xref: /netbsd-src/sys/opencrypto/crypto.c (revision ff733a254dd923ac1ad9d4276ee76760197866c8)
1 /*	$NetBSD: crypto.c,v 1.131 2022/06/26 22:52:30 riastradh Exp $ */
2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
4 
5 /*-
6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Coyote Point Systems, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
36  *
37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
39  * supported the development of this code.
40  *
41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
42  *
43  * Permission to use, copy, and modify this software with or without fee
44  * is hereby granted, provided that this entire notice is included in
45  * all source code copies of any software which is or includes a copy or
46  * modification of this software.
47  *
48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52  * PURPOSE.
53  */
54 
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.131 2022/06/26 22:52:30 riastradh Exp $");
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/proc.h>
62 #include <sys/pool.h>
63 #include <sys/kthread.h>
64 #include <sys/once.h>
65 #include <sys/sysctl.h>
66 #include <sys/intr.h>
67 #include <sys/errno.h>
68 #include <sys/module.h>
69 #include <sys/xcall.h>
70 #include <sys/device.h>
71 #include <sys/cpu.h>
72 #include <sys/percpu.h>
73 #include <sys/kmem.h>
74 
75 #if defined(_KERNEL_OPT)
76 #include "opt_ocf.h"
77 #endif
78 
79 #include <opencrypto/cryptodev.h>
80 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
81 
82 /*
83  * Crypto drivers register themselves by allocating a slot in the
84  * crypto_drivers table with crypto_get_driverid() and then registering
85  * each algorithm they support with crypto_register() and crypto_kregister().
86  */
87 /* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
88 static struct {
89 	kmutex_t mtx;
90 	int num;
91 	struct cryptocap *list;
92 } crypto_drv __cacheline_aligned;
93 #define crypto_drv_mtx		(crypto_drv.mtx)
94 #define crypto_drivers_num	(crypto_drv.num)
95 #define crypto_drivers		(crypto_drv.list)
96 
97 static	void *crypto_q_si;
98 static	void *crypto_ret_si;
99 
100 /*
101  * There are two queues for crypto requests; one for symmetric (e.g.
102  * cipher) operations and one for asymmetric (e.g. MOD) operations.
103  * See below for how synchronization is handled.
104  */
105 TAILQ_HEAD(crypto_crp_q, cryptop);
106 TAILQ_HEAD(crypto_crp_kq, cryptkop);
107 struct crypto_crp_qs {
108 	struct crypto_crp_q *crp_q;
109 	struct crypto_crp_kq *crp_kq;
110 };
111 static percpu_t *crypto_crp_qs_percpu;
112 
113 static inline struct crypto_crp_qs *
crypto_get_crp_qs(int * s)114 crypto_get_crp_qs(int *s)
115 {
116 
117 	KASSERT(s != NULL);
118 
119 	*s = splsoftnet();
120 	return percpu_getref(crypto_crp_qs_percpu);
121 }
122 
123 static inline void
crypto_put_crp_qs(int * s)124 crypto_put_crp_qs(int *s)
125 {
126 
127 	KASSERT(s != NULL);
128 
129 	percpu_putref(crypto_crp_qs_percpu);
130 	splx(*s);
131 }
132 
133 static void
crypto_crp_q_is_busy_pc(void * p,void * arg,struct cpu_info * ci __unused)134 crypto_crp_q_is_busy_pc(void *p, void *arg, struct cpu_info *ci __unused)
135 {
136 	struct crypto_crp_qs *qs_pc = p;
137 	bool *isempty = arg;
138 
139 	if (!TAILQ_EMPTY(qs_pc->crp_q) || !TAILQ_EMPTY(qs_pc->crp_kq))
140 		*isempty = true;
141 }
142 
143 static void
crypto_crp_qs_init_pc(void * p,void * arg __unused,struct cpu_info * ci __unused)144 crypto_crp_qs_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
145 {
146 	struct crypto_crp_qs *qs = p;
147 
148 	qs->crp_q = kmem_alloc(sizeof(struct crypto_crp_q), KM_SLEEP);
149 	qs->crp_kq = kmem_alloc(sizeof(struct crypto_crp_kq), KM_SLEEP);
150 
151 	TAILQ_INIT(qs->crp_q);
152 	TAILQ_INIT(qs->crp_kq);
153 }
154 
155 /*
156  * There are two queues for processing completed crypto requests; one
157  * for the symmetric and one for the asymmetric ops.  We only need one
158  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
159  * for how synchronization is handled.
160  */
161 TAILQ_HEAD(crypto_crp_ret_q, cryptop);
162 TAILQ_HEAD(crypto_crp_ret_kq, cryptkop);
163 struct crypto_crp_ret_qs {
164 	kmutex_t crp_ret_q_mtx;
165 	bool crp_ret_q_exit_flag;
166 
167 	struct crypto_crp_ret_q crp_ret_q;
168 	int crp_ret_q_len;
169 	int crp_ret_q_maxlen; /* queue length limit. <=0 means unlimited. */
170 	int crp_ret_q_drops;
171 
172 	struct crypto_crp_ret_kq crp_ret_kq;
173 	int crp_ret_kq_len;
174 	int crp_ret_kq_maxlen; /* queue length limit. <=0 means unlimited. */
175 	int crp_ret_kq_drops;
176 };
177 struct crypto_crp_ret_qs **crypto_crp_ret_qs_list;
178 
179 
180 static inline struct crypto_crp_ret_qs *
crypto_get_crp_ret_qs(struct cpu_info * ci)181 crypto_get_crp_ret_qs(struct cpu_info *ci)
182 {
183 	u_int cpuid;
184 	struct crypto_crp_ret_qs *qs;
185 
186 	KASSERT(ci != NULL);
187 
188 	cpuid = cpu_index(ci);
189 	qs = crypto_crp_ret_qs_list[cpuid];
190 	mutex_enter(&qs->crp_ret_q_mtx);
191 	return qs;
192 }
193 
194 static inline void
crypto_put_crp_ret_qs(struct cpu_info * ci)195 crypto_put_crp_ret_qs(struct cpu_info *ci)
196 {
197 	u_int cpuid;
198 	struct crypto_crp_ret_qs *qs;
199 
200 	KASSERT(ci != NULL);
201 
202 	cpuid = cpu_index(ci);
203 	qs = crypto_crp_ret_qs_list[cpuid];
204 	mutex_exit(&qs->crp_ret_q_mtx);
205 }
206 
207 #ifndef CRYPTO_RET_Q_MAXLEN
208 #define CRYPTO_RET_Q_MAXLEN 0
209 #endif
210 #ifndef CRYPTO_RET_KQ_MAXLEN
211 #define CRYPTO_RET_KQ_MAXLEN 0
212 #endif
213 
214 static int
sysctl_opencrypto_q_len(SYSCTLFN_ARGS)215 sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
216 {
217 	int error, len = 0;
218 	struct sysctlnode node = *rnode;
219 
220 	for (int i = 0; i < ncpu; i++) {
221 		struct crypto_crp_ret_qs *qs;
222 		struct cpu_info *ci = cpu_lookup(i);
223 
224 		qs = crypto_get_crp_ret_qs(ci);
225 		len += qs->crp_ret_q_len;
226 		crypto_put_crp_ret_qs(ci);
227 	}
228 
229 	node.sysctl_data = &len;
230 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
231 	if (error || newp == NULL)
232 		return error;
233 
234 	return 0;
235 }
236 
237 static int
sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)238 sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
239 {
240 	int error, drops = 0;
241 	struct sysctlnode node = *rnode;
242 
243 	for (int i = 0; i < ncpu; i++) {
244 		struct crypto_crp_ret_qs *qs;
245 		struct cpu_info *ci = cpu_lookup(i);
246 
247 		qs = crypto_get_crp_ret_qs(ci);
248 		drops += qs->crp_ret_q_drops;
249 		crypto_put_crp_ret_qs(ci);
250 	}
251 
252 	node.sysctl_data = &drops;
253 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
254 	if (error || newp == NULL)
255 		return error;
256 
257 	return 0;
258 }
259 
260 static int
sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)261 sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
262 {
263 	int error, maxlen;
264 	struct crypto_crp_ret_qs *qs;
265 	struct sysctlnode node = *rnode;
266 
267 	/* each crp_ret_kq_maxlen is the same. */
268 	qs = crypto_get_crp_ret_qs(curcpu());
269 	maxlen = qs->crp_ret_q_maxlen;
270 	crypto_put_crp_ret_qs(curcpu());
271 
272 	node.sysctl_data = &maxlen;
273 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
274 	if (error || newp == NULL)
275 		return error;
276 
277 	for (int i = 0; i < ncpu; i++) {
278 		struct cpu_info *ci = cpu_lookup(i);
279 
280 		qs = crypto_get_crp_ret_qs(ci);
281 		qs->crp_ret_q_maxlen = maxlen;
282 		crypto_put_crp_ret_qs(ci);
283 	}
284 
285 	return 0;
286 }
287 
288 static int
sysctl_opencrypto_kq_len(SYSCTLFN_ARGS)289 sysctl_opencrypto_kq_len(SYSCTLFN_ARGS)
290 {
291 	int error, len = 0;
292 	struct sysctlnode node = *rnode;
293 
294 	for (int i = 0; i < ncpu; i++) {
295 		struct crypto_crp_ret_qs *qs;
