xref: /netbsd-src/external/cddl/osnet/dist/uts/common/sys/dtrace_impl.h (revision ba2539a9805a0544ff82c0003cc02fe1eee5603d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD: head/sys/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h 313176 2017-02-03 22:26:19Z gnn $
22  */
23 
24 /*
25  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 /*
30  * Copyright 2016 Joyent, Inc.
31  * Copyright (c) 2012 by Delphix. All rights reserved.
32  */
33 
34 #ifndef _SYS_DTRACE_IMPL_H
35 #define	_SYS_DTRACE_IMPL_H
36 
37 #ifdef	__cplusplus
38 extern "C" {
39 #endif
40 
41 /*
42  * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces
43  *
44  * Note: The contents of this file are private to the implementation of the
45  * Solaris system and DTrace subsystem and are subject to change at any time
46  * without notice.  Applications and drivers using these interfaces will fail
47  * to run on future releases.  These interfaces should not be used for any
48  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
49  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
50  */
51 
52 #include <sys/dtrace.h>
53 
54 #ifndef illumos
55 #ifdef __sparcv9
56 typedef uint32_t		pc_t;
57 #else
58 typedef uintptr_t		pc_t;
59 #endif
60 typedef	u_long			greg_t;
61 #endif
62 
63 /*
64  * DTrace Implementation Constants and Typedefs
65  */
66 #define	DTRACE_MAXPROPLEN		128
67 #define	DTRACE_DYNVAR_CHUNKSIZE		256
68 
69 #ifdef __FreeBSD__
70 #define	NCPU		MAXCPU
71 #endif /* __FreeBSD__ */
72 #ifdef __NetBSD__
73 #define	NCPU		MAXCPUS
74 #endif /* __NetBSD__ */
75 
76 struct dtrace_probe;
77 struct dtrace_ecb;
78 struct dtrace_predicate;
79 struct dtrace_action;
80 struct dtrace_provider;
81 struct dtrace_state;
82 
83 typedef struct dtrace_probe dtrace_probe_t;
84 typedef struct dtrace_ecb dtrace_ecb_t;
85 typedef struct dtrace_predicate dtrace_predicate_t;
86 typedef struct dtrace_action dtrace_action_t;
87 typedef struct dtrace_provider dtrace_provider_t;
88 typedef struct dtrace_meta dtrace_meta_t;
89 typedef struct dtrace_state dtrace_state_t;
90 typedef uint32_t dtrace_optid_t;
91 typedef uint32_t dtrace_specid_t;
92 typedef uint64_t dtrace_genid_t;
93 
94 /*
95  * DTrace Probes
96  *
97  * The probe is the fundamental unit of the DTrace architecture.  Probes are
98  * created by DTrace providers, and managed by the DTrace framework.  A probe
99  * is identified by a unique <provider, module, function, name> tuple, and has
100  * a unique probe identifier assigned to it.  (Some probes are not associated
101  * with a specific point in text; these are called _unanchored probes_ and have
102  * no module or function associated with them.)  Probes are represented as a
103  * dtrace_probe structure.  To allow quick lookups based on each element of the
104  * probe tuple, probes are hashed by each of provider, module, function and
105  * name.  (If a lookup is performed based on a regular expression, a
106  * dtrace_probekey is prepared, and a linear search is performed.) Each probe
107  * is additionally pointed to by a linear array indexed by its identifier.  The
108  * identifier is the provider's mechanism for indicating to the DTrace
109  * framework that a probe has fired:  the identifier is passed as the first
110  * argument to dtrace_probe(), where it is then mapped into the corresponding
111  * dtrace_probe structure.  From the dtrace_probe structure, dtrace_probe() can
112  * iterate over the probe's list of enabling control blocks; see "DTrace
113  * Enabling Control Blocks", below.)
114  */
115 struct dtrace_probe {
116 	dtrace_id_t dtpr_id;			/* probe identifier */
117 	dtrace_ecb_t *dtpr_ecb;			/* ECB list; see below */
118 	dtrace_ecb_t *dtpr_ecb_last;		/* last ECB in list */
119 	void *dtpr_arg;				/* provider argument */
120 	dtrace_cacheid_t dtpr_predcache;	/* predicate cache ID */
121 	int dtpr_aframes;			/* artificial frames */
122 	dtrace_provider_t *dtpr_provider;	/* pointer to provider */
123 	char *dtpr_mod;				/* probe's module name */
124 	char *dtpr_func;			/* probe's function name */
125 	char *dtpr_name;			/* probe's name */
126 	dtrace_probe_t *dtpr_nextmod;		/* next in module hash */
127 	dtrace_probe_t *dtpr_prevmod;		/* previous in module hash */
128 	dtrace_probe_t *dtpr_nextfunc;		/* next in function hash */
129 	dtrace_probe_t *dtpr_prevfunc;		/* previous in function hash */
130 	dtrace_probe_t *dtpr_nextname;		/* next in name hash */
131 	dtrace_probe_t *dtpr_prevname;		/* previous in name hash */
132 	dtrace_genid_t dtpr_gen;		/* probe generation ID */
133 };
134 
135 typedef int dtrace_probekey_f(const char *, const char *, int);
136 
137 typedef struct dtrace_probekey {
138 	char *dtpk_prov;			/* provider name to match */
139 	dtrace_probekey_f *dtpk_pmatch;		/* provider matching function */
140 	char *dtpk_mod;				/* module name to match */
141 	dtrace_probekey_f *dtpk_mmatch;		/* module matching function */
142 	char *dtpk_func;			/* func name to match */
143 	dtrace_probekey_f *dtpk_fmatch;		/* func matching function */
144 	char *dtpk_name;			/* name to match */
145 	dtrace_probekey_f *dtpk_nmatch;		/* name matching function */
146 	dtrace_id_t dtpk_id;			/* identifier to match */
147 } dtrace_probekey_t;
148 
149 typedef struct dtrace_hashbucket {
150 	struct dtrace_hashbucket *dthb_next;	/* next on hash chain */
151 	dtrace_probe_t *dthb_chain;		/* chain of probes */
152 	int dthb_len;				/* number of probes here */
153 } dtrace_hashbucket_t;
154 
155 typedef struct dtrace_hash {
156 	dtrace_hashbucket_t **dth_tab;		/* hash table */
157 	int dth_size;				/* size of hash table */
158 	int dth_mask;				/* mask to index into table */
159 	int dth_nbuckets;			/* total number of buckets */
160 	uintptr_t dth_nextoffs;			/* offset of next in probe */
161 	uintptr_t dth_prevoffs;			/* offset of prev in probe */
162 	uintptr_t dth_stroffs;			/* offset of str in probe */
163 } dtrace_hash_t;
164 
165 /*
166  * DTrace Enabling Control Blocks
167  *
168  * When a provider wishes to fire a probe, it calls into dtrace_probe(),
169  * passing the probe identifier as the first argument.  As described above,
170  * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t
171  * structure.  This structure contains information about the probe, and a
172  * pointer to the list of Enabling Control Blocks (ECBs).  Each ECB points to
173  * DTrace consumer state, and contains an optional predicate, and a list of
174  * actions.  (Shown schematically below.)  The ECB abstraction allows a single
175  * probe to be multiplexed across disjoint consumers, or across disjoint
176  * enablings of a single probe within one consumer.
177  *
178  *   Enabling Control Block
179  *        dtrace_ecb_t
180  * +------------------------+
181  * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID)
182  * | dtrace_state_t * ------+--------------> State associated with this ECB
183  * | dtrace_predicate_t * --+---------+
184  * | dtrace_action_t * -----+----+    |
185  * | dtrace_ecb_t * ---+    |    |    |       Predicate (if any)
186  * +-------------------+----+    |    |       dtrace_predicate_t
187  *                     |         |    +---> +--------------------+
188  *                     |         |          | dtrace_difo_t * ---+----> DIFO
189  *                     |         |          +--------------------+
190  *                     |         |
191  *            Next ECB |         |           Action
192  *            (if any) |         |       dtrace_action_t
193  *                     :         +--> +-------------------+
194  *                     :              | dtrace_actkind_t -+------> kind
195  *                     v              | dtrace_difo_t * --+------> DIFO (if any)
196  *                                    | dtrace_recdesc_t -+------> record descr.
