xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/display/dc/dce110/amdgpu_dce110_timing_generator.c (revision e4a580baf2598beeaae98d953ac7635b8700b80c)
1 /*	$NetBSD: amdgpu_dce110_timing_generator.c,v 1.3 2021/12/19 10:59:02 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2012-15 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: AMD
25  *
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: amdgpu_dce110_timing_generator.c,v 1.3 2021/12/19 10:59:02 riastradh Exp $");
30 
31 #include "dm_services.h"
32 
33 /* include DCE11 register header files */
34 #include "dce/dce_11_0_d.h"
35 #include "dce/dce_11_0_sh_mask.h"
36 
37 #include "dc_types.h"
38 #include "dc_bios_types.h"
39 #include "dc.h"
40 
41 #include "include/grph_object_id.h"
42 #include "include/logger_interface.h"
43 #include "dce110_timing_generator.h"
44 
45 #include "timing_generator.h"
46 
47 
48 #define NUMBER_OF_FRAME_TO_WAIT_ON_TRIGGERED_RESET 10
49 
50 #define MAX_H_TOTAL (CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1)
51 #define MAX_V_TOTAL (CRTC_V_TOTAL__CRTC_V_TOTAL_MASKhw + 1)
52 
53 #define CRTC_REG(reg) (reg + tg110->offsets.crtc)
54 #define DCP_REG(reg) (reg + tg110->offsets.dcp)
55 
56 /* Flowing register offsets are same in files of
57  * dce/dce_11_0_d.h
58  * dce/vi_polaris10_p/vi_polaris10_d.h
59  *
60  * So we can create dce110 timing generator to use it.
61  */
62 
63 
64 /*
65 * apply_front_porch_workaround
66 *
67 * This is a workaround for a bug that has existed since R5xx and has not been
68 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
69 */
dce110_timing_generator_apply_front_porch_workaround(struct timing_generator * tg,struct dc_crtc_timing * timing)70 static void dce110_timing_generator_apply_front_porch_workaround(
71 	struct timing_generator *tg,
72 	struct dc_crtc_timing *timing)
73 {
74 	if (timing->flags.INTERLACE == 1) {
75 		if (timing->v_front_porch < 2)
76 			timing->v_front_porch = 2;
77 	} else {
78 		if (timing->v_front_porch < 1)
79 			timing->v_front_porch = 1;
80 	}
81 }
82 
83 /**
84  *****************************************************************************
85  *  Function: is_in_vertical_blank
86  *
87  *  @brief
88  *     check the current status of CRTC to check if we are in Vertical Blank
89  *     regioneased" state
90  *
91  *  @return
92  *     true if currently in blank region, false otherwise
93  *
94  *****************************************************************************
95  */
dce110_timing_generator_is_in_vertical_blank(struct timing_generator * tg)96 static bool dce110_timing_generator_is_in_vertical_blank(
97 		struct timing_generator *tg)
98 {
99 	uint32_t addr = 0;
100 	uint32_t value = 0;
101 	uint32_t field = 0;
102 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
103 
104 	addr = CRTC_REG(mmCRTC_STATUS);
105 	value = dm_read_reg(tg->ctx, addr);
106 	field = get_reg_field_value(value, CRTC_STATUS, CRTC_V_BLANK);
107 	return field == 1;
108 }
109 
dce110_timing_generator_set_early_control(struct timing_generator * tg,uint32_t early_cntl)110 void dce110_timing_generator_set_early_control(
111 		struct timing_generator *tg,
112 		uint32_t early_cntl)
113 {
114 	uint32_t regval;
115 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
116 	uint32_t address = CRTC_REG(mmCRTC_CONTROL);
117 
118 	regval = dm_read_reg(tg->ctx, address);
119 	set_reg_field_value(regval, early_cntl,
120 			CRTC_CONTROL, CRTC_HBLANK_EARLY_CONTROL);
121 	dm_write_reg(tg->ctx, address, regval);
122 }
123 
124 /**
125  * Enable CRTC
126  * Enable CRTC - call ASIC Control Object to enable Timing generator.
127  */
dce110_timing_generator_enable_crtc(struct timing_generator * tg)128 bool dce110_timing_generator_enable_crtc(struct timing_generator *tg)
129 {
130 	enum bp_result result;
131 
132 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
133 	uint32_t value = 0;
134 
135 	/*
136 	 * 3 is used to make sure V_UPDATE occurs at the beginning of the first
137 	 * line of vertical front porch
138 	 */
139 	set_reg_field_value(
140 		value,
141 		0,
142 		CRTC_MASTER_UPDATE_MODE,
143 		MASTER_UPDATE_MODE);
144 
145 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
146 
147 	/* TODO: may want this on to catch underflow */
148 	value = 0;
149 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK), value);
150 
151 	result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
152 
153 	return result == BP_RESULT_OK;
154 }
155 
dce110_timing_generator_program_blank_color(struct timing_generator * tg,const struct tg_color * black_color)156 void dce110_timing_generator_program_blank_color(
157 		struct timing_generator *tg,
158 		const struct tg_color *black_color)
159 {
160 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
161 	uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
162 	uint32_t value = dm_read_reg(tg->ctx, addr);
163 
164 	set_reg_field_value(
165 		value,
166 		black_color->color_b_cb,
167 		CRTC_BLACK_COLOR,
168 		CRTC_BLACK_COLOR_B_CB);
169 	set_reg_field_value(
170 		value,
171 		black_color->color_g_y,
172 		CRTC_BLACK_COLOR,
173 		CRTC_BLACK_COLOR_G_Y);
174 	set_reg_field_value(
175 		value,
176 		black_color->color_r_cr,
177 		CRTC_BLACK_COLOR,
178 		CRTC_BLACK_COLOR_R_CR);
179 
180 	dm_write_reg(tg->ctx, addr, value);
181 }
182 
183 /**
184  *****************************************************************************
185  *  Function: disable_stereo
186  *
187  *  @brief
188  *     Disables active stereo on controller
189  *     Frame Packing need to be disabled in vBlank or when CRTC not running
190  *****************************************************************************
191  */
192 #if 0
193 @TODOSTEREO
194 static void disable_stereo(struct timing_generator *tg)
195 {
196 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
197 	uint32_t addr = CRTC_REG(mmCRTC_3D_STRUCTURE_CONTROL);
198 	uint32_t value = 0;
199 	uint32_t test = 0;
200 	uint32_t field = 0;
201 	uint32_t struc_en = 0;
202 	uint32_t struc_stereo_sel_ovr = 0;
203 
204 	value = dm_read_reg(tg->ctx, addr);
205 	struc_en = get_reg_field_value(
206 			value,
207 			CRTC_3D_STRUCTURE_CONTROL,
208 			CRTC_3D_STRUCTURE_EN);
209 
210 	struc_stereo_sel_ovr = get_reg_field_value(
211 			value,
212 			CRTC_3D_STRUCTURE_CONTROL,
213 			CRTC_3D_STRUCTURE_STEREO_SEL_OVR);
214 
215 	/*
216 	 * When disabling Frame Packing in 2 step mode, we need to program both
217 	 * registers at the same frame
218 	 * Programming it in the beginning of VActive makes sure we are ok
219 	 */
220 
221 	if (struc_en != 0 && struc_stereo_sel_ovr == 0) {
222 		tg->funcs->wait_for_vblank(tg);
223 		tg->funcs->wait_for_vactive(tg);
224 	}
225 
226 	value = 0;
227 	dm_write_reg(tg->ctx, addr, value);
228 
229 	addr = tg->regs[IDX_CRTC_STEREO_CONTROL];
230 	dm_write_reg(tg->ctx, addr, value);
231 }
232 #endif
233 
234 /**
235  * disable_crtc - call ASIC Control Object to disable Timing generator.
236  */
dce110_timing_generator_disable_crtc(struct timing_generator * tg)237 bool dce110_timing_generator_disable_crtc(struct timing_generator *tg)
238 {
239 	enum bp_result result;
240 
241 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
242 
243 	result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, false);
244 
245 	/* Need to make sure stereo is disabled according to the DCE5.0 spec */
246 
247 	/*
248 	 * @TODOSTEREO call this when adding stereo support
249 	 * tg->funcs->disable_stereo(tg);
250 	 */
251 
252 	return result == BP_RESULT_OK;
253 }
254 
255 /**
256 * program_horz_count_by_2
257 * Programs DxCRTC_HORZ_COUNT_BY2_EN - 1 for DVI 30bpp mode, 0 otherwise
258 *
259 */
program_horz_count_by_2(struct timing_generator * tg,const struct dc_crtc_timing * timing)260 static void program_horz_count_by_2(
261 	struct timing_generator *tg,
262 	const struct dc_crtc_timing *timing)
263 {
264 	uint32_t regval;
265 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
266 
267 	regval = dm_read_reg(tg->ctx,
268 			CRTC_REG(mmCRTC_COUNT_CONTROL));
269 
270 	set_reg_field_value(regval, 0, CRTC_COUNT_CONTROL,
271 			CRTC_HORZ_COUNT_BY2_EN);
272 
273 	if (timing->flags.HORZ_COUNT_BY_TWO)
274 		set_reg_field_value(regval, 1, CRTC_COUNT_CONTROL,
275 					CRTC_HORZ_COUNT_BY2_EN);
276 
277 	dm_write_reg(tg->ctx,
278 			CRTC_REG(mmCRTC_COUNT_CONTROL), regval);
279 }
280 
281 /**
282  * program_timing_generator
283  * Program CRTC Timing Registers - DxCRTC_H_*, DxCRTC_V_*, Pixel repetition.
284  * Call ASIC Control Object to program Timings.
285  */
dce110_timing_generator_program_timing_generator(struct timing_generator * tg,const struct dc_crtc_timing * dc_crtc_timing)286 bool dce110_timing_generator_program_timing_generator(
287 	struct timing_generator *tg,
288 	const struct dc_crtc_timing *dc_crtc_timing)
289 {
290 	enum bp_result result;
291 	struct bp_hw_crtc_timing_parameters bp_params;
292 	struct dc_crtc_timing patched_crtc_timing;
293 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
294 
295 	uint32_t vsync_offset = dc_crtc_timing->v_border_bottom +
296 			dc_crtc_timing->v_front_porch;
297 	uint32_t v_sync_start =dc_crtc_timing->v_addressable + vsync_offset;
298 
299 	uint32_t hsync_offset = dc_crtc_timing->h_border_right +
300 			dc_crtc_timing->h_front_porch;
301 	uint32_t h_sync_start = dc_crtc_timing->h_addressable + hsync_offset;
302 
303 	memset(&bp_params, 0, sizeof(struct bp_hw_crtc_timing_parameters));
304 
305 	/* Due to an asic bug we need to apply the Front Porch workaround prior
306 	 * to programming the timing.