296 		struct cpu_info *ci = cpu_lookup(i);
297 
298 		qs = crypto_get_crp_ret_qs(ci);
299 		len += qs->crp_ret_kq_len;
300 		crypto_put_crp_ret_qs(ci);
301 	}
302 
303 	node.sysctl_data = &len;
304 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
305 	if (error || newp == NULL)
306 		return error;
307 
308 	return 0;
309 }
310 
311 static int
sysctl_opencrypto_kq_drops(SYSCTLFN_ARGS)312 sysctl_opencrypto_kq_drops(SYSCTLFN_ARGS)
313 {
314 	int error, drops = 0;
315 	struct sysctlnode node = *rnode;
316 
317 	for (int i = 0; i < ncpu; i++) {
318 		struct crypto_crp_ret_qs *qs;
319 		struct cpu_info *ci = cpu_lookup(i);
320 
321 		qs = crypto_get_crp_ret_qs(ci);
322 		drops += qs->crp_ret_kq_drops;
323 		crypto_put_crp_ret_qs(ci);
324 	}
325 
326 	node.sysctl_data = &drops;
327 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
328 	if (error || newp == NULL)
329 		return error;
330 
331 	return 0;
332 }
333 
334 static int
sysctl_opencrypto_kq_maxlen(SYSCTLFN_ARGS)335 sysctl_opencrypto_kq_maxlen(SYSCTLFN_ARGS)
336 {
337 	int error, maxlen;
338 	struct crypto_crp_ret_qs *qs;
339 	struct sysctlnode node = *rnode;
340 
341 	/* each crp_ret_kq_maxlen is the same. */
342 	qs = crypto_get_crp_ret_qs(curcpu());
343 	maxlen = qs->crp_ret_kq_maxlen;
344 	crypto_put_crp_ret_qs(curcpu());
345 
346 	node.sysctl_data = &maxlen;
347 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
348 	if (error || newp == NULL)
349 		return error;
350 
351 	for (int i = 0; i < ncpu; i++) {
352 		struct cpu_info *ci = cpu_lookup(i);
353 
354 		qs = crypto_get_crp_ret_qs(ci);
355 		qs->crp_ret_kq_maxlen = maxlen;
356 		crypto_put_crp_ret_qs(ci);
357 	}
358 
359 	return 0;
360 }
361 
362 /*
363  * Crypto op and descriptor data structures are allocated
364  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
365  */
366 static pool_cache_t cryptop_cache;
367 static pool_cache_t cryptodesc_cache;
368 static pool_cache_t cryptkop_cache;
369 
370 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
371 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
372 /*
373  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
374  * access to hardware versus software transforms as below:
375  *
376  * crypto_devallowsoft < 0:  Force userlevel requests to use software
377  *                              transforms, always
378  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
379  *                              requests for non-accelerated transforms
380  *                              (handling the latter in software)
381  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
382  *                               are hardware-accelerated.
383  */
384 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
385 
386 static void
sysctl_opencrypto_setup(struct sysctllog ** clog)387 sysctl_opencrypto_setup(struct sysctllog **clog)
388 {
389 	const struct sysctlnode *ocnode;
390 	const struct sysctlnode *retqnode, *retkqnode;
391 
392 	sysctl_createv(clog, 0, NULL, NULL,
393 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
394 		       CTLTYPE_INT, "usercrypto",
395 		       SYSCTL_DESCR("Enable/disable user-mode access to "
396 			   "crypto support"),
397 		       NULL, 0, &crypto_usercrypto, 0,
398 		       CTL_KERN, CTL_CREATE, CTL_EOL);
399 	sysctl_createv(clog, 0, NULL, NULL,
400 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
401 		       CTLTYPE_INT, "userasymcrypto",
402 		       SYSCTL_DESCR("Enable/disable user-mode access to "
403 			   "asymmetric crypto support"),
404 		       NULL, 0, &crypto_userasymcrypto, 0,
405 		       CTL_KERN, CTL_CREATE, CTL_EOL);
406 	sysctl_createv(clog, 0, NULL, NULL,
407 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
408 		       CTLTYPE_INT, "cryptodevallowsoft",
409 		       SYSCTL_DESCR("Enable/disable use of software "
410 			   "asymmetric crypto support"),
411 		       NULL, 0, &crypto_devallowsoft, 0,
412 		       CTL_KERN, CTL_CREATE, CTL_EOL);
413 
414 	sysctl_createv(clog, 0, NULL, &ocnode,
415 		       CTLFLAG_PERMANENT,
416 		       CTLTYPE_NODE, "opencrypto",
417 		       SYSCTL_DESCR("opencrypto related entries"),
418 		       NULL, 0, NULL, 0,
419 		       CTL_CREATE, CTL_EOL);
420 
421 	sysctl_createv(clog, 0, &ocnode, &retqnode,
422 		       CTLFLAG_PERMANENT,
423 		       CTLTYPE_NODE, "crypto_ret_q",
424 		       SYSCTL_DESCR("crypto_ret_q related entries"),
425 		       NULL, 0, NULL, 0,
426 		       CTL_CREATE, CTL_EOL);
427 	sysctl_createv(clog, 0, &retqnode, NULL,
428 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
429 		       CTLTYPE_INT, "len",
430 		       SYSCTL_DESCR("Current queue length"),
431 		       sysctl_opencrypto_q_len, 0,
432 		       NULL, 0,
433 		       CTL_CREATE, CTL_EOL);
434 	sysctl_createv(clog, 0, &retqnode, NULL,
435 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
436 		       CTLTYPE_INT, "drops",
437 		       SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
438 		       sysctl_opencrypto_q_drops, 0,
439 		       NULL, 0,
440 		       CTL_CREATE, CTL_EOL);
441 	sysctl_createv(clog, 0, &retqnode, NULL,
442 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
443 		       CTLTYPE_INT, "maxlen",
444 		       SYSCTL_DESCR("Maximum allowed queue length"),
445 		       sysctl_opencrypto_q_maxlen, 0,
446 		       NULL, 0,
447 		       CTL_CREATE, CTL_EOL);
448 
449 
450 	sysctl_createv(clog, 0, &ocnode, &retkqnode,
451 		       CTLFLAG_PERMANENT,
452 		       CTLTYPE_NODE, "crypto_ret_kq",
453 		       SYSCTL_DESCR("crypto_ret_kq related entries"),
454 		       NULL, 0, NULL, 0,
455 		       CTL_CREATE, CTL_EOL);
456 	sysctl_createv(clog, 0, &retkqnode, NULL,
457 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
458 		       CTLTYPE_INT, "len",
459 		       SYSCTL_DESCR("Current queue length"),
460 		       sysctl_opencrypto_kq_len, 0,
461 		       NULL, 0,
462 		       CTL_CREATE, CTL_EOL);
463 	sysctl_createv(clog, 0, &retkqnode, NULL,
464 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
465 		       CTLTYPE_INT, "drops",
466 		       SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
467 		       sysctl_opencrypto_kq_drops, 0,
468 		       NULL, 0,
469 		       CTL_CREATE, CTL_EOL);
470 	sysctl_createv(clog, 0, &retkqnode, NULL,
471 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
472 		       CTLTYPE_INT, "maxlen",
473 		       SYSCTL_DESCR("Maximum allowed queue length"),
474 		       sysctl_opencrypto_kq_maxlen, 0,
475 		       NULL, 0,
476 		       CTL_CREATE, CTL_EOL);
477 }
478 
479 /*
480  * Synchronization: read carefully, this is non-trivial.
481  *
482  * Crypto requests are submitted via crypto_dispatch.  Typically
483  * these come in from network protocols at spl0 (output path) or
484  * spl[,soft]net (input path).
485  *
486  * Requests are typically passed on the driver directly, but they
487  * may also be queued for processing by a software interrupt thread,
488  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
489  * the requests to crypto drivers (h/w or s/w) who call crypto_done
490  * when a request is complete.  Hardware crypto drivers are assumed
491  * to register their IRQ's as network devices so their interrupt handlers
492  * and subsequent "done callbacks" happen at spl[imp,net].
493  *
494  * Completed crypto ops are queued for a separate kernel thread that
495  * handles the callbacks at spl0.  This decoupling insures the crypto
496  * driver interrupt service routine is not delayed while the callback
497  * takes place and that callbacks are delivered after a context switch
498  * (as opposed to a software interrupt that clients must block).
499  *
500  * This scheme is not intended for SMP machines.
