1 //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass identifies loops where we can generate the Hexagon hardware 10 // loop instruction. The hardware loop can perform loop branches with a 11 // zero-cycle overhead. 12 // 13 // The pattern that defines the induction variable can changed depending on 14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 15 // normalizes induction variables, and the Loop Strength Reduction pass 16 // run by 'llc' may also make changes to the induction variable. 17 // The pattern detected by this phase is due to running Strength Reduction. 18 // 19 // Criteria for hardware loops: 20 // - Countable loops (w/ ind. var for a trip count) 21 // - Assumes loops are normalized by IndVarSimplify 22 // - Try inner-most loops first 23 // - No function calls in loops. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "HexagonInstrInfo.h" 28 #include "HexagonSubtarget.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineOperand.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <cassert> 54 #include <cstdint> 55 #include <cstdlib> 56 #include <iterator> 57 #include <map> 58 #include <set> 59 #include <string> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "hwloops" 66 67 #ifndef NDEBUG 68 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); 69 70 // Option to create preheader only for a specific function. 71 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, 72 cl::init("")); 73 #endif 74 75 // Option to create a preheader if one doesn't exist. 76 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", 77 cl::Hidden, cl::init(true), 78 cl::desc("Add a preheader to a hardware loop if one doesn't exist")); 79 80 // Turn it off by default. If a preheader block is not created here, the 81 // software pipeliner may be unable to find a block suitable to serve as 82 // a preheader. In that case SWP will not run. 83 static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::Hidden, 84 cl::desc("Allow speculation of preheader " 85 "instructions")); 86 87 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 88 89 namespace llvm { 90 91 FunctionPass *createHexagonHardwareLoops(); 92 void initializeHexagonHardwareLoopsPass(PassRegistry&); 93 94 } // end namespace llvm 95 96 namespace { 97 98 class CountValue; 99 100 struct HexagonHardwareLoops : public MachineFunctionPass { 101 MachineLoopInfo *MLI; 102 MachineRegisterInfo *MRI; 103 MachineDominatorTree *MDT; 104 const HexagonInstrInfo *TII; 105 const HexagonRegisterInfo *TRI; 106 #ifndef NDEBUG 107 static int Counter; 108 #endif 109 110 public: 111 static char ID; 112 113 HexagonHardwareLoops() : MachineFunctionPass(ID) {} 114 115 bool runOnMachineFunction(MachineFunction &MF) override; 116 117 StringRef getPassName() const override { return "Hexagon Hardware Loops"; } 118 119 void getAnalysisUsage(AnalysisUsage &AU) const override { 120 AU.addRequired<MachineDominatorTreeWrapperPass>(); 121 AU.addRequired<MachineLoopInfoWrapperPass>(); 122 MachineFunctionPass::getAnalysisUsage(AU); 123 } 124 125 private: 126 using LoopFeederMap = std::map<Register, MachineInstr *>; 127 128 /// Kinds of comparisons in the compare instructions. 129 struct Comparison { 130 enum Kind { 131 EQ = 0x01, 132 NE = 0x02, 133 L = 0x04, 134 G = 0x08, 135 U = 0x40, 136 LTs = L, 137 LEs = L | EQ, 138 GTs = G, 139 GEs = G | EQ, 140 LTu = L | U, 141 LEu = L | EQ | U, 142 GTu = G | U, 143 GEu = G | EQ | U 144 }; 145 146 static Kind getSwappedComparison(Kind Cmp) { 147 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 148 if ((Cmp & L) || (Cmp & G)) 149 return (Kind)(Cmp ^ (L|G)); 150 return Cmp; 151 } 152 153 static Kind getNegatedComparison(Kind Cmp) { 154 if ((Cmp & L) || (Cmp & G)) 155 return (Kind)((Cmp ^ (L | G)) ^ EQ); 156 if ((Cmp & NE) || (Cmp & EQ)) 157 return (Kind)(Cmp ^ (EQ | NE)); 158 return (Kind)0; 159 } 160 161 static bool isSigned(Kind Cmp) { 162 return (Cmp & (L | G) && !(Cmp & U)); 163 } 164 165 static bool isUnsigned(Kind Cmp) { 166 return (Cmp & U); 167 } 168 }; 169 170 /// Find the register that contains the loop controlling 171 /// induction variable. 172 /// If successful, it will return true and set the \p Reg, \p IVBump 173 /// and \p IVOp arguments. Otherwise it will return false. 174 /// The returned induction register is the register R that follows the 175 /// following induction pattern: 176 /// loop: 177 /// R = phi ..., [ R.next, LatchBlock ] 178 /// R.next = R + #bump 179 /// if (R.next < #N) goto loop 180 /// IVBump is the immediate value added to R, and IVOp is the instruction 181 /// "R.next = R + #bump". 182 bool findInductionRegister(MachineLoop *L, Register &Reg, 183 int64_t &IVBump, MachineInstr *&IVOp) const; 184 185 /// Return the comparison kind for the specified opcode. 186 Comparison::Kind getComparisonKind(unsigned CondOpc, 187 MachineOperand *InitialValue, 188 const MachineOperand *Endvalue, 189 int64_t IVBump) const; 190 191 /// Analyze the statements in a loop to determine if the loop 192 /// has a computable trip count and, if so, return a value that represents 193 /// the trip count expression. 194 CountValue *getLoopTripCount(MachineLoop *L, 195 SmallVectorImpl<MachineInstr *> &OldInsts); 196 197 /// Return the expression that represents the number of times 198 /// a loop iterates. The function takes the operands that represent the 199 /// loop start value, loop end value, and induction value. Based upon 200 /// these operands, the function attempts to compute the trip count. 201 /// If the trip count is not directly available (as an immediate value, 202 /// or a register), the function will attempt to insert computation of it 203 /// to the loop's preheader. 204 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, 205 const MachineOperand *End, Register IVReg, 206 int64_t IVBump, Comparison::Kind Cmp) const; 207 208 /// Return true if the instruction is not valid within a hardware 209 /// loop. 210 bool isInvalidLoopOperation(const MachineInstr *MI, 211 bool IsInnerHWLoop) const; 212 213 /// Return true if the loop contains an instruction that inhibits 214 /// using the hardware loop. 215 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; 216 217 /// Given a loop, check if we can convert it to a hardware loop. 218 /// If so, then perform the conversion and return true. 219 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); 220 221 /// Return true if the instruction is now dead. 222 bool isDead(const MachineInstr *MI, 223 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 224 225 /// Remove the instruction if it is now dead. 226 void removeIfDead(MachineInstr *MI); 227 228 /// Make sure that the "bump" instruction executes before the 229 /// compare. We need that for the IV fixup, so that the compare 230 /// instruction would not use a bumped value that has not yet been 231 /// defined. If the instructions are out of order, try to reorder them. 232 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 233 234 /// Return true if MO and MI pair is visited only once. If visited 235 /// more than once, this indicates there is recursion. In such a case, 236 /// return false. 237 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, 238 const MachineOperand *MO, 239 LoopFeederMap &LoopFeederPhi) const; 240 241 /// Return true if the Phi may generate a value that may underflow, 242 /// or may wrap. 243 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, 244 MachineBasicBlock *MBB, MachineLoop *L, 245 LoopFeederMap &LoopFeederPhi) const; 246 247 /// Return true if the induction variable may underflow an unsigned 248 /// value in the first iteration. 249 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, 250 const MachineOperand *EndVal, 251 MachineBasicBlock *MBB, MachineLoop *L, 252 LoopFeederMap &LoopFeederPhi) const; 253 254 /// Check if the given operand has a compile-time known constant 255 /// value. Return true if yes, and false otherwise. When returning true, set 256 /// Val to the corresponding constant value. 257 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; 258 259 /// Check if the operand has a compile-time known constant value. 260 bool isImmediate(const MachineOperand &MO) const { 261 int64_t V; 262 return checkForImmediate(MO, V); 263 } 264 265 /// Return the immediate for the specified operand. 