1 //===-- DebugTypeGenerator.cpp -- type conversion ---------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ 10 // 11 //===----------------------------------------------------------------------===// 12 13 #define DEBUG_TYPE "flang-debug-type-generator" 14 15 #include "DebugTypeGenerator.h" 16 #include "flang/Optimizer/CodeGen/DescriptorModel.h" 17 #include "flang/Optimizer/Support/InternalNames.h" 18 #include "flang/Optimizer/Support/Utils.h" 19 #include "mlir/Pass/Pass.h" 20 #include "llvm/ADT/ScopeExit.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/Support/Debug.h" 23 24 namespace fir { 25 26 /// Calculate offset of any field in the descriptor. 27 template <int DescriptorField> 28 std::uint64_t getComponentOffset(const mlir::DataLayout &dl, 29 mlir::MLIRContext *context, 30 mlir::Type llvmFieldType) { 31 static_assert(DescriptorField > 0 && DescriptorField < 10); 32 mlir::Type previousFieldType = 33 getDescFieldTypeModel<DescriptorField - 1>()(context); 34 std::uint64_t previousOffset = 35 getComponentOffset<DescriptorField - 1>(dl, context, previousFieldType); 36 std::uint64_t offset = previousOffset + dl.getTypeSize(previousFieldType); 37 std::uint64_t fieldAlignment = dl.getTypeABIAlignment(llvmFieldType); 38 return llvm::alignTo(offset, fieldAlignment); 39 } 40 template <> 41 std::uint64_t getComponentOffset<0>(const mlir::DataLayout &dl, 42 mlir::MLIRContext *context, 43 mlir::Type llvmFieldType) { 44 return 0; 45 } 46 47 DebugTypeGenerator::DebugTypeGenerator(mlir::ModuleOp m, 48 mlir::SymbolTable *symbolTable_, 49 const mlir::DataLayout &dl) 50 : module(m), symbolTable(symbolTable_), dataLayout{&dl}, 51 kindMapping(getKindMapping(m)), llvmTypeConverter(m, false, false, dl), 52 derivedTypeDepth(0) { 53 LLVM_DEBUG(llvm::dbgs() << "DITypeAttr generator\n"); 54 55 mlir::MLIRContext *context = module.getContext(); 56 57 // The debug information requires the offset of certain fields in the 58 // descriptors like lower_bound and extent for each dimension. 59 mlir::Type llvmDimsType = getDescFieldTypeModel<kDimsPosInBox>()(context); 60 mlir::Type llvmPtrType = getDescFieldTypeModel<kAddrPosInBox>()(context); 61 mlir::Type llvmLenType = getDescFieldTypeModel<kElemLenPosInBox>()(context); 62 mlir::Type llvmRankType = getDescFieldTypeModel<kRankPosInBox>()(context); 63 64 dimsOffset = 65 getComponentOffset<kDimsPosInBox>(*dataLayout, context, llvmDimsType); 66 dimsSize = dataLayout->getTypeSize(llvmDimsType); 67 ptrSize = dataLayout->getTypeSize(llvmPtrType); 68 rankSize = dataLayout->getTypeSize(llvmRankType); 69 lenOffset = 70 getComponentOffset<kElemLenPosInBox>(*dataLayout, context, llvmLenType); 71 rankOffset = 72 getComponentOffset<kRankPosInBox>(*dataLayout, context, llvmRankType); 73 } 74 75 static mlir::LLVM::DITypeAttr genBasicType(mlir::MLIRContext *context, 76 mlir::StringAttr name, 77 unsigned bitSize, 78 unsigned decoding) { 79 return mlir::LLVM::DIBasicTypeAttr::get( 80 context, llvm::dwarf::DW_TAG_base_type, name, bitSize, decoding); 81 } 82 83 static mlir::LLVM::DITypeAttr genPlaceholderType(mlir::MLIRContext *context) { 84 return genBasicType(context, mlir::StringAttr::get(context, "integer"), 85 /*bitSize=*/32, llvm::dwarf::DW_ATE_signed); 86 } 87 88 // Helper function to create DILocalVariableAttr and DbgValueOp when information 89 // about the size or dimension of a variable etc lives in an mlir::Value. 90 mlir::LLVM::DILocalVariableAttr DebugTypeGenerator::generateArtificialVariable( 91 mlir::MLIRContext *context, mlir::Value val, 92 mlir::LLVM::DIFileAttr fileAttr, mlir::LLVM::DIScopeAttr scope, 93 fir::cg::XDeclareOp declOp) { 94 // There can be multiple artificial variable for a single declOp. To help 95 // distinguish them, we pad the name with a counter. The counter is the 96 // position of 'val' in the operands of declOp. 