016 } 16017 16018 static void 16019 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 16020 dof_helper_t *dofhp) 16021 { 16022 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 16023 16024 mutex_enter(&dtrace_meta_lock); 16025 mutex_enter(&dtrace_lock); 16026 16027 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 16028 /* 16029 * If the dtrace module is loaded but not attached, or if 16030 * there aren't isn't a meta provider registered to deal with 16031 * these provider descriptions, we need to postpone creating 16032 * the actual providers until later. 16033 */ 16034 16035 if (help->dthps_next == NULL && help->dthps_prev == NULL && 16036 dtrace_deferred_pid != help) { 16037 help->dthps_deferred = 1; 16038 help->dthps_pid = p->p_pid; 16039 help->dthps_next = dtrace_deferred_pid; 16040 help->dthps_prev = NULL; 16041 if (dtrace_deferred_pid != NULL) 16042 dtrace_deferred_pid->dthps_prev = help; 16043 dtrace_deferred_pid = help; 16044 } 16045 16046 mutex_exit(&dtrace_lock); 16047 16048 } else if (dofhp != NULL) { 16049 /* 16050 * If the dtrace module is loaded and we have a particular 16051 * helper provider description, pass that off to the 16052 * meta provider. 16053 */ 16054 16055 mutex_exit(&dtrace_lock); 16056 16057 dtrace_helper_provide(dofhp, p->p_pid); 16058 16059 } else { 16060 /* 16061 * Otherwise, just pass all the helper provider descriptions 16062 * off to the meta provider. 16063 */ 16064 16065 int i; 16066 mutex_exit(&dtrace_lock); 16067 16068 for (i = 0; i < help->dthps_nprovs; i++) { 16069 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 16070 p->p_pid); 16071 } 16072 } 16073 16074 mutex_exit(&dtrace_meta_lock); 16075 } 16076 16077 static int 16078 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen) 16079 { 16080 dtrace_helper_provider_t *hprov, **tmp_provs; 16081 uint_t tmp_maxprovs, i; 16082 16083 ASSERT(MUTEX_HELD(&dtrace_lock)); 16084 ASSERT(help != NULL); 16085 16086 /* 16087 * If we already have dtrace_helper_providers_max helper providers, 16088 * we're refuse to add a new one. 16089 */ 16090 if (help->dthps_nprovs >= dtrace_helper_providers_max) 16091 return (ENOSPC); 16092 16093 /* 16094 * Check to make sure this isn't a duplicate. 16095 */ 16096 for (i = 0; i < help->dthps_nprovs; i++) { 16097 if (dofhp->dofhp_addr == 16098 help->dthps_provs[i]->dthp_prov.dofhp_addr) 16099 return (EALREADY); 16100 } 16101 16102 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 16103 hprov->dthp_prov = *dofhp; 16104 hprov->dthp_ref = 1; 16105 hprov->dthp_generation = gen; 16106 16107 /* 16108 * Allocate a bigger table for helper providers if it's already full. 16109 */ 16110 if (help->dthps_maxprovs == help->dthps_nprovs) { 16111 tmp_maxprovs = help->dthps_maxprovs; 16112 tmp_provs = help->dthps_provs; 16113 16114 if (help->dthps_maxprovs == 0) 16115 help->dthps_maxprovs = 2; 16116 else 16117 help->dthps_maxprovs *= 2; 16118 if (help->dthps_maxprovs > dtrace_helper_providers_max) 16119 help->dthps_maxprovs = dtrace_helper_providers_max; 16120 16121 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 16122 16123 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 16124 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16125 16126 if (tmp_provs != NULL) { 16127 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 16128 sizeof (dtrace_helper_provider_t *)); 16129 kmem_free(tmp_provs, tmp_maxprovs * 16130 sizeof (dtrace_helper_provider_t *)); 16131 } 16132 } 16133 16134 help->dthps_provs[help->dthps_nprovs] = hprov; 16135 help->dthps_nprovs++; 16136 16137 return (0); 16138 } 16139 16140 static void 16141 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 16142 { 16143 mutex_enter(&dtrace_lock); 16144 16145 if (--hprov->dthp_ref == 0) { 16146 dof_hdr_t *dof; 16147 mutex_exit(&dtrace_lock); 16148 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 16149 dtrace_dof_destroy(dof); 16150 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 16151 } else { 16152 mutex_exit(&dtrace_lock); 16153 } 16154 } 16155 16156 static int 16157 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 16158 { 16159 uintptr_t daddr = (uintptr_t)dof; 16160 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 16161 dof_provider_t *provider; 16162 dof_probe_t *probe; 16163 uint8_t *arg; 16164 char *strtab, *typestr; 16165 dof_stridx_t typeidx; 16166 size_t typesz; 16167 uint_t nprobes, j, k; 16168 16169 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 16170 16171 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 16172 dtrace_dof_error(dof, "misaligned section offset"); 16173 return (-1); 16174 } 16175 16176 /* 16177 * The section needs to be large enough to contain the DOF provider 16178 * structure appropriate for the given version. 16179 */ 16180 if (sec->dofs_size < 16181 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 16182 offsetof(dof_provider_t, dofpv_prenoffs) : 16183 sizeof (dof_provider_t))) { 16184 dtrace_dof_error(dof, "provider section too small"); 16185 return (-1); 16186 } 16187 16188 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 16189 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 16190 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 16191 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 16192 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 16193 16194 if (str_sec == NULL || prb_sec == NULL || 16195 arg_sec == NULL || off_sec == NULL) 16196 return (-1); 16197 16198 enoff_sec = NULL; 16199 16200 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 16201 provider->dofpv_prenoffs != DOF_SECT_NONE && 16202 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 16203 provider->dofpv_prenoffs)) == NULL) 16204 return (-1); 16205 16206 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 16207 16208 if (provider->dofpv_name >= str_sec->dofs_size || 16209 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 16210 dtrace_dof_error(dof, "invalid provider name"); 16211 return (-1); 16212 } 16213 16214 if (prb_sec->dofs_entsize == 0 || 16215 prb_sec->dofs_entsize > prb_sec->dofs_size) { 16216 dtrace_dof_error(dof, "invalid entry size"); 16217 return (-1); 16218 } 16219 16220 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 16221 dtrace_dof_error(dof, "misaligned entry size"); 16222 return (-1); 16223 } 16224 16225 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 16226 dtrace_dof_error(dof, "invalid entry size"); 16227 return (-1); 16228 } 16229 16230 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 16231 dtrace_dof_error(dof, "misaligned section offset"); 16232 return (-1); 16233 } 16234 16235 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 16236 dtrace_dof_error(dof, "invalid entry size"); 16237 return (-1); 16238 } 16239 16240 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 16241 16242 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 16243 16244 /* 16245 * Take a pass through the probes to check for errors. 16246 */ 16247 for (j = 0; j < nprobes; j++) { 16248 probe = (dof_probe_t *)(uintptr_t)(daddr + 16249 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 16250 16251 if (probe->dofpr_func >= str_sec->dofs_size) { 16252 dtrace_dof_error(dof, "invalid function name"); 16253 return (-1); 16254 } 16255 16256 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 16257 dtrace_dof_error(dof, "function name too long"); 16258 /* 16259 * Keep going if the function name is too long. 16260 * Unlike provider and probe names, we cannot reasonably 16261 * impose restrictions on function names, since they're 16262 * a property of the code being instrumented. We will 16263 * skip this probe in dtrace_helper_provide_one(). 16264 */ 16265 } 16266 16267 if (probe->dofpr_name >= str_sec->dofs_size || 16268 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 16269 dtrace_dof_error(dof, "invalid probe name"); 16270 return (-1); 16271 } 16272 16273 /* 16274 * The offset count must not wrap the index, and the offsets 16275 * must also not overflow the section's data. 16276 */ 16277 if (probe->dofpr_offidx + probe->dofpr_noffs < 16278 probe->dofpr_offidx || 16279 (probe->dofpr_offidx + probe->dofpr_noffs) * 16280 off_sec->dofs_entsize > off_sec->dofs_size) { 16281 dtrace_dof_error(dof, "invalid probe offset"); 16282 return (-1); 16283 } 16284 16285 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 16286 /* 16287 * If there's no is-enabled offset section, make sure 16288 * there aren't any is-enabled offsets. Otherwise 16289 * perform the same checks as for probe offsets 16290 * (immediately above). 