266 int64_t getImmediate(const MachineOperand &MO) const { 267 int64_t V; 268 if (!checkForImmediate(MO, V)) 269 llvm_unreachable("Invalid operand"); 270 return V; 271 } 272 273 /// Reset the given machine operand to now refer to a new immediate 274 /// value. Assumes that the operand was already referencing an immediate 275 /// value, either directly, or via a register. 276 void setImmediate(MachineOperand &MO, int64_t Val); 277 278 /// Fix the data flow of the induction variable. 279 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 280 /// | 281 /// +-> back to phi 282 /// where "bump" is the increment of the induction variable: 283 /// iv = iv + #const. 284 /// Due to some prior code transformations, the actual flow may look 285 /// like this: 286 /// phi -+-> bump ---> back to phi 287 /// | 288 /// +-> comparison-in-latch (against upper_bound-bump), 289 /// i.e. the comparison that controls the loop execution may be using 290 /// the value of the induction variable from before the increment. 291 /// 292 /// Return true if the loop's flow is the desired one (i.e. it's 293 /// either been fixed, or no fixing was necessary). 294 /// Otherwise, return false. This can happen if the induction variable 295 /// couldn't be identified, or if the value in the latch's comparison 296 /// cannot be adjusted to reflect the post-bump value. 297 bool fixupInductionVariable(MachineLoop *L); 298 299 /// Given a loop, if it does not have a preheader, create one. 300 /// Return the block that is the preheader. 301 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 302 }; 303 304 char HexagonHardwareLoops::ID = 0; 305 #ifndef NDEBUG 306 int HexagonHardwareLoops::Counter = 0; 307 #endif 308 309 /// Abstraction for a trip count of a loop. A smaller version 310 /// of the MachineOperand class without the concerns of changing the 311 /// operand representation. 312 class CountValue { 313 public: 314 enum CountValueType { 315 CV_Register, 316 CV_Immediate 317 }; 318 319 private: 320 CountValueType Kind; 321 union Values { 322 Values() : R{Register(), 0} {} 323 Values(const Values&) = default; 324 struct { 325 Register Reg; 326 unsigned Sub; 327 } R; 328 unsigned ImmVal; 329 } Contents; 330 331 public: 332 explicit CountValue(CountValueType t, Register v, unsigned u = 0) { 333 Kind = t; 334 if (Kind == CV_Register) { 335 Contents.R.Reg = v; 336 Contents.R.Sub = u; 337 } else { 338 Contents.ImmVal = v; 339 } 340 } 341 342 bool isReg() const { return Kind == CV_Register; } 343 bool isImm() const { return Kind == CV_Immediate; } 344 345 Register getReg() const { 346 assert(isReg() && "Wrong CountValue accessor"); 347 return Contents.R.Reg; 348 } 349 350 unsigned getSubReg() const { 351 assert(isReg() && "Wrong CountValue accessor"); 352 return Contents.R.Sub; 353 } 354 355 unsigned getImm() const { 356 assert(isImm() && "Wrong CountValue accessor"); 357 return Contents.ImmVal; 358 } 359 360 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { 361 if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); } 362 if (isImm()) { OS << Contents.ImmVal; } 363 } 364 }; 365 366 } // end anonymous namespace 367 368 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 369 "Hexagon Hardware Loops", false, false) 370 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 371 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 372 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 373 "Hexagon Hardware Loops", false, false) 374 375 FunctionPass *llvm::createHexagonHardwareLoops() { 376 return new HexagonHardwareLoops(); 377 } 378 379 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 380 LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 381 if (skipFunction(MF.getFunction())) 382 return false; 383 384 bool Changed = false; 385 386 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 387 MRI = &MF.getRegInfo(); 388 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 389 const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>(); 390 TII = HST.getInstrInfo(); 391 TRI = HST.getRegisterInfo(); 392 393 for (auto &L : *MLI) 394 if (L->isOutermost()) { 395 bool L0Used = false; 396 bool L1Used = false; 397 Changed |= convertToHardwareLoop(L, L0Used, L1Used); 398 } 399 400 return Changed; 401 } 402 403 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 404 Register &Reg, 405 int64_t &IVBump, 406 MachineInstr *&IVOp 407 ) const { 408 MachineBasicBlock *Header = L->getHeader(); 409 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 410 MachineBasicBlock *Latch = L->getLoopLatch(); 411 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 412 if (!Header || !Preheader || !Latch || !ExitingBlock) 413 return false; 414 415 // This pair represents an induction register together with an immediate 416 // value that will be added to it in each loop iteration. 417 using RegisterBump = std::pair<Register, int64_t>; 418 419 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 420 // from an induction operation 421 // R.next = R + bump 422 // where bump is an immediate value. 423 using InductionMap = std::map<Register, RegisterBump>; 424 425 InductionMap IndMap; 426 427 using instr_iterator = MachineBasicBlock::instr_iterator; 428 429 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 430 I != E && I->isPHI(); ++I) { 431 MachineInstr *Phi = &*I; 432 433 // Have a PHI instruction. Get the operand that corresponds to the 434 // latch block, and see if is a result of an addition of form "reg+imm", 435 // where the "reg" is defined by the PHI node we are looking at. 436 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 437 if (Phi->getOperand(i+1).getMBB() != Latch) 438 continue; 439 440 Register PhiOpReg = Phi->getOperand(i).getReg(); 441 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 442 443 if (DI->getDesc().isAdd()) { 444 // If the register operand to the add is the PHI we're looking at, this 445 // meets the induction pattern. 446 Register IndReg = DI->getOperand(1).getReg(); 447 MachineOperand &Opnd2 = DI->getOperand(2); 448 int64_t V; 449 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 450 Register UpdReg = DI->getOperand(0).getReg(); 451 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 452 } 453 } 454 } // for (i) 455 } // for (instr) 456 457 SmallVector<MachineOperand,2> Cond; 458 MachineBasicBlock *TB = nullptr, *FB = nullptr; 459 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 460 if (NotAnalyzed) 461 return false; 462 463 Register PredR; 464 unsigned PredPos, PredRegFlags; 465 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) 466 return false; 467 468 MachineInstr *PredI = MRI->getVRegDef(PredR); 469 if (!PredI->isCompare()) 470 return false; 471 472 Register CmpReg1, CmpReg2; 473 int64_t CmpImm = 0, CmpMask = 0; 474 bool CmpAnalyzed = 475 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm); 476 // Fail if the compare was not analyzed, or it's not comparing a register 477 // with an immediate value. Not checking the mask here, since we handle 478 // the individual compare opcodes (including A4_cmpb*) later on. 479 if (!CmpAnalyzed) 480 return false; 481 482 // Exactly one of the input registers to the comparison should be among 483 // the induction registers. 484 InductionMap::iterator IndMapEnd = IndMap.end(); 485 InductionMap::iterator F = IndMapEnd; 486 if (CmpReg1 != 0) { 487 InductionMap::iterator F1 = IndMap.find(CmpReg1); 488 if (F1 != IndMapEnd) 489 F = F1; 490 } 491 if (CmpReg2 != 0) { 492 InductionMap::iterator F2 = IndMap.find(CmpReg2); 493 if (F2 != IndMapEnd) { 494 if (F != IndMapEnd) 495 return false; 496 F = F2; 497 } 498 } 499 if (F == IndMapEnd) 500 return false; 501 502 Reg = F->second.first; 503 IVBump = F->second.second; 504 IVOp = MRI->getVRegDef(F->first); 505 return true; 506 } 507 508 // Return the comparison kind for the specified opcode. 509 HexagonHardwareLoops::Comparison::Kind 510 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, 511 MachineOperand *InitialValue, 512 const MachineOperand *EndValue, 513 int64_t IVBump) const { 514 Comparison::Kind Cmp = (Comparison::Kind)0; 515 switch (CondOpc) { 516 case Hexagon::C2_cmpeq: 517 case Hexagon::C2_cmpeqi: 518 case Hexagon::C2_cmpeqp: 519 Cmp = Comparison::EQ; 520 break; 521 case Hexagon::C4_cmpneq: 522 case Hexagon::C4_cmpneqi: 523 Cmp = Comparison::NE; 524 break; 525 case Hexagon::C2_cmplt: 526 Cmp = Comparison::LTs; 527 break; 528 case Hexagon::C2_cmpltu: 529 Cmp = Comparison::LTu; 530 break; 531 case Hexagon::C4_cmplte: 532 case Hexagon::C4_cmpltei: 533 Cmp = Comparison::LEs; 534 break; 535 case Hexagon::C4_cmplteu: 536 case Hexagon::C4_cmplteui: 537 Cmp = Comparison::LEu; 538 break; 539 case Hexagon::C2_cmpgt: 540 case Hexagon::C2_cmpgti: 541 case Hexagon::C2_cmpgtp: 542 Cmp = Comparison::GTs; 543 break; 544 case Hexagon::C2_cmpgtu: 545 case Hexagon::C2_cmpgtui: 546 case Hexagon::C2_cmpgtup: 547 Cmp = Comparison::GTu; 548 break; 549 case Hexagon::C2_cmpgei: 550 Cmp = Comparison::GEs; 551 break; 552 case Hexagon::C2_cmpgeui: 553 Cmp = Comparison::GEs; 554 break; 555 default: 556 return (Comparison::Kind)0; 557 } 558 return Cmp; 559 } 560 561 /// Analyze the statements in a loop to determine if the loop has 562 /// a computable trip count and, if so, return a value that represents 563 /// the trip count expression. 