xref: /dpdk/drivers/net/txgbe/base/txgbe_phy.c (revision 658dbfa6360fcda0a5798669f6eac8293e4a2d73)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2020 Beijing WangXun Technology Co., Ltd.
3  * Copyright(c) 2010-2017 Intel Corporation
4  */
5 
6 #include "txgbe_hw.h"
7 #include "txgbe_eeprom.h"
8 #include "txgbe_mng.h"
9 #include "txgbe_phy.h"
10 
11 static void txgbe_i2c_start(struct txgbe_hw *hw, u8 dev_addr);
12 static void txgbe_i2c_stop(struct txgbe_hw *hw);
13 static s32 txgbe_handle_bp_flow(u32 link_mode, struct txgbe_hw *hw);
14 static void txgbe_get_bp_ability(struct txgbe_backplane_ability *ability,
15 	u32 link_partner, struct txgbe_hw *hw);
16 static s32 txgbe_check_bp_ability(struct txgbe_backplane_ability *local_ability,
17 	struct txgbe_backplane_ability *lp_ability, struct txgbe_hw *hw);
18 static void txgbe_clear_bp_intr(u32 bit, u32 bit_high, struct txgbe_hw *hw);
19 static s32 txgbe_enable_kr_training(struct txgbe_hw *hw);
20 static s32 txgbe_disable_kr_training(struct txgbe_hw *hw, s32 post, s32 mode);
21 static s32 txgbe_check_kr_training(struct txgbe_hw *hw);
22 static void txgbe_read_phy_lane_tx_eq(u16 lane, struct txgbe_hw *hw,
23 				s32 post, s32 mode);
24 static s32 txgbe_set_link_to_sfi(struct txgbe_hw *hw, u32 speed);
25 
26 /**
27  * txgbe_identify_extphy - Identify a single address for a PHY
28  * @hw: pointer to hardware structure
29  * @phy_addr: PHY address to probe
30  *
31  * Returns true if PHY found
32  */
txgbe_identify_extphy(struct txgbe_hw * hw)33 static bool txgbe_identify_extphy(struct txgbe_hw *hw)
34 {
35 	u16 phy_addr = 0;
36 
37 	if (!txgbe_validate_phy_addr(hw, phy_addr)) {
38 		DEBUGOUT("Unable to validate PHY address 0x%04X",
39 			phy_addr);
40 		return false;
41 	}
42 
43 	if (txgbe_get_phy_id(hw))
44 		return false;
45 
46 	hw->phy.type = txgbe_get_phy_type_from_id(hw->phy.id);
47 	if (hw->phy.type == txgbe_phy_unknown) {
48 		u16 ext_ability = 0;
49 		hw->phy.read_reg(hw, TXGBE_MD_PHY_EXT_ABILITY,
50 				 TXGBE_MD_DEV_PMA_PMD,
51 				 &ext_ability);
52 
53 		if (ext_ability & (TXGBE_MD_PHY_10GBASET_ABILITY |
54 			TXGBE_MD_PHY_1000BASET_ABILITY))
55 			hw->phy.type = txgbe_phy_cu_unknown;
56 		else
57 			hw->phy.type = txgbe_phy_generic;
58 	}
59 
60 	return true;
61 }
62 
63 /**
64  *  txgbe_read_phy_if - Read TXGBE_ETHPHYIF register
65  *  @hw: pointer to hardware structure
66  *
67  *  Read TXGBE_ETHPHYIF register and save field values,
68  *  and check for valid field values.
69  **/
txgbe_read_phy_if(struct txgbe_hw * hw)70 static s32 txgbe_read_phy_if(struct txgbe_hw *hw)
71 {
72 	hw->phy.media_type = hw->phy.get_media_type(hw);
73 
74 	/* Save NW management interface connected on board. This is used
75 	 * to determine internal PHY mode.
76 	 */
77 	hw->phy.nw_mng_if_sel = rd32(hw, TXGBE_ETHPHYIF);
78 
79 	/* If MDIO is connected to external PHY, then set PHY address. */
80 	if (hw->phy.nw_mng_if_sel & TXGBE_ETHPHYIF_MDIO_ACT)
81 		hw->phy.addr = TXGBE_ETHPHYIF_MDIO_BASE(hw->phy.nw_mng_if_sel);
82 
83 	if (!hw->phy.phy_semaphore_mask) {
84 		if (hw->bus.lan_id)
85 			hw->phy.phy_semaphore_mask = TXGBE_MNGSEM_SWPHY;
86 		else
87 			hw->phy.phy_semaphore_mask = TXGBE_MNGSEM_SWPHY;
88 	}
89 
90 	return 0;
91 }
92 
93 /**
94  *  txgbe_identify_phy - Get physical layer module
95  *  @hw: pointer to hardware structure
96  *
97  *  Determines the physical layer module found on the current adapter.
98  **/
txgbe_identify_phy(struct txgbe_hw * hw)99 s32 txgbe_identify_phy(struct txgbe_hw *hw)
100 {
101 	s32 err = TXGBE_ERR_PHY_ADDR_INVALID;
102 
103 	txgbe_read_phy_if(hw);
104 
105 	if (hw->phy.type != txgbe_phy_unknown)
106 		return 0;
107 
108 	/* Raptor 10GBASE-T requires an external PHY */
109 	if (hw->phy.media_type == txgbe_media_type_copper) {
110 		err = txgbe_identify_extphy(hw);
111 	} else if (hw->phy.media_type == txgbe_media_type_fiber) {
112 		err = txgbe_identify_module(hw);
113 	} else {
114 		hw->phy.type = txgbe_phy_none;
115 		return 0;
116 	}
117 
118 	/* Return error if SFP module has been detected but is not supported */
119 	if (hw->phy.type == txgbe_phy_sfp_unsupported)
120 		return TXGBE_ERR_SFP_NOT_SUPPORTED;
121 
122 	return err;
123 }
124 
125 /**
126  * txgbe_check_reset_blocked - check status of MNG FW veto bit
127  * @hw: pointer to the hardware structure
128  *
129  * This function checks the STAT.MNGVETO bit to see if there are
130  * any constraints on link from manageability.  For MAC's that don't
131  * have this bit just return faluse since the link can not be blocked
132  * via this method.
133  **/
txgbe_check_reset_blocked(struct txgbe_hw * hw)134 s32 txgbe_check_reset_blocked(struct txgbe_hw *hw)
135 {
136 	u32 mmngc;
137 
138 	mmngc = rd32(hw, TXGBE_STAT);
139 	if (mmngc & TXGBE_STAT_MNGVETO) {
140 		DEBUGOUT("MNG_VETO bit detected.");
141 		return true;
142 	}
143 
144 	return false;
145 }
146 
147 /**
148  *  txgbe_validate_phy_addr - Determines phy address is valid
149  *  @hw: pointer to hardware structure
150  *  @phy_addr: PHY address
151  *
152  **/
txgbe_validate_phy_addr(struct txgbe_hw * hw,u32 phy_addr)153 bool txgbe_validate_phy_addr(struct txgbe_hw *hw, u32 phy_addr)
154 {
155 	u16 phy_id = 0;
156 	bool valid = false;
157 
158 	hw->phy.addr = phy_addr;
159 	hw->phy.read_reg(hw, TXGBE_MD_PHY_ID_HIGH,
160 			     TXGBE_MD_DEV_PMA_PMD, &phy_id);
161 
162 	if (phy_id != 0xFFFF && phy_id != 0x0)
163 		valid = true;
164 
165 	DEBUGOUT("PHY ID HIGH is 0x%04X", phy_id);
166 
167 	return valid;
168 }
169 
170 /**
171  *  txgbe_get_phy_id - Get the phy type
172  *  @hw: pointer to hardware structure
173  *
174  **/
txgbe_get_phy_id(struct txgbe_hw * hw)175 s32 txgbe_get_phy_id(struct txgbe_hw *hw)
176 {
177 	u32 err;
178 	u16 phy_id_high = 0;
179 	u16 phy_id_low = 0;
180 
181 	err = hw->phy.read_reg(hw, TXGBE_MD_PHY_ID_HIGH,
182 				      TXGBE_MD_DEV_PMA_PMD,
183 				      &phy_id_high);
184 
185 	if (err == 0) {
186 		hw->phy.id = (u32)(phy_id_high << 16);
187 		err = hw->phy.read_reg(hw, TXGBE_MD_PHY_ID_LOW,
188 					      TXGBE_MD_DEV_PMA_PMD,
189 					      &phy_id_low);
190 		hw->phy.id |= (u32)(phy_id_low & TXGBE_PHY_REVISION_MASK);
191 		hw->phy.revision = (u32)(phy_id_low & ~TXGBE_PHY_REVISION_MASK);
192 	}
193 	DEBUGOUT("PHY_ID_HIGH 0x%04X, PHY_ID_LOW 0x%04X",
194 		  phy_id_high, phy_id_low);
195 
196 	return err;
197 }
198 
199 /**
200  *  txgbe_get_phy_type_from_id - Get the phy type
201  *  @phy_id: PHY ID information
202  *
203  **/
txgbe_get_phy_type_from_id(u32 phy_id)204 enum txgbe_phy_type txgbe_get_phy_type_from_id(u32 phy_id)
205 {
206 	enum txgbe_phy_type phy_type;
207 
208 	switch (phy_id) {
209 	case TXGBE_PHYID_TN1010:
210 		phy_type = txgbe_phy_tn;
211 		break;
212 	case TXGBE_PHYID_QT2022:
213 		phy_type = txgbe_phy_qt;
214 		break;
215 	case TXGBE_PHYID_ATH:
216 		phy_type = txgbe_phy_nl;
217 		break;
218 	case TXGBE_PHYID_MTD3310:
219 		phy_type = txgbe_phy_cu_mtd;
220 		break;
221 	default:
222 		phy_type = txgbe_phy_unknown;
223 		break;
224 	}
225 
226 	return phy_type;
227 }
228 
229 static s32
txgbe_reset_extphy(struct txgbe_hw * hw)230 txgbe_reset_extphy(struct txgbe_hw *hw)
231 {
232 	u16 ctrl = 0;
233 	int err, i;
234 
235 	err = hw->phy.read_reg(hw, TXGBE_MD_PORT_CTRL,
236 			TXGBE_MD_DEV_GENERAL, &ctrl);
237 	if (err != 0)
238 		return err;
239 	ctrl |= TXGBE_MD_PORT_CTRL_RESET;
240 	err = hw->phy.write_reg(hw, TXGBE_MD_PORT_CTRL,
241 			TXGBE_MD_DEV_GENERAL, ctrl);
242 	if (err != 0)
243 		return err;
244 
245 	/*
246 	 * Poll for reset bit to self-clear indicating reset is complete.
247 	 * Some PHYs could take up to 3 seconds to complete and need about
248 	 * 1.7 usec delay after the reset is complete.
249 	 */
250 	for (i = 0; i < 30; i++) {
251 		msec_delay(100);
252 		err = hw->phy.read_reg(hw, TXGBE_MD_PORT_CTRL,
253 			TXGBE_MD_DEV_GENERAL, &ctrl);
254 		if (err != 0)
255 			return err;
256 
257 		if (!(ctrl & TXGBE_MD_PORT_CTRL_RESET)) {
258 			usec_delay(2);
259 			break;
260 		}
261 	}
262 
263 	if (ctrl & TXGBE_MD_PORT_CTRL_RESET) {
264 		err = TXGBE_ERR_RESET_FAILED;
265 		DEBUGOUT("PHY reset polling failed to complete.");
266 	}
267 
268 	return err;
269 }
270 
271 /**
272  *  txgbe_reset_phy - Performs a PHY reset
273  *  @hw: pointer to hardware structure
274  **/
txgbe_reset_phy(struct txgbe_hw * hw)275 s32 txgbe_reset_phy(struct txgbe_hw *hw)
276 {
277 	s32 err = 0;
278 
279 	if (hw->phy.type == txgbe_phy_unknown)
280 		err = txgbe_identify_phy(hw);
281 
282 	if (err != 0 || hw->phy.type == txgbe_phy_none)
283 		return err;
284 
285 	/* Don't reset PHY if it's shut down due to overtemp. */
286 	if (hw->phy.check_overtemp(hw) == TXGBE_ERR_OVERTEMP)
287 		return err;
288 
289 	/* Blocked by MNG FW so bail */
290 	if (txgbe_check_reset_blocked(hw))
291 		return err;
292 
293 	switch (hw->phy.type) {
294 	case txgbe_phy_cu_mtd:
295 		err = txgbe_reset_extphy(hw);
296 		break;
297 	default:
298 		break;
299 	}
300 
301 	return err;
302 }
303 
304 /**
305  *  txgbe_read_phy_mdi - Reads a value from a specified PHY register without
306  *  the SWFW lock
307  *  @hw: pointer to hardware structure
308  *  @reg_addr: 32 bit address of PHY register to read
309  *  @device_type: 5 bit device type
310  *  @phy_data: Pointer to read data from PHY register
311  **/
txgbe_read_phy_reg_mdi(struct txgbe_hw * hw,u32 reg_addr,u32 device_type,u16 * phy_data)312 s32 txgbe_read_phy_reg_mdi(struct txgbe_hw *hw, u32 reg_addr, u32 device_type,
313 			   u16 *phy_data)
314 {
315 	u32 command, data;
316 
317 	/* Setup and write the address cycle command */
318 	command = TXGBE_MDIOSCA_REG(reg_addr) |
319 		  TXGBE_MDIOSCA_DEV(device_type) |
320 		  TXGBE_MDIOSCA_PORT(hw->phy.addr);
321 	wr32(hw, TXGBE_MDIOSCA, command);
322 
323 	command = TXGBE_MDIOSCD_CMD_READ |
324 		  TXGBE_MDIOSCD_BUSY;
325 	wr32(hw, TXGBE_MDIOSCD, command);
326 
327 	/*
328 	 * Check every 10 usec to see if the address cycle completed.
329 	 * The MDI Command bit will clear when the operation is
330 	 * complete
331 	 */
332 	if (!po32m(hw, TXGBE_MDIOSCD, TXGBE_MDIOSCD_BUSY,
333 		0, NULL, 100, 100)) {
334 		DEBUGOUT("PHY address command did not complete");
335 		return TXGBE_ERR_PHY;
336 	}
337 
338 	data = rd32(hw, TXGBE_MDIOSCD);
339 	*phy_data = (u16)TXGBD_MDIOSCD_DAT(data);
340 
341 	return 0;
342 }
343 
344 /**
345  *  txgbe_read_phy_reg - Reads a value from a specified PHY register
346  *  using the SWFW lock - this function is needed in most cases
347  *  @hw: pointer to hardware structure
348  *  @reg_addr: 32 bit address of PHY register to read
349  *  @device_type: 5 bit device type
350  *  @phy_data: Pointer to read data from PHY register
351  **/
txgbe_read_phy_reg(struct txgbe_hw * hw,u32 reg_addr,u32 device_type,u16 * phy_data)352 s32 txgbe_read_phy_reg(struct txgbe_hw *hw, u32 reg_addr,
353 			       u32 device_type, u16 *phy_data)
354 {
355 	s32 err;
356 	u32 gssr = hw->phy.phy_semaphore_mask;
357 
358 	if (hw->mac.acquire_swfw_sync(hw, gssr))
359 		return TXGBE_ERR_SWFW_SYNC;
360 
361 	err = hw->phy.read_reg_mdi(hw, reg_addr, device_type, phy_data);
362 
363 	hw->mac.release_swfw_sync(hw, gssr);
364 
365 	return err;
366 }
367 
368 /**
369  *  txgbe_write_phy_reg_mdi - Writes a value to specified PHY register
370  *  without SWFW lock
371  *  @hw: pointer to hardware structure
372  *  @reg_addr: 32 bit PHY register to write
373  *  @device_type: 5 bit device type
374  *  @phy_data: Data to write to the PHY register
375  **/
txgbe_write_phy_reg_mdi(struct txgbe_hw * hw,u32 reg_addr,u32 device_type,u16 phy_data)376 s32 txgbe_write_phy_reg_mdi(struct txgbe_hw *hw, u32 reg_addr,
377 				u32 device_type, u16 phy_data)
378 {
379 	u32 command;
380 
381 	/* write command */
382 	command = TXGBE_MDIOSCA_REG(reg_addr) |
383 		  TXGBE_MDIOSCA_DEV(device_type) |
384 		  TXGBE_MDIOSCA_PORT(hw->phy.addr);
385 	wr32(hw, TXGBE_MDIOSCA, command);
386 
387 	command = TXGBE_MDIOSCD_CMD_WRITE |
388 		  TXGBE_MDIOSCD_DAT(phy_data) |
389 		  TXGBE_MDIOSCD_BUSY;
390 	wr32(hw, TXGBE_MDIOSCD, command);
391 
392 	/* wait for completion */
393 	if (!po32m(hw, TXGBE_MDIOSCD, TXGBE_MDIOSCD_BUSY,
394 		0, NULL, 100, 100)) {
395 		DEBUGOUT("PHY write cmd didn't complete");
396 		return -TERR_PHY;
397 	}
398 
399 	return 0;
400 }
401 
402 /**
403  *  txgbe_write_phy_reg - Writes a value to specified PHY register
404  *  using SWFW lock- this function is needed in most cases
405  *  @hw: pointer to hardware structure
406  *  @reg_addr: 32 bit PHY register to write
407  *  @device_type: 5 bit device type
408  *  @phy_data: Data to write to the PHY register
409  **/
txgbe_write_phy_reg(struct txgbe_hw * hw,u32 reg_addr,u32 device_type,u16 phy_data)410 s32 txgbe_write_phy_reg(struct txgbe_hw *hw, u32 reg_addr,
411 				u32 device_type, u16 phy_data)
412 {
413 	s32 err;
414 	u32 gssr = hw->phy.phy_semaphore_mask;
415 
416 	if (hw->mac.acquire_swfw_sync(hw, gssr))
417 		err = TXGBE_ERR_SWFW_SYNC;
418 
419 	err = hw->phy.write_reg_mdi(hw, reg_addr, device_type,
420 					 phy_data);
421 	hw->mac.release_swfw_sync(hw, gssr);
422 
423 	return err;
424 }
425 
426 /**
427  *  txgbe_setup_phy_link - Set and restart auto-neg
428  *  @hw: pointer to hardware structure
429  *
430  *  Restart auto-negotiation and PHY and waits for completion.
