1 //===-- NVPTXLowerArgs.cpp - Lower arguments ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 // Arguments to kernel and device functions are passed via param space,
11 // which imposes certain restrictions:
12 // http://docs.nvidia.com/cuda/parallel-thread-execution/#state-spaces
13 //
14 // Kernel parameters are read-only and accessible only via ld.param
15 // instruction, directly or via a pointer. Pointers to kernel
16 // arguments can't be converted to generic address space.
17 //
18 // Device function parameters are directly accessible via
19 // ld.param/st.param, but taking the address of one returns a pointer
20 // to a copy created in local space which *can't* be used with
21 // ld.param/st.param.
22 //
23 // Copying a byval struct into local memory in IR allows us to enforce
24 // the param space restrictions, gives the rest of IR a pointer w/o
25 // param space restrictions, and gives us an opportunity to eliminate
26 // the copy.
27 //
28 // Pointer arguments to kernel functions need more work to be lowered:
29 //
30 // 1. Convert non-byval pointer arguments of CUDA kernels to pointers in the
31 // global address space. This allows later optimizations to emit
32 // ld.global.*/st.global.* for accessing these pointer arguments. For
33 // example,
34 //
35 // define void @foo(float* %input) {
36 // %v = load float, float* %input, align 4
37 // ...
38 // }
39 //
40 // becomes
41 //
42 // define void @foo(float* %input) {
43 // %input2 = addrspacecast float* %input to float addrspace(1)*
44 // %input3 = addrspacecast float addrspace(1)* %input2 to float*
45 // %v = load float, float* %input3, align 4
46 // ...
47 // }
48 //
49 // Later, NVPTXInferAddressSpaces will optimize it to
50 //
51 // define void @foo(float* %input) {
52 // %input2 = addrspacecast float* %input to float addrspace(1)*
53 // %v = load float, float addrspace(1)* %input2, align 4
54 // ...
55 // }
56 //
57 // 2. Convert pointers in a byval kernel parameter to pointers in the global
58 // address space. As #2, it allows NVPTX to emit more ld/st.global. E.g.,
59 //
60 // struct S {
61 // int *x;
62 // int *y;
63 // };
64 // __global__ void foo(S s) {
65 // int *b = s.y;
66 // // use b
67 // }
68 //
69 // "b" points to the global address space. In the IR level,
70 //
71 // define void @foo({i32*, i32*}* byval %input) {
72 // %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
73 // %b = load i32*, i32** %b_ptr
74 // ; use %b
75 // }
76 //
77 // becomes
78 //
79 // define void @foo({i32*, i32*}* byval %input) {
80 // %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
81 // %b = load i32*, i32** %b_ptr
82 // %b_global = addrspacecast i32* %b to i32 addrspace(1)*
83 // %b_generic = addrspacecast i32 addrspace(1)* %b_global to i32*
84 // ; use %b_generic
85 // }
86 //
87 // TODO: merge this pass with NVPTXInferAddressSpaces so that other passes don't
88 // cancel the addrspacecast pair this pass emits.
89 //===----------------------------------------------------------------------===//
90
91 #include "NVPTX.h"
92 #include "NVPTXTargetMachine.h"
93 #include "NVPTXUtilities.h"
94 #include "MCTargetDesc/NVPTXBaseInfo.h"
95 #include "llvm/Analysis/ValueTracking.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/Instructions.h"
98 #include "llvm/IR/Module.h"
99 #include "llvm/IR/Type.h"
100 #include "llvm/Pass.h"
101
102 #define DEBUG_TYPE "nvptx-lower-args"
103
104 using namespace llvm;
105
106 namespace llvm {
107 void initializeNVPTXLowerArgsPass(PassRegistry &);
108 }
109
110 namespace {
111 class NVPTXLowerArgs : public FunctionPass {
112 bool runOnFunction(Function &F) override;
113
114 bool runOnKernelFunction(Function &F);
115 bool runOnDeviceFunction(Function &F);
116
117 // handle byval parameters
118 void handleByValParam(Argument *Arg);
119 // Knowing Ptr must point to the global address space, this function
120 // addrspacecasts Ptr to global and then back to generic. This allows
121 // NVPTXInferAddressSpaces to fold the global-to-generic cast into
122 // loads/stores that appear later.