564 /// 565 /// This function iterates over the phi nodes in the loop to check for 566 /// induction variable patterns that are used in the calculation for 567 /// the number of time the loop is executed. 568 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 569 SmallVectorImpl<MachineInstr *> &OldInsts) { 570 MachineBasicBlock *TopMBB = L->getTopBlock(); 571 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 572 assert(PI != TopMBB->pred_end() && 573 "Loop must have more than one incoming edge!"); 574 MachineBasicBlock *Backedge = *PI++; 575 if (PI == TopMBB->pred_end()) // dead loop? 576 return nullptr; 577 MachineBasicBlock *Incoming = *PI++; 578 if (PI != TopMBB->pred_end()) // multiple backedges? 579 return nullptr; 580 581 // Make sure there is one incoming and one backedge and determine which 582 // is which. 583 if (L->contains(Incoming)) { 584 if (L->contains(Backedge)) 585 return nullptr; 586 std::swap(Incoming, Backedge); 587 } else if (!L->contains(Backedge)) 588 return nullptr; 589 590 // Look for the cmp instruction to determine if we can get a useful trip 591 // count. The trip count can be either a register or an immediate. The 592 // location of the value depends upon the type (reg or imm). 593 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 594 if (!ExitingBlock) 595 return nullptr; 596 597 Register IVReg = 0; 598 int64_t IVBump = 0; 599 MachineInstr *IVOp; 600 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 601 if (!FoundIV) 602 return nullptr; 603 604 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 605 606 MachineOperand *InitialValue = nullptr; 607 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 608 MachineBasicBlock *Latch = L->getLoopLatch(); 609 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 610 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 611 if (MBB == Preheader) 612 InitialValue = &IV_Phi->getOperand(i); 613 else if (MBB == Latch) 614 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 615 } 616 if (!InitialValue) 617 return nullptr; 618 619 SmallVector<MachineOperand,2> Cond; 620 MachineBasicBlock *TB = nullptr, *FB = nullptr; 621 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 622 if (NotAnalyzed) 623 return nullptr; 624 625 MachineBasicBlock *Header = L->getHeader(); 626 // TB must be non-null. If FB is also non-null, one of them must be 627 // the header. Otherwise, branch to TB could be exiting the loop, and 628 // the fall through can go to the header. 629 assert (TB && "Exit block without a branch?"); 630 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 631 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 632 SmallVector<MachineOperand,2> LCond; 633 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 634 if (NotAnalyzed) 635 return nullptr; 636 if (TB == Latch) 637 TB = (LTB == Header) ? LTB : LFB; 638 else 639 FB = (LTB == Header) ? LTB: LFB; 640 } 641 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 642 if (!TB || (FB && TB != Header && FB != Header)) 643 return nullptr; 644 645 // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch 646 // to put imm(0), followed by P in the vector Cond. 647 // If TB is not the header, it means that the "not-taken" path must lead 648 // to the header. 649 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); 650 Register PredReg; 651 unsigned PredPos, PredRegFlags; 652 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) 653 return nullptr; 654 MachineInstr *CondI = MRI->getVRegDef(PredReg); 655 unsigned CondOpc = CondI->getOpcode(); 656 657 Register CmpReg1, CmpReg2; 658 int64_t Mask = 0, ImmValue = 0; 659 bool AnalyzedCmp = 660 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue); 661 if (!AnalyzedCmp) 662 return nullptr; 663 664 // The comparison operator type determines how we compute the loop 665 // trip count. 666 OldInsts.push_back(CondI); 667 OldInsts.push_back(IVOp); 668 669 // Sadly, the following code gets information based on the position 670 // of the operands in the compare instruction. This has to be done 671 // this way, because the comparisons check for a specific relationship 672 // between the operands (e.g. is-less-than), rather than to find out 673 // what relationship the operands are in (as on PPC). 674 Comparison::Kind Cmp; 675 bool isSwapped = false; 676 const MachineOperand &Op1 = CondI->getOperand(1); 677 const MachineOperand &Op2 = CondI->getOperand(2); 678 const MachineOperand *EndValue = nullptr; 679 680 if (Op1.isReg()) { 681 if (Op2.isImm() || Op1.getReg() == IVReg) 682 EndValue = &Op2; 683 else { 684 EndValue = &Op1; 685 isSwapped = true; 686 } 687 } 688 689 if (!EndValue) 690 return nullptr; 691 692 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); 693 if (!Cmp) 694 return nullptr; 695 if (Negated) 696 Cmp = Comparison::getNegatedComparison(Cmp); 697 if (isSwapped) 698 Cmp = Comparison::getSwappedComparison(Cmp); 699 700 if (InitialValue->isReg()) { 701 Register R = InitialValue->getReg(); 702 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 703 if (!MDT->properlyDominates(DefBB, Header)) { 704 int64_t V; 705 if (!checkForImmediate(*InitialValue, V)) 706 return nullptr; 707 } 708 OldInsts.push_back(MRI->getVRegDef(R)); 709 } 710 if (EndValue->isReg()) { 711 Register R = EndValue->getReg(); 712 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 713 if (!MDT->properlyDominates(DefBB, Header)) { 714 int64_t V; 715 if (!checkForImmediate(*EndValue, V)) 716 return nullptr; 717 } 718 OldInsts.push_back(MRI->getVRegDef(R)); 719 } 720 721 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 722 } 723 724 /// Helper function that returns the expression that represents the 725 /// number of times a loop iterates. The function takes the operands that 726 /// represent the loop start value, loop end value, and induction value. 727 /// Based upon these operands, the function attempts to compute the trip count. 728 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 729 const MachineOperand *Start, 730 const MachineOperand *End, 731 Register IVReg, 732 int64_t IVBump, 733 Comparison::Kind Cmp) const { 734 // Cannot handle comparison EQ, i.e. while (A == B). 735 if (Cmp == Comparison::EQ) 736 return nullptr; 737 738 // Check if either the start or end values are an assignment of an immediate. 739 // If so, use the immediate value rather than the register. 740 if (Start->isReg()) { 741 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 742 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || 743 StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) 744 Start = &StartValInstr->getOperand(1); 745 } 746 if (End->isReg()) { 747 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 748 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || 749 EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) 750 End = &EndValInstr->getOperand(1); 751 } 752 753 if (!Start->isReg() && !Start->isImm()) 754 return nullptr; 755 if (!End->isReg() && !End->isImm()) 756 return nullptr; 757 758 bool CmpLess = Cmp & Comparison::L; 759 bool CmpGreater = Cmp & Comparison::G; 760 bool CmpHasEqual = Cmp & Comparison::EQ; 761 762 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 763 if (CmpLess && IVBump < 0) 764 // Loop going while iv is "less" with the iv value going down. Must wrap. 765 return nullptr; 766 767 if (CmpGreater && IVBump > 0) 768 // Loop going while iv is "greater" with the iv value going up. Must wrap. 769 return nullptr; 770 771 // Phis that may feed into the loop. 772 LoopFeederMap LoopFeederPhi; 773 774 // Check if the initial value may be zero and can be decremented in the first 775 // iteration. If the value is zero, the endloop instruction will not decrement 776 // the loop counter, so we shouldn't generate a hardware loop in this case. 777 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, 778 LoopFeederPhi)) 779 return nullptr; 780 781 if (Start->isImm() && End->isImm()) { 782 // Both, start and end are immediates. 