1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26
27 #define DEBUG_TYPE "call-lowering"
28
29 using namespace llvm;
30
anchor()31 void CallLowering::anchor() {}
32
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
addFlagsUsingAttrFn(ISD::ArgFlagsTy & Flags,const std::function<bool (Attribute::AttrKind)> & AttrFn)35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36 const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37 if (AttrFn(Attribute::SExt))
38 Flags.setSExt();
39 if (AttrFn(Attribute::ZExt))
40 Flags.setZExt();
41 if (AttrFn(Attribute::InReg))
42 Flags.setInReg();
43 if (AttrFn(Attribute::StructRet))
44 Flags.setSRet();
45 if (AttrFn(Attribute::Nest))
46 Flags.setNest();
47 if (AttrFn(Attribute::ByVal))
48 Flags.setByVal();
49 if (AttrFn(Attribute::Preallocated))
50 Flags.setPreallocated();
51 if (AttrFn(Attribute::InAlloca))
52 Flags.setInAlloca();
53 if (AttrFn(Attribute::Returned))
54 Flags.setReturned();
55 if (AttrFn(Attribute::SwiftSelf))
56 Flags.setSwiftSelf();
57 if (AttrFn(Attribute::SwiftAsync))
58 Flags.setSwiftAsync();
59 if (AttrFn(Attribute::SwiftError))
60 Flags.setSwiftError();
61 }
62
getAttributesForArgIdx(const CallBase & Call,unsigned ArgIdx) const63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
64 unsigned ArgIdx) const {
65 ISD::ArgFlagsTy Flags;
66 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
67 return Call.paramHasAttr(ArgIdx, Attr);
68 });
69 return Flags;
70 }
71
addArgFlagsFromAttributes(ISD::ArgFlagsTy & Flags,const AttributeList & Attrs,unsigned OpIdx) const72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
73 const AttributeList &Attrs,
74 unsigned OpIdx) const {
75 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
76 return Attrs.hasAttribute(OpIdx, Attr);
77 });
78 }
79
lowerCall(MachineIRBuilder & MIRBuilder,const CallBase & CB,ArrayRef<Register> ResRegs,ArrayRef<ArrayRef<Register>> ArgRegs,Register SwiftErrorVReg,std::function<unsigned ()> GetCalleeReg) const80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
81 ArrayRef<Register> ResRegs,
82 ArrayRef<ArrayRef<Register>> ArgRegs,
83 Register SwiftErrorVReg,
84 std::function<unsigned()> GetCalleeReg) const {
85 CallLoweringInfo Info;
86 const DataLayout &DL = MIRBuilder.getDataLayout();
87 MachineFunction &MF = MIRBuilder.getMF();
88 bool CanBeTailCalled = CB.isTailCall() &&
89 isInTailCallPosition(CB, MF.getTarget()) &&
90 (MF.getFunction()
91 .getFnAttribute("disable-tail-calls")
92 .getValueAsString() != "true");
93
94 CallingConv::ID CallConv = CB.getCallingConv();
95 Type *RetTy = CB.getType();
96 bool IsVarArg = CB.getFunctionType()->isVarArg();
97
98 SmallVector<BaseArgInfo, 4> SplitArgs;
99 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
100 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
101
102 if (!Info.CanLowerReturn) {
103 // Callee requires sret demotion.
104 insertSRetOutgoingArgument(MIRBuilder, CB, Info);
105
106 // The sret demotion isn't compatible with tail-calls, since the sret
107 // argument points into the caller's stack frame.
108 CanBeTailCalled = false;
109 }
110
111 // First step is to marshall all the function's parameters into the correct
112 // physregs and memory locations. Gather the sequence of argument types that
113 // we'll pass to the assigner function.
114 unsigned i = 0;
115 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
116 for (auto &Arg : CB.args()) {
117 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), getAttributesForArgIdx(CB, i),
118 i < NumFixedArgs};
119 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
120
121 // If we have an explicit sret argument that is an Instruction, (i.e., it
122 // might point to function-local memory), we can't meaningfully tail-call.
123 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
124 CanBeTailCalled = false;
125
126 Info.OrigArgs.push_back(OrigArg);
127 ++i;
128 }
129
130 // Try looking through a bitcast from one function type to another.
131 // Commonly happens with calls to objc_msgSend().
132 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
133 if (const Function *F = dyn_cast<Function>(CalleeV))
134 Info.Callee = MachineOperand::CreateGA(F, 0);
135 else
136 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
137
138 Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}};
139 if (!Info.OrigRet.Ty->isVoidTy())
140 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
141
142 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
143 Info.CallConv = CallConv;
144 Info.SwiftErrorVReg = SwiftErrorVReg;
145 Info.IsMustTailCall = CB.isMustTailCall();
146 Info.IsTailCall = CanBeTailCalled;
147 Info.IsVarArg = IsVarArg;
148 return lowerCall(MIRBuilder, Info);
149 }
150
151 template <typename FuncInfoTy>
setArgFlags(CallLowering::ArgInfo & Arg,unsigned OpIdx,const DataLayout & DL,const FuncInfoTy & FuncInfo) const152 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
153 const DataLayout &DL,
154 const FuncInfoTy &FuncInfo) const {
155 auto &Flags = Arg.Flags[0];
156 const AttributeList &Attrs = FuncInfo.getAttributes();
157 addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
158
159 Align MemAlign = DL.getABITypeAlign(Arg.Ty);
160 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
161 assert(OpIdx >= AttributeList::FirstArgIndex);
162 Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
163
164 auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
165 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
166
167 // For ByVal, alignment should be passed from FE. BE will guess if
168 // this info is not there but there are cases it cannot get right.