431  **/
txgbe_setup_phy_link(struct txgbe_hw * hw)432 s32 txgbe_setup_phy_link(struct txgbe_hw *hw)
433 {
434 	s32 err = 0;
435 	u16 autoneg_reg = TXGBE_MII_AUTONEG_REG;
436 	bool autoneg = false;
437 	u32 speed;
438 
439 	txgbe_get_copper_link_capabilities(hw, &speed, &autoneg);
440 
441 	/* Set or unset auto-negotiation 10G advertisement */
442 	hw->phy.read_reg(hw, TXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
443 			     TXGBE_MD_DEV_AUTO_NEG,
444 			     &autoneg_reg);
445 
446 	autoneg_reg &= ~TXGBE_MII_10GBASE_T_ADVERTISE;
447 	if ((hw->phy.autoneg_advertised & TXGBE_LINK_SPEED_10GB_FULL) &&
448 	    (speed & TXGBE_LINK_SPEED_10GB_FULL))
449 		autoneg_reg |= TXGBE_MII_10GBASE_T_ADVERTISE;
450 
451 	hw->phy.write_reg(hw, TXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
452 			      TXGBE_MD_DEV_AUTO_NEG,
453 			      autoneg_reg);
454 
455 	hw->phy.read_reg(hw, TXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
456 			     TXGBE_MD_DEV_AUTO_NEG,
457 			     &autoneg_reg);
458 
459 	/* Set or unset auto-negotiation 5G advertisement */
460 	autoneg_reg &= ~TXGBE_MII_5GBASE_T_ADVERTISE;
461 	if ((hw->phy.autoneg_advertised & TXGBE_LINK_SPEED_5GB_FULL) &&
462 	    (speed & TXGBE_LINK_SPEED_5GB_FULL))
463 		autoneg_reg |= TXGBE_MII_5GBASE_T_ADVERTISE;
464 
465 	/* Set or unset auto-negotiation 2.5G advertisement */
466 	autoneg_reg &= ~TXGBE_MII_2_5GBASE_T_ADVERTISE;
467 	if ((hw->phy.autoneg_advertised &
468 	     TXGBE_LINK_SPEED_2_5GB_FULL) &&
469 	    (speed & TXGBE_LINK_SPEED_2_5GB_FULL))
470 		autoneg_reg |= TXGBE_MII_2_5GBASE_T_ADVERTISE;
471 	/* Set or unset auto-negotiation 1G advertisement */
472 	autoneg_reg &= ~TXGBE_MII_1GBASE_T_ADVERTISE;
473 	if ((hw->phy.autoneg_advertised & TXGBE_LINK_SPEED_1GB_FULL) &&
474 	    (speed & TXGBE_LINK_SPEED_1GB_FULL))
475 		autoneg_reg |= TXGBE_MII_1GBASE_T_ADVERTISE;
476 
477 	hw->phy.write_reg(hw, TXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
478 			      TXGBE_MD_DEV_AUTO_NEG,
479 			      autoneg_reg);
480 
481 	/* Set or unset auto-negotiation 100M advertisement */
482 	hw->phy.read_reg(hw, TXGBE_MII_AUTONEG_ADVERTISE_REG,
483 			     TXGBE_MD_DEV_AUTO_NEG,
484 			     &autoneg_reg);
485 
486 	autoneg_reg &= ~(TXGBE_MII_100BASE_T_ADVERTISE |
487 			 TXGBE_MII_100BASE_T_ADVERTISE_HALF);
488 	if ((hw->phy.autoneg_advertised & TXGBE_LINK_SPEED_100M_FULL) &&
489 	    (speed & TXGBE_LINK_SPEED_100M_FULL))
490 		autoneg_reg |= TXGBE_MII_100BASE_T_ADVERTISE;
491 
492 	hw->phy.write_reg(hw, TXGBE_MII_AUTONEG_ADVERTISE_REG,
493 			      TXGBE_MD_DEV_AUTO_NEG,
494 			      autoneg_reg);
495 
496 	/* Blocked by MNG FW so don't reset PHY */
497 	if (txgbe_check_reset_blocked(hw))
498 		return err;
499 
500 	/* Restart PHY auto-negotiation. */
501 	hw->phy.read_reg(hw, TXGBE_MD_AUTO_NEG_CONTROL,
502 			     TXGBE_MD_DEV_AUTO_NEG, &autoneg_reg);
503 
504 	autoneg_reg |= TXGBE_MII_RESTART;
505 
506 	hw->phy.write_reg(hw, TXGBE_MD_AUTO_NEG_CONTROL,
507 			      TXGBE_MD_DEV_AUTO_NEG, autoneg_reg);
508 
509 	return err;
510 }
511 
512 /**
513  *  txgbe_setup_phy_link_speed - Sets the auto advertised capabilities
514  *  @hw: pointer to hardware structure
515  *  @speed: new link speed
516  *  @autoneg_wait_to_complete: unused
517  **/
txgbe_setup_phy_link_speed(struct txgbe_hw * hw,u32 speed,bool autoneg_wait_to_complete)518 s32 txgbe_setup_phy_link_speed(struct txgbe_hw *hw,
519 				       u32 speed,
520 				       bool autoneg_wait_to_complete)
521 {
522 	UNREFERENCED_PARAMETER(autoneg_wait_to_complete);
523 
524 	/*
525 	 * Clear autoneg_advertised and set new values based on input link
526 	 * speed.
527 	 */
528 	hw->phy.autoneg_advertised = 0;
529 
530 	if (speed & TXGBE_LINK_SPEED_10GB_FULL)
531 		hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_10GB_FULL;
532 
533 	if (speed & TXGBE_LINK_SPEED_5GB_FULL)
534 		hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_5GB_FULL;
535 
536 	if (speed & TXGBE_LINK_SPEED_2_5GB_FULL)
537 		hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_2_5GB_FULL;
538 
539 	if (speed & TXGBE_LINK_SPEED_1GB_FULL)
540 		hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_1GB_FULL;
541 
542 	if (speed & TXGBE_LINK_SPEED_100M_FULL)
543 		hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_100M_FULL;
544 
545 	if (speed & TXGBE_LINK_SPEED_10M_FULL)
546 		hw->phy.autoneg_advertised |= TXGBE_LINK_SPEED_10M_FULL;
547 
548 	/* Setup link based on the new speed settings */
549 	hw->phy.setup_link(hw);
550 
551 	return 0;
552 }
553 
txgbe_get_phy_fw_version(struct txgbe_hw * hw,u32 * fw_version)554 s32 txgbe_get_phy_fw_version(struct txgbe_hw *hw, u32 *fw_version)
555 {
556 	u16 eeprom_verh, eeprom_verl;
557 
558 	hw->rom.readw_sw(hw, TXGBE_EEPROM_VERSION_H, &eeprom_verh);
559 	hw->rom.readw_sw(hw, TXGBE_EEPROM_VERSION_L, &eeprom_verl);
560 
561 	*fw_version = (eeprom_verh << 16) | eeprom_verl;
562 
563 	return 0;
564 }
565 
566 /**
567  * txgbe_get_copper_speeds_supported - Get copper link speeds from phy
568  * @hw: pointer to hardware structure
569  *
570  * Determines the supported link capabilities by reading the PHY auto
571  * negotiation register.
572  **/
txgbe_get_copper_speeds_supported(struct txgbe_hw * hw)573 static s32 txgbe_get_copper_speeds_supported(struct txgbe_hw *hw)
574 {
575 	s32 err;
576 	u16 speed_ability;
577 
578 	err = hw->phy.read_reg(hw, TXGBE_MD_PHY_SPEED_ABILITY,
579 				      TXGBE_MD_DEV_PMA_PMD,
580 				      &speed_ability);
581 	if (err)
582 		return err;
583 
584 	if (speed_ability & TXGBE_MD_PHY_SPEED_10G)
585 		hw->phy.speeds_supported |= TXGBE_LINK_SPEED_10GB_FULL;
586 	if (speed_ability & TXGBE_MD_PHY_SPEED_1G)
587 		hw->phy.speeds_supported |= TXGBE_LINK_SPEED_1GB_FULL;
588 	if (speed_ability & TXGBE_MD_PHY_SPEED_100M)
589 		hw->phy.speeds_supported |= TXGBE_LINK_SPEED_100M_FULL;
590 
591 	return err;
592 }
593 
594 /**
595  *  txgbe_get_copper_link_capabilities - Determines link capabilities
596  *  @hw: pointer to hardware structure
597  *  @speed: pointer to link speed
598  *  @autoneg: boolean auto-negotiation value
599  **/
txgbe_get_copper_link_capabilities(struct txgbe_hw * hw,u32 * speed,bool * autoneg)600 s32 txgbe_get_copper_link_capabilities(struct txgbe_hw *hw,
601 					       u32 *speed,
602 					       bool *autoneg)
603 {
604 	s32 err = 0;
605 
606 	*autoneg = true;
607 	if (!hw->phy.speeds_supported)
608 		err = txgbe_get_copper_speeds_supported(hw);
609 
610 	*speed = hw->phy.speeds_supported;
611 	return err;
612 }
613 
614 /**
615  *  txgbe_check_phy_link_tnx - Determine link and speed status
616  *  @hw: pointer to hardware structure
617  *  @speed: current link speed
618  *  @link_up: true is link is up, false otherwise
619  *
620  *  Reads the VS1 register to determine if link is up and the current speed for
621  *  the PHY.
622  **/
txgbe_check_phy_link_tnx(struct txgbe_hw * hw,u32 * speed,bool * link_up)623 s32 txgbe_check_phy_link_tnx(struct txgbe_hw *hw, u32 *speed,
624 			     bool *link_up)
625 {
626 	s32 err = 0;
627 	u32 time_out;
628 	u32 max_time_out = 10;
629 	u16 phy_link = 0;
630 	u16 phy_speed = 0;
631 	u16 phy_data = 0;
632 
633 	/* Initialize speed and link to default case */
634 	*link_up = false;
635 	*speed = TXGBE_LINK_SPEED_10GB_FULL;
636 
637 	/*
638 	 * Check current speed and link status of the PHY register.
639 	 * This is a vendor specific register and may have to
640 	 * be changed for other copper PHYs.
641 	 */
642 	for (time_out = 0; time_out < max_time_out; time_out++) {
643 		usec_delay(10);
644 		err = hw->phy.read_reg(hw,
645 					TXGBE_MD_VENDOR_SPECIFIC_1_STATUS,
646 					TXGBE_MD_DEV_VENDOR_1,
647 					&phy_data);
648 		phy_link = phy_data & TXGBE_MD_VENDOR_SPECIFIC_1_LINK_STATUS;
649 		phy_speed = phy_data &
650 				 TXGBE_MD_VENDOR_SPECIFIC_1_SPEED_STATUS;
651 		if (phy_link == TXGBE_MD_VENDOR_SPECIFIC_1_LINK_STATUS) {
652 			*link_up = true;
653 			if (phy_speed ==
654 			    TXGBE_MD_VENDOR_SPECIFIC_1_SPEED_STATUS)
655 				*speed = TXGBE_LINK_SPEED_1GB_FULL;
656 			break;
657 		}
658 	}
659 
660 	return err;
661 }
662 
663 /**
664  *  txgbe_setup_phy_link_tnx - Set and restart auto-neg
665  *  @hw: pointer to hardware structure
666  *
667  *  Restart auto-negotiation and PHY and waits for completion.
668  **/
txgbe_setup_phy_link_tnx(struct txgbe_hw * hw)669 s32 txgbe_setup_phy_link_tnx(struct txgbe_hw *hw)
670 {
671 	s32 err = 0;
672 	u16 autoneg_reg = TXGBE_MII_AUTONEG_REG;
673 	bool autoneg = false;
674 	u32 speed;
675 
676 	txgbe_get_copper_link_capabilities(hw, &speed, &autoneg);
677 
678 	if (speed & TXGBE_LINK_SPEED_10GB_FULL) {
679 		/* Set or unset auto-negotiation 10G advertisement */
680 		hw->phy.read_reg(hw, TXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
681 				     TXGBE_MD_DEV_AUTO_NEG,
682 				     &autoneg_reg);
683 
684 		autoneg_reg &= ~TXGBE_MII_10GBASE_T_ADVERTISE;
685 		if (hw->phy.autoneg_advertised & TXGBE_LINK_SPEED_10GB_FULL)
686 			autoneg_reg |= TXGBE_MII_10GBASE_T_ADVERTISE;
687 
688 		hw->phy.write_reg(hw, TXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
689 				      TXGBE_MD_DEV_AUTO_NEG,
690 				      autoneg_reg);
691 	}
692 
693 	if (speed & TXGBE_LINK_SPEED_1GB_FULL) {
694 		/* Set or unset auto-negotiation 1G advertisement */
695 		hw->phy.read_reg(hw, TXGBE_MII_AUTONEG_XNP_TX_REG,
696 				     TXGBE_MD_DEV_AUTO_NEG,
697 				     &autoneg_reg);
698 
699 		autoneg_reg &= ~TXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
700 		if (hw->phy.autoneg_advertised & TXGBE_LINK_SPEED_1GB_FULL)
701 			autoneg_reg |= TXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
702 
703 		hw->phy.write_reg(hw, TXGBE_MII_AUTONEG_XNP_TX_REG,
704 				      TXGBE_MD_DEV_AUTO_NEG,
705 				      autoneg_reg);
706 	}
707 
708 	if (speed & TXGBE_LINK_SPEED_100M_FULL) {
709 		/* Set or unset auto-negotiation 100M advertisement */
710 		hw->phy.read_reg(hw, TXGBE_MII_AUTONEG_ADVERTISE_REG,
711 				     TXGBE_MD_DEV_AUTO_NEG,
712 				     &autoneg_reg);
713 
714 		autoneg_reg &= ~TXGBE_MII_100BASE_T_ADVERTISE;
715 		if (hw->phy.autoneg_advertised & TXGBE_LINK_SPEED_100M_FULL)
716 			autoneg_reg |= TXGBE_MII_100BASE_T_ADVERTISE;
717 
718 		hw->phy.write_reg(hw, TXGBE_MII_AUTONEG_ADVERTISE_REG,
719 				      TXGBE_MD_DEV_AUTO_NEG,
720 				      autoneg_reg);
721 	}
722 
723 	/* Blocked by MNG FW so don't reset PHY */
724 	if (txgbe_check_reset_blocked(hw))
725 		return err;
726 
727 	/* Restart PHY auto-negotiation. */
728 	hw->phy.read_reg(hw, TXGBE_MD_AUTO_NEG_CONTROL,
729 			     TXGBE_MD_DEV_AUTO_NEG, &autoneg_reg);
730 
731 	autoneg_reg |= TXGBE_MII_RESTART;
732 
733 	hw->phy.write_reg(hw, TXGBE_MD_AUTO_NEG_CONTROL,
734 			      TXGBE_MD_DEV_AUTO_NEG, autoneg_reg);
735 
736 	return err;
737 }
738 
739 /**
740  *  txgbe_identify_module - Identifies module type
741  *  @hw: pointer to hardware structure
742  *
743  *  Determines HW type and calls appropriate function.
744  **/
txgbe_identify_module(struct txgbe_hw * hw)745 s32 txgbe_identify_module(struct txgbe_hw *hw)
746 {
747 	s32 err = TXGBE_ERR_SFP_NOT_PRESENT;
748 
749 	switch (hw->phy.media_type) {
750 	case txgbe_media_type_fiber:
751 		err = txgbe_identify_sfp_module(hw);
752 		break;
753 
754 	case txgbe_media_type_fiber_qsfp:
755 		err = txgbe_identify_qsfp_module(hw);
756 		break;
757 
758 	default:
759 		hw->phy.sfp_type = txgbe_sfp_type_not_present;
760 		err = TXGBE_ERR_SFP_NOT_PRESENT;
761 		break;
762 	}
763 
764 	return err;
765 }
766 
767 /**
768  *  txgbe_identify_sfp_module - Identifies SFP modules
769  *  @hw: pointer to hardware structure
770  *
771  *  Searches for and identifies the SFP module and assigns appropriate PHY type.
