xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/display/dc/dce120/amdgpu_dce120_timing_generator.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: amdgpu_dce120_timing_generator.c,v 1.2 2021/12/18 23:45:03 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2012-15 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: AMD
25  *
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: amdgpu_dce120_timing_generator.c,v 1.2 2021/12/18 23:45:03 riastradh Exp $");
30 
31 #include "dm_services.h"
32 
33 #include "dce/dce_12_0_offset.h"
34 #include "dce/dce_12_0_sh_mask.h"
35 #include "soc15_hw_ip.h"
36 #include "vega10_ip_offset.h"
37 
38 #include "dc_types.h"
39 #include "dc_bios_types.h"
40 
41 #include "include/grph_object_id.h"
42 #include "include/logger_interface.h"
43 #include "dce120_timing_generator.h"
44 
45 #include "timing_generator.h"
46 
47 #define CRTC_REG_UPDATE_N(reg_name, n, ...)	\
48 		generic_reg_update_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__)
49 
50 #define CRTC_REG_SET_N(reg_name, n, ...)	\
51 		generic_reg_set_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__)
52 
53 #define CRTC_REG_UPDATE(reg, field, val)	\
54 		CRTC_REG_UPDATE_N(reg, 1, FD(reg##__##field), val)
55 
56 #define CRTC_REG_UPDATE_2(reg, field1, val1, field2, val2)	\
57 		CRTC_REG_UPDATE_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
58 
59 #define CRTC_REG_UPDATE_3(reg, field1, val1, field2, val2, field3, val3)	\
60 		CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
61 
62 #define CRTC_REG_UPDATE_4(reg, field1, val1, field2, val2, field3, val3, field4, val4)	\
63 		CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4)
64 
65 #define CRTC_REG_UPDATE_5(reg, field1, val1, field2, val2, field3, val3, field4, val4, field5, val5)	\
66 		CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4, FD(reg##__##field5), val5)
67 
68 #define CRTC_REG_SET(reg, field, val)	\
69 		CRTC_REG_SET_N(reg, 1, FD(reg##__##field), val)
70 
71 #define CRTC_REG_SET_2(reg, field1, val1, field2, val2)	\
72 		CRTC_REG_SET_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
73 
74 #define CRTC_REG_SET_3(reg, field1, val1, field2, val2, field3, val3)	\
75 		CRTC_REG_SET_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
76 
77 /**
78  *****************************************************************************
79  *  Function: is_in_vertical_blank
80  *
81  *  @brief
82  *     check the current status of CRTC to check if we are in Vertical Blank
83  *     regioneased" state
84  *
85  *  @return
86  *     true if currently in blank region, false otherwise
87  *
88  *****************************************************************************
89  */
dce120_timing_generator_is_in_vertical_blank(struct timing_generator * tg)90 static bool dce120_timing_generator_is_in_vertical_blank(
91 		struct timing_generator *tg)
92 {
93 	uint32_t field = 0;
94 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
95 	uint32_t value = dm_read_reg_soc15(
96 					tg->ctx,
97 					mmCRTC0_CRTC_STATUS,
98 					tg110->offsets.crtc);
99 
100 	field = get_reg_field_value(value, CRTC0_CRTC_STATUS, CRTC_V_BLANK);
101 	return field == 1;
102 }
103 
104 
105 /* determine if given timing can be supported by TG */
dce120_timing_generator_validate_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing,enum signal_type signal)106 bool dce120_timing_generator_validate_timing(
107 	struct timing_generator *tg,
108 	const struct dc_crtc_timing *timing,
109 	enum signal_type signal)
110 {
111 	uint32_t interlace_factor = timing->flags.INTERLACE ? 2 : 1;
112 	uint32_t v_blank =
113 					(timing->v_total - timing->v_addressable -
114 					timing->v_border_top - timing->v_border_bottom) *
115 					interlace_factor;
116 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
117 
118 	if (!dce110_timing_generator_validate_timing(
119 					tg,
120 					timing,
121 					signal))
122 		return false;
123 
124 
125 	if (v_blank < tg110->min_v_blank	||
126 		 timing->h_sync_width  < tg110->min_h_sync_width ||
127 		 timing->v_sync_width  < tg110->min_v_sync_width)
128 		return false;
129 
130 	return true;
131 }
132 
dce120_tg_validate_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing)133 bool dce120_tg_validate_timing(struct timing_generator *tg,
134 	const struct dc_crtc_timing *timing)
135 {
136 	return dce120_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
137 }
138 
139 /******** HW programming ************/
140 /* Disable/Enable Timing Generator */
dce120_timing_generator_enable_crtc(struct timing_generator * tg)141 bool dce120_timing_generator_enable_crtc(struct timing_generator *tg)
142 {
143 	enum bp_result result;
144 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
145 
146 	/* Set MASTER_UPDATE_MODE to 0
147 	 * This is needed for DRR, and also suggested to be default value by Syed.*/
148 
149 	CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_MODE,
150 			MASTER_UPDATE_MODE, 0);
151 
152 	CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_LOCK,
153 			UNDERFLOW_UPDATE_LOCK, 0);
154 
155 	/* TODO API for AtomFirmware didn't change*/
156 	result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
157 
158 	return result == BP_RESULT_OK;
159 }
160 
dce120_timing_generator_set_early_control(struct timing_generator * tg,uint32_t early_cntl)161 void dce120_timing_generator_set_early_control(
162 		struct timing_generator *tg,
163 		uint32_t early_cntl)
164 {
165 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
166 
167 	CRTC_REG_UPDATE(CRTC0_CRTC_CONTROL,
168 			CRTC_HBLANK_EARLY_CONTROL, early_cntl);
169 }
170 
171 /**************** TG current status ******************/
172 