169 if (auto ParamAlign =
170 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
171 MemAlign = *ParamAlign;
172 else if ((ParamAlign =
173 FuncInfo.getParamAlign(OpIdx - AttributeList::FirstArgIndex)))
174 MemAlign = *ParamAlign;
175 else
176 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
177 } else if (OpIdx >= AttributeList::FirstArgIndex) {
178 if (auto ParamAlign =
179 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
180 MemAlign = *ParamAlign;
181 }
182 Flags.setMemAlign(MemAlign);
183 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
184
185 // Don't try to use the returned attribute if the argument is marked as
186 // swiftself, since it won't be passed in x0.
187 if (Flags.isSwiftSelf())
188 Flags.setReturned(false);
189 }
190
191 template void
192 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
193 const DataLayout &DL,
194 const Function &FuncInfo) const;
195
196 template void
197 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
198 const DataLayout &DL,
199 const CallBase &FuncInfo) const;
200
splitToValueTypes(const ArgInfo & OrigArg,SmallVectorImpl<ArgInfo> & SplitArgs,const DataLayout & DL,CallingConv::ID CallConv) const201 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
202 SmallVectorImpl<ArgInfo> &SplitArgs,
203 const DataLayout &DL,
204 CallingConv::ID CallConv) const {
205 LLVMContext &Ctx = OrigArg.Ty->getContext();
206
207 SmallVector<EVT, 4> SplitVTs;
208 SmallVector<uint64_t, 4> Offsets;
209 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
210
211 if (SplitVTs.size() == 0)
212 return;
213
214 if (SplitVTs.size() == 1) {
215 // No splitting to do, but we want to replace the original type (e.g. [1 x
216 // double] -> double).
217 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
218 OrigArg.Flags[0], OrigArg.IsFixed,
219 OrigArg.OrigValue);
220 return;
221 }
222
223 // Create one ArgInfo for each virtual register in the original ArgInfo.
224 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
225
226 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
227 OrigArg.Ty, CallConv, false);
228 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
229 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
230 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
231 OrigArg.IsFixed);
232 if (NeedsRegBlock)
233 SplitArgs.back().Flags[0].setInConsecutiveRegs();
234 }
235
236 SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
237 }
238
unpackRegs(ArrayRef<Register> DstRegs,Register SrcReg,Type * PackedTy,MachineIRBuilder & MIRBuilder) const239 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
240 Type *PackedTy,
241 MachineIRBuilder &MIRBuilder) const {
242 assert(DstRegs.size() > 1 && "Nothing to unpack");
243
244 const DataLayout &DL = MIRBuilder.getDataLayout();
245
246 SmallVector<LLT, 8> LLTs;
247 SmallVector<uint64_t, 8> Offsets;
248 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
249 assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
250
251 for (unsigned i = 0; i < DstRegs.size(); ++i)
252 MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
253 }
254
255 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
256 static MachineInstrBuilder
mergeVectorRegsToResultRegs(MachineIRBuilder & B,ArrayRef<Register> DstRegs,ArrayRef<Register> SrcRegs)257 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
258 ArrayRef<Register> SrcRegs) {
259 MachineRegisterInfo &MRI = *B.getMRI();
260 LLT LLTy = MRI.getType(DstRegs[0]);
261 LLT PartLLT = MRI.getType(SrcRegs[0]);
262
263 // Deal with v3s16 split into v2s16
264 LLT LCMTy = getLCMType(LLTy, PartLLT);
265 if (LCMTy == LLTy) {
266 // Common case where no padding is needed.
267 assert(DstRegs.size() == 1);
268 return B.buildConcatVectors(DstRegs[0], SrcRegs);
269 }
270
271 // We need to create an unmerge to the result registers, which may require
272 // widening the original value.
273 Register UnmergeSrcReg;
274 if (LCMTy != PartLLT) {
275 // e.g. A <3 x s16> value was split to <2 x s16>
276 // %register_value0:_(<2 x s16>)
277 // %register_value1:_(<2 x s16>)
278 // %undef:_(<2 x s16>) = G_IMPLICIT_DEF
279 // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef
280 // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat
281 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
282 Register Undef = B.buildUndef(PartLLT).getReg(0);
283
284 // Build vector of undefs.
285 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
286
287 // Replace the first sources with the real registers.