772  **/
txgbe_identify_sfp_module(struct txgbe_hw * hw)773 s32 txgbe_identify_sfp_module(struct txgbe_hw *hw)
774 {
775 	s32 err = TXGBE_ERR_PHY_ADDR_INVALID;
776 	u32 vendor_oui = 0;
777 	enum txgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
778 	u8 identifier = 0;
779 	u8 comp_codes_1g = 0;
780 	u8 comp_codes_10g = 0;
781 	u8 oui_bytes[3] = {0, 0, 0};
782 	u8 cable_tech = 0;
783 	u8 cable_spec = 0;
784 	u16 enforce_sfp = 0;
785 
786 	if (hw->phy.media_type != txgbe_media_type_fiber) {
787 		hw->phy.sfp_type = txgbe_sfp_type_not_present;
788 		return TXGBE_ERR_SFP_NOT_PRESENT;
789 	}
790 
791 	err = hw->phy.read_i2c_eeprom(hw, TXGBE_SFF_IDENTIFIER,
792 					     &identifier);
793 	if (err != 0) {
794 ERR_I2C:
795 		hw->phy.sfp_type = txgbe_sfp_type_not_present;
796 		if (hw->phy.type != txgbe_phy_nl) {
797 			hw->phy.id = 0;
798 			hw->phy.type = txgbe_phy_unknown;
799 		}
800 		return TXGBE_ERR_SFP_NOT_PRESENT;
801 	}
802 
803 	if (identifier != TXGBE_SFF_IDENTIFIER_SFP) {
804 		hw->phy.type = txgbe_phy_sfp_unsupported;
805 		return TXGBE_ERR_SFP_NOT_SUPPORTED;
806 	}
807 
808 	err = hw->phy.read_i2c_eeprom(hw, TXGBE_SFF_1GBE_COMP_CODES,
809 					     &comp_codes_1g);
810 	if (err != 0)
811 		goto ERR_I2C;
812 
813 	err = hw->phy.read_i2c_eeprom(hw, TXGBE_SFF_10GBE_COMP_CODES,
814 					     &comp_codes_10g);
815 	if (err != 0)
816 		goto ERR_I2C;
817 
818 	err = hw->phy.read_i2c_eeprom(hw, TXGBE_SFF_CABLE_TECHNOLOGY,
819 					     &cable_tech);
820 	if (err != 0)
821 		goto ERR_I2C;
822 
823 	 /* ID Module
824 	  * =========
825 	  * 0   SFP_DA_CU
826 	  * 1   SFP_SR
827 	  * 2   SFP_LR
828 	  * 3   SFP_DA_CORE0 - chip-specific
829 	  * 4   SFP_DA_CORE1 - chip-specific
830 	  * 5   SFP_SR/LR_CORE0 - chip-specific
831 	  * 6   SFP_SR/LR_CORE1 - chip-specific
832 	  * 7   SFP_act_lmt_DA_CORE0 - chip-specific
833 	  * 8   SFP_act_lmt_DA_CORE1 - chip-specific
834 	  * 9   SFP_1g_cu_CORE0 - chip-specific
835 	  * 10  SFP_1g_cu_CORE1 - chip-specific
836 	  * 11  SFP_1g_sx_CORE0 - chip-specific
837 	  * 12  SFP_1g_sx_CORE1 - chip-specific
838 	  */
839 	if (cable_tech & TXGBE_SFF_CABLE_DA_PASSIVE) {
840 		if (hw->bus.lan_id == 0)
841 			hw->phy.sfp_type = txgbe_sfp_type_da_cu_core0;
842 		else
843 			hw->phy.sfp_type = txgbe_sfp_type_da_cu_core1;
844 	} else if (cable_tech & TXGBE_SFF_CABLE_DA_ACTIVE) {
845 		err = hw->phy.read_i2c_eeprom(hw,
846 			TXGBE_SFF_CABLE_SPEC_COMP, &cable_spec);
847 		if (err != 0)
848 			goto ERR_I2C;
849 		if (cable_spec & TXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
850 			hw->phy.sfp_type = (hw->bus.lan_id == 0
851 				? txgbe_sfp_type_da_act_lmt_core0
852 				: txgbe_sfp_type_da_act_lmt_core1);
853 		} else {
854 			hw->phy.sfp_type = txgbe_sfp_type_unknown;
855 		}
856 	} else if (comp_codes_10g &
857 		   (TXGBE_SFF_10GBASESR_CAPABLE |
858 		    TXGBE_SFF_10GBASELR_CAPABLE)) {
859 		hw->phy.sfp_type = (hw->bus.lan_id == 0
860 				? txgbe_sfp_type_srlr_core0
861 				: txgbe_sfp_type_srlr_core1);
862 	} else if (comp_codes_1g & TXGBE_SFF_1GBASET_CAPABLE) {
863 		hw->phy.sfp_type = (hw->bus.lan_id == 0
864 				? txgbe_sfp_type_1g_cu_core0
865 				: txgbe_sfp_type_1g_cu_core1);
866 	} else if (comp_codes_1g & TXGBE_SFF_1GBASESX_CAPABLE) {
867 		hw->phy.sfp_type = (hw->bus.lan_id == 0
868 				? txgbe_sfp_type_1g_sx_core0
869 				: txgbe_sfp_type_1g_sx_core1);
870 	} else if (comp_codes_1g & TXGBE_SFF_1GBASELX_CAPABLE) {
871 		hw->phy.sfp_type = (hw->bus.lan_id == 0
872 				? txgbe_sfp_type_1g_lx_core0
873 				: txgbe_sfp_type_1g_lx_core1);
874 	} else {
875 		hw->phy.sfp_type = txgbe_sfp_type_unknown;
876 	}
877 
878 	if (hw->phy.sfp_type != stored_sfp_type)
879 		hw->phy.sfp_setup_needed = true;
880 
881 	/* Determine if the SFP+ PHY is dual speed or not. */
882 	hw->phy.multispeed_fiber = false;
883 	if (((comp_codes_1g & TXGBE_SFF_1GBASESX_CAPABLE) &&
884 	     (comp_codes_10g & TXGBE_SFF_10GBASESR_CAPABLE)) ||
885 	    ((comp_codes_1g & TXGBE_SFF_1GBASELX_CAPABLE) &&
886 	     (comp_codes_10g & TXGBE_SFF_10GBASELR_CAPABLE)))
887 		hw->phy.multispeed_fiber = true;
888 
889 	/* Determine PHY vendor */
890 	if (hw->phy.type != txgbe_phy_nl) {
891 		hw->phy.id = identifier;
892 		err = hw->phy.read_i2c_eeprom(hw,
893 			TXGBE_SFF_VENDOR_OUI_BYTE0, &oui_bytes[0]);
894 		if (err != 0)
895 			goto ERR_I2C;
896 
897 		err = hw->phy.read_i2c_eeprom(hw,
898 			TXGBE_SFF_VENDOR_OUI_BYTE1, &oui_bytes[1]);
899 		if (err != 0)
900 			goto ERR_I2C;
901 
902 		err = hw->phy.read_i2c_eeprom(hw,
903 			TXGBE_SFF_VENDOR_OUI_BYTE2, &oui_bytes[2]);
904 		if (err != 0)
905 			goto ERR_I2C;
906 
907 		vendor_oui = ((u32)oui_bytes[0] << 24) |
908 			     ((u32)oui_bytes[1] << 16) |
909 			     ((u32)oui_bytes[2] << 8);
910 		switch (vendor_oui) {
911 		case TXGBE_SFF_VENDOR_OUI_TYCO:
912 			if (cable_tech & TXGBE_SFF_CABLE_DA_PASSIVE)
913 				hw->phy.type = txgbe_phy_sfp_tyco_passive;
914 			break;
915 		case TXGBE_SFF_VENDOR_OUI_FTL:
916 			if (cable_tech & TXGBE_SFF_CABLE_DA_ACTIVE)
917 				hw->phy.type = txgbe_phy_sfp_ftl_active;
918 			else
919 				hw->phy.type = txgbe_phy_sfp_ftl;
920 			break;
921 		case TXGBE_SFF_VENDOR_OUI_AVAGO:
922 			hw->phy.type = txgbe_phy_sfp_avago;
923 			break;
924 		case TXGBE_SFF_VENDOR_OUI_INTEL:
925 			hw->phy.type = txgbe_phy_sfp_intel;
926 			break;
927 		default:
928 			if (cable_tech & TXGBE_SFF_CABLE_DA_PASSIVE)
929 				hw->phy.type = txgbe_phy_sfp_unknown_passive;
930 			else if (cable_tech & TXGBE_SFF_CABLE_DA_ACTIVE)
931 				hw->phy.type = txgbe_phy_sfp_unknown_active;
932 			else
933 				hw->phy.type = txgbe_phy_sfp_unknown;
934 			break;
935 		}
936 	}
937 
938 	/* Allow any DA cable vendor */
939 	if (cable_tech & (TXGBE_SFF_CABLE_DA_PASSIVE |
940 			  TXGBE_SFF_CABLE_DA_ACTIVE)) {
941 		return 0;
942 	}
943 
944 	/* Verify supported 1G SFP modules */
945 	if (comp_codes_10g == 0 &&
946 	    !(hw->phy.sfp_type == txgbe_sfp_type_1g_cu_core1 ||
947 	      hw->phy.sfp_type == txgbe_sfp_type_1g_cu_core0 ||
948 	      hw->phy.sfp_type == txgbe_sfp_type_1g_lx_core0 ||
949 	      hw->phy.sfp_type == txgbe_sfp_type_1g_lx_core1 ||
950 	      hw->phy.sfp_type == txgbe_sfp_type_1g_sx_core0 ||
951 	      hw->phy.sfp_type == txgbe_sfp_type_1g_sx_core1)) {
952 		hw->phy.type = txgbe_phy_sfp_unsupported;
953 		return TXGBE_ERR_SFP_NOT_SUPPORTED;
954 	}
955 
956 	hw->mac.get_device_caps(hw, &enforce_sfp);
957 	if (!(enforce_sfp & TXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
958 	    !hw->allow_unsupported_sfp &&
959 	    !(hw->phy.sfp_type == txgbe_sfp_type_1g_cu_core0 ||
960 	      hw->phy.sfp_type == txgbe_sfp_type_1g_cu_core1 ||
961 	      hw->phy.sfp_type == txgbe_sfp_type_1g_lx_core0 ||
962 	      hw->phy.sfp_type == txgbe_sfp_type_1g_lx_core1 ||
963 	      hw->phy.sfp_type == txgbe_sfp_type_1g_sx_core0 ||
964 	      hw->phy.sfp_type == txgbe_sfp_type_1g_sx_core1)) {
965 		DEBUGOUT("SFP+ module not supported");
966 		hw->phy.type = txgbe_phy_sfp_unsupported;
967 		return TXGBE_ERR_SFP_NOT_SUPPORTED;
968 	}
969 
970 	return err;
971 }
972 
973 /**
974  *  txgbe_identify_qsfp_module - Identifies QSFP modules
975  *  @hw: pointer to hardware structure
976  *
977  *  Searches for and identifies the QSFP module and assigns appropriate PHY type
978  **/
txgbe_identify_qsfp_module(struct txgbe_hw * hw)979 s32 txgbe_identify_qsfp_module(struct txgbe_hw *hw)
980 {
981 	s32 err = TXGBE_ERR_PHY_ADDR_INVALID;
982 	u32 vendor_oui = 0;
983 	enum txgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
984 	u8 identifier = 0;
985 	u8 comp_codes_1g = 0;
986 	u8 comp_codes_10g = 0;
987 	u8 oui_bytes[3] = {0, 0, 0};
988 	u16 enforce_sfp = 0;
989 	u8 connector = 0;
990 	u8 cable_length = 0;
991 	u8 device_tech = 0;
992 	bool active_cable = false;
993 
994 	if (hw->phy.media_type != txgbe_media_type_fiber_qsfp) {
995 		hw->phy.sfp_type = txgbe_sfp_type_not_present;
996 		err = TXGBE_ERR_SFP_NOT_PRESENT;
997 		goto out;
998 	}
999 
1000 	err = hw->phy.read_i2c_eeprom(hw, TXGBE_SFF_IDENTIFIER,
1001 					     &identifier);
1002 ERR_I2C:
1003 	if (err != 0) {
1004 		hw->phy.sfp_type = txgbe_sfp_type_not_present;
1005 		hw->phy.id = 0;
1006 		hw->phy.type = txgbe_phy_unknown;
1007 		return TXGBE_ERR_SFP_NOT_PRESENT;
1008 	}
1009 	if (identifier != TXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1010 		hw->phy.type = txgbe_phy_sfp_unsupported;
1011 		err = TXGBE_ERR_SFP_NOT_SUPPORTED;
1012 		goto out;
1013 	}
1014 
1015 	hw->phy.id = identifier;
1016 
1017 	err = hw->phy.read_i2c_eeprom(hw, TXGBE_SFF_QSFP_10GBE_COMP,
1018 					     &comp_codes_10g);
1019 
1020 	if (err != 0)
1021 		goto ERR_I2C;
1022 
1023 	err = hw->phy.read_i2c_eeprom(hw, TXGBE_SFF_QSFP_1GBE_COMP,
1024 					     &comp_codes_1g);
1025 
1026 	if (err != 0)
1027 		goto ERR_I2C;
1028 
1029 	if (comp_codes_10g & TXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1030 		hw->phy.type = txgbe_phy_qsfp_unknown_passive;
1031 		if (hw->bus.lan_id == 0)
1032 			hw->phy.sfp_type = txgbe_sfp_type_da_cu_core0;
1033 		else
1034 			hw->phy.sfp_type = txgbe_sfp_type_da_cu_core1;
1035 	} else if (comp_codes_10g & (TXGBE_SFF_10GBASESR_CAPABLE |
1036 				     TXGBE_SFF_10GBASELR_CAPABLE)) {
1037 		if (hw->bus.lan_id == 0)
1038 			hw->phy.sfp_type = txgbe_sfp_type_srlr_core0;
1039 		else
1040 			hw->phy.sfp_type = txgbe_sfp_type_srlr_core1;
1041 	} else {
1042 		if (comp_codes_10g & TXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1043 			active_cable = true;
1044 
1045 		if (!active_cable) {
1046 			hw->phy.read_i2c_eeprom(hw,
1047 					TXGBE_SFF_QSFP_CONNECTOR,
1048 					&connector);
1049 
1050 			hw->phy.read_i2c_eeprom(hw,
1051 					TXGBE_SFF_QSFP_CABLE_LENGTH,
1052 					&cable_length);
1053 
1054 			hw->phy.read_i2c_eeprom(hw,
1055 					TXGBE_SFF_QSFP_DEVICE_TECH,
1056 					&device_tech);
1057 
1058 			if (connector ==
1059 				     TXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE &&
1060 			    cable_length > 0 &&
1061 			    ((device_tech >> 4) ==
1062 				     TXGBE_SFF_QSFP_TRANSMITTER_850NM_VCSEL))
1063 				active_cable = true;
1064 		}
1065 
1066 		if (active_cable) {
1067 			hw->phy.type = txgbe_phy_qsfp_unknown_active;
1068 			if (hw->bus.lan_id == 0)
1069 				hw->phy.sfp_type =
1070 					txgbe_sfp_type_da_act_lmt_core0;
1071 			else
1072 				hw->phy.sfp_type =
1073 					txgbe_sfp_type_da_act_lmt_core1;
1074 		} else {
1075 			/* unsupported module type */
1076 			hw->phy.type = txgbe_phy_sfp_unsupported;
1077 			err = TXGBE_ERR_SFP_NOT_SUPPORTED;
1078 			goto out;
1079 		}
1080 	}
1081 
1082 	if (hw->phy.sfp_type != stored_sfp_type)
1083 		hw->phy.sfp_setup_needed = true;
1084 
1085 	/* Determine if the QSFP+ PHY is dual speed or not. */
1086 	hw->phy.multispeed_fiber = false;
1087 	if (((comp_codes_1g & TXGBE_SFF_1GBASESX_CAPABLE) &&
1088 	   (comp_codes_10g & TXGBE_SFF_10GBASESR_CAPABLE)) ||
1089 	   ((comp_codes_1g & TXGBE_SFF_1GBASELX_CAPABLE) &&
1090 	   (comp_codes_10g & TXGBE_SFF_10GBASELR_CAPABLE)))
1091 		hw->phy.multispeed_fiber = true;
1092 
1093 	/* Determine PHY vendor for optical modules */
1094 	if (comp_codes_10g & (TXGBE_SFF_10GBASESR_CAPABLE |
1095 			      TXGBE_SFF_10GBASELR_CAPABLE))  {
1096 		err = hw->phy.read_i2c_eeprom(hw,
1097 					    TXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1098 					    &oui_bytes[0]);
1099 
1100 		if (err != 0)
1101 			goto ERR_I2C;
1102 
1103 		err = hw->phy.read_i2c_eeprom(hw,
1104 					    TXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1105 					    &oui_bytes[1]);
1106 
1107 		if (err != 0)
1108 			goto ERR_I2C;
1109 
1110 		err = hw->phy.read_i2c_eeprom(hw,
1111 					    TXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1112 					    &oui_bytes[2]);
1113 
1114 		if (err != 0)
1115 			goto ERR_I2C;
1116 
1117 		vendor_oui =
1118 		  ((oui_bytes[0] << 24) |
1119 		   (oui_bytes[1] << 16) |
1120 		   (oui_bytes[2] << 8));
1121 
1122 		if (vendor_oui == TXGBE_SFF_VENDOR_OUI_INTEL)
1123 			hw->phy.type = txgbe_phy_qsfp_intel;
1124 		else
1125 			hw->phy.type = txgbe_phy_qsfp_unknown;
1126 
1127 		hw->mac.get_device_caps(hw, &enforce_sfp);
1128 		if (!(enforce_sfp & TXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1129 			/* Make sure we're a supported PHY type */
1130 			if (hw->phy.type == txgbe_phy_qsfp_intel) {
1131 				err = 0;
1132 			} else {
1133 				if (hw->allow_unsupported_sfp) {
1134 					DEBUGOUT("WARNING: Wangxun (R) Network Connections are quality tested using Wangxun (R) Ethernet Optics. "
1135 						"Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. "
1136 						"Wangxun Corporation is not responsible for any harm caused by using untested modules.");
1137 					err = 0;
1138 				} else {
1139 					DEBUGOUT("QSFP module not supported");
1140 					hw->phy.type =
1141 						txgbe_phy_sfp_unsupported;
1142 					err = TXGBE_ERR_SFP_NOT_SUPPORTED;
1143 				}
1144 			}
1145 		} else {
1146 			err = 0;
1147 		}
1148 	}
1149 
1150 out:
1151 	return err;
1152 }
1153 
1154 /**
1155  *  txgbe_read_i2c_eeprom - Reads 8 bit EEPROM word over I2C interface
1156  *  @hw: pointer to hardware structure
1157  *  @byte_offset: EEPROM byte offset to read
1158  *  @eeprom_data: value read
1159  *
1160  *  Performs byte read operation to SFP module's EEPROM over I2C interface.
