xref: /llvm-project/mlir/lib/Reducer/ReductionNode.cpp (revision fab2bb8bfda865bd438dee981d7be7df8017b76d)
1 //===- ReductionNode.cpp - Reduction Node Implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the reduction nodes which are used to track of the
10 // metadata for a specific generated variant within a reduction pass and are the
11 // building blocks of the reduction tree structure. A reduction tree is used to
12 // keep track of the different generated variants throughout a reduction pass in
13 // the MLIR Reduce tool.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "mlir/Reducer/ReductionNode.h"
18 #include "mlir/IR/IRMapping.h"
19 #include "llvm/ADT/STLExtras.h"
20 
21 #include <algorithm>
22 #include <limits>
23 
24 using namespace mlir;
25 
ReductionNode(ReductionNode * parentNode,const std::vector<Range> & ranges,llvm::SpecificBumpPtrAllocator<ReductionNode> & allocator)26 ReductionNode::ReductionNode(
27     ReductionNode *parentNode, const std::vector<Range> &ranges,
28     llvm::SpecificBumpPtrAllocator<ReductionNode> &allocator)
29     /// Root node will have the parent pointer point to themselves.
30     : parent(parentNode == nullptr ? this : parentNode),
31       size(std::numeric_limits<size_t>::max()), ranges(ranges),
32       startRanges(ranges), allocator(allocator) {
33   if (parent != this)
34     if (failed(initialize(parent->getModule(), parent->getRegion())))
35       llvm_unreachable("unexpected initialization failure");
36 }
37 
initialize(ModuleOp parentModule,Region & targetRegion)38 LogicalResult ReductionNode::initialize(ModuleOp parentModule,
39                                         Region &targetRegion) {
40   // Use the mapper help us find the corresponding region after module clone.
41   IRMapping mapper;
42   module = cast<ModuleOp>(parentModule->clone(mapper));
43   // Use the first block of targetRegion to locate the cloned region.
44   Block *block = mapper.lookup(&*targetRegion.begin());
45   region = block->getParent();
46   return success();
47 }
48 
49 /// If we haven't explored any variants from this node, we will create N
50 /// variants, N is the length of `ranges` if N > 1. Otherwise, we will split the
51 /// max element in `ranges` and create 2 new variants for each call.
generateNewVariants()52 ArrayRef<ReductionNode *> ReductionNode::generateNewVariants() {
53   int oldNumVariant = getVariants().size();
54 
55   auto createNewNode = [this](const std::vector<Range> &ranges) {
56     return new (allocator.Allocate()) ReductionNode(this, ranges, allocator);
57   };
58 
59   // If we haven't created new variant, then we can create varients by removing
60   // each of them respectively. For example, given {{1, 3}, {4, 9}}, we can
61   // produce variants with range {{1, 3}} and {{4, 9}}.
62   if (variants.empty() && getRanges().size() > 1) {
63     for (const Range &range : getRanges()) {
64       std::vector<Range> subRanges = getRanges();
65       llvm::erase(subRanges, range);
66       variants.push_back(createNewNode(subRanges));
67     }
68 
69     return getVariants().drop_front(oldNumVariant);
70   }
71 
72   // At here, we have created the type of variants mentioned above. We would
73   // like to split the max range into 2 to create 2 new variants. Continue on
74   // the above example, we split the range {4, 9} into {4, 6}, {6, 9}, and
75   // create two variants with range {{1, 3}, {4, 6}} and {{1, 3}, {6, 9}}. The
76   // final ranges vector will be {{1, 3}, {4, 6}, {6, 9}}.
77   auto maxElement =
78       llvm::max_element(ranges, [](const Range &lhs, const Range &rhs) {
79         return (lhs.second - lhs.first) > (rhs.second - rhs.first);
80       });
81 
82   // The length of range is less than 1, we can't split it to create new
83   // variant.
84   if (maxElement->second - maxElement->first <= 1)
85     return {};
86 
87   Range maxRange = *maxElement;
88   std::vector<Range> subRanges = getRanges();
89   auto subRangesIter = subRanges.begin() + (maxElement - ranges.begin());
90   int half = (maxRange.first + maxRange.second) / 2;
91   *subRangesIter = std::make_pair(maxRange.first, half);
92   variants.push_back(createNewNode(subRanges));
93   *subRangesIter = std::make_pair(half, maxRange.second);
94   variants.push_back(createNewNode(subRanges));
95 
96   auto it = ranges.insert(maxElement, std::make_pair(half, maxRange.second));
97   it = ranges.insert(it, std::make_pair(maxRange.first, half));
98   // Remove the range that has been split.
99   ranges.erase(it + 2);
100 
101   return getVariants().drop_front(oldNumVariant);
102 }
103 
update(std::pair<Tester::Interestingness,size_t> result)104 void ReductionNode::update(std::pair<Tester::Interestingness, size_t> result) {
105   std::tie(interesting, size) = result;
106   // After applying reduction, the number of operation in the region may have
107   // changed. Non-interesting case won't be explored thus it's safe to keep it
108   // in a stale status.
109   if (interesting == Tester::Interestingness::True) {
110     // This module may has been updated. Reset the range.
111     ranges.clear();
112     ranges.emplace_back(0, std::distance(region->op_begin(), region->op_end()));
113   } else {
114     // Release the uninteresting module to save some memory.
115     module.release()->erase();
116   }
117 }
118 
119 ArrayRef<ReductionNode *>
getNeighbors(ReductionNode * node)120 ReductionNode::iterator<SinglePath>::getNeighbors(ReductionNode *node) {
121   // Single Path: Traverses the smallest successful variant at each level until
122   // no new successful variants can be created at that level.
123   ArrayRef<ReductionNode *> variantsFromParent =
124       node->getParent()->getVariants();
125 
126   // The parent node created several variants and they may be waiting for
127   // examing interestingness. In Single Path approach, we will select the
128   // smallest variant to continue our exploration. Thus we should wait until the
129   // last variant to be examed then do the following traversal decision.
130   if (!llvm::all_of(variantsFromParent, [](ReductionNode *node) {
131         return node->isInteresting() != Tester::Interestingness::Untested;
132       })) {
133     return {};
134   }
135 
136   ReductionNode *smallest = nullptr;
137   for (ReductionNode *node : variantsFromParent) {
138     if (node->isInteresting() != Tester::Interestingness::True)
139       continue;
140     if (smallest == nullptr || node->getSize() < smallest->getSize())
141       smallest = node;
142   }
143 
144   if (smallest != nullptr &&
145       smallest->getSize() < node->getParent()->getSize()) {
146     // We got a smallest one, keep traversing from this node.
147     node = smallest;
148   } else {
149     // None of these variants is interesting, let the parent node to generate
150     // more variants.
151     node = node->getParent();
152   }
153 
154   return node->generateNewVariants();
155 }
156