501  */
502 static	void cryptointr(void *);	/* swi thread to dispatch ops */
503 static	void cryptoret_softint(void *);	/* kernel thread for callbacks*/
504 static	int crypto_destroy(bool);
505 static	int crypto_invoke(struct cryptop *crp, int hint);
506 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
507 
508 static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
509 static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
510 static struct cryptocap *crypto_checkdriver(u_int32_t);
511 static void crypto_driver_lock(struct cryptocap *);
512 static void crypto_driver_unlock(struct cryptocap *);
513 static void crypto_driver_clear(struct cryptocap *);
514 
515 static int crypto_init_finalize(device_t);
516 
517 static struct cryptostats cryptostats;
518 #ifdef CRYPTO_TIMING
519 static	int crypto_timing = 0;
520 #endif
521 
522 static struct sysctllog *sysctl_opencrypto_clog;
523 
524 static void
crypto_crp_ret_qs_init(void)525 crypto_crp_ret_qs_init(void)
526 {
527 	int i;
528 
529 	crypto_crp_ret_qs_list = kmem_alloc(sizeof(struct crypto_crp_ret_qs *) * ncpu,
530 	    KM_SLEEP);
531 
532 	for (i = 0; i < ncpu; i++) {
533 		struct crypto_crp_ret_qs *qs;
534 
535 		qs = kmem_alloc(sizeof(struct crypto_crp_ret_qs), KM_SLEEP);
536 		mutex_init(&qs->crp_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
537 		qs->crp_ret_q_exit_flag = false;
538 
539 		TAILQ_INIT(&qs->crp_ret_q);
540 		qs->crp_ret_q_len = 0;
541 		qs->crp_ret_q_maxlen = CRYPTO_RET_Q_MAXLEN;
542 		qs->crp_ret_q_drops = 0;
543 
544 		TAILQ_INIT(&qs->crp_ret_kq);
545 		qs->crp_ret_kq_len = 0;
546 		qs->crp_ret_kq_maxlen = CRYPTO_RET_KQ_MAXLEN;
547 		qs->crp_ret_kq_drops = 0;
548 
549 		crypto_crp_ret_qs_list[i] = qs;
550 	}
551 }
552 
553 static int
crypto_init0(void)554 crypto_init0(void)
555 {
556 
557 	mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
558 	cryptop_cache = pool_cache_init(sizeof(struct cryptop),
559 	    coherency_unit, 0, 0, "cryptop", NULL, IPL_NET, NULL, NULL, NULL);
560 	cryptodesc_cache = pool_cache_init(sizeof(struct cryptodesc),
561 	    coherency_unit, 0, 0, "cryptdesc", NULL, IPL_NET, NULL, NULL, NULL);
562 	cryptkop_cache = pool_cache_init(sizeof(struct cryptkop),
563 	    coherency_unit, 0, 0, "cryptkop", NULL, IPL_NET, NULL, NULL, NULL);
564 
565 	crypto_crp_qs_percpu = percpu_create(sizeof(struct crypto_crp_qs),
566 	    crypto_crp_qs_init_pc, /*XXX*/NULL, NULL);
567 
568 	crypto_crp_ret_qs_init();
569 
570 	crypto_drivers = kmem_zalloc(CRYPTO_DRIVERS_INITIAL *
571 	    sizeof(struct cryptocap), KM_SLEEP);
572 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
573 
574 	crypto_q_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, cryptointr, NULL);
575 	if (crypto_q_si == NULL) {
576 		printf("crypto_init: cannot establish request queue handler\n");
577 		return crypto_destroy(false);
578 	}
579 
580 	/*
581 	 * Some encryption devices (such as mvcesa) are attached before
582 	 * ipi_sysinit(). That causes an assertion in ipi_register() as
583 	 * crypto_ret_si softint uses SOFTINT_RCPU.
584 	 */
585 	if (config_finalize_register(NULL, crypto_init_finalize) != 0) {
586 		printf("crypto_init: cannot register crypto_init_finalize\n");
587 		return crypto_destroy(false);
588 	}
589 
590 	sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
591 
592 	return 0;
593 }
594 
595 static int
crypto_init_finalize(device_t self __unused)596 crypto_init_finalize(device_t self __unused)
597 {
598 
599 	crypto_ret_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE|SOFTINT_RCPU,
600 	    &cryptoret_softint, NULL);
601 	KASSERT(crypto_ret_si != NULL);
602 
603 	return 0;
604 }
605 
606 int
crypto_init(void)607 crypto_init(void)
608 {
609 	static ONCE_DECL(crypto_init_once);
610 
611 	return RUN_ONCE(&crypto_init_once, crypto_init0);
612 }
613 
614 static int
crypto_destroy(bool exit_kthread)615 crypto_destroy(bool exit_kthread)
616 {
617 	int i;
618 
619 	if (exit_kthread) {
620 		struct cryptocap *cap = NULL;
621 		bool is_busy = false;
622 
623 		/* if we have any in-progress requests, don't unload */
624 		percpu_foreach(crypto_crp_qs_percpu, crypto_crp_q_is_busy_pc,
625 				   &is_busy);
626 		if (is_busy)
627 			return EBUSY;
628 		/* FIXME:
629 		 * prohibit enqueue to crp_q and crp_kq after here.
630 		 */
631 
632 		mutex_enter(&crypto_drv_mtx);
633 		for (i = 0; i < crypto_drivers_num; i++) {
634 			cap = crypto_checkdriver(i);
635 			if (cap == NULL)
636 				continue;
637 			if (cap->cc_sessions != 0) {
638 				mutex_exit(&crypto_drv_mtx);
639 				return EBUSY;
640 			}
641 		}
642 		mutex_exit(&crypto_drv_mtx);
643 		/* FIXME:
644 		 * prohibit touch crypto_drivers[] and each element after here.
645 		 */
646 
647 		/* Ensure cryptoret_softint() is never scheduled again.  */
648 		for (i = 0; i < ncpu; i++) {
649 			struct crypto_crp_ret_qs *qs;
650 			struct cpu_info *ci = cpu_lookup(i);
651 
652 			qs = crypto_get_crp_ret_qs(ci);
653 			qs->crp_ret_q_exit_flag = true;
654 			crypto_put_crp_ret_qs(ci);
655 		}
656 	}
657 
658 	if (sysctl_opencrypto_clog != NULL)
659 		sysctl_teardown(&sysctl_opencrypto_clog);
660 
661 	if (crypto_ret_si != NULL)
662 		softint_disestablish(crypto_ret_si);
663 
664 	if (crypto_q_si != NULL)
665 		softint_disestablish(crypto_q_si);
666 
667 	mutex_enter(&crypto_drv_mtx);
668 	if (crypto_drivers != NULL)
669 		kmem_free(crypto_drivers,
670 		    crypto_drivers_num * sizeof(struct cryptocap));
671 	mutex_exit(&crypto_drv_mtx);
672 
673 	percpu_free(crypto_crp_qs_percpu, sizeof(struct crypto_crp_qs));
674 
675 	pool_cache_destroy(cryptop_cache);
676 	pool_cache_destroy(cryptodesc_cache);
677 	pool_cache_destroy(cryptkop_cache);
678 
679 	mutex_destroy(&crypto_drv_mtx);
680 
681 	return 0;
682 }
683 
684 static bool
crypto_driver_suitable(struct cryptocap * cap,struct cryptoini * cri)685 crypto_driver_suitable(struct cryptocap *cap, struct cryptoini *cri)
686 {
687 	struct cryptoini *cr;
688 
689 	for (cr = cri; cr; cr = cr->cri_next)
690 		if (cap->cc_alg[cr->cri_alg] == 0) {
691 			DPRINTF("alg %d not supported\n", cr->cri_alg);
692 			return false;
693 		}
694 
695 	return true;
696 }
697 
698 #define CRYPTO_ACCEPT_HARDWARE 0x1
699 #define CRYPTO_ACCEPT_SOFTWARE 0x2
700 /*
701  * The algorithm we use here is pretty stupid; just use the
702  * first driver that supports all the algorithms we need.
703  * If there are multiple drivers we choose the driver with
704  * the fewest active sessions. We prefer hardware-backed
705  * drivers to software ones.
706  *
707  * XXX We need more smarts here (in real life too, but that's
708  * XXX another story altogether).
709  */
710 static struct cryptocap *
crypto_select_driver_lock(struct cryptoini * cri,int hard)711 crypto_select_driver_lock(struct cryptoini *cri, int hard)
712 {
713 	u_int32_t hid;
714 	int accept;
715 	struct cryptocap *cap, *best;
716 	int error = 0;
717 
718 	best = NULL;
719 	/*
720 	 * hard == 0 can use both hardware and software drivers.
721 	 * We use hardware drivers prior to software drivers, so search
722 	 * hardware drivers at first time.
723 	 */
724 	if (hard >= 0)
725 		accept = CRYPTO_ACCEPT_HARDWARE;
726 	else
727 		accept = CRYPTO_ACCEPT_SOFTWARE;
728 again:
729 	for (hid = 0; hid < crypto_drivers_num; hid++) {
730 		cap = crypto_checkdriver(hid);
731 		if (cap == NULL)
732 			continue;
733 
734 		crypto_driver_lock(cap);
735 
736 		/*
737 		 * If it's not initialized or has remaining sessions
738 		 * referencing it, skip.