173 /* return the current frame counter. Used by Linux kernel DRM */
dce120_timing_generator_get_vblank_counter(struct timing_generator * tg)174 uint32_t dce120_timing_generator_get_vblank_counter(
175 		struct timing_generator *tg)
176 {
177 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
178 	uint32_t value = dm_read_reg_soc15(
179 				tg->ctx,
180 				mmCRTC0_CRTC_STATUS_FRAME_COUNT,
181 				tg110->offsets.crtc);
182 	uint32_t field = get_reg_field_value(
183 				value, CRTC0_CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
184 
185 	return field;
186 }
187 
188 /* Get current H and V position */
dce120_timing_generator_get_crtc_position(struct timing_generator * tg,struct crtc_position * position)189 void dce120_timing_generator_get_crtc_position(
190 	struct timing_generator *tg,
191 	struct crtc_position *position)
192 {
193 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
194 	uint32_t value = dm_read_reg_soc15(
195 				tg->ctx,
196 				mmCRTC0_CRTC_STATUS_POSITION,
197 				tg110->offsets.crtc);
198 
199 	position->horizontal_count = get_reg_field_value(value,
200 			CRTC0_CRTC_STATUS_POSITION, CRTC_HORZ_COUNT);
201 
202 	position->vertical_count = get_reg_field_value(value,
203 			CRTC0_CRTC_STATUS_POSITION, CRTC_VERT_COUNT);
204 
205 	value = dm_read_reg_soc15(
206 				tg->ctx,
207 				mmCRTC0_CRTC_NOM_VERT_POSITION,
208 				tg110->offsets.crtc);
209 
210 	position->nominal_vcount = get_reg_field_value(value,
211 			CRTC0_CRTC_NOM_VERT_POSITION, CRTC_VERT_COUNT_NOM);
212 }
213 
214 /* wait until TG is in beginning of vertical blank region */
dce120_timing_generator_wait_for_vblank(struct timing_generator * tg)215 void dce120_timing_generator_wait_for_vblank(struct timing_generator *tg)
216 {
217 	/* We want to catch beginning of VBlank here, so if the first try are
218 	 * in VBlank, we might be very close to Active, in this case wait for
219 	 * another frame
220 	 */
221 	while (dce120_timing_generator_is_in_vertical_blank(tg)) {
222 		if (!tg->funcs->is_counter_moving(tg)) {
223 			/* error - no point to wait if counter is not moving */
224 			break;
225 		}
226 	}
227 
228 	while (!dce120_timing_generator_is_in_vertical_blank(tg)) {
229 		if (!tg->funcs->is_counter_moving(tg)) {
230 			/* error - no point to wait if counter is not moving */
231 			break;
232 		}
233 	}
234 }
235 
236 /* wait until TG is in beginning of active region */
dce120_timing_generator_wait_for_vactive(struct timing_generator * tg)237 void dce120_timing_generator_wait_for_vactive(struct timing_generator *tg)
238 {
239 	while (dce120_timing_generator_is_in_vertical_blank(tg)) {
240 		if (!tg->funcs->is_counter_moving(tg)) {
241 			/* error - no point to wait if counter is not moving */
242 			break;
243 		}
244 	}
245 }
246 
247 /*********** Timing Generator Synchronization routines ****/
248 
249 /* Setups Global Swap Lock group, TimingServer or TimingClient*/
dce120_timing_generator_setup_global_swap_lock(struct timing_generator * tg,const struct dcp_gsl_params * gsl_params)250 void dce120_timing_generator_setup_global_swap_lock(
251 	struct timing_generator *tg,
252 	const struct dcp_gsl_params *gsl_params)
253 {
254 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
255 	uint32_t value_crtc_vtotal =
256 							dm_read_reg_soc15(tg->ctx,
257 							mmCRTC0_CRTC_V_TOTAL,
258 							tg110->offsets.crtc);
259 	/* Checkpoint relative to end of frame */
260 	uint32_t check_point =
261 							get_reg_field_value(value_crtc_vtotal,
262 							CRTC0_CRTC_V_TOTAL,
263 							CRTC_V_TOTAL);
264 
265 
266 	dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_GSL_WINDOW, tg110->offsets.crtc, 0);
267 
268 	CRTC_REG_UPDATE_N(DCP0_DCP_GSL_CONTROL, 6,
269 		/* This pipe will belong to GSL Group zero. */
270 		FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 1,
271 		FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), gsl_params->gsl_master == tg->inst,
272 		FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY,
273 		/* Keep signal low (pending high) during 6 lines.
274 		 * Also defines minimum interval before re-checking signal. */
275 		FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY,
276 		/* DCP_GSL_PURPOSE_SURFACE_FLIP */
277 		FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0,
278 		FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 1);
279 
280 	CRTC_REG_SET_2(
281 			CRTC0_CRTC_GSL_CONTROL,
282 			CRTC_GSL_CHECK_LINE_NUM, check_point - FLIP_READY_BACK_LOOKUP,
283 			CRTC_GSL_FORCE_DELAY, VFLIP_READY_DELAY);
284 }
285 
286 /* Clear all the register writes done by setup_global_swap_lock */
dce120_timing_generator_tear_down_global_swap_lock(struct timing_generator * tg)287 void dce120_timing_generator_tear_down_global_swap_lock(
288 	struct timing_generator *tg)
289 {
290 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
291 
292 	/* Settig HW default values from reg specs */
293 	CRTC_REG_SET_N(DCP0_DCP_GSL_CONTROL, 6,
294 			FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 0,
295 			FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), 0,
296 			FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY,
297 			FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY,
298 			/* DCP_GSL_PURPOSE_SURFACE_FLIP */
299 			FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0,
300 			FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 0);
301 
302 	CRTC_REG_SET_2(CRTC0_CRTC_GSL_CONTROL,
303 		       CRTC_GSL_CHECK_LINE_NUM, 0,
304 		       CRTC_GSL_FORCE_DELAY, 0x2); /*TODO Why this value here ?*/
305 }
306 
307 /* Reset slave controllers on master VSync */
dce120_timing_generator_enable_reset_trigger(struct timing_generator * tg,int source)308 void dce120_timing_generator_enable_reset_trigger(