783 int64_t StartV = Start->getImm(); 784 int64_t EndV = End->getImm(); 785 int64_t Dist = EndV - StartV; 786 if (Dist == 0) 787 return nullptr; 788 789 bool Exact = (Dist % IVBump) == 0; 790 791 if (Cmp == Comparison::NE) { 792 if (!Exact) 793 return nullptr; 794 if ((Dist < 0) ^ (IVBump < 0)) 795 return nullptr; 796 } 797 798 // For comparisons that include the final value (i.e. include equality 799 // with the final value), we need to increase the distance by 1. 800 if (CmpHasEqual) 801 Dist = Dist > 0 ? Dist+1 : Dist-1; 802 803 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, 804 // CmpGreater should imply Dist < 0. These conditions could actually 805 // fail, for example, in unreachable code (which may still appear to be 806 // reachable in the CFG). 807 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) 808 return nullptr; 809 810 // "Normalized" distance, i.e. with the bump set to +-1. 811 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump 812 : (-Dist + (-IVBump - 1)) / (-IVBump); 813 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 814 815 uint64_t Count = Dist1; 816 817 if (Count > 0xFFFFFFFFULL) 818 return nullptr; 819 820 return new CountValue(CountValue::CV_Immediate, Count); 821 } 822 823 // A general case: Start and End are some values, but the actual 824 // iteration count may not be available. If it is not, insert 825 // a computation of it into the preheader. 826 827 // If the induction variable bump is not a power of 2, quit. 828 // Othwerise we'd need a general integer division. 829 if (!isPowerOf2_64(std::abs(IVBump))) 830 return nullptr; 831 832 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader); 833 assert (PH && "Should have a preheader by now"); 834 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 835 DebugLoc DL; 836 if (InsertPos != PH->end()) 837 DL = InsertPos->getDebugLoc(); 838 839 // If Start is an immediate and End is a register, the trip count 840 // will be "reg - imm". Hexagon's "subtract immediate" instruction 841 // is actually "reg + -imm". 842 843 // If the loop IV is going downwards, i.e. if the bump is negative, 844 // then the iteration count (computed as End-Start) will need to be 845 // negated. To avoid the negation, just swap Start and End. 846 if (IVBump < 0) { 847 std::swap(Start, End); 848 IVBump = -IVBump; 849 } 850 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 851 // Signedness, and "including equality" are preserved. 852 853 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 854 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 855 856 int64_t StartV = 0, EndV = 0; 857 if (Start->isImm()) 858 StartV = Start->getImm(); 859 if (End->isImm()) 860 EndV = End->getImm(); 861 862 int64_t AdjV = 0; 863 // To compute the iteration count, we would need this computation: 864 // Count = (End - Start + (IVBump-1)) / IVBump 865 // or, when CmpHasEqual: 866 // Count = (End - Start + (IVBump-1)+1) / IVBump 867 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 868 // generating an instruction specifically to add it if we can adjust 869 // the immediate values for Start or End. 870 871 if (CmpHasEqual) { 872 // Need to add 1 to the total iteration count. 873 if (Start->isImm()) 874 StartV--; 875 else if (End->isImm()) 876 EndV++; 877 else 878 AdjV += 1; 879 } 880 881 if (Cmp != Comparison::NE) { 882 if (Start->isImm()) 883 StartV -= (IVBump-1); 884 else if (End->isImm()) 885 EndV += (IVBump-1); 886 else 887 AdjV += (IVBump-1); 888 } 889 890 Register R = 0; 891 unsigned SR = 0; 892 if (Start->isReg()) { 893 R = Start->getReg(); 894 SR = Start->getSubReg(); 895 } else { 896 R = End->getReg(); 897 SR = End->getSubReg(); 898 } 899 const TargetRegisterClass *RC = MRI->getRegClass(R); 900 // Hardware loops cannot handle 64-bit registers. If it's a double 901 // register, it has to have a subregister. 902 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 903 return nullptr; 904 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 905 906 // Compute DistR (register with the distance between Start and End). 907 Register DistR; 908 unsigned DistSR; 909 910 // Avoid special case, where the start value is an imm(0). 911 if (Start->isImm() && StartV == 0) { 912 DistR = End->getReg(); 913 DistSR = End->getSubReg(); 914 } else { 915 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 916 (RegToImm ? TII->get(Hexagon::A2_subri) : 917 TII->get(Hexagon::A2_addi)); 918 if (RegToReg || RegToImm) { 919 Register SubR = MRI->createVirtualRegister(IntRC); 920 MachineInstrBuilder SubIB = 921 BuildMI(*PH, InsertPos, DL, SubD, SubR); 922 923 if (RegToReg) 924 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 925 .addReg(Start->getReg(), 0, Start->getSubReg()); 926 else 927 SubIB.addImm(EndV) 928 .addReg(Start->getReg(), 0, Start->getSubReg()); 929 DistR = SubR; 930 } else { 931 // If the loop has been unrolled, we should use the original loop count 932 // instead of recalculating the value. This will avoid additional 933 // 'Add' instruction. 934 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 935 if (EndValInstr->getOpcode() == Hexagon::A2_addi && 936 EndValInstr->getOperand(1).getSubReg() == 0 && 937 EndValInstr->getOperand(2).getImm() == StartV) { 938 DistR = EndValInstr->getOperand(1).getReg(); 939 } else { 940 Register SubR = MRI->createVirtualRegister(IntRC); 941 MachineInstrBuilder SubIB = 942 BuildMI(*PH, InsertPos, DL, SubD, SubR); 943 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 944 .addImm(-StartV); 945 DistR = SubR; 946 } 947 } 948 DistSR = 0; 949 } 950 951 // From DistR, compute AdjR (register with the adjusted distance). 952 Register AdjR; 953 unsigned AdjSR; 954 955 if (AdjV == 0) { 956 AdjR = DistR; 957 AdjSR = DistSR; 958 } else { 959 // Generate CountR = ADD DistR, AdjVal 960 Register AddR = MRI->createVirtualRegister(IntRC); 961 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); 962 BuildMI(*PH, InsertPos, DL, AddD, AddR) 963 .addReg(DistR, 0, DistSR) 964 .addImm(AdjV); 965 966 AdjR = AddR; 967 AdjSR = 0; 968 } 969 970 // From AdjR, compute CountR (register with the final count). 971 Register CountR; 972 unsigned CountSR; 973 974 if (IVBump == 1) { 975 CountR = AdjR; 976 CountSR = AdjSR; 977 } else { 978 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 979 unsigned Shift = Log2_32(IVBump); 980 981 // Generate NormR = LSR DistR, Shift. 982 Register LsrR = MRI->createVirtualRegister(IntRC); 983 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); 984 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 985 .addReg(AdjR, 0, AdjSR) 986 .addImm(Shift); 987 988 CountR = LsrR; 989 CountSR = 0; 990 } 991 992 return new CountValue(CountValue::CV_Register, CountR, CountSR); 993 } 994 995 /// Return true if the operation is invalid within hardware loop. 996 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, 997 bool IsInnerHWLoop) const { 998 // Call is not allowed because the callee may use a hardware loop except for 999 // the case when the call never returns. 1000 if (MI->getDesc().isCall()) 1001 return !TII->doesNotReturn(*MI); 1002 1003 // Check if the instruction defines a hardware loop register. 1004 using namespace Hexagon; 1005 1006 static const Register Regs01[] = { LC0, SA0, LC1, SA1 }; 1007 static const Register Regs1[] = { LC1, SA1 }; 1008 auto CheckRegs = IsInnerHWLoop ? ArrayRef(Regs01) : ArrayRef(Regs1); 1009 for (Register R : CheckRegs) 1010 if (MI->modifiesRegister(R, TRI)) 1011 return true; 1012 1013 return false; 1014 } 1015 1016 /// Return true if the loop contains an instruction that inhibits 1017 /// the use of the hardware loop instruction. 1018 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, 1019 bool IsInnerHWLoop) const { 1020 LLVM_DEBUG(dbgs() << "\nhw_loop head, " 1021 << printMBBReference(**L->block_begin())); 1022 for (MachineBasicBlock *MBB : L->getBlocks()) { 1023 for (const MachineInstr &MI : *MBB) { 1024 if (isInvalidLoopOperation(&MI, IsInnerHWLoop)) { 1025 LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:"; 1026 MI.dump();); 1027 return true; 1028 } 1029 } 1030 } 1031 return false; 1032 } 1033 1034 /// Returns true if the instruction is dead. This was essentially 1035 /// copied from DeadMachineInstructionElim::isDead, but with special cases 1036 /// for inline asm, physical registers and instructions with side effects 1037 /// removed. 