123 void markPointerAsGlobal(Value *Ptr);
124
125 public:
126 static char ID; // Pass identification, replacement for typeid
NVPTXLowerArgs(const NVPTXTargetMachine * TM=nullptr)127 NVPTXLowerArgs(const NVPTXTargetMachine *TM = nullptr)
128 : FunctionPass(ID), TM(TM) {}
getPassName() const129 StringRef getPassName() const override {
130 return "Lower pointer arguments of CUDA kernels";
131 }
132
133 private:
134 const NVPTXTargetMachine *TM;
135 };
136 } // namespace
137
138 char NVPTXLowerArgs::ID = 1;
139
140 INITIALIZE_PASS(NVPTXLowerArgs, "nvptx-lower-args",
141 "Lower arguments (NVPTX)", false, false)
142
143 // =============================================================================
144 // If the function had a byval struct ptr arg, say foo(%struct.x* byval %d),
145 // and we can't guarantee that the only accesses are loads,
146 // then add the following instructions to the first basic block:
147 //
148 // %temp = alloca %struct.x, align 8
149 // %tempd = addrspacecast %struct.x* %d to %struct.x addrspace(101)*
150 // %tv = load %struct.x addrspace(101)* %tempd
151 // store %struct.x %tv, %struct.x* %temp, align 8
152 //
153 // The above code allocates some space in the stack and copies the incoming
154 // struct from param space to local space.
155 // Then replace all occurrences of %d by %temp.
156 //
157 // In case we know that all users are GEPs or Loads, replace them with the same
158 // ones in parameter AS, so we can access them using ld.param.
159 // =============================================================================
160
161 // Replaces the \p OldUser instruction with the same in parameter AS.
162 // Only Load and GEP are supported.
convertToParamAS(Value * OldUser,Value * Param)163 static void convertToParamAS(Value *OldUser, Value *Param) {
164 Instruction *I = dyn_cast<Instruction>(OldUser);
165 assert(I && "OldUser must be an instruction");
166 struct IP {
167 Instruction *OldInstruction;
168 Value *NewParam;
169 };
170 SmallVector<IP> ItemsToConvert = {{I, Param}};
171 SmallVector<Instruction *> InstructionsToDelete;
172
173 auto CloneInstInParamAS = [](const IP &I) -> Value * {
174 if (auto *LI = dyn_cast<LoadInst>(I.OldInstruction)) {
175 LI->setOperand(0, I.NewParam);
176 return LI;
177 }
178 if (auto *GEP = dyn_cast<GetElementPtrInst>(I.OldInstruction)) {
179 SmallVector<Value *, 4> Indices(GEP->indices());
180 auto *NewGEP = GetElementPtrInst::Create(nullptr, I.NewParam, Indices,
181 GEP->getName(), GEP);
182 NewGEP->setIsInBounds(GEP->isInBounds());
183 return NewGEP;
184 }
185 if (auto *BC = dyn_cast<BitCastInst>(I.OldInstruction)) {
186 auto *NewBCType = BC->getType()->getPointerElementType()->getPointerTo(
187 ADDRESS_SPACE_PARAM);
188 return BitCastInst::Create(BC->getOpcode(), I.NewParam, NewBCType,
189 BC->getName(), BC);
190 }
191 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I.OldInstruction)) {
192 assert(ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM);
193 (void)ASC;
194 // Just pass through the argument, the old ASC is no longer needed.
195 return I.NewParam;
196 }
197 llvm_unreachable("Unsupported instruction");
198 };
199
200 while (!ItemsToConvert.empty()) {
201 IP I = ItemsToConvert.pop_back_val();
202 Value *NewInst = CloneInstInParamAS(I);
203
204 if (NewInst && NewInst != I.OldInstruction) {
205 // We've created a new instruction. Queue users of the old instruction to
206 // be converted and the instruction itself to be deleted. We can't delete
207 // the old instruction yet, because it's still in use by a load somewhere.