16291 */ 16292 if (enoff_sec == NULL) { 16293 if (probe->dofpr_enoffidx != 0 || 16294 probe->dofpr_nenoffs != 0) { 16295 dtrace_dof_error(dof, "is-enabled " 16296 "offsets with null section"); 16297 return (-1); 16298 } 16299 } else if (probe->dofpr_enoffidx + 16300 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 16301 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 16302 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 16303 dtrace_dof_error(dof, "invalid is-enabled " 16304 "offset"); 16305 return (-1); 16306 } 16307 16308 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 16309 dtrace_dof_error(dof, "zero probe and " 16310 "is-enabled offsets"); 16311 return (-1); 16312 } 16313 } else if (probe->dofpr_noffs == 0) { 16314 dtrace_dof_error(dof, "zero probe offsets"); 16315 return (-1); 16316 } 16317 16318 if (probe->dofpr_argidx + probe->dofpr_xargc < 16319 probe->dofpr_argidx || 16320 (probe->dofpr_argidx + probe->dofpr_xargc) * 16321 arg_sec->dofs_entsize > arg_sec->dofs_size) { 16322 dtrace_dof_error(dof, "invalid args"); 16323 return (-1); 16324 } 16325 16326 typeidx = probe->dofpr_nargv; 16327 typestr = strtab + probe->dofpr_nargv; 16328 for (k = 0; k < probe->dofpr_nargc; k++) { 16329 if (typeidx >= str_sec->dofs_size) { 16330 dtrace_dof_error(dof, "bad " 16331 "native argument type"); 16332 return (-1); 16333 } 16334 16335 typesz = strlen(typestr) + 1; 16336 if (typesz > DTRACE_ARGTYPELEN) { 16337 dtrace_dof_error(dof, "native " 16338 "argument type too long"); 16339 return (-1); 16340 } 16341 typeidx += typesz; 16342 typestr += typesz; 16343 } 16344 16345 typeidx = probe->dofpr_xargv; 16346 typestr = strtab + probe->dofpr_xargv; 16347 for (k = 0; k < probe->dofpr_xargc; k++) { 16348 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 16349 dtrace_dof_error(dof, "bad " 16350 "native argument index"); 16351 return (-1); 16352 } 16353 16354 if (typeidx >= str_sec->dofs_size) { 16355 dtrace_dof_error(dof, "bad " 16356 "translated argument type"); 16357 return (-1); 16358 } 16359 16360 typesz = strlen(typestr) + 1; 16361 if (typesz > DTRACE_ARGTYPELEN) { 16362 dtrace_dof_error(dof, "translated argument " 16363 "type too long"); 16364 return (-1); 16365 } 16366 16367 typeidx += typesz; 16368 typestr += typesz; 16369 } 16370 } 16371 16372 return (0); 16373 } 16374 16375 static int 16376 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p) 16377 { 16378 dtrace_helpers_t *help; 16379 dtrace_vstate_t *vstate; 16380 dtrace_enabling_t *enab = NULL; 16381 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 16382 uintptr_t daddr = (uintptr_t)dof; 16383 16384 ASSERT(MUTEX_HELD(&dtrace_lock)); 16385 16386 if ((help = p->p_dtrace_helpers) == NULL) 16387 help = dtrace_helpers_create(p); 16388 16389 vstate = &help->dthps_vstate; 16390 16391 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr, 16392 dhp->dofhp_dof, B_FALSE)) != 0) { 16393 dtrace_dof_destroy(dof); 16394 return (rv); 16395 } 16396 16397 /* 16398 * Look for helper providers and validate their descriptions. 16399 */ 16400 for (i = 0; i < dof->dofh_secnum; i++) { 16401 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 16402 dof->dofh_secoff + i * dof->dofh_secsize); 16403 16404 if (sec->dofs_type != DOF_SECT_PROVIDER) 16405 continue; 16406 16407 if (dtrace_helper_provider_validate(dof, sec) != 0) { 16408 dtrace_enabling_destroy(enab); 16409 dtrace_dof_destroy(dof); 16410 return (-1); 16411 } 16412 16413 nprovs++; 16414 } 16415 16416 /* 16417 * Now we need to walk through the ECB descriptions in the enabling. 16418 */ 16419 for (i = 0; i < enab->dten_ndesc; i++) { 16420 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 16421 dtrace_probedesc_t *desc = &ep->dted_probe; 16422 16423 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 16424 continue; 16425 16426 if (strcmp(desc->dtpd_mod, "helper") != 0) 16427 continue; 16428 16429 if (strcmp(desc->dtpd_func, "ustack") != 0) 16430 continue; 16431 16432 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 16433 ep, help)) != 0) { 16434 /* 16435 * Adding this helper action failed -- we are now going 16436 * to rip out the entire generation and return failure. 16437 */ 16438 (void) dtrace_helper_destroygen(help, 16439 help->dthps_generation); 16440 dtrace_enabling_destroy(enab); 16441 dtrace_dof_destroy(dof); 16442 return (-1); 16443 } 16444 16445 nhelpers++; 16446 } 16447 16448 if (nhelpers < enab->dten_ndesc) 16449 dtrace_dof_error(dof, "unmatched helpers"); 16450 16451 gen = help->dthps_generation++; 16452 dtrace_enabling_destroy(enab); 16453 16454 if (nprovs > 0) { 16455 /* 16456 * Now that this is in-kernel, we change the sense of the 16457 * members: dofhp_dof denotes the in-kernel copy of the DOF 16458 * and dofhp_addr denotes the address at user-level. 16459 */ 16460 dhp->dofhp_addr = dhp->dofhp_dof; 16461 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 16462 16463 if (dtrace_helper_provider_add(dhp, help, gen) == 0) { 16464 mutex_exit(&dtrace_lock); 16465 dtrace_helper_provider_register(p, help, dhp); 16466 mutex_enter(&dtrace_lock); 16467 16468 destroy = 0; 16469 } 16470 } 16471 16472 if (destroy) 16473 dtrace_dof_destroy(dof); 16474 16475 return (gen); 16476 } 16477 16478 static dtrace_helpers_t * 16479 dtrace_helpers_create(proc_t *p) 16480 { 16481 dtrace_helpers_t *help; 16482 16483 ASSERT(MUTEX_HELD(&dtrace_lock)); 16484 ASSERT(p->p_dtrace_helpers == NULL); 16485 16486 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 16487 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 16488 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 16489 16490 p->p_dtrace_helpers = help; 16491 dtrace_helpers++; 16492 16493 return (help); 16494 } 16495 16496 #ifdef illumos 16497 static 16498 #endif 16499 void 16500 dtrace_helpers_destroy(proc_t *p) 16501 { 16502 dtrace_helpers_t *help; 16503 dtrace_vstate_t *vstate; 16504 #ifdef illumos 16505 proc_t *p = curproc; 16506 #endif 16507 int i; 16508 16509 mutex_enter(&dtrace_lock); 16510 16511 ASSERT(p->p_dtrace_helpers != NULL); 16512 ASSERT(dtrace_helpers > 0); 16513 16514 help = p->p_dtrace_helpers; 16515 vstate = &help->dthps_vstate; 16516 16517 /* 16518 * We're now going to lose the help from this process. 16519 */ 16520 p->p_dtrace_helpers = NULL; 16521 dtrace_sync(); 16522 16523 /* 16524 * Destory the helper actions. 16525 */ 16526 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16527 dtrace_helper_action_t *h, *next; 16528 16529 for (h = help->dthps_actions[i]; h != NULL; h = next) { 16530 next = h->dtha_next; 16531 dtrace_helper_action_destroy(h, vstate); 16532 h = next; 16533 } 16534 } 16535 16536 mutex_exit(&dtrace_lock); 16537 16538 /* 16539 * Destroy the helper providers. 16540 */ 16541 if (help->dthps_maxprovs > 0) { 16542 mutex_enter(&dtrace_meta_lock); 16543 if (dtrace_meta_pid != NULL) { 16544 ASSERT(dtrace_deferred_pid == NULL); 16545 16546 for (i = 0; i < help->dthps_nprovs; i++) { 16547 dtrace_helper_provider_remove( 16548 &help->dthps_provs[i]->dthp_prov, p->p_pid); 16549 } 16550 } else { 16551 mutex_enter(&dtrace_lock); 16552 ASSERT(help->dthps_deferred == 0 || 16553 help->dthps_next != NULL || 16554 help->dthps_prev != NULL || 16555 help == dtrace_deferred_pid); 16556 16557 /* 16558 * Remove the helper from the deferred list. 16559 */ 16560 if (help->dthps_next != NULL) 16561 help->dthps_next->dthps_prev = help->dthps_prev; 16562 if (help->dthps_prev != NULL) 16563 help->dthps_prev->dthps_next = help->dthps_next; 16564 if (dtrace_deferred_pid == help) { 16565 dtrace_deferred_pid = help->dthps_next; 16566 ASSERT(help->dthps_prev == NULL); 16567 } 16568 16569 mutex_exit(&dtrace_lock); 16570 } 16571 16572 mutex_exit(&dtrace_meta_lock); 16573 16574 for (i = 0; i < help->dthps_nprovs; i++) { 16575 dtrace_helper_provider_destroy(help->dthps_provs[i]); 16576 } 16577 16578 kmem_free(help->dthps_provs, help->dthps_maxprovs * 16579 sizeof (dtrace_helper_provider_t *)); 16580 } 16581 16582 mutex_enter(&dtrace_lock); 16583 16584 dtrace_vstate_fini(&help->dthps_vstate); 16585 kmem_free(help->dthps_actions, 16586 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 16587 kmem_free(help, sizeof (dtrace_helpers_t)); 16588 16589 --dtrace_helpers; 16590 mutex_exit(&dtrace_lock); 16591 } 16592 16593 #ifdef illumos 16594 static 16595 #endif 16596 void 16597 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 16598 { 16599 dtrace_helpers_t *help, *newhelp; 16600 dtrace_helper_action_t *helper, *new, *last; 16601 dtrace_difo_t *dp; 16602 dtrace_vstate_t *vstate; 16603 int i, j, sz, hasprovs = 0; 16604 16605 mutex_enter(&dtrace_lock); 16606 ASSERT(from->p_dtrace_helpers != NULL); 16607 ASSERT(dtrace_helpers > 0); 16608 16609 help = from->p_dtrace_helpers; 16610 newhelp = dtrace_helpers_create(to); 16611 ASSERT(to->p_dtrace_helpers != NULL); 16612 16613 newhelp->dthps_generation = help->dthps_generation; 16614 vstate = &newhelp->dthps_vstate; 16615 16616 /* 16617 * Duplicate the helper actions. 