739 		 */
740 		if (cap->cc_newsession == NULL ||
741 		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
742 			crypto_driver_unlock(cap);
743 			continue;
744 		}
745 
746 		/* Hardware required -- ignore software drivers. */
747 		if ((accept & CRYPTO_ACCEPT_SOFTWARE) == 0
748 		    && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
749 			crypto_driver_unlock(cap);
750 			continue;
751 		}
752 		/* Software required -- ignore hardware drivers. */
753 		if ((accept & CRYPTO_ACCEPT_HARDWARE) == 0
754 		    && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
755 			crypto_driver_unlock(cap);
756 			continue;
757 		}
758 
759 		/* See if all the algorithms are supported. */
760 		if (crypto_driver_suitable(cap, cri)) {
761 			if (best == NULL) {
762 				/* keep holding crypto_driver_lock(cap) */
763 				best = cap;
764 				continue;
765 			} else if (cap->cc_sessions < best->cc_sessions) {
766 				crypto_driver_unlock(best);
767 				/* keep holding crypto_driver_lock(cap) */
768 				best = cap;
769 				continue;
770 			}
771 		}
772 
773 		crypto_driver_unlock(cap);
774 	}
775 	if (best == NULL && hard == 0
776 	    && (accept & CRYPTO_ACCEPT_SOFTWARE) == 0) {
777 		accept = CRYPTO_ACCEPT_SOFTWARE;
778 		goto again;
779 	}
780 
781 	if (best == NULL && hard == 0 && error == 0) {
782 		mutex_exit(&crypto_drv_mtx);
783 		error = module_autoload("swcrypto", MODULE_CLASS_DRIVER);
784 		mutex_enter(&crypto_drv_mtx);
785 		if (error == 0) {
786 			error = EINVAL;
787 			goto again;
788 		}
789 	}
790 
791 	return best;
792 }
793 
794 /*
795  * Create a new session.
796  */
797 int
crypto_newsession(u_int64_t * sid,struct cryptoini * cri,int hard)798 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
799 {
800 	struct cryptocap *cap;
801 	int err = EINVAL;
802 
803 	/*
804 	 * On failure, leave *sid initialized to a sentinel value that
805 	 * crypto_freesession will ignore.  This is the same as what
806 	 * you get from zero-initialized memory -- some callers (I'm
807 	 * looking at you, netipsec!) have paths that lead from
808 	 * zero-initialized memory into crypto_freesession without any
809 	 * crypto_newsession.
810 	 */
811 	*sid = 0;
812 
813 	mutex_enter(&crypto_drv_mtx);
814 
815 	cap = crypto_select_driver_lock(cri, hard);
816 	if (cap != NULL) {
817 		u_int32_t hid, lid;
818 
819 		hid = cap - crypto_drivers;
820 		KASSERT(hid < 0xffffff);
821 		/*
822 		 * Can't do everything in one session.
823 		 *
824 		 * XXX Fix this. We need to inject a "virtual" session layer right
825 		 * XXX about here.
826 		 */
827 
828 		/* Call the driver initialization routine. */
829 		lid = hid;		/* Pass the driver ID. */
830 		crypto_driver_unlock(cap);
831 		err = cap->cc_newsession(cap->cc_arg, &lid, cri);
832 		crypto_driver_lock(cap);
833 		if (err == 0) {
834 			(*sid) = hid + 1;
835 			(*sid) <<= 32;
836 			(*sid) |= (lid & 0xffffffff);
837 			KASSERT(*sid != 0);
838 			cap->cc_sessions++;
839 		} else {
840 			DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
841 			    hid, err);
842 		}
843 		crypto_driver_unlock(cap);
844 	}
845 
846 	mutex_exit(&crypto_drv_mtx);
847 
848 	return err;
849 }
850 
851 /*
852  * Delete an existing session (or a reserved session on an unregistered
853  * driver).
854  */
855 void
crypto_freesession(u_int64_t sid)856 crypto_freesession(u_int64_t sid)
857 {
858 	struct cryptocap *cap;
859 
860 	/*
861 	 * crypto_newsession never returns 0 as a sid (by virtue of
862 	 * never returning 0 as a hid, which is part of the sid).
863 	 * However, some callers assume that freeing zero is safe.
864 	 * Previously this relied on all drivers to agree that freeing
865 	 * invalid sids is a no-op, but that's a terrible API contract
866 	 * that we're getting rid of.
867 	 */
868 	if (sid == 0)
869 		return;
870 
871 	/* Determine two IDs. */
872 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
873 	KASSERTMSG(cap != NULL, "sid=%"PRIx64, sid);
874 
875 	KASSERT(cap->cc_sessions > 0);
876 	cap->cc_sessions--;
877 
878 	/* Call the driver cleanup routine, if available. */
879 	if (cap->cc_freesession)
880 		cap->cc_freesession(cap->cc_arg, sid);
881 
882 	/*
883 	 * If this was the last session of a driver marked as invalid,
884 	 * make the entry available for reuse.
885 	 */
886 	if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
887 		crypto_driver_clear(cap);
888 
889 	crypto_driver_unlock(cap);
890 }
891 
892 static bool
crypto_checkdriver_initialized(const struct cryptocap * cap)893 crypto_checkdriver_initialized(const struct cryptocap *cap)
894 {
895 
896 	return cap->cc_process != NULL ||
897 	    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
898 	    cap->cc_sessions != 0;
899 }
900 
901 /*
902  * Return an unused driver id.  Used by drivers prior to registering
903  * support for the algorithms they handle.
904  */
905 int32_t
crypto_get_driverid(u_int32_t flags)906 crypto_get_driverid(u_int32_t flags)
907 {
908 	struct cryptocap *newdrv;
909 	struct cryptocap *cap = NULL;
910 	int i;
911 
912 	(void)crypto_init();		/* XXX oh, this is foul! */
913 
914 	mutex_enter(&crypto_drv_mtx);
915 	for (i = 0; i < crypto_drivers_num; i++) {
916 		cap = crypto_checkdriver_uninit(i);
917 		if (cap == NULL || crypto_checkdriver_initialized(cap))
918 			continue;
919 		break;
920 	}
921 
922 	/* Out of entries, allocate some more. */
923 	if (cap == NULL) {
924 		/* Be careful about wrap-around. */
925 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
926 			mutex_exit(&crypto_drv_mtx);
927 			printf("crypto: driver count wraparound!\n");
928 			return -1;
929 		}
930 
931 		newdrv = kmem_zalloc(2 * crypto_drivers_num *
932 		    sizeof(struct cryptocap), KM_SLEEP);
933 		memcpy(newdrv, crypto_drivers,
934 		    crypto_drivers_num * sizeof(struct cryptocap));
935 		kmem_free(crypto_drivers,
936 		    crypto_drivers_num * sizeof(struct cryptocap));
937 
938 		crypto_drivers_num *= 2;
939 		crypto_drivers = newdrv;
940 
941 		cap = crypto_checkdriver_uninit(i);
942 		KASSERT(cap != NULL);
943 	}
944 
945 	/* NB: state is zero'd on free */
946 	cap->cc_sessions = 1;	/* Mark */
947 	cap->cc_flags = flags;
948 	mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
949 
950 	if (bootverbose)
951 		printf("crypto: assign driver %u, flags %u\n", i, flags);
952 
953 	mutex_exit(&crypto_drv_mtx);
954 
955 	return i;
956 }
957 
958 static struct cryptocap *
crypto_checkdriver_lock(u_int32_t hid)959 crypto_checkdriver_lock(u_int32_t hid)
960 {
961 	struct cryptocap *cap;
962 
963 	KASSERT(crypto_drivers != NULL);
964 
965 	if (hid >= crypto_drivers_num)
966 		return NULL;
967 
968 	cap = &crypto_drivers[hid];
969 	mutex_enter(&cap->cc_lock);
970 	return cap;
971 }
972 
973 /*
974  * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
975  * situations
976  *     - crypto_drivers[] may not be allocated
977  *     - crypto_drivers[hid] may not be initialized
978  */
979 static struct cryptocap *
crypto_checkdriver_uninit(u_int32_t hid)980 crypto_checkdriver_uninit(u_int32_t hid)
981 {
982 
983 	KASSERT(mutex_owned(&crypto_drv_mtx));
984 
985 	if (crypto_drivers == NULL)
986 		return NULL;
987 
988 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
989 }
990 
991 /*
992  * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
993  * situations
994  *     - crypto_drivers[] may not be allocated
995  *     - crypto_drivers[hid] may not be initialized
996  */
997 static struct cryptocap *
crypto_checkdriver(u_int32_t hid)998 crypto_checkdriver(u_int32_t hid)
999 {
1000 
1001 	KASSERT(mutex_owned(&crypto_drv_mtx));
1002 
1003 	if (crypto_drivers == NULL || hid >= crypto_drivers_num)
1004 		return NULL;
1005 
1006 	struct cryptocap *cap = &crypto_drivers[hid];
1007 	return crypto_checkdriver_initialized(cap) ? cap : NULL;
1008 }
1009 
1010 static inline void
crypto_driver_lock(struct cryptocap * cap)1011 crypto_driver_lock(struct cryptocap *cap)
1012 {
1013 
1014 	KASSERT(cap != NULL);
1015 
1016 	mutex_enter(&cap->cc_lock);
1017 }
1018 
1019 static inline void
crypto_driver_unlock(struct cryptocap * cap)1020 crypto_driver_unlock(struct cryptocap *cap)
1021 {
1022 
1023 	KASSERT(cap != NULL);
1024 
1025 	mutex_exit(&cap->cc_lock);
1026 }
1027 
1028 static void
crypto_driver_clear(struct cryptocap * cap)1029 crypto_driver_clear(struct cryptocap *cap)
1030 {
1031 
1032 	if (cap == NULL)
1033 		return;
1034 
1035 	KASSERT(mutex_owned(&cap->cc_lock));
1036 
1037 	cap->cc_sessions = 0;
1038 	memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
1039 	memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
1040 	memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
1041 	cap->cc_flags = 0;
1042 	cap->cc_qblocked = 0;
1043 	cap->cc_kqblocked = 0;
1044 
1045 	cap->cc_arg = NULL;
1046 	cap->cc_newsession = NULL;
1047 	cap->cc_process = NULL;
1048 	cap->cc_freesession = NULL;
1049 	cap->cc_kprocess = NULL;
1050 }
1051 
1052 /*
1053  * Register support for a key-related algorithm.  This routine
1054  * is called once for each algorithm supported a driver.