1038 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 1039 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 1040 // Examine each operand. 1041 for (const MachineOperand &MO : MI->operands()) { 1042 if (!MO.isReg() || !MO.isDef()) 1043 continue; 1044 1045 Register Reg = MO.getReg(); 1046 if (MRI->use_nodbg_empty(Reg)) 1047 continue; 1048 1049 using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator; 1050 1051 // This instruction has users, but if the only user is the phi node for the 1052 // parent block, and the only use of that phi node is this instruction, then 1053 // this instruction is dead: both it (and the phi node) can be removed. 1054 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 1055 use_nodbg_iterator End = MRI->use_nodbg_end(); 1056 if (std::next(I) != End || !I->getParent()->isPHI()) 1057 return false; 1058 1059 MachineInstr *OnePhi = I->getParent(); 1060 for (const MachineOperand &OPO : OnePhi->operands()) { 1061 if (!OPO.isReg() || !OPO.isDef()) 1062 continue; 1063 1064 Register OPReg = OPO.getReg(); 1065 use_nodbg_iterator nextJ; 1066 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 1067 J != End; J = nextJ) { 1068 nextJ = std::next(J); 1069 MachineOperand &Use = *J; 1070 MachineInstr *UseMI = Use.getParent(); 1071 1072 // If the phi node has a user that is not MI, bail. 1073 if (MI != UseMI) 1074 return false; 1075 } 1076 } 1077 DeadPhis.push_back(OnePhi); 1078 } 1079 1080 // If there are no defs with uses, the instruction is dead. 1081 return true; 1082 } 1083 1084 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 1085 // This procedure was essentially copied from DeadMachineInstructionElim. 1086 1087 SmallVector<MachineInstr*, 1> DeadPhis; 1088 if (isDead(MI, DeadPhis)) { 1089 LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI); 1090 1091 // It is possible that some DBG_VALUE instructions refer to this 1092 // instruction. Examine each def operand for such references; 1093 // if found, mark the DBG_VALUE as undef (but don't delete it). 1094 for (const MachineOperand &MO : MI->operands()) { 1095 if (!MO.isReg() || !MO.isDef()) 1096 continue; 1097 Register Reg = MO.getReg(); 1098 // We use make_early_inc_range here because setReg below invalidates the 1099 // iterator. 1100 for (MachineOperand &MO : 1101 llvm::make_early_inc_range(MRI->use_operands(Reg))) { 1102 MachineInstr *UseMI = MO.getParent(); 1103 if (UseMI == MI) 1104 continue; 1105 if (MO.isDebug()) 1106 MO.setReg(0U); 1107 } 1108 } 1109 1110 MI->eraseFromParent(); 1111 for (unsigned i = 0; i < DeadPhis.size(); ++i) 1112 DeadPhis[i]->eraseFromParent(); 1113 } 1114 } 1115 1116 /// Check if the loop is a candidate for converting to a hardware 1117 /// loop. If so, then perform the transformation. 1118 /// 1119 /// This function works on innermost loops first. A loop can be converted 1120 /// if it is a counting loop; either a register value or an immediate. 1121 /// 1122 /// The code makes several assumptions about the representation of the loop 1123 /// in llvm. 1124 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, 1125 bool &RecL0used, 1126 bool &RecL1used) { 1127 // This is just to confirm basic correctness. 1128 assert(L->getHeader() && "Loop without a header?"); 1129 1130 bool Changed = false; 1131 bool L0Used = false; 1132 bool L1Used = false; 1133 1134 // Process nested loops first. 1135 for (MachineLoop *I : *L) { 1136 Changed |= convertToHardwareLoop(I, RecL0used, RecL1used); 1137 L0Used |= RecL0used; 1138 L1Used |= RecL1used; 1139 } 1140 1141 // If a nested loop has been converted, then we can't convert this loop. 1142 if (Changed && L0Used && L1Used) 1143 return Changed; 1144 1145 unsigned LOOP_i; 1146 unsigned LOOP_r; 1147 unsigned ENDLOOP; 1148 1149 // Flag used to track loopN instruction: 1150 // 1 - Hardware loop is being generated for the inner most loop. 1151 // 0 - Hardware loop is being generated for the outer loop. 1152 unsigned IsInnerHWLoop = 1; 1153 1154 if (L0Used) { 1155 LOOP_i = Hexagon::J2_loop1i; 1156 LOOP_r = Hexagon::J2_loop1r; 1157 ENDLOOP = Hexagon::ENDLOOP1; 1158 IsInnerHWLoop = 0; 1159 } else { 1160 LOOP_i = Hexagon::J2_loop0i; 1161 LOOP_r = Hexagon::J2_loop0r; 1162 ENDLOOP = Hexagon::ENDLOOP0; 1163 } 1164 1165 #ifndef NDEBUG 1166 // Stop trying after reaching the limit (if any). 1167 int Limit = HWLoopLimit; 1168 if (Limit >= 0) { 1169 if (Counter >= HWLoopLimit) 1170 return false; 1171 Counter++; 1172 } 1173 #endif 1174 1175 // Does the loop contain any invalid instructions? 1176 if (containsInvalidInstruction(L, IsInnerHWLoop)) 1177 return false; 1178 1179 MachineBasicBlock *LastMBB = L->findLoopControlBlock(); 1180 // Don't generate hw loop if the loop has more than one exit. 1181 if (!LastMBB) 1182 return false; 1183 1184 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1185 if (LastI == LastMBB->end()) 1186 return false; 1187 1188 // Is the induction variable bump feeding the latch condition? 1189 if (!fixupInductionVariable(L)) 1190 return false; 1191 1192 // Ensure the loop has a preheader: the loop instruction will be 1193 // placed there. 1194 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 1195 if (!Preheader) { 1196 Preheader = createPreheaderForLoop(L); 1197 if (!Preheader) 1198 return false; 1199 } 1200 1201 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1202 1203 SmallVector<MachineInstr*, 2> OldInsts; 1204 // Are we able to determine the trip count for the loop? 1205 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1206 if (!TripCount) 1207 return false; 1208 1209 // Is the trip count available in the preheader? 1210 if (TripCount->isReg()) { 1211 // There will be a use of the register inserted into the preheader, 1212 // so make sure that the register is actually defined at that point. 1213 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1214 MachineBasicBlock *BBDef = TCDef->getParent(); 1215 if (!MDT->dominates(BBDef, Preheader)) 1216 return false; 1217 } 1218 1219 // Determine the loop start. 1220 MachineBasicBlock *TopBlock = L->getTopBlock(); 1221 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1222 MachineBasicBlock *LoopStart = nullptr; 1223 if (ExitingBlock != L->getLoopLatch()) { 1224 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1225 SmallVector<MachineOperand, 2> Cond; 1226 1227 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false)) 1228 return false; 1229 1230 if (L->contains(TB)) 1231 LoopStart = TB; 1232 else if (L->contains(FB)) 1233 LoopStart = FB; 1234 else 1235 return false; 1236 } 1237 else 1238 LoopStart = TopBlock; 1239 1240 // Convert the loop to a hardware loop. 1241 LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1242 DebugLoc DL; 1243 if (InsertPos != Preheader->end()) 1244 DL = InsertPos->getDebugLoc(); 1245 1246 if (TripCount->isReg()) { 1247 // Create a copy of the loop count register. 1248 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1249 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1250 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1251 // Add the Loop instruction to the beginning of the loop. 1252 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) 1253 .addReg(CountReg); 1254 } else { 1255 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1256 // Add the Loop immediate instruction to the beginning of the loop, 1257 // if the immediate fits in the instructions. Otherwise, we need to 1258 // create a new virtual register. 1259 int64_t CountImm = TripCount->getImm(); 1260 if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) { 1261 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1262 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) 1263 .addImm(CountImm); 1264 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) 1265 .addMBB(LoopStart).addReg(CountReg); 1266 } else 1267 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) 1268 .addMBB(LoopStart).addImm(CountImm); 1269 } 1270 1271 // Make sure the loop start always has a reference in the CFG. 1272 LoopStart->setMachineBlockAddressTaken(); 1273 1274 // Replace the loop branch with an endloop instruction. 1275 DebugLoc LastIDL = LastI->getDebugLoc(); 1276 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); 1277 1278 // The loop ends with either: 1279 // - a conditional branch followed by an unconditional branch, or 1280 // - a conditional branch to the loop start. 