307 	 */
308 
309 	patched_crtc_timing = *dc_crtc_timing;
310 
311 	dce110_timing_generator_apply_front_porch_workaround(tg, &patched_crtc_timing);
312 
313 	bp_params.controller_id = tg110->controller_id;
314 
315 	bp_params.h_total = patched_crtc_timing.h_total;
316 	bp_params.h_addressable =
317 		patched_crtc_timing.h_addressable;
318 	bp_params.v_total = patched_crtc_timing.v_total;
319 	bp_params.v_addressable = patched_crtc_timing.v_addressable;
320 
321 	bp_params.h_sync_start = h_sync_start;
322 	bp_params.h_sync_width = patched_crtc_timing.h_sync_width;
323 	bp_params.v_sync_start = v_sync_start;
324 	bp_params.v_sync_width = patched_crtc_timing.v_sync_width;
325 
326 	/* Set overscan */
327 	bp_params.h_overscan_left =
328 		patched_crtc_timing.h_border_left;
329 	bp_params.h_overscan_right =
330 		patched_crtc_timing.h_border_right;
331 	bp_params.v_overscan_top = patched_crtc_timing.v_border_top;
332 	bp_params.v_overscan_bottom =
333 		patched_crtc_timing.v_border_bottom;
334 
335 	/* Set flags */
336 	if (patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY == 1)
337 		bp_params.flags.HSYNC_POSITIVE_POLARITY = 1;
338 
339 	if (patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY == 1)
340 		bp_params.flags.VSYNC_POSITIVE_POLARITY = 1;
341 
342 	if (patched_crtc_timing.flags.INTERLACE == 1)
343 		bp_params.flags.INTERLACE = 1;
344 
345 	if (patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1)
346 		bp_params.flags.HORZ_COUNT_BY_TWO = 1;
347 
348 	result = tg->bp->funcs->program_crtc_timing(tg->bp, &bp_params);
349 
350 	program_horz_count_by_2(tg, &patched_crtc_timing);
351 
352 	tg110->base.funcs->enable_advanced_request(tg, true, &patched_crtc_timing);
353 
354 	/* Enable stereo - only when we need to pack 3D frame. Other types
355 	 * of stereo handled in explicit call */
356 
357 	return result == BP_RESULT_OK;
358 }
359 
360 /**
361  *****************************************************************************
362  *  Function: set_drr
363  *
364  *  @brief
365  *     Program dynamic refresh rate registers m_DxCRTC_V_TOTAL_*.
366  *
367  *  @param [in] pHwCrtcTiming: point to H
368  *  wCrtcTiming struct
369  *****************************************************************************
370  */
dce110_timing_generator_set_drr(struct timing_generator * tg,const struct drr_params * params)371 void dce110_timing_generator_set_drr(
372 	struct timing_generator *tg,
373 	const struct drr_params *params)
374 {
375 	/* register values */
376 	uint32_t v_total_min = 0;
377 	uint32_t v_total_max = 0;
378 	uint32_t v_total_cntl = 0;
379 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
380 
381 	uint32_t addr = 0;
382 
383 	addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
384 	v_total_min = dm_read_reg(tg->ctx, addr);
385 
386 	addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
387 	v_total_max = dm_read_reg(tg->ctx, addr);
388 
389 	addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
390 	v_total_cntl = dm_read_reg(tg->ctx, addr);
391 
392 	if (params != NULL &&
393 		params->vertical_total_max > 0 &&
394 		params->vertical_total_min > 0) {
395 
396 		set_reg_field_value(v_total_max,
397 				params->vertical_total_max - 1,
398 				CRTC_V_TOTAL_MAX,
399 				CRTC_V_TOTAL_MAX);
400 
401 		set_reg_field_value(v_total_min,
402 				params->vertical_total_min - 1,
403 				CRTC_V_TOTAL_MIN,
404 				CRTC_V_TOTAL_MIN);
405 
406 		set_reg_field_value(v_total_cntl,
407 				1,
408 				CRTC_V_TOTAL_CONTROL,
409 				CRTC_V_TOTAL_MIN_SEL);
410 
411 		set_reg_field_value(v_total_cntl,
412 				1,
413 				CRTC_V_TOTAL_CONTROL,
414 				CRTC_V_TOTAL_MAX_SEL);
415 
416 		set_reg_field_value(v_total_cntl,
417 				0,
418 				CRTC_V_TOTAL_CONTROL,
419 				CRTC_FORCE_LOCK_ON_EVENT);
420 		set_reg_field_value(v_total_cntl,
421 				0,
422 				CRTC_V_TOTAL_CONTROL,
423 				CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
424 
425 		set_reg_field_value(v_total_cntl,
426 				0,
427 				CRTC_V_TOTAL_CONTROL,
428 				CRTC_SET_V_TOTAL_MIN_MASK_EN);
429 
430 		set_reg_field_value(v_total_cntl,
431 				0,
432 				CRTC_V_TOTAL_CONTROL,
433 				CRTC_SET_V_TOTAL_MIN_MASK);
434 	} else {
435 		set_reg_field_value(v_total_cntl,
436 			0,
437 			CRTC_V_TOTAL_CONTROL,
438 			CRTC_SET_V_TOTAL_MIN_MASK);
439 		set_reg_field_value(v_total_cntl,
440 				0,
441 				CRTC_V_TOTAL_CONTROL,
442 				CRTC_V_TOTAL_MIN_SEL);
443 		set_reg_field_value(v_total_cntl,
444 				0,
445 				CRTC_V_TOTAL_CONTROL,
446 				CRTC_V_TOTAL_MAX_SEL);
447 		set_reg_field_value(v_total_min,
448 				0,
449 				CRTC_V_TOTAL_MIN,
450 				CRTC_V_TOTAL_MIN);
451 		set_reg_field_value(v_total_max,
452 				0,
453 				CRTC_V_TOTAL_MAX,
454 				CRTC_V_TOTAL_MAX);
455 		set_reg_field_value(v_total_cntl,
456 				0,
457 				CRTC_V_TOTAL_CONTROL,
458 				CRTC_FORCE_LOCK_ON_EVENT);
459 		set_reg_field_value(v_total_cntl,
460 				0,
461 				CRTC_V_TOTAL_CONTROL,
462 				CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
463 	}
464 
465 	addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
466 	dm_write_reg(tg->ctx, addr, v_total_min);
467 
468 	addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
469 	dm_write_reg(tg->ctx, addr, v_total_max);
470 
471 	addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
472 	dm_write_reg(tg->ctx, addr, v_total_cntl);
473 }
474 
dce110_timing_generator_set_static_screen_control(struct timing_generator * tg,uint32_t event_triggers,uint32_t num_frames)475 void dce110_timing_generator_set_static_screen_control(
476 	struct timing_generator *tg,
477 	uint32_t event_triggers,
478 	uint32_t num_frames)
479 {
480 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
481 	uint32_t static_screen_cntl = 0;
482 	uint32_t addr = 0;
483 
484 	// By register spec, it only takes 8 bit value
485 	if (num_frames > 0xFF)
486 		num_frames = 0xFF;
487 
488 	addr = CRTC_REG(mmCRTC_STATIC_SCREEN_CONTROL);
489 	static_screen_cntl = dm_read_reg(tg->ctx, addr);
490 
491 	set_reg_field_value(static_screen_cntl,
492 				event_triggers,
493 				CRTC_STATIC_SCREEN_CONTROL,
494 				CRTC_STATIC_SCREEN_EVENT_MASK);
495 
496 	set_reg_field_value(static_screen_cntl,
497 				num_frames,
498 				CRTC_STATIC_SCREEN_CONTROL,
499 				CRTC_STATIC_SCREEN_FRAME_COUNT);
500 
501 	dm_write_reg(tg->ctx, addr, static_screen_cntl);
502 }
503 
504 /*
505  * get_vblank_counter
506  *
507  * @brief
508  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
509  * holds the counter of frames.
510  *
511  * @param
512  * struct timing_generator *tg - [in] timing generator which controls the
513  * desired CRTC
514  *
515  * @return
516  * Counter of frames, which should equal to number of vblanks.
517  */
dce110_timing_generator_get_vblank_counter(struct timing_generator * tg)518 uint32_t dce110_timing_generator_get_vblank_counter(struct timing_generator *tg)
519 {
520 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
521 	uint32_t addr = CRTC_REG(mmCRTC_STATUS_FRAME_COUNT);
522 	uint32_t value = dm_read_reg(tg->ctx, addr);
523 	uint32_t field = get_reg_field_value(
524 			value, CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
525 
526 	return field;
527 }
528 
529 /**
530  *****************************************************************************
531  *  Function: dce110_timing_generator_get_position
532  *
533  *  @brief
534  *     Returns CRTC vertical/horizontal counters
535  *
536  *  @param [out] position
537  *****************************************************************************
538  */
dce110_timing_generator_get_position(struct timing_generator * tg,struct crtc_position * position)539 void dce110_timing_generator_get_position(struct timing_generator *tg,
540 	struct crtc_position *position)
541 {
542 	uint32_t value;
543 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
544 
545 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_STATUS_POSITION));
546 
547 	position->horizontal_count = get_reg_field_value(
548 			value,
549 			CRTC_STATUS_POSITION,
550 			CRTC_HORZ_COUNT);
551 
552 	position->vertical_count = get_reg_field_value(
553 			value,
554 			CRTC_STATUS_POSITION,
555 			CRTC_VERT_COUNT);
556 
557 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_NOM_VERT_POSITION));
558 
559 	position->nominal_vcount = get_reg_field_value(
560 			value,
561 			CRTC_NOM_VERT_POSITION,
562 			CRTC_VERT_COUNT_NOM);
563 }
564 
565 /**
566  *****************************************************************************
567  *  Function: get_crtc_scanoutpos
568  *
569  *  @brief
570  *     Returns CRTC vertical/horizontal counters
571  *
572  *  @param [out] vpos, hpos
573  *****************************************************************************
574  */
dce110_timing_generator_get_crtc_scanoutpos(struct timing_generator * tg,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)575 void dce110_timing_generator_get_crtc_scanoutpos(
576 	struct timing_generator *tg,
577 	uint32_t *v_blank_start,
578 	uint32_t *v_blank_end,
579 	uint32_t *h_position,
580 	uint32_t *v_position)
581 {
582 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
583 	struct crtc_position position;
584 
585 	uint32_t value  = dm_read_reg(tg->ctx,
586 			CRTC_REG(mmCRTC_V_BLANK_START_END));
587 
588 	*v_blank_start = get_reg_field_value(value,
589 					     CRTC_V_BLANK_START_END,
590 					     CRTC_V_BLANK_START);
591 	*v_blank_end = get_reg_field_value(value,
592 					   CRTC_V_BLANK_START_END,
593 					   CRTC_V_BLANK_END);
594 
595 	dce110_timing_generator_get_position(
596 			tg, &position);
597 
598 	*h_position = position.horizontal_count;
599 	*v_position = position.vertical_count;
600 }
601 
602 /* TODO: is it safe to assume that mask/shift of Primary and Underlay
603  * are the same?