1161  **/
txgbe_read_i2c_eeprom(struct txgbe_hw * hw,u8 byte_offset,u8 * eeprom_data)1162 s32 txgbe_read_i2c_eeprom(struct txgbe_hw *hw, u8 byte_offset,
1163 				  u8 *eeprom_data)
1164 {
1165 	return hw->phy.read_i2c_byte(hw, byte_offset,
1166 					 TXGBE_I2C_EEPROM_DEV_ADDR,
1167 					 eeprom_data);
1168 }
1169 
1170 /**
1171  *  txgbe_read_i2c_sff8472 - Reads 8 bit word over I2C interface
1172  *  @hw: pointer to hardware structure
1173  *  @byte_offset: byte offset at address 0xA2
1174  *  @sff8472_data: value read
1175  *
1176  *  Performs byte read operation to SFP module's SFF-8472 data over I2C
1177  **/
txgbe_read_i2c_sff8472(struct txgbe_hw * hw,u8 byte_offset,u8 * sff8472_data)1178 s32 txgbe_read_i2c_sff8472(struct txgbe_hw *hw, u8 byte_offset,
1179 					  u8 *sff8472_data)
1180 {
1181 	return hw->phy.read_i2c_byte(hw, byte_offset,
1182 					 TXGBE_I2C_EEPROM_DEV_ADDR2,
1183 					 sff8472_data);
1184 }
1185 
1186 /**
1187  *  txgbe_write_i2c_eeprom - Writes 8 bit EEPROM word over I2C interface
1188  *  @hw: pointer to hardware structure
1189  *  @byte_offset: EEPROM byte offset to write
1190  *  @eeprom_data: value to write
1191  *
1192  *  Performs byte write operation to SFP module's EEPROM over I2C interface.
1193  **/
txgbe_write_i2c_eeprom(struct txgbe_hw * hw,u8 byte_offset,u8 eeprom_data)1194 s32 txgbe_write_i2c_eeprom(struct txgbe_hw *hw, u8 byte_offset,
1195 				   u8 eeprom_data)
1196 {
1197 	return hw->phy.write_i2c_byte(hw, byte_offset,
1198 					  TXGBE_I2C_EEPROM_DEV_ADDR,
1199 					  eeprom_data);
1200 }
1201 
1202 /**
1203  *  txgbe_read_i2c_byte_unlocked - Reads 8 bit word over I2C
1204  *  @hw: pointer to hardware structure
1205  *  @byte_offset: byte offset to read
1206  *  @dev_addr: address to read from
1207  *  @data: value read
1208  *
1209  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
1210  *  a specified device address.
1211  **/
txgbe_read_i2c_byte_unlocked(struct txgbe_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)1212 s32 txgbe_read_i2c_byte_unlocked(struct txgbe_hw *hw, u8 byte_offset,
1213 					   u8 dev_addr, u8 *data)
1214 {
1215 	txgbe_i2c_start(hw, dev_addr);
1216 
1217 	/* wait tx empty */
1218 	if (!po32m(hw, TXGBE_I2CICR, TXGBE_I2CICR_TXEMPTY,
1219 		TXGBE_I2CICR_TXEMPTY, NULL, 100, 100)) {
1220 		return -TERR_TIMEOUT;
1221 	}
1222 
1223 	/* read data */
1224 	wr32(hw, TXGBE_I2CDATA,
1225 			byte_offset | TXGBE_I2CDATA_STOP);
1226 	wr32(hw, TXGBE_I2CDATA, TXGBE_I2CDATA_READ);
1227 
1228 	/* wait for read complete */
1229 	if (!po32m(hw, TXGBE_I2CICR, TXGBE_I2CICR_RXFULL,
1230 		TXGBE_I2CICR_RXFULL, NULL, 100, 100)) {
1231 		return -TERR_TIMEOUT;
1232 	}
1233 
1234 	txgbe_i2c_stop(hw);
1235 
1236 	*data = 0xFF & rd32(hw, TXGBE_I2CDATA);
1237 
1238 	return 0;
1239 }
1240 
1241 /**
1242  *  txgbe_read_i2c_byte - Reads 8 bit word over I2C
1243  *  @hw: pointer to hardware structure
1244  *  @byte_offset: byte offset to read
1245  *  @dev_addr: address to read from
1246  *  @data: value read
1247  *
1248  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
1249  *  a specified device address.
1250  **/
txgbe_read_i2c_byte(struct txgbe_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)1251 s32 txgbe_read_i2c_byte(struct txgbe_hw *hw, u8 byte_offset,
1252 				u8 dev_addr, u8 *data)
1253 {
1254 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
1255 	int err = 0;
1256 
1257 	if (hw->mac.acquire_swfw_sync(hw, swfw_mask))
1258 		return TXGBE_ERR_SWFW_SYNC;
1259 	err = txgbe_read_i2c_byte_unlocked(hw, byte_offset, dev_addr, data);
1260 	hw->mac.release_swfw_sync(hw, swfw_mask);
1261 	return err;
1262 }
1263 
1264 /**
1265  *  txgbe_write_i2c_byte_unlocked - Writes 8 bit word over I2C
1266  *  @hw: pointer to hardware structure
1267  *  @byte_offset: byte offset to write
1268  *  @dev_addr: address to write to
1269  *  @data: value to write
1270  *
1271  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
1272  *  a specified device address.
1273  **/
txgbe_write_i2c_byte_unlocked(struct txgbe_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)1274 s32 txgbe_write_i2c_byte_unlocked(struct txgbe_hw *hw, u8 byte_offset,
1275 					    u8 dev_addr, u8 data)
1276 {
1277 	txgbe_i2c_start(hw, dev_addr);
1278 
1279 	/* wait tx empty */
1280 	if (!po32m(hw, TXGBE_I2CICR, TXGBE_I2CICR_TXEMPTY,
1281 		TXGBE_I2CICR_TXEMPTY, NULL, 100, 100)) {
1282 		return -TERR_TIMEOUT;
1283 	}
1284 
1285 	wr32(hw, TXGBE_I2CDATA, byte_offset | TXGBE_I2CDATA_STOP);
1286 	wr32(hw, TXGBE_I2CDATA, data | TXGBE_I2CDATA_WRITE);
1287 
1288 	/* wait for write complete */
1289 	if (!po32m(hw, TXGBE_I2CICR, TXGBE_I2CICR_RXFULL,
1290 		TXGBE_I2CICR_RXFULL, NULL, 100, 100)) {
1291 		return -TERR_TIMEOUT;
1292 	}
1293 	txgbe_i2c_stop(hw);
1294 
1295 	return 0;
1296 }
1297 
1298 /**
1299  *  txgbe_write_i2c_byte - Writes 8 bit word over I2C
1300  *  @hw: pointer to hardware structure
1301  *  @byte_offset: byte offset to write
1302  *  @dev_addr: address to write to
1303  *  @data: value to write
1304  *
1305  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
1306  *  a specified device address.
1307  **/
txgbe_write_i2c_byte(struct txgbe_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)1308 s32 txgbe_write_i2c_byte(struct txgbe_hw *hw, u8 byte_offset,
1309 				 u8 dev_addr, u8 data)
1310 {
1311 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
1312 	int err = 0;
1313 
1314 	if (hw->mac.acquire_swfw_sync(hw, swfw_mask))
1315 		return TXGBE_ERR_SWFW_SYNC;
1316 	err = txgbe_write_i2c_byte_unlocked(hw, byte_offset, dev_addr, data);
1317 	hw->mac.release_swfw_sync(hw, swfw_mask);
1318 
1319 	return err;
1320 }
1321 
1322 /**
1323  *  txgbe_i2c_start - Sets I2C start condition
1324  *  @hw: pointer to hardware structure
1325  *
1326  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
1327  **/
txgbe_i2c_start(struct txgbe_hw * hw,u8 dev_addr)1328 static void txgbe_i2c_start(struct txgbe_hw *hw, u8 dev_addr)
1329 {
1330 	wr32(hw, TXGBE_I2CENA, 0);
1331 
1332 	wr32(hw, TXGBE_I2CCON,
1333 		(TXGBE_I2CCON_MENA |
1334 		TXGBE_I2CCON_SPEED(1) |
1335 		TXGBE_I2CCON_RESTART |
1336 		TXGBE_I2CCON_SDIA));
1337 	wr32(hw, TXGBE_I2CTAR, dev_addr >> 1);
1338 	wr32(hw, TXGBE_I2CSSSCLHCNT, 200);
1339 	wr32(hw, TXGBE_I2CSSSCLLCNT, 200);
1340 	wr32(hw, TXGBE_I2CRXTL, 0); /* 1byte for rx full signal */
1341 	wr32(hw, TXGBE_I2CTXTL, 4);
1342 	wr32(hw, TXGBE_I2CSCLTMOUT, 0xFFFFFF);
1343 	wr32(hw, TXGBE_I2CSDATMOUT, 0xFFFFFF);
1344 
1345 	wr32(hw, TXGBE_I2CICM, 0);
1346 	wr32(hw, TXGBE_I2CENA, 1);
1347 }
1348 
1349 /**
1350  *  txgbe_i2c_stop - Sets I2C stop condition
1351  *  @hw: pointer to hardware structure
1352  *
1353  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
1354  **/
txgbe_i2c_stop(struct txgbe_hw * hw)1355 static void txgbe_i2c_stop(struct txgbe_hw *hw)
1356 {
1357 	/* wait for completion */
1358 	if (!po32m(hw, TXGBE_I2CSTAT, TXGBE_I2CSTAT_MST,
1359 		0, NULL, 100, 100)) {
1360 		DEBUGOUT("i2c stop timeout.");
1361 	}
1362 
1363 	wr32(hw, TXGBE_I2CENA, 0);
1364 }
1365 
1366 /**
1367  *  txgbe_check_overtemp - Checks if an overtemp occurred.
1368  *  @hw: pointer to hardware structure
1369  *
1370  *  Checks if the temp alarm status was triggered due to overtemp
1371  **/
txgbe_check_overtemp(struct txgbe_hw * hw)1372 s32 txgbe_check_overtemp(struct txgbe_hw *hw)
1373 {
1374 	s32 status = 0;
1375 	u32 ts_state;
1376 
1377 	/* Check that the temp alarm status was triggered */
1378 	ts_state = rd32(hw, TXGBE_TS_ALARM_ST);
1379 
1380 	if (ts_state & TXGBE_TS_ALARM_ST_DALARM)
1381 		status = TXGBE_ERR_UNDERTEMP;
1382 	else if (ts_state & TXGBE_TS_ALARM_ST_ALARM)
1383 		status = TXGBE_ERR_OVERTEMP;
1384 
1385 	return status;
1386 }
1387 
1388 static void
txgbe_set_sgmii_an37_ability(struct txgbe_hw * hw)1389 txgbe_set_sgmii_an37_ability(struct txgbe_hw *hw)
1390 {
1391 	u32 value;
1392 	u8 device_type = hw->subsystem_device_id & 0xF0;
1393 
1394 	wr32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1, 0x3002);
1395 	/* for sgmii + external phy, set to 0x0105 (phy sgmii mode) */
1396 	/* for sgmii direct link, set to 0x010c (mac sgmii mode) */
1397 	if (device_type == TXGBE_DEV_ID_MAC_SGMII ||
1398 			hw->phy.media_type == txgbe_media_type_fiber)
1399 		wr32_epcs(hw, SR_MII_MMD_AN_CTL, 0x010C);
1400 	else if (device_type == TXGBE_DEV_ID_SGMII ||
1401 			device_type == TXGBE_DEV_ID_XAUI)
1402 		wr32_epcs(hw, SR_MII_MMD_AN_CTL, 0x0105);
1403 	wr32_epcs(hw, SR_MII_MMD_DIGI_CTL, 0x0200);
1404 	value = rd32_epcs(hw, SR_MII_MMD_CTL);
1405 	value = (value & ~0x1200) | (0x1 << 9);
1406 	if (hw->autoneg)
1407 		value |= SR_MII_MMD_CTL_AN_EN;
1408 	wr32_epcs(hw, SR_MII_MMD_CTL, value);
1409 }
1410 
1411 static s32
txgbe_set_link_to_kr(struct txgbe_hw * hw,bool autoneg)1412 txgbe_set_link_to_kr(struct txgbe_hw *hw, bool autoneg)
1413 {
1414 	u32 i;
1415 	u16 value;
1416 	s32 err = 0;
1417 
1418 	/* 1. Wait xpcs power-up good */
1419 	for (i = 0; i < 100; i++) {
1420 		if ((rd32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_STATUS) &
1421 			VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_MASK) ==
1422 			VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_POWER_GOOD)
1423 			break;
1424 		msec_delay(10);
1425 	}
1426 	if (i == 100) {
1427 		err = TXGBE_ERR_XPCS_POWER_UP_FAILED;
1428 		goto out;
1429 	}
1430 	BP_LOG("It is set to kr.\n");
1431 
1432 	wr32_epcs(hw, VR_AN_INTR_MSK, 0x7);
1433 	wr32_epcs(hw, TXGBE_PHY_TX_POWER_ST_CTL, 0x00FC);
1434 	wr32_epcs(hw, TXGBE_PHY_RX_POWER_ST_CTL, 0x00FC);
1435 
1436 	if (!autoneg) {
1437 		/* 2. Disable xpcs AN-73 */
1438 		wr32_epcs(hw, SR_AN_CTRL,
1439 			SR_AN_CTRL_AN_EN | SR_AN_CTRL_EXT_NP);
1440 
1441 		wr32_epcs(hw, VR_AN_KR_MODE_CL, VR_AN_KR_MODE_CL_PDET);
1442 
1443 		if (!(hw->devarg.auto_neg == 1)) {
1444 			wr32_epcs(hw, SR_AN_CTRL, 0);
1445 			wr32_epcs(hw, VR_AN_KR_MODE_CL, 0);
1446 		} else {
1447 			value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1);
1448 			value &= ~(1 << 6);
1449 			wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
1450 		}
1451 		if (hw->devarg.present == 1) {
1452 			value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1);
1453 			value |= TXGBE_PHY_TX_EQ_CTL1_DEF;
1454 			wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
1455 		}
1456 		if (hw->devarg.poll == 1) {
1457 			wr32_epcs(hw, VR_PMA_KRTR_TIMER_CTRL0,
1458 				VR_PMA_KRTR_TIMER_MAX_WAIT);
1459 			wr32_epcs(hw, VR_PMA_KRTR_TIMER_CTRL2, 0xA697);
1460 		}
1461 
1462 		/* 3. Set VR_XS_PMA_Gen5_12G_MPLLA_CTRL3 Register
1463 		 * Bit[10:0](MPLLA_BANDWIDTH) = 11'd123 (default: 11'd16)
1464 		 */
1465 		wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL3,
1466 			TXGBE_PHY_MPLLA_CTL3_MULTIPLIER_BW_10GBASER_KR);
1467 
1468 		/* 4. Set VR_XS_PMA_Gen5_12G_MISC_CTRL0 Register
1469 		 * Bit[12:8](RX_VREF_CTRL) = 5'hF (default: 5'h11)
1470 		 */
1471 		wr32_epcs(hw, TXGBE_PHY_MISC_CTL0, 0xCF00);
1472 
1473 		/* 5. Set VR_XS_PMA_Gen5_12G_RX_EQ_CTRL0 Register
1474 		 * Bit[15:8](VGA1/2_GAIN_0) = 8'h77
1475 		 * Bit[7:5](CTLE_POLE_0) = 3'h2
1476 		 * Bit[4:0](CTLE_BOOST_0) = 4'hA
1477 		 */
1478 		wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0, 0x774A);
1479 
1480 		/* 6. Set VR_MII_Gen5_12G_RX_GENCTRL3 Register
1481 		 * Bit[2:0](LOS_TRSHLD_0) = 3'h4 (default: 3)
1482 		 */
1483 		wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL3, 0x0004);
1484 
1485 		/* 7. Initialize the mode by setting VR XS or PCS MMD Digital
1486 		 * Control1 Register Bit[15](VR_RST)
1487 		 */
1488 		wr32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1, 0xA000);
1489 
1490 		/* Wait phy initialization done */
1491 		for (i = 0; i < 100; i++) {
1492 			if ((rd32_epcs(hw,
1493 				VR_XS_OR_PCS_MMD_DIGI_CTL1) &
1494 				VR_XS_OR_PCS_MMD_DIGI_CTL1_VR_RST) == 0)
1495 				break;
1496 			msleep(100);
1497 		}
1498 		if (i == 100) {
1499 			err = TXGBE_ERR_PHY_INIT_NOT_DONE;
1500 			goto out;
1501 		}
1502 	} else {
1503 		wr32_epcs(hw, VR_AN_KR_MODE_CL, 0x1);
1504 	}
1505 
1506 	if (hw->phy.ffe_set == TXGBE_BP_M_KR) {
1507 		value = (0x1804 & ~0x3F3F);
1508 		value |= hw->phy.ffe_main << 8 | hw->phy.ffe_pre;
1509 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
1510 
1511 		value = (0x50 & ~0x7F) | (1 << 6) | hw->phy.ffe_post;
1512 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
1513 	}
1514 out:
1515 	return err;
1516 }
1517 
1518 static s32
txgbe_set_link_to_kx4(struct txgbe_hw * hw,bool autoneg)1519 txgbe_set_link_to_kx4(struct txgbe_hw *hw, bool autoneg)
1520 {
1521 	u32 i;
1522 	s32 err = 0;
