xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/drm_vblank.c (revision a81d59292bbbf669641d0148f3de256407752606)
1 /*	$NetBSD: drm_vblank.c,v 1.16 2021/12/26 21:00:14 riastradh Exp $	*/
2 
3 /*
4  * drm_irq.c IRQ and vblank support
5  *
6  * \author Rickard E. (Rik) Faith <faith@valinux.com>
7  * \author Gareth Hughes <gareth@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
26  * OTHER DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: drm_vblank.c,v 1.16 2021/12/26 21:00:14 riastradh Exp $");
31 
32 #include <linux/export.h>
33 #include <linux/moduleparam.h>
34 #include <linux/math64.h>
35 
36 #include <drm/drm_crtc.h>
37 #include <drm/drm_drv.h>
38 #include <drm/drm_framebuffer.h>
39 #include <drm/drm_print.h>
40 #include <drm/drm_vblank.h>
41 
42 #include "drm_internal.h"
43 #include "drm_trace.h"
44 
45 /**
46  * DOC: vblank handling
47  *
48  * Vertical blanking plays a major role in graphics rendering. To achieve
49  * tear-free display, users must synchronize page flips and/or rendering to
50  * vertical blanking. The DRM API offers ioctls to perform page flips
51  * synchronized to vertical blanking and wait for vertical blanking.
52  *
53  * The DRM core handles most of the vertical blanking management logic, which
54  * involves filtering out spurious interrupts, keeping race-free blanking
55  * counters, coping with counter wrap-around and resets and keeping use counts.
56  * It relies on the driver to generate vertical blanking interrupts and
57  * optionally provide a hardware vertical blanking counter.
58  *
59  * Drivers must initialize the vertical blanking handling core with a call to
60  * drm_vblank_init(). Minimally, a driver needs to implement
61  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
62  * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
63  * support.
64  *
65  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
66  * themselves (for instance to handle page flipping operations).  The DRM core
67  * maintains a vertical blanking use count to ensure that the interrupts are not
68  * disabled while a user still needs them. To increment the use count, drivers
69  * call drm_crtc_vblank_get() and release the vblank reference again with
70  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
71  * guaranteed to be enabled.
72  *
73  * On many hardware disabling the vblank interrupt cannot be done in a race-free
74  * manner, see &drm_driver.vblank_disable_immediate and
75  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
76  * vblanks after a timer has expired, which can be configured through the
77  * ``vblankoffdelay`` module parameter.
78  *
79  * Lock order: event_lock -> vblank_time_lock
80  */
81 
82 /* Retry timestamp calculation up to 3 times to satisfy
83  * drm_timestamp_precision before giving up.
84  */
85 #define DRM_TIMESTAMP_MAXRETRIES 3
86 
87 /* Threshold in nanoseconds for detection of redundant
88  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
89  */
90 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
91 
92 static bool
93 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
94 			  ktime_t *tvblank, bool in_vblank_irq);
95 
96 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
97 
98 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
99 
100 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
101 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
102 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
103 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
104 
store_vblank(struct drm_device * dev,unsigned int pipe,u32 vblank_count_inc,ktime_t t_vblank,u32 last)105 static void store_vblank(struct drm_device *dev, unsigned int pipe,
106 			 u32 vblank_count_inc,
107 			 ktime_t t_vblank, u32 last)
108 {
109 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
110 
111 	assert_spin_locked(&dev->vblank_time_lock);
112 
113 	vblank->last = last;
114 
115 	write_seqlock(&vblank->seqlock);
116 	vblank->time = t_vblank;
117 	atomic64_add(vblank_count_inc, &vblank->count);
118 	write_sequnlock(&vblank->seqlock);
119 }
120 
drm_max_vblank_count(struct drm_device * dev,unsigned int pipe)121 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
122 {
123 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
124 
125 	return vblank->max_vblank_count ?: dev->max_vblank_count;
126 }
127 
128 /*
129  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
130  * if there is no useable hardware frame counter available.
131  */
drm_vblank_no_hw_counter(struct drm_device * dev,unsigned int pipe)132 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
133 {
134 	WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0);
135 	return 0;
136 }
137 
__get_vblank_counter(struct drm_device * dev,unsigned int pipe)138 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
139 {
140 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
141 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
142 
143 		if (WARN_ON(!crtc))
144 			return 0;
145 
146 		if (crtc->funcs->get_vblank_counter)
147 			return crtc->funcs->get_vblank_counter(crtc);
148 	}
149 
150 	if (dev->driver->get_vblank_counter)
151 		return dev->driver->get_vblank_counter(dev, pipe);
152 
153 	return drm_vblank_no_hw_counter(dev, pipe);
154 }
155 
156 /*
157  * Reset the stored timestamp for the current vblank count to correspond
158  * to the last vblank occurred.
159  *
160  * Only to be called from drm_crtc_vblank_on().
161  *
162  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
163  * device vblank fields.
164  */
drm_reset_vblank_timestamp(struct drm_device * dev,unsigned int pipe)165 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
166 {
167 	u32 cur_vblank;
168 	bool rc;
169 	ktime_t t_vblank;
170 	int count = DRM_TIMESTAMP_MAXRETRIES;
171 
172 	assert_spin_locked(&dev->event_lock);
173 
174 	spin_lock(&dev->vblank_time_lock);
175 
176 	/*
177 	 * sample the current counter to avoid random jumps
178 	 * when drm_vblank_enable() applies the diff
179 	 */
180 	do {
181 		cur_vblank = __get_vblank_counter(dev, pipe);
182 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
183 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
184 
185 	/*
186 	 * Only reinitialize corresponding vblank timestamp if high-precision query
187 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
188 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
189 	 */
190 	if (!rc)
191 		t_vblank = 0;
192 
193 	/*
194 	 * +1 to make sure user will never see the same
195 	 * vblank counter value before and after a modeset
196 	 */
197 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
198 
199 	spin_unlock(&dev->vblank_time_lock);
200 }
201 
202 /*
203  * Call back into the driver to update the appropriate vblank counter
204  * (specified by @pipe).  Deal with wraparound, if it occurred, and
205  * update the last read value so we can deal with wraparound on the next
206  * call if necessary.
207  *
208  * Only necessary when going from off->on, to account for frames we
209  * didn't get an interrupt for.
210  *
211  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
212  * device vblank fields.
213  */
drm_update_vblank_count(struct drm_device * dev,unsigned int pipe,bool in_vblank_irq)214 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
215 				    bool in_vblank_irq)
216 {
217 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
218 	u32 cur_vblank, diff;
219 	bool rc;
220 	ktime_t t_vblank;
221 	int count = DRM_TIMESTAMP_MAXRETRIES;
222 	int framedur_ns = vblank->framedur_ns;
223 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
224 
225 	assert_spin_locked(&dev->event_lock);
226 
227 	/*
228 	 * Interrupts were disabled prior to this call, so deal with counter
229 	 * wrap if needed.
230 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
231 	 * here if the register is small or we had vblank interrupts off for
232 	 * a long time.
233 	 *
234 	 * We repeat the hardware vblank counter & timestamp query until
235 	 * we get consistent results. This to prevent races between gpu
236 	 * updating its hardware counter while we are retrieving the
237 	 * corresponding vblank timestamp.
238 	 */
239 	do {
240 		cur_vblank = __get_vblank_counter(dev, pipe);
241 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
242 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
243 
244 	if (max_vblank_count) {
245 		/* trust the hw counter when it's around */
246 		diff = (cur_vblank - vblank->last) & max_vblank_count;
247 	} else if (rc && framedur_ns) {
248 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
249 
250 		/*
251 		 * Figure out how many vblanks we've missed based
252 		 * on the difference in the timestamps and the
253 		 * frame/field duration.
254 		 */
255 
256 		DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks."
257 			      " diff_ns = %lld, framedur_ns = %d)\n",
258 			      pipe, (long long) diff_ns, framedur_ns);
259 
260 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
261 
262 		if (diff == 0 && in_vblank_irq)
263 			DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n",
264 				      pipe);
265 	} else {
266 		/* some kind of default for drivers w/o accurate vbl timestamping */
267 		diff = in_vblank_irq ? 1 : 0;
268 	}
269 
270 	/*
271 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
272 	 * interval? If so then vblank irqs keep running and it will likely
273 	 * happen that the hardware vblank counter is not trustworthy as it
274 	 * might reset at some point in that interval and vblank timestamps
275 	 * are not trustworthy either in that interval. Iow. this can result
276 	 * in a bogus diff >> 1 which must be avoided as it would cause
277 	 * random large forward jumps of the software vblank counter.