208 llvm::for_each(
209 I.OldInstruction->users(), [NewInst, &ItemsToConvert](Value *V) {
210 ItemsToConvert.push_back({cast<Instruction>(V), NewInst});
211 });
212
213 InstructionsToDelete.push_back(I.OldInstruction);
214 }
215 }
216
217 // Now we know that all argument loads are using addresses in parameter space
218 // and we can finally remove the old instructions in generic AS. Instructions
219 // scheduled for removal should be processed in reverse order so the ones
220 // closest to the load are deleted first. Otherwise they may still be in use.
221 // E.g if we have Value = Load(BitCast(GEP(arg))), InstructionsToDelete will
222 // have {GEP,BitCast}. GEP can't be deleted first, because it's still used by
223 // the BitCast.
224 llvm::for_each(reverse(InstructionsToDelete),
225 [](Instruction *I) { I->eraseFromParent(); });
226 }
227
handleByValParam(Argument * Arg)228 void NVPTXLowerArgs::handleByValParam(Argument *Arg) {
229 Function *Func = Arg->getParent();
230 Instruction *FirstInst = &(Func->getEntryBlock().front());
231 PointerType *PType = dyn_cast<PointerType>(Arg->getType());
232
233 assert(PType && "Expecting pointer type in handleByValParam");
234
235 Type *StructType = PType->getElementType();
236
237 auto IsALoadChain = [&](Value *Start) {
238 SmallVector<Value *, 16> ValuesToCheck = {Start};
239 auto IsALoadChainInstr = [](Value *V) -> bool {
240 if (isa<GetElementPtrInst>(V) || isa<BitCastInst>(V) || isa<LoadInst>(V))
241 return true;
242 // ASC to param space are OK, too -- we'll just strip them.
243 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(V)) {
244 if (ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM)
245 return true;
246 }
247 return false;
248 };
249
250 while (!ValuesToCheck.empty()) {
251 Value *V = ValuesToCheck.pop_back_val();
252 if (!IsALoadChainInstr(V)) {
253 LLVM_DEBUG(dbgs() << "Need a copy of " << *Arg << " because of " << *V
254 << "\n");
255 (void)Arg;
256 return false;
257 }
258 if (!isa<LoadInst>(V))
259 llvm::append_range(ValuesToCheck, V->users());
260 }
261 return true;
262 };
263
264 if (llvm::all_of(Arg->users(), IsALoadChain)) {
265 // Convert all loads and intermediate operations to use parameter AS and
266 // skip creation of a local copy of the argument.
267 SmallVector<User *, 16> UsersToUpdate(Arg->users());
268 Value *ArgInParamAS = new AddrSpaceCastInst(
269 Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
270 FirstInst);
271 llvm::for_each(UsersToUpdate, [ArgInParamAS](Value *V) {
272 convertToParamAS(V, ArgInParamAS);
273 });
274 LLVM_DEBUG(dbgs() << "No need to copy " << *Arg << "\n");
275 return;
276 }
277
278 // Otherwise we have to create a temporary copy.
279 const DataLayout &DL = Func->getParent()->getDataLayout();
280 unsigned AS = DL.getAllocaAddrSpace();
281 AllocaInst *AllocA = new AllocaInst(StructType, AS, Arg->getName(), FirstInst);
282 // Set the alignment to alignment of the byval parameter. This is because,
283 // later load/stores assume that alignment, and we are going to replace
284 // the use of the byval parameter with this alloca instruction.
285 AllocA->setAlignment(Func->getParamAlign(Arg->getArgNo())
286 .getValueOr(DL.getPrefTypeAlign(StructType)));
287 Arg->replaceAllUsesWith(AllocA);
288
289 Value *ArgInParam = new AddrSpaceCastInst(
290 Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
291 FirstInst);
292 // Be sure to propagate alignment to this load; LLVM doesn't know that NVPTX
293 // addrspacecast preserves alignment. Since params are constant, this load is
294 // definitely not volatile.