16618 */ 16619 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16620 if ((helper = help->dthps_actions[i]) == NULL) 16621 continue; 16622 16623 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 16624 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 16625 KM_SLEEP); 16626 new->dtha_generation = helper->dtha_generation; 16627 16628 if ((dp = helper->dtha_predicate) != NULL) { 16629 dp = dtrace_difo_duplicate(dp, vstate); 16630 new->dtha_predicate = dp; 16631 } 16632 16633 new->dtha_nactions = helper->dtha_nactions; 16634 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 16635 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 16636 16637 for (j = 0; j < new->dtha_nactions; j++) { 16638 dtrace_difo_t *dp = helper->dtha_actions[j]; 16639 16640 ASSERT(dp != NULL); 16641 dp = dtrace_difo_duplicate(dp, vstate); 16642 new->dtha_actions[j] = dp; 16643 } 16644 16645 if (last != NULL) { 16646 last->dtha_next = new; 16647 } else { 16648 newhelp->dthps_actions[i] = new; 16649 } 16650 16651 last = new; 16652 } 16653 } 16654 16655 /* 16656 * Duplicate the helper providers and register them with the 16657 * DTrace framework. 16658 */ 16659 if (help->dthps_nprovs > 0) { 16660 newhelp->dthps_nprovs = help->dthps_nprovs; 16661 newhelp->dthps_maxprovs = help->dthps_nprovs; 16662 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 16663 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16664 for (i = 0; i < newhelp->dthps_nprovs; i++) { 16665 newhelp->dthps_provs[i] = help->dthps_provs[i]; 16666 newhelp->dthps_provs[i]->dthp_ref++; 16667 } 16668 16669 hasprovs = 1; 16670 } 16671 16672 mutex_exit(&dtrace_lock); 16673 16674 if (hasprovs) 16675 dtrace_helper_provider_register(to, newhelp, NULL); 16676 } 16677 16678 /* 16679 * DTrace Hook Functions 16680 */ 16681 static void 16682 dtrace_module_loaded(modctl_t *ctl) 16683 { 16684 dtrace_provider_t *prv; 16685 16686 mutex_enter(&dtrace_provider_lock); 16687 #ifdef illumos 16688 mutex_enter(&mod_lock); 16689 #endif 16690 16691 #ifdef illumos 16692 ASSERT(ctl->mod_busy); 16693 #endif 16694 16695 /* 16696 * We're going to call each providers per-module provide operation 16697 * specifying only this module. 16698 */ 16699 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 16700 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 16701 16702 #ifdef illumos 16703 mutex_exit(&mod_lock); 16704 #endif 16705 mutex_exit(&dtrace_provider_lock); 16706 16707 /* 16708 * If we have any retained enablings, we need to match against them. 16709 * Enabling probes requires that cpu_lock be held, and we cannot hold 16710 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 16711 * module. (In particular, this happens when loading scheduling 16712 * classes.) So if we have any retained enablings, we need to dispatch 16713 * our task queue to do the match for us. 16714 */ 16715 mutex_enter(&dtrace_lock); 16716 16717 if (dtrace_retained == NULL) { 16718 mutex_exit(&dtrace_lock); 16719 return; 16720 } 16721 16722 (void) taskq_dispatch(dtrace_taskq, 16723 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 16724 16725 mutex_exit(&dtrace_lock); 16726 16727 /* 16728 * And now, for a little heuristic sleaze: in general, we want to 16729 * match modules as soon as they load. However, we cannot guarantee 16730 * this, because it would lead us to the lock ordering violation 16731 * outlined above. The common case, of course, is that cpu_lock is 16732 * _not_ held -- so we delay here for a clock tick, hoping that that's 16733 * long enough for the task queue to do its work. If it's not, it's 16734 * not a serious problem -- it just means that the module that we 16735 * just loaded may not be immediately instrumentable. 16736 */ 16737 delay(1); 16738 } 16739 16740 static void 16741 #ifdef illumos 16742 dtrace_module_unloaded(modctl_t *ctl) 16743 #else 16744 dtrace_module_unloaded(modctl_t *ctl, int *error) 16745 #endif 16746 { 16747 dtrace_probe_t template, *probe, *first, *next; 16748 dtrace_provider_t *prov; 16749 #ifndef illumos 16750 char modname[DTRACE_MODNAMELEN]; 16751 size_t len; 16752 #endif 16753 16754 #ifdef illumos 16755 template.dtpr_mod = ctl->mod_modname; 16756 #else 16757 /* Handle the fact that ctl->filename may end in ".ko". */ 16758 strlcpy(modname, ctl->filename, sizeof(modname)); 16759 len = strlen(ctl->filename); 16760 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) 16761 modname[len - 3] = '\0'; 16762 template.dtpr_mod = modname; 16763 #endif 16764 16765 mutex_enter(&dtrace_provider_lock); 16766 #ifdef illumos 16767 mutex_enter(&mod_lock); 16768 #endif 16769 mutex_enter(&dtrace_lock); 16770 16771 #ifndef illumos 16772 if (ctl->nenabled > 0) { 16773 /* Don't allow unloads if a probe is enabled. */ 16774 mutex_exit(&dtrace_provider_lock); 16775 mutex_exit(&dtrace_lock); 16776 *error = -1; 16777 printf( 16778 "kldunload: attempt to unload module that has DTrace probes enabled\n"); 16779 return; 16780 } 16781 #endif 16782 16783 if (dtrace_bymod == NULL) { 16784 /* 16785 * The DTrace module is loaded (obviously) but not attached; 16786 * we don't have any work to do. 16787 */ 16788 mutex_exit(&dtrace_provider_lock); 16789 #ifdef illumos 16790 mutex_exit(&mod_lock); 16791 #endif 16792 mutex_exit(&dtrace_lock); 16793 return; 16794 } 16795 16796 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 16797 probe != NULL; probe = probe->dtpr_nextmod) { 16798 if (probe->dtpr_ecb != NULL) { 16799 mutex_exit(&dtrace_provider_lock); 16800 #ifdef illumos 16801 mutex_exit(&mod_lock); 16802 #endif 16803 mutex_exit(&dtrace_lock); 16804 16805 /* 16806 * This shouldn't _actually_ be possible -- we're 16807 * unloading a module that has an enabled probe in it. 16808 * (It's normally up to the provider to make sure that 16809 * this can't happen.) However, because dtps_enable() 16810 * doesn't have a failure mode, there can be an 16811 * enable/unload race. Upshot: we don't want to 16812 * assert, but we're not going to disable the 16813 * probe, either. 16814 */ 16815 if (dtrace_err_verbose) { 16816 #ifdef illumos 16817 cmn_err(CE_WARN, "unloaded module '%s' had " 16818 "enabled probes", ctl->mod_modname); 16819 #else 16820 cmn_err(CE_WARN, "unloaded module '%s' had " 16821 "enabled probes", modname); 16822 #endif 16823 } 16824 16825 return; 16826 } 16827 } 16828 16829 probe = first; 16830 16831 for (first = NULL; probe != NULL; probe = next) { 16832 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 16833 16834 dtrace_probes[probe->dtpr_id - 1] = NULL; 16835 16836 next = probe->dtpr_nextmod; 16837 dtrace_hash_remove(dtrace_bymod, probe); 16838 dtrace_hash_remove(dtrace_byfunc, probe); 16839 dtrace_hash_remove(dtrace_byname, probe); 16840 16841 if (first == NULL) { 16842 first = probe; 16843 probe->dtpr_nextmod = NULL; 16844 } else { 16845 probe->dtpr_nextmod = first; 16846 first = probe; 16847 } 16848 } 16849 16850 /* 16851 * We've removed all of the module's probes from the hash chains and 16852 * from the probe array. Now issue a dtrace_sync() to be sure that 16853 * everyone has cleared out from any probe array processing. 16854 */ 16855 dtrace_sync(); 16856 16857 for (probe = first; probe != NULL; probe = first) { 16858 first = probe->dtpr_nextmod; 16859 prov = probe->dtpr_provider; 16860 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 16861 probe->dtpr_arg); 16862 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 16863 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 16864 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 16865 #ifdef illumos 16866 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 16867 #else 16868 free_unr(dtrace_arena, probe->dtpr_id); 16869 #endif 16870 kmem_free(probe, sizeof (dtrace_probe_t)); 16871 } 16872 16873 mutex_exit(&dtrace_lock); 16874 #ifdef illumos 16875 mutex_exit(&mod_lock); 16876 #endif 16877 mutex_exit(&dtrace_provider_lock); 16878 } 16879 16880 #ifndef illumos 16881 static void 16882 dtrace_kld_load(void *arg __unused, linker_file_t lf) 16883 { 16884 16885 dtrace_module_loaded(lf); 16886 } 16887 16888 static void 16889 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error) 16890 { 16891 16892 if (*error != 0) 16893 /* We already have an error, so don't do anything. */ 16894 return; 16895 dtrace_module_unloaded(lf, error); 16896 } 16897 #endif 16898 16899 #ifdef illumos 16900 static void 16901 dtrace_suspend(void) 16902 { 16903 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 16904 } 16905 16906 static void 16907 dtrace_resume(void) 16908 { 16909 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 16910 } 16911 #endif 16912 16913 static int 16914 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 16915 { 16916 ASSERT(MUTEX_HELD(&cpu_lock)); 16917 mutex_enter(&dtrace_lock); 16918 16919 switch (what) { 16920 case CPU_CONFIG: { 16921 dtrace_state_t *state; 16922 dtrace_optval_t *opt, rs, c; 16923 16924 /* 16925 * For now, we only allocate a new buffer for anonymous state. 