309 	struct timing_generator *tg,
310 	int source)
311 {
312 	enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
313 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
314 	uint32_t rising_edge = 0;
315 	uint32_t falling_edge = 0;
316 	/* Setup trigger edge */
317 	uint32_t pol_value = dm_read_reg_soc15(
318 									tg->ctx,
319 									mmCRTC0_CRTC_V_SYNC_A_CNTL,
320 									tg110->offsets.crtc);
321 
322 	/* Register spec has reversed definition:
323 	 *	0 for positive, 1 for negative */
324 	if (get_reg_field_value(pol_value,
325 			CRTC0_CRTC_V_SYNC_A_CNTL,
326 			CRTC_V_SYNC_A_POL) == 0) {
327 		rising_edge = 1;
328 	} else {
329 		falling_edge = 1;
330 	}
331 
332 	/* TODO What about other sources ?*/
333 	trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
334 
335 	CRTC_REG_UPDATE_N(CRTC0_CRTC_TRIGB_CNTL, 7,
336 		FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_SOURCE_SELECT), trig_src_select,
337 		FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_POLARITY_SELECT), TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
338 		FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_RISING_EDGE_DETECT_CNTL), rising_edge,
339 		FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL), falling_edge,
340 		/* send every signal */
341 		FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FREQUENCY_SELECT), 0,
342 		/* no delay */
343 		FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_DELAY), 0,
344 		/* clear trigger status */
345 		FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_CLEAR), 1);
346 
347 	CRTC_REG_UPDATE_3(
348 			CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
349 			CRTC_FORCE_COUNT_NOW_MODE, 2,
350 			CRTC_FORCE_COUNT_NOW_TRIG_SEL, 1,
351 			CRTC_FORCE_COUNT_NOW_CLEAR, 1);
352 }
353 
354 /* disabling trigger-reset */
dce120_timing_generator_disable_reset_trigger(struct timing_generator * tg)355 void dce120_timing_generator_disable_reset_trigger(
356 	struct timing_generator *tg)
357 {
358 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
359 
360 	CRTC_REG_UPDATE_2(
361 		CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
362 		CRTC_FORCE_COUNT_NOW_MODE, 0,
363 		CRTC_FORCE_COUNT_NOW_CLEAR, 1);
364 
365 	CRTC_REG_UPDATE_3(
366 		CRTC0_CRTC_TRIGB_CNTL,
367 		CRTC_TRIGB_SOURCE_SELECT, TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
368 		CRTC_TRIGB_POLARITY_SELECT, TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
369 		/* clear trigger status */
370 		CRTC_TRIGB_CLEAR, 1);
371 
372 }
373 
374 /* Checks whether CRTC triggered reset occurred */
dce120_timing_generator_did_triggered_reset_occur(struct timing_generator * tg)375 bool dce120_timing_generator_did_triggered_reset_occur(
376 	struct timing_generator *tg)
377 {
378 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
379 	uint32_t value = dm_read_reg_soc15(
380 			tg->ctx,
381 			mmCRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
382 			tg110->offsets.crtc);
383 
384 	return get_reg_field_value(value,
385 			CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
386 			CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
387 }
388 
389 
390 /******** Stuff to move to other virtual HW objects *****************/
391 /* Move to enable accelerated mode */
dce120_timing_generator_disable_vga(struct timing_generator * tg)392 void dce120_timing_generator_disable_vga(struct timing_generator *tg)
393 {
394 	uint32_t offset = 0;
395 	uint32_t value = 0;
396 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
397 
398 	switch (tg110->controller_id) {
399 	case CONTROLLER_ID_D0:
400 		offset = 0;
401 		break;
402 	case CONTROLLER_ID_D1:
403 		offset = mmD2VGA_CONTROL - mmD1VGA_CONTROL;
404 		break;
405 	case CONTROLLER_ID_D2:
406 		offset = mmD3VGA_CONTROL - mmD1VGA_CONTROL;
407 		break;
408 	case CONTROLLER_ID_D3:
409 		offset = mmD4VGA_CONTROL - mmD1VGA_CONTROL;
410 		break;
411 	case CONTROLLER_ID_D4:
412 		offset = mmD5VGA_CONTROL - mmD1VGA_CONTROL;
413 		break;
414 	case CONTROLLER_ID_D5:
415 		offset = mmD6VGA_CONTROL - mmD1VGA_CONTROL;
416 		break;
417 	default:
418 		break;
419 	}
420 
421 	value = dm_read_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset);
422 
423 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
424 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
425 	set_reg_field_value(
426 			value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
427 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
428 
429 	dm_write_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset, value);
430 }
431 /* TODO: Should we move it to transform */
432 /* Fully program CRTC timing in timing generator */
dce120_timing_generator_program_blanking(struct timing_generator * tg,const struct dc_crtc_timing * timing)433 void dce120_timing_generator_program_blanking(
434 	struct timing_generator *tg,
435 	const struct dc_crtc_timing *timing)
436 {
437 	uint32_t tmp1 = 0;
438 	uint32_t tmp2 = 0;
439 	uint32_t vsync_offset = timing->v_border_bottom +
440 			timing->v_front_porch;
441 	uint32_t v_sync_start = timing->v_addressable + vsync_offset;
442 
443 	uint32_t hsync_offset = timing->h_border_right +
444 			timing->h_front_porch;
445 	uint32_t h_sync_start = timing->h_addressable + hsync_offset;
446 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
447 
448 	CRTC_REG_UPDATE(
449 		CRTC0_CRTC_H_TOTAL,
450 		CRTC_H_TOTAL,
451 		timing->h_total - 1);
452 
453 	CRTC_REG_UPDATE(
454 		CRTC0_CRTC_V_TOTAL,
455 		CRTC_V_TOTAL,
456 		timing->v_total - 1);
457 
458 	/* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
459 	 * V_TOTAL_MIN are equal to V_TOTAL.