197  *                                    | dtrace_action_t * +------+
198  *                                    +-------------------+      |
199  *                                                               | Next action
200  *                               +-------------------------------+  (if any)
201  *                               |
202  *                               |           Action
203  *                               |       dtrace_action_t
204  *                               +--> +-------------------+
205  *                                    | dtrace_actkind_t -+------> kind
206  *                                    | dtrace_difo_t * --+------> DIFO (if any)
207  *                                    | dtrace_action_t * +------+
208  *                                    +-------------------+      |
209  *                                                               | Next action
210  *                               +-------------------------------+  (if any)
211  *                               |
212  *                               :
213  *                               v
214  *
215  *
216  * dtrace_probe() iterates over the ECB list.  If the ECB needs less space
217  * than is available in the principal buffer, the ECB is processed:  if the
218  * predicate is non-NULL, the DIF object is executed.  If the result is
219  * non-zero, the action list is processed, with each action being executed
220  * accordingly.  When the action list has been completely executed, processing
221  * advances to the next ECB. The ECB abstraction allows disjoint consumers
222  * to multiplex on single probes.
223  *
224  * Execution of the ECB results in consuming dte_size bytes in the buffer
225  * to record data.  During execution, dte_needed bytes must be available in
226  * the buffer.  This space is used for both recorded data and tuple data.
227  */
228 struct dtrace_ecb {
229 	dtrace_epid_t dte_epid;			/* enabled probe ID */
230 	uint32_t dte_alignment;			/* required alignment */
231 	size_t dte_needed;			/* space needed for execution */
232 	size_t dte_size;			/* size of recorded payload */
233 	dtrace_predicate_t *dte_predicate;	/* predicate, if any */
234 	dtrace_action_t *dte_action;		/* actions, if any */
235 	dtrace_ecb_t *dte_next;			/* next ECB on probe */
236 	dtrace_state_t *dte_state;		/* pointer to state */
237 	uint32_t dte_cond;			/* security condition */
238 	dtrace_probe_t *dte_probe;		/* pointer to probe */
239 	dtrace_action_t *dte_action_last;	/* last action on ECB */
240 	uint64_t dte_uarg;			/* library argument */
241 };
242 
243 struct dtrace_predicate {
244 	dtrace_difo_t *dtp_difo;		/* DIF object */
245 	dtrace_cacheid_t dtp_cacheid;		/* cache identifier */
246 	int dtp_refcnt;				/* reference count */
247 };
248 
249 struct dtrace_action {
250 	dtrace_actkind_t dta_kind;		/* kind of action */
251 	uint16_t dta_intuple;			/* boolean:  in aggregation */
252 	uint32_t dta_refcnt;			/* reference count */
253 	dtrace_difo_t *dta_difo;		/* pointer to DIFO */
254 	dtrace_recdesc_t dta_rec;		/* record description */
255 	dtrace_action_t *dta_prev;		/* previous action */
256 	dtrace_action_t *dta_next;		/* next action */
257 };
258 
259 typedef struct dtrace_aggregation {
260 	dtrace_action_t dtag_action;		/* action; must be first */
261 	dtrace_aggid_t dtag_id;			/* identifier */
262 	dtrace_ecb_t *dtag_ecb;			/* corresponding ECB */
263 	dtrace_action_t *dtag_first;		/* first action in tuple */
264 	uint32_t dtag_base;			/* base of aggregation */
265 	uint8_t dtag_hasarg;			/* boolean:  has argument */
266 	uint64_t dtag_initial;			/* initial value */
267 	void (*dtag_aggregate)(uint64_t *, uint64_t, uint64_t);
268 } dtrace_aggregation_t;
269 
270 /*
271  * DTrace Buffers
272  *
273  * Principal buffers, aggregation buffers, and speculative buffers are all
274  * managed with the dtrace_buffer structure.  By default, this structure
275  * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the
276  * active and passive buffers, respectively.  For speculative buffers,
277  * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point
278  * to a scratch buffer.  For all buffer types, the dtrace_buffer structure is
279  * always allocated on a per-CPU basis; a single dtrace_buffer structure is
280  * never shared among CPUs.  (That is, there is never true sharing of the
281  * dtrace_buffer structure; to prevent false sharing of the structure, it must
282  * always be aligned to the coherence granularity -- generally 64 bytes.)
283  *
284  * One of the critical design decisions of DTrace is that a given ECB always
285  * stores the same quantity and type of data.  This is done to assure that the
286  * only metadata required for an ECB's traced data is the EPID.  That is, from
287  * the EPID, the consumer can determine the data layout.  (The data buffer
288  * layout is shown schematically below.)  By assuring that one can determine
289  * data layout from the EPID, the metadata stream can be separated from the
290  * data stream -- simplifying the data stream enormously.  The ECB always
291  * proceeds the recorded data as part of the dtrace_rechdr_t structure that
292  * includes the EPID and a high-resolution timestamp used for output ordering
293  * consistency.
294  *
295  *      base of data buffer --->  +--------+--------------------+--------+
296  *                                | rechdr | data               | rechdr |
297  *                                +--------+------+--------+----+--------+
298  *                                | data          | rechdr | data        |
299  *                                +---------------+--------+-------------+
300  *                                | data, cont.                          |
301  *                                +--------+--------------------+--------+
302  *                                | rechdr | data               |        |
303  *                                +--------+--------------------+        |
304  *                                |                ||                    |
305  *                                |                ||                    |
306  *                                |                \/                    |
307  *                                :                                      :
308  *                                .                                      .
309  *                                .                                      .
310  *                                .                                      .
311  *                                :                                      :
312  *                                |                                      |
313  *     limit of data buffer --->  +--------------------------------------+
314  *
315  * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the
316  * principal buffer (both scratch and payload) exceed the available space.  If
317  * the ECB's needs exceed available space (and if the principal buffer policy
318  * is the default "switch" policy), the ECB is dropped, the buffer's drop count
319  * is incremented, and processing advances to the next ECB.  If the ECB's needs
320  * can be met with the available space, the ECB is processed, but the offset in
321  * the principal buffer is only advanced if the ECB completes processing
322  * without error.
323  *
324  * When a buffer is to be switched (either because the buffer is the principal
325  * buffer with a "switch" policy or because it is an aggregation buffer), a
326  * cross call is issued to the CPU associated with the buffer.  In the cross
327  * call context, interrupts are disabled, and the active and the inactive
328  * buffers are atomically switched.  This involves switching the data pointers,
329  * copying the various state fields (offset, drops, errors, etc.) into their
330  * inactive equivalents, and clearing the state fields.  Because interrupts are
331  * disabled during this procedure, the switch is guaranteed to appear atomic to
332  * dtrace_probe().
333  *
334  * DTrace Ring Buffering
335  *
336  * To process a ring buffer correctly, one must know the oldest valid record.
337  * Processing starts at the oldest record in the buffer and continues until
338  * the end of the buffer is reached.  Processing then resumes starting with
339  * the record stored at offset 0 in the buffer, and continues until the
340  * youngest record is processed.  If trace records are of a fixed-length,
341  * determining the oldest record is trivial:
342  *
343  *   - If the ring buffer has not wrapped, the oldest record is the record
344  *     stored at offset 0.
345  *
346  *   - If the ring buffer has wrapped, the oldest record is the record stored
347  *     at the current offset.
348  *
349  * With variable length records, however, just knowing the current offset
350  * doesn't suffice for determining the oldest valid record:  assuming that one
351  * allows for arbitrary data, one has no way of searching forward from the
352  * current offset to find the oldest valid record.  (That is, one has no way
353  * of separating data from metadata.) It would be possible to simply refuse to
354  * process any data in the ring buffer between the current offset and the
355  * limit, but this leaves (potentially) an enormous amount of otherwise valid
356  * data unprocessed.
357  *
358  * To effect ring buffering, we track two offsets in the buffer:  the current
359  * offset and the _wrapped_ offset.  If a request is made to reserve some
360  * amount of data, and the buffer has wrapped, the wrapped offset is
361  * incremented until the wrapped offset minus the current offset is greater
362  * than or equal to the reserve request.  This is done by repeatedly looking
363  * up the ECB corresponding to the EPID at the current wrapped offset, and
364  * incrementing the wrapped offset by the size of the data payload
365  * corresponding to that ECB.  If this offset is greater than or equal to the
366  * limit of the data buffer, the wrapped offset is set to 0.  Thus, the
367  * current offset effectively "chases" the wrapped offset around the buffer.