16926 */ 16927 if ((state = dtrace_anon.dta_state) == NULL) 16928 break; 16929 16930 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 16931 break; 16932 16933 opt = state->dts_options; 16934 c = opt[DTRACEOPT_CPU]; 16935 16936 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 16937 break; 16938 16939 /* 16940 * Regardless of what the actual policy is, we're going to 16941 * temporarily set our resize policy to be manual. We're 16942 * also going to temporarily set our CPU option to denote 16943 * the newly configured CPU. 16944 */ 16945 rs = opt[DTRACEOPT_BUFRESIZE]; 16946 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 16947 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 16948 16949 (void) dtrace_state_buffers(state); 16950 16951 opt[DTRACEOPT_BUFRESIZE] = rs; 16952 opt[DTRACEOPT_CPU] = c; 16953 16954 break; 16955 } 16956 16957 case CPU_UNCONFIG: 16958 /* 16959 * We don't free the buffer in the CPU_UNCONFIG case. (The 16960 * buffer will be freed when the consumer exits.) 16961 */ 16962 break; 16963 16964 default: 16965 break; 16966 } 16967 16968 mutex_exit(&dtrace_lock); 16969 return (0); 16970 } 16971 16972 #ifdef illumos 16973 static void 16974 dtrace_cpu_setup_initial(processorid_t cpu) 16975 { 16976 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 16977 } 16978 #endif 16979 16980 static void 16981 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 16982 { 16983 if (dtrace_toxranges >= dtrace_toxranges_max) { 16984 int osize, nsize; 16985 dtrace_toxrange_t *range; 16986 16987 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16988 16989 if (osize == 0) { 16990 ASSERT(dtrace_toxrange == NULL); 16991 ASSERT(dtrace_toxranges_max == 0); 16992 dtrace_toxranges_max = 1; 16993 } else { 16994 dtrace_toxranges_max <<= 1; 16995 } 16996 16997 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16998 range = kmem_zalloc(nsize, KM_SLEEP); 16999 17000 if (dtrace_toxrange != NULL) { 17001 ASSERT(osize != 0); 17002 bcopy(dtrace_toxrange, range, osize); 17003 kmem_free(dtrace_toxrange, osize); 17004 } 17005 17006 dtrace_toxrange = range; 17007 } 17008 17009 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); 17010 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); 17011 17012 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 17013 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 17014 dtrace_toxranges++; 17015 } 17016 17017 static void 17018 dtrace_getf_barrier(void) 17019 { 17020 #ifdef illumos 17021 /* 17022 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 17023 * that contain calls to getf(), this routine will be called on every 17024 * closef() before either the underlying vnode is released or the 17025 * file_t itself is freed. By the time we are here, it is essential 17026 * that the file_t can no longer be accessed from a call to getf() 17027 * in probe context -- that assures that a dtrace_sync() can be used 17028 * to clear out any enablings referring to the old structures. 17029 */ 17030 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 17031 kcred->cr_zone->zone_dtrace_getf != 0) 17032 dtrace_sync(); 17033 #endif 17034 } 17035 17036 /* 17037 * DTrace Driver Cookbook Functions 17038 */ 17039 #ifdef illumos 17040 /*ARGSUSED*/ 17041 static int 17042 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 17043 { 17044 dtrace_provider_id_t id; 17045 dtrace_state_t *state = NULL; 17046 dtrace_enabling_t *enab; 17047 17048 mutex_enter(&cpu_lock); 17049 mutex_enter(&dtrace_provider_lock); 17050 mutex_enter(&dtrace_lock); 17051 17052 if (ddi_soft_state_init(&dtrace_softstate, 17053 sizeof (dtrace_state_t), 0) != 0) { 17054 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 17055 mutex_exit(&cpu_lock); 17056 mutex_exit(&dtrace_provider_lock); 17057 mutex_exit(&dtrace_lock); 17058 return (DDI_FAILURE); 17059 } 17060 17061 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 17062 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 17063 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 17064 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 17065 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 17066 ddi_remove_minor_node(devi, NULL); 17067 ddi_soft_state_fini(&dtrace_softstate); 17068 mutex_exit(&cpu_lock); 17069 mutex_exit(&dtrace_provider_lock); 17070 mutex_exit(&dtrace_lock); 17071 return (DDI_FAILURE); 17072 } 17073 17074 ddi_report_dev(devi); 17075 dtrace_devi = devi; 17076 17077 dtrace_modload = dtrace_module_loaded; 17078 dtrace_modunload = dtrace_module_unloaded; 17079 dtrace_cpu_init = dtrace_cpu_setup_initial; 17080 dtrace_helpers_cleanup = dtrace_helpers_destroy; 17081 dtrace_helpers_fork = dtrace_helpers_duplicate; 17082 dtrace_cpustart_init = dtrace_suspend; 17083 dtrace_cpustart_fini = dtrace_resume; 17084 dtrace_debugger_init = dtrace_suspend; 17085 dtrace_debugger_fini = dtrace_resume; 17086 17087 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17088 17089 ASSERT(MUTEX_HELD(&cpu_lock)); 17090 17091 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 17092 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 17093 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 17094 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 17095 VM_SLEEP | VMC_IDENTIFIER); 17096 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 17097 1, INT_MAX, 0); 17098 17099 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 17100 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 17101 NULL, NULL, NULL, NULL, NULL, 0); 17102 17103 ASSERT(MUTEX_HELD(&cpu_lock)); 17104 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 17105 offsetof(dtrace_probe_t, dtpr_nextmod), 17106 offsetof(dtrace_probe_t, dtpr_prevmod)); 17107 17108 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 17109 offsetof(dtrace_probe_t, dtpr_nextfunc), 17110 offsetof(dtrace_probe_t, dtpr_prevfunc)); 17111 17112 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 17113 offsetof(dtrace_probe_t, dtpr_nextname), 17114 offsetof(dtrace_probe_t, dtpr_prevname)); 17115 17116 if (dtrace_retain_max < 1) { 17117 cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; " 17118 "setting to 1", dtrace_retain_max); 17119 dtrace_retain_max = 1; 17120 } 17121 17122 /* 17123 * Now discover our toxic ranges. 17124 */ 17125 dtrace_toxic_ranges(dtrace_toxrange_add); 17126 17127 /* 17128 * Before we register ourselves as a provider to our own framework, 17129 * we would like to assert that dtrace_provider is NULL -- but that's 17130 * not true if we were loaded as a dependency of a DTrace provider. 17131 * Once we've registered, we can assert that dtrace_provider is our 17132 * pseudo provider. 17133 */ 17134 (void) dtrace_register("dtrace", &dtrace_provider_attr, 17135 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 17136 17137 ASSERT(dtrace_provider != NULL); 17138 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 17139 17140 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 17141 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 17142 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 17143 dtrace_provider, NULL, NULL, "END", 0, NULL); 17144 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 17145 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 17146 17147 dtrace_anon_property(); 17148 mutex_exit(&cpu_lock); 17149 17150 /* 17151 * If there are already providers, we must ask them to provide their 17152 * probes, and then match any anonymous enabling against them. Note 17153 * that there should be no other retained enablings at this time: 17154 * the only retained enablings at this time should be the anonymous 17155 * enabling. 17156 */ 17157 if (dtrace_anon.dta_enabling != NULL) { 17158 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 17159 17160 dtrace_enabling_provide(NULL); 17161 state = dtrace_anon.dta_state; 17162 17163 /* 17164 * We couldn't hold cpu_lock across the above call to 17165 * dtrace_enabling_provide(), but we must hold it to actually 17166 * enable the probes. We have to drop all of our locks, pick 17167 * up cpu_lock, and regain our locks before matching the 17168 * retained anonymous enabling. 