97 auto varID = std::distance( 98 declOp.getOperands().begin(), 99 std::find(declOp.getOperands().begin(), declOp.getOperands().end(), val)); 100 mlir::OpBuilder builder(context); 101 auto name = mlir::StringAttr::get(context, "." + declOp.getUniqName().str() + 102 std::to_string(varID)); 103 builder.setInsertionPoint(declOp); 104 mlir::Type type = val.getType(); 105 if (!mlir::isa<mlir::IntegerType>(type) || !type.isSignlessInteger()) { 106 type = builder.getIntegerType(64); 107 val = builder.create<fir::ConvertOp>(declOp.getLoc(), type, val); 108 } 109 mlir::LLVM::DITypeAttr Ty = convertType(type, fileAttr, scope, declOp); 110 auto lvAttr = mlir::LLVM::DILocalVariableAttr::get( 111 context, scope, name, fileAttr, /*line=*/0, /*argNo=*/0, 112 /*alignInBits=*/0, Ty, mlir::LLVM::DIFlags::Artificial); 113 builder.create<mlir::LLVM::DbgValueOp>(declOp.getLoc(), val, lvAttr, nullptr); 114 return lvAttr; 115 } 116 117 mlir::LLVM::DITypeAttr DebugTypeGenerator::convertBoxedSequenceType( 118 fir::SequenceType seqTy, mlir::LLVM::DIFileAttr fileAttr, 119 mlir::LLVM::DIScopeAttr scope, fir::cg::XDeclareOp declOp, 120 bool genAllocated, bool genAssociated) { 121 122 mlir::MLIRContext *context = module.getContext(); 123 llvm::SmallVector<mlir::LLVM::DINodeAttr> elements; 124 llvm::SmallVector<mlir::LLVM::DIExpressionElemAttr> ops; 125 auto addOp = [&](unsigned opc, llvm::ArrayRef<uint64_t> vals) { 126 ops.push_back(mlir::LLVM::DIExpressionElemAttr::get(context, opc, vals)); 127 }; 128 129 addOp(llvm::dwarf::DW_OP_push_object_address, {}); 130 addOp(llvm::dwarf::DW_OP_deref, {}); 131 132 // dataLocation = *base_addr 133 mlir::LLVM::DIExpressionAttr dataLocation = 134 mlir::LLVM::DIExpressionAttr::get(context, ops); 135 ops.clear(); 136 137 mlir::LLVM::DITypeAttr elemTy = 138 convertType(seqTy.getEleTy(), fileAttr, scope, declOp); 139 140 // Assumed-rank arrays 141 if (seqTy.hasUnknownShape()) { 142 addOp(llvm::dwarf::DW_OP_push_object_address, {}); 143 addOp(llvm::dwarf::DW_OP_plus_uconst, {rankOffset}); 144 addOp(llvm::dwarf::DW_OP_deref_size, {rankSize}); 145 mlir::LLVM::DIExpressionAttr rank = 146 mlir::LLVM::DIExpressionAttr::get(context, ops); 147 ops.clear(); 148 149 auto genSubrangeOp = [&](unsigned field) -> mlir::LLVM::DIExpressionAttr { 150 // The dwarf expression for generic subrange assumes that dimension for 151 // which it is being generated is already pushed on the stack. Here is the 152 // formula we will use to calculate count for example. 153 // *(base_addr + offset_count_0 + (dimsSize x dimension_number)). 154 // where offset_count_0 is offset of the count field for the 0th dimension 155 addOp(llvm::dwarf::DW_OP_push_object_address, {}); 156 addOp(llvm::dwarf::DW_OP_over, {}); 157 addOp(llvm::dwarf::DW_OP_constu, {dimsSize}); 158 addOp(llvm::dwarf::DW_OP_mul, {}); 159 addOp(llvm::dwarf::DW_OP_plus_uconst, 160 {dimsOffset + ((dimsSize / 3) * field)}); 161 addOp(llvm::dwarf::DW_OP_plus, {}); 162 addOp(llvm::dwarf::DW_OP_deref, {}); 163 mlir::LLVM::DIExpressionAttr attr = 164 mlir::LLVM::DIExpressionAttr::get(context, ops); 165 ops.clear(); 166 return attr; 167 }; 168 169 mlir::LLVM::DIExpressionAttr lowerAttr = genSubrangeOp(kDimLowerBoundPos); 170 mlir::LLVM::DIExpressionAttr countAttr = genSubrangeOp(kDimExtentPos); 171 mlir::LLVM::DIExpressionAttr strideAttr = genSubrangeOp(kDimStridePos); 172 173 auto subrangeTy = mlir::LLVM::DIGenericSubrangeAttr::get( 174 context, countAttr, lowerAttr, /*upperBound=*/nullptr, strideAttr); 175 elements.push_back(subrangeTy); 176 177 return mlir::LLVM::DICompositeTypeAttr::get( 178 context, llvm::dwarf::DW_TAG_array_type, /*name=*/nullptr, 179 /*file=*/nullptr, /*line=*/0, /*scope=*/nullptr, elemTy, 180 mlir::LLVM::DIFlags::Zero, /*sizeInBits=*/0, /*alignInBits=*/0, 181 elements, dataLocation, rank, /*allocated=*/nullptr, 182 /*associated=*/nullptr); 183 } 184 185 addOp(llvm::dwarf::DW_OP_push_object_address, {}); 186 addOp(llvm::dwarf::DW_OP_deref, {}); 187 addOp(llvm::dwarf::DW_OP_lit0, {}); 188 addOp(llvm::dwarf::DW_OP_ne, {}); 189 190 // allocated = associated = (*base_addr != 0) 191 mlir::LLVM::DIExpressionAttr valid = 192 mlir::LLVM::DIExpressionAttr::get(context, ops); 193 mlir::LLVM::DIExpressionAttr allocated = genAllocated ? valid : nullptr; 194 mlir::LLVM::DIExpressionAttr associated = genAssociated ? valid : nullptr; 195 ops.clear(); 196 197 unsigned offset = dimsOffset; 198 unsigned index = 0; 199 mlir::IntegerType intTy = mlir::IntegerType::get(context, 64); 200 const unsigned indexSize = dimsSize / 3; 201 for ([[maybe_unused]] auto _ : seqTy.getShape()) { 202 // For each dimension, find the offset of count, lower bound and stride in 203 // the descriptor and generate the dwarf expression to extract it. 204 mlir::Attribute lowerAttr = nullptr; 205 // If declaration has a lower bound, use it. 206 if (declOp && declOp.getShift().size() > index) { 207 if (std::optional<std::int64_t> optint = 208 getIntIfConstant(declOp.getShift()[index])) 209 lowerAttr = mlir::IntegerAttr::get(intTy, llvm::APInt(64, *optint)); 210 else 211 lowerAttr = generateArtificialVariable( 212 context, declOp.getShift()[index], fileAttr, scope, declOp); 213 } 214 // FIXME: If `indexSize` happens to be bigger than address size on the 215 // system then we may have to change 'DW_OP_deref' here. 216 addOp(llvm::dwarf::DW_OP_push_object_address, {}); 217 addOp(llvm::dwarf::DW_OP_plus_uconst, 218 {offset + (indexSize * kDimExtentPos)}); 219 addOp(llvm::dwarf::DW_OP_deref, {}); 220 // count[i] = *(base_addr + offset + (indexSize * kDimExtentPos)) 221 // where 'offset' is dimsOffset + (i * dimsSize) 222 mlir::LLVM::DIExpressionAttr countAttr = 223 mlir::LLVM::DIExpressionAttr::get(context, ops); 224 ops.clear(); 225 226 // If a lower bound was not found in the declOp, then we will get them from 227 // descriptor only for pointer and allocatable case. DWARF assumes lower 228 // bound of 1 when this attribute is missing. 229 if (!lowerAttr && (genAllocated || genAssociated)) { 230 addOp(llvm::dwarf::DW_OP_push_object_address, {}); 231 addOp(llvm::dwarf::DW_OP_plus_uconst, 232 {offset + (indexSize * kDimLowerBoundPos)}); 233 addOp(llvm::dwarf::DW_OP_deref, {}); 234 // lower_bound[i] = *(base_addr + offset + (indexSize * 235 // kDimLowerBoundPos)) 236 lowerAttr = mlir::LLVM::DIExpressionAttr::get(context, ops); 237 ops.clear(); 238 } 239 240 addOp(llvm::dwarf::DW_OP_push_object_address, {}); 241 addOp(llvm::dwarf::DW_OP_plus_uconst, 242 {offset + (indexSize * kDimStridePos)}); 243 addOp(llvm::dwarf::DW_OP_deref, {}); 244 // stride[i] = *(base_addr + offset + (indexSize * kDimStridePos)) 245 mlir::LLVM::DIExpressionAttr strideAttr = 246 mlir::LLVM::DIExpressionAttr::get(context, ops); 247 ops.clear(); 248 249 offset += dimsSize; 250 mlir::LLVM::DISubrangeAttr subrangeTy = mlir::LLVM::DISubrangeAttr::get( 251 context, countAttr, lowerAttr, /*upperBound=*/nullptr, strideAttr); 252 elements.push_back(subrangeTy); 253 ++index; 254 } 255 return mlir::LLVM::DICompositeTypeAttr::get( 256 context, llvm::dwarf::DW_TAG_array_type, /*name=*/nullptr, 257 /*file=*/nullptr, /*line=*/0, /*scope=*/nullptr, elemTy, 258 mlir::LLVM::DIFlags::Zero, /*sizeInBits=*/0, /*alignInBits=*/0, elements, 259 dataLocation, /*rank=*/nullptr, allocated, associated); 260 } 261 262 std::pair<std::uint64_t, unsigned short> 263 DebugTypeGenerator::getFieldSizeAndAlign(mlir::Type fieldTy) { 264 mlir::Type llvmTy; 265 if (auto boxTy = mlir::dyn_cast_if_present<fir::BaseBoxType>(fieldTy)) 266 llvmTy = llvmTypeConverter.convertBoxTypeAsStruct(boxTy, getBoxRank(boxTy)); 267 else 268 llvmTy = llvmTypeConverter.convertType(fieldTy); 269 270 uint64_t byteSize = dataLayout->getTypeSize(llvmTy); 271 unsigned short byteAlign = dataLayout->getTypeABIAlignment(llvmTy); 272 return std::pair{byteSize, byteAlign}; 273 } 274 275 mlir::LLVM::DITypeAttr DebugTypeGenerator::convertRecordType( 276 fir::RecordType Ty, mlir::LLVM::DIFileAttr fileAttr, 277 mlir::LLVM::DIScopeAttr scope, fir::cg::XDeclareOp declOp) { 278 // Check if this type has already been converted. 