288 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
289 UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0);
290 } else {
291 // We don't need to widen anything if we're extracting a scalar which was
292 // promoted to a vector e.g. s8 -> v4s8 -> s8
293 assert(SrcRegs.size() == 1);
294 UnmergeSrcReg = SrcRegs[0];
295 }
296
297 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
298
299 SmallVector<Register, 8> PadDstRegs(NumDst);
300 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
301
302 // Create the excess dead defs for the unmerge.
303 for (int I = DstRegs.size(); I != NumDst; ++I)
304 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
305
306 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
307 }
308
309 /// Create a sequence of instructions to combine pieces split into register
310 /// typed values to the original IR value. \p OrigRegs contains the destination
311 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
312 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
buildCopyFromRegs(MachineIRBuilder & B,ArrayRef<Register> OrigRegs,ArrayRef<Register> Regs,LLT LLTy,LLT PartLLT,const ISD::ArgFlagsTy Flags)313 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
314 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
315 const ISD::ArgFlagsTy Flags) {
316 MachineRegisterInfo &MRI = *B.getMRI();
317
318 if (PartLLT == LLTy) {
319 // We should have avoided introducing a new virtual register, and just
320 // directly assigned here.
321 assert(OrigRegs[0] == Regs[0]);
322 return;
323 }
324
325 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
326 Regs.size() == 1) {
327 B.buildBitcast(OrigRegs[0], Regs[0]);
328 return;
329 }
330
331 // A vector PartLLT needs extending to LLTy's element size.
332 // E.g. <2 x s64> = G_SEXT <2 x s32>.
333 if (PartLLT.isVector() == LLTy.isVector() &&
334 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
335 (!PartLLT.isVector() ||
336 PartLLT.getNumElements() == LLTy.getNumElements()) &&
337 OrigRegs.size() == 1 && Regs.size() == 1) {
338 Register SrcReg = Regs[0];
339
340 LLT LocTy = MRI.getType(SrcReg);
341
342 if (Flags.isSExt()) {
343 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
344 .getReg(0);
345 } else if (Flags.isZExt()) {
346 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
347 .getReg(0);
348 }
349
350 B.buildTrunc(OrigRegs[0], SrcReg);
351 return;
352 }
353
354 if (!LLTy.isVector() && !PartLLT.isVector()) {
355 assert(OrigRegs.size() == 1);
356 LLT OrigTy = MRI.getType(OrigRegs[0]);
357
358 unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
359 if (SrcSize == OrigTy.getSizeInBits())
360 B.buildMerge(OrigRegs[0], Regs);
361 else {
362 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
363 B.buildTrunc(OrigRegs[0], Widened);
364 }
365
366 return;
367 }
368
369 if (PartLLT.isVector()) {
370 assert(OrigRegs.size() == 1);
371 SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
372
373 // If PartLLT is a mismatched vector in both number of elements and element
374 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
375 // have the same elt type, i.e. v4s32.
376 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
377 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
378 Regs.size() == 1) {
379 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
380 .changeNumElements(PartLLT.getNumElements() * 2);
381 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
382 PartLLT = NewTy;
383 }
384
385 if (LLTy.getScalarType() == PartLLT.getElementType()) {
386 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
387 } else {
388 unsigned I = 0;
389 LLT GCDTy = getGCDType(LLTy, PartLLT);
390
391 // We are both splitting a vector, and bitcasting its element types. Cast
392 // the source pieces into the appropriate number of pieces with the result
393 // element type.
394 for (Register SrcReg : CastRegs)
395 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
396 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
397 }
398
399 return;
400 }
401
402 assert(LLTy.isVector() && !PartLLT.isVector());
403
404 LLT DstEltTy = LLTy.getElementType();
405
406 // Pointer information was discarded. We'll need to coerce some register types
407 // to avoid violating type constraints.
408 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
409
410 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
411
412 if (DstEltTy == PartLLT) {
413 // Vector was trivially scalarized.
414
415 if (RealDstEltTy.isPointer()) {
416 for (Register Reg : Regs)
417 MRI.setType(Reg, RealDstEltTy);
418 }
419
420 B.buildBuildVector(OrigRegs[0], Regs);
421 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
422 // Deal with vector with 64-bit elements decomposed to 32-bit
423 // registers. Need to create intermediate 64-bit elements.
424 SmallVector<Register, 8> EltMerges;
425 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
426
427 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
428
429 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
430 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
431 // Fix the type in case this is really a vector of pointers.
432 MRI.setType(Merge.getReg(0), RealDstEltTy);
433 EltMerges.push_back(Merge.getReg(0));
434 Regs = Regs.drop_front(PartsPerElt);
435 }
436
437 B.buildBuildVector(OrigRegs[0], EltMerges);
438 } else {
439 // Vector was split, and elements promoted to a wider type.
440 // FIXME: Should handle floating point promotions.
441 LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
442 auto BV = B.buildBuildVector(BVType, Regs);
443 B.buildTrunc(OrigRegs[0], BV);
444 }
445 }
446
447 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
448 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
449 /// contain the type of scalar value extension if necessary.