278 	 */
279 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
280 		DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
281 			      " due to pre-modeset.\n", pipe, diff);
282 		diff = 1;
283 	}
284 
285 	DRM_DEBUG_VBL("updating vblank count on crtc %u:"
286 		      " current=%"PRIu64", diff=%u, hw=%u hw_last=%u\n",
287 		      pipe, atomic64_read(&vblank->count), diff,
288 		      cur_vblank, vblank->last);
289 
290 	if (diff == 0) {
291 		WARN_ON_ONCE(cur_vblank != vblank->last);
292 		return;
293 	}
294 
295 	/*
296 	 * Only reinitialize corresponding vblank timestamp if high-precision query
297 	 * available and didn't fail, or we were called from the vblank interrupt.
298 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
299 	 * for now, to mark the vblanktimestamp as invalid.
300 	 */
301 	if (!rc && !in_vblank_irq)
302 		t_vblank = 0;
303 
304 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
305 }
306 
drm_vblank_count(struct drm_device * dev,unsigned int pipe)307 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
308 {
309 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
310 	u64 count;
311 
312 	if (WARN_ON(pipe >= dev->num_crtcs))
313 		return 0;
314 
315 	count = atomic64_read(&vblank->count);
316 
317 	/*
318 	 * This read barrier corresponds to the implicit write barrier of the
319 	 * write seqlock in store_vblank(). Note that this is the only place
320 	 * where we need an explicit barrier, since all other access goes
321 	 * through drm_vblank_count_and_time(), which already has the required
322 	 * read barrier curtesy of the read seqlock.
323 	 */
324 	smp_rmb();
325 
326 	return count;
327 }
328 
329 /**
330  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
331  * @crtc: which counter to retrieve
332  *
333  * This function is similar to drm_crtc_vblank_count() but this function
334  * interpolates to handle a race with vblank interrupts using the high precision
335  * timestamping support.
336  *
337  * This is mostly useful for hardware that can obtain the scanout position, but
338  * doesn't have a hardware frame counter.
339  */
drm_crtc_accurate_vblank_count(struct drm_crtc * crtc)340 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
341 {
342 	struct drm_device *dev = crtc->dev;
343 	unsigned int pipe = drm_crtc_index(crtc);
344 	u64 vblank;
345 	unsigned long flags;
346 
347 	assert_spin_locked(&dev->event_lock);
348 
349 	WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !dev->driver->get_vblank_timestamp,
350 		  "This function requires support for accurate vblank timestamps.");
351 
352 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
353 
354 	drm_update_vblank_count(dev, pipe, false);
355 	vblank = drm_vblank_count(dev, pipe);
356 
357 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
358 
359 	return vblank;
360 }
361 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
362 
__disable_vblank(struct drm_device * dev,unsigned int pipe)363 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
364 {
365 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
366 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
367 
368 		if (WARN_ON(!crtc))
369 			return;
370 
371 		if (crtc->funcs->disable_vblank) {
372 			crtc->funcs->disable_vblank(crtc);
373 			return;
374 		}
375 	}
376 
377 	dev->driver->disable_vblank(dev, pipe);
378 }
379 
380 /*
381  * Disable vblank irq's on crtc, make sure that last vblank count
382  * of hardware and corresponding consistent software vblank counter
383  * are preserved, even if there are any spurious vblank irq's after
384  * disable.
385  */
drm_vblank_disable_and_save(struct drm_device * dev,unsigned int pipe)386 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
387 {
388 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
389 	unsigned long irqflags;
390 
391 	assert_spin_locked(&dev->event_lock);
392 
393 	/* Prevent vblank irq processing while disabling vblank irqs,
394 	 * so no updates of timestamps or count can happen after we've
395 	 * disabled. Needed to prevent races in case of delayed irq's.
396 	 */
397 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
398 
399 	/*
400 	 * Update vblank count and disable vblank interrupts only if the
401 	 * interrupts were enabled. This avoids calling the ->disable_vblank()
402 	 * operation in atomic context with the hardware potentially runtime
403 	 * suspended.
404 	 */
405 	if (!vblank->enabled)
406 		goto out;
407 
408 	/*
409 	 * Update the count and timestamp to maintain the
410 	 * appearance that the counter has been ticking all along until
411 	 * this time. This makes the count account for the entire time
412 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
413 	 */
414 	drm_update_vblank_count(dev, pipe, false);
415 	__disable_vblank(dev, pipe);
416 	vblank->enabled = false;
417 
418 out:
419 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
420 }
421 
422 static void
vblank_disable_locked(struct drm_vblank_crtc * vblank,struct drm_device * dev,unsigned int pipe)423 vblank_disable_locked(struct drm_vblank_crtc *vblank, struct drm_device *dev,
424     unsigned int pipe)
425 {
426 
427 	BUG_ON(vblank != &dev->vblank[pipe]);
428 	assert_spin_locked(&dev->event_lock);
429 
430 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
431 		DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
432 		drm_vblank_disable_and_save(dev, pipe);
433 	}
434 }
435 
vblank_disable_fn(struct timer_list * t)436 static void vblank_disable_fn(struct timer_list *t)
437 {
438 	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
439 	struct drm_device *dev = vblank->dev;
440 	unsigned int pipe = vblank->pipe;
441 	unsigned long irqflags;
442 
443 	spin_lock_irqsave(&dev->event_lock, irqflags);
444 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
445 		DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
446 		drm_vblank_disable_and_save(dev, pipe);
447 	}
448 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
449 }
450 
drm_vblank_cleanup(struct drm_device * dev)451 void drm_vblank_cleanup(struct drm_device *dev)
452 {
453 	unsigned int pipe;
454 
455 	/* Bail if the driver didn't call drm_vblank_init() */
456 	if (dev->num_crtcs == 0)
457 		return;
458 
459 	for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
460 		struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
461 
462 		WARN_ON(READ_ONCE(vblank->enabled) &&
463 			drm_core_check_feature(dev, DRIVER_MODESET));
464 
465 		del_timer_sync(&vblank->disable_timer);
466 		seqlock_destroy(&vblank->seqlock);
467 	}
468 
469 	kfree(dev->vblank);
470 
471 	dev->num_crtcs = 0;
472 
473 	spin_lock_destroy(&dev->vblank_time_lock);
474 }
475 
476 /**
477  * drm_vblank_init - initialize vblank support
478  * @dev: DRM device
479  * @num_crtcs: number of CRTCs supported by @dev
480  *
481  * This function initializes vblank support for @num_crtcs display pipelines.
482  * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
483  * drivers with a &drm_driver.release callback.
484  *
485  * Returns:
486  * Zero on success or a negative error code on failure.
487  */
drm_vblank_init(struct drm_device * dev,unsigned int num_crtcs)488 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
489 {
490 	int ret = -ENOMEM;
491 	unsigned int i;
492 
493 	spin_lock_init(&dev->vblank_time_lock);
494 
495 	dev->num_crtcs = num_crtcs;
496 
497 	dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
498 	if (!dev->vblank)
499 		goto err;
500 
501 	for (i = 0; i < num_crtcs; i++) {
502 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
503 
504 		vblank->dev = dev;
505 		vblank->pipe = i;
506 		DRM_INIT_WAITQUEUE(&vblank->queue, "drmvblnq");
507 		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
508 		seqlock_init(&vblank->seqlock);
509 	}
510 
511 	DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
512 
513 	/* Driver specific high-precision vblank timestamping supported? */
514 	if (dev->driver->get_vblank_timestamp)
515 		DRM_INFO("Driver supports precise vblank timestamp query.\n");
516 	else
517 		DRM_INFO("No driver support for vblank timestamp query.\n");
518 
519 	/* Must have precise timestamping for reliable vblank instant disable */
520 	if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
521 		dev->vblank_disable_immediate = false;
522 		DRM_INFO("Setting vblank_disable_immediate to false because "
523 			 "get_vblank_timestamp == NULL\n");
524 	}
525 
526 	return 0;
527 
528 err:
529 	dev->num_crtcs = 0;
530 	return ret;
531 }
532 EXPORT_SYMBOL(drm_vblank_init);
533 
534 /**
535  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
536  * @crtc: which CRTC's vblank waitqueue to retrieve
537  *
538  * This function returns a pointer to the vblank waitqueue for the CRTC.
539  * Drivers can use this to implement vblank waits using wait_event() and related
540  * functions.
541  */
drm_crtc_vblank_waitqueue(struct drm_crtc * crtc)542 drm_waitqueue_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
543 {
544 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
545 }
546 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
547 
548 
549 /**
550  * drm_calc_timestamping_constants - calculate vblank timestamp constants
551  * @crtc: drm_crtc whose timestamp constants should be updated.
552  * @mode: display mode containing the scanout timings
553  *
554  * Calculate and store various constants which are later needed by vblank and
555  * swap-completion timestamping, e.g, by
556  * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
557  * scanout timing, so they take things like panel scaling or other adjustments
558  * into account.