368  * Schematically:
369  *
370  *      base of data buffer --->  +------+--------------------+------+
371  *                                | EPID | data               | EPID |
372  *                                +------+--------+------+----+------+
373  *                                | data          | EPID | data      |
374  *                                +---------------+------+-----------+
375  *                                | data, cont.                      |
376  *                                +------+---------------------------+
377  *                                | EPID | data                      |
378  *           current offset --->  +------+---------------------------+
379  *                                | invalid data                     |
380  *           wrapped offset --->  +------+--------------------+------+
381  *                                | EPID | data               | EPID |
382  *                                +------+--------+------+----+------+
383  *                                | data          | EPID | data      |
384  *                                +---------------+------+-----------+
385  *                                :                                  :
386  *                                .                                  .
387  *                                .        ... valid data ...        .
388  *                                .                                  .
389  *                                :                                  :
390  *                                +------+-------------+------+------+
391  *                                | EPID | data        | EPID | data |
392  *                                +------+------------++------+------+
393  *                                | data, cont.       | leftover     |
394  *     limit of data buffer --->  +-------------------+--------------+
395  *
396  * If the amount of requested buffer space exceeds the amount of space
397  * available between the current offset and the end of the buffer:
398  *
399  *  (1)  all words in the data buffer between the current offset and the limit
400  *       of the data buffer (marked "leftover", above) are set to
401  *       DTRACE_EPIDNONE
402  *
403  *  (2)  the wrapped offset is set to zero
404  *
405  *  (3)  the iteration process described above occurs until the wrapped offset
406  *       is greater than the amount of desired space.
407  *
408  * The wrapped offset is implemented by (re-)using the inactive offset.
409  * In a "switch" buffer policy, the inactive offset stores the offset in
410  * the inactive buffer; in a "ring" buffer policy, it stores the wrapped
411  * offset.
412  *
413  * DTrace Scratch Buffering
414  *
415  * Some ECBs may wish to allocate dynamically-sized temporary scratch memory.
416  * To accommodate such requests easily, scratch memory may be allocated in
417  * the buffer beyond the current offset plus the needed memory of the current
418  * ECB.  If there isn't sufficient room in the buffer for the requested amount
419  * of scratch space, the allocation fails and an error is generated.  Scratch
420  * memory is tracked in the dtrace_mstate_t and is automatically freed when
421  * the ECB ceases processing.  Note that ring buffers cannot allocate their
422  * scratch from the principal buffer -- lest they needlessly overwrite older,
423  * valid data.  Ring buffers therefore have their own dedicated scratch buffer
424  * from which scratch is allocated.
425  */
426 #define	DTRACEBUF_RING		0x0001		/* bufpolicy set to "ring" */
427 #define	DTRACEBUF_FILL		0x0002		/* bufpolicy set to "fill" */
428 #define	DTRACEBUF_NOSWITCH	0x0004		/* do not switch buffer */
429 #define	DTRACEBUF_WRAPPED	0x0008		/* ring buffer has wrapped */
430 #define	DTRACEBUF_DROPPED	0x0010		/* drops occurred */
431 #define	DTRACEBUF_ERROR		0x0020		/* errors occurred */
432 #define	DTRACEBUF_FULL		0x0040		/* "fill" buffer is full */
433 #define	DTRACEBUF_CONSUMED	0x0080		/* buffer has been consumed */
434 #define	DTRACEBUF_INACTIVE	0x0100		/* buffer is not yet active */
435 
436 typedef struct dtrace_buffer {
437 	uint64_t dtb_offset;			/* current offset in buffer */
438 	uint64_t dtb_size;			/* size of buffer */
439 	uint32_t dtb_flags;			/* flags */
440 	uint32_t dtb_drops;			/* number of drops */
441 	caddr_t dtb_tomax;			/* active buffer */
442 	caddr_t dtb_xamot;			/* inactive buffer */
443 	uint32_t dtb_xamot_flags;		/* inactive flags */
444 	uint32_t dtb_xamot_drops;		/* drops in inactive buffer */
445 	uint64_t dtb_xamot_offset;		/* offset in inactive buffer */
446 	uint32_t dtb_errors;			/* number of errors */
447 	uint32_t dtb_xamot_errors;		/* errors in inactive buffer */
448 #ifndef _LP64
449 	uint64_t dtb_pad1;			/* pad out to 64 bytes */
450 #endif
451 	uint64_t dtb_switched;			/* time of last switch */
452 	uint64_t dtb_interval;			/* observed switch interval */
453 	uint64_t dtb_pad2[6];			/* pad to avoid false sharing */
454 } dtrace_buffer_t;
455 
456 /*
457  * DTrace Aggregation Buffers
458  *
459  * Aggregation buffers use much of the same mechanism as described above
460  * ("DTrace Buffers").  However, because an aggregation is fundamentally a
461  * hash, there exists dynamic metadata associated with an aggregation buffer
462  * that is not associated with other kinds of buffers.  This aggregation
463  * metadata is _only_ relevant for the in-kernel implementation of
464  * aggregations; it is not actually relevant to user-level consumers.  To do
465  * this, we allocate dynamic aggregation data (hash keys and hash buckets)
466  * starting below the _limit_ of the buffer, and we allocate data from the
467  * _base_ of the buffer.  When the aggregation buffer is copied out, _only_ the
468  * data is copied out; the metadata is simply discarded.  Schematically,
469  * aggregation buffers look like:
470  *
471  *      base of data buffer --->  +-------+------+-----------+-------+
472  *                                | aggid | key  | value     | aggid |
473  *                                +-------+------+-----------+-------+
474  *                                | key                              |
475  *                                +-------+-------+-----+------------+
476  *                                | value | aggid | key | value      |
477  *                                +-------+------++-----+------+-----+
478  *                                | aggid | key  | value       |     |
479  *                                +-------+------+-------------+     |
480  *                                |                ||                |
481  *                                |                ||                |
482  *                                |                \/                |
483  *                                :                                  :
484  *                                .                                  .
485  *                                .                                  .
486  *                                .                                  .
487  *                                :                                  :
488  *                                |                /\                |
489  *                                |                ||   +------------+
490  *                                |                ||   |            |
491  *                                +---------------------+            |
492  *                                | hash keys                        |
493  *                                | (dtrace_aggkey structures)       |
494  *                                |                                  |
495  *                                +----------------------------------+
496  *                                | hash buckets                     |
497  *                                | (dtrace_aggbuffer structure)     |
498  *                                |                                  |
499  *     limit of data buffer --->  +----------------------------------+
500  *
501  *
502  * As implied above, just as we assure that ECBs always store a constant
503  * amount of data, we assure that a given aggregation -- identified by its
504  * aggregation ID -- always stores data of a constant quantity and type.
505  * As with EPIDs, this allows the aggregation ID to serve as the metadata for a
506  * given record.
507  *
508  * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t)
509  * aligned.  (If this the structure changes such that this becomes false, an
510  * assertion will fail in dtrace_aggregate().)