1523 	u32 value;
1524 
1525 	/* Check link status, if already set, skip setting it again */
1526 	if (hw->link_status == TXGBE_LINK_STATUS_KX4)
1527 		goto out;
1528 
1529 	BP_LOG("It is set to kx4.\n");
1530 	wr32_epcs(hw, TXGBE_PHY_TX_POWER_ST_CTL, 0);
1531 	wr32_epcs(hw, TXGBE_PHY_RX_POWER_ST_CTL, 0);
1532 
1533 	/* 1. Wait xpcs power-up good */
1534 	for (i = 0; i < 100; i++) {
1535 		if ((rd32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_STATUS) &
1536 			VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_MASK) ==
1537 			VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_POWER_GOOD)
1538 			break;
1539 		msec_delay(10);
1540 	}
1541 	if (i == 100) {
1542 		err = TXGBE_ERR_XPCS_POWER_UP_FAILED;
1543 		goto out;
1544 	}
1545 
1546 	wr32m(hw, TXGBE_MACTXCFG, TXGBE_MACTXCFG_TXE, ~TXGBE_MACTXCFG_TXE);
1547 	wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_ENA, ~TXGBE_MACRXCFG_ENA);
1548 	hw->mac.disable_sec_tx_path(hw);
1549 
1550 	/* 2. Disable xpcs AN-73 */
1551 	if (!autoneg)
1552 		wr32_epcs(hw, SR_AN_CTRL, 0x0);
1553 	else
1554 		wr32_epcs(hw, SR_AN_CTRL, 0x3000);
1555 
1556 	/* Disable PHY MPLLA for eth mode change(after ECO) */
1557 	wr32_ephy(hw, 0x4, 0x250A);
1558 	txgbe_flush(hw);
1559 	msec_delay(1);
1560 
1561 	/* Set the eth change_mode bit first in mis_rst register
1562 	 * for corresponding LAN port
1563 	 */
1564 	wr32(hw, TXGBE_RST, TXGBE_RST_ETH(hw->bus.lan_id));
1565 
1566 	/* Set SR PCS Control2 Register Bits[1:0] = 2'b01
1567 	 * PCS_TYPE_SEL: non KR
1568 	 */
1569 	wr32_epcs(hw, SR_XS_PCS_CTRL2,
1570 			SR_PCS_CTRL2_TYPE_SEL_X);
1571 
1572 	/* Set SR PMA MMD Control1 Register Bit[13] = 1'b1
1573 	 * SS13: 10G speed
1574 	 */
1575 	wr32_epcs(hw, SR_PMA_CTRL1,
1576 			SR_PMA_CTRL1_SS13_KX4);
1577 
1578 	value = (0xf5f0 & ~0x7F0) |  (0x5 << 8) | (0x7 << 5) | 0xF0;
1579 	wr32_epcs(hw, TXGBE_PHY_TX_GENCTRL1, value);
1580 
1581 	if ((hw->subsystem_device_id & 0xFF) == TXGBE_DEV_ID_MAC_XAUI)
1582 		wr32_epcs(hw, TXGBE_PHY_MISC_CTL0, 0xCF00);
1583 	else
1584 		wr32_epcs(hw, TXGBE_PHY_MISC_CTL0, 0x4F00);
1585 
1586 	for (i = 0; i < 4; i++) {
1587 		if (i == 0)
1588 			value = (0x45 & ~0xFFFF) | (0x7 << 12) |
1589 				(0x7 << 8) | 0x6;
1590 		else
1591 			value = (0xff06 & ~0xFFFF) | (0x7 << 12) |
1592 				(0x7 << 8) | 0x6;
1593 		wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0 + i, value);
1594 	}
1595 
1596 	value = 0x0 & ~0x7777;
1597 	wr32_epcs(hw, TXGBE_PHY_RX_EQ_ATT_LVL0, value);
1598 
1599 	wr32_epcs(hw, TXGBE_PHY_DFE_TAP_CTL0, 0x0);
1600 
1601 	value = (0x6db & ~0xFFF) | (0x1 << 9) | (0x1 << 6) | (0x1 << 3) | 0x1;
1602 	wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL3, value);
1603 
1604 	/* Set VR XS, PMA, or MII Gen5 12G PHY MPLLA
1605 	 * Control 0 Register Bit[7:0] = 8'd40  //MPLLA_MULTIPLIER
1606 	 */
1607 	wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL0,
1608 			TXGBE_PHY_MPLLA_CTL0_MULTIPLIER_OTHER);
1609 
1610 	/* Set VR XS, PMA or MII Gen5 12G PHY MPLLA
1611 	 * Control 3 Register Bit[10:0] = 11'd86  //MPLLA_BANDWIDTH
1612 	 */
1613 	wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL3,
1614 			TXGBE_PHY_MPLLA_CTL3_MULTIPLIER_BW_OTHER);
1615 
1616 	/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
1617 	 * Calibration Load 0 Register  Bit[12:0] = 13'd1360  //VCO_LD_VAL_0
1618 	 */
1619 	wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD0,
1620 			TXGBE_PHY_VCO_CAL_LD0_OTHER);
1621 
1622 	/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
1623 	 * Calibration Load 1 Register  Bit[12:0] = 13'd1360  //VCO_LD_VAL_1
1624 	 */
1625 	wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD1,
1626 			TXGBE_PHY_VCO_CAL_LD0_OTHER);
1627 
1628 	/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
1629 	 * Calibration Load 2 Register  Bit[12:0] = 13'd1360  //VCO_LD_VAL_2
1630 	 */
1631 	wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD2,
1632 			TXGBE_PHY_VCO_CAL_LD0_OTHER);
1633 	/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
1634 	 * Calibration Load 3 Register  Bit[12:0] = 13'd1360  //VCO_LD_VAL_3
1635 	 */
1636 	wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD3,
1637 			TXGBE_PHY_VCO_CAL_LD0_OTHER);
1638 	/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
1639 	 * Calibration Reference 0 Register Bit[5:0] = 6'd34  //VCO_REF_LD_0/1
1640 	 */
1641 	wr32_epcs(hw, TXGBE_PHY_VCO_CAL_REF0, 0x2222);
1642 
1643 	/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
1644 	 * Calibration Reference 1 Register Bit[5:0] = 6'd34  //VCO_REF_LD_2/3
1645 	 */
1646 	wr32_epcs(hw, TXGBE_PHY_VCO_CAL_REF1, 0x2222);
1647 
1648 	/* Set VR XS, PMA, or MII Gen5 12G PHY AFE-DFE
1649 	 * Enable Register Bit[7:0] = 8'd0  //AFE_EN_0/3_1, DFE_EN_0/3_1
1650 	 */
1651 	wr32_epcs(hw, TXGBE_PHY_AFE_DFE_ENABLE, 0x0);
1652 
1653 	/* Set  VR XS, PMA, or MII Gen5 12G PHY Rx
1654 	 * Equalization Control 4 Register Bit[3:0] = 4'd0  //CONT_ADAPT_0/3_1
1655 	 */
1656 	wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL, 0x00F0);
1657 
1658 	/* Set VR XS, PMA, or MII Gen5 12G PHY Tx Rate
1659 	 * Control Register Bit[14:12], Bit[10:8], Bit[6:4], Bit[2:0],
1660 	 * all rates to 3'b010  //TX0/1/2/3_RATE
1661 	 */
1662 	wr32_epcs(hw, TXGBE_PHY_TX_RATE_CTL, 0x2222);
1663 
1664 	/* Set VR XS, PMA, or MII Gen5 12G PHY Rx Rate
1665 	 * Control Register Bit[13:12], Bit[9:8], Bit[5:4], Bit[1:0],
1666 	 * all rates to 2'b10  //RX0/1/2/3_RATE
1667 	 */
1668 	wr32_epcs(hw, TXGBE_PHY_RX_RATE_CTL, 0x2222);
1669 
1670 	/* Set VR XS, PMA, or MII Gen5 12G PHY Tx General
1671 	 * Control 2 Register Bit[15:8] = 2'b01  //TX0/1/2/3_WIDTH: 10bits
1672 	 */
1673 	wr32_epcs(hw, TXGBE_PHY_TX_GEN_CTL2, 0x5500);
1674 
1675 	/* Set VR XS, PMA, or MII Gen5 12G PHY Rx General
1676 	 * Control 2 Register Bit[15:8] = 2'b01  //RX0/1/2/3_WIDTH: 10bits
1677 	 */
1678 	wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL2, 0x5500);
1679 
1680 	/* Set VR XS, PMA, or MII Gen5 12G PHY MPLLA Control
1681 	 * 2 Register Bit[10:8] = 3'b010
1682 	 * MPLLA_DIV16P5_CLK_EN=0, MPLLA_DIV10_CLK_EN=1, MPLLA_DIV8_CLK_EN=0
1683 	 */
1684 	wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL2,
1685 			TXGBE_PHY_MPLLA_CTL2_DIV_CLK_EN_10);
1686 
1687 	wr32_epcs(hw, 0x1f0000, 0x0);
1688 	wr32_epcs(hw, 0x1f8001, 0x0);
1689 	wr32_epcs(hw, SR_MII_MMD_DIGI_CTL, 0x0);
1690 
1691 	/* 10. Initialize the mode by setting VR XS or PCS MMD Digital Control1
1692 	 * Register Bit[15](VR_RST)
1693 	 */
1694 	wr32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1, 0xA000);
1695 
1696 	/* Wait phy initialization done */
1697 	for (i = 0; i < 100; i++) {
1698 		if ((rd32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1) &
1699 			VR_XS_OR_PCS_MMD_DIGI_CTL1_VR_RST) == 0)
1700 			break;
1701 		msleep(100);
1702 	}
1703 
1704 	/* If success, set link status */
1705 	hw->link_status = TXGBE_LINK_STATUS_KX4;
1706 
1707 	if (i == 100) {
1708 		err = TXGBE_ERR_PHY_INIT_NOT_DONE;
1709 		goto out;
1710 	}
1711 
1712 	if (hw->phy.ffe_set == TXGBE_BP_M_KX4) {
1713 		value = (0x1804 & ~0x3F3F);
1714 		value |= hw->phy.ffe_main << 8 | hw->phy.ffe_pre;
1715 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
1716 
1717 		value = (0x50 & ~0x7F) | (1 << 6) | hw->phy.ffe_post;
1718 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
1719 	} else if (hw->fw_version <= TXGBE_FW_N_TXEQ) {
1720 		value = (0x1804 & ~0x3F3F);
1721 		value |= 40 << 8;
1722 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
1723 
1724 		value = (0x50 & ~0x7F) | (1 << 6);
1725 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
1726 	}
1727 out:
1728 	return err;
1729 }
1730 
1731 static s32
txgbe_set_link_to_kx(struct txgbe_hw * hw,u32 speed,bool autoneg)1732 txgbe_set_link_to_kx(struct txgbe_hw *hw,
1733 			       u32 speed,
1734 			       bool autoneg)
1735 {
1736 	u32 i;
1737 	s32 err = 0;
1738 	u32 wdata = 0;
1739 	u32 value;
1740 
1741 	/* Check link status, if already set, skip setting it again */
1742 	if (hw->link_status == TXGBE_LINK_STATUS_KX)
1743 		goto out;
1744 
1745 	BP_LOG("It is set to kx. speed =0x%x\n", speed);
1746 	wr32_epcs(hw, TXGBE_PHY_TX_POWER_ST_CTL, 0x00FC);
1747 	wr32_epcs(hw, TXGBE_PHY_RX_POWER_ST_CTL, 0x00FC);
1748 
1749 	/* 1. Wait xpcs power-up good */
1750 	for (i = 0; i < 100; i++) {
1751 		if ((rd32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_STATUS) &
1752 			VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_MASK) ==
1753 			VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_POWER_GOOD)
1754 			break;
1755 		msec_delay(10);
1756 	}
1757 	if (i == 100) {
1758 		err = TXGBE_ERR_XPCS_POWER_UP_FAILED;
1759 		goto out;
1760 	}
1761 
1762 	wr32m(hw, TXGBE_MACTXCFG, TXGBE_MACTXCFG_TXE, ~TXGBE_MACTXCFG_TXE);
1763 	wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_ENA, ~TXGBE_MACRXCFG_ENA);
1764 	hw->mac.disable_sec_tx_path(hw);
1765 
1766 	/* 2. Disable xpcs AN-73 */
1767 	if (!autoneg)
1768 		wr32_epcs(hw, SR_AN_CTRL, 0x0);
1769 	else
1770 		wr32_epcs(hw, SR_AN_CTRL, 0x3000);
1771 
1772 	/* Disable PHY MPLLA for eth mode change(after ECO) */
1773 	wr32_ephy(hw, 0x4, 0x240A);
1774 	txgbe_flush(hw);
1775 	msec_delay(1);
1776 
1777 	/* Set the eth change_mode bit first in mis_rst register
1778 	 * for corresponding LAN port
1779 	 */
1780 	wr32(hw, TXGBE_RST, TXGBE_RST_ETH(hw->bus.lan_id));
1781 
1782 	/* Set SR PCS Control2 Register Bits[1:0] = 2'b01
1783 	 * PCS_TYPE_SEL: non KR
1784 	 */
1785 	wr32_epcs(hw, SR_XS_PCS_CTRL2,
1786 			SR_PCS_CTRL2_TYPE_SEL_X);
1787 
1788 	/* Set SR PMA MMD Control1 Register Bit[13] = 1'b0
1789 	 * SS13: 1G speed
1790 	 */
1791 	wr32_epcs(hw, SR_PMA_CTRL1,
1792 			SR_PMA_CTRL1_SS13_KX);
1793 
1794 	/* Set SR MII MMD Control Register to corresponding speed: {Bit[6],
1795 	 * Bit[13]}=[2'b00,2'b01,2'b10]->[10M,100M,1G]
1796 	 */
1797 	if (speed == TXGBE_LINK_SPEED_100M_FULL)
1798 		wdata = 0x2100;
1799 	else if (speed == TXGBE_LINK_SPEED_1GB_FULL)
1800 		wdata = 0x0140;
1801 	else if (speed == TXGBE_LINK_SPEED_10M_FULL)
1802 		wdata = 0x0100;
1803 	wr32_epcs(hw, SR_MII_MMD_CTL,
1804 			wdata);
1805 
1806 	value = (0xf5f0 & ~0x710) | (0x5 << 8) | 0x10;
1807 	wr32_epcs(hw, TXGBE_PHY_TX_GENCTRL1, value);
1808 
1809 	if (hw->devarg.sgmii == 1)
1810 		wr32_epcs(hw, TXGBE_PHY_MISC_CTL0, 0x4F00);
1811 	else
1812 		wr32_epcs(hw, TXGBE_PHY_MISC_CTL0, 0xCF00);
1813 
1814 	for (i = 0; i < 4; i++) {
1815 		if (i) {
1816 			value = 0xff06;
1817 		} else {
1818 			value = (0x45 & ~0xFFFF) | (0x7 << 12) |
1819 				(0x7 << 8) | 0x6;
1820 		}
1821 		wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0 + i, value);
1822 	}
1823 
1824 	value = 0x0 & ~0x7;
1825 	wr32_epcs(hw, TXGBE_PHY_RX_EQ_ATT_LVL0, value);
1826 
1827 	wr32_epcs(hw, TXGBE_PHY_DFE_TAP_CTL0, 0x0);
1828 
1829 	value = (0x6db & ~0x7) | 0x4;
1830 	wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL3, value);
1831 
1832 	/* Set VR XS, PMA, or MII Gen5 12G PHY MPLLA Control
1833 	 * 0 Register Bit[7:0] = 8'd32  //MPLLA_MULTIPLIER
1834 	 */
1835 	wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL0,
1836 			TXGBE_PHY_MPLLA_CTL0_MULTIPLIER_1GBASEX_KX);
1837 
1838 	/* Set VR XS, PMA or MII Gen5 12G PHY MPLLA Control
1839 	 * 3 Register Bit[10:0] = 11'd70  //MPLLA_BANDWIDTH
1840 	 */
1841 	wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL3,
1842 			TXGBE_PHY_MPLLA_CTL3_MULTIPLIER_BW_1GBASEX_KX);
1843 
1844 	/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
1845 	 * Calibration Load 0 Register  Bit[12:0] = 13'd1344  //VCO_LD_VAL_0
1846 	 */
1847 	wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD0,
1848 			TXGBE_PHY_VCO_CAL_LD0_1GBASEX_KX);
1849 
1850 	wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD1, 0x549);
1851 	wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD2, 0x549);
1852 	wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD3, 0x549);
1853 
1854 	/* Set VR XS, PMA, or MII Gen5 12G PHY VCO
1855 	 * Calibration Reference 0 Register Bit[5:0] = 6'd42  //VCO_REF_LD_0
1856 	 */
1857 	wr32_epcs(hw, TXGBE_PHY_VCO_CAL_REF0,
1858 			TXGBE_PHY_VCO_CAL_REF0_LD0_1GBASEX_KX);
1859 
1860 	wr32_epcs(hw, TXGBE_PHY_VCO_CAL_REF1, 0x2929);
1861 
1862 	/* Set VR XS, PMA, or MII Gen5 12G PHY AFE-DFE
1863 	 * Enable Register Bit[4], Bit[0] = 1'b0  //AFE_EN_0, DFE_EN_0
1864 	 */
1865 	wr32_epcs(hw, TXGBE_PHY_AFE_DFE_ENABLE,
1866 			0x0);
1867 	/* Set VR XS, PMA, or MII Gen5 12G PHY Rx
1868 	 * Equalization Control 4 Register Bit[0] = 1'b0  //CONT_ADAPT_0
1869 	 */
1870 	wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL,
1871 			0x0010);
1872 	/* Set VR XS, PMA, or MII Gen5 12G PHY Tx Rate
