xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- OpenMPIRBuilder.cpp - Builder for LLVM-IR for OpenMP directives ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file implements the OpenMPIRBuilder class, which is used as a
11 /// convenient way to create LLVM instructions for OpenMP directives.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
16 
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/IR/CFG.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/MDBuilder.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Error.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 #include "llvm/Transforms/Utils/CodeExtractor.h"
27 
28 #include <sstream>
29 
30 #define DEBUG_TYPE "openmp-ir-builder"
31 
32 using namespace llvm;
33 using namespace omp;
34 
35 static cl::opt<bool>
36     OptimisticAttributes("openmp-ir-builder-optimistic-attributes", cl::Hidden,
37                          cl::desc("Use optimistic attributes describing "
38                                   "'as-if' properties of runtime calls."),
39                          cl::init(false));
40 
addAttributes(omp::RuntimeFunction FnID,Function & Fn)41 void OpenMPIRBuilder::addAttributes(omp::RuntimeFunction FnID, Function &Fn) {
42   LLVMContext &Ctx = Fn.getContext();
43 
44   // Get the function's current attributes.
45   auto Attrs = Fn.getAttributes();
46   auto FnAttrs = Attrs.getFnAttributes();
47   auto RetAttrs = Attrs.getRetAttributes();
48   SmallVector<AttributeSet, 4> ArgAttrs;
49   for (size_t ArgNo = 0; ArgNo < Fn.arg_size(); ++ArgNo)
50     ArgAttrs.emplace_back(Attrs.getParamAttributes(ArgNo));
51 
52 #define OMP_ATTRS_SET(VarName, AttrSet) AttributeSet VarName = AttrSet;
53 #include "llvm/Frontend/OpenMP/OMPKinds.def"
54 
55   // Add attributes to the function declaration.
56   switch (FnID) {
57 #define OMP_RTL_ATTRS(Enum, FnAttrSet, RetAttrSet, ArgAttrSets)                \
58   case Enum:                                                                   \
59     FnAttrs = FnAttrs.addAttributes(Ctx, FnAttrSet);                           \
60     RetAttrs = RetAttrs.addAttributes(Ctx, RetAttrSet);                        \
61     for (size_t ArgNo = 0; ArgNo < ArgAttrSets.size(); ++ArgNo)                \
62       ArgAttrs[ArgNo] =                                                        \
63           ArgAttrs[ArgNo].addAttributes(Ctx, ArgAttrSets[ArgNo]);              \
64     Fn.setAttributes(AttributeList::get(Ctx, FnAttrs, RetAttrs, ArgAttrs));    \
65     break;
66 #include "llvm/Frontend/OpenMP/OMPKinds.def"
67   default:
68     // Attributes are optional.
69     break;
70   }
71 }
72 
73 FunctionCallee
getOrCreateRuntimeFunction(Module & M,RuntimeFunction FnID)74 OpenMPIRBuilder::getOrCreateRuntimeFunction(Module &M, RuntimeFunction FnID) {
75   FunctionType *FnTy = nullptr;
76   Function *Fn = nullptr;
77 
78   // Try to find the declation in the module first.
79   switch (FnID) {
80 #define OMP_RTL(Enum, Str, IsVarArg, ReturnType, ...)                          \
81   case Enum:                                                                   \
82     FnTy = FunctionType::get(ReturnType, ArrayRef<Type *>{__VA_ARGS__},        \
83                              IsVarArg);                                        \
84     Fn = M.getFunction(Str);                                                   \
85     break;
86 #include "llvm/Frontend/OpenMP/OMPKinds.def"
87   }
88 
89   if (!Fn) {
90     // Create a new declaration if we need one.
91     switch (FnID) {
92 #define OMP_RTL(Enum, Str, ...)                                                \
93   case Enum:                                                                   \
94     Fn = Function::Create(FnTy, GlobalValue::ExternalLinkage, Str, M);         \
95     break;
96 #include "llvm/Frontend/OpenMP/OMPKinds.def"
97     }
98 
99     // Add information if the runtime function takes a callback function
100     if (FnID == OMPRTL___kmpc_fork_call || FnID == OMPRTL___kmpc_fork_teams) {
101       if (!Fn->hasMetadata(LLVMContext::MD_callback)) {
102         LLVMContext &Ctx = Fn->getContext();
103         MDBuilder MDB(Ctx);
104         // Annotate the callback behavior of the runtime function:
105         //  - The callback callee is argument number 2 (microtask).
106         //  - The first two arguments of the callback callee are unknown (-1).
107         //  - All variadic arguments to the runtime function are passed to the
108         //    callback callee.
109         Fn->addMetadata(
110             LLVMContext::MD_callback,
111             *MDNode::get(Ctx, {MDB.createCallbackEncoding(
112                                   2, {-1, -1}, /* VarArgsArePassed */ true)}));
113       }
114     }
115 
116     LLVM_DEBUG(dbgs() << "Created OpenMP runtime function " << Fn->getName()
117                       << " with type " << *Fn->getFunctionType() << "\n");
118     addAttributes(FnID, *Fn);
119 
120   } else {
121     LLVM_DEBUG(dbgs() << "Found OpenMP runtime function " << Fn->getName()
122                       << " with type " << *Fn->getFunctionType() << "\n");
123   }
124 
125   assert(Fn && "Failed to create OpenMP runtime function");
126 
127   // Cast the function to the expected type if necessary
128   Constant *C = ConstantExpr::getBitCast(Fn, FnTy->getPointerTo());
129   return {FnTy, C};
130 }
131 
getOrCreateRuntimeFunctionPtr(RuntimeFunction FnID)132 Function *OpenMPIRBuilder::getOrCreateRuntimeFunctionPtr(RuntimeFunction FnID) {
133   FunctionCallee RTLFn = getOrCreateRuntimeFunction(M, FnID);
134   auto *Fn = dyn_cast<llvm::Function>(RTLFn.getCallee());
135   assert(Fn && "Failed to create OpenMP runtime function pointer");
136   return Fn;
137 }
138 
initialize()139 void OpenMPIRBuilder::initialize() { initializeTypes(M); }
140 
finalize(Function * Fn,bool AllowExtractorSinking)141 void OpenMPIRBuilder::finalize(Function *Fn, bool AllowExtractorSinking) {
142   SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
143   SmallVector<BasicBlock *, 32> Blocks;
144   SmallVector<OutlineInfo, 16> DeferredOutlines;
145   for (OutlineInfo &OI : OutlineInfos) {
146     // Skip functions that have not finalized yet; may happen with nested
147     // function generation.
148     if (Fn && OI.getFunction() != Fn) {
149       DeferredOutlines.push_back(OI);
150       continue;
151     }
152 
153     ParallelRegionBlockSet.clear();
154     Blocks.clear();
155     OI.collectBlocks(ParallelRegionBlockSet, Blocks);
156 
157     Function *OuterFn = OI.getFunction();
158     CodeExtractorAnalysisCache CEAC(*OuterFn);
159     CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr,
160                             /* AggregateArgs */ false,
161                             /* BlockFrequencyInfo */ nullptr,
162                             /* BranchProbabilityInfo */ nullptr,
163                             /* AssumptionCache */ nullptr,
164                             /* AllowVarArgs */ true,
165                             /* AllowAlloca */ true,
166                             /* Suffix */ ".omp_par");
167 
168     LLVM_DEBUG(dbgs() << "Before     outlining: " << *OuterFn << "\n");
169     LLVM_DEBUG(dbgs() << "Entry " << OI.EntryBB->getName()
170                       << " Exit: " << OI.ExitBB->getName() << "\n");
171     assert(Extractor.isEligible() &&
172            "Expected OpenMP outlining to be possible!");
173 
174     Function *OutlinedFn = Extractor.extractCodeRegion(CEAC);
175 
176     LLVM_DEBUG(dbgs() << "After      outlining: " << *OuterFn << "\n");
177     LLVM_DEBUG(dbgs() << "   Outlined function: " << *OutlinedFn << "\n");
178     assert(OutlinedFn->getReturnType()->isVoidTy() &&
179            "OpenMP outlined functions should not return a value!");
180 
181     // For compability with the clang CG we move the outlined function after the
182     // one with the parallel region.
183     OutlinedFn->removeFromParent();
184     M.getFunctionList().insertAfter(OuterFn->getIterator(), OutlinedFn);
185 
186     // Remove the artificial entry introduced by the extractor right away, we
187     // made our own entry block after all.
188     {
189       BasicBlock &ArtificialEntry = OutlinedFn->getEntryBlock();
190       assert(ArtificialEntry.getUniqueSuccessor() == OI.EntryBB);
191       assert(OI.EntryBB->getUniquePredecessor() == &ArtificialEntry);
192       if (AllowExtractorSinking) {
193         // Move instructions from the to-be-deleted ArtificialEntry to the entry
194         // basic block of the parallel region. CodeExtractor may have sunk
195         // allocas/bitcasts for values that are solely used in the outlined
196         // region and do not escape.
197         assert(!ArtificialEntry.empty() &&
198                "Expected instructions to sink in the outlined region");
199         for (BasicBlock::iterator It = ArtificialEntry.begin(),
200                                   End = ArtificialEntry.end();
201              It != End;) {
202           Instruction &I = *It;
203           It++;
204 
205           if (I.isTerminator())
206             continue;
207 
208           I.moveBefore(*OI.EntryBB, OI.EntryBB->getFirstInsertionPt());
209         }
210       }
211       OI.EntryBB->moveBefore(&ArtificialEntry);
212       ArtificialEntry.eraseFromParent();
213     }
214     assert(&OutlinedFn->getEntryBlock() == OI.EntryBB);
215     assert(OutlinedFn && OutlinedFn->getNumUses() == 1);
216 
217     // Run a user callback, e.g. to add attributes.
218     if (OI.PostOutlineCB)
219       OI.PostOutlineCB(*OutlinedFn);
220   }
221 
222   // Remove work items that have been completed.
223   OutlineInfos = std::move(DeferredOutlines);
224 }
225 
~OpenMPIRBuilder()226 OpenMPIRBuilder::~OpenMPIRBuilder() {
227   assert(OutlineInfos.empty() && "There must be no outstanding outlinings");
228 }
229 
getOrCreateIdent(Constant * SrcLocStr,IdentFlag LocFlags,unsigned Reserve2Flags)230 Value *OpenMPIRBuilder::getOrCreateIdent(Constant *SrcLocStr,
231                                          IdentFlag LocFlags,
232                                          unsigned Reserve2Flags) {
233   // Enable "C-mode".
234   LocFlags |= OMP_IDENT_FLAG_KMPC;
235 
236   Value *&Ident =
237       IdentMap[{SrcLocStr, uint64_t(LocFlags) << 31 | Reserve2Flags}];
238   if (!Ident) {
239     Constant *I32Null = ConstantInt::getNullValue(Int32);
240     Constant *IdentData[] = {
241         I32Null, ConstantInt::get(Int32, uint32_t(LocFlags)),
242         ConstantInt::get(Int32, Reserve2Flags), I32Null, SrcLocStr};
243     Constant *Initializer = ConstantStruct::get(
244         cast<StructType>(IdentPtr->getPointerElementType()), IdentData);
245 
246     // Look for existing encoding of the location + flags, not needed but
247     // minimizes the difference to the existing solution while we transition.
248     for (GlobalVariable &GV : M.getGlobalList())
249       if (GV.getType() == IdentPtr && GV.hasInitializer())
250         if (GV.getInitializer() == Initializer)
251           return Ident = &GV;
252 
253     auto *GV = new GlobalVariable(M, IdentPtr->getPointerElementType(),
254                                   /* isConstant = */ true,
255                                   GlobalValue::PrivateLinkage, Initializer);
256     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
257     GV->setAlignment(Align(8));
258     Ident = GV;
259   }
260   return Builder.CreatePointerCast(Ident, IdentPtr);
261 }
262 
getLanemaskType()263 Type *OpenMPIRBuilder::getLanemaskType() {
264   LLVMContext &Ctx = M.getContext();
265   Triple triple(M.getTargetTriple());
266 
267   // This test is adequate until deviceRTL has finer grained lane widths
268   return triple.isAMDGCN() ? Type::getInt64Ty(Ctx) : Type::getInt32Ty(Ctx);
269 }
270 
getOrCreateSrcLocStr(StringRef LocStr)271 Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef LocStr) {
272   Constant *&SrcLocStr = SrcLocStrMap[LocStr];
273   if (!SrcLocStr) {
274     Constant *Initializer =
275         ConstantDataArray::getString(M.getContext(), LocStr);
276 
277     // Look for existing encoding of the location, not needed but minimizes the
278     // difference to the existing solution while we transition.
279     for (GlobalVariable &GV : M.getGlobalList())
280       if (GV.isConstant() && GV.hasInitializer() &&
281           GV.getInitializer() == Initializer)
282         return SrcLocStr = ConstantExpr::getPointerCast(&GV, Int8Ptr);
283 
284     SrcLocStr = Builder.CreateGlobalStringPtr(LocStr, /* Name */ "",
285                                               /* AddressSpace */ 0, &M);
286   }
287   return SrcLocStr;
288 }
289 
getOrCreateSrcLocStr(StringRef FunctionName,StringRef FileName,unsigned Line,unsigned Column)290 Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef FunctionName,
291                                                 StringRef FileName,
292                                                 unsigned Line,
293                                                 unsigned Column) {
294   SmallString<128> Buffer;
295   Buffer.push_back(';');
296   Buffer.append(FileName);
297   Buffer.push_back(';');
298   Buffer.append(FunctionName);
299   Buffer.push_back(';');
300   Buffer.append(std::to_string(Line));
301   Buffer.push_back(';');
302   Buffer.append(std::to_string(Column));
303   Buffer.push_back(';');
304   Buffer.push_back(';');
305   return getOrCreateSrcLocStr(Buffer.str());
306 }
307 
getOrCreateDefaultSrcLocStr()308 Constant *OpenMPIRBuilder::getOrCreateDefaultSrcLocStr() {
309   return getOrCreateSrcLocStr(";unknown;unknown;0;0;;");
310 }
311 
312 Constant *
getOrCreateSrcLocStr(const LocationDescription & Loc)313 OpenMPIRBuilder::getOrCreateSrcLocStr(const LocationDescription &Loc) {
314   DILocation *DIL = Loc.DL.get();
315   if (!DIL)
316     return getOrCreateDefaultSrcLocStr();
317   StringRef FileName = M.getName();
318   if (DIFile *DIF = DIL->getFile())
319     if (Optional<StringRef> Source = DIF->getSource())
320       FileName = *Source;
321   StringRef Function = DIL->getScope()->getSubprogram()->getName();
322   Function =
323       !Function.empty() ? Function : Loc.IP.getBlock()->getParent()->getName();
324   return getOrCreateSrcLocStr(Function, FileName, DIL->getLine(),
325                               DIL->getColumn());
326 }
327 
getOrCreateThreadID(Value * Ident)328 Value *OpenMPIRBuilder::getOrCreateThreadID(Value *Ident) {
329   return Builder.CreateCall(
330       getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num), Ident,
331       "omp_global_thread_num");
332 }
333 
334 OpenMPIRBuilder::InsertPointTy
createBarrier(const LocationDescription & Loc,Directive DK,bool ForceSimpleCall,bool CheckCancelFlag)335 OpenMPIRBuilder::createBarrier(const LocationDescription &Loc, Directive DK,
336                                bool ForceSimpleCall, bool CheckCancelFlag) {
337   if (!updateToLocation(Loc))
338     return Loc.IP;
339   return emitBarrierImpl(Loc, DK, ForceSimpleCall, CheckCancelFlag);
340 }
341 
342 OpenMPIRBuilder::InsertPointTy
emitBarrierImpl(const LocationDescription & Loc,Directive Kind,bool ForceSimpleCall,bool CheckCancelFlag)343 OpenMPIRBuilder::emitBarrierImpl(const LocationDescription &Loc, Directive Kind,
344                                  bool ForceSimpleCall, bool CheckCancelFlag) {
345   // Build call __kmpc_cancel_barrier(loc, thread_id) or
346   //            __kmpc_barrier(loc, thread_id);
347 
348   IdentFlag BarrierLocFlags;
349   switch (Kind) {
350   case OMPD_for:
351     BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_FOR;
352     break;
353   case OMPD_sections:
354     BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SECTIONS;
355     break;
356   case OMPD_single:
357     BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SINGLE;
358     break;
359   case OMPD_barrier:
360     BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_EXPL;
361     break;
362   default:
363     BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL;
364     break;
365   }
366 
367   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
368   Value *Args[] = {getOrCreateIdent(SrcLocStr, BarrierLocFlags),
369                    getOrCreateThreadID(getOrCreateIdent(SrcLocStr))};
370 
371   // If we are in a cancellable parallel region, barriers are cancellation
372   // points.
373   // TODO: Check why we would force simple calls or to ignore the cancel flag.