604  * For example: today CRTC_H_TOTAL == CRTCV_H_TOTAL but is it always
605  * guaranteed? */
dce110_timing_generator_program_blanking(struct timing_generator * tg,const struct dc_crtc_timing * timing)606 void dce110_timing_generator_program_blanking(
607 	struct timing_generator *tg,
608 	const struct dc_crtc_timing *timing)
609 {
610 	uint32_t vsync_offset = timing->v_border_bottom +
611 			timing->v_front_porch;
612 	uint32_t v_sync_start =timing->v_addressable + vsync_offset;
613 
614 	uint32_t hsync_offset = timing->h_border_right +
615 			timing->h_front_porch;
616 	uint32_t h_sync_start = timing->h_addressable + hsync_offset;
617 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
618 
619 	struct dc_context *ctx = tg->ctx;
620 	uint32_t value = 0;
621 	uint32_t addr = 0;
622 	uint32_t tmp = 0;
623 
624 	addr = CRTC_REG(mmCRTC_H_TOTAL);
625 	value = dm_read_reg(ctx, addr);
626 	set_reg_field_value(
627 		value,
628 		timing->h_total - 1,
629 		CRTC_H_TOTAL,
630 		CRTC_H_TOTAL);
631 	dm_write_reg(ctx, addr, value);
632 
633 	addr = CRTC_REG(mmCRTC_V_TOTAL);
634 	value = dm_read_reg(ctx, addr);
635 	set_reg_field_value(
636 		value,
637 		timing->v_total - 1,
638 		CRTC_V_TOTAL,
639 		CRTC_V_TOTAL);
640 	dm_write_reg(ctx, addr, value);
641 
642 	/* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
643 	 * V_TOTAL_MIN are equal to V_TOTAL.
644 	 */
645 	addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
646 	value = dm_read_reg(ctx, addr);
647 	set_reg_field_value(
648 		value,
649 		timing->v_total - 1,
650 		CRTC_V_TOTAL_MAX,
651 		CRTC_V_TOTAL_MAX);
652 	dm_write_reg(ctx, addr, value);
653 
654 	addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
655 	value = dm_read_reg(ctx, addr);
656 	set_reg_field_value(
657 		value,
658 		timing->v_total - 1,
659 		CRTC_V_TOTAL_MIN,
660 		CRTC_V_TOTAL_MIN);
661 	dm_write_reg(ctx, addr, value);
662 
663 	addr = CRTC_REG(mmCRTC_H_BLANK_START_END);
664 	value = dm_read_reg(ctx, addr);
665 
666 	tmp = timing->h_total -
667 		(h_sync_start + timing->h_border_left);
668 
669 	set_reg_field_value(
670 		value,
671 		tmp,
672 		CRTC_H_BLANK_START_END,
673 		CRTC_H_BLANK_END);
674 
675 	tmp = tmp + timing->h_addressable +
676 		timing->h_border_left + timing->h_border_right;
677 
678 	set_reg_field_value(
679 		value,
680 		tmp,
681 		CRTC_H_BLANK_START_END,
682 		CRTC_H_BLANK_START);
683 
684 	dm_write_reg(ctx, addr, value);
685 
686 	addr = CRTC_REG(mmCRTC_V_BLANK_START_END);
687 	value = dm_read_reg(ctx, addr);
688 
689 	tmp = timing->v_total - (v_sync_start + timing->v_border_top);
690 
691 	set_reg_field_value(
692 		value,
693 		tmp,
694 		CRTC_V_BLANK_START_END,
695 		CRTC_V_BLANK_END);
696 
697 	tmp = tmp + timing->v_addressable + timing->v_border_top +
698 		timing->v_border_bottom;
699 
700 	set_reg_field_value(
701 		value,
702 		tmp,
703 		CRTC_V_BLANK_START_END,
704 		CRTC_V_BLANK_START);
705 
706 	dm_write_reg(ctx, addr, value);
707 }
708 
dce110_timing_generator_set_test_pattern(struct timing_generator * tg,enum controller_dp_test_pattern test_pattern,enum dc_color_depth color_depth)709 void dce110_timing_generator_set_test_pattern(
710 	struct timing_generator *tg,
711 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
712 	 * because this is not DP-specific (which is probably somewhere in DP
713 	 * encoder) */
714 	enum controller_dp_test_pattern test_pattern,
715 	enum dc_color_depth color_depth)
716 {
717 	struct dc_context *ctx = tg->ctx;
718 	uint32_t value;
719 	uint32_t addr;
720 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
721 	enum test_pattern_color_format bit_depth;
722 	enum test_pattern_dyn_range dyn_range;
723 	enum test_pattern_mode mode;
724 	/* color ramp generator mixes 16-bits color */
725 	uint32_t src_bpc = 16;
726 	/* requested bpc */
727 	uint32_t dst_bpc;
728 	uint32_t index;
729 	/* RGB values of the color bars.
730 	 * Produce two RGB colors: RGB0 - white (all Fs)
731 	 * and RGB1 - black (all 0s)
732 	 * (three RGB components for two colors)
733 	 */
734 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
735 						0x0000, 0x0000};
736 	/* dest color (converted to the specified color format) */
737 	uint16_t dst_color[6];
738 	uint32_t inc_base;
739 
740 	/* translate to bit depth */
741 	switch (color_depth) {
742 	case COLOR_DEPTH_666:
743 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
744 	break;
745 	case COLOR_DEPTH_888:
746 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
747 	break;
748 	case COLOR_DEPTH_101010:
749 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
750 	break;
751 	case COLOR_DEPTH_121212:
752 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
753 	break;
754 	default:
755 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
756 	break;
757 	}
758 
759 	switch (test_pattern) {
760 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
761 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
762 	{
763 		dyn_range = (test_pattern ==
764 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
765 				TEST_PATTERN_DYN_RANGE_CEA :
766 				TEST_PATTERN_DYN_RANGE_VESA);
767 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
768 		value = 0;
769 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
770 
771 		set_reg_field_value(
772 			value,
773 			6,
774 			CRTC_TEST_PATTERN_PARAMETERS,
775 			CRTC_TEST_PATTERN_VRES);
776 		set_reg_field_value(
777 			value,
778 			6,
779 			CRTC_TEST_PATTERN_PARAMETERS,
780 			CRTC_TEST_PATTERN_HRES);
781 
782 		dm_write_reg(ctx, addr, value);
783 
784 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
785 		value = 0;
786 
787 		set_reg_field_value(
788 			value,
789 			1,
790 			CRTC_TEST_PATTERN_CONTROL,
791 			CRTC_TEST_PATTERN_EN);
792 
793 		set_reg_field_value(
794 			value,
795 			mode,
796 			CRTC_TEST_PATTERN_CONTROL,
797 			CRTC_TEST_PATTERN_MODE);
798 
799 		set_reg_field_value(
800 			value,
801 			dyn_range,
802 			CRTC_TEST_PATTERN_CONTROL,
803 			CRTC_TEST_PATTERN_DYNAMIC_RANGE);
804 		set_reg_field_value(
805 			value,
806 			bit_depth,
807 			CRTC_TEST_PATTERN_CONTROL,
808 			CRTC_TEST_PATTERN_COLOR_FORMAT);
809 		dm_write_reg(ctx, addr, value);
810 	}
811 	break;
812 
813 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
814 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
815 	{
816 		mode = (test_pattern ==
817 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
818 			TEST_PATTERN_MODE_VERTICALBARS :
819 			TEST_PATTERN_MODE_HORIZONTALBARS);
820 
821 		switch (bit_depth) {
822 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
823 			dst_bpc = 6;
824 		break;
825 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
826 			dst_bpc = 8;
827 		break;
828 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
829 			dst_bpc = 10;
830 		break;
831 		default:
832 			dst_bpc = 8;
833 		break;
834 		}
835 
836 		/* adjust color to the required colorFormat */
837 		for (index = 0; index < 6; index++) {
838 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
839 			 * (srcBpc - dstBpc);
840 			 */
841 			dst_color[index] =
842 				src_color[index] >> (src_bpc - dst_bpc);
843 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
844 		 * lowest 6 are hardwired to ZERO
845 		 * color bits should be left aligned aligned to MSB
846 		 * XXXXXXXXXX000000 for 10 bit,
847 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
848 		 */
849 			dst_color[index] <<= (16 - dst_bpc);
850 		}
851 
852 		value = 0;
853 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
854 		dm_write_reg(ctx, addr, value);
855 
856 		/* We have to write the mask before data, similar to pipeline.
857 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
858 		 * and RGB1 to be cyan,
859 		 * we need to make 7 writes:
860 		 * MASK   DATA
861 		 * 000001 00000000 00000000                     set mask to R0
862 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
863 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
864 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
865 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
866 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
867 		 * 100000 11111111 00000000     B1 255, 0xFF00
868 		 *
869 		 * we will make a loop of 6 in which we prepare the mask,
870 		 * then write, then prepare the color for next write.