17169 */ 17170 mutex_exit(&dtrace_lock); 17171 mutex_exit(&dtrace_provider_lock); 17172 17173 mutex_enter(&cpu_lock); 17174 mutex_enter(&dtrace_provider_lock); 17175 mutex_enter(&dtrace_lock); 17176 17177 if ((enab = dtrace_anon.dta_enabling) != NULL) 17178 (void) dtrace_enabling_match(enab, NULL); 17179 17180 mutex_exit(&cpu_lock); 17181 } 17182 17183 mutex_exit(&dtrace_lock); 17184 mutex_exit(&dtrace_provider_lock); 17185 17186 if (state != NULL) { 17187 /* 17188 * If we created any anonymous state, set it going now. 17189 */ 17190 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 17191 } 17192 17193 return (DDI_SUCCESS); 17194 } 17195 #endif /* illumos */ 17196 17197 #ifndef illumos 17198 static void dtrace_dtr(void *); 17199 #endif 17200 17201 /*ARGSUSED*/ 17202 static int 17203 #ifdef illumos 17204 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 17205 #else 17206 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 17207 #endif 17208 { 17209 dtrace_state_t *state; 17210 uint32_t priv; 17211 uid_t uid; 17212 zoneid_t zoneid; 17213 17214 #ifdef illumos 17215 if (getminor(*devp) == DTRACEMNRN_HELPER) 17216 return (0); 17217 17218 /* 17219 * If this wasn't an open with the "helper" minor, then it must be 17220 * the "dtrace" minor. 17221 */ 17222 if (getminor(*devp) == DTRACEMNRN_DTRACE) 17223 return (ENXIO); 17224 #else 17225 cred_t *cred_p = NULL; 17226 cred_p = dev->si_cred; 17227 17228 /* 17229 * If no DTRACE_PRIV_* bits are set in the credential, then the 17230 * caller lacks sufficient permission to do anything with DTrace. 17231 */ 17232 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 17233 if (priv == DTRACE_PRIV_NONE) { 17234 #endif 17235 17236 return (EACCES); 17237 } 17238 17239 /* 17240 * Ask all providers to provide all their probes. 17241 */ 17242 mutex_enter(&dtrace_provider_lock); 17243 dtrace_probe_provide(NULL, NULL); 17244 mutex_exit(&dtrace_provider_lock); 17245 17246 mutex_enter(&cpu_lock); 17247 mutex_enter(&dtrace_lock); 17248 dtrace_opens++; 17249 dtrace_membar_producer(); 17250 17251 #ifdef illumos 17252 /* 17253 * If the kernel debugger is active (that is, if the kernel debugger 17254 * modified text in some way), we won't allow the open. 17255 */ 17256 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 17257 dtrace_opens--; 17258 mutex_exit(&cpu_lock); 17259 mutex_exit(&dtrace_lock); 17260 return (EBUSY); 17261 } 17262 17263 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 17264 /* 17265 * If DTrace helper tracing is enabled, we need to allocate the 17266 * trace buffer and initialize the values. 17267 */ 17268 dtrace_helptrace_buffer = 17269 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 17270 dtrace_helptrace_next = 0; 17271 dtrace_helptrace_wrapped = 0; 17272 dtrace_helptrace_enable = 0; 17273 } 17274 17275 state = dtrace_state_create(devp, cred_p); 17276 #else 17277 state = dtrace_state_create(dev, NULL); 17278 devfs_set_cdevpriv(state, dtrace_dtr); 17279 #endif 17280 17281 mutex_exit(&cpu_lock); 17282 17283 if (state == NULL) { 17284 #ifdef illumos 17285 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17286 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17287 #else 17288 --dtrace_opens; 17289 #endif 17290 mutex_exit(&dtrace_lock); 17291 return (EAGAIN); 17292 } 17293 17294 mutex_exit(&dtrace_lock); 17295 17296 return (0); 17297 } 17298 17299 /*ARGSUSED*/ 17300 #ifdef illumos 17301 static int 17302 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 17303 #else 17304 static void 17305 dtrace_dtr(void *data) 17306 #endif 17307 { 17308 #ifdef illumos 17309 minor_t minor = getminor(dev); 17310 dtrace_state_t *state; 17311 #endif 17312 dtrace_helptrace_t *buf = NULL; 17313 17314 #ifdef illumos 17315 if (minor == DTRACEMNRN_HELPER) 17316 return (0); 17317 17318 state = ddi_get_soft_state(dtrace_softstate, minor); 17319 #else 17320 dtrace_state_t *state = data; 17321 #endif 17322 17323 mutex_enter(&cpu_lock); 17324 mutex_enter(&dtrace_lock); 17325 17326 #ifdef illumos 17327 if (state->dts_anon) 17328 #else 17329 if (state != NULL && state->dts_anon) 17330 #endif 17331 { 17332 /* 17333 * There is anonymous state. Destroy that first. 17334 */ 17335 ASSERT(dtrace_anon.dta_state == NULL); 17336 dtrace_state_destroy(state->dts_anon); 17337 } 17338 17339 if (dtrace_helptrace_disable) { 17340 /* 17341 * If we have been told to disable helper tracing, set the 17342 * buffer to NULL before calling into dtrace_state_destroy(); 17343 * we take advantage of its dtrace_sync() to know that no 17344 * CPU is in probe context with enabled helper tracing 17345 * after it returns. 17346 */ 17347 buf = dtrace_helptrace_buffer; 17348 dtrace_helptrace_buffer = NULL; 17349 } 17350 17351 #ifdef illumos 17352 dtrace_state_destroy(state); 17353 #else 17354 if (state != NULL) { 17355 dtrace_state_destroy(state); 17356 kmem_free(state, 0); 17357 } 17358 #endif 17359 ASSERT(dtrace_opens > 0); 17360 17361 #ifdef illumos 17362 /* 17363 * Only relinquish control of the kernel debugger interface when there 17364 * are no consumers and no anonymous enablings. 17365 */ 17366 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17367 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17368 #else 17369 --dtrace_opens; 17370 #endif 17371 17372 if (buf != NULL) { 17373 kmem_free(buf, dtrace_helptrace_bufsize); 17374 dtrace_helptrace_disable = 0; 17375 } 17376 17377 mutex_exit(&dtrace_lock); 17378 mutex_exit(&cpu_lock); 17379 17380 #ifdef illumos 17381 return (0); 17382 #endif 17383 } 17384 17385 #ifdef illumos 17386 /*ARGSUSED*/ 17387 static int 17388 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 17389 { 17390 int rval; 17391 dof_helper_t help, *dhp = NULL; 17392 17393 switch (cmd) { 17394 case DTRACEHIOC_ADDDOF: 17395 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 17396 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 17397 return (EFAULT); 17398 } 17399 17400 dhp = &help; 17401 arg = (intptr_t)help.dofhp_dof; 17402 /*FALLTHROUGH*/ 17403 17404 case DTRACEHIOC_ADD: { 17405 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 17406 17407 if (dof == NULL) 17408 return (rval); 17409 17410 mutex_enter(&dtrace_lock); 17411 17412 /* 17413 * dtrace_helper_slurp() takes responsibility for the dof -- 17414 * it may free it now or it may save it and free it later. 17415 */ 17416 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 17417 *rv = rval; 17418 rval = 0; 17419 } else { 17420 rval = EINVAL; 17421 } 17422 17423 mutex_exit(&dtrace_lock); 17424 return (rval); 17425 } 17426 17427 case DTRACEHIOC_REMOVE: { 17428 mutex_enter(&dtrace_lock); 17429 rval = dtrace_helper_destroygen(NULL, arg); 17430 mutex_exit(&dtrace_lock); 17431 17432 return (rval); 17433 } 17434 17435 default: 17436 break; 17437 } 17438 17439 return (ENOTTY); 17440 } 17441 17442 /*ARGSUSED*/ 17443 static int 17444 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 17445 { 17446 minor_t minor = getminor(dev); 17447 dtrace_state_t *state; 17448 int rval; 17449 17450 if (minor == DTRACEMNRN_HELPER) 17451 return (dtrace_ioctl_helper(cmd, arg, rv)); 17452 17453 state = ddi_get_soft_state(dtrace_softstate, minor); 17454 17455 if (state->dts_anon) { 17456 ASSERT(dtrace_anon.dta_state == NULL); 17457 state = state->dts_anon; 17458 } 17459 17460 switch (cmd) { 17461 case DTRACEIOC_PROVIDER: { 17462 dtrace_providerdesc_t pvd; 17463 dtrace_provider_t *pvp; 17464 17465 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 17466 return (EFAULT); 17467 17468 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 17469 mutex_enter(&dtrace_provider_lock); 17470 17471 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 17472 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 17473 break; 17474 } 17475 17476 mutex_exit(&dtrace_provider_lock); 17477 17478 if (pvp == NULL) 17479 return (ESRCH); 17480 17481 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 17482 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 17483 17484 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 17485 return (EFAULT); 17486 17487 return (0); 17488 } 17489 17490 case DTRACEIOC_EPROBE: { 17491 dtrace_eprobedesc_t epdesc; 17492 dtrace_ecb_t *ecb; 17493 dtrace_action_t *act; 17494 void *buf; 17495 size_t size; 17496 uintptr_t dest; 17497 int nrecs; 17498 17499 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 17500 return (EFAULT); 17501 17502 mutex_enter(&dtrace_lock); 17503 17504 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 17505 mutex_exit(&dtrace_lock); 17506 return (EINVAL); 17507 } 17508 17509 if (ecb->dte_probe == NULL) { 17510 mutex_exit(&dtrace_lock); 17511 return (EINVAL); 17512 } 17513 17514 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 17515 epdesc.dtepd_uarg = ecb->dte_uarg; 17516 epdesc.dtepd_size = ecb->dte_size; 17517 17518 nrecs = epdesc.dtepd_nrecs; 17519 epdesc.dtepd_nrecs = 0; 17520 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17521 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17522 continue; 17523 17524 epdesc.dtepd_nrecs++; 17525 } 17526 17527 /* 17528 * Now that we have the size, we need to allocate a temporary 17529 * buffer in which to store the complete description. We need 17530 * the temporary buffer to be able to drop dtrace_lock() 17531 * across the copyout(), below. 