374   bool UseCancelBarrier =
375       !ForceSimpleCall && isLastFinalizationInfoCancellable(OMPD_parallel);
376 
377   Value *Result =
378       Builder.CreateCall(getOrCreateRuntimeFunctionPtr(
379                              UseCancelBarrier ? OMPRTL___kmpc_cancel_barrier
380                                               : OMPRTL___kmpc_barrier),
381                          Args);
382 
383   if (UseCancelBarrier && CheckCancelFlag)
384     emitCancelationCheckImpl(Result, OMPD_parallel);
385 
386   return Builder.saveIP();
387 }
388 
389 OpenMPIRBuilder::InsertPointTy
createCancel(const LocationDescription & Loc,Value * IfCondition,omp::Directive CanceledDirective)390 OpenMPIRBuilder::createCancel(const LocationDescription &Loc,
391                               Value *IfCondition,
392                               omp::Directive CanceledDirective) {
393   if (!updateToLocation(Loc))
394     return Loc.IP;
395 
396   // LLVM utilities like blocks with terminators.
397   auto *UI = Builder.CreateUnreachable();
398 
399   Instruction *ThenTI = UI, *ElseTI = nullptr;
400   if (IfCondition)
401     SplitBlockAndInsertIfThenElse(IfCondition, UI, &ThenTI, &ElseTI);
402   Builder.SetInsertPoint(ThenTI);
403 
404   Value *CancelKind = nullptr;
405   switch (CanceledDirective) {
406 #define OMP_CANCEL_KIND(Enum, Str, DirectiveEnum, Value)                       \
407   case DirectiveEnum:                                                          \
408     CancelKind = Builder.getInt32(Value);                                      \
409     break;
410 #include "llvm/Frontend/OpenMP/OMPKinds.def"
411   default:
412     llvm_unreachable("Unknown cancel kind!");
413   }
414 
415   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
416   Value *Ident = getOrCreateIdent(SrcLocStr);
417   Value *Args[] = {Ident, getOrCreateThreadID(Ident), CancelKind};
418   Value *Result = Builder.CreateCall(
419       getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_cancel), Args);
420 
421   // The actual cancel logic is shared with others, e.g., cancel_barriers.
422   emitCancelationCheckImpl(Result, CanceledDirective);
423 
424   // Update the insertion point and remove the terminator we introduced.
425   Builder.SetInsertPoint(UI->getParent());
426   UI->eraseFromParent();
427 
428   return Builder.saveIP();
429 }
430 
emitCancelationCheckImpl(Value * CancelFlag,omp::Directive CanceledDirective)431 void OpenMPIRBuilder::emitCancelationCheckImpl(
432     Value *CancelFlag, omp::Directive CanceledDirective) {
433   assert(isLastFinalizationInfoCancellable(CanceledDirective) &&
434          "Unexpected cancellation!");
435 
436   // For a cancel barrier we create two new blocks.
437   BasicBlock *BB = Builder.GetInsertBlock();
438   BasicBlock *NonCancellationBlock;
439   if (Builder.GetInsertPoint() == BB->end()) {
440     // TODO: This branch will not be needed once we moved to the
441     // OpenMPIRBuilder codegen completely.
442     NonCancellationBlock = BasicBlock::Create(
443         BB->getContext(), BB->getName() + ".cont", BB->getParent());
444   } else {
445     NonCancellationBlock = SplitBlock(BB, &*Builder.GetInsertPoint());
446     BB->getTerminator()->eraseFromParent();
447     Builder.SetInsertPoint(BB);
448   }
449   BasicBlock *CancellationBlock = BasicBlock::Create(
450       BB->getContext(), BB->getName() + ".cncl", BB->getParent());
451 
452   // Jump to them based on the return value.
453   Value *Cmp = Builder.CreateIsNull(CancelFlag);
454   Builder.CreateCondBr(Cmp, NonCancellationBlock, CancellationBlock,
455                        /* TODO weight */ nullptr, nullptr);
456 
457   // From the cancellation block we finalize all variables and go to the
458   // post finalization block that is known to the FiniCB callback.
459   Builder.SetInsertPoint(CancellationBlock);
460   auto &FI = FinalizationStack.back();
461   FI.FiniCB(Builder.saveIP());
462 
463   // The continuation block is where code generation continues.
464   Builder.SetInsertPoint(NonCancellationBlock, NonCancellationBlock->begin());
465 }
466 
createParallel(const LocationDescription & Loc,InsertPointTy OuterAllocaIP,BodyGenCallbackTy BodyGenCB,PrivatizeCallbackTy PrivCB,FinalizeCallbackTy FiniCB,Value * IfCondition,Value * NumThreads,omp::ProcBindKind ProcBind,bool IsCancellable)467 IRBuilder<>::InsertPoint OpenMPIRBuilder::createParallel(
468     const LocationDescription &Loc, InsertPointTy OuterAllocaIP,
469     BodyGenCallbackTy BodyGenCB, PrivatizeCallbackTy PrivCB,
470     FinalizeCallbackTy FiniCB, Value *IfCondition, Value *NumThreads,
471     omp::ProcBindKind ProcBind, bool IsCancellable) {
472   if (!updateToLocation(Loc))
473     return Loc.IP;
474 
475   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
476   Value *Ident = getOrCreateIdent(SrcLocStr);
477   Value *ThreadID = getOrCreateThreadID(Ident);
478 
479   if (NumThreads) {
480     // Build call __kmpc_push_num_threads(&Ident, global_tid, num_threads)
481     Value *Args[] = {
482         Ident, ThreadID,
483         Builder.CreateIntCast(NumThreads, Int32, /*isSigned*/ false)};
484     Builder.CreateCall(
485         getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_num_threads), Args);
486   }
487 
488   if (ProcBind != OMP_PROC_BIND_default) {
489     // Build call __kmpc_push_proc_bind(&Ident, global_tid, proc_bind)
490     Value *Args[] = {
491         Ident, ThreadID,
492         ConstantInt::get(Int32, unsigned(ProcBind), /*isSigned=*/true)};
493     Builder.CreateCall(
494         getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_proc_bind), Args);
495   }
496 
497   BasicBlock *InsertBB = Builder.GetInsertBlock();
498   Function *OuterFn = InsertBB->getParent();
499 
500   // Save the outer alloca block because the insertion iterator may get
501   // invalidated and we still need this later.
502   BasicBlock *OuterAllocaBlock = OuterAllocaIP.getBlock();
503 
504   // Vector to remember instructions we used only during the modeling but which
505   // we want to delete at the end.
506   SmallVector<Instruction *, 4> ToBeDeleted;
507 
508   // Change the location to the outer alloca insertion point to create and
509   // initialize the allocas we pass into the parallel region.
510   Builder.restoreIP(OuterAllocaIP);
511   AllocaInst *TIDAddr = Builder.CreateAlloca(Int32, nullptr, "tid.addr");
512   AllocaInst *ZeroAddr = Builder.CreateAlloca(Int32, nullptr, "zero.addr");
513 
514   // If there is an if condition we actually use the TIDAddr and ZeroAddr in the
515   // program, otherwise we only need them for modeling purposes to get the
516   // associated arguments in the outlined function. In the former case,
517   // initialize the allocas properly, in the latter case, delete them later.
518   if (IfCondition) {
519     Builder.CreateStore(Constant::getNullValue(Int32), TIDAddr);
520     Builder.CreateStore(Constant::getNullValue(Int32), ZeroAddr);
521   } else {
522     ToBeDeleted.push_back(TIDAddr);
523     ToBeDeleted.push_back(ZeroAddr);
524   }
525 
526   // Create an artificial insertion point that will also ensure the blocks we
527   // are about to split are not degenerated.
528   auto *UI = new UnreachableInst(Builder.getContext(), InsertBB);
529 
530   Instruction *ThenTI = UI, *ElseTI = nullptr;
531   if (IfCondition)
532     SplitBlockAndInsertIfThenElse(IfCondition, UI, &ThenTI, &ElseTI);
533 
534   BasicBlock *ThenBB = ThenTI->getParent();
535   BasicBlock *PRegEntryBB = ThenBB->splitBasicBlock(ThenTI, "omp.par.entry");
536   BasicBlock *PRegBodyBB =
537       PRegEntryBB->splitBasicBlock(ThenTI, "omp.par.region");
538   BasicBlock *PRegPreFiniBB =
539       PRegBodyBB->splitBasicBlock(ThenTI, "omp.par.pre_finalize");
540   BasicBlock *PRegExitBB =
541       PRegPreFiniBB->splitBasicBlock(ThenTI, "omp.par.exit");
542 
543   auto FiniCBWrapper = [&](InsertPointTy IP) {
544     // Hide "open-ended" blocks from the given FiniCB by setting the right jump
545     // target to the region exit block.
546     if (IP.getBlock()->end() == IP.getPoint()) {
547       IRBuilder<>::InsertPointGuard IPG(Builder);
548       Builder.restoreIP(IP);
549       Instruction *I = Builder.CreateBr(PRegExitBB);
550       IP = InsertPointTy(I->getParent(), I->getIterator());
551     }
552     assert(IP.getBlock()->getTerminator()->getNumSuccessors() == 1 &&
553            IP.getBlock()->getTerminator()->getSuccessor(0) == PRegExitBB &&
554            "Unexpected insertion point for finalization call!");
555     return FiniCB(IP);
556   };
557 
558   FinalizationStack.push_back({FiniCBWrapper, OMPD_parallel, IsCancellable});
559 
560   // Generate the privatization allocas in the block that will become the entry
561   // of the outlined function.
562   Builder.SetInsertPoint(PRegEntryBB->getTerminator());
563   InsertPointTy InnerAllocaIP = Builder.saveIP();
564 
565   AllocaInst *PrivTIDAddr =
566       Builder.CreateAlloca(Int32, nullptr, "tid.addr.local");
567   Instruction *PrivTID = Builder.CreateLoad(Int32, PrivTIDAddr, "tid");
568 
569   // Add some fake uses for OpenMP provided arguments.
570   ToBeDeleted.push_back(Builder.CreateLoad(Int32, TIDAddr, "tid.addr.use"));
571   Instruction *ZeroAddrUse = Builder.CreateLoad(Int32, ZeroAddr,
572                                                 "zero.addr.use");
573   ToBeDeleted.push_back(ZeroAddrUse);
574 
575   // ThenBB
576   //   |
577   //   V
578   // PRegionEntryBB         <- Privatization allocas are placed here.
579   //   |
580   //   V
581   // PRegionBodyBB          <- BodeGen is invoked here.
582   //   |
583   //   V
584   // PRegPreFiniBB          <- The block we will start finalization from.
585   //   |
586   //   V
587   // PRegionExitBB          <- A common exit to simplify block collection.
588   //
589 
590   LLVM_DEBUG(dbgs() << "Before body codegen: " << *OuterFn << "\n");
591 
592   // Let the caller create the body.
593   assert(BodyGenCB && "Expected body generation callback!");
594   InsertPointTy CodeGenIP(PRegBodyBB, PRegBodyBB->begin());
595   BodyGenCB(InnerAllocaIP, CodeGenIP, *PRegPreFiniBB);
596 
597   LLVM_DEBUG(dbgs() << "After  body codegen: " << *OuterFn << "\n");
598 
599   FunctionCallee RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call);
600   if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
601     if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
602       llvm::LLVMContext &Ctx = F->getContext();
603       MDBuilder MDB(Ctx);
604       // Annotate the callback behavior of the __kmpc_fork_call:
605       //  - The callback callee is argument number 2 (microtask).
606       //  - The first two arguments of the callback callee are unknown (-1).
607       //  - All variadic arguments to the __kmpc_fork_call are passed to the
608       //    callback callee.
609       F->addMetadata(
610           llvm::LLVMContext::MD_callback,
611           *llvm::MDNode::get(
612               Ctx, {MDB.createCallbackEncoding(2, {-1, -1},
613                                                /* VarArgsArePassed */ true)}));
614     }
615   }
616 
617   OutlineInfo OI;
618   OI.PostOutlineCB = [=](Function &OutlinedFn) {
619     // Add some known attributes.
620     OutlinedFn.addParamAttr(0, Attribute::NoAlias);
621     OutlinedFn.addParamAttr(1, Attribute::NoAlias);
622     OutlinedFn.addFnAttr(Attribute::NoUnwind);
623     OutlinedFn.addFnAttr(Attribute::NoRecurse);
624 
625     assert(OutlinedFn.arg_size() >= 2 &&
626            "Expected at least tid and bounded tid as arguments");
627     unsigned NumCapturedVars =
628         OutlinedFn.arg_size() - /* tid & bounded tid */ 2;
629 
630     CallInst *CI = cast<CallInst>(OutlinedFn.user_back());
631     CI->getParent()->setName("omp_parallel");
632     Builder.SetInsertPoint(CI);
633 
634     // Build call __kmpc_fork_call(Ident, n, microtask, var1, .., varn);
635     Value *ForkCallArgs[] = {
636         Ident, Builder.getInt32(NumCapturedVars),
637         Builder.CreateBitCast(&OutlinedFn, ParallelTaskPtr)};
638 
639     SmallVector<Value *, 16> RealArgs;
640     RealArgs.append(std::begin(ForkCallArgs), std::end(ForkCallArgs));
641     RealArgs.append(CI->arg_begin() + /* tid & bound tid */ 2, CI->arg_end());
642 
643     Builder.CreateCall(RTLFn, RealArgs);
644 
645     LLVM_DEBUG(dbgs() << "With fork_call placed: "
646                       << *Builder.GetInsertBlock()->getParent() << "\n");
647 
648     InsertPointTy ExitIP(PRegExitBB, PRegExitBB->end());
649 
650     // Initialize the local TID stack location with the argument value.
651     Builder.SetInsertPoint(PrivTID);
652     Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin();
653     Builder.CreateStore(Builder.CreateLoad(Int32, OutlinedAI), PrivTIDAddr);
654 
655     // If no "if" clause was present we do not need the call created during
656     // outlining, otherwise we reuse it in the serialized parallel region.
657     if (!ElseTI) {
658       CI->eraseFromParent();
659     } else {
660 
661       // If an "if" clause was present we are now generating the serialized
662       // version into the "else" branch.
663       Builder.SetInsertPoint(ElseTI);
664 
665       // Build calls __kmpc_serialized_parallel(&Ident, GTid);
666       Value *SerializedParallelCallArgs[] = {Ident, ThreadID};
667       Builder.CreateCall(
668           getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_serialized_parallel),
669           SerializedParallelCallArgs);
670 
671       // OutlinedFn(&GTid, &zero, CapturedStruct);
672       CI->removeFromParent();
673       Builder.Insert(CI);
674 
675       // __kmpc_end_serialized_parallel(&Ident, GTid);
676       Value *EndArgs[] = {Ident, ThreadID};
677       Builder.CreateCall(
678           getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_serialized_parallel),
679           EndArgs);
680 
681       LLVM_DEBUG(dbgs() << "With serialized parallel region: "
682                         << *Builder.GetInsertBlock()->getParent() << "\n");
683     }
684 
685     for (Instruction *I : ToBeDeleted)
686       I->eraseFromParent();
687   };
688 
689   // Adjust the finalization stack, verify the adjustment, and call the
690   // finalize function a last time to finalize values between the pre-fini
691   // block and the exit block if we left the parallel "the normal way".
692   auto FiniInfo = FinalizationStack.pop_back_val();
693   (void)FiniInfo;
694   assert(FiniInfo.DK == OMPD_parallel &&
695          "Unexpected finalization stack state!");
696 
697   Instruction *PRegPreFiniTI = PRegPreFiniBB->getTerminator();
698 
699   InsertPointTy PreFiniIP(PRegPreFiniBB, PRegPreFiniTI->getIterator());
700   FiniCB(PreFiniIP);
701 
702   OI.EntryBB = PRegEntryBB;
703   OI.ExitBB = PRegExitBB;
704 
705   SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
706   SmallVector<BasicBlock *, 32> Blocks;
707   OI.collectBlocks(ParallelRegionBlockSet, Blocks);
708 
709   // Ensure a single exit node for the outlined region by creating one.
710   // We might have multiple incoming edges to the exit now due to finalizations,
711   // e.g., cancel calls that cause the control flow to leave the region.
712   BasicBlock *PRegOutlinedExitBB = PRegExitBB;
713   PRegExitBB = SplitBlock(PRegExitBB, &*PRegExitBB->getFirstInsertionPt());
714   PRegOutlinedExitBB->setName("omp.par.outlined.exit");
715   Blocks.push_back(PRegOutlinedExitBB);
716 
717   CodeExtractorAnalysisCache CEAC(*OuterFn);
718   CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr,
719                           /* AggregateArgs */ false,
720                           /* BlockFrequencyInfo */ nullptr,
721                           /* BranchProbabilityInfo */ nullptr,
722                           /* AssumptionCache */ nullptr,
723                           /* AllowVarArgs */ true,
724                           /* AllowAlloca */ true,
725                           /* Suffix */ ".omp_par");
726 
727   // Find inputs to, outputs from the code region.