450 ///
451 /// This is used for outgoing values (vregs to physregs)
buildCopyToRegs(MachineIRBuilder & B,ArrayRef<Register> DstRegs,Register SrcReg,LLT SrcTy,LLT PartTy,unsigned ExtendOp=TargetOpcode::G_ANYEXT)452 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
453 Register SrcReg, LLT SrcTy, LLT PartTy,
454 unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
455 // We could just insert a regular copy, but this is unreachable at the moment.
456 assert(SrcTy != PartTy && "identical part types shouldn't reach here");
457
458 const unsigned PartSize = PartTy.getSizeInBits();
459
460 if (PartTy.isVector() == SrcTy.isVector() &&
461 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
462 assert(DstRegs.size() == 1);
463 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
464 return;
465 }
466
467 if (SrcTy.isVector() && !PartTy.isVector() &&
468 PartSize > SrcTy.getElementType().getSizeInBits()) {
469 // Vector was scalarized, and the elements extended.
470 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
471 for (int i = 0, e = DstRegs.size(); i != e; ++i)
472 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
473 return;
474 }
475
476 LLT GCDTy = getGCDType(SrcTy, PartTy);
477 if (GCDTy == PartTy) {
478 // If this already evenly divisible, we can create a simple unmerge.
479 B.buildUnmerge(DstRegs, SrcReg);
480 return;
481 }
482
483 MachineRegisterInfo &MRI = *B.getMRI();
484 LLT DstTy = MRI.getType(DstRegs[0]);
485 LLT LCMTy = getLCMType(SrcTy, PartTy);
486
487 const unsigned LCMSize = LCMTy.getSizeInBits();
488 const unsigned DstSize = DstTy.getSizeInBits();
489 const unsigned SrcSize = SrcTy.getSizeInBits();
490
491 Register UnmergeSrc = SrcReg;
492 if (LCMSize != SrcSize) {
493 // Widen to the common type.
494 Register Undef = B.buildUndef(SrcTy).getReg(0);
495 SmallVector<Register, 8> MergeParts(1, SrcReg);
496 for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize)
497 MergeParts.push_back(Undef);
498
499 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
500 }
501
502 // Unmerge to the original registers and pad with dead defs.
503 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
504 for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize;
505 Size += DstSize) {
506 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
507 }
508
509 B.buildUnmerge(UnmergeResults, UnmergeSrc);
510 }
511
determineAndHandleAssignments(ValueHandler & Handler,ValueAssigner & Assigner,SmallVectorImpl<ArgInfo> & Args,MachineIRBuilder & MIRBuilder,CallingConv::ID CallConv,bool IsVarArg,Register ThisReturnReg) const512 bool CallLowering::determineAndHandleAssignments(
513 ValueHandler &Handler, ValueAssigner &Assigner,
514 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
515 CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const {
516 MachineFunction &MF = MIRBuilder.getMF();
517 const Function &F = MF.getFunction();
518 SmallVector<CCValAssign, 16> ArgLocs;
519
520 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
521 if (!determineAssignments(Assigner, Args, CCInfo))
522 return false;
523
524 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
525 ThisReturnReg);
526 }
527
extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags)528 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
529 if (Flags.isSExt())
530 return TargetOpcode::G_SEXT;
531 if (Flags.isZExt())
532 return TargetOpcode::G_ZEXT;
533 return TargetOpcode::G_ANYEXT;
534 }
535
determineAssignments(ValueAssigner & Assigner,SmallVectorImpl<ArgInfo> & Args,CCState & CCInfo) const536 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
537 SmallVectorImpl<ArgInfo> &Args,
538 CCState &CCInfo) const {
539 LLVMContext &Ctx = CCInfo.getContext();
540 const CallingConv::ID CallConv = CCInfo.getCallingConv();
541
542 unsigned NumArgs = Args.size();
543 for (unsigned i = 0; i != NumArgs; ++i) {
544 EVT CurVT = EVT::getEVT(Args[i].Ty);
545
546 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
547
548 // If we need to split the type over multiple regs, check it's a scenario
549 // we currently support.
550 unsigned NumParts =
551 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
552
553 if (NumParts == 1) {
554 // Try to use the register type if we couldn't assign the VT.
555 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
556 Args[i].Flags[0], CCInfo))
557 return false;
558 continue;
559 }
560
561 // For incoming arguments (physregs to vregs), we could have values in
562 // physregs (or memlocs) which we want to extract and copy to vregs.
563 // During this, we might have to deal with the LLT being split across
564 // multiple regs, so we have to record this information for later.
565 //
566 // If we have outgoing args, then we have the opposite case. We have a
567 // vreg with an LLT which we want to assign to a physical location, and
568 // we might have to record that the value has to be split later.
569
570 // We're handling an incoming arg which is split over multiple regs.
571 // E.g. passing an s128 on AArch64.
572 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
573 Args[i].Flags.clear();
574
575 for (unsigned Part = 0; Part < NumParts; ++Part) {
576 ISD::ArgFlagsTy Flags = OrigFlags;
577 if (Part == 0) {
578 Flags.setSplit();
579 } else {
580 Flags.setOrigAlign(Align(1));
581 if (Part == NumParts - 1)
582 Flags.setSplitEnd();
583 }
584
585 if (!Assigner.isIncomingArgumentHandler()) {
586 // TODO: Also check if there is a valid extension that preserves the
587 // bits. However currently this call lowering doesn't support non-exact
588 // split parts, so that can't be tested.