511  */
512 typedef struct dtrace_aggkey {
513 	uint32_t dtak_hashval;			/* hash value */
514 	uint32_t dtak_action:4;			/* action -- 4 bits */
515 	uint32_t dtak_size:28;			/* size -- 28 bits */
516 	caddr_t dtak_data;			/* data pointer */
517 	struct dtrace_aggkey *dtak_next;	/* next in hash chain */
518 } dtrace_aggkey_t;
519 
520 typedef struct dtrace_aggbuffer {
521 	uintptr_t dtagb_hashsize;		/* number of buckets */
522 	uintptr_t dtagb_free;			/* free list of keys */
523 	dtrace_aggkey_t **dtagb_hash;		/* hash table */
524 } dtrace_aggbuffer_t;
525 
526 /*
527  * DTrace Speculations
528  *
529  * Speculations have a per-CPU buffer and a global state.  Once a speculation
530  * buffer has been comitted or discarded, it cannot be reused until all CPUs
531  * have taken the same action (commit or discard) on their respective
532  * speculative buffer.  However, because DTrace probes may execute in arbitrary
533  * context, other CPUs cannot simply be cross-called at probe firing time to
534  * perform the necessary commit or discard.  The speculation states thus
535  * optimize for the case that a speculative buffer is only active on one CPU at
536  * the time of a commit() or discard() -- for if this is the case, other CPUs
537  * need not take action, and the speculation is immediately available for
538  * reuse.  If the speculation is active on multiple CPUs, it must be
539  * asynchronously cleaned -- potentially leading to a higher rate of dirty
540  * speculative drops.  The speculation states are as follows:
541  *
542  *  DTRACESPEC_INACTIVE       <= Initial state; inactive speculation
543  *  DTRACESPEC_ACTIVE         <= Allocated, but not yet speculatively traced to
544  *  DTRACESPEC_ACTIVEONE      <= Speculatively traced to on one CPU
545  *  DTRACESPEC_ACTIVEMANY     <= Speculatively traced to on more than one CPU
546  *  DTRACESPEC_COMMITTING     <= Currently being commited on one CPU
547  *  DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs
548  *  DTRACESPEC_DISCARDING     <= Currently being discarded on many CPUs
549  *
550  * The state transition diagram is as follows:
551  *
552  *     +----------------------------------------------------------+
553  *     |                                                          |
554  *     |                      +------------+                      |
555  *     |  +-------------------| COMMITTING |<-----------------+   |
556  *     |  |                   +------------+                  |   |
557  *     |  | copied spec.            ^             commit() on |   | discard() on
558  *     |  | into principal          |              active CPU |   | active CPU
559  *     |  |                         | commit()                |   |
560  *     V  V                         |                         |   |
561  * +----------+                 +--------+                +-----------+
562  * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE |
563  * +----------+  speculation()  +--------+  speculate()   +-----------+
564  *     ^  ^                         |                         |   |
565  *     |  |                         | discard()               |   |
566  *     |  | asynchronously          |            discard() on |   | speculate()
567  *     |  | cleaned                 V            inactive CPU |   | on inactive
568  *     |  |                   +------------+                  |   | CPU
569  *     |  +-------------------| DISCARDING |<-----------------+   |
570  *     |                      +------------+                      |
571  *     | asynchronously             ^                             |
572  *     | copied spec.               |       discard()             |
573  *     | into principal             +------------------------+    |
574  *     |                                                     |    V
575  *  +----------------+             commit()              +------------+
576  *  | COMMITTINGMANY |<----------------------------------| ACTIVEMANY |
577  *  +----------------+                                   +------------+
578  */
579 typedef enum dtrace_speculation_state {
580 	DTRACESPEC_INACTIVE = 0,
581 	DTRACESPEC_ACTIVE,
582 	DTRACESPEC_ACTIVEONE,
583 	DTRACESPEC_ACTIVEMANY,
584 	DTRACESPEC_COMMITTING,
585 	DTRACESPEC_COMMITTINGMANY,
586 	DTRACESPEC_DISCARDING
587 } dtrace_speculation_state_t;
588 
589 typedef struct dtrace_speculation {
590 	dtrace_speculation_state_t dtsp_state;	/* current speculation state */
591 	int dtsp_cleaning;			/* non-zero if being cleaned */
592 	dtrace_buffer_t *dtsp_buffer;		/* speculative buffer */
593 } dtrace_speculation_t;
594 
595 /*
596  * DTrace Dynamic Variables
597  *
598  * The dynamic variable problem is obviously decomposed into two subproblems:
599  * allocating new dynamic storage, and freeing old dynamic storage.  The
600  * presence of the second problem makes the first much more complicated -- or
601  * rather, the absence of the second renders the first trivial.  This is the
602  * case with aggregations, for which there is effectively no deallocation of
603  * dynamic storage.  (Or more accurately, all dynamic storage is deallocated
604  * when a snapshot is taken of the aggregation.)  As DTrace dynamic variables
605  * allow for both dynamic allocation and dynamic deallocation, the
606  * implementation of dynamic variables is quite a bit more complicated than
607  * that of their aggregation kin.
608  *
609  * We observe that allocating new dynamic storage is tricky only because the
610  * size can vary -- the allocation problem is much easier if allocation sizes
611  * are uniform.  We further observe that in D, the size of dynamic variables is
612  * actually _not_ dynamic -- dynamic variable sizes may be determined by static
613  * analysis of DIF text.  (This is true even of putatively dynamically-sized
614  * objects like strings and stacks, the sizes of which are dictated by the
615  * "stringsize" and "stackframes" variables, respectively.)  We exploit this by
616  * performing this analysis on all DIF before enabling any probes.  For each
617  * dynamic load or store, we calculate the dynamically-allocated size plus the
618  * size of the dtrace_dynvar structure plus the storage required to key the
619  * data.  For all DIF, we take the largest value and dub it the _chunksize_.
620  * We then divide dynamic memory into two parts:  a hash table that is wide
621  * enough to have every chunk in its own bucket, and a larger region of equal
622  * chunksize units.  Whenever we wish to dynamically allocate a variable, we
623  * always allocate a single chunk of memory.  Depending on the uniformity of
624  * allocation, this will waste some amount of memory -- but it eliminates the
625  * non-determinism inherent in traditional heap fragmentation.
626  *
627  * Dynamic objects are allocated by storing a non-zero value to them; they are
628  * deallocated by storing a zero value to them.  Dynamic variables are
629  * complicated enormously by being shared between CPUs.  In particular,
630  * consider the following scenario:
631  *
632  *                 CPU A                                 CPU B
633  *  +---------------------------------+   +---------------------------------+
634  *  |                                 |   |                                 |
635  *  | allocates dynamic object a[123] |   |                                 |
636  *  | by storing the value 345 to it  |   |                                 |
637  *  |                               --------->                              |
638  *  |                                 |   | wishing to load from object     |
639  *  |                                 |   | a[123], performs lookup in      |
640  *  |                                 |   | dynamic variable space          |
641  *  |                               <---------                              |
642  *  | deallocates object a[123] by    |   |                                 |
643  *  | storing 0 to it                 |   |                                 |
644  *  |                                 |   |                                 |
645  *  | allocates dynamic object b[567] |   | performs load from a[123]       |
646  *  | by storing the value 789 to it  |   |                                 |
647  *  :                                 :   :                                 :
648  *  .                                 .   .                                 .
649  *
650  * This is obviously a race in the D program, but there are nonetheless only
651  * two valid values for CPU B's load from a[123]:  345 or 0.  Most importantly,
652  * CPU B may _not_ see the value 789 for a[123].
653  *
654  * There are essentially two ways to deal with this:
655  *
656  *  (1)  Explicitly spin-lock variables.  That is, if CPU B wishes to load
657  *       from a[123], it needs to lock a[123] and hold the lock for the
658  *       duration that it wishes to manipulate it.
659  *
660  *  (2)  Avoid reusing freed chunks until it is known that no CPU is referring
661  *       to them.
662  *
663  * The implementation of (1) is rife with complexity, because it requires the
664  * user of a dynamic variable to explicitly decree when they are done using it.
665  * Were all variables by value, this perhaps wouldn't be debilitating -- but
666  * dynamic variables of non-scalar types are tracked by reference.  That is, if
667  * a dynamic variable is, say, a string, and that variable is to be traced to,
668  * say, the principal buffer, the DIF emulation code returns to the main
669  * dtrace_probe() loop a pointer to the underlying storage, not the contents of
670  * the storage.  Further, code calling on DIF emulation would have to be aware
671  * that the DIF emulation has returned a reference to a dynamic variable that
672  * has been potentially locked.  The variable would have to be unlocked after
673  * the main dtrace_probe() loop is finished with the variable, and the main
674  * dtrace_probe() loop would have to be careful to not call any further DIF
675  * emulation while the variable is locked to avoid deadlock.  More generally,
676  * if one were to implement (1), DIF emulation code dealing with dynamic
677  * variables could only deal with one dynamic variable at a time (lest deadlock
678  * result).  To sum, (1) exports too much subtlety to the users of dynamic
679  * variables -- increasing maintenance burden and imposing serious constraints
680  * on future DTrace development.
681  *
682  * The implementation of (2) is also complex, but the complexity is more
683  * manageable.  We need to be sure that when a variable is deallocated, it is
684  * not placed on a traditional free list, but rather on a _dirty_ list.  Once a
685  * variable is on a dirty list, it cannot be found by CPUs performing a
686  * subsequent lookup of the variable -- but it may still be in use by other
687  * CPUs.  To assure that all CPUs that may be seeing the old variable have
688  * cleared out of probe context, a dtrace_sync() can be issued.  Once the
689  * dtrace_sync() has completed, it can be known that all CPUs are done
690  * manipulating the dynamic variable -- the dirty list can be atomically
691  * appended to the free list.  Unfortunately, there's a slight hiccup in this
692  * mechanism:  dtrace_sync() may not be issued from probe context.  The
693  * dtrace_sync() must be therefore issued asynchronously from non-probe
694  * context.  For this we rely on the DTrace cleaner, a cyclic that runs at the
695  * "cleanrate" frequency.  To ease this implementation, we define several chunk
696  * lists:
697  *
698  *   - Dirty.  Deallocated chunks, not yet cleaned.  Not available.