728   BasicBlock *CommonExit = nullptr;
729   SetVector<Value *> Inputs, Outputs, SinkingCands, HoistingCands;
730   Extractor.findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
731   Extractor.findInputsOutputs(Inputs, Outputs, SinkingCands);
732 
733   LLVM_DEBUG(dbgs() << "Before privatization: " << *OuterFn << "\n");
734 
735   FunctionCallee TIDRTLFn =
736       getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num);
737 
738   auto PrivHelper = [&](Value &V) {
739     if (&V == TIDAddr || &V == ZeroAddr)
740       return;
741 
742     SetVector<Use *> Uses;
743     for (Use &U : V.uses())
744       if (auto *UserI = dyn_cast<Instruction>(U.getUser()))
745         if (ParallelRegionBlockSet.count(UserI->getParent()))
746           Uses.insert(&U);
747 
748     // __kmpc_fork_call expects extra arguments as pointers. If the input
749     // already has a pointer type, everything is fine. Otherwise, store the
750     // value onto stack and load it back inside the to-be-outlined region. This
751     // will ensure only the pointer will be passed to the function.
752     // FIXME: if there are more than 15 trailing arguments, they must be
753     // additionally packed in a struct.
754     Value *Inner = &V;
755     if (!V.getType()->isPointerTy()) {
756       IRBuilder<>::InsertPointGuard Guard(Builder);
757       LLVM_DEBUG(llvm::dbgs() << "Forwarding input as pointer: " << V << "\n");
758 
759       Builder.restoreIP(OuterAllocaIP);
760       Value *Ptr =
761           Builder.CreateAlloca(V.getType(), nullptr, V.getName() + ".reloaded");
762 
763       // Store to stack at end of the block that currently branches to the entry
764       // block of the to-be-outlined region.
765       Builder.SetInsertPoint(InsertBB,
766                              InsertBB->getTerminator()->getIterator());
767       Builder.CreateStore(&V, Ptr);
768 
769       // Load back next to allocations in the to-be-outlined region.
770       Builder.restoreIP(InnerAllocaIP);
771       Inner = Builder.CreateLoad(V.getType(), Ptr);
772     }
773 
774     Value *ReplacementValue = nullptr;
775     CallInst *CI = dyn_cast<CallInst>(&V);
776     if (CI && CI->getCalledFunction() == TIDRTLFn.getCallee()) {
777       ReplacementValue = PrivTID;
778     } else {
779       Builder.restoreIP(
780           PrivCB(InnerAllocaIP, Builder.saveIP(), V, *Inner, ReplacementValue));
781       assert(ReplacementValue &&
782              "Expected copy/create callback to set replacement value!");
783       if (ReplacementValue == &V)
784         return;
785     }
786 
787     for (Use *UPtr : Uses)
788       UPtr->set(ReplacementValue);
789   };
790 
791   // Reset the inner alloca insertion as it will be used for loading the values
792   // wrapped into pointers before passing them into the to-be-outlined region.
793   // Configure it to insert immediately after the fake use of zero address so
794   // that they are available in the generated body and so that the
795   // OpenMP-related values (thread ID and zero address pointers) remain leading
796   // in the argument list.
797   InnerAllocaIP = IRBuilder<>::InsertPoint(
798       ZeroAddrUse->getParent(), ZeroAddrUse->getNextNode()->getIterator());
799 
800   // Reset the outer alloca insertion point to the entry of the relevant block
801   // in case it was invalidated.
802   OuterAllocaIP = IRBuilder<>::InsertPoint(
803       OuterAllocaBlock, OuterAllocaBlock->getFirstInsertionPt());
804 
805   for (Value *Input : Inputs) {
806     LLVM_DEBUG(dbgs() << "Captured input: " << *Input << "\n");
807     PrivHelper(*Input);
808   }
809   LLVM_DEBUG({
810     for (Value *Output : Outputs)
811       LLVM_DEBUG(dbgs() << "Captured output: " << *Output << "\n");
812   });
813   assert(Outputs.empty() &&
814          "OpenMP outlining should not produce live-out values!");
815 
816   LLVM_DEBUG(dbgs() << "After  privatization: " << *OuterFn << "\n");
817   LLVM_DEBUG({
818     for (auto *BB : Blocks)
819       dbgs() << " PBR: " << BB->getName() << "\n";
820   });
821 
822   // Register the outlined info.
823   addOutlineInfo(std::move(OI));
824 
825   InsertPointTy AfterIP(UI->getParent(), UI->getParent()->end());
826   UI->eraseFromParent();
827 
828   return AfterIP;
829 }
830 
emitFlush(const LocationDescription & Loc)831 void OpenMPIRBuilder::emitFlush(const LocationDescription &Loc) {
832   // Build call void __kmpc_flush(ident_t *loc)
833   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
834   Value *Args[] = {getOrCreateIdent(SrcLocStr)};
835 
836   Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_flush), Args);
837 }
838 
createFlush(const LocationDescription & Loc)839 void OpenMPIRBuilder::createFlush(const LocationDescription &Loc) {
840   if (!updateToLocation(Loc))
841     return;
842   emitFlush(Loc);
843 }
844 
emitTaskwaitImpl(const LocationDescription & Loc)845 void OpenMPIRBuilder::emitTaskwaitImpl(const LocationDescription &Loc) {
846   // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
847   // global_tid);
848   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
849   Value *Ident = getOrCreateIdent(SrcLocStr);
850   Value *Args[] = {Ident, getOrCreateThreadID(Ident)};
851 
852   // Ignore return result until untied tasks are supported.
853   Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskwait),
854                      Args);
855 }
856 
createTaskwait(const LocationDescription & Loc)857 void OpenMPIRBuilder::createTaskwait(const LocationDescription &Loc) {
858   if (!updateToLocation(Loc))
859     return;
860   emitTaskwaitImpl(Loc);
861 }
862 
emitTaskyieldImpl(const LocationDescription & Loc)863 void OpenMPIRBuilder::emitTaskyieldImpl(const LocationDescription &Loc) {
864   // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
865   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
866   Value *Ident = getOrCreateIdent(SrcLocStr);
867   Constant *I32Null = ConstantInt::getNullValue(Int32);
868   Value *Args[] = {Ident, getOrCreateThreadID(Ident), I32Null};
869 
870   Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskyield),
871                      Args);
872 }
873 
createTaskyield(const LocationDescription & Loc)874 void OpenMPIRBuilder::createTaskyield(const LocationDescription &Loc) {
875   if (!updateToLocation(Loc))
876     return;
877   emitTaskyieldImpl(Loc);
878 }
879 
createSections(const LocationDescription & Loc,InsertPointTy AllocaIP,ArrayRef<StorableBodyGenCallbackTy> SectionCBs,PrivatizeCallbackTy PrivCB,FinalizeCallbackTy FiniCB,bool IsCancellable,bool IsNowait)880 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSections(
881     const LocationDescription &Loc, InsertPointTy AllocaIP,
882     ArrayRef<StorableBodyGenCallbackTy> SectionCBs, PrivatizeCallbackTy PrivCB,
883     FinalizeCallbackTy FiniCB, bool IsCancellable, bool IsNowait) {
884   if (!updateToLocation(Loc))
885     return Loc.IP;
886 
887   auto FiniCBWrapper = [&](InsertPointTy IP) {
888     if (IP.getBlock()->end() != IP.getPoint())
889       return FiniCB(IP);
890     // This must be done otherwise any nested constructs using FinalizeOMPRegion
891     // will fail because that function requires the Finalization Basic Block to
892     // have a terminator, which is already removed by EmitOMPRegionBody.
893     // IP is currently at cancelation block.
894     // We need to backtrack to the condition block to fetch
895     // the exit block and create a branch from cancelation
896     // to exit block.
897     IRBuilder<>::InsertPointGuard IPG(Builder);
898     Builder.restoreIP(IP);
899     auto *CaseBB = IP.getBlock()->getSinglePredecessor();
900     auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor();
901     auto *ExitBB = CondBB->getTerminator()->getSuccessor(1);
902     Instruction *I = Builder.CreateBr(ExitBB);
903     IP = InsertPointTy(I->getParent(), I->getIterator());
904     return FiniCB(IP);
905   };
906 
907   FinalizationStack.push_back({FiniCBWrapper, OMPD_sections, IsCancellable});
908 
909   // Each section is emitted as a switch case
910   // Each finalization callback is handled from clang.EmitOMPSectionDirective()
911   // -> OMP.createSection() which generates the IR for each section
912   // Iterate through all sections and emit a switch construct:
913   // switch (IV) {
914   //   case 0:
915   //     <SectionStmt[0]>;
916   //     break;
917   // ...
918   //   case <NumSection> - 1:
919   //     <SectionStmt[<NumSection> - 1]>;
920   //     break;
921   // }
922   // ...
923   // section_loop.after:
924   // <FiniCB>;
925   auto LoopBodyGenCB = [&](InsertPointTy CodeGenIP, Value *IndVar) {
926     auto *CurFn = CodeGenIP.getBlock()->getParent();
927     auto *ForIncBB = CodeGenIP.getBlock()->getSingleSuccessor();
928     auto *ForExitBB = CodeGenIP.getBlock()
929                           ->getSinglePredecessor()
930                           ->getTerminator()
931                           ->getSuccessor(1);
932     SwitchInst *SwitchStmt = Builder.CreateSwitch(IndVar, ForIncBB);
933     Builder.restoreIP(CodeGenIP);
934     unsigned CaseNumber = 0;
935     for (auto SectionCB : SectionCBs) {
936       auto *CaseBB = BasicBlock::Create(M.getContext(),
937                                         "omp_section_loop.body.case", CurFn);
938       SwitchStmt->addCase(Builder.getInt32(CaseNumber), CaseBB);
939       Builder.SetInsertPoint(CaseBB);
940       SectionCB(InsertPointTy(), Builder.saveIP(), *ForExitBB);
941       CaseNumber++;
942     }
943     // remove the existing terminator from body BB since there can be no
944     // terminators after switch/case
945     CodeGenIP.getBlock()->getTerminator()->eraseFromParent();
946   };
947   // Loop body ends here
948   // LowerBound, UpperBound, and STride for createCanonicalLoop
949   Type *I32Ty = Type::getInt32Ty(M.getContext());
950   Value *LB = ConstantInt::get(I32Ty, 0);
951   Value *UB = ConstantInt::get(I32Ty, SectionCBs.size());
952   Value *ST = ConstantInt::get(I32Ty, 1);
953   llvm::CanonicalLoopInfo *LoopInfo = createCanonicalLoop(
954       Loc, LoopBodyGenCB, LB, UB, ST, true, false, AllocaIP, "section_loop");
955   LoopInfo = createStaticWorkshareLoop(Loc, LoopInfo, AllocaIP, true);
956   BasicBlock *LoopAfterBB = LoopInfo->getAfter();
957   Instruction *SplitPos = LoopAfterBB->getTerminator();
958   if (!isa_and_nonnull<BranchInst>(SplitPos))
959     SplitPos = new UnreachableInst(Builder.getContext(), LoopAfterBB);
960   // ExitBB after LoopAfterBB because LoopAfterBB is used for FinalizationCB,
961   // which requires a BB with branch
962   BasicBlock *ExitBB =
963       LoopAfterBB->splitBasicBlock(SplitPos, "omp_sections.end");
964   SplitPos->eraseFromParent();
965 
966   // Apply the finalization callback in LoopAfterBB
967   auto FiniInfo = FinalizationStack.pop_back_val();
968   assert(FiniInfo.DK == OMPD_sections &&
969          "Unexpected finalization stack state!");
970   Builder.SetInsertPoint(LoopAfterBB->getTerminator());
971   FiniInfo.FiniCB(Builder.saveIP());
972   Builder.SetInsertPoint(ExitBB);
973 
974   return Builder.saveIP();
975 }
976 
977 OpenMPIRBuilder::InsertPointTy
createSection(const LocationDescription & Loc,BodyGenCallbackTy BodyGenCB,FinalizeCallbackTy FiniCB)978 OpenMPIRBuilder::createSection(const LocationDescription &Loc,
979                                BodyGenCallbackTy BodyGenCB,
980                                FinalizeCallbackTy FiniCB) {
981   if (!updateToLocation(Loc))
982     return Loc.IP;
983 
984   auto FiniCBWrapper = [&](InsertPointTy IP) {
985     if (IP.getBlock()->end() != IP.getPoint())
986       return FiniCB(IP);
987     // This must be done otherwise any nested constructs using FinalizeOMPRegion
988     // will fail because that function requires the Finalization Basic Block to
989     // have a terminator, which is already removed by EmitOMPRegionBody.
990     // IP is currently at cancelation block.
991     // We need to backtrack to the condition block to fetch
992     // the exit block and create a branch from cancelation
993     // to exit block.
994     IRBuilder<>::InsertPointGuard IPG(Builder);
995     Builder.restoreIP(IP);
996     auto *CaseBB = Loc.IP.getBlock();
997     auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor();
998     auto *ExitBB = CondBB->getTerminator()->getSuccessor(1);
999     Instruction *I = Builder.CreateBr(ExitBB);
1000     IP = InsertPointTy(I->getParent(), I->getIterator());
1001     return FiniCB(IP);
1002   };
1003 
1004   Directive OMPD = Directive::OMPD_sections;
1005   // Since we are using Finalization Callback here, HasFinalize
1006   // and IsCancellable have to be true
1007   return EmitOMPInlinedRegion(OMPD, nullptr, nullptr, BodyGenCB, FiniCBWrapper,
1008                               /*Conditional*/ false, /*hasFinalize*/ true,
1009                               /*IsCancellable*/ true);
1010 }
1011 
1012 OpenMPIRBuilder::InsertPointTy
createMaster(const LocationDescription & Loc,BodyGenCallbackTy BodyGenCB,FinalizeCallbackTy FiniCB)1013 OpenMPIRBuilder::createMaster(const LocationDescription &Loc,
1014                               BodyGenCallbackTy BodyGenCB,
1015                               FinalizeCallbackTy FiniCB) {
1016 
1017   if (!updateToLocation(Loc))
1018     return Loc.IP;
1019 
1020   Directive OMPD = Directive::OMPD_master;
1021   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
1022   Value *Ident = getOrCreateIdent(SrcLocStr);
1023   Value *ThreadId = getOrCreateThreadID(Ident);
1024   Value *Args[] = {Ident, ThreadId};
1025 
1026   Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_master);
1027   Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
1028 
1029   Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_master);
1030   Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
1031 
1032   return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
1033                               /*Conditional*/ true, /*hasFinalize*/ true);
1034 }
1035 
1036 OpenMPIRBuilder::InsertPointTy
createMasked(const LocationDescription & Loc,BodyGenCallbackTy BodyGenCB,FinalizeCallbackTy FiniCB,Value * Filter)1037 OpenMPIRBuilder::createMasked(const LocationDescription &Loc,
1038                               BodyGenCallbackTy BodyGenCB,
1039                               FinalizeCallbackTy FiniCB, Value *Filter) {
1040   if (!updateToLocation(Loc))
1041     return Loc.IP;
1042 
1043   Directive OMPD = Directive::OMPD_masked;
1044   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
1045   Value *Ident = getOrCreateIdent(SrcLocStr);
1046   Value *ThreadId = getOrCreateThreadID(Ident);
1047   Value *Args[] = {Ident, ThreadId, Filter};
1048   Value *ArgsEnd[] = {Ident, ThreadId};
1049 
1050   Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_masked);
1051   Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
1052 
1053   Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_masked);
1054   Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, ArgsEnd);
1055 
1056   return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
1057                               /*Conditional*/ true, /*hasFinalize*/ true);
1058 }
1059 
createLoopSkeleton(DebugLoc DL,Value * TripCount,Function * F,BasicBlock * PreInsertBefore,BasicBlock * PostInsertBefore,const Twine & Name)1060 CanonicalLoopInfo *OpenMPIRBuilder::createLoopSkeleton(
1061     DebugLoc DL, Value *TripCount, Function *F, BasicBlock *PreInsertBefore,
1062     BasicBlock *PostInsertBefore, const Twine &Name) {
1063   Module *M = F->getParent();
1064   LLVMContext &Ctx = M->getContext();
1065   Type *IndVarTy = TripCount->getType();
1066 
1067   // Create the basic block structure.