559  */
drm_calc_timestamping_constants(struct drm_crtc * crtc,const struct drm_display_mode * mode)560 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
561 				     const struct drm_display_mode *mode)
562 {
563 	struct drm_device *dev = crtc->dev;
564 	unsigned int pipe = drm_crtc_index(crtc);
565 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
566 	int linedur_ns = 0, framedur_ns = 0;
567 	int dotclock = mode->crtc_clock;
568 
569 	if (!dev->num_crtcs)
570 		return;
571 
572 	if (WARN_ON(pipe >= dev->num_crtcs))
573 		return;
574 
575 	/* Valid dotclock? */
576 	if (dotclock > 0) {
577 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
578 
579 		/*
580 		 * Convert scanline length in pixels and video
581 		 * dot clock to line duration and frame duration
582 		 * in nanoseconds:
583 		 */
584 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
585 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
586 
587 		/*
588 		 * Fields of interlaced scanout modes are only half a frame duration.
589 		 */
590 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
591 			framedur_ns /= 2;
592 	} else
593 		DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
594 			  crtc->base.id);
595 
596 	vblank->linedur_ns  = linedur_ns;
597 	vblank->framedur_ns = framedur_ns;
598 	vblank->hwmode = *mode;
599 
600 	DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
601 		  crtc->base.id, mode->crtc_htotal,
602 		  mode->crtc_vtotal, mode->crtc_vdisplay);
603 	DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
604 		  crtc->base.id, dotclock, framedur_ns, linedur_ns);
605 }
606 EXPORT_SYMBOL(drm_calc_timestamping_constants);
607 
608 /**
609  * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
610  * @dev: DRM device
611  * @pipe: index of CRTC whose vblank timestamp to retrieve
612  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
613  *             On return contains true maximum error of timestamp
614  * @vblank_time: Pointer to time which should receive the timestamp
615  * @in_vblank_irq:
616  *     True when called from drm_crtc_handle_vblank().  Some drivers
617  *     need to apply some workarounds for gpu-specific vblank irq quirks
618  *     if flag is set.
619  *
620  * Implements calculation of exact vblank timestamps from given drm_display_mode
621  * timings and current video scanout position of a CRTC. This can be directly
622  * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
623  * if &drm_driver.get_scanout_position is implemented.
624  *
625  * The current implementation only handles standard video modes. For double scan
626  * and interlaced modes the driver is supposed to adjust the hardware mode
627  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
628  * match the scanout position reported.
629  *
630  * Note that atomic drivers must call drm_calc_timestamping_constants() before
631  * enabling a CRTC. The atomic helpers already take care of that in
632  * drm_atomic_helper_update_legacy_modeset_state().
633  *
634  * Returns:
635  *
636  * Returns true on success, and false on failure, i.e. when no accurate
637  * timestamp could be acquired.
638  */
drm_calc_vbltimestamp_from_scanoutpos(struct drm_device * dev,unsigned int pipe,int * max_error,ktime_t * vblank_time,bool in_vblank_irq)639 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
640 					   unsigned int pipe,
641 					   int *max_error,
642 					   ktime_t *vblank_time,
643 					   bool in_vblank_irq)
644 {
645 	struct timespec64 ts_etime, ts_vblank_time;
646 	ktime_t stime, etime;
647 	bool vbl_status;
648 	struct drm_crtc *crtc;
649 	const struct drm_display_mode *mode;
650 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
651 	int vpos, hpos, i;
652 	int delta_ns, duration_ns;
653 
654 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
655 		return false;
656 
657 	crtc = drm_crtc_from_index(dev, pipe);
658 
659 	if (pipe >= dev->num_crtcs || !crtc) {
660 		DRM_ERROR("Invalid crtc %u\n", pipe);
661 		return false;
662 	}
663 
664 	/* Scanout position query not supported? Should not happen. */
665 	if (!dev->driver->get_scanout_position) {
666 		DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
667 		return false;
668 	}
669 
670 	if (drm_drv_uses_atomic_modeset(dev))
671 		mode = &vblank->hwmode;
672 	else
673 		mode = &crtc->hwmode;
674 
675 	/* If mode timing undefined, just return as no-op:
676 	 * Happens during initial modesetting of a crtc.
677 	 */
678 	if (mode->crtc_clock == 0) {
679 		DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
680 		WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
681 
682 		return false;
683 	}
684 
685 	/* Get current scanout position with system timestamp.
686 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
687 	 * if single query takes longer than max_error nanoseconds.
688 	 *
689 	 * This guarantees a tight bound on maximum error if
690 	 * code gets preempted or delayed for some reason.
691 	 */
692 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
693 		/*
694 		 * Get vertical and horizontal scanout position vpos, hpos,
695 		 * and bounding timestamps stime, etime, pre/post query.
696 		 */
697 		vbl_status = dev->driver->get_scanout_position(dev, pipe,
698 							       in_vblank_irq,
699 							       &vpos, &hpos,
700 							       &stime, &etime,
701 							       mode);
702 
703 		/* Return as no-op if scanout query unsupported or failed. */
704 		if (!vbl_status) {
705 			DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
706 				  pipe);
707 			return false;
708 		}
709 
710 		/* Compute uncertainty in timestamp of scanout position query. */
711 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
712 
713 		/* Accept result with <  max_error nsecs timing uncertainty. */
714 		if (duration_ns <= *max_error)
715 			break;
716 	}
717 
718 	/* Noisy system timing? */
719 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
720 		DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
721 			  pipe, duration_ns/1000, *max_error/1000, i);
722 	}
723 
724 	/* Return upper bound of timestamp precision error. */
725 	*max_error = duration_ns;
726 
727 	/* Convert scanout position into elapsed time at raw_time query
728 	 * since start of scanout at first display scanline. delta_ns
729 	 * can be negative if start of scanout hasn't happened yet.
730 	 */
731 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
732 			   mode->crtc_clock);
733 
734 	/* Subtract time delta from raw timestamp to get final
735 	 * vblank_time timestamp for end of vblank.
736 	 */
737 	*vblank_time = ktime_sub_ns(etime, delta_ns);
738 
739 	if (!drm_debug_enabled(DRM_UT_VBL))
740 		return true;
741 
742 	ts_etime = ktime_to_timespec64(etime);
743 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
744 
745 	DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %"PRId64".%06ld -> %"PRId64".%06ld [e %d us, %d rep]\n",
746 		      pipe, hpos, vpos,
747 		      (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
748 		      (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
749 		      duration_ns / 1000, i);
750 
751 	return true;
752 }
753 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
754 
755 /**
756  * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
757  *                             vblank interval
758  * @dev: DRM device
759  * @pipe: index of CRTC whose vblank timestamp to retrieve
760  * @tvblank: Pointer to target time which should receive the timestamp
761  * @in_vblank_irq:
762  *     True when called from drm_crtc_handle_vblank().  Some drivers
763  *     need to apply some workarounds for gpu-specific vblank irq quirks
764  *     if flag is set.
765  *
766  * Fetches the system timestamp corresponding to the time of the most recent
767  * vblank interval on specified CRTC. May call into kms-driver to
768  * compute the timestamp with a high-precision GPU specific method.
769  *
770  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
771  * call, i.e., it isn't very precisely locked to the true vblank.
772  *
773  * Returns:
774  * True if timestamp is considered to be very precise, false otherwise.
775  */
776 static bool
drm_get_last_vbltimestamp(struct drm_device * dev,unsigned int pipe,ktime_t * tvblank,bool in_vblank_irq)777 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
778 			  ktime_t *tvblank, bool in_vblank_irq)
779 {
780 	bool ret = false;
781 
782 	/* Define requested maximum error on timestamps (nanoseconds). */
783 	int max_error = (int) drm_timestamp_precision * 1000;
784 
785 	/* Query driver if possible and precision timestamping enabled. */
786 	if (dev->driver->get_vblank_timestamp && (max_error > 0))
787 		ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
788 							tvblank, in_vblank_irq);
789 
790 	/* GPU high precision timestamp query unsupported or failed.
791 	 * Return current monotonic/gettimeofday timestamp as best estimate.
792 	 */
793 	if (!ret)
794 		*tvblank = ktime_get();
795 
796 	return ret;
797 }
798 
799 /**
800  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
801  * @crtc: which counter to retrieve
802  *
803  * Fetches the "cooked" vblank count value that represents the number of
804  * vblank events since the system was booted, including lost events due to
805  * modesetting activity. Note that this timer isn't correct against a racing
806  * vblank interrupt (since it only reports the software vblank counter), see
807  * drm_crtc_accurate_vblank_count() for such use-cases.