460 	 */
461 	CRTC_REG_UPDATE(
462 		CRTC0_CRTC_V_TOTAL_MAX,
463 		CRTC_V_TOTAL_MAX,
464 		timing->v_total - 1);
465 
466 	CRTC_REG_UPDATE(
467 		CRTC0_CRTC_V_TOTAL_MIN,
468 		CRTC_V_TOTAL_MIN,
469 		timing->v_total - 1);
470 
471 	tmp1 = timing->h_total -
472 			(h_sync_start + timing->h_border_left);
473 	tmp2 = tmp1 + timing->h_addressable +
474 			timing->h_border_left + timing->h_border_right;
475 
476 	CRTC_REG_UPDATE_2(
477 			CRTC0_CRTC_H_BLANK_START_END,
478 			CRTC_H_BLANK_END, tmp1,
479 			CRTC_H_BLANK_START, tmp2);
480 
481 	tmp1 = timing->v_total - (v_sync_start + timing->v_border_top);
482 	tmp2 = tmp1 + timing->v_addressable + timing->v_border_top +
483 			timing->v_border_bottom;
484 
485 	CRTC_REG_UPDATE_2(
486 		CRTC0_CRTC_V_BLANK_START_END,
487 		CRTC_V_BLANK_END, tmp1,
488 		CRTC_V_BLANK_START, tmp2);
489 }
490 
491 /* TODO: Should we move it to opp? */
492 /* Combine with below and move YUV/RGB color conversion to SW layer */
dce120_timing_generator_program_blank_color(struct timing_generator * tg,const struct tg_color * black_color)493 void dce120_timing_generator_program_blank_color(
494 	struct timing_generator *tg,
495 	const struct tg_color *black_color)
496 {
497 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
498 
499 	CRTC_REG_UPDATE_3(
500 		CRTC0_CRTC_BLACK_COLOR,
501 		CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb,
502 		CRTC_BLACK_COLOR_G_Y, black_color->color_g_y,
503 		CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr);
504 }
505 /* Combine with above and move YUV/RGB color conversion to SW layer */
dce120_timing_generator_set_overscan_color_black(struct timing_generator * tg,const struct tg_color * color)506 void dce120_timing_generator_set_overscan_color_black(
507 	struct timing_generator *tg,
508 	const struct tg_color *color)
509 {
510 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
511 	uint32_t value = 0;
512 	CRTC_REG_SET_3(
513 		CRTC0_CRTC_OVERSCAN_COLOR,
514 		CRTC_OVERSCAN_COLOR_BLUE, color->color_b_cb,
515 		CRTC_OVERSCAN_COLOR_GREEN, color->color_g_y,
516 		CRTC_OVERSCAN_COLOR_RED, color->color_r_cr);
517 
518 	value = dm_read_reg_soc15(
519 			tg->ctx,
520 			mmCRTC0_CRTC_OVERSCAN_COLOR,
521 			tg110->offsets.crtc);
522 
523 	dm_write_reg_soc15(
524 			tg->ctx,
525 			mmCRTC0_CRTC_BLACK_COLOR,
526 			tg110->offsets.crtc,
527 			value);
528 
529 	/* This is desirable to have a constant DAC output voltage during the
530 	 * blank time that is higher than the 0 volt reference level that the
531 	 * DAC outputs when the NBLANK signal
532 	 * is asserted low, such as for output to an analog TV. */
533 	dm_write_reg_soc15(
534 		tg->ctx,
535 		mmCRTC0_CRTC_BLANK_DATA_COLOR,
536 		tg110->offsets.crtc,
537 		value);
538 
539 	/* TO DO we have to program EXT registers and we need to know LB DATA
540 	 * format because it is used when more 10 , i.e. 12 bits per color
541 	 *
542 	 * m_mmDxCRTC_OVERSCAN_COLOR_EXT
543 	 * m_mmDxCRTC_BLACK_COLOR_EXT
544 	 * m_mmDxCRTC_BLANK_DATA_COLOR_EXT
545 	 */
546 }
547 
dce120_timing_generator_set_drr(struct timing_generator * tg,const struct drr_params * params)548 void dce120_timing_generator_set_drr(
549 	struct timing_generator *tg,
550 	const struct drr_params *params)
551 {
552 
553 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
554 
555 	if (params != NULL &&
556 		params->vertical_total_max > 0 &&
557 		params->vertical_total_min > 0) {
558 
559 		CRTC_REG_UPDATE(
560 				CRTC0_CRTC_V_TOTAL_MIN,
561 				CRTC_V_TOTAL_MIN, params->vertical_total_min - 1);
562 		CRTC_REG_UPDATE(
563 				CRTC0_CRTC_V_TOTAL_MAX,
564 				CRTC_V_TOTAL_MAX, params->vertical_total_max - 1);
565 		CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 6,
566 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 1,
567 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 1,
568 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0,
569 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0,
570 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK_EN), 0,
571 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0);
572 		CRTC_REG_UPDATE(
573 				CRTC0_CRTC_STATIC_SCREEN_CONTROL,
574 				CRTC_STATIC_SCREEN_EVENT_MASK,
575 				0x180);
576 
577 	} else {
578 		CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 5,
579 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 0,
580 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 0,
581 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0,
582 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0,
583 				FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0);
584 		CRTC_REG_UPDATE(
585 				CRTC0_CRTC_V_TOTAL_MIN,
586 				CRTC_V_TOTAL_MIN, 0);
587 		CRTC_REG_UPDATE(
588 				CRTC0_CRTC_V_TOTAL_MAX,
589 				CRTC_V_TOTAL_MAX, 0);
590 		CRTC_REG_UPDATE(
591 				CRTC0_CRTC_STATIC_SCREEN_CONTROL,
592 				CRTC_STATIC_SCREEN_EVENT_MASK,
593 				0);
594 	}
595 }
596 
597 /**
598  *****************************************************************************
599  *  Function: dce120_timing_generator_get_position
600  *
601  *  @brief
602  *     Returns CRTC vertical/horizontal counters
603  *
604  *  @param [out] position
605  *****************************************************************************
606  */
dce120_timing_generator_get_position(struct timing_generator * tg,struct crtc_position * position)607 void dce120_timing_generator_get_position(struct timing_generator *tg,
608 	struct crtc_position *position)
609 {
610 	uint32_t value;
611 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
612 
613 	value = dm_read_reg_soc15(
614 			tg->ctx,
615 			mmCRTC0_CRTC_STATUS_POSITION,
616 			tg110->offsets.crtc);
617 
618 	position->horizontal_count = get_reg_field_value(
619 			value,
620 			CRTC0_CRTC_STATUS_POSITION,
621 			CRTC_HORZ_COUNT);
622 
623 	position->vertical_count = get_reg_field_value(
624 			value,
625 			CRTC0_CRTC_STATUS_POSITION,
626 			CRTC_VERT_COUNT);
627 
628 	value = dm_read_reg_soc15(
629 			tg->ctx,