1068   BasicBlock *Preheader =
1069       BasicBlock::Create(Ctx, "omp_" + Name + ".preheader", F, PreInsertBefore);
1070   BasicBlock *Header =
1071       BasicBlock::Create(Ctx, "omp_" + Name + ".header", F, PreInsertBefore);
1072   BasicBlock *Cond =
1073       BasicBlock::Create(Ctx, "omp_" + Name + ".cond", F, PreInsertBefore);
1074   BasicBlock *Body =
1075       BasicBlock::Create(Ctx, "omp_" + Name + ".body", F, PreInsertBefore);
1076   BasicBlock *Latch =
1077       BasicBlock::Create(Ctx, "omp_" + Name + ".inc", F, PostInsertBefore);
1078   BasicBlock *Exit =
1079       BasicBlock::Create(Ctx, "omp_" + Name + ".exit", F, PostInsertBefore);
1080   BasicBlock *After =
1081       BasicBlock::Create(Ctx, "omp_" + Name + ".after", F, PostInsertBefore);
1082 
1083   // Use specified DebugLoc for new instructions.
1084   Builder.SetCurrentDebugLocation(DL);
1085 
1086   Builder.SetInsertPoint(Preheader);
1087   Builder.CreateBr(Header);
1088 
1089   Builder.SetInsertPoint(Header);
1090   PHINode *IndVarPHI = Builder.CreatePHI(IndVarTy, 2, "omp_" + Name + ".iv");
1091   IndVarPHI->addIncoming(ConstantInt::get(IndVarTy, 0), Preheader);
1092   Builder.CreateBr(Cond);
1093 
1094   Builder.SetInsertPoint(Cond);
1095   Value *Cmp =
1096       Builder.CreateICmpULT(IndVarPHI, TripCount, "omp_" + Name + ".cmp");
1097   Builder.CreateCondBr(Cmp, Body, Exit);
1098 
1099   Builder.SetInsertPoint(Body);
1100   Builder.CreateBr(Latch);
1101 
1102   Builder.SetInsertPoint(Latch);
1103   Value *Next = Builder.CreateAdd(IndVarPHI, ConstantInt::get(IndVarTy, 1),
1104                                   "omp_" + Name + ".next", /*HasNUW=*/true);
1105   Builder.CreateBr(Header);
1106   IndVarPHI->addIncoming(Next, Latch);
1107 
1108   Builder.SetInsertPoint(Exit);
1109   Builder.CreateBr(After);
1110 
1111   // Remember and return the canonical control flow.
1112   LoopInfos.emplace_front();
1113   CanonicalLoopInfo *CL = &LoopInfos.front();
1114 
1115   CL->Preheader = Preheader;
1116   CL->Header = Header;
1117   CL->Cond = Cond;
1118   CL->Body = Body;
1119   CL->Latch = Latch;
1120   CL->Exit = Exit;
1121   CL->After = After;
1122 
1123   CL->IsValid = true;
1124 
1125 #ifndef NDEBUG
1126   CL->assertOK();
1127 #endif
1128   return CL;
1129 }
1130 
1131 CanonicalLoopInfo *
createCanonicalLoop(const LocationDescription & Loc,LoopBodyGenCallbackTy BodyGenCB,Value * TripCount,const Twine & Name)1132 OpenMPIRBuilder::createCanonicalLoop(const LocationDescription &Loc,
1133                                      LoopBodyGenCallbackTy BodyGenCB,
1134                                      Value *TripCount, const Twine &Name) {
1135   BasicBlock *BB = Loc.IP.getBlock();
1136   BasicBlock *NextBB = BB->getNextNode();
1137 
1138   CanonicalLoopInfo *CL = createLoopSkeleton(Loc.DL, TripCount, BB->getParent(),
1139                                              NextBB, NextBB, Name);
1140   BasicBlock *After = CL->getAfter();
1141 
1142   // If location is not set, don't connect the loop.
1143   if (updateToLocation(Loc)) {
1144     // Split the loop at the insertion point: Branch to the preheader and move
1145     // every following instruction to after the loop (the After BB). Also, the
1146     // new successor is the loop's after block.
1147     Builder.CreateBr(CL->Preheader);
1148     After->getInstList().splice(After->begin(), BB->getInstList(),
1149                                 Builder.GetInsertPoint(), BB->end());
1150     After->replaceSuccessorsPhiUsesWith(BB, After);
1151   }
1152 
1153   // Emit the body content. We do it after connecting the loop to the CFG to
1154   // avoid that the callback encounters degenerate BBs.
1155   BodyGenCB(CL->getBodyIP(), CL->getIndVar());
1156 
1157 #ifndef NDEBUG
1158   CL->assertOK();
1159 #endif
1160   return CL;
1161 }
1162 
createCanonicalLoop(const LocationDescription & Loc,LoopBodyGenCallbackTy BodyGenCB,Value * Start,Value * Stop,Value * Step,bool IsSigned,bool InclusiveStop,InsertPointTy ComputeIP,const Twine & Name)1163 CanonicalLoopInfo *OpenMPIRBuilder::createCanonicalLoop(
1164     const LocationDescription &Loc, LoopBodyGenCallbackTy BodyGenCB,
1165     Value *Start, Value *Stop, Value *Step, bool IsSigned, bool InclusiveStop,
1166     InsertPointTy ComputeIP, const Twine &Name) {
1167 
1168   // Consider the following difficulties (assuming 8-bit signed integers):
1169   //  * Adding \p Step to the loop counter which passes \p Stop may overflow:
1170   //      DO I = 1, 100, 50
1171   ///  * A \p Step of INT_MIN cannot not be normalized to a positive direction:
1172   //      DO I = 100, 0, -128
1173 
1174   // Start, Stop and Step must be of the same integer type.
1175   auto *IndVarTy = cast<IntegerType>(Start->getType());
1176   assert(IndVarTy == Stop->getType() && "Stop type mismatch");
1177   assert(IndVarTy == Step->getType() && "Step type mismatch");
1178 
1179   LocationDescription ComputeLoc =
1180       ComputeIP.isSet() ? LocationDescription(ComputeIP, Loc.DL) : Loc;
1181   updateToLocation(ComputeLoc);
1182 
1183   ConstantInt *Zero = ConstantInt::get(IndVarTy, 0);
1184   ConstantInt *One = ConstantInt::get(IndVarTy, 1);
1185 
1186   // Like Step, but always positive.
1187   Value *Incr = Step;
1188 
1189   // Distance between Start and Stop; always positive.
1190   Value *Span;
1191 
1192   // Condition whether there are no iterations are executed at all, e.g. because
1193   // UB < LB.
1194   Value *ZeroCmp;
1195 
1196   if (IsSigned) {
1197     // Ensure that increment is positive. If not, negate and invert LB and UB.
1198     Value *IsNeg = Builder.CreateICmpSLT(Step, Zero);
1199     Incr = Builder.CreateSelect(IsNeg, Builder.CreateNeg(Step), Step);
1200     Value *LB = Builder.CreateSelect(IsNeg, Stop, Start);
1201     Value *UB = Builder.CreateSelect(IsNeg, Start, Stop);
1202     Span = Builder.CreateSub(UB, LB, "", false, true);
1203     ZeroCmp = Builder.CreateICmp(
1204         InclusiveStop ? CmpInst::ICMP_SLT : CmpInst::ICMP_SLE, UB, LB);
1205   } else {
1206     Span = Builder.CreateSub(Stop, Start, "", true);
1207     ZeroCmp = Builder.CreateICmp(
1208         InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Stop, Start);
1209   }
1210 
1211   Value *CountIfLooping;
1212   if (InclusiveStop) {
1213     CountIfLooping = Builder.CreateAdd(Builder.CreateUDiv(Span, Incr), One);
1214   } else {
1215     // Avoid incrementing past stop since it could overflow.
1216     Value *CountIfTwo = Builder.CreateAdd(
1217         Builder.CreateUDiv(Builder.CreateSub(Span, One), Incr), One);
1218     Value *OneCmp = Builder.CreateICmp(
1219         InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Span, Incr);
1220     CountIfLooping = Builder.CreateSelect(OneCmp, One, CountIfTwo);
1221   }
1222   Value *TripCount = Builder.CreateSelect(ZeroCmp, Zero, CountIfLooping,
1223                                           "omp_" + Name + ".tripcount");
1224 
1225   auto BodyGen = [=](InsertPointTy CodeGenIP, Value *IV) {
1226     Builder.restoreIP(CodeGenIP);
1227     Value *Span = Builder.CreateMul(IV, Step);
1228     Value *IndVar = Builder.CreateAdd(Span, Start);
1229     BodyGenCB(Builder.saveIP(), IndVar);
1230   };
1231   LocationDescription LoopLoc = ComputeIP.isSet() ? Loc.IP : Builder.saveIP();
1232   return createCanonicalLoop(LoopLoc, BodyGen, TripCount, Name);
1233 }
1234 
1235 // Returns an LLVM function to call for initializing loop bounds using OpenMP
1236 // static scheduling depending on `type`. Only i32 and i64 are supported by the
1237 // runtime. Always interpret integers as unsigned similarly to
1238 // CanonicalLoopInfo.
getKmpcForStaticInitForType(Type * Ty,Module & M,OpenMPIRBuilder & OMPBuilder)1239 static FunctionCallee getKmpcForStaticInitForType(Type *Ty, Module &M,
1240                                                   OpenMPIRBuilder &OMPBuilder) {
1241   unsigned Bitwidth = Ty->getIntegerBitWidth();
1242   if (Bitwidth == 32)
1243     return OMPBuilder.getOrCreateRuntimeFunction(
1244         M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_4u);
1245   if (Bitwidth == 64)
1246     return OMPBuilder.getOrCreateRuntimeFunction(
1247         M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_8u);
1248   llvm_unreachable("unknown OpenMP loop iterator bitwidth");
1249 }
1250 
1251 // Sets the number of loop iterations to the given value. This value must be
1252 // valid in the condition block (i.e., defined in the preheader) and is
1253 // interpreted as an unsigned integer.
setCanonicalLoopTripCount(CanonicalLoopInfo * CLI,Value * TripCount)1254 void setCanonicalLoopTripCount(CanonicalLoopInfo *CLI, Value *TripCount) {
1255   Instruction *CmpI = &CLI->getCond()->front();
1256   assert(isa<CmpInst>(CmpI) && "First inst must compare IV with TripCount");
1257   CmpI->setOperand(1, TripCount);
1258   CLI->assertOK();
1259 }
1260 
createStaticWorkshareLoop(const LocationDescription & Loc,CanonicalLoopInfo * CLI,InsertPointTy AllocaIP,bool NeedsBarrier,Value * Chunk)1261 CanonicalLoopInfo *OpenMPIRBuilder::createStaticWorkshareLoop(
1262     const LocationDescription &Loc, CanonicalLoopInfo *CLI,
1263     InsertPointTy AllocaIP, bool NeedsBarrier, Value *Chunk) {
1264   // Set up the source location value for OpenMP runtime.
1265   if (!updateToLocation(Loc))
1266     return nullptr;
1267 
1268   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
1269   Value *SrcLoc = getOrCreateIdent(SrcLocStr);
1270 
1271   // Declare useful OpenMP runtime functions.
1272   Value *IV = CLI->getIndVar();
1273   Type *IVTy = IV->getType();
1274   FunctionCallee StaticInit = getKmpcForStaticInitForType(IVTy, M, *this);
1275   FunctionCallee StaticFini =
1276       getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini);
1277 
1278   // Allocate space for computed loop bounds as expected by the "init" function.
1279   Builder.restoreIP(AllocaIP);
1280   Type *I32Type = Type::getInt32Ty(M.getContext());
1281   Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter");
1282   Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound");
1283   Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound");
1284   Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride");
1285 
1286   // At the end of the preheader, prepare for calling the "init" function by
1287   // storing the current loop bounds into the allocated space. A canonical loop
1288   // always iterates from 0 to trip-count with step 1. Note that "init" expects
1289   // and produces an inclusive upper bound.
1290   Builder.SetInsertPoint(CLI->getPreheader()->getTerminator());
1291   Constant *Zero = ConstantInt::get(IVTy, 0);
1292   Constant *One = ConstantInt::get(IVTy, 1);
1293   Builder.CreateStore(Zero, PLowerBound);
1294   Value *UpperBound = Builder.CreateSub(CLI->getTripCount(), One);
1295   Builder.CreateStore(UpperBound, PUpperBound);
1296   Builder.CreateStore(One, PStride);
1297 
1298   if (!Chunk)
1299     Chunk = One;
1300 
1301   Value *ThreadNum = getOrCreateThreadID(SrcLoc);
1302 
1303   Constant *SchedulingType =
1304       ConstantInt::get(I32Type, static_cast<int>(OMPScheduleType::Static));
1305 
1306   // Call the "init" function and update the trip count of the loop with the
1307   // value it produced.
1308   Builder.CreateCall(StaticInit,
1309                      {SrcLoc, ThreadNum, SchedulingType, PLastIter, PLowerBound,
1310                       PUpperBound, PStride, One, Chunk});
1311   Value *LowerBound = Builder.CreateLoad(IVTy, PLowerBound);
1312   Value *InclusiveUpperBound = Builder.CreateLoad(IVTy, PUpperBound);
1313   Value *TripCountMinusOne = Builder.CreateSub(InclusiveUpperBound, LowerBound);
1314   Value *TripCount = Builder.CreateAdd(TripCountMinusOne, One);
1315   setCanonicalLoopTripCount(CLI, TripCount);
1316 
1317   // Update all uses of the induction variable except the one in the condition
1318   // block that compares it with the actual upper bound, and the increment in
1319   // the latch block.
1320   // TODO: this can eventually move to CanonicalLoopInfo or to a new
1321   // CanonicalLoopInfoUpdater interface.
1322   Builder.SetInsertPoint(CLI->getBody(), CLI->getBody()->getFirstInsertionPt());
1323   Value *UpdatedIV = Builder.CreateAdd(IV, LowerBound);
1324   IV->replaceUsesWithIf(UpdatedIV, [&](Use &U) {
1325     auto *Instr = dyn_cast<Instruction>(U.getUser());
1326     return !Instr ||
1327            (Instr->getParent() != CLI->getCond() &&
1328             Instr->getParent() != CLI->getLatch() && Instr != UpdatedIV);
1329   });
1330 
1331   // In the "exit" block, call the "fini" function.
1332   Builder.SetInsertPoint(CLI->getExit(),
1333                          CLI->getExit()->getTerminator()->getIterator());
1334   Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum});
1335 
1336   // Add the barrier if requested.
1337   if (NeedsBarrier)
1338     createBarrier(LocationDescription(Builder.saveIP(), Loc.DL),
1339                   omp::Directive::OMPD_for, /* ForceSimpleCall */ false,
1340                   /* CheckCancelFlag */ false);
1341 
1342   CLI->assertOK();
1343   return CLI;
1344 }
1345 
createWorkshareLoop(const LocationDescription & Loc,CanonicalLoopInfo * CLI,InsertPointTy AllocaIP,bool NeedsBarrier)1346 CanonicalLoopInfo *OpenMPIRBuilder::createWorkshareLoop(
1347     const LocationDescription &Loc, CanonicalLoopInfo *CLI,
1348     InsertPointTy AllocaIP, bool NeedsBarrier) {
1349   // Currently only supports static schedules.
1350   return createStaticWorkshareLoop(Loc, CLI, AllocaIP, NeedsBarrier);
1351 }
1352 
1353 /// Returns an LLVM function to call for initializing loop bounds using OpenMP
1354 /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by
1355 /// the runtime. Always interpret integers as unsigned similarly to
1356 /// CanonicalLoopInfo.
1357 static FunctionCallee
getKmpcForDynamicInitForType(Type * Ty,Module & M,OpenMPIRBuilder & OMPBuilder)1358 getKmpcForDynamicInitForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
1359   unsigned Bitwidth = Ty->getIntegerBitWidth();
1360   if (Bitwidth == 32)
1361     return OMPBuilder.getOrCreateRuntimeFunction(
1362         M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_4u);
1363   if (Bitwidth == 64)
1364     return OMPBuilder.getOrCreateRuntimeFunction(
1365         M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_8u);
1366   llvm_unreachable("unknown OpenMP loop iterator bitwidth");
1367 }
1368 
1369 /// Returns an LLVM function to call for updating the next loop using OpenMP
1370 /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by
1371 /// the runtime. Always interpret integers as unsigned similarly to
1372 /// CanonicalLoopInfo.
1373 static FunctionCallee
getKmpcForDynamicNextForType(Type * Ty,Module & M,OpenMPIRBuilder & OMPBuilder)1374 getKmpcForDynamicNextForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
1375   unsigned Bitwidth = Ty->getIntegerBitWidth();
1376   if (Bitwidth == 32)
1377     return OMPBuilder.getOrCreateRuntimeFunction(
1378         M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_4u);
1379   if (Bitwidth == 64)
1380     return OMPBuilder.getOrCreateRuntimeFunction(
1381         M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_8u);
1382   llvm_unreachable("unknown OpenMP loop iterator bitwidth");
1383 }
1384 
createDynamicWorkshareLoop(const LocationDescription & Loc,CanonicalLoopInfo * CLI,InsertPointTy AllocaIP,OMPScheduleType SchedType,bool NeedsBarrier,Value * Chunk)1385 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createDynamicWorkshareLoop(
1386     const LocationDescription &Loc, CanonicalLoopInfo *CLI,
1387     InsertPointTy AllocaIP, OMPScheduleType SchedType, bool NeedsBarrier,
1388     Value *Chunk) {
1389   // Set up the source location value for OpenMP runtime.