808  *
809  * Note that for a given vblank counter value drm_crtc_handle_vblank()
810  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
811  * provide a barrier: Any writes done before calling
812  * drm_crtc_handle_vblank() will be visible to callers of the later
813  * functions, iff the vblank count is the same or a later one.
814  *
815  * See also &drm_vblank_crtc.count.
816  *
817  * Returns:
818  * The software vblank counter.
819  */
drm_crtc_vblank_count(struct drm_crtc * crtc)820 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
821 {
822 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
823 }
824 EXPORT_SYMBOL(drm_crtc_vblank_count);
825 
826 /**
827  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
828  *     system timestamp corresponding to that vblank counter value.
829  * @dev: DRM device
830  * @pipe: index of CRTC whose counter to retrieve
831  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
832  *
833  * Fetches the "cooked" vblank count value that represents the number of
834  * vblank events since the system was booted, including lost events due to
835  * modesetting activity. Returns corresponding system timestamp of the time
836  * of the vblank interval that corresponds to the current vblank counter value.
837  *
838  * This is the legacy version of drm_crtc_vblank_count_and_time().
839  */
drm_vblank_count_and_time(struct drm_device * dev,unsigned int pipe,ktime_t * vblanktime)840 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
841 				     ktime_t *vblanktime)
842 {
843 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
844 	u64 vblank_count;
845 	unsigned int seq;
846 
847 	if (WARN_ON(pipe >= dev->num_crtcs)) {
848 		*vblanktime = 0;
849 		return 0;
850 	}
851 
852 	do {
853 		seq = read_seqbegin(&vblank->seqlock);
854 		vblank_count = atomic64_read(&vblank->count);
855 		*vblanktime = vblank->time;
856 	} while (read_seqretry(&vblank->seqlock, seq));
857 
858 	return vblank_count;
859 }
860 
861 /**
862  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
863  *     and the system timestamp corresponding to that vblank counter value
864  * @crtc: which counter to retrieve
865  * @vblanktime: Pointer to time to receive the vblank timestamp.
866  *
867  * Fetches the "cooked" vblank count value that represents the number of
868  * vblank events since the system was booted, including lost events due to
869  * modesetting activity. Returns corresponding system timestamp of the time
870  * of the vblank interval that corresponds to the current vblank counter value.
871  *
872  * Note that for a given vblank counter value drm_crtc_handle_vblank()
873  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
874  * provide a barrier: Any writes done before calling
875  * drm_crtc_handle_vblank() will be visible to callers of the later
876  * functions, iff the vblank count is the same or a later one.
877  *
878  * See also &drm_vblank_crtc.count.
879  */
drm_crtc_vblank_count_and_time(struct drm_crtc * crtc,ktime_t * vblanktime)880 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
881 				   ktime_t *vblanktime)
882 {
883 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
884 					 vblanktime);
885 }
886 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
887 
send_vblank_event(struct drm_device * dev,struct drm_pending_vblank_event * e,u64 seq,ktime_t now)888 static void send_vblank_event(struct drm_device *dev,
889 		struct drm_pending_vblank_event *e,
890 		u64 seq, ktime_t now)
891 {
892 	struct timespec64 tv;
893 
894 	switch (e->event.base.type) {
895 	case DRM_EVENT_VBLANK:
896 	case DRM_EVENT_FLIP_COMPLETE:
897 		tv = ktime_to_timespec64(now);
898 		e->event.vbl.sequence = seq;
899 		/*
900 		 * e->event is a user space structure, with hardcoded unsigned
901 		 * 32-bit seconds/microseconds. This is safe as we always use
902 		 * monotonic timestamps since linux-4.15
903 		 */
904 		e->event.vbl.tv_sec = tv.tv_sec;
905 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
906 		break;
907 	case DRM_EVENT_CRTC_SEQUENCE:
908 		if (seq)
909 			e->event.seq.sequence = seq;
910 		e->event.seq.time_ns = ktime_to_ns(now);
911 		break;
912 	}
913 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
914 	drm_send_event_locked(dev, &e->base);
915 }
916 
917 /**
918  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
919  * @crtc: the source CRTC of the vblank event
920  * @e: the event to send
921  *
922  * A lot of drivers need to generate vblank events for the very next vblank
923  * interrupt. For example when the page flip interrupt happens when the page
924  * flip gets armed, but not when it actually executes within the next vblank
925  * period. This helper function implements exactly the required vblank arming
926  * behaviour.
927  *
928  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
929  * atomic commit must ensure that the next vblank happens at exactly the same
930  * time as the atomic commit is committed to the hardware. This function itself
931  * does **not** protect against the next vblank interrupt racing with either this
932  * function call or the atomic commit operation. A possible sequence could be:
933  *
934  * 1. Driver commits new hardware state into vblank-synchronized registers.
935  * 2. A vblank happens, committing the hardware state. Also the corresponding
936  *    vblank interrupt is fired off and fully processed by the interrupt
937  *    handler.
938  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
939  * 4. The event is only send out for the next vblank, which is wrong.
940  *
941  * An equivalent race can happen when the driver calls
942  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
943  *
944  * The only way to make this work safely is to prevent the vblank from firing
945  * (and the hardware from committing anything else) until the entire atomic
946  * commit sequence has run to completion. If the hardware does not have such a
947  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
948  * Instead drivers need to manually send out the event from their interrupt
949  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
950  * possible race with the hardware committing the atomic update.
951  *
952  * Caller must hold a vblank reference for the event @e acquired by a
953  * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
954  */
drm_crtc_arm_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)955 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
956 			       struct drm_pending_vblank_event *e)
957 {
958 	struct drm_device *dev = crtc->dev;
959 	unsigned int pipe = drm_crtc_index(crtc);
960 
961 	assert_spin_locked(&dev->event_lock);
962 
963 	e->pipe = pipe;
964 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
965 	list_add_tail(&e->base.link, &dev->vblank_event_list);
966 }
967 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
968 
969 /**
970  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
971  * @crtc: the source CRTC of the vblank event
972  * @e: the event to send
973  *
974  * Updates sequence # and timestamp on event for the most recently processed
975  * vblank, and sends it to userspace.  Caller must hold event lock.
976  *
977  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
978  * situation, especially to send out events for atomic commit operations.
979  */
drm_crtc_send_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)980 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
981 				struct drm_pending_vblank_event *e)
982 {
983 	struct drm_device *dev = crtc->dev;
984 	u64 seq;
985 	unsigned int pipe = drm_crtc_index(crtc);
986 	ktime_t now;
987 
988 	if (dev->num_crtcs > 0) {
989 		seq = drm_vblank_count_and_time(dev, pipe, &now);
990 	} else {
991 		seq = 0;
992 
993 		now = ktime_get();
994 	}
995 	e->pipe = pipe;
996 	send_vblank_event(dev, e, seq, now);
997 }
998 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
999 
__enable_vblank(struct drm_device * dev,unsigned int pipe)1000 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1001 {
1002 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1003 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1004 
1005 		if (WARN_ON(!crtc))
1006 			return 0;
1007 
1008 		if (crtc->funcs->enable_vblank)
1009 			return crtc->funcs->enable_vblank(crtc);
1010 	}
1011 
1012 	return dev->driver->enable_vblank(dev, pipe);
1013 }
1014 
drm_vblank_enable(struct drm_device * dev,unsigned int pipe)1015 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1016 {
1017 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1018 	int ret = 0;
1019 
1020 	assert_spin_locked(&dev->event_lock);
1021 
1022 	spin_lock(&dev->vblank_time_lock);
1023 
1024 	if (!vblank->enabled) {
1025 		/*
1026 		 * Enable vblank irqs under vblank_time_lock protection.
1027 		 * All vblank count & timestamp updates are held off
1028 		 * until we are done reinitializing master counter and
1029 		 * timestamps. Filtercode in drm_handle_vblank() will
1030 		 * prevent double-accounting of same vblank interval.
1031 		 */
1032 		ret = __enable_vblank(dev, pipe);
1033 		DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
1034 		if (ret) {
1035 			atomic_dec(&vblank->refcount);
1036 		} else {
1037 			drm_update_vblank_count(dev, pipe, 0);
1038 			/* drm_update_vblank_count() includes a wmb so we just
1039 			 * need to ensure that the compiler emits the write
1040 			 * to mark the vblank as enabled after the call
1041 			 * to drm_update_vblank_count().