1281 if (LastI->getOpcode() == Hexagon::J2_jumpt || 1282 LastI->getOpcode() == Hexagon::J2_jumpf) { 1283 // Delete one and change/add an uncond. branch to out of the loop. 1284 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1285 LastI = LastMBB->erase(LastI); 1286 if (!L->contains(BranchTarget)) { 1287 if (LastI != LastMBB->end()) 1288 LastI = LastMBB->erase(LastI); 1289 SmallVector<MachineOperand, 0> Cond; 1290 TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1291 } 1292 } else { 1293 // Conditional branch to loop start; just delete it. 1294 LastMBB->erase(LastI); 1295 } 1296 delete TripCount; 1297 1298 // The induction operation and the comparison may now be 1299 // unneeded. If these are unneeded, then remove them. 1300 for (unsigned i = 0; i < OldInsts.size(); ++i) 1301 removeIfDead(OldInsts[i]); 1302 1303 ++NumHWLoops; 1304 1305 // Set RecL1used and RecL0used only after hardware loop has been 1306 // successfully generated. Doing it earlier can cause wrong loop instruction 1307 // to be used. 1308 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. 1309 RecL1used = true; 1310 else 1311 RecL0used = true; 1312 1313 return true; 1314 } 1315 1316 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1317 MachineInstr *CmpI) { 1318 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1319 1320 MachineBasicBlock *BB = BumpI->getParent(); 1321 if (CmpI->getParent() != BB) 1322 return false; 1323 1324 using instr_iterator = MachineBasicBlock::instr_iterator; 1325 1326 // Check if things are in order to begin with. 1327 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) 1328 if (&*I == CmpI) 1329 return true; 1330 1331 // Out of order. 1332 Register PredR = CmpI->getOperand(0).getReg(); 1333 bool FoundBump = false; 1334 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt); 1335 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1336 MachineInstr *In = &*I; 1337 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1338 MachineOperand &MO = In->getOperand(i); 1339 if (MO.isReg() && MO.isUse()) { 1340 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1341 return false; 1342 } 1343 } 1344 1345 if (In == BumpI) { 1346 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator()); 1347 FoundBump = true; 1348 break; 1349 } 1350 } 1351 assert (FoundBump && "Cannot determine instruction order"); 1352 return FoundBump; 1353 } 1354 1355 /// This function is required to break recursion. Visiting phis in a loop may 1356 /// result in recursion during compilation. We break the recursion by making 1357 /// sure that we visit a MachineOperand and its definition in a 1358 /// MachineInstruction only once. If we attempt to visit more than once, then 1359 /// there is recursion, and will return false. 1360 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, 1361 MachineInstr *MI, 1362 const MachineOperand *MO, 1363 LoopFeederMap &LoopFeederPhi) const { 1364 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { 1365 LLVM_DEBUG(dbgs() << "\nhw_loop head, " 1366 << printMBBReference(**L->block_begin())); 1367 // Ignore all BBs that form Loop. 1368 if (llvm::is_contained(L->getBlocks(), A)) 1369 return false; 1370 MachineInstr *Def = MRI->getVRegDef(MO->getReg()); 1371 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); 1372 return true; 1373 } else 1374 // Already visited node. 1375 return false; 1376 } 1377 1378 /// Return true if a Phi may generate a value that can underflow. 1379 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. 1380 bool HexagonHardwareLoops::phiMayWrapOrUnderflow( 1381 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, 1382 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { 1383 assert(Phi->isPHI() && "Expecting a Phi."); 1384 // Walk through each Phi, and its used operands. Make sure that 1385 // if there is recursion in Phi, we won't generate hardware loops. 1386 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) 1387 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) 1388 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, 1389 Phi->getParent(), L, LoopFeederPhi)) 1390 return true; 1391 return false; 1392 } 1393 1394 /// Return true if the induction variable can underflow in the first iteration. 1395 /// An example, is an initial unsigned value that is 0 and is decrement in the 1396 /// first itertion of a do-while loop. In this case, we cannot generate a 1397 /// hardware loop because the endloop instruction does not decrement the loop 1398 /// counter if it is <= 1. We only need to perform this analysis if the 1399 /// initial value is a register. 1400 /// 1401 /// This function assumes the initial value may underfow unless proven 1402 /// otherwise. If the type is signed, then we don't care because signed 1403 /// underflow is undefined. We attempt to prove the initial value is not 1404 /// zero by perfoming a crude analysis of the loop counter. This function 1405 /// checks if the initial value is used in any comparison prior to the loop 1406 /// and, if so, assumes the comparison is a range check. This is inexact, 1407 /// but will catch the simple cases. 1408 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( 1409 const MachineOperand *InitVal, const MachineOperand *EndVal, 1410 MachineBasicBlock *MBB, MachineLoop *L, 1411 LoopFeederMap &LoopFeederPhi) const { 1412 // Only check register values since they are unknown. 1413 if (!InitVal->isReg()) 1414 return false; 1415 1416 if (!EndVal->isImm()) 1417 return false; 1418 1419 // A register value that is assigned an immediate is a known value, and it 1420 // won't underflow in the first iteration. 1421 int64_t Imm; 1422 if (checkForImmediate(*InitVal, Imm)) 1423 return (EndVal->getImm() == Imm); 1424 1425 Register Reg = InitVal->getReg(); 1426 1427 // We don't know the value of a physical register. 1428 if (!Reg.isVirtual()) 1429 return true; 1430 1431 MachineInstr *Def = MRI->getVRegDef(Reg); 1432 if (!Def) 1433 return true; 1434 1435 // If the initial value is a Phi or copy and the operands may not underflow, 1436 // then the definition cannot be underflow either. 1437 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), 1438 L, LoopFeederPhi)) 1439 return false; 1440 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), 1441 EndVal, Def->getParent(), 1442 L, LoopFeederPhi)) 1443 return false; 1444 1445 // Iterate over the uses of the initial value. If the initial value is used 1446 // in a compare, then we assume this is a range check that ensures the loop 1447 // doesn't underflow. This is not an exact test and should be improved. 1448 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), 1449 E = MRI->use_instr_nodbg_end(); I != E; ++I) { 1450 MachineInstr *MI = &*I; 1451 Register CmpReg1, CmpReg2; 1452 int64_t CmpMask = 0, CmpValue = 0; 1453 1454 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) 1455 continue; 1456 1457 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1458 SmallVector<MachineOperand, 2> Cond; 1459 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) 1460 continue; 1461 1462 Comparison::Kind Cmp = 1463 getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0); 1464 if (Cmp == 0) 1465 continue; 1466 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) 1467 Cmp = Comparison::getNegatedComparison(Cmp); 1468 if (CmpReg2 != 0 && CmpReg2 == Reg) 1469 Cmp = Comparison::getSwappedComparison(Cmp); 1470 1471 // Signed underflow is undefined. 1472 if (Comparison::isSigned(Cmp)) 1473 return false; 1474 1475 // Check if there is a comparison of the initial value. If the initial value 1476 // is greater than or not equal to another value, then assume this is a 1477 // range check. 