1390   Builder.SetCurrentDebugLocation(Loc.DL);
1391 
1392   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
1393   Value *SrcLoc = getOrCreateIdent(SrcLocStr);
1394 
1395   // Declare useful OpenMP runtime functions.
1396   Value *IV = CLI->getIndVar();
1397   Type *IVTy = IV->getType();
1398   FunctionCallee DynamicInit = getKmpcForDynamicInitForType(IVTy, M, *this);
1399   FunctionCallee DynamicNext = getKmpcForDynamicNextForType(IVTy, M, *this);
1400 
1401   // Allocate space for computed loop bounds as expected by the "init" function.
1402   Builder.restoreIP(AllocaIP);
1403   Type *I32Type = Type::getInt32Ty(M.getContext());
1404   Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter");
1405   Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound");
1406   Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound");
1407   Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride");
1408 
1409   // At the end of the preheader, prepare for calling the "init" function by
1410   // storing the current loop bounds into the allocated space. A canonical loop
1411   // always iterates from 0 to trip-count with step 1. Note that "init" expects
1412   // and produces an inclusive upper bound.
1413   BasicBlock *PreHeader = CLI->getPreheader();
1414   Builder.SetInsertPoint(PreHeader->getTerminator());
1415   Constant *One = ConstantInt::get(IVTy, 1);
1416   Builder.CreateStore(One, PLowerBound);
1417   Value *UpperBound = CLI->getTripCount();
1418   Builder.CreateStore(UpperBound, PUpperBound);
1419   Builder.CreateStore(One, PStride);
1420 
1421   BasicBlock *Header = CLI->getHeader();
1422   BasicBlock *Exit = CLI->getExit();
1423   BasicBlock *Cond = CLI->getCond();
1424   InsertPointTy AfterIP = CLI->getAfterIP();
1425 
1426   // The CLI will be "broken" in the code below, as the loop is no longer
1427   // a valid canonical loop.
1428 
1429   if (!Chunk)
1430     Chunk = One;
1431 
1432   Value *ThreadNum = getOrCreateThreadID(SrcLoc);
1433 
1434   OMPScheduleType DynamicSchedType =
1435       SchedType | OMPScheduleType::ModifierNonmonotonic;
1436   Constant *SchedulingType =
1437       ConstantInt::get(I32Type, static_cast<int>(DynamicSchedType));
1438 
1439   // Call the "init" function.
1440   Builder.CreateCall(DynamicInit,
1441                      {SrcLoc, ThreadNum, SchedulingType, /* LowerBound */ One,
1442                       UpperBound, /* step */ One, Chunk});
1443 
1444   // An outer loop around the existing one.
1445   BasicBlock *OuterCond = BasicBlock::Create(
1446       PreHeader->getContext(), Twine(PreHeader->getName()) + ".outer.cond",
1447       PreHeader->getParent());
1448   // This needs to be 32-bit always, so can't use the IVTy Zero above.
1449   Builder.SetInsertPoint(OuterCond, OuterCond->getFirstInsertionPt());
1450   Value *Res =
1451       Builder.CreateCall(DynamicNext, {SrcLoc, ThreadNum, PLastIter,
1452                                        PLowerBound, PUpperBound, PStride});
1453   Constant *Zero32 = ConstantInt::get(I32Type, 0);
1454   Value *MoreWork = Builder.CreateCmp(CmpInst::ICMP_NE, Res, Zero32);
1455   Value *LowerBound =
1456       Builder.CreateSub(Builder.CreateLoad(IVTy, PLowerBound), One, "lb");
1457   Builder.CreateCondBr(MoreWork, Header, Exit);
1458 
1459   // Change PHI-node in loop header to use outer cond rather than preheader,
1460   // and set IV to the LowerBound.
1461   Instruction *Phi = &Header->front();
1462   auto *PI = cast<PHINode>(Phi);
1463   PI->setIncomingBlock(0, OuterCond);
1464   PI->setIncomingValue(0, LowerBound);
1465 
1466   // Then set the pre-header to jump to the OuterCond
1467   Instruction *Term = PreHeader->getTerminator();
1468   auto *Br = cast<BranchInst>(Term);
1469   Br->setSuccessor(0, OuterCond);
1470 
1471   // Modify the inner condition:
1472   // * Use the UpperBound returned from the DynamicNext call.
1473   // * jump to the loop outer loop when done with one of the inner loops.
1474   Builder.SetInsertPoint(Cond, Cond->getFirstInsertionPt());
1475   UpperBound = Builder.CreateLoad(IVTy, PUpperBound, "ub");
1476   Instruction *Comp = &*Builder.GetInsertPoint();
1477   auto *CI = cast<CmpInst>(Comp);
1478   CI->setOperand(1, UpperBound);
1479   // Redirect the inner exit to branch to outer condition.
1480   Instruction *Branch = &Cond->back();
1481   auto *BI = cast<BranchInst>(Branch);
1482   assert(BI->getSuccessor(1) == Exit);
1483   BI->setSuccessor(1, OuterCond);
1484 
1485   // Add the barrier if requested.
1486   if (NeedsBarrier) {
1487     Builder.SetInsertPoint(&Exit->back());
1488     createBarrier(LocationDescription(Builder.saveIP(), Loc.DL),
1489                   omp::Directive::OMPD_for, /* ForceSimpleCall */ false,
1490                   /* CheckCancelFlag */ false);
1491   }
1492 
1493   return AfterIP;
1494 }
1495 
1496 /// Make \p Source branch to \p Target.
1497 ///
1498 /// Handles two situations:
1499 /// * \p Source already has an unconditional branch.
1500 /// * \p Source is a degenerate block (no terminator because the BB is
1501 ///             the current head of the IR construction).
redirectTo(BasicBlock * Source,BasicBlock * Target,DebugLoc DL)1502 static void redirectTo(BasicBlock *Source, BasicBlock *Target, DebugLoc DL) {
1503   if (Instruction *Term = Source->getTerminator()) {
1504     auto *Br = cast<BranchInst>(Term);
1505     assert(!Br->isConditional() &&
1506            "BB's terminator must be an unconditional branch (or degenerate)");
1507     BasicBlock *Succ = Br->getSuccessor(0);
1508     Succ->removePredecessor(Source, /*KeepOneInputPHIs=*/true);
1509     Br->setSuccessor(0, Target);
1510     return;
1511   }
1512 
1513   auto *NewBr = BranchInst::Create(Target, Source);
1514   NewBr->setDebugLoc(DL);
1515 }
1516 
1517 /// Redirect all edges that branch to \p OldTarget to \p NewTarget. That is,
1518 /// after this \p OldTarget will be orphaned.
redirectAllPredecessorsTo(BasicBlock * OldTarget,BasicBlock * NewTarget,DebugLoc DL)1519 static void redirectAllPredecessorsTo(BasicBlock *OldTarget,
1520                                       BasicBlock *NewTarget, DebugLoc DL) {
1521   for (BasicBlock *Pred : make_early_inc_range(predecessors(OldTarget)))
1522     redirectTo(Pred, NewTarget, DL);
1523 }
1524 
1525 /// Determine which blocks in \p BBs are reachable from outside and remove the
1526 /// ones that are not reachable from the function.
removeUnusedBlocksFromParent(ArrayRef<BasicBlock * > BBs)1527 static void removeUnusedBlocksFromParent(ArrayRef<BasicBlock *> BBs) {
1528   SmallPtrSet<BasicBlock *, 6> BBsToErase{BBs.begin(), BBs.end()};
1529   auto HasRemainingUses = [&BBsToErase](BasicBlock *BB) {
1530     for (Use &U : BB->uses()) {
1531       auto *UseInst = dyn_cast<Instruction>(U.getUser());
1532       if (!UseInst)
1533         continue;
1534       if (BBsToErase.count(UseInst->getParent()))
1535         continue;
1536       return true;
1537     }
1538     return false;
1539   };
1540 
1541   while (true) {
1542     bool Changed = false;
1543     for (BasicBlock *BB : make_early_inc_range(BBsToErase)) {
1544       if (HasRemainingUses(BB)) {
1545         BBsToErase.erase(BB);
1546         Changed = true;
1547       }
1548     }
1549     if (!Changed)
1550       break;
1551   }
1552 
1553   SmallVector<BasicBlock *, 7> BBVec(BBsToErase.begin(), BBsToErase.end());
1554   DeleteDeadBlocks(BBVec);
1555 }
1556 
1557 CanonicalLoopInfo *
collapseLoops(DebugLoc DL,ArrayRef<CanonicalLoopInfo * > Loops,InsertPointTy ComputeIP)1558 OpenMPIRBuilder::collapseLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops,
1559                                InsertPointTy ComputeIP) {
1560   assert(Loops.size() >= 1 && "At least one loop required");
1561   size_t NumLoops = Loops.size();
1562 
1563   // Nothing to do if there is already just one loop.
1564   if (NumLoops == 1)
1565     return Loops.front();
1566 
1567   CanonicalLoopInfo *Outermost = Loops.front();
1568   CanonicalLoopInfo *Innermost = Loops.back();
1569   BasicBlock *OrigPreheader = Outermost->getPreheader();
1570   BasicBlock *OrigAfter = Outermost->getAfter();
1571   Function *F = OrigPreheader->getParent();
1572 
1573   // Setup the IRBuilder for inserting the trip count computation.
1574   Builder.SetCurrentDebugLocation(DL);
1575   if (ComputeIP.isSet())
1576     Builder.restoreIP(ComputeIP);
1577   else
1578     Builder.restoreIP(Outermost->getPreheaderIP());
1579 
1580   // Derive the collapsed' loop trip count.
1581   // TODO: Find common/largest indvar type.
1582   Value *CollapsedTripCount = nullptr;
1583   for (CanonicalLoopInfo *L : Loops) {
1584     Value *OrigTripCount = L->getTripCount();
1585     if (!CollapsedTripCount) {
1586       CollapsedTripCount = OrigTripCount;
1587       continue;
1588     }
1589 
1590     // TODO: Enable UndefinedSanitizer to diagnose an overflow here.
1591     CollapsedTripCount = Builder.CreateMul(CollapsedTripCount, OrigTripCount,
1592                                            {}, /*HasNUW=*/true);
1593   }
1594 
1595   // Create the collapsed loop control flow.
1596   CanonicalLoopInfo *Result =
1597       createLoopSkeleton(DL, CollapsedTripCount, F,
1598                          OrigPreheader->getNextNode(), OrigAfter, "collapsed");
1599 
1600   // Build the collapsed loop body code.
1601   // Start with deriving the input loop induction variables from the collapsed
1602   // one, using a divmod scheme. To preserve the original loops' order, the
1603   // innermost loop use the least significant bits.
1604   Builder.restoreIP(Result->getBodyIP());
1605 
1606   Value *Leftover = Result->getIndVar();
1607   SmallVector<Value *> NewIndVars;
1608   NewIndVars.set_size(NumLoops);
1609   for (int i = NumLoops - 1; i >= 1; --i) {
1610     Value *OrigTripCount = Loops[i]->getTripCount();
1611 
1612     Value *NewIndVar = Builder.CreateURem(Leftover, OrigTripCount);
1613     NewIndVars[i] = NewIndVar;
1614 
1615     Leftover = Builder.CreateUDiv(Leftover, OrigTripCount);
1616   }
1617   // Outermost loop gets all the remaining bits.
1618   NewIndVars[0] = Leftover;
1619 
1620   // Construct the loop body control flow.
1621   // We progressively construct the branch structure following in direction of
1622   // the control flow, from the leading in-between code, the loop nest body, the
1623   // trailing in-between code, and rejoining the collapsed loop's latch.
1624   // ContinueBlock and ContinuePred keep track of the source(s) of next edge. If
1625   // the ContinueBlock is set, continue with that block. If ContinuePred, use
1626   // its predecessors as sources.
1627   BasicBlock *ContinueBlock = Result->getBody();
1628   BasicBlock *ContinuePred = nullptr;
1629   auto ContinueWith = [&ContinueBlock, &ContinuePred, DL](BasicBlock *Dest,
1630                                                           BasicBlock *NextSrc) {
1631     if (ContinueBlock)
1632       redirectTo(ContinueBlock, Dest, DL);
1633     else
1634       redirectAllPredecessorsTo(ContinuePred, Dest, DL);
1635 
1636     ContinueBlock = nullptr;
1637     ContinuePred = NextSrc;
1638   };
1639 
1640   // The code before the nested loop of each level.
1641   // Because we are sinking it into the nest, it will be executed more often
1642   // that the original loop. More sophisticated schemes could keep track of what
1643   // the in-between code is and instantiate it only once per thread.
1644   for (size_t i = 0; i < NumLoops - 1; ++i)
1645     ContinueWith(Loops[i]->getBody(), Loops[i + 1]->getHeader());
1646 
1647   // Connect the loop nest body.
1648   ContinueWith(Innermost->getBody(), Innermost->getLatch());
1649 
1650   // The code after the nested loop at each level.
1651   for (size_t i = NumLoops - 1; i > 0; --i)
1652     ContinueWith(Loops[i]->getAfter(), Loops[i - 1]->getLatch());
1653 
1654   // Connect the finished loop to the collapsed loop latch.
1655   ContinueWith(Result->getLatch(), nullptr);
1656 
1657   // Replace the input loops with the new collapsed loop.
1658   redirectTo(Outermost->getPreheader(), Result->getPreheader(), DL);
1659   redirectTo(Result->getAfter(), Outermost->getAfter(), DL);
1660 
1661   // Replace the input loop indvars with the derived ones.
1662   for (size_t i = 0; i < NumLoops; ++i)
1663     Loops[i]->getIndVar()->replaceAllUsesWith(NewIndVars[i]);
1664 
1665   // Remove unused parts of the input loops.
1666   SmallVector<BasicBlock *, 12> OldControlBBs;
1667   OldControlBBs.reserve(6 * Loops.size());
1668   for (CanonicalLoopInfo *Loop : Loops)
1669     Loop->collectControlBlocks(OldControlBBs);
1670   removeUnusedBlocksFromParent(OldControlBBs);
1671 
1672 #ifndef NDEBUG
1673   Result->assertOK();
1674 #endif
1675   return Result;
1676 }
1677 
1678 std::vector<CanonicalLoopInfo *>
tileLoops(DebugLoc DL,ArrayRef<CanonicalLoopInfo * > Loops,ArrayRef<Value * > TileSizes)1679 OpenMPIRBuilder::tileLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops,
1680                            ArrayRef<Value *> TileSizes) {
1681   assert(TileSizes.size() == Loops.size() &&
1682          "Must pass as many tile sizes as there are loops");
1683   int NumLoops = Loops.size();
1684   assert(NumLoops >= 1 && "At least one loop to tile required");
1685 
1686   CanonicalLoopInfo *OutermostLoop = Loops.front();
1687   CanonicalLoopInfo *InnermostLoop = Loops.back();
1688   Function *F = OutermostLoop->getBody()->getParent();
1689   BasicBlock *InnerEnter = InnermostLoop->getBody();
1690   BasicBlock *InnerLatch = InnermostLoop->getLatch();
1691 
1692   // Collect original trip counts and induction variable to be accessible by
1693   // index. Also, the structure of the original loops is not preserved during
1694   // the construction of the tiled loops, so do it before we scavenge the BBs of
1695   // any original CanonicalLoopInfo.
1696   SmallVector<Value *, 4> OrigTripCounts, OrigIndVars;
1697   for (CanonicalLoopInfo *L : Loops) {
1698     OrigTripCounts.push_back(L->getTripCount());
1699     OrigIndVars.push_back(L->getIndVar());
1700   }
1701 
1702   // Collect the code between loop headers. These may contain SSA definitions
1703   // that are used in the loop nest body. To be usable with in the innermost
1704   // body, these BasicBlocks will be sunk into the loop nest body. That is,
1705   // these instructions may be executed more often than before the tiling.
1706   // TODO: It would be sufficient to only sink them into body of the
1707   // corresponding tile loop.
1708   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> InbetweenCode;
1709   for (int i = 0; i < NumLoops - 1; ++i) {
1710     CanonicalLoopInfo *Surrounding = Loops[i];
1711     CanonicalLoopInfo *Nested = Loops[i + 1];
1712 
1713     BasicBlock *EnterBB = Surrounding->getBody();
1714     BasicBlock *ExitBB = Nested->getHeader();
1715     InbetweenCode.emplace_back(EnterBB, ExitBB);
1716   }
1717 
1718   // Compute the trip counts of the floor loops.