1042 			 */
1043 			WRITE_ONCE(vblank->enabled, true);
1044 		}
1045 	}
1046 
1047 	spin_unlock(&dev->vblank_time_lock);
1048 
1049 	return ret;
1050 }
1051 
drm_vblank_get_locked(struct drm_device * dev,unsigned int pipe)1052 static int drm_vblank_get_locked(struct drm_device *dev, unsigned int pipe)
1053 {
1054 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1055 	int ret = 0;
1056 
1057 	assert_spin_locked(&dev->event_lock);
1058 
1059 	if (!dev->num_crtcs)
1060 		return -EINVAL;
1061 
1062 	if (WARN_ON(pipe >= dev->num_crtcs))
1063 		return -EINVAL;
1064 
1065 	/* Going from 0->1 means we have to enable interrupts again */
1066 	if (atomic_add_return(1, &vblank->refcount) == 1) {
1067 		ret = drm_vblank_enable(dev, pipe);
1068 	} else {
1069 		if (!vblank->enabled) {
1070 			atomic_dec(&vblank->refcount);
1071 			ret = -EINVAL;
1072 		}
1073 	}
1074 
1075 	return ret;
1076 }
1077 
drm_vblank_get(struct drm_device * dev,unsigned int pipe)1078 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1079 {
1080 	int ret;
1081 
1082 	spin_lock(&dev->event_lock);
1083 	ret = drm_vblank_get_locked(dev, pipe);
1084 	spin_unlock(&dev->event_lock);
1085 
1086 	return ret;
1087 }
1088 
1089 /**
1090  * drm_crtc_vblank_get - get a reference count on vblank events
1091  * @crtc: which CRTC to own
1092  *
1093  * Acquire a reference count on vblank events to avoid having them disabled
1094  * while in use.
1095  *
1096  * Returns:
1097  * Zero on success or a negative error code on failure.
1098  */
drm_crtc_vblank_get(struct drm_crtc * crtc)1099 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1100 {
1101 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1102 }
1103 EXPORT_SYMBOL(drm_crtc_vblank_get);
1104 
drm_crtc_vblank_get_locked(struct drm_crtc * crtc)1105 int drm_crtc_vblank_get_locked(struct drm_crtc *crtc)
1106 {
1107 	return drm_vblank_get_locked(crtc->dev, drm_crtc_index(crtc));
1108 }
1109 EXPORT_SYMBOL(drm_crtc_vblank_get_locked);
1110 
drm_vblank_put_locked(struct drm_device * dev,unsigned int pipe)1111 static void drm_vblank_put_locked(struct drm_device *dev, unsigned int pipe)
1112 {
1113 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1114 
1115 	assert_spin_locked(&dev->event_lock);
1116 
1117 	if (WARN_ON(pipe >= dev->num_crtcs))
1118 		return;
1119 
1120 	if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1121 		return;
1122 
1123 	/* Last user schedules interrupt disable */
1124 	if (atomic_dec_and_test(&vblank->refcount)) {
1125 		if (drm_vblank_offdelay == 0)
1126 			return;
1127 		else if (drm_vblank_offdelay < 0)
1128 			vblank_disable_locked(vblank, dev, pipe);
1129 		else if (!dev->vblank_disable_immediate)
1130 			mod_timer(&vblank->disable_timer,
1131 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1132 	}
1133 }
1134 
drm_vblank_put(struct drm_device * dev,unsigned int pipe)1135 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1136 {
1137 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1138 
1139 	if (WARN_ON(pipe >= dev->num_crtcs))
1140 		return;
1141 
1142 	if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1143 		return;
1144 
1145 	/* Last user schedules interrupt disable */
1146 	if (atomic_dec_and_test(&vblank->refcount)) {
1147 		if (drm_vblank_offdelay == 0)
1148 			return;
1149 		else if (drm_vblank_offdelay < 0)
1150 			vblank_disable_fn(&vblank->disable_timer);
1151 		else if (!dev->vblank_disable_immediate)
1152 			mod_timer(&vblank->disable_timer,
1153 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1154 	}
1155 }
1156 
1157 /**
1158  * drm_crtc_vblank_put - give up ownership of vblank events
1159  * @crtc: which counter to give up
1160  *
1161  * Release ownership of a given vblank counter, turning off interrupts
1162  * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1163  */
drm_crtc_vblank_put(struct drm_crtc * crtc)1164 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1165 {
1166 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1167 }
1168 EXPORT_SYMBOL(drm_crtc_vblank_put);
1169 
drm_crtc_vblank_put_locked(struct drm_crtc * crtc)1170 void drm_crtc_vblank_put_locked(struct drm_crtc *crtc)
1171 {
1172 	drm_vblank_put_locked(crtc->dev, drm_crtc_index(crtc));
1173 }
1174 
1175 /**
1176  * drm_wait_one_vblank - wait for one vblank
1177  * @dev: DRM device
1178  * @pipe: CRTC index
1179  *
1180  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1181  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1182  * due to lack of driver support or because the crtc is off.
1183  *
1184  * This is the legacy version of drm_crtc_wait_one_vblank().
1185  */
drm_wait_one_vblank(struct drm_device * dev,unsigned int pipe)1186 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1187 {
1188 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1189 	int ret;
1190 	u64 last;
1191 
1192 	if (WARN_ON(pipe >= dev->num_crtcs))
1193 		return;
1194 
1195 	spin_lock(&dev->event_lock);
1196 
1197 	ret = drm_vblank_get_locked(dev, pipe);
1198 	if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1199 		goto out;
1200 
1201 	last = drm_vblank_count(dev, pipe);
1202 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &vblank->queue, &dev->event_lock,
1203 	    msecs_to_jiffies(100),
1204 	    last != drm_vblank_count(dev, pipe));
1205 
1206 	WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1207 
1208 	drm_vblank_put_locked(dev, pipe);
1209 out:	spin_unlock(&dev->event_lock);
1210 }
1211 EXPORT_SYMBOL(drm_wait_one_vblank);
1212 
1213 /**
1214  * drm_crtc_wait_one_vblank - wait for one vblank
1215  * @crtc: DRM crtc
1216  *
1217  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1218  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1219  * due to lack of driver support or because the crtc is off.
1220  */
drm_crtc_wait_one_vblank(struct drm_crtc * crtc)1221 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1222 {
1223 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1224 }
1225 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1226 
1227 /**
1228  * drm_crtc_vblank_off - disable vblank events on a CRTC
1229  * @crtc: CRTC in question
1230  *
1231  * Drivers can use this function to shut down the vblank interrupt handling when
1232  * disabling a crtc. This function ensures that the latest vblank frame count is
1233  * stored so that drm_vblank_on can restore it again.
1234  *
1235  * Drivers must use this function when the hardware vblank counter can get
1236  * reset, e.g. when suspending or disabling the @crtc in general.
1237  */
drm_crtc_vblank_off(struct drm_crtc * crtc)1238 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1239 {
1240 	struct drm_device *dev = crtc->dev;
1241 	unsigned int pipe = drm_crtc_index(crtc);
1242 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1243 	struct drm_pending_vblank_event *e, *t;
1244 
1245 	ktime_t now;
1246 	unsigned long irqflags;
1247 	u64 seq;
1248 
1249 	if (WARN_ON(pipe >= dev->num_crtcs))
1250 		return;
1251 
1252 	spin_lock_irqsave(&dev->event_lock, irqflags);
1253 
1254 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1255 		      pipe, vblank->enabled, vblank->inmodeset);
1256 
1257 	/* Avoid redundant vblank disables without previous
1258 	 * drm_crtc_vblank_on(). */
1259 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1260 		drm_vblank_disable_and_save(dev, pipe);
1261 
1262 	DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->event_lock);
1263 
1264 	/*
1265 	 * Prevent subsequent drm_vblank_get() from re-enabling
1266 	 * the vblank interrupt by bumping the refcount.
1267 	 */
1268 	if (!vblank->inmodeset) {
1269 		atomic_inc(&vblank->refcount);
1270 		vblank->inmodeset = 1;
1271 	}
1272 
1273 	/* Send any queued vblank events, lest the natives grow disquiet */
1274 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1275 
1276 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1277 		if (e->pipe != pipe)
1278 			continue;
1279 		DRM_DEBUG("Sending premature vblank event on disable: "
1280 			  "wanted %"PRIu64", current %"PRIu64"\n",
1281 			  e->sequence, seq);
1282 		list_del(&e->base.link);
1283 		drm_vblank_put(dev, pipe);
1284 		send_vblank_event(dev, e, seq, now);
1285 	}
1286 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1287 
1288 	/* Will be reset by the modeset helpers when re-enabling the crtc by
1289 	 * calling drm_calc_timestamping_constants(). */
1290 	vblank->hwmode.crtc_clock = 0;
1291 }
1292 EXPORT_SYMBOL(drm_crtc_vblank_off);
1293 
1294 /**
1295  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1296  * @crtc: CRTC in question
1297  *
1298  * Drivers can use this function to reset the vblank state to off at load time.
1299  * Drivers should use this together with the drm_crtc_vblank_off() and
1300  * drm_crtc_vblank_on() functions. The difference compared to
1301  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1302  * and hence doesn't need to call any driver hooks.