17532 */ 17533 size = sizeof (dtrace_eprobedesc_t) + 17534 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 17535 17536 buf = kmem_alloc(size, KM_SLEEP); 17537 dest = (uintptr_t)buf; 17538 17539 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 17540 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 17541 17542 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17543 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17544 continue; 17545 17546 if (nrecs-- == 0) 17547 break; 17548 17549 bcopy(&act->dta_rec, (void *)dest, 17550 sizeof (dtrace_recdesc_t)); 17551 dest += sizeof (dtrace_recdesc_t); 17552 } 17553 17554 mutex_exit(&dtrace_lock); 17555 17556 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17557 kmem_free(buf, size); 17558 return (EFAULT); 17559 } 17560 17561 kmem_free(buf, size); 17562 return (0); 17563 } 17564 17565 case DTRACEIOC_AGGDESC: { 17566 dtrace_aggdesc_t aggdesc; 17567 dtrace_action_t *act; 17568 dtrace_aggregation_t *agg; 17569 int nrecs; 17570 uint32_t offs; 17571 dtrace_recdesc_t *lrec; 17572 void *buf; 17573 size_t size; 17574 uintptr_t dest; 17575 17576 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 17577 return (EFAULT); 17578 17579 mutex_enter(&dtrace_lock); 17580 17581 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 17582 mutex_exit(&dtrace_lock); 17583 return (EINVAL); 17584 } 17585 17586 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 17587 17588 nrecs = aggdesc.dtagd_nrecs; 17589 aggdesc.dtagd_nrecs = 0; 17590 17591 offs = agg->dtag_base; 17592 lrec = &agg->dtag_action.dta_rec; 17593 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 17594 17595 for (act = agg->dtag_first; ; act = act->dta_next) { 17596 ASSERT(act->dta_intuple || 17597 DTRACEACT_ISAGG(act->dta_kind)); 17598 17599 /* 17600 * If this action has a record size of zero, it 17601 * denotes an argument to the aggregating action. 17602 * Because the presence of this record doesn't (or 17603 * shouldn't) affect the way the data is interpreted, 17604 * we don't copy it out to save user-level the 17605 * confusion of dealing with a zero-length record. 17606 */ 17607 if (act->dta_rec.dtrd_size == 0) { 17608 ASSERT(agg->dtag_hasarg); 17609 continue; 17610 } 17611 17612 aggdesc.dtagd_nrecs++; 17613 17614 if (act == &agg->dtag_action) 17615 break; 17616 } 17617 17618 /* 17619 * Now that we have the size, we need to allocate a temporary 17620 * buffer in which to store the complete description. We need 17621 * the temporary buffer to be able to drop dtrace_lock() 17622 * across the copyout(), below. 17623 */ 17624 size = sizeof (dtrace_aggdesc_t) + 17625 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 17626 17627 buf = kmem_alloc(size, KM_SLEEP); 17628 dest = (uintptr_t)buf; 17629 17630 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 17631 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 17632 17633 for (act = agg->dtag_first; ; act = act->dta_next) { 17634 dtrace_recdesc_t rec = act->dta_rec; 17635 17636 /* 17637 * See the comment in the above loop for why we pass 17638 * over zero-length records. 17639 */ 17640 if (rec.dtrd_size == 0) { 17641 ASSERT(agg->dtag_hasarg); 17642 continue; 17643 } 17644 17645 if (nrecs-- == 0) 17646 break; 17647 17648 rec.dtrd_offset -= offs; 17649 bcopy(&rec, (void *)dest, sizeof (rec)); 17650 dest += sizeof (dtrace_recdesc_t); 17651 17652 if (act == &agg->dtag_action) 17653 break; 17654 } 17655 17656 mutex_exit(&dtrace_lock); 17657 17658 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17659 kmem_free(buf, size); 17660 return (EFAULT); 17661 } 17662 17663 kmem_free(buf, size); 17664 return (0); 17665 } 17666 17667 case DTRACEIOC_ENABLE: { 17668 dof_hdr_t *dof; 17669 dtrace_enabling_t *enab = NULL; 17670 dtrace_vstate_t *vstate; 17671 int err = 0; 17672 17673 *rv = 0; 17674 17675 /* 17676 * If a NULL argument has been passed, we take this as our 17677 * cue to reevaluate our enablings. 17678 */ 17679 if (arg == NULL) { 17680 dtrace_enabling_matchall(); 17681 17682 return (0); 17683 } 17684 17685 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 17686 return (rval); 17687 17688 mutex_enter(&cpu_lock); 17689 mutex_enter(&dtrace_lock); 17690 vstate = &state->dts_vstate; 17691 17692 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 17693 mutex_exit(&dtrace_lock); 17694 mutex_exit(&cpu_lock); 17695 dtrace_dof_destroy(dof); 17696 return (EBUSY); 17697 } 17698 17699 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 17700 mutex_exit(&dtrace_lock); 17701 mutex_exit(&cpu_lock); 17702 dtrace_dof_destroy(dof); 17703 return (EINVAL); 17704 } 17705 17706 if ((rval = dtrace_dof_options(dof, state)) != 0) { 17707 dtrace_enabling_destroy(enab); 17708 mutex_exit(&dtrace_lock); 17709 mutex_exit(&cpu_lock); 17710 dtrace_dof_destroy(dof); 17711 return (rval); 17712 } 17713 17714 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 17715 err = dtrace_enabling_retain(enab); 17716 } else { 17717 dtrace_enabling_destroy(enab); 17718 } 17719 17720 mutex_exit(&cpu_lock); 17721 mutex_exit(&dtrace_lock); 17722 dtrace_dof_destroy(dof); 17723 17724 return (err); 17725 } 17726 17727 case DTRACEIOC_REPLICATE: { 17728 dtrace_repldesc_t desc; 17729 dtrace_probedesc_t *match = &desc.dtrpd_match; 17730 dtrace_probedesc_t *create = &desc.dtrpd_create; 17731 int err; 17732 17733 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17734 return (EFAULT); 17735 17736 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17737 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17738 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17739 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17740 17741 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17742 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17743 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17744 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17745 17746 mutex_enter(&dtrace_lock); 17747 err = dtrace_enabling_replicate(state, match, create); 17748 mutex_exit(&dtrace_lock); 17749 17750 return (err); 17751 } 17752 17753 case DTRACEIOC_PROBEMATCH: 17754 case DTRACEIOC_PROBES: { 17755 dtrace_probe_t *probe = NULL; 17756 dtrace_probedesc_t desc; 17757 dtrace_probekey_t pkey; 17758 dtrace_id_t i; 17759 int m = 0; 17760 uint32_t priv; 17761 uid_t uid; 17762 zoneid_t zoneid; 17763 17764 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17765 return (EFAULT); 17766 17767 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17768 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17769 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17770 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17771 17772 /* 17773 * Before we attempt to match this probe, we want to give 17774 * all providers the opportunity to provide it. 17775 */ 17776 if (desc.dtpd_id == DTRACE_IDNONE) { 17777 mutex_enter(&dtrace_provider_lock); 17778 dtrace_probe_provide(&desc, NULL); 17779 mutex_exit(&dtrace_provider_lock); 17780 desc.dtpd_id++; 17781 } 17782 17783 if (cmd == DTRACEIOC_PROBEMATCH) { 17784 dtrace_probekey(&desc, &pkey); 17785 pkey.dtpk_id = DTRACE_IDNONE; 17786 } 17787 17788 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 17789 17790 mutex_enter(&dtrace_lock); 17791 17792 if (cmd == DTRACEIOC_PROBEMATCH) { 17793 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17794 if ((probe = dtrace_probes[i - 1]) != NULL && 17795 (m = dtrace_match_probe(probe, &pkey, 17796 priv, uid, zoneid)) != 0) 17797 break; 17798 } 17799 17800 if (m < 0) { 17801 mutex_exit(&dtrace_lock); 17802 return (EINVAL); 17803 } 17804 17805 } else { 17806 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17807 if ((probe = dtrace_probes[i - 