1719   Builder.SetCurrentDebugLocation(DL);
1720   Builder.restoreIP(OutermostLoop->getPreheaderIP());
1721   SmallVector<Value *, 4> FloorCount, FloorRems;
1722   for (int i = 0; i < NumLoops; ++i) {
1723     Value *TileSize = TileSizes[i];
1724     Value *OrigTripCount = OrigTripCounts[i];
1725     Type *IVType = OrigTripCount->getType();
1726 
1727     Value *FloorTripCount = Builder.CreateUDiv(OrigTripCount, TileSize);
1728     Value *FloorTripRem = Builder.CreateURem(OrigTripCount, TileSize);
1729 
1730     // 0 if tripcount divides the tilesize, 1 otherwise.
1731     // 1 means we need an additional iteration for a partial tile.
1732     //
1733     // Unfortunately we cannot just use the roundup-formula
1734     //   (tripcount + tilesize - 1)/tilesize
1735     // because the summation might overflow. We do not want introduce undefined
1736     // behavior when the untiled loop nest did not.
1737     Value *FloorTripOverflow =
1738         Builder.CreateICmpNE(FloorTripRem, ConstantInt::get(IVType, 0));
1739 
1740     FloorTripOverflow = Builder.CreateZExt(FloorTripOverflow, IVType);
1741     FloorTripCount =
1742         Builder.CreateAdd(FloorTripCount, FloorTripOverflow,
1743                           "omp_floor" + Twine(i) + ".tripcount", true);
1744 
1745     // Remember some values for later use.
1746     FloorCount.push_back(FloorTripCount);
1747     FloorRems.push_back(FloorTripRem);
1748   }
1749 
1750   // Generate the new loop nest, from the outermost to the innermost.
1751   std::vector<CanonicalLoopInfo *> Result;
1752   Result.reserve(NumLoops * 2);
1753 
1754   // The basic block of the surrounding loop that enters the nest generated
1755   // loop.
1756   BasicBlock *Enter = OutermostLoop->getPreheader();
1757 
1758   // The basic block of the surrounding loop where the inner code should
1759   // continue.
1760   BasicBlock *Continue = OutermostLoop->getAfter();
1761 
1762   // Where the next loop basic block should be inserted.
1763   BasicBlock *OutroInsertBefore = InnermostLoop->getExit();
1764 
1765   auto EmbeddNewLoop =
1766       [this, DL, F, InnerEnter, &Enter, &Continue, &OutroInsertBefore](
1767           Value *TripCount, const Twine &Name) -> CanonicalLoopInfo * {
1768     CanonicalLoopInfo *EmbeddedLoop = createLoopSkeleton(
1769         DL, TripCount, F, InnerEnter, OutroInsertBefore, Name);
1770     redirectTo(Enter, EmbeddedLoop->getPreheader(), DL);
1771     redirectTo(EmbeddedLoop->getAfter(), Continue, DL);
1772 
1773     // Setup the position where the next embedded loop connects to this loop.
1774     Enter = EmbeddedLoop->getBody();
1775     Continue = EmbeddedLoop->getLatch();
1776     OutroInsertBefore = EmbeddedLoop->getLatch();
1777     return EmbeddedLoop;
1778   };
1779 
1780   auto EmbeddNewLoops = [&Result, &EmbeddNewLoop](ArrayRef<Value *> TripCounts,
1781                                                   const Twine &NameBase) {
1782     for (auto P : enumerate(TripCounts)) {
1783       CanonicalLoopInfo *EmbeddedLoop =
1784           EmbeddNewLoop(P.value(), NameBase + Twine(P.index()));
1785       Result.push_back(EmbeddedLoop);
1786     }
1787   };
1788 
1789   EmbeddNewLoops(FloorCount, "floor");
1790 
1791   // Within the innermost floor loop, emit the code that computes the tile
1792   // sizes.
1793   Builder.SetInsertPoint(Enter->getTerminator());
1794   SmallVector<Value *, 4> TileCounts;
1795   for (int i = 0; i < NumLoops; ++i) {
1796     CanonicalLoopInfo *FloorLoop = Result[i];
1797     Value *TileSize = TileSizes[i];
1798 
1799     Value *FloorIsEpilogue =
1800         Builder.CreateICmpEQ(FloorLoop->getIndVar(), FloorCount[i]);
1801     Value *TileTripCount =
1802         Builder.CreateSelect(FloorIsEpilogue, FloorRems[i], TileSize);
1803 
1804     TileCounts.push_back(TileTripCount);
1805   }
1806 
1807   // Create the tile loops.
1808   EmbeddNewLoops(TileCounts, "tile");
1809 
1810   // Insert the inbetween code into the body.
1811   BasicBlock *BodyEnter = Enter;
1812   BasicBlock *BodyEntered = nullptr;
1813   for (std::pair<BasicBlock *, BasicBlock *> P : InbetweenCode) {
1814     BasicBlock *EnterBB = P.first;
1815     BasicBlock *ExitBB = P.second;
1816 
1817     if (BodyEnter)
1818       redirectTo(BodyEnter, EnterBB, DL);
1819     else
1820       redirectAllPredecessorsTo(BodyEntered, EnterBB, DL);
1821 
1822     BodyEnter = nullptr;
1823     BodyEntered = ExitBB;
1824   }
1825 
1826   // Append the original loop nest body into the generated loop nest body.
1827   if (BodyEnter)
1828     redirectTo(BodyEnter, InnerEnter, DL);
1829   else
1830     redirectAllPredecessorsTo(BodyEntered, InnerEnter, DL);
1831   redirectAllPredecessorsTo(InnerLatch, Continue, DL);
1832 
1833   // Replace the original induction variable with an induction variable computed
1834   // from the tile and floor induction variables.
1835   Builder.restoreIP(Result.back()->getBodyIP());
1836   for (int i = 0; i < NumLoops; ++i) {
1837     CanonicalLoopInfo *FloorLoop = Result[i];
1838     CanonicalLoopInfo *TileLoop = Result[NumLoops + i];
1839     Value *OrigIndVar = OrigIndVars[i];
1840     Value *Size = TileSizes[i];
1841 
1842     Value *Scale =
1843         Builder.CreateMul(Size, FloorLoop->getIndVar(), {}, /*HasNUW=*/true);
1844     Value *Shift =
1845         Builder.CreateAdd(Scale, TileLoop->getIndVar(), {}, /*HasNUW=*/true);
1846     OrigIndVar->replaceAllUsesWith(Shift);
1847   }
1848 
1849   // Remove unused parts of the original loops.
1850   SmallVector<BasicBlock *, 12> OldControlBBs;
1851   OldControlBBs.reserve(6 * Loops.size());
1852   for (CanonicalLoopInfo *Loop : Loops)
1853     Loop->collectControlBlocks(OldControlBBs);
1854   removeUnusedBlocksFromParent(OldControlBBs);
1855 
1856 #ifndef NDEBUG
1857   for (CanonicalLoopInfo *GenL : Result)
1858     GenL->assertOK();
1859 #endif
1860   return Result;
1861 }
1862 
1863 OpenMPIRBuilder::InsertPointTy
createCopyPrivate(const LocationDescription & Loc,llvm::Value * BufSize,llvm::Value * CpyBuf,llvm::Value * CpyFn,llvm::Value * DidIt)1864 OpenMPIRBuilder::createCopyPrivate(const LocationDescription &Loc,
1865                                    llvm::Value *BufSize, llvm::Value *CpyBuf,
1866                                    llvm::Value *CpyFn, llvm::Value *DidIt) {
1867   if (!updateToLocation(Loc))
1868     return Loc.IP;
1869 
1870   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
1871   Value *Ident = getOrCreateIdent(SrcLocStr);
1872   Value *ThreadId = getOrCreateThreadID(Ident);
1873 
1874   llvm::Value *DidItLD = Builder.CreateLoad(Builder.getInt32Ty(), DidIt);
1875 
1876   Value *Args[] = {Ident, ThreadId, BufSize, CpyBuf, CpyFn, DidItLD};
1877 
1878   Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_copyprivate);
1879   Builder.CreateCall(Fn, Args);
1880 
1881   return Builder.saveIP();
1882 }
1883 
1884 OpenMPIRBuilder::InsertPointTy
createSingle(const LocationDescription & Loc,BodyGenCallbackTy BodyGenCB,FinalizeCallbackTy FiniCB,llvm::Value * DidIt)1885 OpenMPIRBuilder::createSingle(const LocationDescription &Loc,
1886                               BodyGenCallbackTy BodyGenCB,
1887                               FinalizeCallbackTy FiniCB, llvm::Value *DidIt) {
1888 
1889   if (!updateToLocation(Loc))
1890     return Loc.IP;
1891 
1892   // If needed (i.e. not null), initialize `DidIt` with 0
1893   if (DidIt) {
1894     Builder.CreateStore(Builder.getInt32(0), DidIt);
1895   }
1896 
1897   Directive OMPD = Directive::OMPD_single;
1898   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
1899   Value *Ident = getOrCreateIdent(SrcLocStr);
1900   Value *ThreadId = getOrCreateThreadID(Ident);
1901   Value *Args[] = {Ident, ThreadId};
1902 
1903   Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_single);
1904   Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
1905 
1906   Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_single);
1907   Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
1908 
1909   // generates the following:
1910   // if (__kmpc_single()) {
1911   //		.... single region ...
1912   // 		__kmpc_end_single
1913   // }
1914 
1915   return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
1916                               /*Conditional*/ true, /*hasFinalize*/ true);
1917 }
1918 
createCritical(const LocationDescription & Loc,BodyGenCallbackTy BodyGenCB,FinalizeCallbackTy FiniCB,StringRef CriticalName,Value * HintInst)1919 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCritical(
1920     const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
1921     FinalizeCallbackTy FiniCB, StringRef CriticalName, Value *HintInst) {
1922 
1923   if (!updateToLocation(Loc))
1924     return Loc.IP;
1925 
1926   Directive OMPD = Directive::OMPD_critical;
1927   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
1928   Value *Ident = getOrCreateIdent(SrcLocStr);
1929   Value *ThreadId = getOrCreateThreadID(Ident);
1930   Value *LockVar = getOMPCriticalRegionLock(CriticalName);
1931   Value *Args[] = {Ident, ThreadId, LockVar};
1932 
1933   SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args), std::end(Args));
1934   Function *RTFn = nullptr;
1935   if (HintInst) {
1936     // Add Hint to entry Args and create call
1937     EnterArgs.push_back(HintInst);
1938     RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical_with_hint);
1939   } else {
1940     RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical);
1941   }
1942   Instruction *EntryCall = Builder.CreateCall(RTFn, EnterArgs);
1943 
1944   Function *ExitRTLFn =
1945       getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_critical);
1946   Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
1947 
1948   return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
1949                               /*Conditional*/ false, /*hasFinalize*/ true);
1950 }
1951 
EmitOMPInlinedRegion(Directive OMPD,Instruction * EntryCall,Instruction * ExitCall,BodyGenCallbackTy BodyGenCB,FinalizeCallbackTy FiniCB,bool Conditional,bool HasFinalize,bool IsCancellable)1952 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::EmitOMPInlinedRegion(
1953     Directive OMPD, Instruction *EntryCall, Instruction *ExitCall,
1954     BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool Conditional,
1955     bool HasFinalize, bool IsCancellable) {
1956 
1957   if (HasFinalize)
1958     FinalizationStack.push_back({FiniCB, OMPD, IsCancellable});
1959 
1960   // Create inlined region's entry and body blocks, in preparation
1961   // for conditional creation
1962   BasicBlock *EntryBB = Builder.GetInsertBlock();
1963   Instruction *SplitPos = EntryBB->getTerminator();
1964   if (!isa_and_nonnull<BranchInst>(SplitPos))
1965     SplitPos = new UnreachableInst(Builder.getContext(), EntryBB);
1966   BasicBlock *ExitBB = EntryBB->splitBasicBlock(SplitPos, "omp_region.end");
1967   BasicBlock *FiniBB =
1968       EntryBB->splitBasicBlock(EntryBB->getTerminator(), "omp_region.finalize");
1969 
1970   Builder.SetInsertPoint(EntryBB->getTerminator());
1971   emitCommonDirectiveEntry(OMPD, EntryCall, ExitBB, Conditional);
1972 
1973   // generate body
1974   BodyGenCB(/* AllocaIP */ InsertPointTy(),
1975             /* CodeGenIP */ Builder.saveIP(), *FiniBB);
1976 
1977   // If we didn't emit a branch to FiniBB during body generation, it means
1978   // FiniBB is unreachable (e.g. while(1);). stop generating all the
1979   // unreachable blocks, and remove anything we are not going to use.
1980   auto SkipEmittingRegion = FiniBB->hasNPredecessors(0);
1981   if (SkipEmittingRegion) {
1982     FiniBB->eraseFromParent();
1983     ExitCall->eraseFromParent();
1984     // Discard finalization if we have it.
1985     if (HasFinalize) {
1986       assert(!FinalizationStack.empty() &&
1987              "Unexpected finalization stack state!");
1988       FinalizationStack.pop_back();
1989     }
1990   } else {
1991     // emit exit call and do any needed finalization.
1992     auto FinIP = InsertPointTy(FiniBB, FiniBB->getFirstInsertionPt());
1993     assert(FiniBB->getTerminator()->getNumSuccessors() == 1 &&
1994            FiniBB->getTerminator()->getSuccessor(0) == ExitBB &&
1995            "Unexpected control flow graph state!!");
1996     emitCommonDirectiveExit(OMPD, FinIP, ExitCall, HasFinalize);
1997     assert(FiniBB->getUniquePredecessor()->getUniqueSuccessor() == FiniBB &&
1998            "Unexpected Control Flow State!");
1999     MergeBlockIntoPredecessor(FiniBB);
2000   }
2001 
2002   // If we are skipping the region of a non conditional, remove the exit
2003   // block, and clear the builder's insertion point.
2004   assert(SplitPos->getParent() == ExitBB &&
2005          "Unexpected Insertion point location!");
2006   if (!Conditional && SkipEmittingRegion) {
2007     ExitBB->eraseFromParent();
2008     Builder.ClearInsertionPoint();
2009   } else {
2010     auto merged = MergeBlockIntoPredecessor(ExitBB);
2011     BasicBlock *ExitPredBB = SplitPos->getParent();
2012     auto InsertBB = merged ? ExitPredBB : ExitBB;
2013     if (!isa_and_nonnull<BranchInst>(SplitPos))
2014       SplitPos->eraseFromParent();
2015     Builder.SetInsertPoint(InsertBB);
2016   }
2017 
2018   return Builder.saveIP();
2019 }
2020 
emitCommonDirectiveEntry(Directive OMPD,Value * EntryCall,BasicBlock * ExitBB,bool Conditional)2021 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveEntry(
2022     Directive OMPD, Value *EntryCall, BasicBlock *ExitBB, bool Conditional) {
2023   // if nothing to do, Return current insertion point.
2024   if (!Conditional || !EntryCall)
2025     return Builder.saveIP();
2026 
2027   BasicBlock *EntryBB = Builder.GetInsertBlock();
2028   Value *CallBool = Builder.CreateIsNotNull(EntryCall);
2029   auto *ThenBB = BasicBlock::Create(M.getContext(), "omp_region.body");
2030   auto *UI = new UnreachableInst(Builder.getContext(), ThenBB);
2031 
2032   // Emit thenBB and set the Builder's insertion point there for
2033   // body generation next. Place the block after the current block.
2034   Function *CurFn = EntryBB->getParent();
2035   CurFn->getBasicBlockList().insertAfter(EntryBB->getIterator(), ThenBB);
2036 
2037   // Move Entry branch to end of ThenBB, and replace with conditional
2038   // branch (If-stmt)
2039   Instruction *EntryBBTI = EntryBB->getTerminator();
2040   Builder.CreateCondBr(CallBool, ThenBB, ExitBB);
2041   EntryBBTI->removeFromParent();
2042   Builder.SetInsertPoint(UI);
2043   Builder.Insert(EntryBBTI);
2044   UI->eraseFromParent();
2045   Builder.SetInsertPoint(ThenBB->getTerminator());
2046 
2047   // return an insertion point to ExitBB.