699  *
700  *   - Rinsing.  Formerly dirty chunks that are currently being asynchronously
701  *     cleaned.  Not available, but will be shortly.  Dynamic variable
702  *     allocation may not spin or block for availability, however.
703  *
704  *   - Clean.  Clean chunks, ready for allocation -- but not on the free list.
705  *
706  *   - Free.  Available for allocation.
707  *
708  * Moreover, to avoid absurd contention, _each_ of these lists is implemented
709  * on a per-CPU basis.  This is only for performance, not correctness; chunks
710  * may be allocated from another CPU's free list.  The algorithm for allocation
711  * then is this:
712  *
713  *   (1)  Attempt to atomically allocate from current CPU's free list.  If list
714  *        is non-empty and allocation is successful, allocation is complete.
715  *
716  *   (2)  If the clean list is non-empty, atomically move it to the free list,
717  *        and reattempt (1).
718  *
719  *   (3)  If the dynamic variable space is in the CLEAN state, look for free
720  *        and clean lists on other CPUs by setting the current CPU to the next
721  *        CPU, and reattempting (1).  If the next CPU is the current CPU (that
722  *        is, if all CPUs have been checked), atomically switch the state of
723  *        the dynamic variable space based on the following:
724  *
725  *        - If no free chunks were found and no dirty chunks were found,
726  *          atomically set the state to EMPTY.
727  *
728  *        - If dirty chunks were found, atomically set the state to DIRTY.
729  *
730  *        - If rinsing chunks were found, atomically set the state to RINSING.
731  *
732  *   (4)  Based on state of dynamic variable space state, increment appropriate
733  *        counter to indicate dynamic drops (if in EMPTY state) vs. dynamic
734  *        dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in
735  *        RINSING state).  Fail the allocation.
736  *
737  * The cleaning cyclic operates with the following algorithm:  for all CPUs
738  * with a non-empty dirty list, atomically move the dirty list to the rinsing
739  * list.  Perform a dtrace_sync().  For all CPUs with a non-empty rinsing list,
740  * atomically move the rinsing list to the clean list.  Perform another
741  * dtrace_sync().  By this point, all CPUs have seen the new clean list; the
742  * state of the dynamic variable space can be restored to CLEAN.
743  *
744  * There exist two final races that merit explanation.  The first is a simple
745  * allocation race:
746  *
747  *                 CPU A                                 CPU B
748  *  +---------------------------------+   +---------------------------------+
749  *  |                                 |   |                                 |
750  *  | allocates dynamic object a[123] |   | allocates dynamic object a[123] |
751  *  | by storing the value 345 to it  |   | by storing the value 567 to it  |
752  *  |                                 |   |                                 |
753  *  :                                 :   :                                 :
754  *  .                                 .   .                                 .
755  *
756  * Again, this is a race in the D program.  It can be resolved by having a[123]
757  * hold the value 345 or a[123] hold the value 567 -- but it must be true that
758  * a[123] have only _one_ of these values.  (That is, the racing CPUs may not
759  * put the same element twice on the same hash chain.)  This is resolved
760  * simply:  before the allocation is undertaken, the start of the new chunk's
761  * hash chain is noted.  Later, after the allocation is complete, the hash
762  * chain is atomically switched to point to the new element.  If this fails
763  * (because of either concurrent allocations or an allocation concurrent with a
764  * deletion), the newly allocated chunk is deallocated to the dirty list, and
765  * the whole process of looking up (and potentially allocating) the dynamic
766  * variable is reattempted.
767  *
768  * The final race is a simple deallocation race:
769  *
770  *                 CPU A                                 CPU B
771  *  +---------------------------------+   +---------------------------------+
772  *  |                                 |   |                                 |
773  *  | deallocates dynamic object      |   | deallocates dynamic object      |
774  *  | a[123] by storing the value 0   |   | a[123] by storing the value 0   |
775  *  | to it                           |   | to it                           |
776  *  |                                 |   |                                 |
777  *  :                                 :   :                                 :
778  *  .                                 .   .                                 .
779  *
780  * Once again, this is a race in the D program, but it is one that we must
781  * handle without corrupting the underlying data structures.  Because
782  * deallocations require the deletion of a chunk from the middle of a hash
783  * chain, we cannot use a single-word atomic operation to remove it.  For this,
784  * we add a spin lock to the hash buckets that is _only_ used for deallocations
785  * (allocation races are handled as above).  Further, this spin lock is _only_
786  * held for the duration of the delete; before control is returned to the DIF
787  * emulation code, the hash bucket is unlocked.
788  */
789 typedef struct dtrace_key {
790 	uint64_t dttk_value;			/* data value or data pointer */
791 	uint64_t dttk_size;			/* 0 if by-val, >0 if by-ref */
792 } dtrace_key_t;
793 
794 typedef struct dtrace_tuple {
795 	uint32_t dtt_nkeys;			/* number of keys in tuple */
796 	uint32_t dtt_pad;			/* padding */
797 	dtrace_key_t dtt_key[1];		/* array of tuple keys */
798 } dtrace_tuple_t;
799 
800 typedef struct dtrace_dynvar {
801 	uint64_t dtdv_hashval;			/* hash value -- 0 if free */
802 	struct dtrace_dynvar *dtdv_next;	/* next on list or hash chain */
803 	void *dtdv_data;			/* pointer to data */
804 	dtrace_tuple_t dtdv_tuple;		/* tuple key */
805 } dtrace_dynvar_t;
806 
807 typedef enum dtrace_dynvar_op {
808 	DTRACE_DYNVAR_ALLOC,
809 	DTRACE_DYNVAR_NOALLOC,
810 	DTRACE_DYNVAR_DEALLOC
811 } dtrace_dynvar_op_t;
812 
813 typedef struct dtrace_dynhash {
814 	dtrace_dynvar_t *dtdh_chain;		/* hash chain for this bucket */
815 	uintptr_t dtdh_lock;			/* deallocation lock */
816 #ifdef _LP64
817 	uintptr_t dtdh_pad[6];			/* pad to avoid false sharing */
818 #else
819 	uintptr_t dtdh_pad[14];			/* pad to avoid false sharing */
820 #endif
821 } dtrace_dynhash_t;
822 
823 typedef struct dtrace_dstate_percpu {
824 	dtrace_dynvar_t *dtdsc_free;		/* free list for this CPU */
825 	dtrace_dynvar_t *dtdsc_dirty;		/* dirty list for this CPU */
826 	dtrace_dynvar_t *dtdsc_rinsing;		/* rinsing list for this CPU */
827 	dtrace_dynvar_t *dtdsc_clean;		/* clean list for this CPU */
828 	uint64_t dtdsc_drops;			/* number of capacity drops */
829 	uint64_t dtdsc_dirty_drops;		/* number of dirty drops */
830 	uint64_t dtdsc_rinsing_drops;		/* number of rinsing drops */
831 #ifdef _LP64
832 	uint64_t dtdsc_pad;			/* pad to avoid false sharing */
833 #else
834 	uint64_t dtdsc_pad[2];			/* pad to avoid false sharing */
835 #endif
836 } dtrace_dstate_percpu_t;
837 
838 typedef enum dtrace_dstate_state {
839 	DTRACE_DSTATE_CLEAN = 0,
840 	DTRACE_DSTATE_EMPTY,
841 	DTRACE_DSTATE_DIRTY,
842 	DTRACE_DSTATE_RINSING
843 } dtrace_dstate_state_t;
844 
845 typedef struct dtrace_dstate {
846 	void *dtds_base;			/* base of dynamic var. space */
847 	size_t dtds_size;			/* size of dynamic var. space */
848 	size_t dtds_hashsize;			/* number of buckets in hash */
849 	size_t dtds_chunksize;			/* size of each chunk */
850 	dtrace_dynhash_t *dtds_hash;		/* pointer to hash table */
851 	dtrace_dstate_state_t dtds_state;	/* current dynamic var. state */
852 	dtrace_dstate_percpu_t *dtds_percpu;	/* per-CPU dyn. var. state */
853 } dtrace_dstate_t;
854 
855 /*
856  * DTrace Variable State
857  *
858  * The DTrace variable state tracks user-defined variables in its dtrace_vstate
859  * structure.  Each DTrace consumer has exactly one dtrace_vstate structure,
860  * but some dtrace_vstate structures may exist without a corresponding DTrace
861  * consumer (see "DTrace Helpers", below).  As described in <sys/dtrace.h>,
862  * user-defined variables can have one of three scopes:
863  *
864  *  DIFV_SCOPE_GLOBAL  =>  global scope
865  *  DIFV_SCOPE_THREAD  =>  thread-local scope (i.e. "self->" variables)
866  *  DIFV_SCOPE_LOCAL   =>  clause-local scope (i.e. "this->" variables)
867  *
868  * The variable state tracks variables by both their scope and their allocation
869  * type:
870  *
871  *  - The dtvs_globals and dtvs_locals members each point to an array of
872  *    dtrace_statvar structures.  These structures contain both the variable
873  *    metadata (dtrace_difv structures) and the underlying storage for all
874  *    statically allocated variables, including statically allocated
875  *    DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables.