871 		 * first iteration will write mask only,
872 		 * but each next iteration color prepared in
873 		 * previous iteration will be written within new mask,
874 		 * the last component will written separately,
875 		 * mask is not changing between 6th and 7th write
876 		 * and color will be prepared by last iteration
877 		 */
878 
879 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
880 		 * is B1, G1, R1, B0, G0, R0
881 		 */
882 		value = 0;
883 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
884 		for (index = 0; index < 6; index++) {
885 			/* prepare color mask, first write PATTERN_DATA
886 			 * will have all zeros
887 			 */
888 			set_reg_field_value(
889 				value,
890 				(1 << index),
891 				CRTC_TEST_PATTERN_COLOR,
892 				CRTC_TEST_PATTERN_MASK);
893 			/* write color component */
894 			dm_write_reg(ctx, addr, value);
895 			/* prepare next color component,
896 			 * will be written in the next iteration
897 			 */
898 			set_reg_field_value(
899 				value,
900 				dst_color[index],
901 				CRTC_TEST_PATTERN_COLOR,
902 				CRTC_TEST_PATTERN_DATA);
903 		}
904 		/* write last color component,
905 		 * it's been already prepared in the loop
906 		 */
907 		dm_write_reg(ctx, addr, value);
908 
909 		/* enable test pattern */
910 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
911 		value = 0;
912 
913 		set_reg_field_value(
914 			value,
915 			1,
916 			CRTC_TEST_PATTERN_CONTROL,
917 			CRTC_TEST_PATTERN_EN);
918 
919 		set_reg_field_value(
920 			value,
921 			mode,
922 			CRTC_TEST_PATTERN_CONTROL,
923 			CRTC_TEST_PATTERN_MODE);
924 
925 		set_reg_field_value(
926 			value,
927 			0,
928 			CRTC_TEST_PATTERN_CONTROL,
929 			CRTC_TEST_PATTERN_DYNAMIC_RANGE);
930 
931 		set_reg_field_value(
932 			value,
933 			bit_depth,
934 			CRTC_TEST_PATTERN_CONTROL,
935 			CRTC_TEST_PATTERN_COLOR_FORMAT);
936 
937 		dm_write_reg(ctx, addr, value);
938 	}
939 	break;
940 
941 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
942 	{
943 		mode = (bit_depth ==
944 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
945 			TEST_PATTERN_MODE_DUALRAMP_RGB :
946 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
947 
948 		switch (bit_depth) {
949 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
950 			dst_bpc = 6;
951 		break;
952 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
953 			dst_bpc = 8;
954 		break;
955 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
956 			dst_bpc = 10;
957 		break;
958 		default:
959 			dst_bpc = 8;
960 		break;
961 		}
962 
963 		/* increment for the first ramp for one color gradation
964 		 * 1 gradation for 6-bit color is 2^10
965 		 * gradations in 16-bit color
966 		 */
967 		inc_base = (src_bpc - dst_bpc);
968 
969 		value = 0;
970 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
971 
972 		switch (bit_depth) {
973 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
974 		{
975 			set_reg_field_value(
976 				value,
977 				inc_base,
978 				CRTC_TEST_PATTERN_PARAMETERS,
979 				CRTC_TEST_PATTERN_INC0);
980 			set_reg_field_value(
981 				value,
982 				0,
983 				CRTC_TEST_PATTERN_PARAMETERS,
984 				CRTC_TEST_PATTERN_INC1);
985 			set_reg_field_value(
986 				value,
987 				6,
988 				CRTC_TEST_PATTERN_PARAMETERS,
989 				CRTC_TEST_PATTERN_HRES);
990 			set_reg_field_value(
991 				value,
992 				6,
993 				CRTC_TEST_PATTERN_PARAMETERS,
994 				CRTC_TEST_PATTERN_VRES);
995 			set_reg_field_value(
996 				value,
997 				0,
998 				CRTC_TEST_PATTERN_PARAMETERS,
999 				CRTC_TEST_PATTERN_RAMP0_OFFSET);
1000 		}
1001 		break;
1002 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1003 		{
1004 			set_reg_field_value(
1005 				value,
1006 				inc_base,
1007 				CRTC_TEST_PATTERN_PARAMETERS,
1008 				CRTC_TEST_PATTERN_INC0);
1009 			set_reg_field_value(
1010 				value,
1011 				0,
1012 				CRTC_TEST_PATTERN_PARAMETERS,
1013 				CRTC_TEST_PATTERN_INC1);
1014 			set_reg_field_value(
1015 				value,
1016 				8,
1017 				CRTC_TEST_PATTERN_PARAMETERS,
1018 				CRTC_TEST_PATTERN_HRES);
1019 			set_reg_field_value(
1020 				value,
1021 				6,
1022 				CRTC_TEST_PATTERN_PARAMETERS,
1023 				CRTC_TEST_PATTERN_VRES);
1024 			set_reg_field_value(
1025 				value,
1026 				0,
1027 				CRTC_TEST_PATTERN_PARAMETERS,
1028 				CRTC_TEST_PATTERN_RAMP0_OFFSET);
1029 		}
1030 		break;
1031 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1032 		{
1033 			set_reg_field_value(
1034 				value,
1035 				inc_base,
1036 				CRTC_TEST_PATTERN_PARAMETERS,
1037 				CRTC_TEST_PATTERN_INC0);
1038 			set_reg_field_value(
1039 				value,
1040 				inc_base + 2,
1041 				CRTC_TEST_PATTERN_PARAMETERS,
1042 				CRTC_TEST_PATTERN_INC1);
1043 			set_reg_field_value(
1044 				value,
1045 				8,
1046 				CRTC_TEST_PATTERN_PARAMETERS,
1047 				CRTC_TEST_PATTERN_HRES);
1048 			set_reg_field_value(
1049 				value,
1050 				5,
1051 				CRTC_TEST_PATTERN_PARAMETERS,
1052 				CRTC_TEST_PATTERN_VRES);
1053 			set_reg_field_value(
1054 				value,
1055 				384 << 6,
1056 				CRTC_TEST_PATTERN_PARAMETERS,
1057 				CRTC_TEST_PATTERN_RAMP0_OFFSET);
1058 		}
1059 		break;
1060 		default:
1061 		break;
1062 		}
1063 		dm_write_reg(ctx, addr, value);
1064 
1065 		value = 0;
1066 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
1067 		dm_write_reg(ctx, addr, value);
1068 
1069 		/* enable test pattern */
1070 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
1071 		value = 0;
1072 
1073 		set_reg_field_value(
1074 			value,
1075 			1,
1076 			CRTC_TEST_PATTERN_CONTROL,
1077 			CRTC_TEST_PATTERN_EN);
1078 
1079 		set_reg_field_value(
1080 			value,
1081 			mode,
1082 			CRTC_TEST_PATTERN_CONTROL,
1083 			CRTC_TEST_PATTERN_MODE);
1084 
1085 		set_reg_field_value(
1086 			value,
1087 			0,
1088 			CRTC_TEST_PATTERN_CONTROL,
1089 			CRTC_TEST_PATTERN_DYNAMIC_RANGE);
1090 		/* add color depth translation here */
1091 		set_reg_field_value(
1092 			value,
1093 			bit_depth,
1094 			CRTC_TEST_PATTERN_CONTROL,
1095 			CRTC_TEST_PATTERN_COLOR_FORMAT);
1096 
1097 		dm_write_reg(ctx, addr, value);
1098 	}
1099 	break;
1100 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1101 	{
1102 		value = 0;
1103 		dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL), value);
1104 		dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_COLOR), value);
1105 		dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS),
1106 				value);
1107 	}
1108 	break;
1109 	default:
1110 	break;
1111 	}
1112 }
1113 
1114 /**
1115 * dce110_timing_generator_validate_timing
1116 * The timing generators support a maximum display size of is 8192 x 8192 pixels,
1117 * including both active display and blanking periods. Check H Total and V Total.
1118 */
dce110_timing_generator_validate_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing,enum signal_type signal)1119 bool dce110_timing_generator_validate_timing(
1120 	struct timing_generator *tg,
1121 	const struct dc_crtc_timing *timing,
1122 	enum signal_type signal)
1123 {
1124 	uint32_t h_blank;
1125 	uint32_t h_back_porch, hsync_offset, h_sync_start;
1126 
1127 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1128 
1129 	ASSERT(timing != NULL);
1130 
1131 	if (!timing)
1132 		return false;
1133 
1134 	hsync_offset = timing->h_border_right + timing->h_front_porch;
1135 	h_sync_start = timing->h_addressable + hsync_offset;
1136 
1137 	/* Currently we don't support 3D, so block all 3D timings */
1138 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE)
1139 		return false;
1140 
1141 	/* Temporarily blocking interlacing mode until it's supported */
1142 	if (timing->flags.INTERLACE == 1)
1143 		return false;
1144 
1145 	/* Check maximum number of pixels supported by Timing Generator
1146 	 * (Currently will never fail, in order to fail needs display which
1147 	 * needs more than 8192 horizontal and
1148 	 * more than 8192 vertical total pixels)
1149 	 */
1150 	if (timing->h_total > tg110->max_h_total ||
1151 		timing->v_total > tg110->max_v_total)
1152 		return false;
1153 
1154 	h_blank = (timing->h_total - timing->h_addressable -
1155 		timing->h_border_right -
1156 		timing->h_border_left);
1157 
1158 	if (h_blank < tg110->min_h_blank)
1159 		return false;
1160 
1161 	if (timing->h_front_porch < tg110->min_h_front_porch)
1162 		return false;
1163 
1164 	h_back_porch = h_blank - (h_sync_start -
1165 		timing->h_addressable -
1166 		timing->h_border_right -
1167 		timing->h_sync_width);
1168 
1169 	if (h_back_porch < tg110->min_h_back_porch)
1170 		return false;
1171 
1172 	return true;
1173 }
1174 
1175 /**
1176 * Wait till we are at the beginning of VBlank.