2048   return IRBuilder<>::InsertPoint(ExitBB, ExitBB->getFirstInsertionPt());
2049 }
2050 
emitCommonDirectiveExit(omp::Directive OMPD,InsertPointTy FinIP,Instruction * ExitCall,bool HasFinalize)2051 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveExit(
2052     omp::Directive OMPD, InsertPointTy FinIP, Instruction *ExitCall,
2053     bool HasFinalize) {
2054 
2055   Builder.restoreIP(FinIP);
2056 
2057   // If there is finalization to do, emit it before the exit call
2058   if (HasFinalize) {
2059     assert(!FinalizationStack.empty() &&
2060            "Unexpected finalization stack state!");
2061 
2062     FinalizationInfo Fi = FinalizationStack.pop_back_val();
2063     assert(Fi.DK == OMPD && "Unexpected Directive for Finalization call!");
2064 
2065     Fi.FiniCB(FinIP);
2066 
2067     BasicBlock *FiniBB = FinIP.getBlock();
2068     Instruction *FiniBBTI = FiniBB->getTerminator();
2069 
2070     // set Builder IP for call creation
2071     Builder.SetInsertPoint(FiniBBTI);
2072   }
2073 
2074   if (!ExitCall)
2075     return Builder.saveIP();
2076 
2077   // place the Exitcall as last instruction before Finalization block terminator
2078   ExitCall->removeFromParent();
2079   Builder.Insert(ExitCall);
2080 
2081   return IRBuilder<>::InsertPoint(ExitCall->getParent(),
2082                                   ExitCall->getIterator());
2083 }
2084 
createCopyinClauseBlocks(InsertPointTy IP,Value * MasterAddr,Value * PrivateAddr,llvm::IntegerType * IntPtrTy,bool BranchtoEnd)2085 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCopyinClauseBlocks(
2086     InsertPointTy IP, Value *MasterAddr, Value *PrivateAddr,
2087     llvm::IntegerType *IntPtrTy, bool BranchtoEnd) {
2088   if (!IP.isSet())
2089     return IP;
2090 
2091   IRBuilder<>::InsertPointGuard IPG(Builder);
2092 
2093   // creates the following CFG structure
2094   //	   OMP_Entry : (MasterAddr != PrivateAddr)?
2095   //       F     T
2096   //       |      \
2097   //       |     copin.not.master
2098   //       |      /
2099   //       v     /
2100   //   copyin.not.master.end
2101   //		     |
2102   //         v
2103   //   OMP.Entry.Next
2104 
2105   BasicBlock *OMP_Entry = IP.getBlock();
2106   Function *CurFn = OMP_Entry->getParent();
2107   BasicBlock *CopyBegin =
2108       BasicBlock::Create(M.getContext(), "copyin.not.master", CurFn);
2109   BasicBlock *CopyEnd = nullptr;
2110 
2111   // If entry block is terminated, split to preserve the branch to following
2112   // basic block (i.e. OMP.Entry.Next), otherwise, leave everything as is.
2113   if (isa_and_nonnull<BranchInst>(OMP_Entry->getTerminator())) {
2114     CopyEnd = OMP_Entry->splitBasicBlock(OMP_Entry->getTerminator(),
2115                                          "copyin.not.master.end");
2116     OMP_Entry->getTerminator()->eraseFromParent();
2117   } else {
2118     CopyEnd =
2119         BasicBlock::Create(M.getContext(), "copyin.not.master.end", CurFn);
2120   }
2121 
2122   Builder.SetInsertPoint(OMP_Entry);
2123   Value *MasterPtr = Builder.CreatePtrToInt(MasterAddr, IntPtrTy);
2124   Value *PrivatePtr = Builder.CreatePtrToInt(PrivateAddr, IntPtrTy);
2125   Value *cmp = Builder.CreateICmpNE(MasterPtr, PrivatePtr);
2126   Builder.CreateCondBr(cmp, CopyBegin, CopyEnd);
2127 
2128   Builder.SetInsertPoint(CopyBegin);
2129   if (BranchtoEnd)
2130     Builder.SetInsertPoint(Builder.CreateBr(CopyEnd));
2131 
2132   return Builder.saveIP();
2133 }
2134 
createOMPAlloc(const LocationDescription & Loc,Value * Size,Value * Allocator,std::string Name)2135 CallInst *OpenMPIRBuilder::createOMPAlloc(const LocationDescription &Loc,
2136                                           Value *Size, Value *Allocator,
2137                                           std::string Name) {
2138   IRBuilder<>::InsertPointGuard IPG(Builder);
2139   Builder.restoreIP(Loc.IP);
2140 
2141   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
2142   Value *Ident = getOrCreateIdent(SrcLocStr);
2143   Value *ThreadId = getOrCreateThreadID(Ident);
2144   Value *Args[] = {ThreadId, Size, Allocator};
2145 
2146   Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_alloc);
2147 
2148   return Builder.CreateCall(Fn, Args, Name);
2149 }
2150 
createOMPFree(const LocationDescription & Loc,Value * Addr,Value * Allocator,std::string Name)2151 CallInst *OpenMPIRBuilder::createOMPFree(const LocationDescription &Loc,
2152                                          Value *Addr, Value *Allocator,
2153                                          std::string Name) {
2154   IRBuilder<>::InsertPointGuard IPG(Builder);
2155   Builder.restoreIP(Loc.IP);
2156 
2157   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
2158   Value *Ident = getOrCreateIdent(SrcLocStr);
2159   Value *ThreadId = getOrCreateThreadID(Ident);
2160   Value *Args[] = {ThreadId, Addr, Allocator};
2161   Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_free);
2162   return Builder.CreateCall(Fn, Args, Name);
2163 }
2164 
createCachedThreadPrivate(const LocationDescription & Loc,llvm::Value * Pointer,llvm::ConstantInt * Size,const llvm::Twine & Name)2165 CallInst *OpenMPIRBuilder::createCachedThreadPrivate(
2166     const LocationDescription &Loc, llvm::Value *Pointer,
2167     llvm::ConstantInt *Size, const llvm::Twine &Name) {
2168   IRBuilder<>::InsertPointGuard IPG(Builder);
2169   Builder.restoreIP(Loc.IP);
2170 
2171   Constant *SrcLocStr = getOrCreateSrcLocStr(Loc);
2172   Value *Ident = getOrCreateIdent(SrcLocStr);
2173   Value *ThreadId = getOrCreateThreadID(Ident);
2174   Constant *ThreadPrivateCache =
2175       getOrCreateOMPInternalVariable(Int8PtrPtr, Name);
2176   llvm::Value *Args[] = {Ident, ThreadId, Pointer, Size, ThreadPrivateCache};
2177 
2178   Function *Fn =
2179       getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_threadprivate_cached);
2180 
2181   return Builder.CreateCall(Fn, Args);
2182 }
2183 
getNameWithSeparators(ArrayRef<StringRef> Parts,StringRef FirstSeparator,StringRef Separator)2184 std::string OpenMPIRBuilder::getNameWithSeparators(ArrayRef<StringRef> Parts,
2185                                                    StringRef FirstSeparator,
2186                                                    StringRef Separator) {
2187   SmallString<128> Buffer;
2188   llvm::raw_svector_ostream OS(Buffer);
2189   StringRef Sep = FirstSeparator;
2190   for (StringRef Part : Parts) {
2191     OS << Sep << Part;
2192     Sep = Separator;
2193   }
2194   return OS.str().str();
2195 }
2196 
getOrCreateOMPInternalVariable(llvm::Type * Ty,const llvm::Twine & Name,unsigned AddressSpace)2197 Constant *OpenMPIRBuilder::getOrCreateOMPInternalVariable(
2198     llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) {
2199   // TODO: Replace the twine arg with stringref to get rid of the conversion
2200   // logic. However This is taken from current implementation in clang as is.
2201   // Since this method is used in many places exclusively for OMP internal use
2202   // we will keep it as is for temporarily until we move all users to the
2203   // builder and then, if possible, fix it everywhere in one go.
2204   SmallString<256> Buffer;
2205   llvm::raw_svector_ostream Out(Buffer);
2206   Out << Name;
2207   StringRef RuntimeName = Out.str();
2208   auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first;
2209   if (Elem.second) {
2210     assert(Elem.second->getType()->getPointerElementType() == Ty &&
2211            "OMP internal variable has different type than requested");
2212   } else {
2213     // TODO: investigate the appropriate linkage type used for the global
2214     // variable for possibly changing that to internal or private, or maybe
2215     // create different versions of the function for different OMP internal
2216     // variables.
2217     Elem.second = new llvm::GlobalVariable(
2218         M, Ty, /*IsConstant*/ false, llvm::GlobalValue::CommonLinkage,
2219         llvm::Constant::getNullValue(Ty), Elem.first(),
2220         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
2221         AddressSpace);
2222   }
2223 
2224   return Elem.second;
2225 }
2226 
getOMPCriticalRegionLock(StringRef CriticalName)2227 Value *OpenMPIRBuilder::getOMPCriticalRegionLock(StringRef CriticalName) {
2228   std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
2229   std::string Name = getNameWithSeparators({Prefix, "var"}, ".", ".");
2230   return getOrCreateOMPInternalVariable(KmpCriticalNameTy, Name);
2231 }
2232 
2233 GlobalVariable *
createOffloadMaptypes(SmallVectorImpl<uint64_t> & Mappings,std::string VarName)2234 OpenMPIRBuilder::createOffloadMaptypes(SmallVectorImpl<uint64_t> &Mappings,
2235                                        std::string VarName) {
2236   llvm::Constant *MaptypesArrayInit =
2237       llvm::ConstantDataArray::get(M.getContext(), Mappings);
2238   auto *MaptypesArrayGlobal = new llvm::GlobalVariable(
2239       M, MaptypesArrayInit->getType(),
2240       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MaptypesArrayInit,
2241       VarName);
2242   MaptypesArrayGlobal->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2243   return MaptypesArrayGlobal;
2244 }
2245 
checkAndEmitFlushAfterAtomic(const LocationDescription & Loc,llvm::AtomicOrdering AO,AtomicKind AK)2246 bool OpenMPIRBuilder::checkAndEmitFlushAfterAtomic(
2247     const LocationDescription &Loc, llvm::AtomicOrdering AO, AtomicKind AK) {
2248   assert(!(AO == AtomicOrdering::NotAtomic ||
2249            AO == llvm::AtomicOrdering::Unordered) &&
2250          "Unexpected Atomic Ordering.");
2251 
2252   bool Flush = false;
2253   llvm::AtomicOrdering FlushAO = AtomicOrdering::Monotonic;
2254 
2255   switch (AK) {
2256   case Read:
2257     if (AO == AtomicOrdering::Acquire || AO == AtomicOrdering::AcquireRelease ||
2258         AO == AtomicOrdering::SequentiallyConsistent) {
2259       FlushAO = AtomicOrdering::Acquire;
2260       Flush = true;
2261     }
2262     break;
2263   case Write:
2264   case Update:
2265     if (AO == AtomicOrdering::Release || AO == AtomicOrdering::AcquireRelease ||
2266         AO == AtomicOrdering::SequentiallyConsistent) {
2267       FlushAO = AtomicOrdering::Release;
2268       Flush = true;
2269     }
2270     break;
2271   case Capture:
2272     switch (AO) {
2273     case AtomicOrdering::Acquire:
2274       FlushAO = AtomicOrdering::Acquire;
2275       Flush = true;
2276       break;
2277     case AtomicOrdering::Release:
2278       FlushAO = AtomicOrdering::Release;
2279       Flush = true;
2280       break;
2281     case AtomicOrdering::AcquireRelease:
2282     case AtomicOrdering::SequentiallyConsistent:
2283       FlushAO = AtomicOrdering::AcquireRelease;
2284       Flush = true;
2285       break;
2286     default:
2287       // do nothing - leave silently.
2288       break;
2289     }
2290   }
2291 
2292   if (Flush) {
2293     // Currently Flush RT call still doesn't take memory_ordering, so for when
2294     // that happens, this tries to do the resolution of which atomic ordering
2295     // to use with but issue the flush call
2296     // TODO: pass `FlushAO` after memory ordering support is added
2297     (void)FlushAO;
2298     emitFlush(Loc);
2299   }
2300 
2301   // for AO == AtomicOrdering::Monotonic and  all other case combinations
2302   // do nothing
2303   return Flush;
2304 }
2305 
2306 OpenMPIRBuilder::InsertPointTy
createAtomicRead(const LocationDescription & Loc,AtomicOpValue & X,AtomicOpValue & V,AtomicOrdering AO)2307 OpenMPIRBuilder::createAtomicRead(const LocationDescription &Loc,
2308                                   AtomicOpValue &X, AtomicOpValue &V,
2309                                   AtomicOrdering AO) {
2310   if (!updateToLocation(Loc))
2311     return Loc.IP;
2312 
2313   Type *XTy = X.Var->getType();
2314   assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory");
2315   Type *XElemTy = XTy->getPointerElementType();
2316   assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
2317           XElemTy->isPointerTy()) &&
2318          "OMP atomic read expected a scalar type");
2319 
2320   Value *XRead = nullptr;
2321 
2322   if (XElemTy->isIntegerTy()) {
2323     LoadInst *XLD =
2324         Builder.CreateLoad(XElemTy, X.Var, X.IsVolatile, "omp.atomic.read");
2325     XLD->setAtomic(AO);
2326     XRead = cast<Value>(XLD);
2327   } else {
2328     // We need to bitcast and perform atomic op as integer
2329     unsigned Addrspace = cast<PointerType>(XTy)->getAddressSpace();
2330     IntegerType *IntCastTy =
2331         IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
2332     Value *XBCast = Builder.CreateBitCast(
2333         X.Var, IntCastTy->getPointerTo(Addrspace), "atomic.src.int.cast");
2334     LoadInst *XLoad =
2335         Builder.CreateLoad(IntCastTy, XBCast, X.IsVolatile, "omp.atomic.load");
2336     XLoad->setAtomic(AO);
2337     if (XElemTy->isFloatingPointTy()) {
2338       XRead = Builder.CreateBitCast(XLoad, XElemTy, "atomic.flt.cast");
2339     } else {
2340       XRead = Builder.CreateIntToPtr(XLoad, XElemTy, "atomic.ptr.cast");
2341     }
2342   }
2343   checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Read);
2344   Builder.CreateStore(XRead, V.Var, V.IsVolatile);
2345   return Builder.saveIP();
2346 }
2347 
2348 OpenMPIRBuilder::InsertPointTy
createAtomicWrite(const LocationDescription & Loc,AtomicOpValue & X,Value * Expr,AtomicOrdering AO)2349 OpenMPIRBuilder::createAtomicWrite(const LocationDescription &Loc,
2350                                    AtomicOpValue &X, Value *Expr,
2351                                    AtomicOrdering AO) {
2352   if (!updateToLocation(Loc))
2353     return Loc.IP;
2354 
2355   Type *XTy = X.Var->getType();
2356   assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory");
2357   Type *XElemTy = XTy->getPointerElementType();
2358   assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
2359           XElemTy->isPointerTy()) &&
2360          "OMP atomic write expected a scalar type");
2361 
2362   if (XElemTy->isIntegerTy()) {
2363     StoreInst *XSt = Builder.CreateStore(Expr, X.Var, X.IsVolatile);
2364     XSt->setAtomic(AO);
2365   } else {
2366     // We need to bitcast and perform atomic op as integers
2367     unsigned Addrspace = cast<PointerType>(XTy)->getAddressSpace();
2368     IntegerType *IntCastTy =
2369         IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
2370     Value *XBCast = Builder.CreateBitCast(
2371         X.Var, IntCastTy->getPointerTo(Addrspace), "atomic.dst.int.cast");
2372     Value *ExprCast =
2373         Builder.CreateBitCast(Expr, IntCastTy, "atomic.src.int.cast");
2374     Builder.GetInsertBlock()->getParent()->dump();
2375     StoreInst *XSt = Builder.CreateStore(ExprCast, XBCast, X.IsVolatile);
2376     Builder.GetInsertBlock()->dump();
2377     XSt->setAtomic(AO);
2378   }
2379 
2380   checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Write);
2381   return Builder.saveIP();
2382 }
2383 
createAtomicUpdate(const LocationDescription & Loc,Instruction * AllocIP,AtomicOpValue & X,Value * Expr,AtomicOrdering AO,AtomicRMWInst::BinOp RMWOp,AtomicUpdateCallbackTy & UpdateOp,bool IsXLHSInRHSPart)2384 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicUpdate(
2385     const LocationDescription &Loc, Instruction *AllocIP, AtomicOpValue &X,
2386     Value *Expr, AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp,
2387     AtomicUpdateCallbackTy &UpdateOp, bool IsXLHSInRHSPart) {
2388   if (!updateToLocation(Loc))
2389     return Loc.IP;
2390 
2391   Type *XTy = X.Var->getType();
2392   assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory");
2393   Type *XElemTy = XTy->getPointerElementType();
2394   assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
2395           XElemTy->isPointerTy()) &&
2396          "OMP atomic update expected a scalar type");
2397   assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) &&
2398          (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) &&
2399          "OpenMP atomic does not support LT or GT operations");
2400 
2401   emitAtomicUpdate(AllocIP, X.Var, Expr, AO, RMWOp, UpdateOp, X.IsVolatile,
2402                    IsXLHSInRHSPart);
2403   checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Update);
2404   return Builder.saveIP();
2405 }
2406 
emitRMWOpAsInstruction(Value * Src1,Value * Src2,AtomicRMWInst::BinOp RMWOp)2407 Value *OpenMPIRBuilder::emitRMWOpAsInstruction(Value *Src1, Value *Src2,
2408                                                AtomicRMWInst::BinOp RMWOp) {
2409   switch (RMWOp) {
2410   case AtomicRMWInst::Add:
2411     return Builder.CreateAdd(Src1, Src2);
2412   case AtomicRMWInst::Sub:
2413     return Builder.CreateSub(Src1, Src2);
2414   case AtomicRMWInst::And:
2415     return Builder.CreateAnd(Src1, Src2);
2416   case AtomicRMWInst::Nand:
2417     return Builder.CreateNeg(Builder.CreateAnd(Src1, Src2));
2418   case AtomicRMWInst::Or:
2419     return Builder.CreateOr(Src1, Src2);
2420   case AtomicRMWInst::Xor:
2421     return Builder.CreateXor(Src1, Src2);
2422   case AtomicRMWInst::Xchg:
2423   case AtomicRMWInst::FAdd:
2424   case AtomicRMWInst::FSub:
2425   case AtomicRMWInst::BAD_BINOP:
2426   case AtomicRMWInst::Max:
2427   case AtomicRMWInst::Min:
2428   case AtomicRMWInst::UMax:
2429   case AtomicRMWInst::UMin:
2430     llvm_unreachable("Unsupported atomic update operation");
2431   }
2432   llvm_unreachable("Unsupported atomic update operation");
2433 }
2434 
2435 std::pair<Value *, Value *>
emitAtomicUpdate(Instruction * AllocIP,Value * X,Value * Expr,AtomicOrdering AO,AtomicRMWInst::BinOp RMWOp,AtomicUpdateCallbackTy & UpdateOp,bool VolatileX,bool IsXLHSInRHSPart)2436 OpenMPIRBuilder::emitAtomicUpdate(Instruction *AllocIP, Value *X, Value *Expr,
2437                                   AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp,
2438                                   AtomicUpdateCallbackTy &UpdateOp,
2439                                   bool VolatileX, bool IsXLHSInRHSPart) {
2440   Type *XElemTy = X->getType()->getPointerElementType();
2441 
2442   bool DoCmpExch =
2443       ((RMWOp == AtomicRMWInst::BAD_BINOP) || (RMWOp == AtomicRMWInst::FAdd)) ||
2444       (RMWOp == AtomicRMWInst::FSub) ||
2445       (RMWOp == AtomicRMWInst::Sub && !IsXLHSInRHSPart);
2446 
2447   std::pair<Value *, Value *> Res;
2448   if (XElemTy->isIntegerTy() && !DoCmpExch) {
2449     Res.first = Builder.CreateAtomicRMW(RMWOp, X, Expr, llvm::MaybeAlign(), AO);
2450     // not needed except in case of postfix captures. Generate anyway for
2451     // consistency with the else part. Will be removed with any DCE pass.