630 			mmCRTC0_CRTC_NOM_VERT_POSITION,
631 			tg110->offsets.crtc);
632 
633 	position->nominal_vcount = get_reg_field_value(
634 			value,
635 			CRTC0_CRTC_NOM_VERT_POSITION,
636 			CRTC_VERT_COUNT_NOM);
637 }
638 
639 
dce120_timing_generator_get_crtc_scanoutpos(struct timing_generator * tg,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)640 void dce120_timing_generator_get_crtc_scanoutpos(
641 	struct timing_generator *tg,
642 	uint32_t *v_blank_start,
643 	uint32_t *v_blank_end,
644 	uint32_t *h_position,
645 	uint32_t *v_position)
646 {
647 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
648 	struct crtc_position position;
649 
650 	uint32_t v_blank_start_end = dm_read_reg_soc15(
651 			tg->ctx,
652 			mmCRTC0_CRTC_V_BLANK_START_END,
653 			tg110->offsets.crtc);
654 
655 	*v_blank_start = get_reg_field_value(v_blank_start_end,
656 					     CRTC0_CRTC_V_BLANK_START_END,
657 					     CRTC_V_BLANK_START);
658 	*v_blank_end = get_reg_field_value(v_blank_start_end,
659 					   CRTC0_CRTC_V_BLANK_START_END,
660 					   CRTC_V_BLANK_END);
661 
662 	dce120_timing_generator_get_crtc_position(
663 			tg, &position);
664 
665 	*h_position = position.horizontal_count;
666 	*v_position = position.vertical_count;
667 }
668 
dce120_timing_generator_enable_advanced_request(struct timing_generator * tg,bool enable,const struct dc_crtc_timing * timing)669 void dce120_timing_generator_enable_advanced_request(
670 	struct timing_generator *tg,
671 	bool enable,
672 	const struct dc_crtc_timing *timing)
673 {
674 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
675 	uint32_t v_sync_width_and_b_porch =
676 				timing->v_total - timing->v_addressable -
677 				timing->v_border_bottom - timing->v_front_porch;
678 	uint32_t value = dm_read_reg_soc15(
679 				tg->ctx,
680 				mmCRTC0_CRTC_START_LINE_CONTROL,
681 				tg110->offsets.crtc);
682 
683 	set_reg_field_value(
684 		value,
685 		enable ? 0 : 1,
686 		CRTC0_CRTC_START_LINE_CONTROL,
687 		CRTC_LEGACY_REQUESTOR_EN);
688 
689 	/* Program advanced line position acc.to the best case from fetching data perspective to hide MC latency
690 	 * and prefilling Line Buffer in V Blank (to 10 lines as LB can store max 10 lines)
691 	 */
692 	if (v_sync_width_and_b_porch > 10)
693 		v_sync_width_and_b_porch = 10;
694 
695 	set_reg_field_value(
696 		value,
697 		v_sync_width_and_b_porch,
698 		CRTC0_CRTC_START_LINE_CONTROL,
699 		CRTC_ADVANCED_START_LINE_POSITION);
700 
701 	dm_write_reg_soc15(tg->ctx,
702 			mmCRTC0_CRTC_START_LINE_CONTROL,
703 			tg110->offsets.crtc,
704 			value);
705 }
706 
dce120_tg_program_blank_color(struct timing_generator * tg,const struct tg_color * black_color)707 void dce120_tg_program_blank_color(struct timing_generator *tg,
708 	const struct tg_color *black_color)
709 {
710 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
711 	uint32_t value = 0;
712 
713 	CRTC_REG_UPDATE_3(
714 		CRTC0_CRTC_BLACK_COLOR,
715 		CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb,
716 		CRTC_BLACK_COLOR_G_Y, black_color->color_g_y,
717 		CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr);
718 
719 	value = dm_read_reg_soc15(
720 				tg->ctx,
721 				mmCRTC0_CRTC_BLACK_COLOR,
722 				tg110->offsets.crtc);
723 	dm_write_reg_soc15(
724 		tg->ctx,
725 		mmCRTC0_CRTC_BLANK_DATA_COLOR,
726 		tg110->offsets.crtc,
727 		value);
728 }
729 
dce120_tg_set_overscan_color(struct timing_generator * tg,const struct tg_color * overscan_color)730 void dce120_tg_set_overscan_color(struct timing_generator *tg,
731 	const struct tg_color *overscan_color)
732 {
733 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
734 
735 	CRTC_REG_SET_3(
736 		CRTC0_CRTC_OVERSCAN_COLOR,
737 		CRTC_OVERSCAN_COLOR_BLUE, overscan_color->color_b_cb,
738 		CRTC_OVERSCAN_COLOR_GREEN, overscan_color->color_g_y,
739 		CRTC_OVERSCAN_COLOR_RED, overscan_color->color_r_cr);
740 }
741 
dce120_tg_program_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width,const enum signal_type signal,bool use_vbios)742 static void dce120_tg_program_timing(struct timing_generator *tg,
743 	const struct dc_crtc_timing *timing,
744 	int vready_offset,
745 	int vstartup_start,
746 	int vupdate_offset,
747 	int vupdate_width,
748 	const enum signal_type signal,
749 	bool use_vbios)
750 {
751 	if (use_vbios)
752 		dce110_timing_generator_program_timing_generator(tg, timing);
753 	else
754 		dce120_timing_generator_program_blanking(tg, timing);
755 }
756 
dce120_tg_is_blanked(struct timing_generator * tg)757 bool dce120_tg_is_blanked(struct timing_generator *tg)
758 {
759 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
760 	uint32_t value = dm_read_reg_soc15(
761 			tg->ctx,
762 			mmCRTC0_CRTC_BLANK_CONTROL,
763 			tg110->offsets.crtc);
764 
765 	if (get_reg_field_value(
766 		value,
767 		CRTC0_CRTC_BLANK_CONTROL,
768 		CRTC_BLANK_DATA_EN) == 1 &&
769 	    get_reg_field_value(
770 		value,
771 		CRTC0_CRTC_BLANK_CONTROL,
772 		CRTC_CURRENT_BLANK_STATE) == 1)
773 			return true;
774 
775 	return false;
776 }
777 
dce120_tg_set_blank(struct timing_generator * tg,bool enable_blanking)778 void dce120_tg_set_blank(struct timing_generator *tg,
779 		bool enable_blanking)
780 {
781 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
782 
783 	CRTC_REG_SET(
784 		CRTC0_CRTC_DOUBLE_BUFFER_CONTROL,
785 		CRTC_BLANK_DATA_DOUBLE_BUFFER_EN, 1);
786 
787 	if (enable_blanking)
788 		CRTC_REG_SET(CRTC0_CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN, 1);
789 	else
790 		dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_BLANK_CONTROL,
791 			tg110->offsets.crtc, 0);
792 }
793 
794 bool dce120_tg_validate_timing(struct timing_generator *tg,
795 	const struct dc_crtc_timing *timing);
796 
dce120_tg_wait_for_state(struct timing_generator * tg,enum crtc_state state)797 void dce120_tg_wait_for_state(struct timing_generator *tg,
798 	enum crtc_state state)
799 {
800 	switch (state) {
801 	case CRTC_STATE_VBLANK:
802 		dce120_timing_generator_wait_for_vblank(tg);