1]) != NULL && 17808 dtrace_match_priv(probe, priv, uid, zoneid)) 17809 break; 17810 } 17811 } 17812 17813 if (probe == NULL) { 17814 mutex_exit(&dtrace_lock); 17815 return (ESRCH); 17816 } 17817 17818 dtrace_probe_description(probe, &desc); 17819 mutex_exit(&dtrace_lock); 17820 17821 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17822 return (EFAULT); 17823 17824 return (0); 17825 } 17826 17827 case DTRACEIOC_PROBEARG: { 17828 dtrace_argdesc_t desc; 17829 dtrace_probe_t *probe; 17830 dtrace_provider_t *prov; 17831 17832 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17833 return (EFAULT); 17834 17835 if (desc.dtargd_id == DTRACE_IDNONE) 17836 return (EINVAL); 17837 17838 if (desc.dtargd_ndx == DTRACE_ARGNONE) 17839 return (EINVAL); 17840 17841 mutex_enter(&dtrace_provider_lock); 17842 mutex_enter(&mod_lock); 17843 mutex_enter(&dtrace_lock); 17844 17845 if (desc.dtargd_id > dtrace_nprobes) { 17846 mutex_exit(&dtrace_lock); 17847 mutex_exit(&mod_lock); 17848 mutex_exit(&dtrace_provider_lock); 17849 return (EINVAL); 17850 } 17851 17852 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 17853 mutex_exit(&dtrace_lock); 17854 mutex_exit(&mod_lock); 17855 mutex_exit(&dtrace_provider_lock); 17856 return (EINVAL); 17857 } 17858 17859 mutex_exit(&dtrace_lock); 17860 17861 prov = probe->dtpr_provider; 17862 17863 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 17864 /* 17865 * There isn't any typed information for this probe. 17866 * Set the argument number to DTRACE_ARGNONE. 17867 */ 17868 desc.dtargd_ndx = DTRACE_ARGNONE; 17869 } else { 17870 desc.dtargd_native[0] = '\0'; 17871 desc.dtargd_xlate[0] = '\0'; 17872 desc.dtargd_mapping = desc.dtargd_ndx; 17873 17874 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 17875 probe->dtpr_id, probe->dtpr_arg, &desc); 17876 } 17877 17878 mutex_exit(&mod_lock); 17879 mutex_exit(&dtrace_provider_lock); 17880 17881 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17882 return (EFAULT); 17883 17884 return (0); 17885 } 17886 17887 case DTRACEIOC_GO: { 17888 processorid_t cpuid; 17889 rval = dtrace_state_go(state, &cpuid); 17890 17891 if (rval != 0) 17892 return (rval); 17893 17894 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17895 return (EFAULT); 17896 17897 return (0); 17898 } 17899 17900 case DTRACEIOC_STOP: { 17901 processorid_t cpuid; 17902 17903 mutex_enter(&dtrace_lock); 17904 rval = dtrace_state_stop(state, &cpuid); 17905 mutex_exit(&dtrace_lock); 17906 17907 if (rval != 0) 17908 return (rval); 17909 17910 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17911 return (EFAULT); 17912 17913 return (0); 17914 } 17915 17916 case DTRACEIOC_DOFGET: { 17917 dof_hdr_t hdr, *dof; 17918 uint64_t len; 17919 17920 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 17921 return (EFAULT); 17922 17923 mutex_enter(&dtrace_lock); 17924 dof = dtrace_dof_create(state); 17925 mutex_exit(&dtrace_lock); 17926 17927 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 17928 rval = copyout(dof, (void *)arg, len); 17929 dtrace_dof_destroy(dof); 17930 17931 return (rval == 0 ? 0 : EFAULT); 17932 } 17933 17934 case DTRACEIOC_AGGSNAP: 17935 case DTRACEIOC_BUFSNAP: { 17936 dtrace_bufdesc_t desc; 17937 caddr_t cached; 17938 dtrace_buffer_t *buf; 17939 17940 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17941 return (EFAULT); 17942 17943 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 17944 return (EINVAL); 17945 17946 mutex_enter(&dtrace_lock); 17947 17948 if (cmd == DTRACEIOC_BUFSNAP) { 17949 buf = &state->dts_buffer[desc.dtbd_cpu]; 17950 } else { 17951 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 17952 } 17953 17954 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 17955 size_t sz = buf->dtb_offset; 17956 17957 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 17958 mutex_exit(&dtrace_lock); 17959 return (EBUSY); 17960 } 17961 17962 /* 17963 * If this buffer has already been consumed, we're 17964 * going to indicate that there's nothing left here 17965 * to consume. 17966 */ 17967 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 17968 mutex_exit(&dtrace_lock); 17969 17970 desc.dtbd_size = 0; 17971 desc.dtbd_drops = 0; 17972 desc.dtbd_errors = 0; 17973 desc.dtbd_oldest = 0; 17974 sz = sizeof (desc); 17975 17976 if (copyout(&desc, (void *)arg, sz) != 0) 17977 return (EFAULT); 17978 17979 return (0); 17980 } 17981 17982 /* 17983 * If this is a ring buffer that has wrapped, we want 17984 * to copy the whole thing out. 17985 */ 17986 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 17987 dtrace_buffer_polish(buf); 17988 sz = buf->dtb_size; 17989 } 17990 17991 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 17992 mutex_exit(&dtrace_lock); 17993 return (EFAULT); 17994 } 17995 17996 desc.dtbd_size = sz; 17997 desc.dtbd_drops = buf->dtb_drops; 17998 desc.dtbd_errors = buf->dtb_errors; 17999 desc.dtbd_oldest = buf->dtb_xamot_offset; 18000 desc.dtbd_timestamp = dtrace_gethrtime(); 18001 18002 mutex_exit(&dtrace_lock); 18003 18004 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18005 return (EFAULT); 18006 18007 buf->dtb_flags |= DTRACEBUF_CONSUMED; 18008 18009 return (0); 18010 } 18011 18012 if (buf->dtb_tomax == NULL) { 18013 ASSERT(buf->dtb_xamot == NULL); 18014 mutex_exit(&dtrace_lock); 18015 return (ENOENT); 18016 } 18017 18018 cached = buf->dtb_tomax; 18019 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 18020 18021 dtrace_xcall(desc.dtbd_cpu, 18022 (dtrace_xcall_t)dtrace_buffer_switch, buf); 18023 18024 state->dts_errors += buf->dtb_xamot_errors; 18025 18026 /* 18027 * If the buffers did not actually switch, then the cross call 18028 * did not take place -- presumably because the given CPU is 18029 * not in the ready set. If this is the case, we'll return 18030 * ENOENT. 18031 */ 18032 if (buf->dtb_tomax == cached) { 18033 ASSERT(buf->dtb_xamot != cached); 18034 mutex_exit(&dtrace_lock); 18035 return (ENOENT); 18036 } 18037 18038 ASSERT(cached == buf->dtb_xamot); 18039 18040 /* 18041 * We have our snapshot; now copy it out. 18042 */ 18043 if (copyout(buf->dtb_xamot, desc.dtbd_data, 18044 buf->dtb_xamot_offset) != 0) { 18045 mutex_exit(&dtrace_lock); 18046 return (EFAULT); 18047 } 18048 18049 desc.dtbd_size = buf->dtb_xamot_offset; 18050 desc.dtbd_drops = buf->dtb_xamot_drops; 18051 desc.dtbd_errors = buf->dtb_xamot_errors; 18052 desc.dtbd_oldest = 0; 18053 desc.dtbd_timestamp = buf->dtb_switched; 18054 18055 mutex_exit(&dtrace_lock); 18056 18057 /* 18058 * Finally, copy out the buffer description. 18059 */ 18060 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18061 return (EFAULT); 18062 18063 return (0); 18064 } 18065 18066 case DTRACEIOC_CONF: { 18067 dtrace_conf_t conf; 18068 18069 bzero(&conf, sizeof (conf)); 18070 conf.dtc_difversion = DIF_VERSION; 18071 conf.dtc_difintregs = DIF_DIR_NREGS; 18072 conf.dtc_diftupregs = DIF_DTR_NREGS; 18073 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 18074 18075 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 18076 return (EFAULT); 18077 18078 return (0); 18079 } 18080 18081 case DTRACEIOC_STATUS: { 18082 dtrace_status_t stat; 18083 dtrace_dstate_t *dstate; 18084 int i, j; 18085 uint64_t nerrs; 18086 18087 /* 18088 * See the comment in dtrace_state_deadman() for the reason 18089 * for setting dts_laststatus to INT64_MAX before setting 18090 * it to the correct value. 