589 if (OrigFlags.isReturned() &&
590 (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) {
591 Flags.setReturned(false);
592 }
593 }
594
595 Args[i].Flags.push_back(Flags);
596 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
597 Args[i].Flags[Part], CCInfo)) {
598 // Still couldn't assign this smaller part type for some reason.
599 return false;
600 }
601 }
602 }
603
604 return true;
605 }
606
handleAssignments(ValueHandler & Handler,SmallVectorImpl<ArgInfo> & Args,CCState & CCInfo,SmallVectorImpl<CCValAssign> & ArgLocs,MachineIRBuilder & MIRBuilder,Register ThisReturnReg) const607 bool CallLowering::handleAssignments(ValueHandler &Handler,
608 SmallVectorImpl<ArgInfo> &Args,
609 CCState &CCInfo,
610 SmallVectorImpl<CCValAssign> &ArgLocs,
611 MachineIRBuilder &MIRBuilder,
612 Register ThisReturnReg) const {
613 MachineFunction &MF = MIRBuilder.getMF();
614 MachineRegisterInfo &MRI = MF.getRegInfo();
615 const Function &F = MF.getFunction();
616 const DataLayout &DL = F.getParent()->getDataLayout();
617
618 const unsigned NumArgs = Args.size();
619
620 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
621 assert(j < ArgLocs.size() && "Skipped too many arg locs");
622 CCValAssign &VA = ArgLocs[j];
623 assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
624
625 if (VA.needsCustom()) {
626 unsigned NumArgRegs =
627 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
628 if (!NumArgRegs)
629 return false;
630 j += NumArgRegs;
631 continue;
632 }
633
634 const MVT ValVT = VA.getValVT();
635 const MVT LocVT = VA.getLocVT();
636
637 const LLT LocTy(LocVT);
638 const LLT ValTy(ValVT);
639 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
640 const EVT OrigVT = EVT::getEVT(Args[i].Ty);
641 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
642
643 // Expected to be multiple regs for a single incoming arg.
644 // There should be Regs.size() ArgLocs per argument.
645 // This should be the same as getNumRegistersForCallingConv
646 const unsigned NumParts = Args[i].Flags.size();
647
648 // Now split the registers into the assigned types.
649 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
650
651 if (NumParts != 1 || NewLLT != OrigTy) {
652 // If we can't directly assign the register, we need one or more
653 // intermediate values.
654 Args[i].Regs.resize(NumParts);
655
656 // For each split register, create and assign a vreg that will store
657 // the incoming component of the larger value. These will later be
658 // merged to form the final vreg.
659 for (unsigned Part = 0; Part < NumParts; ++Part)
660 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
661 }
662
663 assert((j + (NumParts - 1)) < ArgLocs.size() &&
664 "Too many regs for number of args");
665
666 // Coerce into outgoing value types before register assignment.
667 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
668 assert(Args[i].OrigRegs.size() == 1);
669 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
670 ValTy, extendOpFromFlags(Args[i].Flags[0]));
671 }
672
673 for (unsigned Part = 0; Part < NumParts; ++Part) {
674 Register ArgReg = Args[i].Regs[Part];
675 // There should be Regs.size() ArgLocs per argument.
676 VA = ArgLocs[j + Part];
677 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
678
679 if (VA.isMemLoc() && !Flags.isByVal()) {
680 // Individual pieces may have been spilled to the stack and others
681 // passed in registers.
682
683 // TODO: The memory size may be larger than the value we need to
684 // store. We may need to adjust the offset for big endian targets.
685 uint64_t MemSize = Handler.getStackValueStoreSize(DL, VA);
686
687 MachinePointerInfo MPO;
688 Register StackAddr =
689 Handler.getStackAddress(MemSize, VA.getLocMemOffset(), MPO, Flags);
690
691 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemSize, MPO,
692 VA);
693 continue;
694 }
695
696 if (VA.isMemLoc() && Flags.isByVal()) {
697 assert(Args[i].Regs.size() == 1 &&
698 "didn't expect split byval pointer");
699
700 if (Handler.isIncomingArgumentHandler()) {
701 // We just need to copy the frame index value to the pointer.
702 MachinePointerInfo MPO;
703 Register StackAddr = Handler.getStackAddress(
704 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
705 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
706 } else {
707 // For outgoing byval arguments, insert the implicit copy byval
708 // implies, such that writes in the callee do not modify the caller's
709 // value.
710 uint64_t MemSize = Flags.getByValSize();
711 int64_t Offset = VA.getLocMemOffset();
712
713 MachinePointerInfo DstMPO;
714 Register StackAddr =
715 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
716
717 MachinePointerInfo SrcMPO(Args[i].OrigValue);
718 if (!Args[i].OrigValue) {
719 // We still need to accurately track the stack address space if we
720 // don't know the underlying value.