1873 	 * Control Register Bit[2:0] = 3'b011  //TX0_RATE
1874 	 */
1875 	wr32_epcs(hw, TXGBE_PHY_TX_RATE_CTL,
1876 			TXGBE_PHY_TX_RATE_CTL_TX0_RATE_1GBASEX_KX);
1877 
1878 	/* Set VR XS, PMA, or MII Gen5 12G PHY Rx Rate
1879 	 * Control Register Bit[2:0] = 3'b011 //RX0_RATE
1880 	 */
1881 	wr32_epcs(hw, TXGBE_PHY_RX_RATE_CTL,
1882 			TXGBE_PHY_RX_RATE_CTL_RX0_RATE_1GBASEX_KX);
1883 
1884 	/* Set VR XS, PMA, or MII Gen5 12G PHY Tx General
1885 	 * Control 2 Register Bit[9:8] = 2'b01  //TX0_WIDTH: 10bits
1886 	 */
1887 	wr32_epcs(hw, TXGBE_PHY_TX_GEN_CTL2,
1888 			TXGBE_PHY_TX_GEN_CTL2_TX0_WIDTH_OTHER);
1889 	/* Set VR XS, PMA, or MII Gen5 12G PHY Rx General
1890 	 * Control 2 Register Bit[9:8] = 2'b01  //RX0_WIDTH: 10bits
1891 	 */
1892 	wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL2,
1893 			TXGBE_PHY_RX_GEN_CTL2_RX0_WIDTH_OTHER);
1894 	/* Set VR XS, PMA, or MII Gen5 12G PHY MPLLA Control
1895 	 * 2 Register Bit[10:8] = 3'b010   //MPLLA_DIV16P5_CLK_EN=0,
1896 	 * MPLLA_DIV10_CLK_EN=1, MPLLA_DIV8_CLK_EN=0
1897 	 */
1898 	wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL2,
1899 			TXGBE_PHY_MPLLA_CTL2_DIV_CLK_EN_10);
1900 
1901 	/* VR MII MMD AN Control Register Bit[8] = 1'b1 //MII_CTRL
1902 	 * Set to 8bit MII (required in 10M/100M SGMII)
1903 	 */
1904 	wr32_epcs(hw, SR_MII_MMD_AN_CTL,
1905 			0x0100);
1906 
1907 	/* 10. Initialize the mode by setting VR XS or PCS MMD Digital Control1
1908 	 * Register Bit[15](VR_RST)
1909 	 */
1910 	wr32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1, 0xA000);
1911 
1912 	/* Wait phy initialization done */
1913 	for (i = 0; i < 100; i++) {
1914 		if ((rd32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1) &
1915 			VR_XS_OR_PCS_MMD_DIGI_CTL1_VR_RST) == 0)
1916 			break;
1917 		msleep(100);
1918 	}
1919 
1920 	/* If success, set link status */
1921 	hw->link_status = TXGBE_LINK_STATUS_KX;
1922 
1923 	if (i == 100) {
1924 		err = TXGBE_ERR_PHY_INIT_NOT_DONE;
1925 		goto out;
1926 	}
1927 
1928 	if (hw->phy.ffe_set == TXGBE_BP_M_KX) {
1929 		value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0) & ~0x3F3F;
1930 		value |= hw->phy.ffe_main << 8 | hw->phy.ffe_pre;
1931 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
1932 
1933 		value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0) & ~0x7F;
1934 		value |= hw->phy.ffe_post | (1 << 6);
1935 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
1936 	} else if (hw->fw_version <= TXGBE_FW_N_TXEQ) {
1937 		value = (0x1804 & ~0x3F3F) | (40 << 8);
1938 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
1939 
1940 		value = (0x50 & ~0x7F) | (1 << 6);
1941 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
1942 	}
1943 out:
1944 	return err;
1945 }
1946 
1947 static s32
txgbe_set_link_to_sfi(struct txgbe_hw * hw,u32 speed)1948 txgbe_set_link_to_sfi(struct txgbe_hw *hw,
1949 			       u32 speed)
1950 {
1951 	u32 i;
1952 	s32 err = 0;
1953 	u32 value = 0;
1954 
1955 	/* Set the module link speed */
1956 	hw->mac.set_rate_select_speed(hw, speed);
1957 	/* 1. Wait xpcs power-up good */
1958 	for (i = 0; i < 100; i++) {
1959 		if ((rd32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_STATUS) &
1960 			VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_MASK) ==
1961 			VR_XS_OR_PCS_MMD_DIGI_STATUS_PSEQ_POWER_GOOD)
1962 			break;
1963 		msec_delay(10);
1964 	}
1965 	if (i == 100) {
1966 		err = TXGBE_ERR_XPCS_POWER_UP_FAILED;
1967 		goto out;
1968 	}
1969 
1970 	wr32m(hw, TXGBE_MACTXCFG, TXGBE_MACTXCFG_TXE, ~TXGBE_MACTXCFG_TXE);
1971 	wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_ENA, ~TXGBE_MACRXCFG_ENA);
1972 	hw->mac.disable_sec_tx_path(hw);
1973 
1974 	/* 2. Disable xpcs AN-73 */
1975 	wr32_epcs(hw, SR_AN_CTRL, 0x0);
1976 
1977 	/* Disable PHY MPLLA for eth mode change(after ECO) */
1978 	wr32_ephy(hw, 0x4, 0x243A);
1979 	txgbe_flush(hw);
1980 	msec_delay(1);
1981 	/* Set the eth change_mode bit first in mis_rst register
1982 	 * for corresponding LAN port
1983 	 */
1984 	wr32(hw, TXGBE_RST, TXGBE_RST_ETH(hw->bus.lan_id));
1985 
1986 	if (speed == TXGBE_LINK_SPEED_10GB_FULL) {
1987 		/* Set SR PCS Control2 Register Bits[1:0] = 2'b00
1988 		 * PCS_TYPE_SEL: KR
1989 		 */
1990 		wr32_epcs(hw, SR_XS_PCS_CTRL2, 0);
1991 		value = rd32_epcs(hw, SR_PMA_CTRL1);
1992 		value = value | 0x2000;
1993 		wr32_epcs(hw, SR_PMA_CTRL1, value);
1994 		/* Set VR_XS_PMA_Gen5_12G_MPLLA_CTRL0 Register Bit[7:0] = 8'd33
1995 		 * MPLLA_MULTIPLIER
1996 		 */
1997 		wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL0, 0x0021);
1998 		/* 3. Set VR_XS_PMA_Gen5_12G_MPLLA_CTRL3 Register
1999 		 * Bit[10:0](MPLLA_BANDWIDTH) = 11'd0
2000 		 */
2001 		wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL3, 0);
2002 		value = rd32_epcs(hw, TXGBE_PHY_TX_GENCTRL1);
2003 		value = (value & ~0x700) | 0x500;
2004 		wr32_epcs(hw, TXGBE_PHY_TX_GENCTRL1, value);
2005 		/* 4. Set VR_XS_PMA_Gen5_12G_MISC_CTRL0 Register
2006 		 * Bit[12:8](RX_VREF_CTRL) = 5'hF
2007 		 */
2008 		wr32_epcs(hw, TXGBE_PHY_MISC_CTL0, 0xCF00);
2009 		/* Set VR_XS_PMA_Gen5_12G_VCO_CAL_LD0 Register
2010 		 * Bit[12:0] = 13'd1353  //VCO_LD_VAL_0
2011 		 */
2012 		wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD0, 0x0549);
2013 		/* Set VR_XS_PMA_Gen5_12G_VCO_CAL_REF0 Register
2014 		 * Bit[5:0] = 6'd41  //VCO_REF_LD_0
2015 		 */
2016 		wr32_epcs(hw, TXGBE_PHY_VCO_CAL_REF0, 0x0029);
2017 		/* Set VR_XS_PMA_Gen5_12G_TX_RATE_CTRL Register
2018 		 * Bit[2:0] = 3'b000  //TX0_RATE
2019 		 */
2020 		wr32_epcs(hw, TXGBE_PHY_TX_RATE_CTL, 0);
2021 		/* Set VR_XS_PMA_Gen5_12G_RX_RATE_CTRL Register
2022 		 * Bit[2:0] = 3'b000  //RX0_RATE
2023 		 */
2024 		wr32_epcs(hw, TXGBE_PHY_RX_RATE_CTL, 0);
2025 		/* Set VR_XS_PMA_Gen5_12G_TX_GENCTRL2 Register Bit[9:8] = 2'b11
2026 		 * TX0_WIDTH: 20bits
2027 		 */
2028 		wr32_epcs(hw, TXGBE_PHY_TX_GEN_CTL2, 0x0300);
2029 		/* Set VR_XS_PMA_Gen5_12G_RX_GENCTRL2 Register Bit[9:8] = 2'b11
2030 		 * RX0_WIDTH: 20bits
2031 		 */
2032 		wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL2, 0x0300);
2033 		/* Set VR_XS_PMA_Gen5_12G_MPLLA_CTRL2 Register
2034 		 * Bit[10:8] = 3'b110
2035 		 * MPLLA_DIV16P5_CLK_EN=1
2036 		 * MPLLA_DIV10_CLK_EN=1
2037 		 * MPLLA_DIV8_CLK_EN=0
2038 		 */
2039 		wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL2, 0x0600);
2040 
2041 		if (hw->phy.sfp_type == txgbe_sfp_type_da_cu_core0 ||
2042 			hw->phy.sfp_type == txgbe_sfp_type_da_cu_core1) {
2043 			/* 7. Set VR_XS_PMA_Gen5_12G_RX_EQ_CTRL0 Register
2044 			 * Bit[15:8](VGA1/2_GAIN_0) = 8'h77
2045 			 * Bit[7:5](CTLE_POLE_0) = 3'h2
2046 			 * Bit[4:0](CTLE_BOOST_0) = 4'hF
2047 			 */
2048 			wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0, 0x774F);
2049 
2050 		} else {
2051 			/* 7. Set VR_XS_PMA_Gen5_12G_RX_EQ_CTRL0 Register
2052 			 * Bit[15:8](VGA1/2_GAIN_0) = 8'h00
2053 			 * Bit[7:5](CTLE_POLE_0) = 3'h2
2054 			 * Bit[4:0](CTLE_BOOST_0) = 4'hA
2055 			 */
2056 			value = rd32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0);
2057 			value = (value & ~0xFFFF) | (2 << 5) | 0x05;
2058 			wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0, value);
2059 		}
2060 		value = rd32_epcs(hw, TXGBE_PHY_RX_EQ_ATT_LVL0);
2061 		value = (value & ~0x7) | 0x0;
2062 		wr32_epcs(hw, TXGBE_PHY_RX_EQ_ATT_LVL0, value);
2063 
2064 		if (hw->phy.sfp_type == txgbe_sfp_type_da_cu_core0 ||
2065 			hw->phy.sfp_type == txgbe_sfp_type_da_cu_core1) {
2066 			/* 8. Set VR_XS_PMA_Gen5_12G_DFE_TAP_CTRL0 Register
2067 			 * Bit[7:0](DFE_TAP1_0) = 8'd20
2068 			 */
2069 			wr32_epcs(hw, TXGBE_PHY_DFE_TAP_CTL0, 0x0014);
2070 			value = rd32_epcs(hw, TXGBE_PHY_AFE_DFE_ENABLE);
2071 			value = (value & ~0x11) | 0x11;
2072 			wr32_epcs(hw, TXGBE_PHY_AFE_DFE_ENABLE, value);
2073 		} else {
2074 			/* 8. Set VR_XS_PMA_Gen5_12G_DFE_TAP_CTRL0 Register
2075 			 * Bit[7:0](DFE_TAP1_0) = 8'd20
2076 			 */
2077 			wr32_epcs(hw, TXGBE_PHY_DFE_TAP_CTL0, 0xBE);
2078 			/* 9. Set VR_MII_Gen5_12G_AFE_DFE_EN_CTRL Register
2079 			 * Bit[4](DFE_EN_0) = 1'b0, Bit[0](AFE_EN_0) = 1'b0
2080 			 */
2081 			value = rd32_epcs(hw, TXGBE_PHY_AFE_DFE_ENABLE);
2082 			value = (value & ~0x11) | 0x0;
2083 			wr32_epcs(hw, TXGBE_PHY_AFE_DFE_ENABLE, value);
2084 		}
2085 		value = rd32_epcs(hw, TXGBE_PHY_RX_EQ_CTL);
2086 		value = value & ~0x1;
2087 		wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL, value);
2088 	} else {
2089 		/* Set SR PCS Control2 Register Bits[1:0] = 2'b00
2090 		 * PCS_TYPE_SEL: KR
2091 		 */
2092 		wr32_epcs(hw, SR_XS_PCS_CTRL2, 0x1);
2093 		/* Set SR PMA MMD Control1 Register Bit[13] = 1'b0
2094 		 * SS13: 1G speed
2095 		 */
2096 		wr32_epcs(hw, SR_PMA_CTRL1, 0x0000);
2097 		/* Set SR MII MMD Control Register to corresponding speed */
2098 		wr32_epcs(hw, SR_MII_MMD_CTL, 0x0140);
2099 
2100 		value = rd32_epcs(hw, TXGBE_PHY_TX_GENCTRL1);
2101 		value = (value & ~0x710) | 0x500;
2102 		wr32_epcs(hw, TXGBE_PHY_TX_GENCTRL1, value);
2103 		/* 4. Set VR_XS_PMA_Gen5_12G_MISC_CTRL0 Register
2104 		 * Bit[12:8](RX_VREF_CTRL) = 5'hF
2105 		 */
2106 		wr32_epcs(hw, TXGBE_PHY_MISC_CTL0, 0xCF00);
2107 
2108 		if (hw->phy.sfp_type == txgbe_sfp_type_da_cu_core0 ||
2109 			hw->phy.sfp_type == txgbe_sfp_type_da_cu_core1) {
2110 			wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0, 0x774F);
2111 		} else {
2112 			/* 7. Set VR_XS_PMA_Gen5_12G_RX_EQ_CTRL0 Register
2113 			 * Bit[15:8](VGA1/2_GAIN_0) = 8'h00
2114 			 * Bit[7:5](CTLE_POLE_0) = 3'h2
2115 			 * Bit[4:0](CTLE_BOOST_0) = 4'hA
2116 			 */
2117 			value = rd32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0);
2118 			value = (value & ~0xFFFF) | 0x7706;
2119 			wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL0, value);
2120 		}
2121 		value = rd32_epcs(hw, TXGBE_PHY_RX_EQ_ATT_LVL0);
2122 		value = (value & ~0x7) | 0x0;
2123 		wr32_epcs(hw, TXGBE_PHY_RX_EQ_ATT_LVL0, value);
2124 		/* 8. Set VR_XS_PMA_Gen5_12G_DFE_TAP_CTRL0 Register
2125 		 * Bit[7:0](DFE_TAP1_0) = 8'd00
2126 		 */
2127 		wr32_epcs(hw, TXGBE_PHY_DFE_TAP_CTL0, 0x0);
2128 		/* 9. Set VR_MII_Gen5_12G_AFE_DFE_EN_CTRL Register
2129 		 * Bit[4](DFE_EN_0) = 1'b0, Bit[0](AFE_EN_0) = 1'b0
2130 		 */
2131 		value = rd32_epcs(hw, TXGBE_PHY_RX_GEN_CTL3);
2132 		value = (value & ~0x7) | 0x4;
2133 		wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL3, value);
2134 		wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL0, 0x0020);
2135 		wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL3, 0x0046);
2136 		wr32_epcs(hw, TXGBE_PHY_VCO_CAL_LD0, 0x0540);
2137 		wr32_epcs(hw, TXGBE_PHY_VCO_CAL_REF0, 0x002A);
2138 		wr32_epcs(hw, TXGBE_PHY_AFE_DFE_ENABLE, 0x0);
2139 		wr32_epcs(hw, TXGBE_PHY_RX_EQ_CTL, 0x0010);
2140 		wr32_epcs(hw, TXGBE_PHY_TX_RATE_CTL, 0x0003);
2141 		wr32_epcs(hw, TXGBE_PHY_RX_RATE_CTL, 0x0003);
2142 		wr32_epcs(hw, TXGBE_PHY_TX_GEN_CTL2, 0x0100);
2143 		wr32_epcs(hw, TXGBE_PHY_RX_GEN_CTL2, 0x0100);
2144 		wr32_epcs(hw, TXGBE_PHY_MPLLA_CTL2, 0x0200);
2145 		wr32_epcs(hw, SR_MII_MMD_AN_CTL, 0x0100);
2146 	}
2147 	/* 10. Initialize the mode by setting VR XS or PCS MMD Digital Control1
2148 	 * Register Bit[15](VR_RST)
2149 	 */
2150 	wr32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1, 0xA000);
2151 
2152 	/* Wait phy initialization done */
2153 	for (i = 0; i < 100; i++) {
2154 		if ((rd32_epcs(hw, VR_XS_OR_PCS_MMD_DIGI_CTL1) &
2155 			VR_XS_OR_PCS_MMD_DIGI_CTL1_VR_RST) == 0)
2156 			break;
2157 		msleep(100);
2158 	}
2159 	if (i == 100) {
2160 		err = TXGBE_ERR_PHY_INIT_NOT_DONE;
2161 		goto out;
2162 	}
2163 
2164 	if (hw->phy.ffe_set == TXGBE_BP_M_SFI) {
2165 		value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0) & ~0x3F3F;
2166 		value |= hw->phy.ffe_main << 8 | hw->phy.ffe_pre;
2167 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
2168 
2169 		value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0) & ~0x7F;
2170 		value |= hw->phy.ffe_post | (1 << 6);
2171 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
2172 	} else if (hw->fw_version <= TXGBE_FW_N_TXEQ) {
2173 		value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0);
2174 		value = (value & ~0x3F3F) | (24 << 8) | 4;
2175 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
2176 
2177 		value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1);
2178 		value = (value & ~0x7F) | 16 | (1 << 6);
2179 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
2180 	}
2181 out:
2182 	return err;
2183 }
2184 
2185 /**
2186  *  txgbe_autoc_read - Hides MAC differences needed for AUTOC read
2187  *  @hw: pointer to hardware structure
2188  */