279 auto iter = typeCache.find(Ty); 280 if (iter != typeCache.end()) 281 return iter->second; 282 283 bool canCacheThisType = true; 284 llvm::SmallVector<mlir::LLVM::DINodeAttr> elements; 285 mlir::MLIRContext *context = module.getContext(); 286 auto recId = mlir::DistinctAttr::create(mlir::UnitAttr::get(context)); 287 // Generate a place holder TypeAttr which will be used if a member 288 // references the parent type. 289 auto comAttr = mlir::LLVM::DICompositeTypeAttr::get( 290 context, recId, /*isRecSelf=*/true, llvm::dwarf::DW_TAG_structure_type, 291 mlir::StringAttr::get(context, ""), fileAttr, /*line=*/0, scope, 292 /*baseType=*/nullptr, mlir::LLVM::DIFlags::Zero, /*sizeInBits=*/0, 293 /*alignInBits=*/0, elements, /*dataLocation=*/nullptr, /*rank=*/nullptr, 294 /*allocated=*/nullptr, /*associated=*/nullptr); 295 typeCache[Ty] = comAttr; 296 297 auto result = fir::NameUniquer::deconstruct(Ty.getName()); 298 if (result.first != fir::NameUniquer::NameKind::DERIVED_TYPE) 299 return genPlaceholderType(context); 300 301 fir::TypeInfoOp tiOp = symbolTable->lookup<fir::TypeInfoOp>(Ty.getName()); 302 unsigned line = (tiOp) ? getLineFromLoc(tiOp.getLoc()) : 1; 303 304 mlir::OpBuilder builder(context); 305 mlir::IntegerType intTy = mlir::IntegerType::get(context, 64); 306 std::uint64_t offset = 0; 307 for (auto [fieldName, fieldTy] : Ty.getTypeList()) { 308 auto [byteSize, byteAlign] = getFieldSizeAndAlign(fieldTy); 309 std::optional<llvm::ArrayRef<int64_t>> lowerBounds = 310 fir::getComponentLowerBoundsIfNonDefault(Ty, fieldName, module, 311 symbolTable); 312 auto seqTy = mlir::dyn_cast_if_present<fir::SequenceType>(fieldTy); 313 314 // For members of the derived types, the information about the shift in 315 // lower bounds is not part of the declOp but has to be extracted from the 316 // TypeInfoOp (using getComponentLowerBoundsIfNonDefault). 317 mlir::LLVM::DITypeAttr elemTy; 318 if (lowerBounds && seqTy && 319 lowerBounds->size() == seqTy.getShape().size()) { 320 llvm::SmallVector<mlir::LLVM::DINodeAttr> elements; 321 for (auto [bound, dim] : 322 llvm::zip_equal(*lowerBounds, seqTy.getShape())) { 323 auto countAttr = mlir::IntegerAttr::get(intTy, llvm::APInt(64, dim)); 324 auto lowerAttr = mlir::IntegerAttr::get(intTy, llvm::APInt(64, bound)); 325 auto subrangeTy = mlir::LLVM::DISubrangeAttr::get( 326 context, countAttr, lowerAttr, /*upperBound=*/nullptr, 327 /*stride=*/nullptr); 328 elements.push_back(subrangeTy); 329 } 330 elemTy = mlir::LLVM::DICompositeTypeAttr::get( 331 context, llvm::dwarf::DW_TAG_array_type, /*name=*/nullptr, 332 /*file=*/nullptr, /*line=*/0, /*scope=*/nullptr, 333 convertType(seqTy.getEleTy(), fileAttr, scope, declOp), 334 mlir::LLVM::DIFlags::Zero, /*sizeInBits=*/0, /*alignInBits=*/0, 335 elements, /*dataLocation=*/nullptr, /*rank=*/nullptr, 336 /*allocated=*/nullptr, /*associated=*/nullptr); 337 } else 338 elemTy = convertType(fieldTy, fileAttr, scope, /*declOp=*/nullptr); 339 offset = llvm::alignTo(offset, byteAlign); 340 mlir::LLVM::DIDerivedTypeAttr tyAttr = mlir::LLVM::DIDerivedTypeAttr::get( 341 context, llvm::dwarf::DW_TAG_member, 342 mlir::StringAttr::get(context, fieldName), elemTy, byteSize * 8, 343 byteAlign * 8, offset * 8, /*optional<address space>=*/std::nullopt, 344 /*extra data=*/nullptr); 345 elements.push_back(tyAttr); 346 offset += llvm::alignTo(byteSize, byteAlign); 347 348 // Currently, the handling of recursive debug type in mlir has some 349 // limitations that were discussed at the end of the thread for following 350 // PR. 351 // https://github.com/llvm/llvm-project/pull/106571 352 // 353 // Problem could be explained with the following example code: 354 // type t2 355 // type(t1), pointer :: p1 356 // end type 357 // type t1 358 // type(t2), pointer :: p2 359 // end type 360 // In the description below, type_self means a temporary type that is 361 // generated 362 // as a place holder while the members of that type are being processed. 363 // 364 // If we process t1 first then we will have the following structure after 365 // it has been processed. 