721 const LLT PtrTy = MRI.getType(StackAddr);
722 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
723 }
724
725 Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
726 inferAlignFromPtrInfo(MF, DstMPO));
727
728 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
729 inferAlignFromPtrInfo(MF, SrcMPO));
730
731 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
732 DstMPO, DstAlign, SrcMPO, SrcAlign,
733 MemSize, VA);
734 }
735 continue;
736 }
737
738 assert(!VA.needsCustom() && "custom loc should have been handled already");
739
740 if (i == 0 && ThisReturnReg.isValid() &&
741 Handler.isIncomingArgumentHandler() &&
742 isTypeIsValidForThisReturn(ValVT)) {
743 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
744 continue;
745 }
746
747 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
748 }
749
750 // Now that all pieces have been assigned, re-pack the register typed values
751 // into the original value typed registers.
752 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
753 // Merge the split registers into the expected larger result vregs of
754 // the original call.
755 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
756 LocTy, Args[i].Flags[0]);
757 }
758
759 j += NumParts - 1;
760 }
761
762 return true;
763 }
764
insertSRetLoads(MachineIRBuilder & MIRBuilder,Type * RetTy,ArrayRef<Register> VRegs,Register DemoteReg,int FI) const765 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
766 ArrayRef<Register> VRegs, Register DemoteReg,
767 int FI) const {
768 MachineFunction &MF = MIRBuilder.getMF();
769 MachineRegisterInfo &MRI = MF.getRegInfo();
770 const DataLayout &DL = MF.getDataLayout();
771
772 SmallVector<EVT, 4> SplitVTs;
773 SmallVector<uint64_t, 4> Offsets;
774 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
775
776 assert(VRegs.size() == SplitVTs.size());
777
778 unsigned NumValues = SplitVTs.size();
779 Align BaseAlign = DL.getPrefTypeAlign(RetTy);
780 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
781 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
782
783 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
784
785 for (unsigned I = 0; I < NumValues; ++I) {
786 Register Addr;
787 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
788 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
789 MRI.getType(VRegs[I]).getSizeInBytes(),
790 commonAlignment(BaseAlign, Offsets[I]));
791 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
792 }
793 }
794
insertSRetStores(MachineIRBuilder & MIRBuilder,Type * RetTy,ArrayRef<Register> VRegs,Register DemoteReg) const795 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
796 ArrayRef<Register> VRegs,
797 Register DemoteReg) const {
798 MachineFunction &MF = MIRBuilder.getMF();
799 MachineRegisterInfo &MRI = MF.getRegInfo();
800 const DataLayout &DL = MF.getDataLayout();
801
802 SmallVector<EVT, 4> SplitVTs;
803 SmallVector<uint64_t, 4> Offsets;
804 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
805
806 assert(VRegs.size() == SplitVTs.size());
807
808 unsigned NumValues = SplitVTs.size();
809 Align BaseAlign = DL.getPrefTypeAlign(RetTy);
810 unsigned AS = DL.getAllocaAddrSpace();
811 LLT OffsetLLTy =
812 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
813
814 MachinePointerInfo PtrInfo(AS);
815
816 for (unsigned I = 0; I < NumValues; ++I) {
817 Register Addr;
818 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
819 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
820 MRI.getType(VRegs[I]).getSizeInBytes(),
821 commonAlignment(BaseAlign, Offsets[I]));
822 MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
823 }
824 }
825
insertSRetIncomingArgument(const Function & F,SmallVectorImpl<ArgInfo> & SplitArgs,Register & DemoteReg,MachineRegisterInfo & MRI,const DataLayout & DL) const826 void CallLowering::insertSRetIncomingArgument(
827 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
828 MachineRegisterInfo &MRI, const DataLayout &DL) const {
829 unsigned AS = DL.getAllocaAddrSpace();
830 DemoteReg = MRI.createGenericVirtualRegister(
831 LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
832
833 Type *PtrTy = PointerType::get(F.getReturnType(), AS);
834
835 SmallVector<EVT, 1> ValueVTs;
836 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
837
838 // NOTE: Assume that a pointer won't get split into more than one VT.