1055  */
1056 int
crypto_kregister(u_int32_t driverid,int kalg,u_int32_t flags,int (* kprocess)(void *,struct cryptkop *,int),void * karg)1057 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
1058     int (*kprocess)(void *, struct cryptkop *, int),
1059     void *karg)
1060 {
1061 	struct cryptocap *cap;
1062 	int err;
1063 
1064 	mutex_enter(&crypto_drv_mtx);
1065 
1066 	cap = crypto_checkdriver_lock(driverid);
1067 	if (cap != NULL &&
1068 	    (CRK_ALGORITHM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1069 		/*
1070 		 * XXX Do some performance testing to determine placing.
1071 		 * XXX We probably need an auxiliary data structure that
1072 		 * XXX describes relative performances.
1073 		 */
1074 
1075 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1076 		if (bootverbose) {
1077 			printf("crypto: driver %u registers key alg %u "
1078 			       " flags %u\n",
1079 				driverid,
1080 				kalg,
1081 				flags
1082 			);
1083 		}
1084 
1085 		if (cap->cc_kprocess == NULL) {
1086 			cap->cc_karg = karg;
1087 			cap->cc_kprocess = kprocess;
1088 		}
1089 		err = 0;
1090 	} else
1091 		err = EINVAL;
1092 
1093 	mutex_exit(&crypto_drv_mtx);
1094 	return err;
1095 }
1096 
1097 /*
1098  * Register support for a non-key-related algorithm.  This routine
1099  * is called once for each such algorithm supported by a driver.
1100  */
1101 int
crypto_register(u_int32_t driverid,int alg,u_int16_t maxoplen,u_int32_t flags,int (* newses)(void *,u_int32_t *,struct cryptoini *),void (* freeses)(void *,u_int64_t),int (* process)(void *,struct cryptop *,int),void * arg)1102 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
1103     u_int32_t flags,
1104     int (*newses)(void *, u_int32_t*, struct cryptoini*),
1105     void (*freeses)(void *, u_int64_t),
1106     int (*process)(void *, struct cryptop *, int),
1107     void *arg)
1108 {
1109 	struct cryptocap *cap;
1110 	int err;
1111 
1112 	cap = crypto_checkdriver_lock(driverid);
1113 	if (cap == NULL)
1114 		return EINVAL;
1115 
1116 	/* NB: algorithms are in the range [1..max] */
1117 	if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
1118 		/*
1119 		 * XXX Do some performance testing to determine placing.
1120 		 * XXX We probably need an auxiliary data structure that
1121 		 * XXX describes relative performances.
1122 		 */
1123 
1124 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1125 		cap->cc_max_op_len[alg] = maxoplen;
1126 		if (bootverbose) {
1127 			printf("crypto: driver %u registers alg %u "
1128 				"flags %u maxoplen %u\n",
1129 				driverid,
1130 				alg,
1131 				flags,
1132 				maxoplen
1133 			);
1134 		}
1135 
1136 		if (cap->cc_process == NULL) {
1137 			cap->cc_arg = arg;
1138 			cap->cc_newsession = newses;
1139 			cap->cc_process = process;
1140 			cap->cc_freesession = freeses;
1141 			cap->cc_sessions = 0;		/* Unmark */
1142 		}
1143 		err = 0;
1144 	} else
1145 		err = EINVAL;
1146 
1147 	crypto_driver_unlock(cap);
1148 
1149 	return err;
1150 }
1151 
1152 static int
crypto_unregister_locked(struct cryptocap * cap,int alg,bool all)1153 crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
1154 {
1155 	int i;
1156 	u_int32_t ses;
1157 	bool lastalg = true;
1158 
1159 	KASSERT(cap != NULL);
1160 	KASSERT(mutex_owned(&cap->cc_lock));
1161 
1162 	if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
1163 		return EINVAL;
1164 
1165 	if (!all && cap->cc_alg[alg] == 0)
1166 		return EINVAL;
1167 
1168 	cap->cc_alg[alg] = 0;
1169 	cap->cc_max_op_len[alg] = 0;
1170 
1171 	if (all) {
1172 		if (alg != CRYPTO_ALGORITHM_MAX)
1173 			lastalg = false;
1174 	} else {
1175 		/* Was this the last algorithm ? */
1176 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
1177 			if (cap->cc_alg[i] != 0) {
1178 				lastalg = false;
1179 				break;
1180 			}
1181 	}
1182 	if (lastalg) {
1183 		ses = cap->cc_sessions;
1184 		crypto_driver_clear(cap);
1185 		if (ses != 0) {
1186 			/*
1187 			 * If there are pending sessions, just mark as invalid.
1188 			 */
1189 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1190 			cap->cc_sessions = ses;
1191 		}
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 /*
1198  * Unregister a crypto driver. If there are pending sessions using it,
1199  * leave enough information around so that subsequent calls using those
1200  * sessions will correctly detect the driver has been unregistered and
1201  * reroute requests.
1202  */
1203 int
crypto_unregister(u_int32_t driverid,int alg)1204 crypto_unregister(u_int32_t driverid, int alg)
1205 {
1206 	int err;
1207 	struct cryptocap *cap;
1208 
1209 	cap = crypto_checkdriver_lock(driverid);
1210 	err = crypto_unregister_locked(cap, alg, false);
1211 	crypto_driver_unlock(cap);
1212 
1213 	return err;
1214 }
1215 
1216 /*
1217  * Unregister all algorithms associated with a crypto driver.
1218  * If there are pending sessions using it, leave enough information
1219  * around so that subsequent calls using those sessions will
1220  * correctly detect the driver has been unregistered and reroute
1221  * requests.
1222  */
1223 int
crypto_unregister_all(u_int32_t driverid)1224 crypto_unregister_all(u_int32_t driverid)
1225 {
1226 	int err, i;
1227 	struct cryptocap *cap;
1228 
1229 	cap = crypto_checkdriver_lock(driverid);
1230 	for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
1231 		err = crypto_unregister_locked(cap, i, true);
1232 		if (err)
1233 			break;
1234 	}
1235 	crypto_driver_unlock(cap);
1236 
1237 	return err;
1238 }
1239 
1240 /*
1241  * Clear blockage on a driver.  The what parameter indicates whether
1242  * the driver is now ready for cryptop's and/or cryptokop's.
1243  */
1244 int
crypto_unblock(u_int32_t driverid,int what)1245 crypto_unblock(u_int32_t driverid, int what)
1246 {
1247 	struct cryptocap *cap;
1248 	int needwakeup = 0;
1249 
1250 	cap = crypto_checkdriver_lock(driverid);
1251 	if (cap == NULL)
1252 		return EINVAL;
1253 
1254 	if (what & CRYPTO_SYMQ) {
1255 		needwakeup |= cap->cc_qblocked;
1256 		cap->cc_qblocked = 0;
1257 	}
1258 	if (what & CRYPTO_ASYMQ) {
1259 		needwakeup |= cap->cc_kqblocked;
1260 		cap->cc_kqblocked = 0;
1261 	}
1262 	crypto_driver_unlock(cap);
1263 	if (needwakeup) {
1264 		kpreempt_disable();
1265 		softint_schedule(crypto_q_si);
1266 		kpreempt_enable();
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 /*
1273  * Dispatch a crypto request to a driver or queue
1274  * it, to be processed by the kernel thread.