txgbe_autoc_read(struct txgbe_hw * hw)2189 u64 txgbe_autoc_read(struct txgbe_hw *hw)
2190 {
2191 	u64 autoc;
2192 	u32 sr_pcs_ctl;
2193 	u32 sr_pma_ctl1;
2194 	u32 sr_an_ctl;
2195 	u32 sr_an_adv_reg2;
2196 	u8 type = hw->subsystem_device_id & 0xFF;
2197 
2198 	autoc = hw->mac.autoc;
2199 
2200 	if (hw->phy.multispeed_fiber) {
2201 		autoc |= TXGBE_AUTOC_LMS_10G;
2202 	} else if (type == TXGBE_DEV_ID_SFP) {
2203 		autoc |= TXGBE_AUTOC_LMS_10G;
2204 		autoc |= TXGBE_AUTOC_10GS_SFI;
2205 	} else if (type == TXGBE_DEV_ID_QSFP) {
2206 		autoc = 0; /*TBD*/
2207 	} else if (type == TXGBE_DEV_ID_XAUI || type == TXGBE_DEV_ID_SFI_XAUI) {
2208 		autoc |= TXGBE_AUTOC_LMS_10G_LINK_NO_AN;
2209 		autoc |= TXGBE_AUTOC_10G_XAUI;
2210 		hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_10GBASE_T;
2211 	} else if (type == TXGBE_DEV_ID_SGMII) {
2212 		autoc |= TXGBE_AUTOC_LMS_SGMII_1G_100M;
2213 		hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_1000BASE_T |
2214 				TXGBE_PHYSICAL_LAYER_100BASE_TX;
2215 	} else if (type == TXGBE_DEV_ID_MAC_XAUI) {
2216 		autoc |= TXGBE_AUTOC_LMS_10G_LINK_NO_AN;
2217 		hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_10GBASE_KX4;
2218 	} else if (type == TXGBE_DEV_ID_MAC_SGMII) {
2219 		autoc |= TXGBE_AUTOC_LMS_1G_LINK_NO_AN;
2220 		hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_1000BASE_KX;
2221 	}
2222 
2223 	if (type != TXGBE_DEV_ID_KR_KX_KX4)
2224 		return autoc;
2225 
2226 	sr_pcs_ctl = rd32_epcs(hw, SR_XS_PCS_CTRL2);
2227 	sr_pma_ctl1 = rd32_epcs(hw, SR_PMA_CTRL1);
2228 	sr_an_ctl = rd32_epcs(hw, SR_AN_CTRL);
2229 	sr_an_adv_reg2 = rd32_epcs(hw, SR_AN_MMD_ADV_REG2);
2230 
2231 	if ((sr_pcs_ctl & SR_PCS_CTRL2_TYPE_SEL) == SR_PCS_CTRL2_TYPE_SEL_X &&
2232 	    (sr_pma_ctl1 & SR_PMA_CTRL1_SS13) == SR_PMA_CTRL1_SS13_KX &&
2233 	    (sr_an_ctl & SR_AN_CTRL_AN_EN) == 0) {
2234 		/* 1G or KX - no backplane auto-negotiation */
2235 		autoc |= TXGBE_AUTOC_LMS_1G_LINK_NO_AN |
2236 			 TXGBE_AUTOC_1G_KX;
2237 		hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_1000BASE_KX;
2238 	} else if ((sr_pcs_ctl & SR_PCS_CTRL2_TYPE_SEL) ==
2239 		SR_PCS_CTRL2_TYPE_SEL_X &&
2240 		(sr_pma_ctl1 & SR_PMA_CTRL1_SS13) == SR_PMA_CTRL1_SS13_KX4 &&
2241 		(sr_an_ctl & SR_AN_CTRL_AN_EN) == 0) {
2242 		autoc |= TXGBE_AUTOC_LMS_10G |
2243 			 TXGBE_AUTOC_10G_KX4;
2244 		hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_10GBASE_KX4;
2245 	} else if ((sr_pcs_ctl & SR_PCS_CTRL2_TYPE_SEL) ==
2246 		SR_PCS_CTRL2_TYPE_SEL_R &&
2247 		(sr_an_ctl & SR_AN_CTRL_AN_EN) == 0) {
2248 		/* 10 GbE serial link (KR -no backplane auto-negotiation) */
2249 		autoc |= TXGBE_AUTOC_LMS_10G |
2250 			 TXGBE_AUTOC_10GS_KR;
2251 		hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_10GBASE_KR;
2252 	} else if ((sr_an_ctl & SR_AN_CTRL_AN_EN)) {
2253 		/* KX/KX4/KR backplane auto-negotiation enable */
2254 		if (sr_an_adv_reg2 & SR_AN_MMD_ADV_REG2_BP_TYPE_KR)
2255 			autoc |= TXGBE_AUTOC_KR_SUPP;
2256 		if (sr_an_adv_reg2 & SR_AN_MMD_ADV_REG2_BP_TYPE_KX4)
2257 			autoc |= TXGBE_AUTOC_KX4_SUPP;
2258 		if (sr_an_adv_reg2 & SR_AN_MMD_ADV_REG2_BP_TYPE_KX)
2259 			autoc |= TXGBE_AUTOC_KX_SUPP;
2260 		autoc |= TXGBE_AUTOC_LMS_KX4_KX_KR;
2261 		hw->phy.link_mode = TXGBE_PHYSICAL_LAYER_10GBASE_KR |
2262 				TXGBE_PHYSICAL_LAYER_10GBASE_KX4 |
2263 				TXGBE_PHYSICAL_LAYER_1000BASE_KX;
2264 	}
2265 
2266 	return autoc;
2267 }
2268 
2269 /**
2270  * txgbe_autoc_write - Hides MAC differences needed for AUTOC write
2271  * @hw: pointer to hardware structure
2272  * @autoc: value to write to AUTOC
2273  */
txgbe_autoc_write(struct txgbe_hw * hw,u64 autoc)2274 void txgbe_autoc_write(struct txgbe_hw *hw, u64 autoc)
2275 {
2276 	bool autoneg;
2277 	u32 speed;
2278 	u32 mactxcfg = 0;
2279 	u8 device_type = hw->subsystem_device_id & 0xFF;
2280 
2281 	speed = TXGBD_AUTOC_SPEED(autoc);
2282 	autoc &= ~TXGBE_AUTOC_SPEED_MASK;
2283 	autoneg = (autoc & TXGBE_AUTOC_AUTONEG ? true : false);
2284 	autoc &= ~TXGBE_AUTOC_AUTONEG;
2285 
2286 	if (device_type == TXGBE_DEV_ID_KR_KX_KX4) {
2287 		if (!autoneg) {
2288 			switch (hw->phy.link_mode) {
2289 			case TXGBE_PHYSICAL_LAYER_10GBASE_KR:
2290 				txgbe_set_link_to_kr(hw, autoneg);
2291 				break;
2292 			case TXGBE_PHYSICAL_LAYER_10GBASE_KX4:
2293 				txgbe_set_link_to_kx4(hw, autoneg);
2294 				break;
2295 			case TXGBE_PHYSICAL_LAYER_1000BASE_KX:
2296 				txgbe_set_link_to_kx(hw, speed, autoneg);
2297 				break;
2298 			default:
2299 				return;
2300 			}
2301 		} else {
2302 			txgbe_set_link_to_kr(hw, !autoneg);
2303 		}
2304 	} else if (device_type == TXGBE_DEV_ID_XAUI ||
2305 		   device_type == TXGBE_DEV_ID_SGMII ||
2306 		   device_type == TXGBE_DEV_ID_MAC_XAUI ||
2307 		   device_type == TXGBE_DEV_ID_MAC_SGMII ||
2308 		   (device_type == TXGBE_DEV_ID_SFI_XAUI &&
2309 		   hw->phy.media_type == txgbe_media_type_copper)) {
2310 		if (speed == TXGBE_LINK_SPEED_10GB_FULL) {
2311 			txgbe_set_link_to_kx4(hw, 0);
2312 		} else {
2313 			txgbe_set_link_to_kx(hw, speed, 0);
2314 			if (hw->devarg.auto_neg == 1)
2315 				txgbe_set_sgmii_an37_ability(hw);
2316 		}
2317 	} else if (hw->phy.media_type == txgbe_media_type_fiber) {
2318 		txgbe_set_link_to_sfi(hw, speed);
2319 		if (speed == TXGBE_LINK_SPEED_1GB_FULL)
2320 			txgbe_set_sgmii_an37_ability(hw);
2321 	}
2322 
2323 	hw->mac.enable_sec_tx_path(hw);
2324 
2325 	if (speed == TXGBE_LINK_SPEED_10GB_FULL)
2326 		mactxcfg = TXGBE_MACTXCFG_SPEED_10G;
2327 	else if (speed == TXGBE_LINK_SPEED_1GB_FULL)
2328 		mactxcfg = TXGBE_MACTXCFG_SPEED_1G;
2329 
2330 	/* enable mac transmitter */
2331 	wr32m(hw, TXGBE_MACTXCFG,
2332 		TXGBE_MACTXCFG_SPEED_MASK | TXGBE_MACTXCFG_TXE,
2333 		mactxcfg | TXGBE_MACTXCFG_TXE);
2334 	wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_ENA, TXGBE_MACRXCFG_ENA);
2335 }
2336 
txgbe_bp_down_event(struct txgbe_hw * hw)2337 void txgbe_bp_down_event(struct txgbe_hw *hw)
2338 {
2339 	if (!(hw->devarg.auto_neg == 1))
2340 		return;
2341 
2342 	BP_LOG("restart phy power.\n");
2343 	wr32_epcs(hw, VR_AN_KR_MODE_CL, 0);
2344 	wr32_epcs(hw, SR_AN_CTRL, 0);
2345 	wr32_epcs(hw, VR_AN_INTR_MSK, 0);
2346 
2347 	msleep(1050);
2348 	txgbe_set_link_to_kr(hw, 0);
2349 }
2350 
txgbe_bp_mode_set(struct txgbe_hw * hw)2351 void txgbe_bp_mode_set(struct txgbe_hw *hw)
2352 {
2353 	if (hw->phy.ffe_set == TXGBE_BP_M_SFI)
2354 		hw->subsystem_device_id = TXGBE_DEV_ID_WX1820_SFP;
2355 	else if (hw->phy.ffe_set == TXGBE_BP_M_KR)
2356 		hw->subsystem_device_id = TXGBE_DEV_ID_WX1820_KR_KX_KX4;
2357 	else if (hw->phy.ffe_set == TXGBE_BP_M_KX4)
2358 		hw->subsystem_device_id = TXGBE_DEV_ID_WX1820_MAC_XAUI;
2359 	else if (hw->phy.ffe_set == TXGBE_BP_M_KX)
2360 		hw->subsystem_device_id = TXGBE_DEV_ID_WX1820_MAC_SGMII;
2361 }
2362 
txgbe_set_phy_temp(struct txgbe_hw * hw)2363 void txgbe_set_phy_temp(struct txgbe_hw *hw)
2364 {
2365 	u32 value;
2366 
2367 	if (hw->phy.ffe_set == TXGBE_BP_M_SFI) {
2368 		BP_LOG("Set SFI TX_EQ MAIN:%d PRE:%d POST:%d\n",
2369 			hw->phy.ffe_main, hw->phy.ffe_pre, hw->phy.ffe_post);
2370 
2371 		value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0);
2372 		value = (value & ~0x3F3F) | (hw->phy.ffe_main << 8) |
2373 			hw->phy.ffe_pre;
2374 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
2375 
2376 		value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1);
2377 		value = (value & ~0x7F) | hw->phy.ffe_post | (1 << 6);
2378 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
2379 	}
2380 
2381 	if (hw->phy.ffe_set == TXGBE_BP_M_KR) {
2382 		BP_LOG("Set KR TX_EQ MAIN:%d PRE:%d POST:%d\n",
2383 			hw->phy.ffe_main, hw->phy.ffe_pre, hw->phy.ffe_post);
2384 		value = (0x1804 & ~0x3F3F);
2385 		value |= hw->phy.ffe_main << 8 | hw->phy.ffe_pre;
2386 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
2387 
2388 		value = (0x50 & ~0x7F) | (1 << 6) | hw->phy.ffe_post;
2389 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
2390 		wr32_epcs(hw, 0x18035, 0x00FF);
2391 		wr32_epcs(hw, 0x18055, 0x00FF);
2392 	}
2393 
2394 	if (hw->phy.ffe_set == TXGBE_BP_M_KX) {
2395 		BP_LOG("Set KX TX_EQ MAIN:%d PRE:%d POST:%d\n",
2396 			hw->phy.ffe_main, hw->phy.ffe_pre, hw->phy.ffe_post);
2397 		value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0);
2398 		value = (value & ~0x3F3F) | (hw->phy.ffe_main << 8) |
2399 			hw->phy.ffe_pre;
2400 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL0, value);
2401 
2402 		value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1);
2403 		value = (value & ~0x7F) | hw->phy.ffe_post | (1 << 6);
2404 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
2405 
2406 		wr32_epcs(hw, 0x18035, 0x00FF);
2407 		wr32_epcs(hw, 0x18055, 0x00FF);
2408 	}
2409 }
2410 
2411 /**
2412  * txgbe_kr_handle - Handle the interrupt of auto-negotiation
2413  * @hw: pointer to hardware structure
2414  */
txgbe_kr_handle(struct txgbe_hw * hw)2415 s32 txgbe_kr_handle(struct txgbe_hw *hw)
2416 {
2417 	u32 value;
2418 	s32 status = 0;
2419 
2420 	value = rd32_epcs(hw, VR_AN_INTR);
2421 	BP_LOG("AN INTERRUPT!! value: 0x%x\n", value);
2422 	if (!(value & VR_AN_INTR_PG_RCV)) {
2423 		wr32_epcs(hw, VR_AN_INTR, 0);
2424 		return status;
2425 	}
2426 
2427 	status = txgbe_handle_bp_flow(0, hw);
2428 
2429 	return status;
2430 }
2431 
2432 /**
2433  * txgbe_handle_bp_flow - Handle backplane AN73 flow
2434  * @hw: pointer to hardware structure
2435  * @link_mode: local AN73 link mode
2436  */
txgbe_handle_bp_flow(u32 link_mode,struct txgbe_hw * hw)2437 static s32 txgbe_handle_bp_flow(u32 link_mode, struct txgbe_hw *hw)
2438 {
2439 	u32 value, i, lp_reg, ld_reg;
2440 	s32 status = 0;
2441 	struct txgbe_backplane_ability local_ability, lp_ability;
2442 
2443 	local_ability.current_link_mode = link_mode;
2444 
2445 	/* 1. Get the local AN73 Base Page Ability */
2446 	BP_LOG("<1>. Get the local AN73 Base Page Ability ...\n");
2447 	txgbe_get_bp_ability(&local_ability, 0, hw);
2448 
2449 	/* 2. Check and clear the AN73 Interrupt Status */
2450 	BP_LOG("<2>. Check the AN73 Interrupt Status ...\n");
2451 	txgbe_clear_bp_intr(2, 0, hw);
2452 
2453 	/* 3.1. Get the link partner AN73 Base Page Ability */
2454 	BP_LOG("<3.1>. Get the link partner AN73 Base Page Ability ...\n");
2455 	txgbe_get_bp_ability(&lp_ability, 1, hw);
2456 
2457 	/* 3.2. Check the AN73 Link Ability with Link Partner */
2458 	BP_LOG("<3.2>. Check the AN73 Link Ability with Link Partner ...\n");
2459 	BP_LOG("       Local Link Ability: 0x%x\n", local_ability.link_ability);
2460 	BP_LOG("   Link Partner Link Ability: 0x%x\n", lp_ability.link_ability);
2461 
2462 	status = txgbe_check_bp_ability(&local_ability, &lp_ability, hw);
2463 
2464 	wr32_epcs(hw, SR_AN_CTRL, 0);
2465 	wr32_epcs(hw, VR_AN_KR_MODE_CL, 0);
2466 
2467 	/* 3.3. Check the FEC and KR Training for KR mode */
2468 	BP_LOG("<3.3>. Check the FEC for KR mode ...\n");
2469 	if ((local_ability.fec_ability & lp_ability.fec_ability) == 0x03) {
2470 		BP_LOG("Enable the Backplane KR FEC ...\n");
2471 		wr32_epcs(hw, SR_PMA_KR_FEC_CTRL, SR_PMA_KR_FEC_CTRL_EN);
2472 	} else {
2473 		BP_LOG("Backplane KR FEC is disabled.\n");
2474 	}
2475 
2476 	printf("Enter training.\n");
2477 	/* CL72 KR training on */
2478 	for (i = 0; i < 2; i++) {
2479 		/* 3.4. Check the CL72 KR Training for KR mode */
2480 		BP_LOG("<3.4>. Check the CL72 KR Training for KR mode ...\n");
2481 		BP_LOG("==================%d==================\n", i);
2482 		status = txgbe_enable_kr_training(hw);
2483 		BP_LOG("Check the Clause 72 KR Training status ...\n");
2484 		status |= txgbe_check_kr_training(hw);
2485 
2486 		lp_reg = rd32_epcs(hw, SR_PMA_KR_LP_CESTS);
2487 		lp_reg &= SR_PMA_KR_LP_CESTS_RR;
2488 		BP_LOG("SR PMA MMD 10GBASE-KR LP Coefficient Status Register: 0x%x\n",
2489 			lp_reg);
2490 		ld_reg = rd32_epcs(hw, SR_PMA_KR_LD_CESTS);
2491 		ld_reg &= SR_PMA_KR_LD_CESTS_RR;
2492 		BP_LOG("SR PMA MMD 10GBASE-KR LD Coefficient Status Register: 0x%x\n",
2493 			ld_reg);
2494 		if (hw->devarg.poll == 0 && status != 0)
2495 			lp_reg = SR_PMA_KR_LP_CESTS_RR;
2496 
2497 		if (lp_reg & ld_reg) {
2498 			BP_LOG("==================out==================\n");
2499 			status = txgbe_disable_kr_training(hw, 0, 0);
2500 			wr32_epcs(hw, SR_AN_CTRL, 0);
2501 			txgbe_clear_bp_intr(2, 0, hw);
2502 			txgbe_clear_bp_intr(1, 0, hw);
2503 			txgbe_clear_bp_intr(0, 0, hw);
2504 			for (i = 0; i < 10; i++) {
2505 				value = rd32_epcs(hw, SR_XS_PCS_KR_STS1);
2506 				if (value & SR_XS_PCS_KR_STS1_PLU) {
2507 					BP_LOG("\nINT_AN_INT_CMPLT =1, AN73 Done Success.\n");
2508 					wr32_epcs(hw, SR_AN_CTRL, 0);
2509 					return 0;
2510 				}