1177 */
dce110_timing_generator_wait_for_vblank(struct timing_generator * tg)1178 void dce110_timing_generator_wait_for_vblank(struct timing_generator *tg)
1179 {
1180 	/* We want to catch beginning of VBlank here, so if the first try are
1181 	 * in VBlank, we might be very close to Active, in this case wait for
1182 	 * another frame
1183 	 */
1184 	while (dce110_timing_generator_is_in_vertical_blank(tg)) {
1185 		if (!dce110_timing_generator_is_counter_moving(tg)) {
1186 			/* error - no point to wait if counter is not moving */
1187 			break;
1188 		}
1189 	}
1190 
1191 	while (!dce110_timing_generator_is_in_vertical_blank(tg)) {
1192 		if (!dce110_timing_generator_is_counter_moving(tg)) {
1193 			/* error - no point to wait if counter is not moving */
1194 			break;
1195 		}
1196 	}
1197 }
1198 
1199 /**
1200 * Wait till we are in VActive (anywhere in VActive)
1201 */
dce110_timing_generator_wait_for_vactive(struct timing_generator * tg)1202 void dce110_timing_generator_wait_for_vactive(struct timing_generator *tg)
1203 {
1204 	while (dce110_timing_generator_is_in_vertical_blank(tg)) {
1205 		if (!dce110_timing_generator_is_counter_moving(tg)) {
1206 			/* error - no point to wait if counter is not moving */
1207 			break;
1208 		}
1209 	}
1210 }
1211 
1212 /**
1213  *****************************************************************************
1214  *  Function: dce110_timing_generator_setup_global_swap_lock
1215  *
1216  *  @brief
1217  *     Setups Global Swap Lock group for current pipe
1218  *     Pipe can join or leave GSL group, become a TimingServer or TimingClient
1219  *
1220  *  @param [in] gsl_params: setup data
1221  *****************************************************************************
1222  */
1223 
dce110_timing_generator_setup_global_swap_lock(struct timing_generator * tg,const struct dcp_gsl_params * gsl_params)1224 void dce110_timing_generator_setup_global_swap_lock(
1225 	struct timing_generator *tg,
1226 	const struct dcp_gsl_params *gsl_params)
1227 {
1228 	uint32_t value;
1229 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1230 	uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
1231 	uint32_t check_point = FLIP_READY_BACK_LOOKUP;
1232 
1233 	value = dm_read_reg(tg->ctx, address);
1234 
1235 	/* This pipe will belong to GSL Group zero. */
1236 	set_reg_field_value(value,
1237 			    1,
1238 			    DCP_GSL_CONTROL,
1239 			    DCP_GSL0_EN);
1240 
1241 	set_reg_field_value(value,
1242 			    gsl_params->gsl_master == tg->inst,
1243 			    DCP_GSL_CONTROL,
1244 			    DCP_GSL_MASTER_EN);
1245 
1246 	set_reg_field_value(value,
1247 			    HFLIP_READY_DELAY,
1248 			    DCP_GSL_CONTROL,
1249 			    DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
1250 
1251 	/* Keep signal low (pending high) during 6 lines.
1252 	 * Also defines minimum interval before re-checking signal. */
1253 	set_reg_field_value(value,
1254 			    HFLIP_CHECK_DELAY,
1255 			    DCP_GSL_CONTROL,
1256 			    DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
1257 
1258 	dm_write_reg(tg->ctx, CRTC_REG(mmDCP_GSL_CONTROL), value);
1259 	value = 0;
1260 
1261 	set_reg_field_value(value,
1262 			    gsl_params->gsl_master,
1263 			    DCIO_GSL0_CNTL,
1264 			    DCIO_GSL0_VSYNC_SEL);
1265 
1266 	set_reg_field_value(value,
1267 			    0,
1268 			    DCIO_GSL0_CNTL,
1269 			    DCIO_GSL0_TIMING_SYNC_SEL);
1270 
1271 	set_reg_field_value(value,
1272 			    0,
1273 			    DCIO_GSL0_CNTL,
1274 			    DCIO_GSL0_GLOBAL_UNLOCK_SEL);
1275 
1276 	dm_write_reg(tg->ctx, CRTC_REG(mmDCIO_GSL0_CNTL), value);
1277 
1278 
1279 	{
1280 		uint32_t value_crtc_vtotal;
1281 
1282 		value_crtc_vtotal = dm_read_reg(tg->ctx,
1283 				CRTC_REG(mmCRTC_V_TOTAL));
1284 
1285 		set_reg_field_value(value,
1286 				    0,/* DCP_GSL_PURPOSE_SURFACE_FLIP */
1287 				    DCP_GSL_CONTROL,
1288 				    DCP_GSL_SYNC_SOURCE);
1289 
1290 		/* Checkpoint relative to end of frame */
1291 		check_point = get_reg_field_value(value_crtc_vtotal,
1292 						  CRTC_V_TOTAL,
1293 						  CRTC_V_TOTAL);
1294 
1295 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_GSL_WINDOW), 0);
1296 	}
1297 
1298 	set_reg_field_value(value,
1299 			    1,
1300 			    DCP_GSL_CONTROL,
1301 			    DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
1302 
1303 	dm_write_reg(tg->ctx, address, value);
1304 
1305 	/********************************************************************/
1306 	address = CRTC_REG(mmCRTC_GSL_CONTROL);
1307 
1308 	value = dm_read_reg(tg->ctx, address);
1309 	set_reg_field_value(value,
1310 			    check_point - FLIP_READY_BACK_LOOKUP,
1311 			    CRTC_GSL_CONTROL,
1312 			    CRTC_GSL_CHECK_LINE_NUM);
1313 
1314 	set_reg_field_value(value,
1315 			    VFLIP_READY_DELAY,
1316 			    CRTC_GSL_CONTROL,
1317 			    CRTC_GSL_FORCE_DELAY);
1318 
1319 	dm_write_reg(tg->ctx, address, value);
1320 }
1321 
dce110_timing_generator_tear_down_global_swap_lock(struct timing_generator * tg)1322 void dce110_timing_generator_tear_down_global_swap_lock(
1323 	struct timing_generator *tg)
1324 {
1325 	/* Clear all the register writes done by
1326 	 * dce110_timing_generator_setup_global_swap_lock
1327 	 */
1328 
1329 	uint32_t value;
1330 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1331 	uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
1332 
1333 	value = 0;
1334 
1335 	/* This pipe will belong to GSL Group zero. */
1336 	/* Settig HW default values from reg specs */
1337 	set_reg_field_value(value,
1338 			0,
1339 			DCP_GSL_CONTROL,
1340 			DCP_GSL0_EN);
1341 
1342 	set_reg_field_value(value,
1343 			0,
1344 			DCP_GSL_CONTROL,
1345 			DCP_GSL_MASTER_EN);
1346 
1347 	set_reg_field_value(value,
1348 			0x2,
1349 			DCP_GSL_CONTROL,
1350 			DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
1351 
1352 	set_reg_field_value(value,
1353 			0x6,
1354 			DCP_GSL_CONTROL,
1355 			DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
1356 
1357 	/* Restore DCP_GSL_PURPOSE_SURFACE_FLIP */
1358 	{
1359 		uint32_t value_crtc_vtotal __unused;
1360 
1361 		value_crtc_vtotal = dm_read_reg(tg->ctx,
1362 				CRTC_REG(mmCRTC_V_TOTAL));
1363 
1364 		set_reg_field_value(value,
1365 				0,
1366 				DCP_GSL_CONTROL,
1367 				DCP_GSL_SYNC_SOURCE);
1368 	}
1369 
1370 	set_reg_field_value(value,
1371 			0,
1372 			DCP_GSL_CONTROL,
1373 			DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
1374 
1375 	dm_write_reg(tg->ctx, address, value);
1376 
1377 	/********************************************************************/
1378 	address = CRTC_REG(mmCRTC_GSL_CONTROL);
1379 
1380 	value = 0;
1381 	set_reg_field_value(value,
1382 			0,
1383 			CRTC_GSL_CONTROL,
1384 			CRTC_GSL_CHECK_LINE_NUM);
1385 
1386 	set_reg_field_value(value,
1387 			0x2,
1388 			CRTC_GSL_CONTROL,
1389 			CRTC_GSL_FORCE_DELAY);
1390 
1391 	dm_write_reg(tg->ctx, address, value);
1392 }
1393 /**
1394  *****************************************************************************
1395  *  Function: is_counter_moving
1396  *
1397  *  @brief
1398  *     check if the timing generator is currently going
1399  *
1400  *  @return
1401  *     true if currently going, false if currently paused or stopped.
1402  *
1403  *****************************************************************************
1404  */
dce110_timing_generator_is_counter_moving(struct timing_generator * tg)1405 bool dce110_timing_generator_is_counter_moving(struct timing_generator *tg)
1406 {
1407 	struct crtc_position position1, position2;
1408 
1409 	tg->funcs->get_position(tg, &position1);
1410 	tg->funcs->get_position(tg, &position2);
1411 
1412 	if (position1.horizontal_count == position2.horizontal_count &&
1413 		position1.vertical_count == position2.vertical_count)
1414 		return false;
1415 	else
1416 		return true;
1417 }
1418 
dce110_timing_generator_enable_advanced_request(struct timing_generator * tg,bool enable,const struct dc_crtc_timing * timing)1419 void dce110_timing_generator_enable_advanced_request(
1420 	struct timing_generator *tg,
1421 	bool enable,
1422 	const struct dc_crtc_timing *timing)
1423 {
1424 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1425 	uint32_t addr = CRTC_REG(mmCRTC_START_LINE_CONTROL);
1426 	uint32_t value = dm_read_reg(tg->ctx, addr);
1427 
1428 	if (enable) {
1429 		set_reg_field_value(
1430 			value,
1431 			0,
1432 			CRTC_START_LINE_CONTROL,
1433 			CRTC_LEGACY_REQUESTOR_EN);
1434 	} else {
1435 		set_reg_field_value(
1436 			value,
1437 			1,
1438 			CRTC_START_LINE_CONTROL,
1439 			CRTC_LEGACY_REQUESTOR_EN);
1440 	}
1441 
1442 	if ((timing->v_sync_width + timing->v_front_porch) <= 3) {
1443 		set_reg_field_value(
1444 			value,
1445 			3,
1446 			CRTC_START_LINE_CONTROL,
1447 			CRTC_ADVANCED_START_LINE_POSITION);
1448 		set_reg_field_value(
1449 			value,
1450 			0,
1451 			CRTC_START_LINE_CONTROL,
1452 			CRTC_PREFETCH_EN);
1453 	} else {
1454 		set_reg_field_value(
1455 			value,
1456 			4,
1457 			CRTC_START_LINE_CONTROL,
1458 			CRTC_ADVANCED_START_LINE_POSITION);
1459 		set_reg_field_value(
1460 			value,
1461 			1,
1462 			CRTC_START_LINE_CONTROL,
1463 			CRTC_PREFETCH_EN);
1464 	}
1465 
1466 	set_reg_field_value(
1467 		value,
1468 		1,
1469 		CRTC_START_LINE_CONTROL,
1470 		CRTC_PROGRESSIVE_START_LINE_EARLY);
1471 
1472 	set_reg_field_value(
1473 		value,
1474 		1,
1475 		CRTC_START_LINE_CONTROL,
1476 		CRTC_INTERLACE_START_LINE_EARLY);
1477 
1478 	dm_write_reg(tg->ctx, addr, value);
1479 }
1480 
1481 /*TODO: Figure out if we need this function. */
dce110_timing_generator_set_lock_master(struct timing_generator * tg,bool lock)1482 void dce110_timing_generator_set_lock_master(struct timing_generator *tg,
1483 		bool lock)
1484 {
1485 	struct dc_context *ctx = tg->ctx;
1486 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1487 	uint32_t addr = CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK);
1488 	uint32_t value = dm_read_reg(ctx, addr);
1489 
1490 	set_reg_field_value(
1491 		value,
1492 		lock ? 1 : 0,
1493 		CRTC_MASTER_UPDATE_LOCK,
1494 		MASTER_UPDATE_LOCK);
1495 
1496 	dm_write_reg(ctx, addr, value);
1497 }
1498 
dce110_timing_generator_enable_reset_trigger(struct timing_generator * tg,int source_tg_inst)1499 void dce110_timing_generator_enable_reset_trigger(
1500 	struct timing_generator *tg,
1501 	int source_tg_inst)
1502 {
1503 	uint32_t value;
1504 	uint32_t rising_edge = 0;
1505 	uint32_t falling_edge = 0;
1506 	enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
1507 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1508 
1509 	/* Setup trigger edge */
1510 	{
1511 		uint32_t pol_value = dm_read_reg(tg->ctx,
1512 				CRTC_REG(mmCRTC_V_SYNC_A_CNTL));
1513 
1514 		/* Register spec has reversed definition:
1515 		 *	0 for positive, 1 for negative */
1516 		if (get_reg_field_value(pol_value,