803 		break;
804 
805 	case CRTC_STATE_VACTIVE:
806 		dce120_timing_generator_wait_for_vactive(tg);
807 		break;
808 
809 	default:
810 		break;
811 	}
812 }
813 
dce120_tg_set_colors(struct timing_generator * tg,const struct tg_color * blank_color,const struct tg_color * overscan_color)814 void dce120_tg_set_colors(struct timing_generator *tg,
815 	const struct tg_color *blank_color,
816 	const struct tg_color *overscan_color)
817 {
818 	if (blank_color != NULL)
819 		dce120_tg_program_blank_color(tg, blank_color);
820 
821 	if (overscan_color != NULL)
822 		dce120_tg_set_overscan_color(tg, overscan_color);
823 }
824 
dce120_timing_generator_set_static_screen_control(struct timing_generator * tg,uint32_t event_triggers,uint32_t num_frames)825 static void dce120_timing_generator_set_static_screen_control(
826 	struct timing_generator *tg,
827 	uint32_t event_triggers,
828 	uint32_t num_frames)
829 {
830 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
831 
832 	// By register spec, it only takes 8 bit value
833 	if (num_frames > 0xFF)
834 		num_frames = 0xFF;
835 
836 	CRTC_REG_UPDATE_2(CRTC0_CRTC_STATIC_SCREEN_CONTROL,
837 			CRTC_STATIC_SCREEN_EVENT_MASK, event_triggers,
838 			CRTC_STATIC_SCREEN_FRAME_COUNT, num_frames);
839 }
840 
dce120_timing_generator_set_test_pattern(struct timing_generator * tg,enum controller_dp_test_pattern test_pattern,enum dc_color_depth color_depth)841 void dce120_timing_generator_set_test_pattern(
842 	struct timing_generator *tg,
843 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
844 	 * because this is not DP-specific (which is probably somewhere in DP
845 	 * encoder) */
846 	enum controller_dp_test_pattern test_pattern,
847 	enum dc_color_depth color_depth)
848 {
849 	struct dc_context *ctx = tg->ctx;
850 	uint32_t value;
851 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
852 	enum test_pattern_color_format bit_depth;
853 	enum test_pattern_dyn_range dyn_range;
854 	enum test_pattern_mode mode;
855 	/* color ramp generator mixes 16-bits color */
856 	uint32_t src_bpc = 16;
857 	/* requested bpc */
858 	uint32_t dst_bpc;
859 	uint32_t index;
860 	/* RGB values of the color bars.
861 	 * Produce two RGB colors: RGB0 - white (all Fs)
862 	 * and RGB1 - black (all 0s)
863 	 * (three RGB components for two colors)
864 	 */
865 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
866 						0x0000, 0x0000};
867 	/* dest color (converted to the specified color format) */
868 	uint16_t dst_color[6];
869 	uint32_t inc_base;
870 
871 	/* translate to bit depth */
872 	switch (color_depth) {
873 	case COLOR_DEPTH_666:
874 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
875 	break;
876 	case COLOR_DEPTH_888:
877 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
878 	break;
879 	case COLOR_DEPTH_101010:
880 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
881 	break;
882 	case COLOR_DEPTH_121212:
883 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
884 	break;
885 	default:
886 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
887 	break;
888 	}
889 
890 	switch (test_pattern) {
891 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
892 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
893 	{
894 		dyn_range = (test_pattern ==
895 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
896 				TEST_PATTERN_DYN_RANGE_CEA :
897 				TEST_PATTERN_DYN_RANGE_VESA);
898 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
899 
900 		CRTC_REG_UPDATE_2(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
901 				CRTC_TEST_PATTERN_VRES, 6,
902 				CRTC_TEST_PATTERN_HRES, 6);
903 
904 		CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
905 				CRTC_TEST_PATTERN_EN, 1,
906 				CRTC_TEST_PATTERN_MODE, mode,
907 				CRTC_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
908 				CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
909 	}
910 	break;
911 
912 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
913 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
914 	{
915 		mode = (test_pattern ==
916 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
917 			TEST_PATTERN_MODE_VERTICALBARS :
918 			TEST_PATTERN_MODE_HORIZONTALBARS);
919 
920 		switch (bit_depth) {
921 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
922 			dst_bpc = 6;
923 		break;
924 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
925 			dst_bpc = 8;
926 		break;
927 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
928 			dst_bpc = 10;
929 		break;
930 		default:
931 			dst_bpc = 8;
932 		break;
933 		}
934 
935 		/* adjust color to the required colorFormat */
936 		for (index = 0; index < 6; index++) {
937 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
938 			 * (srcBpc - dstBpc);
939 			 */
940 			dst_color[index] =
941 				src_color[index] >> (src_bpc - dst_bpc);
942 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
943 		 * lowest 6 are hardwired to ZERO
944 		 * color bits should be left aligned aligned to MSB
945 		 * XXXXXXXXXX000000 for 10 bit,
946 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
947 		 */
948 			dst_color[index] <<= (16 - dst_bpc);
949 		}
950 
951 		dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, 0);
952 
953 		/* We have to write the mask before data, similar to pipeline.
954 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
955 		 * and RGB1 to be cyan,
956 		 * we need to make 7 writes:
957 		 * MASK   DATA
958 		 * 000001 00000000 00000000                     set mask to R0
959 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
960 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
961 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
962 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
963 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
964 		 * 100000 11111111 00000000     B1 255, 0xFF00
965 		 *
966 		 * we will make a loop of 6 in which we prepare the mask,
967 		 * then write, then prepare the color for next write.