1275  */
1276 void
crypto_dispatch(struct cryptop * crp)1277 crypto_dispatch(struct cryptop *crp)
1278 {
1279 	int result, s;
1280 	struct cryptocap *cap;
1281 	struct crypto_crp_qs *crp_qs;
1282 	struct crypto_crp_q *crp_q;
1283 
1284 	KASSERT(crp != NULL);
1285 	KASSERT(crp->crp_callback != NULL);
1286 	KASSERT(crp->crp_desc != NULL);
1287 	KASSERT(crp->crp_buf != NULL);
1288 	KASSERT(!cpu_intr_p());
1289 
1290 	DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
1291 
1292 	cryptostats.cs_ops++;
1293 
1294 #ifdef CRYPTO_TIMING
1295 	if (crypto_timing)
1296 		nanouptime(&crp->crp_tstamp);
1297 #endif
1298 
1299 	if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1300 		int wasempty;
1301 		/*
1302 		 * Caller marked the request as ``ok to delay'';
1303 		 * queue it for the swi thread.  This is desirable
1304 		 * when the operation is low priority and/or suitable
1305 		 * for batching.
1306 		 *
1307 		 * don't care list order in batch job.
1308 		 */
1309 		crp_qs = crypto_get_crp_qs(&s);
1310 		crp_q = crp_qs->crp_q;
1311 		wasempty  = TAILQ_EMPTY(crp_q);
1312 		TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1313 		crypto_put_crp_qs(&s);
1314 		crp_q = NULL;
1315 		if (wasempty) {
1316 			kpreempt_disable();
1317 			softint_schedule(crypto_q_si);
1318 			kpreempt_enable();
1319 		}
1320 		return;
1321 	}
1322 
1323 	crp_qs = crypto_get_crp_qs(&s);
1324 	crp_q = crp_qs->crp_q;
1325 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1326 	/*
1327 	 * TODO:
1328 	 * If we can ensure the driver has been valid until the driver is
1329 	 * done crypto_unregister(), this migrate operation is not required.
1330 	 */
1331 	if (cap == NULL) {
1332 		/*
1333 		 * The driver must be detached, so this request will migrate
1334 		 * to other drivers in cryptointr() later.
1335 		 */
1336 		TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1337 		goto out;
1338 	}
1339 
1340 	if (cap->cc_qblocked != 0) {
1341 		crypto_driver_unlock(cap);
1342 		/*
1343 		 * The driver is blocked, just queue the op until
1344 		 * it unblocks and the swi thread gets kicked.
1345 		 */
1346 		TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1347 		goto out;
1348 	}
1349 
1350 	/*
1351 	 * Caller marked the request to be processed
1352 	 * immediately; dispatch it directly to the
1353 	 * driver unless the driver is currently blocked.
1354 	 */
1355 	crypto_driver_unlock(cap);
1356 	result = crypto_invoke(crp, 0);
1357 	KASSERTMSG(result == 0 || result == ERESTART, "result=%d", result);
1358 	if (result == ERESTART) {
1359 		/*
1360 		 * The driver ran out of resources, mark the
1361 		 * driver ``blocked'' for cryptop's and put
1362 		 * the op on the queue.
1363 		 */
1364 		crypto_driver_lock(cap);
1365 		cap->cc_qblocked = 1;
1366 		crypto_driver_unlock(cap);
1367 		TAILQ_INSERT_HEAD(crp_q, crp, crp_next);
1368 		cryptostats.cs_blocks++;
1369 	}
1370 
1371 out:
1372 	crypto_put_crp_qs(&s);
1373 }
1374 
1375 /*
1376  * Add an asymmetric crypto request to a queue,
1377  * to be processed by the kernel thread.
1378  */
1379 void
crypto_kdispatch(struct cryptkop * krp)1380 crypto_kdispatch(struct cryptkop *krp)
1381 {
1382 	int result, s;
1383 	struct cryptocap *cap;
1384 	struct crypto_crp_qs *crp_qs;
1385 	struct crypto_crp_kq *crp_kq;
1386 
1387 	KASSERT(krp != NULL);
1388 	KASSERT(krp->krp_callback != NULL);
1389 	KASSERT(!cpu_intr_p());
1390 
1391 	cryptostats.cs_kops++;
1392 
1393 	crp_qs = crypto_get_crp_qs(&s);
1394 	crp_kq = crp_qs->crp_kq;
1395 	cap = crypto_checkdriver_lock(krp->krp_hid);
1396 	/*
1397 	 * TODO:
1398 	 * If we can ensure the driver has been valid until the driver is
1399 	 * done crypto_unregister(), this migrate operation is not required.
1400 	 */
1401 	if (cap == NULL) {
1402 		TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1403 		goto out;
1404 	}
1405 
1406 	if (cap->cc_kqblocked != 0) {
1407 		crypto_driver_unlock(cap);
1408 		/*
1409 		 * The driver is blocked, just queue the op until
1410 		 * it unblocks and the swi thread gets kicked.
1411 		 */
1412 		TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1413 		goto out;
1414 	}
1415 
1416 	crypto_driver_unlock(cap);
1417 	result = crypto_kinvoke(krp, 0);
1418 	KASSERTMSG(result == 0 || result == ERESTART, "result=%d", result);
1419 	if (result == ERESTART) {
1420 		/*
1421 		 * The driver ran out of resources, mark the
1422 		 * driver ``blocked'' for cryptop's and put
1423 		 * the op on the queue.
1424 		 */
1425 		crypto_driver_lock(cap);
1426 		cap->cc_kqblocked = 1;
1427 		crypto_driver_unlock(cap);
1428 		TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
1429 		cryptostats.cs_kblocks++;
1430 	}
1431 
1432 out:
1433 	crypto_put_crp_qs(&s);
1434 }
1435 
1436 /*
1437  * Dispatch an asymmetric crypto request to the appropriate crypto devices.
1438  */
1439 static int
crypto_kinvoke(struct cryptkop * krp,int hint)1440 crypto_kinvoke(struct cryptkop *krp, int hint)
1441 {
1442 	struct cryptocap *cap = NULL;
1443 	u_int32_t hid;
1444 	int error;
1445 
1446 	KASSERT(krp != NULL);
1447 	KASSERT(krp->krp_callback != NULL);
1448 	KASSERT(!cpu_intr_p());
1449 
1450 	mutex_enter(&crypto_drv_mtx);
1451 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1452 		cap = crypto_checkdriver(hid);
1453 		if (cap == NULL)
1454 			continue;
1455 		crypto_driver_lock(cap);
1456 		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1457 		    crypto_devallowsoft == 0) {
1458 			crypto_driver_unlock(cap);
1459 			continue;
1460 		}
1461 		if (cap->cc_kprocess == NULL) {
1462 			crypto_driver_unlock(cap);
1463 			continue;
1464 		}
1465 		if ((cap->cc_kalg[krp->krp_op] &
1466 			CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
1467 			crypto_driver_unlock(cap);
1468 			continue;
1469 		}
1470 		break;
1471 	}
1472 	mutex_exit(&crypto_drv_mtx);
1473 	if (cap != NULL) {
1474 		int (*process)(void *, struct cryptkop *, int);
1475 		void *arg;
1476 
1477 		process = cap->cc_kprocess;
1478 		arg = cap->cc_karg;
1479 		krp->krp_hid = hid;
1480 		krp->reqcpu = curcpu();
1481 		crypto_driver_unlock(cap);
1482 		error = (*process)(arg, krp, hint);
1483 		KASSERTMSG(error == 0 || error == ERESTART, "error=%d",
1484 		    error);
1485 		return error;
1486 	} else {
1487 		krp->krp_status = ENODEV;
1488 		krp->reqcpu = curcpu();
1489 		crypto_kdone(krp);
1490 		return 0;
1491 	}
1492 }
1493 
1494 #ifdef CRYPTO_TIMING
1495 static void
crypto_tstat(struct cryptotstat * ts,struct timespec * tv)1496 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1497 {
1498 	struct timespec now, t;
1499 
1500 	nanouptime(&now);
1501 	t.tv_sec = now.tv_sec - tv->tv_sec;
1502 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1503 	if (t.tv_nsec < 0) {
1504 		t.tv_sec--;
1505 		t.tv_nsec += 1000000000;
1506 	}
1507 	timespecadd(&ts->acc, &t, &t);
1508 	if (timespeccmp(&t, &ts->min, <))
1509 		ts->min = t;
1510 	if (timespeccmp(&t, &ts->max, >))
1511 		ts->max = t;
1512 	ts->count++;
1513 
1514 	*tv = now;
1515 }
1516 #endif
1517 
1518 /*
1519  * Dispatch a crypto request to the appropriate crypto devices.
1520  */
1521 static int
crypto_invoke(struct cryptop * crp,int hint)1522 crypto_invoke(struct cryptop *crp, int hint)
1523 {
1524 	struct cryptocap *cap;
1525 	int error;
1526 
1527 	KASSERT(crp != NULL);
1528 	KASSERT(crp->crp_callback != NULL);
1529 	KASSERT(crp->crp_desc != NULL);
1530 	KASSERT(!cpu_intr_p());
1531 
1532 #ifdef CRYPTO_TIMING
1533 	if (crypto_timing)
1534 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1535 #endif
1536 
1537 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1538 	if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
1539 		int (*process)(void *, struct cryptop *, int);
1540 		void *arg;
1541 
1542 		process = cap->cc_process;
1543 		arg = cap->cc_arg;
1544 		crp->reqcpu = curcpu();
1545 
1546 		/*
1547 		 * Invoke the driver to process the request.