1517 				CRTC_V_SYNC_A_CNTL,
1518 				CRTC_V_SYNC_A_POL) == 0) {
1519 			rising_edge = 1;
1520 		} else {
1521 			falling_edge = 1;
1522 		}
1523 	}
1524 
1525 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1526 
1527 	trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
1528 
1529 	set_reg_field_value(value,
1530 			trig_src_select,
1531 			CRTC_TRIGB_CNTL,
1532 			CRTC_TRIGB_SOURCE_SELECT);
1533 
1534 	set_reg_field_value(value,
1535 			TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1536 			CRTC_TRIGB_CNTL,
1537 			CRTC_TRIGB_POLARITY_SELECT);
1538 
1539 	set_reg_field_value(value,
1540 			rising_edge,
1541 			CRTC_TRIGB_CNTL,
1542 			CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
1543 
1544 	set_reg_field_value(value,
1545 			falling_edge,
1546 			CRTC_TRIGB_CNTL,
1547 			CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
1548 
1549 	set_reg_field_value(value,
1550 			0, /* send every signal */
1551 			CRTC_TRIGB_CNTL,
1552 			CRTC_TRIGB_FREQUENCY_SELECT);
1553 
1554 	set_reg_field_value(value,
1555 			0, /* no delay */
1556 			CRTC_TRIGB_CNTL,
1557 			CRTC_TRIGB_DELAY);
1558 
1559 	set_reg_field_value(value,
1560 			1, /* clear trigger status */
1561 			CRTC_TRIGB_CNTL,
1562 			CRTC_TRIGB_CLEAR);
1563 
1564 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1565 
1566 	/**************************************************************/
1567 
1568 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1569 
1570 	set_reg_field_value(value,
1571 			2, /* force H count to H_TOTAL and V count to V_TOTAL */
1572 			CRTC_FORCE_COUNT_NOW_CNTL,
1573 			CRTC_FORCE_COUNT_NOW_MODE);
1574 
1575 	set_reg_field_value(value,
1576 			1, /* TriggerB - we never use TriggerA */
1577 			CRTC_FORCE_COUNT_NOW_CNTL,
1578 			CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1579 
1580 	set_reg_field_value(value,
1581 			1, /* clear trigger status */
1582 			CRTC_FORCE_COUNT_NOW_CNTL,
1583 			CRTC_FORCE_COUNT_NOW_CLEAR);
1584 
1585 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1586 }
1587 
dce110_timing_generator_enable_crtc_reset(struct timing_generator * tg,int source_tg_inst,struct crtc_trigger_info * crtc_tp)1588 void dce110_timing_generator_enable_crtc_reset(
1589 		struct timing_generator *tg,
1590 		int source_tg_inst,
1591 		struct crtc_trigger_info *crtc_tp)
1592 {
1593 	uint32_t value = 0;
1594 	uint32_t rising_edge = 0;
1595 	uint32_t falling_edge = 0;
1596 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1597 
1598 	/* Setup trigger edge */
1599 	switch (crtc_tp->event) {
1600 	case CRTC_EVENT_VSYNC_RISING:
1601 			rising_edge = 1;
1602 			break;
1603 
1604 	case CRTC_EVENT_VSYNC_FALLING:
1605 		falling_edge = 1;
1606 		break;
1607 	}
1608 
1609 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1610 
1611 	set_reg_field_value(value,
1612 			    source_tg_inst,
1613 			    CRTC_TRIGB_CNTL,
1614 			    CRTC_TRIGB_SOURCE_SELECT);
1615 
1616 	set_reg_field_value(value,
1617 			    TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1618 			    CRTC_TRIGB_CNTL,
1619 			    CRTC_TRIGB_POLARITY_SELECT);
1620 
1621 	set_reg_field_value(value,
1622 			    rising_edge,
1623 			    CRTC_TRIGB_CNTL,
1624 			    CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
1625 
1626 	set_reg_field_value(value,
1627 			    falling_edge,
1628 			    CRTC_TRIGB_CNTL,
1629 			    CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
1630 
1631 	set_reg_field_value(value,
1632 			    1, /* clear trigger status */
1633 			    CRTC_TRIGB_CNTL,
1634 			    CRTC_TRIGB_CLEAR);
1635 
1636 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1637 
1638 	/**************************************************************/
1639 
1640 	switch (crtc_tp->delay) {
1641 	case TRIGGER_DELAY_NEXT_LINE:
1642 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1643 
1644 		set_reg_field_value(value,
1645 				    0, /* force H count to H_TOTAL and V count to V_TOTAL */
1646 				    CRTC_FORCE_COUNT_NOW_CNTL,
1647 				    CRTC_FORCE_COUNT_NOW_MODE);
1648 
1649 		set_reg_field_value(value,
1650 				    0, /* TriggerB - we never use TriggerA */
1651 				    CRTC_FORCE_COUNT_NOW_CNTL,
1652 				    CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1653 
1654 		set_reg_field_value(value,
1655 				    1, /* clear trigger status */
1656 				    CRTC_FORCE_COUNT_NOW_CNTL,
1657 				    CRTC_FORCE_COUNT_NOW_CLEAR);
1658 
1659 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1660 
1661 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1662 
1663 		set_reg_field_value(value,
1664 				    1,
1665 				    CRTC_VERT_SYNC_CONTROL,
1666 				    CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1667 
1668 		set_reg_field_value(value,
1669 				    2,
1670 				    CRTC_VERT_SYNC_CONTROL,
1671 				    CRTC_AUTO_FORCE_VSYNC_MODE);
1672 
1673 		break;
1674 
1675 	case TRIGGER_DELAY_NEXT_PIXEL:
1676 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1677 
1678 		set_reg_field_value(value,
1679 				    1,
1680 				    CRTC_VERT_SYNC_CONTROL,
1681 				    CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1682 
1683 		set_reg_field_value(value,
1684 				    0,
1685 				    CRTC_VERT_SYNC_CONTROL,
1686 				    CRTC_AUTO_FORCE_VSYNC_MODE);
1687 
1688 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
1689 
1690 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1691 
1692 		set_reg_field_value(value,
1693 				    2, /* force H count to H_TOTAL and V count to V_TOTAL */
1694 				    CRTC_FORCE_COUNT_NOW_CNTL,
1695 				    CRTC_FORCE_COUNT_NOW_MODE);
1696 
1697 		set_reg_field_value(value,
1698 				    1, /* TriggerB - we never use TriggerA */
1699 				    CRTC_FORCE_COUNT_NOW_CNTL,
1700 				    CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1701 
1702 		set_reg_field_value(value,
1703 				    1, /* clear trigger status */
1704 				    CRTC_FORCE_COUNT_NOW_CNTL,
1705 				    CRTC_FORCE_COUNT_NOW_CLEAR);
1706 
1707 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1708 		break;
1709 	}
1710 
1711 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE));
1712 
1713 	set_reg_field_value(value,
1714 			    2,
1715 			    CRTC_MASTER_UPDATE_MODE,
1716 			    MASTER_UPDATE_MODE);
1717 
1718 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
1719 }
dce110_timing_generator_disable_reset_trigger(struct timing_generator * tg)1720 void dce110_timing_generator_disable_reset_trigger(
1721 	struct timing_generator *tg)
1722 {
1723 	uint32_t value;
1724 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1725 
1726 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1727 
1728 	set_reg_field_value(value,
1729 			    0, /* force counter now mode is disabled */
1730 			    CRTC_FORCE_COUNT_NOW_CNTL,
1731 			    CRTC_FORCE_COUNT_NOW_MODE);
1732 
1733 	set_reg_field_value(value,
1734 			    1, /* clear trigger status */
1735 			    CRTC_FORCE_COUNT_NOW_CNTL,
1736 			    CRTC_FORCE_COUNT_NOW_CLEAR);
1737 
1738 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1739 
1740 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1741 
1742 	set_reg_field_value(value,
1743 			    1,
1744 			    CRTC_VERT_SYNC_CONTROL,
1745 			    CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1746 
1747 	set_reg_field_value(value,
1748 			    0,
1749 			    CRTC_VERT_SYNC_CONTROL,
1750 			    CRTC_AUTO_FORCE_VSYNC_MODE);
1751 
1752 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
1753 
1754 	/********************************************************************/
1755 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1756 
1757 	set_reg_field_value(value,
1758 			    TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
1759 			    CRTC_TRIGB_CNTL,
1760 			    CRTC_TRIGB_SOURCE_SELECT);
1761 
1762 	set_reg_field_value(value,
1763 			    TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1764 			    CRTC_TRIGB_CNTL,
1765 			    CRTC_TRIGB_POLARITY_SELECT);
1766 
1767 	set_reg_field_value(value,
1768 			    1, /* clear trigger status */
1769 			    CRTC_TRIGB_CNTL,
1770 			    CRTC_TRIGB_CLEAR);
1771 
1772 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1773 }
1774 
1775 /**
1776  *****************************************************************************
1777  *  @brief
1778  *     Checks whether CRTC triggered reset occurred
1779  *
1780  *  @return
1781  *     true if triggered reset occurred, false otherwise
1782  *****************************************************************************
1783  */
dce110_timing_generator_did_triggered_reset_occur(struct timing_generator * tg)1784 bool dce110_timing_generator_did_triggered_reset_occur(
1785 	struct timing_generator *tg)
1786 {
1787 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1788 	uint32_t value = dm_read_reg(tg->ctx,
1789 			CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1790 	uint32_t value1 = dm_read_reg(tg->ctx,
1791 			CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1792 	bool force = get_reg_field_value(value,
1793 					 CRTC_FORCE_COUNT_NOW_CNTL,
1794 					 CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
1795 	bool vert_sync = get_reg_field_value(value1,
1796 					     CRTC_VERT_SYNC_CONTROL,
1797 					     CRTC_FORCE_VSYNC_NEXT_LINE_OCCURRED) != 0;
1798 
1799 	return (force || vert_sync);
1800 }
1801 
1802 /**
1803  * dce110_timing_generator_disable_vga
1804  * Turn OFF VGA Mode and Timing  - DxVGA_CONTROL
1805  * VGA Mode and VGA Timing is used by VBIOS on CRT Monitors;
1806  */
dce110_timing_generator_disable_vga(struct timing_generator * tg)1807 void dce110_timing_generator_disable_vga(
1808 	struct timing_generator *tg)
1809 {
1810 	uint32_t addr = 0;
1811 	uint32_t value = 0;
1812 
1813 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1814 
1815 	switch (tg110->controller_id) {
1816 	case CONTROLLER_ID_D0:
1817 		addr = mmD1VGA_CONTROL;
1818 		break;
1819 	case CONTROLLER_ID_D1:
1820 		addr = mmD2VGA_CONTROL;
1821 		break;
1822 	case CONTROLLER_ID_D2:
1823 		addr = mmD3VGA_CONTROL;
1824 		break;
1825 	case CONTROLLER_ID_D3:
1826 		addr = mmD4VGA_CONTROL;
1827 		break;
1828 	case CONTROLLER_ID_D4:
1829 		addr = mmD5VGA_CONTROL;
1830 		break;
1831 	case CONTROLLER_ID_D5:
1832 		addr = mmD6VGA_CONTROL;
1833 		break;
1834 	default:
1835 		break;
1836 	}
1837 	value = dm_read_reg(tg->ctx, addr);
1838 
1839 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
1840 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
1841 	set_reg_field_value(
1842 			value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
1843 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
1844 
1845 	dm_write_reg(tg->ctx, addr, value);
1846 }
1847 
1848 /**
1849 * set_overscan_color_black
1850 *
1851 * @param :black_color is one of the color space
1852 *    :this routine will set overscan black color according to the color space.