1478 if ((Cmp & Comparison::G) || Cmp == Comparison::NE) 1479 return false; 1480 } 1481 1482 // OK - this is a hack that needs to be improved. We really need to analyze 1483 // the instructions performed on the initial value. This works on the simplest 1484 // cases only. 1485 if (!Def->isCopy() && !Def->isPHI()) 1486 return false; 1487 1488 return true; 1489 } 1490 1491 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, 1492 int64_t &Val) const { 1493 if (MO.isImm()) { 1494 Val = MO.getImm(); 1495 return true; 1496 } 1497 if (!MO.isReg()) 1498 return false; 1499 1500 // MO is a register. Check whether it is defined as an immediate value, 1501 // and if so, get the value of it in TV. That value will then need to be 1502 // processed to handle potential subregisters in MO. 1503 int64_t TV; 1504 1505 Register R = MO.getReg(); 1506 if (!R.isVirtual()) 1507 return false; 1508 MachineInstr *DI = MRI->getVRegDef(R); 1509 unsigned DOpc = DI->getOpcode(); 1510 switch (DOpc) { 1511 case TargetOpcode::COPY: 1512 case Hexagon::A2_tfrsi: 1513 case Hexagon::A2_tfrpi: 1514 case Hexagon::CONST32: 1515 case Hexagon::CONST64: 1516 // Call recursively to avoid an extra check whether operand(1) is 1517 // indeed an immediate (it could be a global address, for example), 1518 // plus we can handle COPY at the same time. 1519 if (!checkForImmediate(DI->getOperand(1), TV)) 1520 return false; 1521 break; 1522 case Hexagon::A2_combineii: 1523 case Hexagon::A4_combineir: 1524 case Hexagon::A4_combineii: 1525 case Hexagon::A4_combineri: 1526 case Hexagon::A2_combinew: { 1527 const MachineOperand &S1 = DI->getOperand(1); 1528 const MachineOperand &S2 = DI->getOperand(2); 1529 int64_t V1, V2; 1530 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) 1531 return false; 1532 TV = V2 | (static_cast<uint64_t>(V1) << 32); 1533 break; 1534 } 1535 case TargetOpcode::REG_SEQUENCE: { 1536 const MachineOperand &S1 = DI->getOperand(1); 1537 const MachineOperand &S3 = DI->getOperand(3); 1538 int64_t V1, V3; 1539 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) 1540 return false; 1541 unsigned Sub2 = DI->getOperand(2).getImm(); 1542 unsigned Sub4 = DI->getOperand(4).getImm(); 1543 if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi) 1544 TV = V1 | (V3 << 32); 1545 else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo) 1546 TV = V3 | (V1 << 32); 1547 else 1548 llvm_unreachable("Unexpected form of REG_SEQUENCE"); 1549 break; 1550 } 1551 1552 default: 1553 return false; 1554 } 1555 1556 // By now, we should have successfully obtained the immediate value defining 1557 // the register referenced in MO. Handle a potential use of a subregister. 1558 switch (MO.getSubReg()) { 1559 case Hexagon::isub_lo: 1560 Val = TV & 0xFFFFFFFFULL; 1561 break; 1562 case Hexagon::isub_hi: 1563 Val = (TV >> 32) & 0xFFFFFFFFULL; 1564 break; 1565 default: 1566 Val = TV; 1567 break; 1568 } 1569 return true; 1570 } 1571 1572 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1573 if (MO.isImm()) { 1574 MO.setImm(Val); 1575 return; 1576 } 1577 1578 assert(MO.isReg()); 1579 Register R = MO.getReg(); 1580 MachineInstr *DI = MRI->getVRegDef(R); 1581 1582 const TargetRegisterClass *RC = MRI->getRegClass(R); 1583 Register NewR = MRI->createVirtualRegister(RC); 1584 MachineBasicBlock &B = *DI->getParent(); 1585 DebugLoc DL = DI->getDebugLoc(); 1586 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); 1587 MO.setReg(NewR); 1588 } 1589 1590 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1591 MachineBasicBlock *Header = L->getHeader(); 1592 MachineBasicBlock *Latch = L->getLoopLatch(); 1593 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1594 1595 if (!(Header && Latch && ExitingBlock)) 1596 return false; 1597 1598 // These data structures follow the same concept as the corresponding 1599 // ones in findInductionRegister (where some comments are). 1600 using RegisterBump = std::pair<Register, int64_t>; 1601 using RegisterInduction = std::pair<Register, RegisterBump>; 1602 using RegisterInductionSet = std::set<RegisterInduction>; 1603 1604 // Register candidates for induction variables, with their associated bumps. 1605 RegisterInductionSet IndRegs; 1606 1607 // Look for induction patterns: 1608 // %1 = PHI ..., [ latch, %2 ] 1609 // %2 = ADD %1, imm 1610 using instr_iterator = MachineBasicBlock::instr_iterator; 1611 1612 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1613 I != E && I->isPHI(); ++I) { 1614 MachineInstr *Phi = &*I; 1615 1616 // Have a PHI instruction. 1617 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1618 if (Phi->getOperand(i+1).getMBB() != Latch) 1619 continue; 1620 1621 Register PhiReg = Phi->getOperand(i).getReg(); 1622 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1623 1624 if (DI->getDesc().isAdd()) { 1625 // If the register operand to the add/sub is the PHI we are looking 1626 // at, this meets the induction pattern. 1627 Register IndReg = DI->getOperand(1).getReg(); 1628 MachineOperand &Opnd2 = DI->getOperand(2); 1629 int64_t V; 1630 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 1631 Register UpdReg = DI->getOperand(0).getReg(); 1632 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1633 } 1634 } 1635 } // for (i) 1636 } // for (instr) 1637 1638 if (IndRegs.empty()) 1639 return false; 1640 1641 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1642 SmallVector<MachineOperand,2> Cond; 1643 // analyzeBranch returns true if it fails to analyze branch. 1644 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 1645 if (NotAnalyzed || Cond.empty()) 1646 return false; 1647 1648 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 1649 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 1650 SmallVector<MachineOperand,2> LCond; 1651 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 1652 if (NotAnalyzed) 1653 return false; 1654 1655 // Since latch is not the exiting block, the latch branch should be an 1656 // unconditional branch to the loop header. 1657 if (TB == Latch) 1658 TB = (LTB == Header) ? LTB : LFB; 1659 else 1660 FB = (LTB == Header) ? LTB : LFB; 1661 } 1662 if (TB != Header) { 1663 if (FB != Header) { 1664 // The latch/exit block does not go back to the header. 1665 return false; 1666 } 1667 // FB is the header (i.e., uncond. jump to branch header) 1668 // In this case, the LoopBody -> TB should not be a back edge otherwise 1669 // it could result in an infinite loop after conversion to hw_loop. 1670 // This case can happen when the Latch has two jumps like this: 1671 // Jmp_c OuterLoopHeader <-- TB 1672 // Jmp InnerLoopHeader <-- FB 1673 if (MDT->dominates(TB, FB)) 1674 return false; 1675 } 1676 1677 // Expecting a predicate register as a condition. It won't be a hardware 1678 // predicate register at this point yet, just a vreg. 1679 // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0) 1680 // into Cond, followed by the predicate register. For non-negated branches 1681 // it's just the register. 1682 unsigned CSz = Cond.size(); 1683 if (CSz != 1 && CSz != 2) 1684 return false; 1685 1686 if (!Cond[CSz-1].isReg()) 1687 return false; 1688 1689 Register P = Cond[CSz - 1].getReg(); 1690 MachineInstr *PredDef = MRI->getVRegDef(P); 1691 1692 if (!PredDef->isCompare()) 1693 return false; 1694 1695 SmallSet<Register,2> CmpRegs; 1696 MachineOperand *CmpImmOp = nullptr; 1697 1698 // Go over all operands to the compare and look for immediate and register 1699 // operands. Assume that if the compare has a single register use and a 1700 // single immediate operand, then the register is being compared with the 1701 // immediate value. 1702 for (MachineOperand &MO : PredDef->operands()) { 1703 if (MO.isReg()) { 1704 // Skip all implicit references. In one case there was: 1705 // %140 = FCMPUGT32_rr %138, %139, implicit %usr 1706 if (MO.isImplicit()) 1707 continue; 1708 if (MO.isUse()) { 1709 if (!isImmediate(MO)) { 1710 CmpRegs.insert(MO.getReg()); 1711 continue; 1712 } 1713 // Consider the register to be the "immediate" operand. 1714 if (CmpImmOp) 1715 return false; 1716 CmpImmOp = &MO; 1717 } 1718 } else if (MO.isImm()) { 1719 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1720 return false; 1721 CmpImmOp = &MO; 1722 } 1723 } 1724 1725 if (CmpRegs.empty()) 1726 return false; 1727 1728 // Check if the compared register follows the order we want. Fix if needed. 1729 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1730 I != E; ++I) { 1731 // This is a success. If the register used in the comparison is one that 1732 // we have identified as a bumped (updated) induction register, there is 1733 // nothing to do. 1734 if (CmpRegs.count(I->first)) 1735 return true; 1736 1737 // Otherwise, if the register being compared comes out of a PHI node, 1738 // and has been recognized as following the induction pattern, and is 1739 // compared against an immediate, we can fix it. 1740 const RegisterBump &RB = I->second; 1741 if (CmpRegs.count(RB.first)) { 1742 if (!CmpImmOp) { 1743 // If both operands to the compare instruction are registers, see if 1744 // it can be changed to use induction register as one of the operands. 