1548 		 */
1549 		DPRINTF("calling process for %p\n", crp);
1550 		crypto_driver_unlock(cap);
1551 		error = (*process)(arg, crp, hint);
1552 		KASSERTMSG(error == 0 || error == ERESTART, "error=%d",
1553 		    error);
1554 		return error;
1555 	} else {
1556 		if (cap != NULL) {
1557 			crypto_driver_unlock(cap);
1558 			crypto_freesession(crp->crp_sid);
1559 		}
1560 		crp->crp_etype = ENODEV;
1561 		crypto_done(crp);
1562 		return 0;
1563 	}
1564 }
1565 
1566 /*
1567  * Release a set of crypto descriptors.
1568  */
1569 void
crypto_freereq(struct cryptop * crp)1570 crypto_freereq(struct cryptop *crp)
1571 {
1572 	struct cryptodesc *crd;
1573 
1574 	if (crp == NULL)
1575 		return;
1576 	DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1577 
1578 	/* sanity check */
1579 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1580 		panic("crypto_freereq() freeing crp on RETQ\n");
1581 	}
1582 
1583 	while ((crd = crp->crp_desc) != NULL) {
1584 		crp->crp_desc = crd->crd_next;
1585 		pool_cache_put(cryptodesc_cache, crd);
1586 	}
1587 	pool_cache_put(cryptop_cache, crp);
1588 }
1589 
1590 /*
1591  * Acquire a set of crypto descriptors.
1592  */
1593 struct cryptop *
crypto_getreq(int num)1594 crypto_getreq(int num)
1595 {
1596 	struct cryptodesc *crd;
1597 	struct cryptop *crp;
1598 	struct crypto_crp_ret_qs *qs;
1599 
1600 	KASSERT(num > 0);
1601 
1602 	/*
1603 	 * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
1604 	 * by error callback.
1605 	 */
1606 	qs = crypto_get_crp_ret_qs(curcpu());
1607 	if (qs->crp_ret_q_maxlen > 0
1608 	    && qs->crp_ret_q_len > qs->crp_ret_q_maxlen) {
1609 		qs->crp_ret_q_drops++;
1610 		crypto_put_crp_ret_qs(curcpu());
1611 		return NULL;
1612 	}
1613 	crypto_put_crp_ret_qs(curcpu());
1614 
1615 	crp = pool_cache_get(cryptop_cache, PR_NOWAIT);
1616 	if (crp == NULL) {
1617 		return NULL;
1618 	}
1619 	memset(crp, 0, sizeof(struct cryptop));
1620 
1621 	while (num--) {
1622 		crd = pool_cache_get(cryptodesc_cache, PR_NOWAIT);
1623 		if (crd == NULL) {
1624 			crypto_freereq(crp);
1625 			return NULL;
1626 		}
1627 
1628 		memset(crd, 0, sizeof(struct cryptodesc));
1629 		crd->crd_next = crp->crp_desc;
1630 		crp->crp_desc = crd;
1631 	}
1632 
1633 	return crp;
1634 }
1635 
1636 /*
1637  * Release a set of asymmetric crypto descriptors.
1638  * Currently, support one descriptor only.
1639  */
1640 void
crypto_kfreereq(struct cryptkop * krp)1641 crypto_kfreereq(struct cryptkop *krp)
1642 {
1643 
1644 	if (krp == NULL)
1645 		return;
1646 
1647 	DPRINTF("krp %p\n", krp);
1648 
1649 	/* sanity check */
1650 	if (krp->krp_flags & CRYPTO_F_ONRETQ) {
1651 		panic("crypto_kfreereq() freeing krp on RETQ\n");
1652 	}
1653 
1654 	pool_cache_put(cryptkop_cache, krp);
1655 }
1656 
1657 /*
1658  * Acquire a set of asymmetric crypto descriptors.
1659  * Currently, support one descriptor only.
1660  */
1661 struct cryptkop *
crypto_kgetreq(int num __diagused,int prflags)1662 crypto_kgetreq(int num __diagused, int prflags)
1663 {
1664 	struct cryptkop *krp;
1665 	struct crypto_crp_ret_qs *qs;
1666 
1667 	KASSERTMSG(num == 1, "num=%d not supported", num);
1668 
1669 	/*
1670 	 * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
1671 	 * overflow by error callback.
1672 	 */
1673 	qs = crypto_get_crp_ret_qs(curcpu());
1674 	if (qs->crp_ret_kq_maxlen > 0
1675 	    && qs->crp_ret_kq_len > qs->crp_ret_kq_maxlen) {
1676 		qs->crp_ret_kq_drops++;
1677 		crypto_put_crp_ret_qs(curcpu());
1678 		return NULL;
1679 	}
1680 	crypto_put_crp_ret_qs(curcpu());
1681 
1682 	krp = pool_cache_get(cryptkop_cache, prflags);
1683 	if (krp == NULL) {
1684 		return NULL;
1685 	}
1686 	memset(krp, 0, sizeof(struct cryptkop));
1687 
1688 	return krp;
1689 }
1690 
1691 /*
1692  * Invoke the callback on behalf of the driver.
1693  */
1694 void
crypto_done(struct cryptop * crp)1695 crypto_done(struct cryptop *crp)
1696 {
1697 	int wasempty;
1698 	struct crypto_crp_ret_qs *qs;
1699 	struct crypto_crp_ret_q *crp_ret_q;
1700 
1701 	KASSERT(crp != NULL);
1702 
1703 	if (crp->crp_etype != 0)
1704 		cryptostats.cs_errs++;
1705 #ifdef CRYPTO_TIMING
1706 	if (crypto_timing)
1707 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1708 #endif
1709 	DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1710 
1711 	qs = crypto_get_crp_ret_qs(crp->reqcpu);
1712 	crp_ret_q = &qs->crp_ret_q;
1713 	wasempty = TAILQ_EMPTY(crp_ret_q);
1714 	DPRINTF("lid[%u]: queueing %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1715 	crp->crp_flags |= CRYPTO_F_ONRETQ;
1716 	TAILQ_INSERT_TAIL(crp_ret_q, crp, crp_next);
1717 	qs->crp_ret_q_len++;
1718 	if (wasempty && !qs->crp_ret_q_exit_flag) {
1719 		DPRINTF("lid[%u]: waking cryptoret, crp %p hit empty queue\n.",
1720 		    CRYPTO_SESID2LID(crp->crp_sid), crp);
1721 		softint_schedule_cpu(crypto_ret_si, crp->reqcpu);
1722 	}
1723 	crypto_put_crp_ret_qs(crp->reqcpu);
1724 }
1725 
1726 /*
1727  * Invoke the callback on behalf of the driver.
1728  */
1729 void
crypto_kdone(struct cryptkop * krp)1730 crypto_kdone(struct cryptkop *krp)
1731 {
1732 	int wasempty;
1733 	struct crypto_crp_ret_qs *qs;
1734 	struct crypto_crp_ret_kq *crp_ret_kq;
1735 
1736 	KASSERT(krp != NULL);
1737 
1738 	if (krp->krp_status != 0)
1739 		cryptostats.cs_kerrs++;
1740 
1741 	qs = crypto_get_crp_ret_qs(krp->reqcpu);
1742 	crp_ret_kq = &qs->crp_ret_kq;
1743 
1744 	wasempty = TAILQ_EMPTY(crp_ret_kq);
1745 	krp->krp_flags |= CRYPTO_F_ONRETQ;
1746 	TAILQ_INSERT_TAIL(crp_ret_kq, krp, krp_next);
1747 	qs->crp_ret_kq_len++;
1748 	if (wasempty && !qs->crp_ret_q_exit_flag)
1749 		softint_schedule_cpu(crypto_ret_si, krp->reqcpu);
1750 	crypto_put_crp_ret_qs(krp->reqcpu);
1751 }
1752 
1753 int
crypto_getfeat(int * featp)1754 crypto_getfeat(int *featp)
1755 {
1756 
1757 	if (crypto_userasymcrypto == 0) {
1758 		*featp = 0;
1759 		return 0;
1760 	}
1761 
1762 	mutex_enter(&crypto_drv_mtx);
1763 
1764 	int feat = 0;
1765 	for (int hid = 0; hid < crypto_drivers_num; hid++) {
1766 		struct cryptocap *cap;
1767 		cap = crypto_checkdriver(hid);
1768 		if (cap == NULL)
1769 			continue;
1770 
1771 		crypto_driver_lock(cap);
1772 
1773 		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1774 		    crypto_devallowsoft == 0)
1775 			goto unlock;
1776 
1777 		if (cap->cc_kprocess == NULL)
1778 			goto unlock;
1779 
1780 		for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1781 			if ((cap->cc_kalg[kalg] &
1782 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1783 				feat |=  1 << kalg;
1784 
1785 unlock:		crypto_driver_unlock(cap);
1786 	}
1787 
1788 	mutex_exit(&crypto_drv_mtx);
1789 	*featp = feat;
1790 	return (0);
1791 }
1792 
1793 /*
1794  * Software interrupt thread to dispatch crypto requests.