366 // t1 -> t2 -> t1_self 367 // This is because when we started processing t2, we did not have the 368 // complete t1 but its place holder t1_self. 369 // Now if some entity requires t2, we will already have that in cache and 370 // will return it. But this t2 refers to t1_self and not to t1. In mlir 371 // handling, only those types are allowed to have _self reference which are 372 // wrapped by entity whose reference it is. So t1 -> t2 -> t1_self is ok 373 // because the t1_self reference can be resolved by the outer t1. But 374 // standalone t2 is not because there will be no way to resolve it. Until 375 // this is fixed in mlir, we avoid caching such types. Please see 376 // DebugTranslation::translateRecursive for details on how mlir handles 377 // recursive types. 378 // The code below checks for situation where it will be unsafe to cache 379 // a type to avoid this problem. We do that in 2 situations. 380 // 1. If a member is record type, then its type would have been processed 381 // before reaching here. If it is not in the cache, it means that it was 382 // found to be unsafe to cache. So any type containing it will also not 383 // be cached 384 // 2. The type of the member is found in the cache but it is a place holder. 385 // In this case, its recID should match the recID of the type we are 386 // processing. This helps us to cache the following type. 387 // type t 388 // type(t), allocatable :: p 389 // end type 390 mlir::Type baseTy = getDerivedType(fieldTy); 391 if (auto recTy = mlir::dyn_cast<fir::RecordType>(baseTy)) { 392 auto iter = typeCache.find(recTy); 393 if (iter == typeCache.end()) 394 canCacheThisType = false; 395 else { 396 if (auto tyAttr = 397 mlir::dyn_cast<mlir::LLVM::DICompositeTypeAttr>(iter->second)) { 398 if (tyAttr.getIsRecSelf() && tyAttr.getRecId() != recId) 399 canCacheThisType = false; 400 } 401 } 402 } 403 } 404 405 auto finalAttr = mlir::LLVM::DICompositeTypeAttr::get( 406 context, recId, /*isRecSelf=*/false, llvm::dwarf::DW_TAG_structure_type, 407 mlir::StringAttr::get(context, result.second.name), fileAttr, line, scope, 408 /*baseType=*/nullptr, mlir::LLVM::DIFlags::Zero, offset * 8, 409 /*alignInBits=*/0, elements, /*dataLocation=*/nullptr, /*rank=*/nullptr, 410 /*allocated=*/nullptr, /*associated=*/nullptr); 411 412 // derivedTypeDepth == 1 means that it is a top level type which is safe to 413 // cache. 414 if (canCacheThisType || derivedTypeDepth == 1) { 415 typeCache[Ty] = finalAttr; 416 } else { 417 auto iter = typeCache.find(Ty); 418 if (iter != typeCache.end()) 419 typeCache.erase(iter); 420 } 421 return finalAttr; 422 } 423 424 mlir::LLVM::DITypeAttr DebugTypeGenerator::convertTupleType( 425 mlir::TupleType Ty, mlir::LLVM::DIFileAttr fileAttr, 426 mlir::LLVM::DIScopeAttr scope, fir::cg::XDeclareOp declOp) { 427 // Check if this type has already been converted. 428 auto iter = typeCache.find(Ty); 429 if (iter != typeCache.end()) 430 return iter->second; 431 432 llvm::SmallVector<mlir::LLVM::DINodeAttr> elements; 433 mlir::MLIRContext *context = module.getContext(); 434 435 std::uint64_t offset = 0; 436 for (auto fieldTy : Ty.getTypes()) { 437 auto [byteSize, byteAlign] = getFieldSizeAndAlign(fieldTy); 438 mlir::LLVM::DITypeAttr elemTy = 439 convertType(fieldTy, fileAttr, scope, /*declOp=*/nullptr); 440 offset = llvm::alignTo(offset, byteAlign); 441 mlir::LLVM::DIDerivedTypeAttr tyAttr = mlir::LLVM::DIDerivedTypeAttr::get( 442 context, llvm::dwarf::DW_TAG_member, mlir::StringAttr::get(context, ""), 443 elemTy, byteSize * 8, byteAlign * 8, offset * 8, 444 /*optional<address space>=*/std::nullopt, 445 /*extra data=*/nullptr); 446 elements.push_back(tyAttr); 447 offset += llvm::alignTo(byteSize, byteAlign); 448 } 449 450 auto typeAttr = mlir::LLVM::DICompositeTypeAttr::get( 451 context, llvm::dwarf::DW_TAG_structure_type, 452 mlir::StringAttr::get(context, ""), fileAttr, /*line=*/0, scope, 453 /*baseType=*/nullptr, mlir::LLVM::DIFlags::Zero, offset * 8, 454 /*alignInBits=*/0, elements, /*dataLocation=*/nullptr, /*rank=*/nullptr, 455 /*allocated=*/nullptr, /*associated=*/nullptr); 456 typeCache[Ty] = typeAttr; 457 return typeAttr; 458 } 459 460 mlir::LLVM::DITypeAttr DebugTypeGenerator::convertSequenceType( 461 fir::SequenceType seqTy, mlir::LLVM::DIFileAttr fileAttr, 462 mlir::LLVM::DIScopeAttr scope, fir::cg::XDeclareOp declOp) { 463 mlir::MLIRContext *context = module.getContext(); 464 465 llvm::SmallVector<mlir::LLVM::DINodeAttr> elements; 