876  *
877  *  - The dtvs_tlocals member points to an array of dtrace_difv structures for
878  *    DIFV_SCOPE_THREAD variables.  As such, this array tracks _only_ the
879  *    variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage
880  *    is allocated out of the dynamic variable space.
881  *
882  *  - The dtvs_dynvars member is the dynamic variable state associated with the
883  *    variable state.  The dynamic variable state (described in "DTrace Dynamic
884  *    Variables", above) tracks all DIFV_SCOPE_THREAD variables and all
885  *    dynamically-allocated DIFV_SCOPE_GLOBAL variables.
886  */
887 typedef struct dtrace_statvar {
888 	uint64_t dtsv_data;			/* data or pointer to it */
889 	size_t dtsv_size;			/* size of pointed-to data */
890 	int dtsv_refcnt;			/* reference count */
891 	dtrace_difv_t dtsv_var;			/* variable metadata */
892 } dtrace_statvar_t;
893 
894 typedef struct dtrace_vstate {
895 	dtrace_state_t *dtvs_state;		/* back pointer to state */
896 	dtrace_statvar_t **dtvs_globals;	/* statically-allocated glbls */
897 	int dtvs_nglobals;			/* number of globals */
898 	dtrace_difv_t *dtvs_tlocals;		/* thread-local metadata */
899 	int dtvs_ntlocals;			/* number of thread-locals */
900 	dtrace_statvar_t **dtvs_locals;		/* clause-local data */
901 	int dtvs_nlocals;			/* number of clause-locals */
902 	dtrace_dstate_t dtvs_dynvars;		/* dynamic variable state */
903 } dtrace_vstate_t;
904 
905 /*
906  * DTrace Machine State
907  *
908  * In the process of processing a fired probe, DTrace needs to track and/or
909  * cache some per-CPU state associated with that particular firing.  This is
910  * state that is always discarded after the probe firing has completed, and
911  * much of it is not specific to any DTrace consumer, remaining valid across
912  * all ECBs.  This state is tracked in the dtrace_mstate structure.
913  */
914 #define	DTRACE_MSTATE_ARGS		0x00000001
915 #define	DTRACE_MSTATE_PROBE		0x00000002
916 #define	DTRACE_MSTATE_EPID		0x00000004
917 #define	DTRACE_MSTATE_TIMESTAMP		0x00000008
918 #define	DTRACE_MSTATE_STACKDEPTH	0x00000010
919 #define	DTRACE_MSTATE_CALLER		0x00000020
920 #define	DTRACE_MSTATE_IPL		0x00000040
921 #define	DTRACE_MSTATE_FLTOFFS		0x00000080
922 #define	DTRACE_MSTATE_WALLTIMESTAMP	0x00000100
923 #define	DTRACE_MSTATE_USTACKDEPTH	0x00000200
924 #define	DTRACE_MSTATE_UCALLER		0x00000400
925 
926 typedef struct dtrace_mstate {
927 	uintptr_t dtms_scratch_base;		/* base of scratch space */
928 	uintptr_t dtms_scratch_ptr;		/* current scratch pointer */
929 	size_t dtms_scratch_size;		/* scratch size */
930 	uint32_t dtms_present;			/* variables that are present */
931 	uint64_t dtms_arg[5];			/* cached arguments */
932 	dtrace_epid_t dtms_epid;		/* current EPID */
933 	uint64_t dtms_timestamp;		/* cached timestamp */
934 	hrtime_t dtms_walltimestamp;		/* cached wall timestamp */
935 	int dtms_stackdepth;			/* cached stackdepth */
936 	int dtms_ustackdepth;			/* cached ustackdepth */
937 	struct dtrace_probe *dtms_probe;	/* current probe */
938 	uintptr_t dtms_caller;			/* cached caller */
939 	uint64_t dtms_ucaller;			/* cached user-level caller */
940 	int dtms_ipl;				/* cached interrupt pri lev */
941 	int dtms_fltoffs;			/* faulting DIFO offset */
942 	uintptr_t dtms_strtok;			/* saved strtok() pointer */
943 	uintptr_t dtms_strtok_limit;		/* upper bound of strtok ptr */
944 	uint32_t dtms_access;			/* memory access rights */
945 	dtrace_difo_t *dtms_difo;		/* current dif object */
946 	file_t *dtms_getf;			/* cached rval of getf() */
947 } dtrace_mstate_t;
948 
949 #define	DTRACE_COND_OWNER	0x1
950 #define	DTRACE_COND_USERMODE	0x2
951 #define	DTRACE_COND_ZONEOWNER	0x4
952 
953 #define	DTRACE_PROBEKEY_MAXDEPTH	8	/* max glob recursion depth */
954 
955 /*
956  * Access flag used by dtrace_mstate.dtms_access.
957  */
958 #define	DTRACE_ACCESS_KERNEL	0x1		/* the priv to read kmem */
959 
960 
961 /*
962  * DTrace Activity
963  *
964  * Each DTrace consumer is in one of several states, which (for purposes of
965  * avoiding yet-another overloading of the noun "state") we call the current
966  * _activity_.  The activity transitions on dtrace_go() (from DTRACIOCGO), on
967  * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action.  Activities may
968  * only transition in one direction; the activity transition diagram is a
969  * directed acyclic graph.  The activity transition diagram is as follows:
970  *
971  *
972  * +----------+                   +--------+                   +--------+
973  * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE |
974  * +----------+   dtrace_go(),    +--------+   dtrace_go(),    +--------+
975  *                before BEGIN        |        after BEGIN       |  |  |
976  *                                    |                          |  |  |
977  *                      exit() action |                          |  |  |
978  *                     from BEGIN ECB |                          |  |  |
979  *                                    |                          |  |  |
980  *                                    v                          |  |  |
981  *                               +----------+     exit() action  |  |  |
982  * +-----------------------------| DRAINING |<-------------------+  |  |
983  * |                             +----------+                       |  |
984  * |                                  |                             |  |
985  * |                   dtrace_stop(), |                             |  |
986  * |                     before END   |                             |  |
987  * |                                  |                             |  |
988  * |                                  v                             |  |
989  * | +---------+                 +----------+                       |  |
990  * | | STOPPED |<----------------| COOLDOWN |<----------------------+  |
991  * | +---------+  dtrace_stop(), +----------+     dtrace_stop(),       |
992  * |                after END                       before END         |
993  * |                                                                   |
994  * |                              +--------+                           |
995  * +----------------------------->| KILLED |<--------------------------+
996  *       deadman timeout or       +--------+     deadman timeout or
997  *        killed consumer                         killed consumer
998  *
999  * Note that once a DTrace consumer has stopped tracing, there is no way to
1000  * restart it; if a DTrace consumer wishes to restart tracing, it must reopen
1001  * the DTrace pseudodevice.
1002  */
1003 typedef enum dtrace_activity {
1004 	DTRACE_ACTIVITY_INACTIVE = 0,		/* not yet running */
1005 	DTRACE_ACTIVITY_WARMUP,			/* while starting */
1006 	DTRACE_ACTIVITY_ACTIVE,			/* running */
1007 	DTRACE_ACTIVITY_DRAINING,		/* before stopping */
1008 	DTRACE_ACTIVITY_COOLDOWN,		/* while stopping */
1009 	DTRACE_ACTIVITY_STOPPED,		/* after stopping */
1010 	DTRACE_ACTIVITY_KILLED			/* killed */
1011 } dtrace_activity_t;
1012 
1013 /*
1014  * DTrace Helper Implementation
1015  *
1016  * A description of the helper architecture may be found in <sys/dtrace.h>.
1017  * Each process contains a pointer to its helpers in its p_dtrace_helpers
1018  * member.  This is a pointer to a dtrace_helpers structure, which contains an
1019  * array of pointers to dtrace_helper structures, helper variable state (shared
1020  * among a process's helpers) and a generation count.  (The generation count is
1021  * used to provide an identifier when a helper is added so that it may be
1022  * subsequently removed.)  The dtrace_helper structure is self-explanatory,
1023  * containing pointers to the objects needed to execute the helper.  Note that
1024  * helpers are _duplicated_ across fork(2), and destroyed on exec(2).  No more
1025  * than dtrace_helpers_max are allowed per-process.