968 		 * first iteration will write mask only,
969 		 * but each next iteration color prepared in
970 		 * previous iteration will be written within new mask,
971 		 * the last component will written separately,
972 		 * mask is not changing between 6th and 7th write
973 		 * and color will be prepared by last iteration
974 		 */
975 
976 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
977 		 * is B1, G1, R1, B0, G0, R0
978 		 */
979 		value = 0;
980 		for (index = 0; index < 6; index++) {
981 			/* prepare color mask, first write PATTERN_DATA
982 			 * will have all zeros
983 			 */
984 			set_reg_field_value(
985 				value,
986 				(1 << index),
987 				CRTC0_CRTC_TEST_PATTERN_COLOR,
988 				CRTC_TEST_PATTERN_MASK);
989 			/* write color component */
990 			dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
991 			/* prepare next color component,
992 			 * will be written in the next iteration
993 			 */
994 			set_reg_field_value(
995 				value,
996 				dst_color[index],
997 				CRTC0_CRTC_TEST_PATTERN_COLOR,
998 				CRTC_TEST_PATTERN_DATA);
999 		}
1000 		/* write last color component,
1001 		 * it's been already prepared in the loop
1002 		 */
1003 		dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
1004 
1005 		/* enable test pattern */
1006 		CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
1007 				CRTC_TEST_PATTERN_EN, 1,
1008 				CRTC_TEST_PATTERN_MODE, mode,
1009 				CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0,
1010 				CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1011 	}
1012 	break;
1013 
1014 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1015 	{
1016 		mode = (bit_depth ==
1017 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1018 			TEST_PATTERN_MODE_DUALRAMP_RGB :
1019 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
1020 
1021 		switch (bit_depth) {
1022 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1023 			dst_bpc = 6;
1024 		break;
1025 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1026 			dst_bpc = 8;
1027 		break;
1028 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1029 			dst_bpc = 10;
1030 		break;
1031 		default:
1032 			dst_bpc = 8;
1033 		break;
1034 		}
1035 
1036 		/* increment for the first ramp for one color gradation
1037 		 * 1 gradation for 6-bit color is 2^10
1038 		 * gradations in 16-bit color
1039 		 */
1040 		inc_base = (src_bpc - dst_bpc);
1041 
1042 		switch (bit_depth) {
1043 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1044 		{
1045 			CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
1046 					CRTC_TEST_PATTERN_INC0, inc_base,
1047 					CRTC_TEST_PATTERN_INC1, 0,
1048 					CRTC_TEST_PATTERN_HRES, 6,
1049 					CRTC_TEST_PATTERN_VRES, 6,
1050 					CRTC_TEST_PATTERN_RAMP0_OFFSET, 0);
1051 		}
1052 		break;
1053 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1054 		{
1055 			CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
1056 					CRTC_TEST_PATTERN_INC0, inc_base,
1057 					CRTC_TEST_PATTERN_INC1, 0,
1058 					CRTC_TEST_PATTERN_HRES, 8,
1059 					CRTC_TEST_PATTERN_VRES, 6,
1060 					CRTC_TEST_PATTERN_RAMP0_OFFSET, 0);
1061 		}
1062 		break;
1063 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1064 		{
1065 			CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
1066 					CRTC_TEST_PATTERN_INC0, inc_base,
1067 					CRTC_TEST_PATTERN_INC1, inc_base + 2,
1068 					CRTC_TEST_PATTERN_HRES, 8,
1069 					CRTC_TEST_PATTERN_VRES, 5,
1070 					CRTC_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1071 		}
1072 		break;
1073 		default:
1074 		break;
1075 		}
1076 
1077 		dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, 0);
1078 
1079 		/* enable test pattern */
1080 		dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc, 0);
1081 
1082 		CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
1083 				CRTC_TEST_PATTERN_EN, 1,
1084 				CRTC_TEST_PATTERN_MODE, mode,
1085 				CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0,
1086 				CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1087 	}
1088 	break;
1089 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1090 	{
1091 		value = 0;
1092 		dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc,  value);
1093 		dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
1094 		dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, value);
1095 	}
1096 	break;
1097 	default:
1098 	break;
1099 	}
1100 }
1101 
dce120_arm_vert_intr(struct timing_generator * tg,uint8_t width)1102 static bool dce120_arm_vert_intr(
1103 		struct timing_generator *tg,
1104 		uint8_t width)
1105 {
1106 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1107 	uint32_t v_blank_start, v_blank_end, h_position, v_position;
1108 
1109 	tg->funcs->get_scanoutpos(
1110 				tg,
1111 				&v_blank_start,
1112 				&v_blank_end,
1113 				&h_position,
1114 				&v_position);
1115 
1116 	if (v_blank_start == 0 || v_blank_end == 0)
1117 		return false;
1118 
1119 	CRTC_REG_SET_2(
1120 			CRTC0_CRTC_VERTICAL_INTERRUPT0_POSITION,
1121 			CRTC_VERTICAL_INTERRUPT0_LINE_START, v_blank_start,
1122 			CRTC_VERTICAL_INTERRUPT0_LINE_END, v_blank_start + width);
1123 
1124 	return true;
1125 }
1126 
1127 
dce120_is_tg_enabled(struct timing_generator * tg)1128 static bool dce120_is_tg_enabled(struct timing_generator *tg)
1129 {
1130 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1131 	uint32_t value, field;
1132 
1133 	value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CONTROL,
1134 				  tg110->offsets.crtc);
1135 	field = get_reg_field_value(value, CRTC0_CRTC_CONTROL,
1136 				    CRTC_CURRENT_MASTER_EN_STATE);
1137 
1138 	return field == 1;
1139 }
1140 
dce120_configure_crc(struct timing_generator * tg,const struct crc_params * params)1141 static bool dce120_configure_crc(struct timing_generator *tg,
1142 				 const struct crc_params *params)
1143 {
1144 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1145 
1146 	/* Cannot configure crc on a CRTC that is disabled */
1147 	if (!dce120_is_tg_enabled(tg))