2511 				msec_delay(10);
2512 			}
2513 			msec_delay(1000);
2514 			txgbe_set_link_to_kr(hw, 0);
2515 
2516 			return 0;
2517 		}
2518 
2519 		status |= txgbe_disable_kr_training(hw, 0, 0);
2520 	}
2521 
2522 	txgbe_clear_bp_intr(2, 0, hw);
2523 	txgbe_clear_bp_intr(1, 0, hw);
2524 	txgbe_clear_bp_intr(0, 0, hw);
2525 
2526 	return status;
2527 }
2528 
2529 /**
2530  * txgbe_get_bp_ability
2531  * @hw: pointer to hardware structure
2532  * @ability: pointer to blackplane ability structure
2533  * @link_partner:
2534  *	1: Get Link Partner Base Page
2535  *	2: Get Link Partner Next Page
2536  *		(only get NXP Ability Register 1 at the moment)
2537  *	0: Get Local Device Base Page
2538  */
txgbe_get_bp_ability(struct txgbe_backplane_ability * ability,u32 link_partner,struct txgbe_hw * hw)2539 static void txgbe_get_bp_ability(struct txgbe_backplane_ability *ability,
2540 		u32 link_partner, struct txgbe_hw *hw)
2541 {
2542 	u32 value = 0;
2543 
2544 	/* Link Partner Base Page */
2545 	if (link_partner == 1) {
2546 		/* Read the link partner AN73 Base Page Ability Registers */
2547 		BP_LOG("Read the link partner AN73 Base Page Ability Registers...\n");
2548 		value = rd32_epcs(hw, SR_AN_MMD_LP_ABL1);
2549 		BP_LOG("SR AN MMD LP Base Page Ability Register 1: 0x%x\n",
2550 			value);
2551 		ability->next_page = SR_MMD_LP_ABL1_ADV_NP(value);
2552 		BP_LOG("  Next Page (bit15): %d\n", ability->next_page);
2553 
2554 		value = rd32_epcs(hw, SR_AN_MMD_LP_ABL2);
2555 		BP_LOG("SR AN MMD LP Base Page Ability Register 2: 0x%x\n",
2556 			value);
2557 		ability->link_ability =
2558 			value & SR_AN_MMD_LP_ABL2_BP_TYPE_KR_KX4_KX;
2559 		BP_LOG("  Link Ability (bit[15:0]): 0x%x\n",
2560 			ability->link_ability);
2561 		BP_LOG("  (0x20- KX_ONLY, 0x40- KX4_ONLY, 0x60- KX4_KX\n");
2562 		BP_LOG("   0x80- KR_ONLY, 0xA0- KR_KX, 0xC0- KR_KX4, 0xE0- KR_KX4_KX)\n");
2563 
2564 		value = rd32_epcs(hw, SR_AN_MMD_LP_ABL3);
2565 		BP_LOG("SR AN MMD LP Base Page Ability Register 3: 0x%x\n",
2566 			value);
2567 		BP_LOG("  FEC Request (bit15): %d\n", ((value >> 15) & 0x01));
2568 		BP_LOG("  FEC Enable  (bit14): %d\n", ((value >> 14) & 0x01));
2569 		ability->fec_ability = SR_AN_MMD_LP_ABL3_FCE(value);
2570 	} else if (link_partner == 2) {
2571 		/* Read the link partner AN73 Next Page Ability Registers */
2572 		BP_LOG("\nRead the link partner AN73 Next Page Ability Registers...\n");
2573 		value = rd32_epcs(hw, SR_AN_LP_XNP_ABL1);
2574 		BP_LOG(" SR AN MMD LP XNP Ability Register 1: 0x%x\n", value);
2575 		ability->next_page = SR_AN_LP_XNP_ABL1_NP(value);
2576 		BP_LOG("  Next Page (bit15): %d\n", ability->next_page);
2577 	} else {
2578 		/* Read the local AN73 Base Page Ability Registers */
2579 		BP_LOG("Read the local AN73 Base Page Ability Registers...\n");
2580 		value = rd32_epcs(hw, SR_AN_MMD_ADV_REG1);
2581 		BP_LOG("SR AN MMD Advertisement Register 1: 0x%x\n", value);
2582 		ability->next_page = SR_AN_MMD_ADV_REG1_NP(value);
2583 		BP_LOG("  Next Page (bit15): %d\n", ability->next_page);
2584 
2585 		value = rd32_epcs(hw, SR_AN_MMD_ADV_REG2);
2586 		BP_LOG("SR AN MMD Advertisement Register 2: 0x%x\n", value);
2587 		ability->link_ability =
2588 			value & SR_AN_MMD_ADV_REG2_BP_TYPE_KR_KX4_KX;
2589 		BP_LOG("  Link Ability (bit[15:0]): 0x%x\n",
2590 			ability->link_ability);
2591 		BP_LOG("  (0x20- KX_ONLY, 0x40- KX4_ONLY, 0x60- KX4_KX\n");
2592 		BP_LOG("   0x80- KR_ONLY, 0xA0- KR_KX, 0xC0- KR_KX4, 0xE0- KR_KX4_KX)\n");
2593 
2594 		value = rd32_epcs(hw, SR_AN_MMD_ADV_REG3);
2595 		BP_LOG("SR AN MMD Advertisement Register 3: 0x%x\n", value);
2596 		BP_LOG("  FEC Request (bit15): %d\n", ((value >> 15) & 0x01));
2597 		BP_LOG("  FEC Enable  (bit14): %d\n", ((value >> 14) & 0x01));
2598 		ability->fec_ability = SR_AN_MMD_ADV_REG3_FCE(value);
2599 	}
2600 
2601 	BP_LOG("done.\n");
2602 }
2603 
2604 /**
2605  * txgbe_check_bp_ability
2606  * @hw: pointer to hardware structure
2607  * @ability: pointer to blackplane ability structure
2608  */
txgbe_check_bp_ability(struct txgbe_backplane_ability * local_ability,struct txgbe_backplane_ability * lp_ability,struct txgbe_hw * hw)2609 static s32 txgbe_check_bp_ability(struct txgbe_backplane_ability *local_ability,
2610 	struct txgbe_backplane_ability *lp_ability, struct txgbe_hw *hw)
2611 {
2612 	u32 com_link_abi;
2613 	s32 ret = 0;
2614 
2615 	com_link_abi = local_ability->link_ability & lp_ability->link_ability;
2616 	BP_LOG("com_link_abi = 0x%x, local_ability = 0x%x, lp_ability = 0x%x\n",
2617 		com_link_abi, local_ability->link_ability,
2618 		lp_ability->link_ability);
2619 
2620 	if (!com_link_abi) {
2621 		BP_LOG("The Link Partner does not support any compatible speed mode.\n");
2622 		ret = -1;
2623 	} else if (com_link_abi & BP_TYPE_KR) {
2624 		if (local_ability->current_link_mode) {
2625 			BP_LOG("Link mode is not matched with Link Partner: [LINK_KR].\n");
2626 			BP_LOG("Set the local link mode to [LINK_KR] ...\n");
2627 			txgbe_set_link_to_kr(hw, 0);
2628 			ret = 1;
2629 		} else {
2630 			BP_LOG("Link mode is matched with Link Partner: [LINK_KR].\n");
2631 			ret = 0;
2632 		}
2633 	} else if (com_link_abi & BP_TYPE_KX4) {
2634 		if (local_ability->current_link_mode == 0x10) {
2635 			BP_LOG("Link mode is matched with Link Partner: [LINK_KX4].\n");
2636 			ret = 0;
2637 		} else {
2638 			BP_LOG("Link mode is not matched with Link Partner: [LINK_KX4].\n");
2639 			BP_LOG("Set the local link mode to [LINK_KX4] ...\n");
2640 			txgbe_set_link_to_kx4(hw, 1);
2641 			ret = 1;
2642 		}
2643 	} else if (com_link_abi & BP_TYPE_KX) {
2644 		if (local_ability->current_link_mode == 0x1) {
2645 			BP_LOG("Link mode is matched with Link Partner: [LINK_KX].\n");
2646 			ret = 0;
2647 		} else {
2648 			BP_LOG("Link mode is not matched with Link Partner: [LINK_KX].\n");
2649 			BP_LOG("Set the local link mode to [LINK_KX] ...\n");
2650 			txgbe_set_link_to_kx(hw, 1, 1);
2651 			ret = 1;
2652 		}
2653 	}
2654 
2655 	return ret;
2656 }
2657 
2658 /**
2659  * txgbe_clear_bp_intr
2660  * @hw: pointer to hardware structure
2661  * @index: the bit will be cleared
2662  * @index_high:
2663  *	index_high = 0: Only the index bit will be cleared
2664  *	index_high != 0: the [index_high, index] range will be cleared
2665  */
txgbe_clear_bp_intr(u32 bit,u32 bit_high,struct txgbe_hw * hw)2666 static void txgbe_clear_bp_intr(u32 bit, u32 bit_high, struct txgbe_hw *hw)
2667 {
2668 	u32 rdata = 0, wdata, i;
2669 
2670 	rdata = rd32_epcs(hw, VR_AN_INTR);
2671 	BP_LOG("[Before clear]Read VR AN MMD Interrupt Register: 0x%x\n",
2672 			rdata);
2673 	BP_LOG("Interrupt: 0- AN_INT_CMPLT, 1-  AN_INC_LINK, 2- AN_PG_RCV\n\n");
2674 
2675 	wdata = rdata;
2676 	if (bit_high) {
2677 		for (i = bit; i <= bit_high; i++)
2678 			wdata &= ~(1 << i);
2679 	} else {
2680 		wdata &= ~(1 << bit);
2681 	}
2682 
2683 	wr32_epcs(hw, VR_AN_INTR, wdata);
2684 
2685 	rdata = rd32_epcs(hw, VR_AN_INTR);
2686 	BP_LOG("[After clear]Read VR AN MMD Interrupt Register: 0x%x\n", rdata);
2687 }
2688 
txgbe_enable_kr_training(struct txgbe_hw * hw)2689 static s32 txgbe_enable_kr_training(struct txgbe_hw *hw)
2690 {
2691 	s32 status = 0;
2692 	u32 value = 0;
2693 
2694 	BP_LOG("Enable Clause 72 KR Training ...\n");
2695 
2696 	if (CL72_KRTR_PRBS_MODE_EN != 0xFFFF) {
2697 		/* Set PRBS Timer Duration Control to maximum 6.7ms in
2698 		 * VR_PMA_KRTR_PRBS_CTRL2 Register
2699 		 */
2700 		value = CL72_KRTR_PRBS_MODE_EN;
2701 		wr32_epcs(hw, VR_PMA_KRTR_PRBS_CTRL2, value);
2702 		/* Set PRBS Timer Duration Control to maximum 6.7ms in
2703 		 * VR_PMA_KRTR_PRBS_CTRL1 Register
2704 		 */
2705 		wr32_epcs(hw, VR_PMA_KRTR_PRBS_CTRL1,
2706 			VR_PMA_KRTR_PRBS_TIME_LMT);
2707 		/* Enable PRBS Mode to determine KR Training Status by setting
2708 		 * Bit 0 of VR_PMA_KRTR_PRBS_CTRL0 Register
2709 		 */
2710 		value = VR_PMA_KRTR_PRBS_MODE_EN;
2711 	}
2712 #ifdef CL72_KRTR_PRBS31_EN
2713 	/* Enable PRBS Mode to determine KR Training Status by setting
2714 	 * Bit 1 of VR_PMA_KRTR_PRBS_CTRL0 Register
2715 	 */
2716 	value = VR_PMA_KRTR_PRBS31_EN;
2717 #endif
2718 	wr32_epcs(hw, VR_PMA_KRTR_PRBS_CTRL0, value);
2719 	/* Read PHY Lane0 TX EQ before Clause 72 KR Training. */
2720 	txgbe_read_phy_lane_tx_eq(0, hw, 0, 0);
2721 
2722 	/* Enable the Clause 72 start-up protocol
2723 	 *   by setting Bit 1 of SR_PMA_KR_PMD_CTRL Register.
2724 	 * Restart the Clause 72 start-up protocol
2725 	 *   by setting Bit 0 of SR_PMA_KR_PMD_CTRL Register.
2726 	 */
2727 	wr32_epcs(hw, SR_PMA_KR_PMD_CTRL,
2728 		SR_PMA_KR_PMD_CTRL_EN_TR | SR_PMA_KR_PMD_CTRL_RS_TR);
2729 
2730 	return status;
2731 }
2732 
txgbe_disable_kr_training(struct txgbe_hw * hw,s32 post,s32 mode)2733 static s32 txgbe_disable_kr_training(struct txgbe_hw *hw, s32 post, s32 mode)
2734 {
2735 	s32 status = 0;
2736 
2737 	BP_LOG("Disable Clause 72 KR Training ...\n");
2738 	/* Read PHY Lane0 TX EQ before Clause 72 KR Training. */
2739 	txgbe_read_phy_lane_tx_eq(0, hw, post, mode);
2740 
2741 	wr32_epcs(hw, SR_PMA_KR_PMD_CTRL, SR_PMA_KR_PMD_CTRL_RS_TR);
2742 
2743 	return status;
2744 }
2745 
txgbe_check_kr_training(struct txgbe_hw * hw)2746 static s32 txgbe_check_kr_training(struct txgbe_hw *hw)
2747 {
2748 	s32 status = 0;
2749 	u32 value, test;
2750 	int i;
2751 	int times = hw->devarg.poll ? 35 : 20;
2752 
2753 	for (i = 0; i < times; i++) {
2754 		value = rd32_epcs(hw, SR_PMA_KR_LP_CEU);
2755 		BP_LOG("SR PMA MMD 10GBASE-KR LP Coefficient Update Register: 0x%x\n",
2756 			value);
2757 		value = rd32_epcs(hw, SR_PMA_KR_LP_CESTS);
2758 		BP_LOG("SR PMA MMD 10GBASE-KR LP Coefficient Status Register: 0x%x\n",
2759 			value);
2760 		value = rd32_epcs(hw, SR_PMA_KR_LD_CEU);
2761 		BP_LOG("SR PMA MMD 10GBASE-KR LD Coefficient Update: 0x%x\n",
2762 			value);
2763 		value = rd32_epcs(hw, SR_PMA_KR_LD_CESTS);
2764 		BP_LOG("SR PMA MMD 10GBASE-KR LD Coefficient Status: 0x%x\n",
2765 			value);
2766 		value = rd32_epcs(hw, SR_PMA_KR_PMD_STS);
2767 		BP_LOG("SR PMA MMD 10GBASE-KR Status Register: 0x%x\n", value);
2768 		BP_LOG("  Training Failure         (bit3): %d\n",
2769 			((value >> 3) & 0x01));
2770 		BP_LOG("  Start-Up Protocol Status (bit2): %d\n",
2771 			((value >> 2) & 0x01));
2772 		BP_LOG("  Frame Lock               (bit1): %d\n",
2773 			((value >> 1) & 0x01));
2774 		BP_LOG("  Receiver Status          (bit0): %d\n",
2775 			((value >> 0) & 0x01));
2776 
2777 		test = rd32_epcs(hw, SR_PMA_KR_LP_CESTS);
2778 		if (test & SR_PMA_KR_LP_CESTS_RR) {
2779 			BP_LOG("TEST Coefficient Status Register: 0x%x\n",
2780 				test);
2781 			status = 1;
2782 		}
2783 
2784 		if (value & SR_PMA_KR_PMD_STS_TR_FAIL) {
2785 			BP_LOG("Training is completed with failure.\n");
2786 			txgbe_read_phy_lane_tx_eq(0, hw, 0, 0);
2787 			return 0;
2788 		}
2789 
2790 		if (value & SR_PMA_KR_PMD_STS_RCV) {
2791 			BP_LOG("Receiver trained and ready to receive data.\n");
2792 			txgbe_read_phy_lane_tx_eq(0, hw, 0, 0);
2793 			return 0;
2794 		}
2795 
2796 		msec_delay(20);
2797 	}
2798 
2799 	BP_LOG("ERROR: Check Clause 72 KR Training Complete Timeout.\n");
2800 	return status;
2801 }
2802 
txgbe_read_phy_lane_tx_eq(u16 lane,struct txgbe_hw * hw,s32 post,s32 mode)2803 static void txgbe_read_phy_lane_tx_eq(u16 lane, struct txgbe_hw *hw,
2804 				s32 post, s32 mode)
2805 {
2806 	u32 value = 0;
2807 	u32 addr;
2808 	u32 tx_main_cursor, tx_pre_cursor, tx_post_cursor, lmain;
2809 
2810 	addr = TXGBE_PHY_LANE0_TX_EQ_CTL1 | (lane << 8);
2811 	value = rd32_ephy(hw, addr);
2812 	BP_LOG("PHY LANE TX EQ Read Value: %x\n", lane);
2813 	tx_main_cursor = TXGBE_PHY_LANE0_TX_EQ_CTL1_MAIN(value);
2814 	BP_LOG("TX_MAIN_CURSOR: %x\n", tx_main_cursor);
2815 	UNREFERENCED_PARAMETER(tx_main_cursor);
2816 
2817 	addr = TXGBE_PHY_LANE0_TX_EQ_CTL2 | (lane << 8);
2818 	value = rd32_ephy(hw, addr);
2819 	tx_pre_cursor = value & TXGBE_PHY_LANE0_TX_EQ_CTL2_PRE;
2820 	tx_post_cursor = TXGBE_PHY_LANE0_TX_EQ_CTL2_POST(value);
2821 	BP_LOG("TX_PRE_CURSOR: %x\n", tx_pre_cursor);
2822 	BP_LOG("TX_POST_CURSOR: %x\n", tx_post_cursor);
2823 
2824 	if (mode == 1) {
2825 		lmain = 160 - tx_pre_cursor - tx_post_cursor;
2826 		if (lmain < 88)
2827 			lmain = 88;
2828 
2829 		if (post)
2830 			tx_post_cursor = post;
2831 
2832 		wr32_epcs(hw, TXGBE_PHY_EQ_INIT_CTL1, tx_post_cursor);
2833 		wr32_epcs(hw, TXGBE_PHY_EQ_INIT_CTL0,
2834 				tx_pre_cursor | (lmain << 8));
2835 		value = rd32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1);
2836 		value &= ~TXGBE_PHY_TX_EQ_CTL1_DEF;
2837 		wr32_epcs(hw, TXGBE_PHY_TX_EQ_CTL1, value);
2838 	}
2839 }
2840