1795  */
1796 static void
cryptointr(void * arg __unused)1797 cryptointr(void *arg __unused)
1798 {
1799 	struct cryptop *crp, *submit, *cnext;
1800 	struct cryptkop *krp, *knext;
1801 	struct cryptocap *cap;
1802 	struct crypto_crp_qs *crp_qs;
1803 	struct crypto_crp_q *crp_q;
1804 	struct crypto_crp_kq *crp_kq;
1805 	int result, hint, s;
1806 
1807 	cryptostats.cs_intrs++;
1808 	crp_qs = crypto_get_crp_qs(&s);
1809 	crp_q = crp_qs->crp_q;
1810 	crp_kq = crp_qs->crp_kq;
1811 	do {
1812 		/*
1813 		 * Find the first element in the queue that can be
1814 		 * processed and look-ahead to see if multiple ops
1815 		 * are ready for the same driver.
1816 		 */
1817 		submit = NULL;
1818 		hint = 0;
1819 		TAILQ_FOREACH_SAFE(crp, crp_q, crp_next, cnext) {
1820 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1821 			cap = crypto_checkdriver_lock(hid);
1822 			if (cap == NULL || cap->cc_process == NULL) {
1823 				if (cap != NULL)
1824 					crypto_driver_unlock(cap);
1825 				/* Op needs to be migrated, process it. */
1826 				submit = crp;
1827 				break;
1828 			}
1829 
1830 			/*
1831 			 * skip blocked crp regardless of CRYPTO_F_BATCH
1832 			 */
1833 			if (cap->cc_qblocked != 0) {
1834 				crypto_driver_unlock(cap);
1835 				continue;
1836 			}
1837 			crypto_driver_unlock(cap);
1838 
1839 			/*
1840 			 * skip batch crp until the end of crp_q
1841 			 */
1842 			if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1843 				if (submit == NULL) {
1844 					submit = crp;
1845 				} else {
1846 					if (CRYPTO_SESID2HID(submit->crp_sid)
1847 					    == hid)
1848 						hint = CRYPTO_HINT_MORE;
1849 				}
1850 
1851 				continue;
1852 			}
1853 
1854 			/*
1855 			 * found first crp which is neither blocked nor batch.
1856 			 */
1857 			submit = crp;
1858 			/*
1859 			 * batch crp can be processed much later, so clear hint.
1860 			 */
1861 			hint = 0;
1862 			break;
1863 		}
1864 		if (submit != NULL) {
1865 			TAILQ_REMOVE(crp_q, submit, crp_next);
1866 			result = crypto_invoke(submit, hint);
1867 			KASSERTMSG(result == 0 || result == ERESTART,
1868 			    "result=%d", result);
1869 			/* we must take here as the TAILQ op or kinvoke
1870 			   may need this mutex below.  sigh. */
1871 			if (result == ERESTART) {
1872 				/*
1873 				 * The driver ran out of resources, mark the
1874 				 * driver ``blocked'' for cryptop's and put
1875 				 * the request back in the queue.  It would
1876 				 * best to put the request back where we got
1877 				 * it but that's hard so for now we put it
1878 				 * at the front.  This should be ok; putting
1879 				 * it at the end does not work.
1880 				 */
1881 				/* validate sid again */
1882 				cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
1883 				if (cap == NULL) {
1884 					/* migrate again, sigh... */
1885 					TAILQ_INSERT_TAIL(crp_q, submit, crp_next);
1886 				} else {
1887 					cap->cc_qblocked = 1;
1888 					crypto_driver_unlock(cap);
1889 					TAILQ_INSERT_HEAD(crp_q, submit, crp_next);
1890 					cryptostats.cs_blocks++;
1891 				}
1892 			}
1893 		}
1894 
1895 		/* As above, but for key ops */
1896 		TAILQ_FOREACH_SAFE(krp, crp_kq, krp_next, knext) {
1897 			cap = crypto_checkdriver_lock(krp->krp_hid);
1898 			if (cap == NULL || cap->cc_kprocess == NULL) {
1899 				if (cap != NULL)
1900 					crypto_driver_unlock(cap);
1901 				/* Op needs to be migrated, process it. */
1902 				break;
1903 			}
1904 			if (!cap->cc_kqblocked) {
1905 				crypto_driver_unlock(cap);
1906 				break;
1907 			}
1908 			crypto_driver_unlock(cap);
1909 		}
1910 		if (krp != NULL) {
1911 			TAILQ_REMOVE(crp_kq, krp, krp_next);
1912 			result = crypto_kinvoke(krp, 0);
1913 			KASSERTMSG(result == 0 || result == ERESTART,
1914 			    "result=%d", result);
1915 			/* the next iteration will want the mutex. :-/ */
1916 			if (result == ERESTART) {
1917 				/*
1918 				 * The driver ran out of resources, mark the
1919 				 * driver ``blocked'' for cryptkop's and put
1920 				 * the request back in the queue.  It would
1921 				 * best to put the request back where we got
1922 				 * it but that's hard so for now we put it
1923 				 * at the front.  This should be ok; putting
1924 				 * it at the end does not work.
1925 				 */
1926 				/* validate sid again */
1927 				cap = crypto_checkdriver_lock(krp->krp_hid);
1928 				if (cap == NULL) {
1929 					/* migrate again, sigh... */
1930 					TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1931 				} else {
1932 					cap->cc_kqblocked = 1;
1933 					crypto_driver_unlock(cap);
1934 					TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
1935 					cryptostats.cs_kblocks++;
1936 				}
1937 			}
1938 		}
1939 	} while (submit != NULL || krp != NULL);
1940 	crypto_put_crp_qs(&s);
1941 }
1942 
1943 /*
1944  * softint handler to do callbacks.
1945  */
1946 static void
cryptoret_softint(void * arg __unused)1947 cryptoret_softint(void *arg __unused)
1948 {
1949 	struct crypto_crp_ret_qs *qs;
1950 	struct crypto_crp_ret_q *crp_ret_q;
1951 	struct crypto_crp_ret_kq *crp_ret_kq;
1952 
1953 	qs = crypto_get_crp_ret_qs(curcpu());
1954 	crp_ret_q = &qs->crp_ret_q;
1955 	crp_ret_kq = &qs->crp_ret_kq;
1956 	for (;;) {
1957 		struct cryptop *crp;
1958 		struct cryptkop *krp;
1959 
1960 		crp = TAILQ_FIRST(crp_ret_q);
1961 		if (crp != NULL) {
1962 			TAILQ_REMOVE(crp_ret_q, crp, crp_next);
1963 			qs->crp_ret_q_len--;
1964 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1965 		}
1966 		krp = TAILQ_FIRST(crp_ret_kq);
1967 		if (krp != NULL) {
1968 			TAILQ_REMOVE(crp_ret_kq, krp, krp_next);
1969 			qs->crp_ret_q_len--;
1970 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1971 		}
1972 
1973 		/* drop before calling any callbacks. */
1974 		if (crp == NULL && krp == NULL)
1975 			break;
1976 
1977 		mutex_spin_exit(&qs->crp_ret_q_mtx);
1978 		if (crp != NULL) {
1979 #ifdef CRYPTO_TIMING
1980 			if (crypto_timing) {
1981 				/*
1982 				 * NB: We must copy the timestamp before
1983 				 * doing the callback as the cryptop is
1984 				 * likely to be reclaimed.
1985 				 */
1986 				struct timespec t = crp->crp_tstamp;
1987 				crypto_tstat(&cryptostats.cs_cb, &t);
1988 				crp->crp_callback(crp);
1989 				crypto_tstat(&cryptostats.cs_finis, &t);
1990 			} else
1991 #endif
1992 			{
1993 				crp->crp_callback(crp);
1994 			}
1995 		}
1996 		if (krp != NULL)
1997 			krp->krp_callback(krp);
1998 
1999 		mutex_spin_enter(&qs->crp_ret_q_mtx);
2000 	}
2001 	crypto_put_crp_ret_qs(curcpu());
2002 }
2003 
2004 /* NetBSD module interface */
2005 
2006 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
2007 
2008 static int
opencrypto_modcmd(modcmd_t cmd,void * opaque)2009 opencrypto_modcmd(modcmd_t cmd, void *opaque)
2010 {
2011 	int error = 0;
2012 
2013 	switch (cmd) {
2014 	case MODULE_CMD_INIT:
2015 #ifdef _MODULE
2016 		error = crypto_init();
2017 #endif
2018 		break;
2019 	case MODULE_CMD_FINI:
2020 #ifdef _MODULE
2021 		error = crypto_destroy(true);
2022 #endif
2023 		break;
2024 	default:
2025 		error = ENOTTY;
2026 	}
2027 	return error;
2028 }
2029