2452     Res.second = emitRMWOpAsInstruction(Res.first, Expr, RMWOp);
2453   } else {
2454     unsigned Addrspace = cast<PointerType>(X->getType())->getAddressSpace();
2455     IntegerType *IntCastTy =
2456         IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
2457     Value *XBCast =
2458         Builder.CreateBitCast(X, IntCastTy->getPointerTo(Addrspace));
2459     LoadInst *OldVal =
2460         Builder.CreateLoad(IntCastTy, XBCast, X->getName() + ".atomic.load");
2461     OldVal->setAtomic(AO);
2462     // CurBB
2463     // |     /---\
2464 		// ContBB    |
2465     // |     \---/
2466     // ExitBB
2467     BasicBlock *CurBB = Builder.GetInsertBlock();
2468     Instruction *CurBBTI = CurBB->getTerminator();
2469     CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable();
2470     BasicBlock *ExitBB =
2471         CurBB->splitBasicBlock(CurBBTI, X->getName() + ".atomic.exit");
2472     BasicBlock *ContBB = CurBB->splitBasicBlock(CurBB->getTerminator(),
2473                                                 X->getName() + ".atomic.cont");
2474     ContBB->getTerminator()->eraseFromParent();
2475     Builder.SetInsertPoint(ContBB);
2476     llvm::PHINode *PHI = Builder.CreatePHI(OldVal->getType(), 2);
2477     PHI->addIncoming(OldVal, CurBB);
2478     AllocaInst *NewAtomicAddr = Builder.CreateAlloca(XElemTy);
2479     NewAtomicAddr->setName(X->getName() + "x.new.val");
2480     NewAtomicAddr->moveBefore(AllocIP);
2481     IntegerType *NewAtomicCastTy =
2482         IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
2483     bool IsIntTy = XElemTy->isIntegerTy();
2484     Value *NewAtomicIntAddr =
2485         (IsIntTy)
2486             ? NewAtomicAddr
2487             : Builder.CreateBitCast(NewAtomicAddr,
2488                                     NewAtomicCastTy->getPointerTo(Addrspace));
2489     Value *OldExprVal = PHI;
2490     if (!IsIntTy) {
2491       if (XElemTy->isFloatingPointTy()) {
2492         OldExprVal = Builder.CreateBitCast(PHI, XElemTy,
2493                                            X->getName() + ".atomic.fltCast");
2494       } else {
2495         OldExprVal = Builder.CreateIntToPtr(PHI, XElemTy,
2496                                             X->getName() + ".atomic.ptrCast");
2497       }
2498     }
2499 
2500     Value *Upd = UpdateOp(OldExprVal, Builder);
2501     Builder.CreateStore(Upd, NewAtomicAddr);
2502     LoadInst *DesiredVal = Builder.CreateLoad(XElemTy, NewAtomicIntAddr);
2503     Value *XAddr =
2504         (IsIntTy)
2505             ? X
2506             : Builder.CreateBitCast(X, IntCastTy->getPointerTo(Addrspace));
2507     AtomicOrdering Failure =
2508         llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
2509     AtomicCmpXchgInst *Result = Builder.CreateAtomicCmpXchg(
2510         XAddr, OldExprVal, DesiredVal, llvm::MaybeAlign(), AO, Failure);
2511     Result->setVolatile(VolatileX);
2512     Value *PreviousVal = Builder.CreateExtractValue(Result, /*Idxs=*/0);
2513     Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1);
2514     PHI->addIncoming(PreviousVal, Builder.GetInsertBlock());
2515     Builder.CreateCondBr(SuccessFailureVal, ExitBB, ContBB);
2516 
2517     Res.first = OldExprVal;
2518     Res.second = Upd;
2519 
2520     // set Insertion point in exit block
2521     if (UnreachableInst *ExitTI =
2522             dyn_cast<UnreachableInst>(ExitBB->getTerminator())) {
2523       CurBBTI->eraseFromParent();
2524       Builder.SetInsertPoint(ExitBB);
2525     } else {
2526       Builder.SetInsertPoint(ExitTI);
2527     }
2528   }
2529 
2530   return Res;
2531 }
2532 
createAtomicCapture(const LocationDescription & Loc,Instruction * AllocIP,AtomicOpValue & X,AtomicOpValue & V,Value * Expr,AtomicOrdering AO,AtomicRMWInst::BinOp RMWOp,AtomicUpdateCallbackTy & UpdateOp,bool UpdateExpr,bool IsPostfixUpdate,bool IsXLHSInRHSPart)2533 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCapture(
2534     const LocationDescription &Loc, Instruction *AllocIP, AtomicOpValue &X,
2535     AtomicOpValue &V, Value *Expr, AtomicOrdering AO,
2536     AtomicRMWInst::BinOp RMWOp, AtomicUpdateCallbackTy &UpdateOp,
2537     bool UpdateExpr, bool IsPostfixUpdate, bool IsXLHSInRHSPart) {
2538   if (!updateToLocation(Loc))
2539     return Loc.IP;
2540 
2541   Type *XTy = X.Var->getType();
2542   assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory");
2543   Type *XElemTy = XTy->getPointerElementType();
2544   assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||
2545           XElemTy->isPointerTy()) &&
2546          "OMP atomic capture expected a scalar type");
2547   assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) &&
2548          "OpenMP atomic does not support LT or GT operations");
2549 
2550   // If UpdateExpr is 'x' updated with some `expr` not based on 'x',
2551   // 'x' is simply atomically rewritten with 'expr'.
2552   AtomicRMWInst::BinOp AtomicOp = (UpdateExpr ? RMWOp : AtomicRMWInst::Xchg);
2553   std::pair<Value *, Value *> Result =
2554       emitAtomicUpdate(AllocIP, X.Var, Expr, AO, AtomicOp, UpdateOp,
2555                        X.IsVolatile, IsXLHSInRHSPart);
2556 
2557   Value *CapturedVal = (IsPostfixUpdate ? Result.first : Result.second);
2558   Builder.CreateStore(CapturedVal, V.Var, V.IsVolatile);
2559 
2560   checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Capture);
2561   return Builder.saveIP();
2562 }
2563 
2564 GlobalVariable *
createOffloadMapnames(SmallVectorImpl<llvm::Constant * > & Names,std::string VarName)2565 OpenMPIRBuilder::createOffloadMapnames(SmallVectorImpl<llvm::Constant *> &Names,
2566                                        std::string VarName) {
2567   llvm::Constant *MapNamesArrayInit = llvm::ConstantArray::get(
2568       llvm::ArrayType::get(
2569           llvm::Type::getInt8Ty(M.getContext())->getPointerTo(), Names.size()),
2570       Names);
2571   auto *MapNamesArrayGlobal = new llvm::GlobalVariable(
2572       M, MapNamesArrayInit->getType(),
2573       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MapNamesArrayInit,
2574       VarName);
2575   return MapNamesArrayGlobal;
2576 }
2577 
2578 // Create all simple and struct types exposed by the runtime and remember
2579 // the llvm::PointerTypes of them for easy access later.
initializeTypes(Module & M)2580 void OpenMPIRBuilder::initializeTypes(Module &M) {
2581   LLVMContext &Ctx = M.getContext();
2582   StructType *T;
2583 #define OMP_TYPE(VarName, InitValue) VarName = InitValue;
2584 #define OMP_ARRAY_TYPE(VarName, ElemTy, ArraySize)                             \
2585   VarName##Ty = ArrayType::get(ElemTy, ArraySize);                             \
2586   VarName##PtrTy = PointerType::getUnqual(VarName##Ty);
2587 #define OMP_FUNCTION_TYPE(VarName, IsVarArg, ReturnType, ...)                  \
2588   VarName = FunctionType::get(ReturnType, {__VA_ARGS__}, IsVarArg);            \
2589   VarName##Ptr = PointerType::getUnqual(VarName);
2590 #define OMP_STRUCT_TYPE(VarName, StructName, ...)                              \
2591   T = StructType::getTypeByName(Ctx, StructName);                              \
2592   if (!T)                                                                      \
2593     T = StructType::create(Ctx, {__VA_ARGS__}, StructName);                    \
2594   VarName = T;                                                                 \
2595   VarName##Ptr = PointerType::getUnqual(T);
2596 #include "llvm/Frontend/OpenMP/OMPKinds.def"
2597 }
2598 
collectBlocks(SmallPtrSetImpl<BasicBlock * > & BlockSet,SmallVectorImpl<BasicBlock * > & BlockVector)2599 void OpenMPIRBuilder::OutlineInfo::collectBlocks(
2600     SmallPtrSetImpl<BasicBlock *> &BlockSet,
2601     SmallVectorImpl<BasicBlock *> &BlockVector) {
2602   SmallVector<BasicBlock *, 32> Worklist;
2603   BlockSet.insert(EntryBB);
2604   BlockSet.insert(ExitBB);
2605 
2606   Worklist.push_back(EntryBB);
2607   while (!Worklist.empty()) {
2608     BasicBlock *BB = Worklist.pop_back_val();
2609     BlockVector.push_back(BB);
2610     for (BasicBlock *SuccBB : successors(BB))
2611       if (BlockSet.insert(SuccBB).second)
2612         Worklist.push_back(SuccBB);
2613   }
2614 }
2615 
collectControlBlocks(SmallVectorImpl<BasicBlock * > & BBs)2616 void CanonicalLoopInfo::collectControlBlocks(
2617     SmallVectorImpl<BasicBlock *> &BBs) {
2618   // We only count those BBs as control block for which we do not need to
2619   // reverse the CFG, i.e. not the loop body which can contain arbitrary control
2620   // flow. For consistency, this also means we do not add the Body block, which
2621   // is just the entry to the body code.
2622   BBs.reserve(BBs.size() + 6);
2623   BBs.append({Preheader, Header, Cond, Latch, Exit, After});
2624 }
2625 
assertOK() const2626 void CanonicalLoopInfo::assertOK() const {
2627 #ifndef NDEBUG
2628   if (!IsValid)
2629     return;
2630 
2631   // Verify standard control-flow we use for OpenMP loops.
2632   assert(Preheader);
2633   assert(isa<BranchInst>(Preheader->getTerminator()) &&
2634          "Preheader must terminate with unconditional branch");
2635   assert(Preheader->getSingleSuccessor() == Header &&
2636          "Preheader must jump to header");
2637 
2638   assert(Header);
2639   assert(isa<BranchInst>(Header->getTerminator()) &&
2640          "Header must terminate with unconditional branch");
2641   assert(Header->getSingleSuccessor() == Cond &&
2642          "Header must jump to exiting block");
2643 
2644   assert(Cond);
2645   assert(Cond->getSinglePredecessor() == Header &&
2646          "Exiting block only reachable from header");
2647 
2648   assert(isa<BranchInst>(Cond->getTerminator()) &&
2649          "Exiting block must terminate with conditional branch");
2650   assert(size(successors(Cond)) == 2 &&
2651          "Exiting block must have two successors");
2652   assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(0) == Body &&
2653          "Exiting block's first successor jump to the body");
2654   assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(1) == Exit &&
2655          "Exiting block's second successor must exit the loop");
2656 
2657   assert(Body);
2658   assert(Body->getSinglePredecessor() == Cond &&
2659          "Body only reachable from exiting block");
2660   assert(!isa<PHINode>(Body->front()));
2661 
2662   assert(Latch);
2663   assert(isa<BranchInst>(Latch->getTerminator()) &&
2664          "Latch must terminate with unconditional branch");
2665   assert(Latch->getSingleSuccessor() == Header && "Latch must jump to header");
2666   // TODO: To support simple redirecting of the end of the body code that has
2667   // multiple; introduce another auxiliary basic block like preheader and after.
2668   assert(Latch->getSinglePredecessor() != nullptr);
2669   assert(!isa<PHINode>(Latch->front()));
2670 
2671   assert(Exit);
2672   assert(isa<BranchInst>(Exit->getTerminator()) &&
2673          "Exit block must terminate with unconditional branch");
2674   assert(Exit->getSingleSuccessor() == After &&
2675          "Exit block must jump to after block");
2676 
2677   assert(After);
2678   assert(After->getSinglePredecessor() == Exit &&
2679          "After block only reachable from exit block");
2680   assert(After->empty() || !isa<PHINode>(After->front()));
2681 
2682   Instruction *IndVar = getIndVar();
2683   assert(IndVar && "Canonical induction variable not found?");
2684   assert(isa<IntegerType>(IndVar->getType()) &&
2685          "Induction variable must be an integer");
2686   assert(cast<PHINode>(IndVar)->getParent() == Header &&
2687          "Induction variable must be a PHI in the loop header");
2688   assert(cast<PHINode>(IndVar)->getIncomingBlock(0) == Preheader);
2689   assert(
2690       cast<ConstantInt>(cast<PHINode>(IndVar)->getIncomingValue(0))->isZero());
2691   assert(cast<PHINode>(IndVar)->getIncomingBlock(1) == Latch);
2692 
2693   auto *NextIndVar = cast<PHINode>(IndVar)->getIncomingValue(1);
2694   assert(cast<Instruction>(NextIndVar)->getParent() == Latch);
2695   assert(cast<BinaryOperator>(NextIndVar)->getOpcode() == BinaryOperator::Add);
2696   assert(cast<BinaryOperator>(NextIndVar)->getOperand(0) == IndVar);
2697   assert(cast<ConstantInt>(cast<BinaryOperator>(NextIndVar)->getOperand(1))
2698              ->isOne());
2699 
2700   Value *TripCount = getTripCount();
2701   assert(TripCount && "Loop trip count not found?");
2702   assert(IndVar->getType() == TripCount->getType() &&
2703          "Trip count and induction variable must have the same type");
2704 
2705   auto *CmpI = cast<CmpInst>(&Cond->front());
2706   assert(CmpI->getPredicate() == CmpInst::ICMP_ULT &&
2707          "Exit condition must be a signed less-than comparison");
2708   assert(CmpI->getOperand(0) == IndVar &&
2709          "Exit condition must compare the induction variable");
2710   assert(CmpI->getOperand(1) == TripCount &&
2711          "Exit condition must compare with the trip count");
2712 #endif
2713 }
2714