1303  *
1304  * This is useful for recovering driver state e.g. on driver load, or on resume.
1305  */
drm_crtc_vblank_reset(struct drm_crtc * crtc)1306 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1307 {
1308 	struct drm_device *dev = crtc->dev;
1309 	unsigned long irqflags;
1310 	unsigned int pipe = drm_crtc_index(crtc);
1311 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1312 
1313 	spin_lock_irqsave(&dev->event_lock, irqflags);
1314 	/*
1315 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1316 	 * interrupt by bumping the refcount.
1317 	 */
1318 	if (!vblank->inmodeset) {
1319 		atomic_inc(&vblank->refcount);
1320 		vblank->inmodeset = 1;
1321 	}
1322 	WARN_ON(!list_empty(&dev->vblank_event_list));
1323 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1324 }
1325 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1326 
1327 /**
1328  * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1329  * @crtc: CRTC in question
1330  * @max_vblank_count: max hardware vblank counter value
1331  *
1332  * Update the maximum hardware vblank counter value for @crtc
1333  * at runtime. Useful for hardware where the operation of the
1334  * hardware vblank counter depends on the currently active
1335  * display configuration.
1336  *
1337  * For example, if the hardware vblank counter does not work
1338  * when a specific connector is active the maximum can be set
1339  * to zero. And when that specific connector isn't active the
1340  * maximum can again be set to the appropriate non-zero value.
1341  *
1342  * If used, must be called before drm_vblank_on().
1343  */
drm_crtc_set_max_vblank_count(struct drm_crtc * crtc,u32 max_vblank_count)1344 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1345 				   u32 max_vblank_count)
1346 {
1347 	struct drm_device *dev = crtc->dev;
1348 	unsigned int pipe = drm_crtc_index(crtc);
1349 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1350 
1351 	WARN_ON(dev->max_vblank_count);
1352 	WARN_ON(!READ_ONCE(vblank->inmodeset));
1353 
1354 	vblank->max_vblank_count = max_vblank_count;
1355 }
1356 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1357 
1358 /**
1359  * drm_crtc_vblank_on - enable vblank events on a CRTC
1360  * @crtc: CRTC in question
1361  *
1362  * This functions restores the vblank interrupt state captured with
1363  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1364  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1365  * unbalanced and so can also be unconditionally called in driver load code to
1366  * reflect the current hardware state of the crtc.
1367  */
drm_crtc_vblank_on(struct drm_crtc * crtc)1368 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1369 {
1370 	struct drm_device *dev = crtc->dev;
1371 	unsigned int pipe = drm_crtc_index(crtc);
1372 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1373 	unsigned long irqflags;
1374 
1375 	if (WARN_ON(pipe >= dev->num_crtcs))
1376 		return;
1377 
1378 	spin_lock_irqsave(&dev->event_lock, irqflags);
1379 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1380 		      pipe, vblank->enabled, vblank->inmodeset);
1381 
1382 	/* Drop our private "prevent drm_vblank_get" refcount */
1383 	if (vblank->inmodeset) {
1384 		atomic_dec(&vblank->refcount);
1385 		vblank->inmodeset = 0;
1386 	}
1387 
1388 	drm_reset_vblank_timestamp(dev, pipe);
1389 
1390 	/*
1391 	 * re-enable interrupts if there are users left, or the
1392 	 * user wishes vblank interrupts to be enabled all the time.
1393 	 */
1394 	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1395 		WARN_ON(drm_vblank_enable(dev, pipe));
1396 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1397 }
1398 EXPORT_SYMBOL(drm_crtc_vblank_on);
1399 
1400 /**
1401  * drm_vblank_restore - estimate missed vblanks and update vblank count.
1402  * @dev: DRM device
1403  * @pipe: CRTC index
1404  *
1405  * Power manamement features can cause frame counter resets between vblank
1406  * disable and enable. Drivers can use this function in their
1407  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1408  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1409  * vblank counter.
1410  *
1411  * This function is the legacy version of drm_crtc_vblank_restore().
1412  */
drm_vblank_restore(struct drm_device * dev,unsigned int pipe)1413 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1414 {
1415 	ktime_t t_vblank;
1416 	struct drm_vblank_crtc *vblank;
1417 	int framedur_ns;
1418 	u64 diff_ns;
1419 	u32 cur_vblank, diff = 1;
1420 	int count = DRM_TIMESTAMP_MAXRETRIES;
1421 
1422 	if (WARN_ON(pipe >= dev->num_crtcs))
1423 		return;
1424 
1425 	assert_spin_locked(&dev->event_lock);
1426 	assert_spin_locked(&dev->vblank_time_lock);
1427 
1428 	vblank = &dev->vblank[pipe];
1429 	WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1430 		  "Cannot compute missed vblanks without frame duration\n");
1431 	framedur_ns = vblank->framedur_ns;
1432 
1433 	do {
1434 		cur_vblank = __get_vblank_counter(dev, pipe);
1435 		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1436 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1437 
1438 	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1439 	if (framedur_ns)
1440 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1441 
1442 
1443 	DRM_DEBUG_VBL("missed %d vblanks in %"PRId64" ns, frame duration=%d ns, hw_diff=%d\n",
1444 		      diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1445 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1446 }
1447 EXPORT_SYMBOL(drm_vblank_restore);
1448 
1449 /**
1450  * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1451  * @crtc: CRTC in question
1452  *
1453  * Power manamement features can cause frame counter resets between vblank
1454  * disable and enable. Drivers can use this function in their
1455  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1456  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1457  * vblank counter.
1458  */
drm_crtc_vblank_restore(struct drm_crtc * crtc)1459 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1460 {
1461 	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1462 }
1463 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1464 
drm_legacy_vblank_pre_modeset(struct drm_device * dev,unsigned int pipe)1465 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1466 					  unsigned int pipe)
1467 {
1468 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1469 
1470 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1471 	if (!dev->num_crtcs)
1472 		return;
1473 
1474 	if (WARN_ON(pipe >= dev->num_crtcs))
1475 		return;
1476 
1477 	/*
1478 	 * To avoid all the problems that might happen if interrupts
1479 	 * were enabled/disabled around or between these calls, we just
1480 	 * have the kernel take a reference on the CRTC (just once though
1481 	 * to avoid corrupting the count if multiple, mismatch calls occur),
1482 	 * so that interrupts remain enabled in the interim.
1483 	 */
1484 	if (!vblank->inmodeset) {
1485 		vblank->inmodeset = 0x1;
1486 		if (drm_vblank_get(dev, pipe) == 0)
1487 			vblank->inmodeset |= 0x2;
1488 	}
1489 }
1490 
drm_legacy_vblank_post_modeset(struct drm_device * dev,unsigned int pipe)1491 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1492 					   unsigned int pipe)
1493 {
1494 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1495 	unsigned long irqflags;
1496 
1497 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1498 	if (!dev->num_crtcs)
1499 		return;
1500 
1501 	if (WARN_ON(pipe >= dev->num_crtcs))
1502 		return;
1503 
1504 	if (vblank->inmodeset) {
1505 		spin_lock_irqsave(&dev->event_lock, irqflags);
1506 		drm_reset_vblank_timestamp(dev, pipe);
1507 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1508 
1509 		if (vblank->inmodeset & 0x2)
1510 			drm_vblank_put(dev, pipe);
1511 
1512 		vblank->inmodeset = 0;
1513 	}
1514 }
1515 
drm_legacy_modeset_ctl_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1516 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1517 				 struct drm_file *file_priv)
1518 {
1519 	struct drm_modeset_ctl *modeset = data;
1520 	unsigned int pipe;
1521 
1522 	/* If drm_vblank_init() hasn't been called yet, just no-op */
1523 	if (!dev->num_crtcs)
1524 		return 0;
1525 
1526 	/* KMS drivers handle this internally */
1527 	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1528 		return 0;
1529 
1530 	pipe = modeset->crtc;
1531 	if (pipe >= dev->num_crtcs)
1532 		return -EINVAL;
1533 
1534 	switch (modeset->cmd) {
1535 	case _DRM_PRE_MODESET:
1536 		drm_legacy_vblank_pre_modeset(dev, pipe);
1537 		break;
1538 	case _DRM_POST_MODESET:
1539 		drm_legacy_vblank_post_modeset(dev, pipe);
1540 		break;
1541 	default:
1542 		return -EINVAL;
1543 	}
1544 
1545 	return 0;
1546 }
1547 
vblank_passed(u64 seq,u64 ref)1548 static inline bool vblank_passed(u64 seq, u64 ref)
1549 {
1550 	return (seq - ref) <= (1 << 23);
1551 }
1552 
drm_queue_vblank_event(struct drm_device * dev,unsigned int pipe,u64 req_seq,union drm_wait_vblank * vblwait,struct drm_file * file_priv)1553 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1554 				  u64 req_seq,
1555 				  union drm_wait_vblank *vblwait,
1556 				  struct drm_file *file_priv)
1557 {
1558 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1559 	struct drm_pending_vblank_event *e;
1560 	ktime_t now;
1561 	unsigned long flags;
1562 	u64 seq;
1563 	int ret;
1564 
1565 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1566 	if (e == NULL) {
1567 		ret = -ENOMEM;
1568 		goto err_put;
1569 	}
1570 
1571 	e->pipe = pipe;
1572 	e->event.base.type = DRM_EVENT_VBLANK;
1573 	e->event.base.length = sizeof(e->event.vbl);
1574 	e->event.vbl.user_data = vblwait->request.signal;
1575 	e->event.vbl.crtc_id = 0;
1576 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1577 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1578 		if (crtc)
1579 			e->event.vbl.crtc_id = crtc->base.id;
1580 	}
1581 
1582 	spin_lock_irqsave(&dev->event_lock, flags);
1583 
1584 	/*
1585 	 * drm_crtc_vblank_off() might have been called after we called
1586 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1587 	 * vblank disable, so no need for further locking.  The reference from
1588 	 * drm_vblank_get() protects against vblank disable from another source.