1148 		return false;
1149 
1150 	/* First, disable CRC before we configure it. */
1151 	dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC_CNTL,
1152 			   tg110->offsets.crtc, 0);
1153 
1154 	if (!params->enable)
1155 		return true;
1156 
1157 	/* Program frame boundaries */
1158 	/* Window A x axis start and end. */
1159 	CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWA_X_CONTROL,
1160 			  CRTC_CRC0_WINDOWA_X_START, params->windowa_x_start,
1161 			  CRTC_CRC0_WINDOWA_X_END, params->windowa_x_end);
1162 
1163 	/* Window A y axis start and end. */
1164 	CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWA_Y_CONTROL,
1165 			  CRTC_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1166 			  CRTC_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1167 
1168 	/* Window B x axis start and end. */
1169 	CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWB_X_CONTROL,
1170 			  CRTC_CRC0_WINDOWB_X_START, params->windowb_x_start,
1171 			  CRTC_CRC0_WINDOWB_X_END, params->windowb_x_end);
1172 
1173 	/* Window B y axis start and end. */
1174 	CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWB_Y_CONTROL,
1175 			  CRTC_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1176 			  CRTC_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1177 
1178 	/* Set crc mode and selection, and enable. Only using CRC0*/
1179 	CRTC_REG_UPDATE_3(CRTC0_CRTC_CRC_CNTL,
1180 			  CRTC_CRC_EN, params->continuous_mode ? 1 : 0,
1181 			  CRTC_CRC0_SELECT, params->selection,
1182 			  CRTC_CRC_EN, 1);
1183 
1184 	return true;
1185 }
1186 
dce120_get_crc(struct timing_generator * tg,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)1187 static bool dce120_get_crc(struct timing_generator *tg, uint32_t *r_cr,
1188 			   uint32_t *g_y, uint32_t *b_cb)
1189 {
1190 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1191 	uint32_t value, field;
1192 
1193 	value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC_CNTL,
1194 				  tg110->offsets.crtc);
1195 	field = get_reg_field_value(value, CRTC0_CRTC_CRC_CNTL, CRTC_CRC_EN);
1196 
1197 	/* Early return if CRC is not enabled for this CRTC */
1198 	if (!field)
1199 		return false;
1200 
1201 	value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC0_DATA_RG,
1202 				  tg110->offsets.crtc);
1203 	*r_cr = get_reg_field_value(value, CRTC0_CRTC_CRC0_DATA_RG, CRC0_R_CR);
1204 	*g_y = get_reg_field_value(value, CRTC0_CRTC_CRC0_DATA_RG, CRC0_G_Y);
1205 
1206 	value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC0_DATA_B,
1207 				  tg110->offsets.crtc);
1208 	*b_cb = get_reg_field_value(value, CRTC0_CRTC_CRC0_DATA_B, CRC0_B_CB);
1209 
1210 	return true;
1211 }
1212 
1213 static const struct timing_generator_funcs dce120_tg_funcs = {
1214 		.validate_timing = dce120_tg_validate_timing,
1215 		.program_timing = dce120_tg_program_timing,
1216 		.enable_crtc = dce120_timing_generator_enable_crtc,
1217 		.disable_crtc = dce110_timing_generator_disable_crtc,
1218 		/* used by enable_timing_synchronization. Not need for FPGA */
1219 		.is_counter_moving = dce110_timing_generator_is_counter_moving,
1220 		/* never be called */
1221 		.get_position = dce120_timing_generator_get_crtc_position,
1222 		.get_frame_count = dce120_timing_generator_get_vblank_counter,
1223 		.get_scanoutpos = dce120_timing_generator_get_crtc_scanoutpos,
1224 		.set_early_control = dce120_timing_generator_set_early_control,
1225 		/* used by enable_timing_synchronization. Not need for FPGA */
1226 		.wait_for_state = dce120_tg_wait_for_state,
1227 		.set_blank = dce120_tg_set_blank,
1228 		.is_blanked = dce120_tg_is_blanked,
1229 		/* never be called */
1230 		.set_colors = dce120_tg_set_colors,
1231 		.set_overscan_blank_color = dce120_timing_generator_set_overscan_color_black,
1232 		.set_blank_color = dce120_timing_generator_program_blank_color,
1233 		.disable_vga = dce120_timing_generator_disable_vga,
1234 		.did_triggered_reset_occur = dce120_timing_generator_did_triggered_reset_occur,
1235 		.setup_global_swap_lock = dce120_timing_generator_setup_global_swap_lock,
1236 		.enable_reset_trigger = dce120_timing_generator_enable_reset_trigger,
1237 		.disable_reset_trigger = dce120_timing_generator_disable_reset_trigger,
1238 		.tear_down_global_swap_lock = dce120_timing_generator_tear_down_global_swap_lock,
1239 		.enable_advanced_request = dce120_timing_generator_enable_advanced_request,
1240 		.set_drr = dce120_timing_generator_set_drr,
1241 		.set_static_screen_control = dce120_timing_generator_set_static_screen_control,
1242 		.set_test_pattern = dce120_timing_generator_set_test_pattern,
1243 		.arm_vert_intr = dce120_arm_vert_intr,
1244 		.is_tg_enabled = dce120_is_tg_enabled,
1245 		.configure_crc = dce120_configure_crc,
1246 		.get_crc = dce120_get_crc,
1247 };
1248 
1249 
dce120_timing_generator_construct(struct dce110_timing_generator * tg110,struct dc_context * ctx,uint32_t instance,const struct dce110_timing_generator_offsets * offsets)1250 void dce120_timing_generator_construct(
1251 	struct dce110_timing_generator *tg110,
1252 	struct dc_context *ctx,
1253 	uint32_t instance,
1254 	const struct dce110_timing_generator_offsets *offsets)
1255 {
1256 	tg110->controller_id = CONTROLLER_ID_D0 + instance;
1257 	tg110->base.inst = instance;
1258 
1259 	tg110->offsets = *offsets;
1260 
1261 	tg110->base.funcs = &dce120_tg_funcs;
1262 
1263 	tg110->base.ctx = ctx;
1264 	tg110->base.bp = ctx->dc_bios;
1265 
1266 	tg110->max_h_total = CRTC0_CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
1267 	tg110->max_v_total = CRTC0_CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
1268 
1269 	/*//CRTC requires a minimum HBLANK = 32 pixels and o
1270 	 * Minimum HSYNC = 8 pixels*/
1271 	tg110->min_h_blank = 32;
1272 	/*DCE12_CRTC_Block_ARch.doc*/
1273 	tg110->min_h_front_porch = 0;
1274 	tg110->min_h_back_porch = 0;
1275 
1276 	tg110->min_h_sync_width = 8;
1277 	tg110->min_v_sync_width = 1;
1278 	tg110->min_v_blank = 3;
1279 }
1280