839 assert(ValueVTs.size() == 1);
840
841 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()));
842 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
843 DemoteArg.Flags[0].setSRet();
844 SplitArgs.insert(SplitArgs.begin(), DemoteArg);
845 }
846
insertSRetOutgoingArgument(MachineIRBuilder & MIRBuilder,const CallBase & CB,CallLoweringInfo & Info) const847 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
848 const CallBase &CB,
849 CallLoweringInfo &Info) const {
850 const DataLayout &DL = MIRBuilder.getDataLayout();
851 Type *RetTy = CB.getType();
852 unsigned AS = DL.getAllocaAddrSpace();
853 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
854
855 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
856 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
857
858 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
859 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS));
860 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
861 DemoteArg.Flags[0].setSRet();
862
863 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
864 Info.DemoteStackIndex = FI;
865 Info.DemoteRegister = DemoteReg;
866 }
867
checkReturn(CCState & CCInfo,SmallVectorImpl<BaseArgInfo> & Outs,CCAssignFn * Fn) const868 bool CallLowering::checkReturn(CCState &CCInfo,
869 SmallVectorImpl<BaseArgInfo> &Outs,
870 CCAssignFn *Fn) const {
871 for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
872 MVT VT = MVT::getVT(Outs[I].Ty);
873 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
874 return false;
875 }
876 return true;
877 }
878
getReturnInfo(CallingConv::ID CallConv,Type * RetTy,AttributeList Attrs,SmallVectorImpl<BaseArgInfo> & Outs,const DataLayout & DL) const879 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
880 AttributeList Attrs,
881 SmallVectorImpl<BaseArgInfo> &Outs,
882 const DataLayout &DL) const {
883 LLVMContext &Context = RetTy->getContext();
884 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
885
886 SmallVector<EVT, 4> SplitVTs;
887 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
888 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
889
890 for (EVT VT : SplitVTs) {
891 unsigned NumParts =
892 TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
893 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
894 Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
895
896 for (unsigned I = 0; I < NumParts; ++I) {
897 Outs.emplace_back(PartTy, Flags);
898 }
899 }
900 }
901
checkReturnTypeForCallConv(MachineFunction & MF) const902 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
903 const auto &F = MF.getFunction();
904 Type *ReturnType = F.getReturnType();
905 CallingConv::ID CallConv = F.getCallingConv();
906
907 SmallVector<BaseArgInfo, 4> SplitArgs;
908 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
909 MF.getDataLayout());
910 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
911 }
912
parametersInCSRMatch(const MachineRegisterInfo & MRI,const uint32_t * CallerPreservedMask,const SmallVectorImpl<CCValAssign> & OutLocs,const SmallVectorImpl<ArgInfo> & OutArgs) const913 bool CallLowering::parametersInCSRMatch(
914 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
915 const SmallVectorImpl<CCValAssign> &OutLocs,
916 const SmallVectorImpl<ArgInfo> &OutArgs) const {
917 for (unsigned i = 0; i < OutLocs.size(); ++i) {
918 auto &ArgLoc = OutLocs[i];
919 // If it's not a register, it's fine.
920 if (!ArgLoc.isRegLoc())
921 continue;
922
923 MCRegister PhysReg = ArgLoc.getLocReg();
924
925 // Only look at callee-saved registers.
926 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
927 continue;
928
929 LLVM_DEBUG(
930 dbgs()
931 << "... Call has an argument passed in a callee-saved register.\n");
932
933 // Check if it was copied from.
934 const ArgInfo &OutInfo = OutArgs[i];
935
936 if (OutInfo.Regs.size() > 1) {
937 LLVM_DEBUG(
938 dbgs() << "... Cannot handle arguments in multiple registers.\n");
939 return false;
940 }
941
942 // Check if we copy the register, walking through copies from virtual
943 // registers. Note that getDefIgnoringCopies does not ignore copies from
944 // physical registers.
945 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
946 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
947 LLVM_DEBUG(
948 dbgs()
949 << "... Parameter was not copied into a VReg, cannot tail call.\n");
950 return false;
951 }
952
953 // Got a copy. Verify that it's the same as the register we want.
954 Register CopyRHS = RegDef->getOperand(1).getReg();
955 if (CopyRHS != PhysReg) {
956 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
957 "VReg, cannot tail call.\n");
958 return false;
959 }
960 }
961
962 return true;
963 }
964
resultsCompatible(CallLoweringInfo & Info,MachineFunction & MF,SmallVectorImpl<ArgInfo> & InArgs,ValueAssigner & CalleeAssigner,ValueAssigner & CallerAssigner) const965 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
966 MachineFunction &MF,
967 SmallVectorImpl<ArgInfo> &InArgs,
968 ValueAssigner &CalleeAssigner,
969 ValueAssigner &CallerAssigner) const {
970 const Function &F = MF.getFunction();
971 CallingConv::ID CalleeCC = Info.CallConv;
972 CallingConv::ID CallerCC = F.getCallingConv();
973
974 if (CallerCC == CalleeCC)
975 return true;
976
977 SmallVector<CCValAssign, 16> ArgLocs1;
978 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
979 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
980 return false;
981
982 SmallVector<CCValAssign, 16> ArgLocs2;
983 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
984 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
985 return false;
986
987 // We need the argument locations to match up exactly. If there's more in
988 // one than the other, then we are done.
989 if (ArgLocs1.size() != ArgLocs2.size())
990 return false;
991
992 // Make sure that each location is passed in exactly the same way.
993 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
994 const CCValAssign &Loc1 = ArgLocs1[i];
995 const CCValAssign &Loc2 = ArgLocs2[i];
996
997 // We need both of them to be the same. So if one is a register and one
998 // isn't, we're done.
999 if (Loc1.isRegLoc() != Loc2.isRegLoc())
1000 return false;
1001
1002 if (Loc1.isRegLoc()) {
1003 // If they don't have the same register location, we're done.