295 LoadInst *LI =
296 new LoadInst(StructType, ArgInParam, Arg->getName(),
297 /*isVolatile=*/false, AllocA->getAlign(), FirstInst);
298 new StoreInst(LI, AllocA, FirstInst);
299 }
300
markPointerAsGlobal(Value * Ptr)301 void NVPTXLowerArgs::markPointerAsGlobal(Value *Ptr) {
302 if (Ptr->getType()->getPointerAddressSpace() == ADDRESS_SPACE_GLOBAL)
303 return;
304
305 // Deciding where to emit the addrspacecast pair.
306 BasicBlock::iterator InsertPt;
307 if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
308 // Insert at the functon entry if Ptr is an argument.
309 InsertPt = Arg->getParent()->getEntryBlock().begin();
310 } else {
311 // Insert right after Ptr if Ptr is an instruction.
312 InsertPt = ++cast<Instruction>(Ptr)->getIterator();
313 assert(InsertPt != InsertPt->getParent()->end() &&
314 "We don't call this function with Ptr being a terminator.");
315 }
316
317 Instruction *PtrInGlobal = new AddrSpaceCastInst(
318 Ptr, PointerType::get(Ptr->getType()->getPointerElementType(),
319 ADDRESS_SPACE_GLOBAL),
320 Ptr->getName(), &*InsertPt);
321 Value *PtrInGeneric = new AddrSpaceCastInst(PtrInGlobal, Ptr->getType(),
322 Ptr->getName(), &*InsertPt);
323 // Replace with PtrInGeneric all uses of Ptr except PtrInGlobal.
324 Ptr->replaceAllUsesWith(PtrInGeneric);
325 PtrInGlobal->setOperand(0, Ptr);
326 }
327
328 // =============================================================================
329 // Main function for this pass.
330 // =============================================================================
runOnKernelFunction(Function & F)331 bool NVPTXLowerArgs::runOnKernelFunction(Function &F) {
332 if (TM && TM->getDrvInterface() == NVPTX::CUDA) {
333 // Mark pointers in byval structs as global.
334 for (auto &B : F) {
335 for (auto &I : B) {
336 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
337 if (LI->getType()->isPointerTy()) {
338 Value *UO = getUnderlyingObject(LI->getPointerOperand());
339 if (Argument *Arg = dyn_cast<Argument>(UO)) {
340 if (Arg->hasByValAttr()) {
341 // LI is a load from a pointer within a byval kernel parameter.
342 markPointerAsGlobal(LI);
343 }
344 }
345 }
346 }
347 }
348 }
349 }
350
351 LLVM_DEBUG(dbgs() << "Lowering kernel args of " << F.getName() << "\n");
352 for (Argument &Arg : F.args()) {
353 if (Arg.getType()->isPointerTy()) {
354 if (Arg.hasByValAttr())
355 handleByValParam(&Arg);
356 else if (TM && TM->getDrvInterface() == NVPTX::CUDA)
357 markPointerAsGlobal(&Arg);
358 }
359 }
360 return true;
361 }
362
363 // Device functions only need to copy byval args into local memory.
runOnDeviceFunction(Function & F)364 bool NVPTXLowerArgs::runOnDeviceFunction(Function &F) {
365 LLVM_DEBUG(dbgs() << "Lowering function args of " << F.getName() << "\n");
366 for (Argument &Arg : F.args())
367 if (Arg.getType()->isPointerTy() && Arg.hasByValAttr())
368 handleByValParam(&Arg);
369 return true;
370 }
371
runOnFunction(Function & F)372 bool NVPTXLowerArgs::runOnFunction(Function &F) {
373 return isKernelFunction(F) ? runOnKernelFunction(F) : runOnDeviceFunction(F);
374 }
375
376 FunctionPass *
createNVPTXLowerArgsPass(const NVPTXTargetMachine * TM)377 llvm::createNVPTXLowerArgsPass(const NVPTXTargetMachine *TM) {
378 return new NVPTXLowerArgs(TM);
379 }
380