1853 * @return none
1854 */
1855 
dce110_timing_generator_set_overscan_color_black(struct timing_generator * tg,const struct tg_color * color)1856 void dce110_timing_generator_set_overscan_color_black(
1857 	struct timing_generator *tg,
1858 	const struct tg_color *color)
1859 {
1860 	struct dc_context *ctx = tg->ctx;
1861 	uint32_t addr;
1862 	uint32_t value = 0;
1863 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1864 
1865 	set_reg_field_value(
1866 			value,
1867 			color->color_b_cb,
1868 			CRTC_OVERSCAN_COLOR,
1869 			CRTC_OVERSCAN_COLOR_BLUE);
1870 
1871 	set_reg_field_value(
1872 			value,
1873 			color->color_r_cr,
1874 			CRTC_OVERSCAN_COLOR,
1875 			CRTC_OVERSCAN_COLOR_RED);
1876 
1877 	set_reg_field_value(
1878 			value,
1879 			color->color_g_y,
1880 			CRTC_OVERSCAN_COLOR,
1881 			CRTC_OVERSCAN_COLOR_GREEN);
1882 
1883 	addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
1884 	dm_write_reg(ctx, addr, value);
1885 	addr = CRTC_REG(mmCRTC_BLACK_COLOR);
1886 	dm_write_reg(ctx, addr, value);
1887 	/* This is desirable to have a constant DAC output voltage during the
1888 	 * blank time that is higher than the 0 volt reference level that the
1889 	 * DAC outputs when the NBLANK signal
1890 	 * is asserted low, such as for output to an analog TV. */
1891 	addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
1892 	dm_write_reg(ctx, addr, value);
1893 
1894 	/* TO DO we have to program EXT registers and we need to know LB DATA
1895 	 * format because it is used when more 10 , i.e. 12 bits per color
1896 	 *
1897 	 * m_mmDxCRTC_OVERSCAN_COLOR_EXT
1898 	 * m_mmDxCRTC_BLACK_COLOR_EXT
1899 	 * m_mmDxCRTC_BLANK_DATA_COLOR_EXT
1900 	 */
1901 
1902 }
1903 
dce110_tg_program_blank_color(struct timing_generator * tg,const struct tg_color * black_color)1904 void dce110_tg_program_blank_color(struct timing_generator *tg,
1905 		const struct tg_color *black_color)
1906 {
1907 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1908 	uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
1909 	uint32_t value = dm_read_reg(tg->ctx, addr);
1910 
1911 	set_reg_field_value(
1912 		value,
1913 		black_color->color_b_cb,
1914 		CRTC_BLACK_COLOR,
1915 		CRTC_BLACK_COLOR_B_CB);
1916 	set_reg_field_value(
1917 		value,
1918 		black_color->color_g_y,
1919 		CRTC_BLACK_COLOR,
1920 		CRTC_BLACK_COLOR_G_Y);
1921 	set_reg_field_value(
1922 		value,
1923 		black_color->color_r_cr,
1924 		CRTC_BLACK_COLOR,
1925 		CRTC_BLACK_COLOR_R_CR);
1926 
1927 	dm_write_reg(tg->ctx, addr, value);
1928 
1929 	addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
1930 	dm_write_reg(tg->ctx, addr, value);
1931 }
1932 
dce110_tg_set_overscan_color(struct timing_generator * tg,const struct tg_color * overscan_color)1933 void dce110_tg_set_overscan_color(struct timing_generator *tg,
1934 	const struct tg_color *overscan_color)
1935 {
1936 	struct dc_context *ctx = tg->ctx;
1937 	uint32_t value = 0;
1938 	uint32_t addr;
1939 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1940 
1941 	set_reg_field_value(
1942 		value,
1943 		overscan_color->color_b_cb,
1944 		CRTC_OVERSCAN_COLOR,
1945 		CRTC_OVERSCAN_COLOR_BLUE);
1946 
1947 	set_reg_field_value(
1948 		value,
1949 		overscan_color->color_g_y,
1950 		CRTC_OVERSCAN_COLOR,
1951 		CRTC_OVERSCAN_COLOR_GREEN);
1952 
1953 	set_reg_field_value(
1954 		value,
1955 		overscan_color->color_r_cr,
1956 		CRTC_OVERSCAN_COLOR,
1957 		CRTC_OVERSCAN_COLOR_RED);
1958 
1959 	addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
1960 	dm_write_reg(ctx, addr, value);
1961 }
1962 
dce110_tg_program_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width,const enum signal_type signal,bool use_vbios)1963 void dce110_tg_program_timing(struct timing_generator *tg,
1964 	const struct dc_crtc_timing *timing,
1965 	int vready_offset,
1966 	int vstartup_start,
1967 	int vupdate_offset,
1968 	int vupdate_width,
1969 	const enum signal_type signal,
1970 	bool use_vbios)
1971 {
1972 	if (use_vbios)
1973 		dce110_timing_generator_program_timing_generator(tg, timing);
1974 	else
1975 		dce110_timing_generator_program_blanking(tg, timing);
1976 }
1977 
dce110_tg_is_blanked(struct timing_generator * tg)1978 bool dce110_tg_is_blanked(struct timing_generator *tg)
1979 {
1980 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1981 	uint32_t value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL));
1982 
1983 	if (get_reg_field_value(
1984 			value,
1985 			CRTC_BLANK_CONTROL,
1986 			CRTC_BLANK_DATA_EN) == 1 &&
1987 		get_reg_field_value(
1988 			value,
1989 			CRTC_BLANK_CONTROL,
1990 			CRTC_CURRENT_BLANK_STATE) == 1)
1991 		return true;
1992 	return false;
1993 }
1994 
dce110_tg_set_blank(struct timing_generator * tg,bool enable_blanking)1995 void dce110_tg_set_blank(struct timing_generator *tg,
1996 		bool enable_blanking)
1997 {
1998 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1999 	uint32_t value = 0;
2000 
2001 	set_reg_field_value(
2002 		value,
2003 		1,
2004 		CRTC_DOUBLE_BUFFER_CONTROL,
2005 		CRTC_BLANK_DATA_DOUBLE_BUFFER_EN);
2006 
2007 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_DOUBLE_BUFFER_CONTROL), value);
2008 	value = 0;
2009 
2010 	if (enable_blanking) {
2011 		set_reg_field_value(
2012 			value,
2013 			1,
2014 			CRTC_BLANK_CONTROL,
2015 			CRTC_BLANK_DATA_EN);
2016 
2017 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), value);
2018 
2019 	} else
2020 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), 0);
2021 }
2022 
dce110_tg_validate_timing(struct timing_generator * tg,const struct dc_crtc_timing * timing)2023 bool dce110_tg_validate_timing(struct timing_generator *tg,
2024 	const struct dc_crtc_timing *timing)
2025 {
2026 	return dce110_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
2027 }
2028 
dce110_tg_wait_for_state(struct timing_generator * tg,enum crtc_state state)2029 void dce110_tg_wait_for_state(struct timing_generator *tg,
2030 	enum crtc_state state)
2031 {
2032 	switch (state) {
2033 	case CRTC_STATE_VBLANK:
2034 		dce110_timing_generator_wait_for_vblank(tg);
2035 		break;
2036 
2037 	case CRTC_STATE_VACTIVE:
2038 		dce110_timing_generator_wait_for_vactive(tg);
2039 		break;
2040 
2041 	default:
2042 		break;
2043 	}
2044 }
2045 
dce110_tg_set_colors(struct timing_generator * tg,const struct tg_color * blank_color,const struct tg_color * overscan_color)2046 void dce110_tg_set_colors(struct timing_generator *tg,
2047 	const struct tg_color *blank_color,
2048 	const struct tg_color *overscan_color)
2049 {
2050 	if (blank_color != NULL)
2051 		dce110_tg_program_blank_color(tg, blank_color);
2052 	if (overscan_color != NULL)
2053 		dce110_tg_set_overscan_color(tg, overscan_color);
2054 }
2055 
2056 /* Gets first line of blank region of the display timing for CRTC
2057  * and programms is as a trigger to fire vertical interrupt
2058  */
dce110_arm_vert_intr(struct timing_generator * tg,uint8_t width)2059 bool dce110_arm_vert_intr(struct timing_generator *tg, uint8_t width)
2060 {
2061 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2062 	uint32_t v_blank_start = 0;
2063 	uint32_t v_blank_end = 0;
2064 	uint32_t val = 0;
2065 	uint32_t h_position, v_position;
2066 
2067 	tg->funcs->get_scanoutpos(
2068 			tg,
2069 			&v_blank_start,
2070 			&v_blank_end,
2071 			&h_position,
2072 			&v_position);
2073 
2074 	if (v_blank_start == 0 || v_blank_end == 0)
2075 		return false;
2076 
2077 	set_reg_field_value(
2078 		val,
2079 		v_blank_start,
2080 		CRTC_VERTICAL_INTERRUPT0_POSITION,
2081 		CRTC_VERTICAL_INTERRUPT0_LINE_START);
2082 
2083 	/* Set interval width for interrupt to fire to 1 scanline */
2084 	set_reg_field_value(
2085 		val,
2086 		v_blank_start + width,