1004 if (Loc1.getLocReg() != Loc2.getLocReg())
1005 return false;
1006
1007 // They matched, so we can move to the next ArgLoc.
1008 continue;
1009 }
1010
1011 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1012 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1013 return false;
1014 }
1015
1016 return true;
1017 }
1018
getStackValueStoreSize(const DataLayout & DL,const CCValAssign & VA) const1019 uint64_t CallLowering::ValueHandler::getStackValueStoreSize(
1020 const DataLayout &DL, const CCValAssign &VA) const {
1021 const EVT ValVT = VA.getValVT();
1022 if (ValVT != MVT::iPTR)
1023 return ValVT.getStoreSize();
1024
1025 /// FIXME: We need to get the correct pointer address space.
1026 return DL.getPointerSize();
1027 }
1028
copyArgumentMemory(const ArgInfo & Arg,Register DstPtr,Register SrcPtr,const MachinePointerInfo & DstPtrInfo,Align DstAlign,const MachinePointerInfo & SrcPtrInfo,Align SrcAlign,uint64_t MemSize,CCValAssign & VA) const1029 void CallLowering::ValueHandler::copyArgumentMemory(
1030 const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1031 const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1032 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1033 CCValAssign &VA) const {
1034 MachineFunction &MF = MIRBuilder.getMF();
1035 MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1036 SrcPtrInfo,
1037 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1038 SrcAlign);
1039
1040 MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1041 DstPtrInfo,
1042 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1043 MemSize, DstAlign);
1044
1045 const LLT PtrTy = MRI.getType(DstPtr);
1046 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1047
1048 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1049 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1050 }
1051
extendRegister(Register ValReg,CCValAssign & VA,unsigned MaxSizeBits)1052 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1053 CCValAssign &VA,
1054 unsigned MaxSizeBits) {
1055 LLT LocTy{VA.getLocVT()};
1056 LLT ValTy{VA.getValVT()};
1057
1058 if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1059 return ValReg;
1060
1061 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1062 if (MaxSizeBits <= ValTy.getSizeInBits())
1063 return ValReg;
1064 LocTy = LLT::scalar(MaxSizeBits);
1065 }
1066
1067 switch (VA.getLocInfo()) {
1068 default: break;
1069 case CCValAssign::Full:
1070 case CCValAssign::BCvt:
1071 // FIXME: bitconverting between vector types may or may not be a
1072 // nop in big-endian situations.
1073 return ValReg;
1074 case CCValAssign::AExt: {
1075 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1076 return MIB.getReg(0);
1077 }
1078 case CCValAssign::SExt: {
1079 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1080 MIRBuilder.buildSExt(NewReg, ValReg);
1081 return NewReg;
1082 }
1083 case CCValAssign::ZExt: {
1084 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1085 MIRBuilder.buildZExt(NewReg, ValReg);
1086 return NewReg;
1087 }
1088 }
1089 llvm_unreachable("unable to extend register");
1090 }
1091
anchor()1092 void CallLowering::ValueAssigner::anchor() {}
1093
buildExtensionHint(CCValAssign & VA,Register SrcReg,LLT NarrowTy)1094 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1095 Register SrcReg,
1096 LLT NarrowTy) {
1097 switch (VA.getLocInfo()) {
1098 case CCValAssign::LocInfo::ZExt: {
1099 return MIRBuilder
1100 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1101 NarrowTy.getScalarSizeInBits())
1102 .getReg(0);
1103 }
1104 case CCValAssign::LocInfo::SExt: {
1105 return MIRBuilder
1106 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1107 NarrowTy.getScalarSizeInBits())
1108 .getReg(0);
1109 break;
1110 }
1111 default:
1112 return SrcReg;
1113 }
1114 }
1115
1116 /// Check if we can use a basic COPY instruction between the two types.
1117 ///
1118 /// We're currently building on top of the infrastructure using MVT, which loses
1119 /// pointer information in the CCValAssign. We accept copies from physical
1120 /// registers that have been reported as integers if it's to an equivalent sized
1121 /// pointer LLT.
isCopyCompatibleType(LLT SrcTy,LLT DstTy)1122 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1123 if (SrcTy == DstTy)
1124 return true;
1125
1126 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1127 return false;
1128
1129 SrcTy = SrcTy.getScalarType();
1130 DstTy = DstTy.getScalarType();
1131
1132 return (SrcTy.isPointer() && DstTy.isScalar()) ||
1133 (DstTy.isScalar() && SrcTy.isPointer());
1134 }
1135
assignValueToReg(Register ValVReg,Register PhysReg,CCValAssign & VA)1136 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1137 Register PhysReg,
1138 CCValAssign &VA) {
1139 const MVT LocVT = VA.getLocVT();
1140 const LLT LocTy(LocVT);
1141 const LLT RegTy = MRI.getType(ValVReg);
1142
1143 if (isCopyCompatibleType(RegTy, LocTy)) {
1144 MIRBuilder.buildCopy(ValVReg, PhysReg);
1145 return;
1146 }
1147
1148 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1149 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1150 MIRBuilder.buildTrunc(ValVReg, Hint);
1151 }
1152