18091 */ 18092 state->dts_laststatus = INT64_MAX; 18093 dtrace_membar_producer(); 18094 state->dts_laststatus = dtrace_gethrtime(); 18095 18096 bzero(&stat, sizeof (stat)); 18097 18098 mutex_enter(&dtrace_lock); 18099 18100 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 18101 mutex_exit(&dtrace_lock); 18102 return (ENOENT); 18103 } 18104 18105 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 18106 stat.dtst_exiting = 1; 18107 18108 nerrs = state->dts_errors; 18109 dstate = &state->dts_vstate.dtvs_dynvars; 18110 18111 for (i = 0; i < NCPU; i++) { 18112 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 18113 18114 stat.dtst_dyndrops += dcpu->dtdsc_drops; 18115 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 18116 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 18117 18118 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 18119 stat.dtst_filled++; 18120 18121 nerrs += state->dts_buffer[i].dtb_errors; 18122 18123 for (j = 0; j < state->dts_nspeculations; j++) { 18124 dtrace_speculation_t *spec; 18125 dtrace_buffer_t *buf; 18126 18127 spec = &state->dts_speculations[j]; 18128 buf = &spec->dtsp_buffer[i]; 18129 stat.dtst_specdrops += buf->dtb_xamot_drops; 18130 } 18131 } 18132 18133 stat.dtst_specdrops_busy = state->dts_speculations_busy; 18134 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 18135 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 18136 stat.dtst_dblerrors = state->dts_dblerrors; 18137 stat.dtst_killed = 18138 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 18139 stat.dtst_errors = nerrs; 18140 18141 mutex_exit(&dtrace_lock); 18142 18143 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 18144 return (EFAULT); 18145 18146 return (0); 18147 } 18148 18149 case DTRACEIOC_FORMAT: { 18150 dtrace_fmtdesc_t fmt; 18151 char *str; 18152 int len; 18153 18154 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 18155 return (EFAULT); 18156 18157 mutex_enter(&dtrace_lock); 18158 18159 if (fmt.dtfd_format == 0 || 18160 fmt.dtfd_format > state->dts_nformats) { 18161 mutex_exit(&dtrace_lock); 18162 return (EINVAL); 18163 } 18164 18165 /* 18166 * Format strings are allocated contiguously and they are 18167 * never freed; if a format index is less than the number 18168 * of formats, we can assert that the format map is non-NULL 18169 * and that the format for the specified index is non-NULL. 18170 */ 18171 ASSERT(state->dts_formats != NULL); 18172 str = state->dts_formats[fmt.dtfd_format - 1]; 18173 ASSERT(str != NULL); 18174 18175 len = strlen(str) + 1; 18176 18177 if (len > fmt.dtfd_length) { 18178 fmt.dtfd_length = len; 18179 18180 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 18181 mutex_exit(&dtrace_lock); 18182 return (EINVAL); 18183 } 18184 } else { 18185 if (copyout(str, fmt.dtfd_string, len) != 0) { 18186 mutex_exit(&dtrace_lock); 18187 return (EINVAL); 18188 } 18189 } 18190 18191 mutex_exit(&dtrace_lock); 18192 return (0); 18193 } 18194 18195 default: 18196 break; 18197 } 18198 18199 return (ENOTTY); 18200 } 18201 18202 /*ARGSUSED*/ 18203 static int 18204 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 18205 { 18206 dtrace_state_t *state; 18207 18208 switch (cmd) { 18209 case DDI_DETACH: 18210 break; 18211 18212 case DDI_SUSPEND: 18213 return (DDI_SUCCESS); 18214 18215 default: 18216 return (DDI_FAILURE); 18217 } 18218 18219 mutex_enter(&cpu_lock); 18220 mutex_enter(&dtrace_provider_lock); 18221 mutex_enter(&dtrace_lock); 18222 18223 ASSERT(dtrace_opens == 0); 18224 18225 if (dtrace_helpers > 0) { 18226 mutex_exit(&dtrace_provider_lock); 18227 mutex_exit(&dtrace_lock); 18228 mutex_exit(&cpu_lock); 18229 return (DDI_FAILURE); 18230 } 18231 18232 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 18233 mutex_exit(&dtrace_provider_lock); 18234 mutex_exit(&dtrace_lock); 18235 mutex_exit(&cpu_lock); 18236 return (DDI_FAILURE); 18237 } 18238 18239 dtrace_provider = NULL; 18240 18241 if ((state = dtrace_anon_grab()) != NULL) { 18242 /* 18243 * If there were ECBs on this state, the provider should 18244 * have not been allowed to detach; assert that there is 18245 * none. 18246 */ 18247 ASSERT(state->dts_necbs == 0); 18248 dtrace_state_destroy(state); 18249 18250 /* 18251 * If we're being detached with anonymous state, we need to 18252 * indicate to the kernel debugger that DTrace is now inactive. 18253 */ 18254 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 18255 } 18256 18257 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 18258 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 18259 dtrace_cpu_init = NULL; 18260 dtrace_helpers_cleanup = NULL; 18261 dtrace_helpers_fork = NULL; 18262 dtrace_cpustart_init = NULL; 18263 dtrace_cpustart_fini = NULL; 18264 dtrace_debugger_init = NULL; 18265 dtrace_debugger_fini = NULL; 18266 dtrace_modload = NULL; 18267 dtrace_modunload = NULL; 18268 18269 ASSERT(dtrace_getf == 0); 18270 ASSERT(dtrace_closef == NULL); 18271 18272 mutex_exit(&cpu_lock); 18273 18274 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 18275 dtrace_probes = NULL; 18276 dtrace_nprobes = 0; 18277 18278 dtrace_hash_destroy(dtrace_bymod); 18279 dtrace_hash_destroy(dtrace_byfunc); 18280 dtrace_hash_destroy(dtrace_byname); 18281 dtrace_bymod = NULL; 18282 dtrace_byfunc = NULL; 18283 dtrace_byname = NULL; 18284 18285 kmem_cache_destroy(dtrace_state_cache); 18286 vmem_destroy(dtrace_minor); 18287 vmem_destroy(dtrace_arena); 18288 18289 if (dtrace_toxrange != NULL) { 18290 kmem_free(dtrace_toxrange, 18291 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 18292 dtrace_toxrange = NULL; 18293 dtrace_toxranges = 0; 18294 dtrace_toxranges_max = 0; 18295 } 18296 18297 ddi_remove_minor_node(dtrace_devi, NULL); 18298 dtrace_devi = NULL; 18299 18300 ddi_soft_state_fini(&dtrace_softstate); 18301 18302 ASSERT(dtrace_vtime_references == 0); 18303 ASSERT(dtrace_opens == 0); 18304 ASSERT(dtrace_retained == NULL); 18305 18306 mutex_exit(&dtrace_lock); 18307 mutex_exit(&dtrace_provider_lock); 18308 18309 /* 18310 * We don't destroy the task queue until after we have dropped our 18311 * locks (taskq_destroy() may block on running tasks). To prevent 18312 * attempting to do work after we have effectively detached but before 18313 * the task queue has been destroyed, all tasks dispatched via the 18314 * task queue must check that DTrace is still attached before 18315 * performing any operation. 18316 */ 18317 taskq_destroy(dtrace_taskq); 18318 dtrace_taskq = NULL; 18319 18320 return (DDI_SUCCESS); 18321 } 18322 #endif 18323 18324 #ifdef illumos 18325 /*ARGSUSED*/ 18326 static int 18327 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 18328 { 18329 int error; 18330 18331 switch (infocmd) { 18332 case DDI_INFO_DEVT2DEVINFO: 18333 *result = (void *)dtrace_devi; 18334 error = DDI_SUCCESS; 18335 break; 18336 case DDI_INFO_DEVT2INSTANCE: 18337 *result = (void *)0; 18338 error = DDI_SUCCESS; 18339 break; 18340 default: 18341 error = DDI_FAILURE; 18342 } 18343 return (error); 18344 } 18345 #endif 18346 18347 #ifdef illumos 18348 static struct cb_ops dtrace_cb_ops = { 18349 dtrace_open, /* open */ 18350 dtrace_close, /* close */ 18351 nulldev, /* strategy */ 18352 nulldev, /* print */ 18353 nodev, /* dump */ 18354 nodev, /* read */ 18355 nodev, /* write */ 18356 dtrace_ioctl, /* ioctl */ 18357 nodev, /* devmap */ 18358 nodev, /* mmap */ 18359 nodev, /* segmap */ 18360 nochpoll, /* poll */ 18361 ddi_prop_op, /* cb_prop_op */ 18362 0, /* streamtab */ 18363 D_NEW | D_MP /* Driver compatibility flag */ 18364 }; 18365 18366 static struct dev_ops dtrace_ops = { 18367 DEVO_REV, /* devo_rev */ 18368 0, /* refcnt */ 18369 dtrace_info, /* get_dev_info */ 18370 nulldev, /* identify */ 18371 nulldev, /* probe */ 18372 dtrace_attach, /* attach */ 18373 dtrace_detach, /* detach */ 18374 nodev, /* reset */ 18375 &dtrace_cb_ops, /* driver operations */ 18376 NULL, /* bus operations */ 18377 nodev /* dev power */ 18378 }; 18379 18380 static struct modldrv modldrv = { 18381 &mod_driverops, /* module type (this is a pseudo driver) */ 18382 "Dynamic Tracing", /* name of module */ 18383 &dtrace_ops, /* driver ops */ 18384 }; 18385 18386 static struct modlinkage modlinkage = { 18387 MODREV_1, 18388 (void *)&modldrv, 18389 NULL 18390 }; 18391 18392 int 18393 _init(void) 18394 { 18395 return (mod_install(&modlinkage)); 18396 } 18397 18398 int 18399 _info(struct modinfo *modinfop) 18400 { 18401 return (mod_info(&modlinkage, modinfop)); 18402 } 18403 18404 int 18405 _fini(void) 18406 { 18407 return (mod_remove(&modlinkage)); 18408 } 18409 #else 18410 18411 static d_ioctl_t dtrace_ioctl; 18412 static d_ioctl_t dtrace_ioctl_helper; 18413 static void dtrace_load(void *); 18414 static int dtrace_unload(void); 18415 static struct cdev *dtrace_dev; 18416 static struct cdev *helper_dev; 18417 18418 void dtrace_invop_init(void); 18419 void dtrace_invop_uninit(void); 18420 18421 static struct cdevsw dtrace_cdevsw = { 18422 .d_version = D_VERSION, 18423 .d_ioctl = dtrace_ioctl, 18424 .d_open = dtrace_open, 18425 .d_name = "dtrace", 18426 }; 18427 18428 static struct cdevsw helper_cdevsw = { 18429 .d_version = D_VERSION, 18430 .d_ioctl = dtrace_ioctl_helper, 18431 .d_name = "helper", 18432 }; 18433 18434 #include <dtrace_anon.c> 18435 #include <dtrace_ioctl.c> 18436 #include <dtrace_load.c> 18437 #include <dtrace_modevent.c> 18438 #include <dtrace_sysctl.c> 18439 #include <dtrace_unload.c> 18440 #include <dtrace_vtime.c> 18441 #include <dtrace_hacks.c> 18442 18443 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL); 18444 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL); 18445 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL); 18446 18447 DEV_MODULE(dtrace, dtrace_modevent, NULL); 18448 MODULE_VERSION(dtrace, 1); 18449 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); 18450 #endif 18451