1589 	 */
1590 	if (!READ_ONCE(vblank->enabled)) {
1591 		ret = -EINVAL;
1592 		goto err_unlock;
1593 	}
1594 
1595 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1596 					    &e->event.base);
1597 
1598 	if (ret)
1599 		goto err_unlock;
1600 
1601 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1602 
1603 	DRM_DEBUG("event on vblank count %"PRIu64", current %"PRIu64", crtc %u\n",
1604 		  req_seq, seq, pipe);
1605 
1606 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1607 
1608 	e->sequence = req_seq;
1609 	if (vblank_passed(seq, req_seq)) {
1610 		drm_vblank_put(dev, pipe);
1611 		send_vblank_event(dev, e, seq, now);
1612 		vblwait->reply.sequence = seq;
1613 	} else {
1614 		/* drm_handle_vblank_events will call drm_vblank_put */
1615 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1616 		vblwait->reply.sequence = req_seq;
1617 	}
1618 
1619 	spin_unlock_irqrestore(&dev->event_lock, flags);
1620 
1621 	return 0;
1622 
1623 err_unlock:
1624 	spin_unlock_irqrestore(&dev->event_lock, flags);
1625 	kfree(e);
1626 err_put:
1627 	drm_vblank_put(dev, pipe);
1628 	return ret;
1629 }
1630 
drm_wait_vblank_is_query(union drm_wait_vblank * vblwait)1631 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1632 {
1633 	if (vblwait->request.sequence)
1634 		return false;
1635 
1636 	return _DRM_VBLANK_RELATIVE ==
1637 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1638 					  _DRM_VBLANK_EVENT |
1639 					  _DRM_VBLANK_NEXTONMISS));
1640 }
1641 
1642 /*
1643  * Widen a 32-bit param to 64-bits.
1644  *
1645  * \param narrow 32-bit value (missing upper 32 bits)
1646  * \param near 64-bit value that should be 'close' to near
1647  *
1648  * This function returns a 64-bit value using the lower 32-bits from
1649  * 'narrow' and constructing the upper 32-bits so that the result is
1650  * as close as possible to 'near'.
1651  */
1652 
widen_32_to_64(u32 narrow,u64 near)1653 static u64 widen_32_to_64(u32 narrow, u64 near)
1654 {
1655 	return near + (s32) (narrow - near);
1656 }
1657 
drm_wait_vblank_reply(struct drm_device * dev,unsigned int pipe,struct drm_wait_vblank_reply * reply)1658 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1659 				  struct drm_wait_vblank_reply *reply)
1660 {
1661 	ktime_t now;
1662 	struct timespec64 ts;
1663 
1664 	/*
1665 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1666 	 * to store the seconds. This is safe as we always use monotonic
1667 	 * timestamps since linux-4.15.
1668 	 */
1669 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1670 	ts = ktime_to_timespec64(now);
1671 	reply->tval_sec = (u32)ts.tv_sec;
1672 	reply->tval_usec = ts.tv_nsec / 1000;
1673 }
1674 
drm_wait_vblank_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1675 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1676 			  struct drm_file *file_priv)
1677 {
1678 	struct drm_crtc *crtc;
1679 	struct drm_vblank_crtc *vblank;
1680 	union drm_wait_vblank *vblwait = data;
1681 	int ret;
1682 	u64 req_seq, seq;
1683 	unsigned int pipe_index;
1684 	unsigned int flags, pipe, high_pipe;
1685 
1686 	if (!dev->irq_enabled)
1687 		return -EOPNOTSUPP;
1688 
1689 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1690 		return -EINVAL;
1691 
1692 	if (vblwait->request.type &
1693 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1694 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1695 		DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n",
1696 			  vblwait->request.type,
1697 			  (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1698 			   _DRM_VBLANK_HIGH_CRTC_MASK));
1699 		return -EINVAL;
1700 	}
1701 
1702 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1703 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1704 	if (high_pipe)
1705 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1706 	else
1707 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1708 
1709 	/* Convert lease-relative crtc index into global crtc index */
1710 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1711 		pipe = 0;
1712 		drm_for_each_crtc(crtc, dev) {
1713 			if (drm_lease_held(file_priv, crtc->base.id)) {
1714 				if (pipe_index == 0)
1715 					break;
1716 				pipe_index--;
1717 			}
1718 			pipe++;
1719 		}
1720 	} else {
1721 		pipe = pipe_index;
1722 	}
1723 
1724 	if (pipe >= dev->num_crtcs)
1725 		return -EINVAL;
1726 
1727 	vblank = &dev->vblank[pipe];
1728 
1729 	/* If the counter is currently enabled and accurate, short-circuit
1730 	 * queries to return the cached timestamp of the last vblank.
1731 	 */
1732 	if (dev->vblank_disable_immediate &&
1733 	    drm_wait_vblank_is_query(vblwait) &&
1734 	    READ_ONCE(vblank->enabled)) {
1735 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1736 		return 0;
1737 	}
1738 
1739 	ret = drm_vblank_get(dev, pipe);
1740 	if (ret) {
1741 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1742 		return ret;
1743 	}
1744 	seq = drm_vblank_count(dev, pipe);
1745 
1746 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1747 	case _DRM_VBLANK_RELATIVE:
1748 		req_seq = seq + vblwait->request.sequence;
1749 		vblwait->request.sequence = req_seq;
1750 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1751 		break;
1752 	case _DRM_VBLANK_ABSOLUTE:
1753 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1754 		break;
1755 	default:
1756 		ret = -EINVAL;
1757 		goto done;
1758 	}
1759 
1760 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1761 	    vblank_passed(seq, req_seq)) {
1762 		req_seq = seq + 1;
1763 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1764 		vblwait->request.sequence = req_seq;
1765 	}
1766 
1767 	if (flags & _DRM_VBLANK_EVENT) {
1768 		/* must hold on to the vblank ref until the event fires
1769 		 * drm_vblank_put will be called asynchronously
1770 		 */
1771 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1772 	}
1773 
1774 	if (req_seq != seq) {
1775 		int wait;
1776 
1777 		DRM_DEBUG("waiting on vblank count %"PRIu64", crtc %u\n",
1778 			  req_seq, pipe);
1779 		spin_lock(&dev->event_lock);
1780 		DRM_SPIN_TIMED_WAIT_UNTIL(wait, &vblank->queue,
1781 		    &dev->event_lock, msecs_to_jiffies(3000),
1782 		    (vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1783 			!READ_ONCE(vblank->enabled)));
1784 		spin_unlock(&dev->event_lock);
1785 
1786 		switch (wait) {
1787 		case 0:
1788 			/* timeout */
1789 			ret = -EBUSY;
1790 			break;
1791 		case -ERESTARTSYS:
1792 			/* interrupted by signal */
1793 			ret = -EINTR;
1794 			break;
1795 		default:
1796 			ret = 0;
1797 			break;
1798 		}
1799 	}
1800 
1801 	if (ret != -EINTR) {
1802 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1803 
1804 		DRM_DEBUG("crtc %d returning %u to client\n",
1805 			  pipe, vblwait->reply.sequence);
1806 	} else {
1807 		DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1808 	}
1809 
1810 done:
1811 	drm_vblank_put(dev, pipe);
1812 	return ret;
1813 }
1814 
drm_handle_vblank_events(struct drm_device * dev,unsigned int pipe)1815 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1816 {
1817 	struct drm_pending_vblank_event *e, *t;
1818 	ktime_t now;
1819 	u64 seq;
1820 
1821 	assert_spin_locked(&dev->event_lock);
1822 
1823 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1824 
1825 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1826 		if (e->pipe != pipe)
1827 			continue;
1828 		if (!vblank_passed(seq, e->sequence))
1829 			continue;
1830 
1831 		DRM_DEBUG("vblank event on %"PRIu64", current %"PRIu64"\n",
1832 			  e->sequence, seq);
1833 
1834 		list_del(&e->base.link);
1835 		drm_vblank_put(dev, pipe);
1836 		send_vblank_event(dev, e, seq, now);
1837 	}
1838 
1839 	trace_drm_vblank_event(pipe, seq, now,
1840 			dev->driver->get_vblank_timestamp != NULL);
1841 }
1842 
1843 /**
1844  * drm_handle_vblank - handle a vblank event
1845  * @dev: DRM device
1846  * @pipe: index of CRTC where this event occurred
1847  *
1848  * Drivers should call this routine in their vblank interrupt handlers to
1849  * update the vblank counter and send any signals that may be pending.