466 mlir::LLVM::DITypeAttr elemTy = 467 convertType(seqTy.getEleTy(), fileAttr, scope, declOp); 468 469 unsigned index = 0; 470 auto intTy = mlir::IntegerType::get(context, 64); 471 for (fir::SequenceType::Extent dim : seqTy.getShape()) { 472 mlir::Attribute lowerAttr = nullptr; 473 mlir::Attribute countAttr = nullptr; 474 // If declOp is present, we use the shift in it to get the lower bound of 475 // the array. If it is constant, that is used. If it is not constant, we 476 // create a variable that represents its location and use that as lower 477 // bound. As an optimization, we don't create a lower bound when shift is a 478 // constant 1 as that is the default. 479 if (declOp && declOp.getShift().size() > index) { 480 if (std::optional<std::int64_t> optint = 481 getIntIfConstant(declOp.getShift()[index])) { 482 if (*optint != 1) 483 lowerAttr = mlir::IntegerAttr::get(intTy, llvm::APInt(64, *optint)); 484 } else 485 lowerAttr = generateArtificialVariable( 486 context, declOp.getShift()[index], fileAttr, scope, declOp); 487 } 488 489 if (dim == seqTy.getUnknownExtent()) { 490 // This path is taken for both assumed size array or when the size of the 491 // array is variable. In the case of variable size, we create a variable 492 // to use as countAttr. Note that fir has a constant size of -1 for 493 // assumed size array. So !optint check makes sure we don't generate 494 // variable in that case. 495 if (declOp && declOp.getShape().size() > index) { 496 std::optional<std::int64_t> optint = 497 getIntIfConstant(declOp.getShape()[index]); 498 if (!optint) 499 countAttr = generateArtificialVariable( 500 context, declOp.getShape()[index], fileAttr, scope, declOp); 501 } 502 } else 503 countAttr = mlir::IntegerAttr::get(intTy, llvm::APInt(64, dim)); 504 505 auto subrangeTy = mlir::LLVM::DISubrangeAttr::get( 506 context, countAttr, lowerAttr, /*upperBound=*/nullptr, 507 /*stride=*/nullptr); 508 elements.push_back(subrangeTy); 509 ++index; 510 } 511 // Apart from arrays, the `DICompositeTypeAttr` is used for other things like 512 // structure types. Many of its fields which are not applicable to arrays 513 // have been set to some valid default values. 514 515 return mlir::LLVM::DICompositeTypeAttr::get( 516 context, llvm::dwarf::DW_TAG_array_type, /*name=*/nullptr, 517 /*file=*/nullptr, /*line=*/0, /*scope=*/nullptr, elemTy, 518 mlir::LLVM::DIFlags::Zero, /*sizeInBits=*/0, /*alignInBits=*/0, elements, 519 /*dataLocation=*/nullptr, /*rank=*/nullptr, /*allocated=*/nullptr, 520 /*associated=*/nullptr); 521 } 522 523 mlir::LLVM::DITypeAttr DebugTypeGenerator::convertVectorType( 524 fir::VectorType vecTy, mlir::LLVM::DIFileAttr fileAttr, 525 mlir::LLVM::DIScopeAttr scope, fir::cg::XDeclareOp declOp) { 526 mlir::MLIRContext *context = module.getContext(); 527 528 llvm::SmallVector<mlir::LLVM::DINodeAttr> elements; 529 mlir::LLVM::DITypeAttr elemTy = 530 convertType(vecTy.getEleTy(), fileAttr, scope, declOp); 531 auto intTy = mlir::IntegerType::get(context, 64); 532 auto countAttr = 533 mlir::IntegerAttr::get(intTy, llvm::APInt(64, vecTy.getLen())); 534 auto subrangeTy = mlir::LLVM::DISubrangeAttr::get( 535 context, countAttr, /*lowerBound=*/nullptr, /*upperBound=*/nullptr, 536 /*stride=*/nullptr); 537 elements.push_back(subrangeTy); 538 mlir::Type llvmTy = llvmTypeConverter.convertType(vecTy.getEleTy()); 539 uint64_t sizeInBits = dataLayout->getTypeSize(llvmTy) * vecTy.getLen() * 8; 540 std::string name("vector"); 541 // The element type of the vector must be integer or real so it will be a 542 // DIBasicTypeAttr. 543 if (auto ty = mlir::dyn_cast_if_present<mlir::LLVM::DIBasicTypeAttr>(elemTy)) 544 name += " " + ty.getName().str(); 545 546 name += " (" + std::to_string(vecTy.getLen()) + ")"; 547 return mlir::LLVM::DICompositeTypeAttr::get( 548 context, llvm::dwarf::DW_TAG_array_type, 549 mlir::StringAttr::get(context, name), 550 /*file=*/nullptr, /*line=*/0, /*scope=*/nullptr, elemTy, 551 mlir::LLVM::DIFlags::Vector, sizeInBits, /*alignInBits=*/0, elements, 552 /*dataLocation=*/nullptr, /*rank=*/nullptr, /*allocated=*/nullptr, 553 /*associated=*/nullptr); 554 } 555 556 mlir::LLVM::DITypeAttr DebugTypeGenerator::convertCharacterType( 557 fir::CharacterType charTy, mlir::LLVM::DIFileAttr fileAttr, 558 mlir::LLVM::DIScopeAttr scope, fir::cg::XDeclareOp declOp, 559 bool hasDescriptor) { 560 mlir::MLIRContext *context = module.getContext(); 561 562 // DWARF 5 says the following about the character encoding in 5.1.1.2. 