2087 		CRTC_VERTICAL_INTERRUPT0_POSITION,
2088 		CRTC_VERTICAL_INTERRUPT0_LINE_END);
2089 
2090 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERTICAL_INTERRUPT0_POSITION), val);
2091 
2092 	return true;
2093 }
2094 
dce110_is_tg_enabled(struct timing_generator * tg)2095 static bool dce110_is_tg_enabled(struct timing_generator *tg)
2096 {
2097 	uint32_t addr = 0;
2098 	uint32_t value = 0;
2099 	uint32_t field = 0;
2100 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2101 
2102 	addr = CRTC_REG(mmCRTC_CONTROL);
2103 	value = dm_read_reg(tg->ctx, addr);
2104 	field = get_reg_field_value(value, CRTC_CONTROL,
2105 				    CRTC_CURRENT_MASTER_EN_STATE);
2106 	return field == 1;
2107 }
2108 
dce110_configure_crc(struct timing_generator * tg,const struct crc_params * params)2109 bool dce110_configure_crc(struct timing_generator *tg,
2110 			  const struct crc_params *params)
2111 {
2112 	uint32_t cntl_addr = 0;
2113 	uint32_t addr = 0;
2114 	uint32_t value;
2115 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2116 
2117 	/* Cannot configure crc on a CRTC that is disabled */
2118 	if (!dce110_is_tg_enabled(tg))
2119 		return false;
2120 
2121 	cntl_addr = CRTC_REG(mmCRTC_CRC_CNTL);
2122 
2123 	/* First, disable CRC before we configure it. */
2124 	dm_write_reg(tg->ctx, cntl_addr, 0);
2125 
2126 	if (!params->enable)
2127 		return true;
2128 
2129 	/* Program frame boundaries */
2130 	/* Window A x axis start and end. */
2131 	value = 0;
2132 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_X_CONTROL);
2133 	set_reg_field_value(value, params->windowa_x_start,
2134 			    CRTC_CRC0_WINDOWA_X_CONTROL,
2135 			    CRTC_CRC0_WINDOWA_X_START);
2136 	set_reg_field_value(value, params->windowa_x_end,
2137 			    CRTC_CRC0_WINDOWA_X_CONTROL,
2138 			    CRTC_CRC0_WINDOWA_X_END);
2139 	dm_write_reg(tg->ctx, addr, value);
2140 
2141 	/* Window A y axis start and end. */
2142 	value = 0;
2143 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_Y_CONTROL);
2144 	set_reg_field_value(value, params->windowa_y_start,
2145 			    CRTC_CRC0_WINDOWA_Y_CONTROL,
2146 			    CRTC_CRC0_WINDOWA_Y_START);
2147 	set_reg_field_value(value, params->windowa_y_end,
2148 			    CRTC_CRC0_WINDOWA_Y_CONTROL,
2149 			    CRTC_CRC0_WINDOWA_Y_END);
2150 	dm_write_reg(tg->ctx, addr, value);
2151 
2152 	/* Window B x axis start and end. */
2153 	value = 0;
2154 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_X_CONTROL);
2155 	set_reg_field_value(value, params->windowb_x_start,
2156 			    CRTC_CRC0_WINDOWB_X_CONTROL,
2157 			    CRTC_CRC0_WINDOWB_X_START);
2158 	set_reg_field_value(value, params->windowb_x_end,
2159 			    CRTC_CRC0_WINDOWB_X_CONTROL,
2160 			    CRTC_CRC0_WINDOWB_X_END);
2161 	dm_write_reg(tg->ctx, addr, value);
2162 
2163 	/* Window B y axis start and end. */
2164 	value = 0;
2165 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_Y_CONTROL);
2166 	set_reg_field_value(value, params->windowb_y_start,
2167 			    CRTC_CRC0_WINDOWB_Y_CONTROL,
2168 			    CRTC_CRC0_WINDOWB_Y_START);
2169 	set_reg_field_value(value, params->windowb_y_end,
2170 			    CRTC_CRC0_WINDOWB_Y_CONTROL,
2171 			    CRTC_CRC0_WINDOWB_Y_END);
2172 	dm_write_reg(tg->ctx, addr, value);
2173 
2174 	/* Set crc mode and selection, and enable. Only using CRC0*/
2175 	value = 0;
2176 	set_reg_field_value(value, params->continuous_mode ? 1 : 0,
2177 			    CRTC_CRC_CNTL, CRTC_CRC_CONT_EN);
2178 	set_reg_field_value(value, params->selection,
2179 			    CRTC_CRC_CNTL, CRTC_CRC0_SELECT);
2180 	set_reg_field_value(value, 1, CRTC_CRC_CNTL, CRTC_CRC_EN);
2181 	dm_write_reg(tg->ctx, cntl_addr, value);
2182 
2183 	return true;
2184 }
2185 
dce110_get_crc(struct timing_generator * tg,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)2186 bool dce110_get_crc(struct timing_generator *tg,
2187 		    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
2188 {
2189 	uint32_t addr = 0;
2190 	uint32_t value = 0;
2191 	uint32_t field = 0;
2192 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2193 
2194 	addr = CRTC_REG(mmCRTC_CRC_CNTL);
2195 	value = dm_read_reg(tg->ctx, addr);
2196 	field = get_reg_field_value(value, CRTC_CRC_CNTL, CRTC_CRC_EN);
2197 
2198 	/* Early return if CRC is not enabled for this CRTC */
2199 	if (!field)
2200 		return false;
2201 
2202 	addr = CRTC_REG(mmCRTC_CRC0_DATA_RG);
2203 	value = dm_read_reg(tg->ctx, addr);
2204 	*r_cr = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_R_CR);
2205 	*g_y = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_G_Y);
2206 
2207 	addr = CRTC_REG(mmCRTC_CRC0_DATA_B);
2208 	value = dm_read_reg(tg->ctx, addr);
2209 	*b_cb = get_reg_field_value(value, CRTC_CRC0_DATA_B, CRC0_B_CB);
2210 
2211 	return true;
2212 }
2213 
2214 static const struct timing_generator_funcs dce110_tg_funcs = {
2215 		.validate_timing = dce110_tg_validate_timing,
2216 		.program_timing = dce110_tg_program_timing,
2217 		.enable_crtc = dce110_timing_generator_enable_crtc,
2218 		.disable_crtc = dce110_timing_generator_disable_crtc,
2219 		.is_counter_moving = dce110_timing_generator_is_counter_moving,
2220 		.get_position = dce110_timing_generator_get_position,
2221 		.get_frame_count = dce110_timing_generator_get_vblank_counter,
2222 		.get_scanoutpos = dce110_timing_generator_get_crtc_scanoutpos,
2223 		.set_early_control = dce110_timing_generator_set_early_control,
2224 		.wait_for_state = dce110_tg_wait_for_state,
2225 		.set_blank = dce110_tg_set_blank,
2226 		.is_blanked = dce110_tg_is_blanked,
2227 		.set_colors = dce110_tg_set_colors,
2228 		.set_overscan_blank_color =
2229 				dce110_timing_generator_set_overscan_color_black,
2230 		.set_blank_color = dce110_timing_generator_program_blank_color,
2231 		.disable_vga = dce110_timing_generator_disable_vga,
2232 		.did_triggered_reset_occur =
2233 				dce110_timing_generator_did_triggered_reset_occur,
2234 		.setup_global_swap_lock =
2235 				dce110_timing_generator_setup_global_swap_lock,
2236 		.enable_reset_trigger = dce110_timing_generator_enable_reset_trigger,
2237 		.enable_crtc_reset = dce110_timing_generator_enable_crtc_reset,
2238 		.disable_reset_trigger = dce110_timing_generator_disable_reset_trigger,
2239 		.tear_down_global_swap_lock =
2240 				dce110_timing_generator_tear_down_global_swap_lock,
2241 		.enable_advanced_request =
2242 				dce110_timing_generator_enable_advanced_request,
2243 		.set_drr =
2244 				dce110_timing_generator_set_drr,
2245 		.set_static_screen_control =
2246 			dce110_timing_generator_set_static_screen_control,
2247 		.set_test_pattern = dce110_timing_generator_set_test_pattern,
2248 		.arm_vert_intr = dce110_arm_vert_intr,
2249 		.is_tg_enabled = dce110_is_tg_enabled,
2250 		.configure_crc = dce110_configure_crc,
2251 		.get_crc = dce110_get_crc,
2252 };
2253 
dce110_timing_generator_construct(struct dce110_timing_generator * tg110,struct dc_context * ctx,uint32_t instance,const struct dce110_timing_generator_offsets * offsets)2254 void dce110_timing_generator_construct(
2255 	struct dce110_timing_generator *tg110,
2256 	struct dc_context *ctx,
2257 	uint32_t instance,
2258 	const struct dce110_timing_generator_offsets *offsets)
2259 {
2260 	tg110->controller_id = CONTROLLER_ID_D0 + instance;
2261 	tg110->base.inst = instance;
2262 
2263 	tg110->offsets = *offsets;
2264 
2265 	tg110->base.funcs = &dce110_tg_funcs;
2266 
2267 	tg110->base.ctx = ctx;
2268 	tg110->base.bp = ctx->dc_bios;
2269 
2270 	tg110->max_h_total = CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
2271 	tg110->max_v_total = CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
2272 
2273 	tg110->min_h_blank = 56;
2274 	tg110->min_h_front_porch = 4;
2275 	tg110->min_h_back_porch = 4;
2276 }
2277