1745 MachineInstr *IndI = nullptr; 1746 MachineInstr *nonIndI = nullptr; 1747 MachineOperand *IndMO = nullptr; 1748 MachineOperand *nonIndMO = nullptr; 1749 1750 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { 1751 MachineOperand &MO = PredDef->getOperand(i); 1752 if (MO.isReg() && MO.getReg() == RB.first) { 1753 LLVM_DEBUG(dbgs() << "\n DefMI(" << i 1754 << ") = " << *(MRI->getVRegDef(I->first))); 1755 if (IndI) 1756 return false; 1757 1758 IndI = MRI->getVRegDef(I->first); 1759 IndMO = &MO; 1760 } else if (MO.isReg()) { 1761 LLVM_DEBUG(dbgs() << "\n DefMI(" << i 1762 << ") = " << *(MRI->getVRegDef(MO.getReg()))); 1763 if (nonIndI) 1764 return false; 1765 1766 nonIndI = MRI->getVRegDef(MO.getReg()); 1767 nonIndMO = &MO; 1768 } 1769 } 1770 if (IndI && nonIndI && 1771 nonIndI->getOpcode() == Hexagon::A2_addi && 1772 nonIndI->getOperand(2).isImm() && 1773 nonIndI->getOperand(2).getImm() == - RB.second) { 1774 bool Order = orderBumpCompare(IndI, PredDef); 1775 if (Order) { 1776 IndMO->setReg(I->first); 1777 nonIndMO->setReg(nonIndI->getOperand(1).getReg()); 1778 return true; 1779 } 1780 } 1781 return false; 1782 } 1783 1784 // It is not valid to do this transformation on an unsigned comparison 1785 // because it may underflow. 1786 Comparison::Kind Cmp = 1787 getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0); 1788 if (!Cmp || Comparison::isUnsigned(Cmp)) 1789 return false; 1790 1791 // If the register is being compared against an immediate, try changing 1792 // the compare instruction to use induction register and adjust the 1793 // immediate operand. 1794 int64_t CmpImm = getImmediate(*CmpImmOp); 1795 int64_t V = RB.second; 1796 // Handle Overflow (64-bit). 1797 if (((V > 0) && (CmpImm > INT64_MAX - V)) || 1798 ((V < 0) && (CmpImm < INT64_MIN - V))) 1799 return false; 1800 CmpImm += V; 1801 // Most comparisons of register against an immediate value allow 1802 // the immediate to be constant-extended. There are some exceptions 1803 // though. Make sure the new combination will work. 1804 if (CmpImmOp->isImm() && !TII->isExtendable(*PredDef) && 1805 !TII->isValidOffset(PredDef->getOpcode(), CmpImm, TRI, false)) 1806 return false; 1807 1808 // Make sure that the compare happens after the bump. Otherwise, 1809 // after the fixup, the compare would use a yet-undefined register. 1810 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1811 bool Order = orderBumpCompare(BumpI, PredDef); 1812 if (!Order) 1813 return false; 1814 1815 // Finally, fix the compare instruction. 1816 setImmediate(*CmpImmOp, CmpImm); 1817 for (MachineOperand &MO : PredDef->operands()) { 1818 if (MO.isReg() && MO.getReg() == RB.first) { 1819 MO.setReg(I->first); 1820 return true; 1821 } 1822 } 1823 } 1824 } 1825 1826 return false; 1827 } 1828 1829 /// createPreheaderForLoop - Create a preheader for a given loop. 1830 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1831 MachineLoop *L) { 1832 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader)) 1833 return TmpPH; 1834 if (!HWCreatePreheader) 1835 return nullptr; 1836 1837 MachineBasicBlock *Header = L->getHeader(); 1838 MachineBasicBlock *Latch = L->getLoopLatch(); 1839 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1840 MachineFunction *MF = Header->getParent(); 1841 DebugLoc DL; 1842 1843 #ifndef NDEBUG 1844 if ((!PHFn.empty()) && (PHFn != MF->getName())) 1845 return nullptr; 1846 #endif 1847 1848 if (!Latch || !ExitingBlock || Header->hasAddressTaken()) 1849 return nullptr; 1850 1851 using instr_iterator = MachineBasicBlock::instr_iterator; 1852 1853 // Verify that all existing predecessors have analyzable branches 1854 // (or no branches at all). 1855 using MBBVector = std::vector<MachineBasicBlock *>; 1856 1857 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1858 SmallVector<MachineOperand,2> Tmp1; 1859 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1860 1861 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) 1862 return nullptr; 1863 1864 for (MachineBasicBlock *PB : Preds) { 1865 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false); 1866 if (NotAnalyzed) 1867 return nullptr; 1868 } 1869 1870 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1871 MF->insert(Header->getIterator(), NewPH); 1872 1873 if (Header->pred_size() > 2) { 1874 // Ensure that the header has only two predecessors: the preheader and 1875 // the loop latch. Any additional predecessors of the header should 1876 // join at the newly created preheader. Inspect all PHI nodes from the 1877 // header and create appropriate corresponding PHI nodes in the preheader. 1878 1879 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1880 I != E && I->isPHI(); ++I) { 1881 MachineInstr *PN = &*I; 1882 1883 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1884 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1885 NewPH->insert(NewPH->end(), NewPN); 1886 1887 Register PR = PN->getOperand(0).getReg(); 1888 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1889 Register NewPR = MRI->createVirtualRegister(RC); 1890 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1891 1892 // Copy all non-latch operands of a header's PHI node to the newly 1893 // created PHI node in the preheader. 1894 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1895 Register PredR = PN->getOperand(i).getReg(); 1896 unsigned PredRSub = PN->getOperand(i).getSubReg(); 1897 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1898 if (PredB == Latch) 1899 continue; 1900 1901 MachineOperand MO = MachineOperand::CreateReg(PredR, false); 1902 MO.setSubReg(PredRSub); 1903 NewPN->addOperand(MO); 1904 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1905 } 1906 1907 // Remove copied operands from the old PHI node and add the value 1908 // coming from the preheader's PHI. 1909 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1910 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1911 if (PredB != Latch) { 1912 PN->removeOperand(i+1); 1913 PN->removeOperand(i); 1914 } 1915 } 1916 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1917 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1918 } 1919 } else { 1920 assert(Header->pred_size() == 2); 1921 1922 // The header has only two predecessors, but the non-latch predecessor 1923 // is not a preheader (e.g. it has other successors, etc.) 1924 // In such a case we don't need any extra PHI nodes in the new preheader, 1925 // all we need is to adjust existing PHIs in the header to now refer to 1926 // the new preheader. 1927 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1928 I != E && I->isPHI(); ++I) { 1929 MachineInstr *PN = &*I; 1930 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1931 MachineOperand &MO = PN->getOperand(i+1); 1932 if (MO.getMBB() != Latch) 1933 MO.setMBB(NewPH); 1934 } 1935 } 1936 } 1937 1938 // "Reroute" the CFG edges to link in the new preheader. 1939 // If any of the predecessors falls through to the header, insert a branch 1940 // to the new preheader in that place. 1941 SmallVector<MachineOperand,1> Tmp2; 1942 SmallVector<MachineOperand,1> EmptyCond; 1943 1944 TB = FB = nullptr; 1945 1946 for (MachineBasicBlock *PB : Preds) { 1947 if (PB != Latch) { 1948 Tmp2.clear(); 1949 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false); 1950 (void)NotAnalyzed; // suppress compiler warning 1951 assert (!NotAnalyzed && "Should be analyzable!"); 1952 if (TB != Header && (Tmp2.empty() || FB != Header)) 1953 TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1954 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1955 } 1956 } 1957 1958 // It can happen that the latch block will fall through into the header. 1959 // Insert an unconditional branch to the header. 1960 TB = FB = nullptr; 1961 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false); 1962 (void)LatchNotAnalyzed; // suppress compiler warning 1963 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1964 if (!TB && !FB) 1965 TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1966 1967 // Finally, the branch from the preheader to the header. 1968 TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1969 NewPH->addSuccessor(Header); 1970 1971 MachineLoop *ParentLoop = L->getParentLoop(); 1972 if (ParentLoop) 1973 ParentLoop->addBasicBlockToLoop(NewPH, *MLI); 1974 1975 // Update the dominator information with the new preheader. 1976 if (MDT) { 1977 if (MachineDomTreeNode *HN = MDT->getNode(Header)) { 1978 if (MachineDomTreeNode *DHN = HN->getIDom()) { 1979 MDT->addNewBlock(NewPH, DHN->getBlock()); 1980 MDT->changeImmediateDominator(Header, NewPH); 1981 } 1982 } 1983 } 1984 1985 return NewPH; 1986 } 1987