563 // "DW_ATE_ASCII and DW_ATE_UCS specify encodings for the Fortran 2003 564 // string kinds ASCII (ISO/IEC 646:1991) and ISO_10646 (UCS-4 in ISO/IEC 565 // 10646:2000)." 566 unsigned encoding = llvm::dwarf::DW_ATE_ASCII; 567 if (charTy.getFKind() != 1) 568 encoding = llvm::dwarf::DW_ATE_UCS; 569 570 uint64_t sizeInBits = 0; 571 mlir::LLVM::DIExpressionAttr lenExpr = nullptr; 572 mlir::LLVM::DIExpressionAttr locExpr = nullptr; 573 mlir::LLVM::DIVariableAttr varAttr = nullptr; 574 575 if (hasDescriptor) { 576 llvm::SmallVector<mlir::LLVM::DIExpressionElemAttr> ops; 577 auto addOp = [&](unsigned opc, llvm::ArrayRef<uint64_t> vals) { 578 ops.push_back(mlir::LLVM::DIExpressionElemAttr::get(context, opc, vals)); 579 }; 580 addOp(llvm::dwarf::DW_OP_push_object_address, {}); 581 addOp(llvm::dwarf::DW_OP_plus_uconst, {lenOffset}); 582 lenExpr = mlir::LLVM::DIExpressionAttr::get(context, ops); 583 ops.clear(); 584 585 addOp(llvm::dwarf::DW_OP_push_object_address, {}); 586 addOp(llvm::dwarf::DW_OP_deref, {}); 587 locExpr = mlir::LLVM::DIExpressionAttr::get(context, ops); 588 } else if (charTy.hasConstantLen()) { 589 sizeInBits = 590 charTy.getLen() * kindMapping.getCharacterBitsize(charTy.getFKind()); 591 } else { 592 // In assumed length string, the len of the character is not part of the 593 // type but can be found at the runtime. Here we create an artificial 594 // variable that will contain that length. This variable is used as 595 // 'stringLength' in DIStringTypeAttr. 596 if (declOp && !declOp.getTypeparams().empty()) { 597 mlir::LLVM::DILocalVariableAttr lvAttr = generateArtificialVariable( 598 context, declOp.getTypeparams()[0], fileAttr, scope, declOp); 599 varAttr = mlir::cast<mlir::LLVM::DIVariableAttr>(lvAttr); 600 } 601 } 602 603 // FIXME: Currently the DIStringType in llvm does not have the option to set 604 // type of the underlying character. This restricts out ability to represent 605 // string with non-default characters. Please see issue #95440 for more 606 // details. 607 return mlir::LLVM::DIStringTypeAttr::get( 608 context, llvm::dwarf::DW_TAG_string_type, 609 mlir::StringAttr::get(context, ""), sizeInBits, /*alignInBits=*/0, 610 /*stringLength=*/varAttr, lenExpr, locExpr, encoding); 611 } 612 613 mlir::LLVM::DITypeAttr DebugTypeGenerator::convertPointerLikeType( 614 mlir::Type elTy, mlir::LLVM::DIFileAttr fileAttr, 615 mlir::LLVM::DIScopeAttr scope, fir::cg::XDeclareOp declOp, 616 bool genAllocated, bool genAssociated) { 617 mlir::MLIRContext *context = module.getContext(); 618 619 // Arrays and character need different treatment because DWARF have special 620 // constructs for them to get the location from the descriptor. Rest of 621 // types are handled like pointer to underlying type. 622 if (auto seqTy = mlir::dyn_cast_if_present<fir::SequenceType>(elTy)) 623 return convertBoxedSequenceType(seqTy, fileAttr, scope, declOp, 624 genAllocated, genAssociated); 625 if (auto charTy = mlir::dyn_cast_if_present<fir::CharacterType>(elTy)) 626 return convertCharacterType(charTy, fileAttr, scope, declOp, 627 /*hasDescriptor=*/true); 628 629 // If elTy is null or none then generate a void* 630 mlir::LLVM::DITypeAttr elTyAttr; 631 if (!elTy || mlir::isa<mlir::NoneType>(elTy)) 632 elTyAttr = mlir::LLVM::DINullTypeAttr::get(context); 633 else 634 elTyAttr = convertType(elTy, fileAttr, scope, declOp); 635 636 return mlir::LLVM::DIDerivedTypeAttr::get( 637 context, llvm::dwarf::DW_TAG_pointer_type, 638 mlir::StringAttr::get(context, ""), elTyAttr, /*sizeInBits=*/ptrSize * 8, 639 /*alignInBits=*/0, /*offset=*/0, 640 /*optional<address space>=*/std::nullopt, /*extra data=*/nullptr); 641 } 642 643 