1850  *
1851  * This is the legacy version of drm_crtc_handle_vblank().
1852  */
drm_handle_vblank(struct drm_device * dev,unsigned int pipe)1853 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1854 {
1855 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1856 	unsigned long irqflags;
1857 	bool disable_irq;
1858 
1859 	if (WARN_ON_ONCE(!dev->num_crtcs))
1860 		return false;
1861 
1862 	if (WARN_ON(pipe >= dev->num_crtcs))
1863 		return false;
1864 
1865 	spin_lock_irqsave(&dev->event_lock, irqflags);
1866 
1867 	/* Need timestamp lock to prevent concurrent execution with
1868 	 * vblank enable/disable, as this would cause inconsistent
1869 	 * or corrupted timestamps and vblank counts.
1870 	 */
1871 	spin_lock(&dev->vblank_time_lock);
1872 
1873 	/* Vblank irq handling disabled. Nothing to do. */
1874 	if (!vblank->enabled) {
1875 		spin_unlock(&dev->vblank_time_lock);
1876 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1877 		return false;
1878 	}
1879 
1880 	drm_update_vblank_count(dev, pipe, true);
1881 
1882 	spin_unlock(&dev->vblank_time_lock);
1883 
1884 	DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->event_lock);
1885 
1886 	/* With instant-off, we defer disabling the interrupt until after
1887 	 * we finish processing the following vblank after all events have
1888 	 * been signaled. The disable has to be last (after
1889 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1890 	 */
1891 	disable_irq = (dev->vblank_disable_immediate &&
1892 		       drm_vblank_offdelay > 0 &&
1893 		       !atomic_read(&vblank->refcount));
1894 
1895 	drm_handle_vblank_events(dev, pipe);
1896 
1897 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1898 
1899 	if (disable_irq)
1900 		vblank_disable_fn(&vblank->disable_timer);
1901 
1902 	return true;
1903 }
1904 EXPORT_SYMBOL(drm_handle_vblank);
1905 
1906 /**
1907  * drm_crtc_handle_vblank - handle a vblank event
1908  * @crtc: where this event occurred
1909  *
1910  * Drivers should call this routine in their vblank interrupt handlers to
1911  * update the vblank counter and send any signals that may be pending.
1912  *
1913  * This is the native KMS version of drm_handle_vblank().
1914  *
1915  * Note that for a given vblank counter value drm_crtc_handle_vblank()
1916  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1917  * provide a barrier: Any writes done before calling
1918  * drm_crtc_handle_vblank() will be visible to callers of the later
1919  * functions, iff the vblank count is the same or a later one.
1920  *
1921  * See also &drm_vblank_crtc.count.
1922  *
1923  * Returns:
1924  * True if the event was successfully handled, false on failure.
1925  */
drm_crtc_handle_vblank(struct drm_crtc * crtc)1926 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1927 {
1928 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1929 }
1930 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1931 
1932 /*
1933  * Get crtc VBLANK count.
1934  *
1935  * \param dev DRM device
1936  * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1937  * \param file_priv drm file private for the user's open file descriptor
1938  */
1939 
drm_crtc_get_sequence_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1940 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1941 				struct drm_file *file_priv)
1942 {
1943 	struct drm_crtc *crtc;
1944 	struct drm_vblank_crtc *vblank;
1945 	int pipe;
1946 	struct drm_crtc_get_sequence *get_seq = data;
1947 	ktime_t now;
1948 	bool vblank_enabled;
1949 	int ret;
1950 
1951 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1952 		return -EOPNOTSUPP;
1953 
1954 	if (!dev->irq_enabled)
1955 		return -EOPNOTSUPP;
1956 
1957 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1958 	if (!crtc)
1959 		return -ENOENT;
1960 
1961 	pipe = drm_crtc_index(crtc);
1962 
1963 	vblank = &dev->vblank[pipe];
1964 	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1965 
1966 	if (!vblank_enabled) {
1967 		ret = drm_crtc_vblank_get(crtc);
1968 		if (ret) {
1969 			DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1970 			return ret;
1971 		}
1972 	}
1973 	drm_modeset_lock(&crtc->mutex, NULL);
1974 	if (crtc->state)
1975 		get_seq->active = crtc->state->enable;
1976 	else
1977 		get_seq->active = crtc->enabled;
1978 	drm_modeset_unlock(&crtc->mutex);
1979 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1980 	get_seq->sequence_ns = ktime_to_ns(now);
1981 	if (!vblank_enabled)
1982 		drm_crtc_vblank_put(crtc);
1983 	return 0;
1984 }
1985 
1986 /*
1987  * Queue a event for VBLANK sequence
1988  *
1989  * \param dev DRM device
1990  * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
1991  * \param file_priv drm file private for the user's open file descriptor
1992  */
1993 
drm_crtc_queue_sequence_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1994 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
1995 				  struct drm_file *file_priv)
1996 {
1997 	struct drm_crtc *crtc;
1998 	struct drm_vblank_crtc *vblank;
1999 	int pipe;
2000 	struct drm_crtc_queue_sequence *queue_seq = data;
2001 	ktime_t now;
2002 	struct drm_pending_vblank_event *e;
2003 	u32 flags;
2004 	u64 seq;
2005 	u64 req_seq;
2006 	int ret;
2007 	unsigned long spin_flags;
2008 
2009 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2010 		return -EOPNOTSUPP;
2011 
2012 	if (!dev->irq_enabled)
2013 		return -EOPNOTSUPP;
2014 
2015 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2016 	if (!crtc)
2017 		return -ENOENT;
2018 
2019 	flags = queue_seq->flags;
2020 	/* Check valid flag bits */
2021 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2022 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2023 		return -EINVAL;
2024 
2025 	pipe = drm_crtc_index(crtc);
2026 
2027 	vblank = &dev->vblank[pipe];
2028 
2029 	e = kzalloc(sizeof(*e), GFP_KERNEL);
2030 	if (e == NULL)
2031 		return -ENOMEM;
2032 
2033 	ret = drm_crtc_vblank_get(crtc);
2034 	if (ret) {
2035 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
2036 		goto err_free;
2037 	}
2038 
2039 	seq = drm_vblank_count_and_time(dev, pipe, &now);
2040 	req_seq = queue_seq->sequence;
2041 
2042 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2043 		req_seq += seq;
2044 
2045 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
2046 		req_seq = seq + 1;
2047 
2048 	e->pipe = pipe;
2049 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2050 	e->event.base.length = sizeof(e->event.seq);
2051 	e->event.seq.user_data = queue_seq->user_data;
2052 
2053 	spin_lock_irqsave(&dev->event_lock, spin_flags);
2054 
2055 	/*
2056 	 * drm_crtc_vblank_off() might have been called after we called
2057 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2058 	 * vblank disable, so no need for further locking.  The reference from
2059 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2060 	 */
2061 	if (!READ_ONCE(vblank->enabled)) {
2062 		ret = -EINVAL;
2063 		goto err_unlock;
2064 	}
2065 
2066 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2067 					    &e->event.base);
2068 
2069 	if (ret)
2070 		goto err_unlock;
2071 
2072 	e->sequence = req_seq;
2073 
2074 	if (vblank_passed(seq, req_seq)) {
2075 		drm_crtc_vblank_put(crtc);
2076 		send_vblank_event(dev, e, seq, now);
2077 		queue_seq->sequence = seq;
2078 	} else {
2079 		/* drm_handle_vblank_events will call drm_vblank_put */
2080 		list_add_tail(&e->base.link, &dev->vblank_event_list);
2081 		queue_seq->sequence = req_seq;
2082 	}
2083 
2084 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2085 	return 0;
2086 
2087 err_unlock:
2088 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2089 	drm_crtc_vblank_put(crtc);
2090 err_free:
2091 	kfree(e);
2092 	return ret;
2093 }
2094