1026  */
1027 #define	DTRACE_HELPER_ACTION_USTACK	0
1028 #define	DTRACE_NHELPER_ACTIONS		1
1029 
1030 typedef struct dtrace_helper_action {
1031 	int dtha_generation;			/* helper action generation */
1032 	int dtha_nactions;			/* number of actions */
1033 	dtrace_difo_t *dtha_predicate;		/* helper action predicate */
1034 	dtrace_difo_t **dtha_actions;		/* array of actions */
1035 	struct dtrace_helper_action *dtha_next;	/* next helper action */
1036 } dtrace_helper_action_t;
1037 
1038 typedef struct dtrace_helper_provider {
1039 	int dthp_generation;			/* helper provider generation */
1040 	uint32_t dthp_ref;			/* reference count */
1041 	dof_helper_t dthp_prov;			/* DOF w/ provider and probes */
1042 } dtrace_helper_provider_t;
1043 
1044 typedef struct dtrace_helpers {
1045 	dtrace_helper_action_t **dthps_actions;	/* array of helper actions */
1046 	dtrace_vstate_t dthps_vstate;		/* helper action var. state */
1047 	dtrace_helper_provider_t **dthps_provs;	/* array of providers */
1048 	uint_t dthps_nprovs;			/* count of providers */
1049 	uint_t dthps_maxprovs;			/* provider array size */
1050 	int dthps_generation;			/* current generation */
1051 	pid_t dthps_pid;			/* pid of associated proc */
1052 	int dthps_deferred;			/* helper in deferred list */
1053 	struct dtrace_helpers *dthps_next;	/* next pointer */
1054 	struct dtrace_helpers *dthps_prev;	/* prev pointer */
1055 } dtrace_helpers_t;
1056 
1057 /*
1058  * DTrace Helper Action Tracing
1059  *
1060  * Debugging helper actions can be arduous.  To ease the development and
1061  * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing-
1062  * framework: helper tracing.  If dtrace_helptrace_enabled is non-zero (which
1063  * it is by default on DEBUG kernels), all helper activity will be traced to a
1064  * global, in-kernel ring buffer.  Each entry includes a pointer to the specific
1065  * helper, the location within the helper, and a trace of all local variables.
1066  * The ring buffer may be displayed in a human-readable format with the
1067  * ::dtrace_helptrace mdb(1) dcmd.
1068  */
1069 #define	DTRACE_HELPTRACE_NEXT	(-1)
1070 #define	DTRACE_HELPTRACE_DONE	(-2)
1071 #define	DTRACE_HELPTRACE_ERR	(-3)
1072 
1073 typedef struct dtrace_helptrace {
1074 	dtrace_helper_action_t	*dtht_helper;	/* helper action */
1075 	int dtht_where;				/* where in helper action */
1076 	int dtht_nlocals;			/* number of locals */
1077 	int dtht_fault;				/* type of fault (if any) */
1078 	int dtht_fltoffs;			/* DIF offset */
1079 	uint64_t dtht_illval;			/* faulting value */
1080 	uint64_t dtht_locals[1];		/* local variables */
1081 } dtrace_helptrace_t;
1082 
1083 /*
1084  * DTrace Credentials
1085  *
1086  * In probe context, we have limited flexibility to examine the credentials
1087  * of the DTrace consumer that created a particular enabling.  We use
1088  * the Least Privilege interfaces to cache the consumer's cred pointer and
1089  * some facts about that credential in a dtrace_cred_t structure. These
1090  * can limit the consumer's breadth of visibility and what actions the
1091  * consumer may take.
1092  */
1093 #define	DTRACE_CRV_ALLPROC		0x01
1094 #define	DTRACE_CRV_KERNEL		0x02
1095 #define	DTRACE_CRV_ALLZONE		0x04
1096 
1097 #define	DTRACE_CRV_ALL		(DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \
1098 	DTRACE_CRV_ALLZONE)
1099 
1100 #define	DTRACE_CRA_PROC				0x0001
1101 #define	DTRACE_CRA_PROC_CONTROL			0x0002
1102 #define	DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER	0x0004
1103 #define	DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE	0x0008
1104 #define	DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG	0x0010
1105 #define	DTRACE_CRA_KERNEL			0x0020
1106 #define	DTRACE_CRA_KERNEL_DESTRUCTIVE		0x0040
1107 
1108 #define	DTRACE_CRA_ALL		(DTRACE_CRA_PROC | \
1109 	DTRACE_CRA_PROC_CONTROL | \
1110 	DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \
1111 	DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \
1112 	DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \
1113 	DTRACE_CRA_KERNEL | \
1114 	DTRACE_CRA_KERNEL_DESTRUCTIVE)
1115 
1116 typedef struct dtrace_cred {
1117 	cred_t			*dcr_cred;
1118 	uint8_t			dcr_destructive;
1119 	uint8_t			dcr_visible;
1120 	uint16_t		dcr_action;
1121 } dtrace_cred_t;
1122 
1123 /*
1124  * DTrace Consumer State
1125  *
1126  * Each DTrace consumer has an associated dtrace_state structure that contains
1127  * its in-kernel DTrace state -- including options, credentials, statistics and
1128  * pointers to ECBs, buffers, speculations and formats.  A dtrace_state
1129  * structure is also allocated for anonymous enablings.  When anonymous state
1130  * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed
1131  * dtrace_state structure.
1132  */
1133 struct dtrace_state {
1134 #ifdef __FreeBSD__
1135 	struct cdev *dts_dev;			/* device */
1136 #else
1137 	dev_t dts_dev;				/* device */
1138 #endif
1139 	int dts_necbs;				/* total number of ECBs */
1140 	dtrace_ecb_t **dts_ecbs;		/* array of ECBs */
1141 	dtrace_epid_t dts_epid;			/* next EPID to allocate */
1142 	size_t dts_needed;			/* greatest needed space */
1143 	struct dtrace_state *dts_anon;		/* anon. state, if grabbed */
1144 	dtrace_activity_t dts_activity;		/* current activity */
1145 	dtrace_vstate_t dts_vstate;		/* variable state */
1146 	dtrace_buffer_t *dts_buffer;		/* principal buffer */
1147 	dtrace_buffer_t *dts_aggbuffer;		/* aggregation buffer */
1148 	dtrace_speculation_t *dts_speculations;	/* speculation array */
1149 	int dts_nspeculations;			/* number of speculations */
1150 	int dts_naggregations;			/* number of aggregations */
1151 	dtrace_aggregation_t **dts_aggregations; /* aggregation array */
1152 #ifdef __FreeBSD__
1153 	struct unrhdr *dts_aggid_arena;		/* arena for aggregation IDs */
1154 #else
1155 	vmem_t *dts_aggid_arena;		/* arena for aggregation IDs */
1156 #endif
1157 	uint64_t dts_errors;			/* total number of errors */
1158 	uint32_t dts_speculations_busy;		/* number of spec. busy */
1159 	uint32_t dts_speculations_unavail;	/* number of spec unavail */
1160 	uint32_t dts_stkstroverflows;		/* stack string tab overflows */
1161 	uint32_t dts_dblerrors;			/* errors in ERROR probes */
1162 	uint32_t dts_reserve;			/* space reserved for END */
1163 	hrtime_t dts_laststatus;		/* time of last status */
1164 #ifdef illumos
1165 	cyclic_id_t dts_cleaner;		/* cleaning cyclic */
1166 	cyclic_id_t dts_deadman;		/* deadman cyclic */
1167 #endif
1168 #ifdef __FreeBSD__
1169 	struct callout dts_cleaner;		/* Cleaning callout. */
1170 	struct callout dts_deadman;		/* Deadman callout. */
1171 #endif
1172 #ifdef __NetBSD__
1173 	struct dtrace_state_worker *dts_cleaner;/* cleaning cyclic */
1174 	struct dtrace_state_worker *dts_deadman;/* deadman cyclic */
1175 #endif
1176 	hrtime_t dts_alive;			/* time last alive */
1177 	char dts_speculates;			/* boolean: has speculations */
1178 	char dts_destructive;			/* boolean: has dest. actions */
1179 	int dts_nformats;			/* number of formats */
1180 	char **dts_formats;			/* format string array */
1181 	dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */
1182 	dtrace_cred_t dts_cred;			/* credentials */
1183 	size_t dts_nretained;			/* number of retained enabs */
1184 	int dts_getf;				/* number of getf() calls */
1185 	uint64_t dts_rstate[NCPU][2];		/* per-CPU random state */
1186 };
1187 
1188 struct dtrace_provider {
1189 	dtrace_pattr_t dtpv_attr;		/* provider attributes */
1190 	dtrace_ppriv_t dtpv_priv;		/* provider privileges */
1191 	dtrace_pops_t dtpv_pops;		/* provider operations */
1192 	char *dtpv_name;			/* provider name */
1193 	void *dtpv_arg;				/* provider argument */
1194 	hrtime_t dtpv_defunct;			/* when made defunct */
1195 	struct dtrace_provider *dtpv_next;	/* next provider */
1196 };
1197 
1198 struct dtrace_meta {
1199 	dtrace_mops_t dtm_mops;			/* meta provider operations */
1200 	char *dtm_name;				/* meta provider name */
1201 	void *dtm_arg;				/* meta provider user arg */
1202 	uint64_t dtm_count;			/* no. of associated provs. */
1203 };
1204 
1205 /*
1206  * DTrace Enablings
1207  *
1208  * A dtrace_enabling structure is used to track a collection of ECB
1209  * descriptions -- before they have been turned into actual ECBs.  This is
1210  * created as a result of DOF processing, and is generally used to generate
1211  * ECBs immediately thereafter.  However, enablings are also generally
1212  * retained should the probes they describe be created at a later time; as
1213  * each new module or provider registers with the framework, the retained
1214  * enablings are reevaluated, with any new match resulting in new ECBs.  To
1215  * prevent probes from being matched more than once, the enabling tracks the
1216  * last probe generation matched, and only matches probes from subsequent
1217  * generations.