mlir::LLVM::DITypeAttr 644 DebugTypeGenerator::convertType(mlir::Type Ty, mlir::LLVM::DIFileAttr fileAttr, 645 mlir::LLVM::DIScopeAttr scope, 646 fir::cg::XDeclareOp declOp) { 647 mlir::MLIRContext *context = module.getContext(); 648 if (Ty.isInteger()) { 649 return genBasicType(context, mlir::StringAttr::get(context, "integer"), 650 Ty.getIntOrFloatBitWidth(), llvm::dwarf::DW_ATE_signed); 651 } else if (mlir::isa<mlir::FloatType>(Ty)) { 652 return genBasicType(context, mlir::StringAttr::get(context, "real"), 653 Ty.getIntOrFloatBitWidth(), llvm::dwarf::DW_ATE_float); 654 } else if (auto logTy = mlir::dyn_cast_if_present<fir::LogicalType>(Ty)) { 655 return genBasicType(context, 656 mlir::StringAttr::get(context, logTy.getMnemonic()), 657 kindMapping.getLogicalBitsize(logTy.getFKind()), 658 llvm::dwarf::DW_ATE_boolean); 659 } else if (auto cplxTy = mlir::dyn_cast_if_present<mlir::ComplexType>(Ty)) { 660 auto floatTy = mlir::cast<mlir::FloatType>(cplxTy.getElementType()); 661 unsigned bitWidth = floatTy.getWidth(); 662 return genBasicType(context, mlir::StringAttr::get(context, "complex"), 663 bitWidth * 2, llvm::dwarf::DW_ATE_complex_float); 664 } else if (auto seqTy = mlir::dyn_cast_if_present<fir::SequenceType>(Ty)) { 665 return convertSequenceType(seqTy, fileAttr, scope, declOp); 666 } else if (auto charTy = mlir::dyn_cast_if_present<fir::CharacterType>(Ty)) { 667 return convertCharacterType(charTy, fileAttr, scope, declOp, 668 /*hasDescriptor=*/false); 669 } else if (auto recTy = mlir::dyn_cast_if_present<fir::RecordType>(Ty)) { 670 // For nested derived types like shown below, the call sequence of the 671 // convertRecordType will look something like as follows: 672 // convertRecordType (t1) 673 // convertRecordType (t2) 674 // convertRecordType (t3) 675 // We need to recognize when we are processing the top level type like t1 676 // to make caching decision. The variable `derivedTypeDepth` is used for 677 // this purpose and maintains the current depth of derived type processing. 678 // type t1 679 // type(t2), pointer :: p1 680 // end type 681 // type t2 682 // type(t3), pointer :: p2 683 // end type 684 // type t2 685 // integer a 686 // end type 687 derivedTypeDepth++; 688 auto result = convertRecordType(recTy, fileAttr, scope, declOp); 689 derivedTypeDepth--; 690 return result; 691 } else if (auto tupleTy = mlir::dyn_cast_if_present<mlir::TupleType>(Ty)) { 692 return convertTupleType(tupleTy, fileAttr, scope, declOp); 693 } else if (auto refTy = mlir::dyn_cast_if_present<fir::ReferenceType>(Ty)) { 694 auto elTy = refTy.getEleTy(); 695 return convertPointerLikeType(elTy, fileAttr, scope, declOp, 696 /*genAllocated=*/false, 697 /*genAssociated=*/false); 698 } else if (auto vecTy = mlir::dyn_cast_if_present<fir::VectorType>(Ty)) { 699 return convertVectorType(vecTy, fileAttr, scope, declOp); 700 } else if (mlir::isa<mlir::IndexType>(Ty)) { 701 return genBasicType(context, mlir::StringAttr::get(context, "integer"), 702 llvmTypeConverter.getIndexTypeBitwidth(), 703 llvm::dwarf::DW_ATE_signed); 704 } else if (auto boxTy = mlir::dyn_cast_if_present<fir::BaseBoxType>(Ty)) { 705 auto elTy = boxTy.getEleTy(); 706 if (auto seqTy = mlir::dyn_cast_if_present<fir::SequenceType>(elTy)) 707 return convertBoxedSequenceType(seqTy, fileAttr, scope, declOp, false, 708 false); 709 if (auto heapTy = mlir::dyn_cast_if_present<fir::HeapType>(elTy)) 710 return convertPointerLikeType(heapTy.getElementType(), fileAttr, scope, 711 declOp, /*genAllocated=*/true, 712 /*genAssociated=*/false); 713 if (auto ptrTy = mlir::dyn_cast_if_present<fir::PointerType>(elTy)) 714 return convertPointerLikeType(ptrTy.getElementType(), fileAttr, scope, 715 declOp, /*genAllocated=*/false, 716 /*genAssociated=*/true); 717 return convertPointerLikeType(elTy, fileAttr, scope, declOp, 718 /*genAllocated=*/false, 719 /*genAssociated=*/false); 720 } else { 721 // FIXME: These types are currently unhandled. We are generating a 722 // placeholder type to allow us to test supported bits. 723 return genPlaceholderType(context); 724 } 725 } 726 727 } // namespace fir 728