1218  */
1219 typedef struct dtrace_enabling {
1220 	dtrace_ecbdesc_t **dten_desc;		/* all ECB descriptions */
1221 	int dten_ndesc;				/* number of ECB descriptions */
1222 	int dten_maxdesc;			/* size of ECB array */
1223 	dtrace_vstate_t *dten_vstate;		/* associated variable state */
1224 	dtrace_genid_t dten_probegen;		/* matched probe generation */
1225 	dtrace_ecbdesc_t *dten_current;		/* current ECB description */
1226 	int dten_error;				/* current error value */
1227 	int dten_primed;			/* boolean: set if primed */
1228 	struct dtrace_enabling *dten_prev;	/* previous enabling */
1229 	struct dtrace_enabling *dten_next;	/* next enabling */
1230 } dtrace_enabling_t;
1231 
1232 /*
1233  * DTrace Anonymous Enablings
1234  *
1235  * Anonymous enablings are DTrace enablings that are not associated with a
1236  * controlling process, but rather derive their enabling from DOF stored as
1237  * properties in the dtrace.conf file.  If there is an anonymous enabling, a
1238  * DTrace consumer state and enabling are created on attach.  The state may be
1239  * subsequently grabbed by the first consumer specifying the "grabanon"
1240  * option.  As long as an anonymous DTrace enabling exists, dtrace(7D) will
1241  * refuse to unload.
1242  */
1243 typedef struct dtrace_anon {
1244 	dtrace_state_t *dta_state;		/* DTrace consumer state */
1245 	dtrace_enabling_t *dta_enabling;	/* pointer to enabling */
1246 	processorid_t dta_beganon;		/* which CPU BEGIN ran on */
1247 } dtrace_anon_t;
1248 
1249 /*
1250  * DTrace Error Debugging
1251  */
1252 #ifdef DEBUG
1253 #define	DTRACE_ERRDEBUG
1254 #endif
1255 
1256 #ifdef DTRACE_ERRDEBUG
1257 
1258 typedef struct dtrace_errhash {
1259 	const char	*dter_msg;	/* error message */
1260 	int		dter_count;	/* number of times seen */
1261 } dtrace_errhash_t;
1262 
1263 #define	DTRACE_ERRHASHSZ	256	/* must be > number of err msgs */
1264 
1265 #endif	/* DTRACE_ERRDEBUG */
1266 
1267 /*
1268  * DTrace Toxic Ranges
1269  *
1270  * DTrace supports safe loads from probe context; if the address turns out to
1271  * be invalid, a bit will be set by the kernel indicating that DTrace
1272  * encountered a memory error, and DTrace will propagate the error to the user
1273  * accordingly.  However, there may exist some regions of memory in which an
1274  * arbitrary load can change system state, and from which it is impossible to
1275  * recover from such a load after it has been attempted.  Examples of this may
1276  * include memory in which programmable I/O registers are mapped (for which a
1277  * read may have some implications for the device) or (in the specific case of
1278  * UltraSPARC-I and -II) the virtual address hole.  The platform is required
1279  * to make DTrace aware of these toxic ranges; DTrace will then check that
1280  * target addresses are not in a toxic range before attempting to issue a
1281  * safe load.
1282  */
1283 typedef struct dtrace_toxrange {
1284 	uintptr_t	dtt_base;		/* base of toxic range */
1285 	uintptr_t	dtt_limit;		/* limit of toxic range */
1286 } dtrace_toxrange_t;
1287 
1288 #ifdef illumos
1289 extern uint64_t dtrace_getarg(int, int);
1290 #else
1291 extern uint64_t __noinline dtrace_getarg(int, int);
1292 #endif
1293 extern greg_t dtrace_getfp(void);
1294 extern int dtrace_getipl(void);
1295 extern uintptr_t dtrace_caller(int);
1296 extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t);
1297 extern void *dtrace_casptr(volatile void *, volatile void *, volatile void *);
1298 extern void dtrace_copyin(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1299 extern void dtrace_copyinstr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1300 extern void dtrace_copyout(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1301 extern void dtrace_copyoutstr(uintptr_t, uintptr_t, size_t,
1302     volatile uint16_t *);
1303 extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *);
1304 extern ulong_t dtrace_getreg(struct trapframe *, uint_t);
1305 extern int dtrace_getstackdepth(int);
1306 extern void dtrace_getupcstack(uint64_t *, int);
1307 extern void dtrace_getufpstack(uint64_t *, uint64_t *, int);
1308 extern int dtrace_getustackdepth(void);
1309 extern uintptr_t dtrace_fulword(void *);
1310 extern uint8_t dtrace_fuword8(void *);
1311 extern uint16_t dtrace_fuword16(void *);
1312 extern uint32_t dtrace_fuword32(void *);
1313 extern uint64_t dtrace_fuword64(void *);
1314 extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int,
1315     int, uintptr_t);
1316 extern int dtrace_assfail(const char *, const char *, int);
1317 extern int dtrace_attached(void);
1318 #ifdef illumos
1319 extern hrtime_t dtrace_gethrestime(void);
1320 #endif
1321 
1322 #ifdef __sparc
1323 extern void dtrace_flush_windows(void);
1324 extern void dtrace_flush_user_windows(void);
1325 extern uint_t dtrace_getotherwin(void);
1326 extern uint_t dtrace_getfprs(void);
1327 #else
1328 extern void dtrace_copy(uintptr_t, uintptr_t, size_t);
1329 extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1330 #endif
1331 
1332 /*
1333  * DTrace Assertions
1334  *
1335  * DTrace calls ASSERT and VERIFY from probe context.  To assure that a failed
1336  * ASSERT or VERIFY does not induce a markedly more catastrophic failure (e.g.,
1337  * one from which a dump cannot be gleaned), DTrace must define its own ASSERT
1338  * and VERIFY macros to be ones that may safely be called from probe context.
1339  * This header file must thus be included by any DTrace component that calls
1340  * ASSERT and/or VERIFY from probe context, and _only_ by those components.
1341  * (The only exception to this is kernel debugging infrastructure at user-level
1342  * that doesn't depend on calling ASSERT.)
1343  */
1344 #undef ASSERT
1345 #undef VERIFY
1346 #define	VERIFY(EX)	((void)((EX) || \
1347 			dtrace_assfail(#EX, __FILE__, __LINE__)))
1348 #ifdef DEBUG
1349 #define	ASSERT(EX)	((void)((EX) || \
1350 			dtrace_assfail(#EX, __FILE__, __LINE__)))
1351 #else
1352 #define	ASSERT(X)	((void)0)
1353 #endif
1354 
1355 #ifdef	__cplusplus
1356 }
1357 #endif
1358 
1359 #endif /* _SYS_DTRACE_IMPL_H */
1360