xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Target/NVPTX/NVPTXLowerArgs.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===-- NVPTXLowerArgs.cpp - Lower arguments ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 // Arguments to kernel and device functions are passed via param space,
11 // which imposes certain restrictions:
12 // http://docs.nvidia.com/cuda/parallel-thread-execution/#state-spaces
13 //
14 // Kernel parameters are read-only and accessible only via ld.param
15 // instruction, directly or via a pointer. Pointers to kernel
16 // arguments can't be converted to generic address space.
17 //
18 // Device function parameters are directly accessible via
19 // ld.param/st.param, but taking the address of one returns a pointer
20 // to a copy created in local space which *can't* be used with
21 // ld.param/st.param.
22 //
23 // Copying a byval struct into local memory in IR allows us to enforce
24 // the param space restrictions, gives the rest of IR a pointer w/o
25 // param space restrictions, and gives us an opportunity to eliminate
26 // the copy.
27 //
28 // Pointer arguments to kernel functions need more work to be lowered:
29 //
30 // 1. Convert non-byval pointer arguments of CUDA kernels to pointers in the
31 //    global address space. This allows later optimizations to emit
32 //    ld.global.*/st.global.* for accessing these pointer arguments. For
33 //    example,
34 //
35 //    define void @foo(float* %input) {
36 //      %v = load float, float* %input, align 4
37 //      ...
38 //    }
39 //
40 //    becomes
41 //
42 //    define void @foo(float* %input) {
43 //      %input2 = addrspacecast float* %input to float addrspace(1)*
44 //      %input3 = addrspacecast float addrspace(1)* %input2 to float*
45 //      %v = load float, float* %input3, align 4
46 //      ...
47 //    }
48 //
49 //    Later, NVPTXInferAddressSpaces will optimize it to
50 //
51 //    define void @foo(float* %input) {
52 //      %input2 = addrspacecast float* %input to float addrspace(1)*
53 //      %v = load float, float addrspace(1)* %input2, align 4
54 //      ...
55 //    }
56 //
57 // 2. Convert pointers in a byval kernel parameter to pointers in the global
58 //    address space. As #2, it allows NVPTX to emit more ld/st.global. E.g.,
59 //
60 //    struct S {
61 //      int *x;
62 //      int *y;
63 //    };
64 //    __global__ void foo(S s) {
65 //      int *b = s.y;
66 //      // use b
67 //    }
68 //
69 //    "b" points to the global address space. In the IR level,
70 //
71 //    define void @foo({i32*, i32*}* byval %input) {
72 //      %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
73 //      %b = load i32*, i32** %b_ptr
74 //      ; use %b
75 //    }
76 //
77 //    becomes
78 //
79 //    define void @foo({i32*, i32*}* byval %input) {
80 //      %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
81 //      %b = load i32*, i32** %b_ptr
82 //      %b_global = addrspacecast i32* %b to i32 addrspace(1)*
83 //      %b_generic = addrspacecast i32 addrspace(1)* %b_global to i32*
84 //      ; use %b_generic
85 //    }
86 //
87 // TODO: merge this pass with NVPTXInferAddressSpaces so that other passes don't
88 // cancel the addrspacecast pair this pass emits.
89 //===----------------------------------------------------------------------===//
90 
91 #include "NVPTX.h"
92 #include "NVPTXTargetMachine.h"
93 #include "NVPTXUtilities.h"
94 #include "MCTargetDesc/NVPTXBaseInfo.h"
95 #include "llvm/Analysis/ValueTracking.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/Instructions.h"
98 #include "llvm/IR/Module.h"
99 #include "llvm/IR/Type.h"
100 #include "llvm/Pass.h"
101 
102 #define DEBUG_TYPE "nvptx-lower-args"
103 
104 using namespace llvm;
105 
106 namespace llvm {
107 void initializeNVPTXLowerArgsPass(PassRegistry &);
108 }
109 
110 namespace {
111 class NVPTXLowerArgs : public FunctionPass {
112   bool runOnFunction(Function &F) override;
113 
114   bool runOnKernelFunction(Function &F);
115   bool runOnDeviceFunction(Function &F);
116 
117   // handle byval parameters
118   void handleByValParam(Argument *Arg);
119   // Knowing Ptr must point to the global address space, this function
120   // addrspacecasts Ptr to global and then back to generic. This allows
121   // NVPTXInferAddressSpaces to fold the global-to-generic cast into
122   // loads/stores that appear later.
123   void markPointerAsGlobal(Value *Ptr);
124 
125 public:
126   static char ID; // Pass identification, replacement for typeid
NVPTXLowerArgs(const NVPTXTargetMachine * TM=nullptr)127   NVPTXLowerArgs(const NVPTXTargetMachine *TM = nullptr)
128       : FunctionPass(ID), TM(TM) {}
getPassName() const129   StringRef getPassName() const override {
130     return "Lower pointer arguments of CUDA kernels";
131   }
132 
133 private:
134   const NVPTXTargetMachine *TM;
135 };
136 } // namespace
137 
138 char NVPTXLowerArgs::ID = 1;
139 
140 INITIALIZE_PASS(NVPTXLowerArgs, "nvptx-lower-args",
141                 "Lower arguments (NVPTX)", false, false)
142 
143 // =============================================================================
144 // If the function had a byval struct ptr arg, say foo(%struct.x* byval %d),
145 // and we can't guarantee that the only accesses are loads,
146 // then add the following instructions to the first basic block:
147 //
148 // %temp = alloca %struct.x, align 8
149 // %tempd = addrspacecast %struct.x* %d to %struct.x addrspace(101)*
150 // %tv = load %struct.x addrspace(101)* %tempd
151 // store %struct.x %tv, %struct.x* %temp, align 8
152 //
153 // The above code allocates some space in the stack and copies the incoming
154 // struct from param space to local space.
155 // Then replace all occurrences of %d by %temp.
156 //
157 // In case we know that all users are GEPs or Loads, replace them with the same
158 // ones in parameter AS, so we can access them using ld.param.
159 // =============================================================================
160 
161 // Replaces the \p OldUser instruction with the same in parameter AS.
162 // Only Load and GEP are supported.
convertToParamAS(Value * OldUser,Value * Param)163 static void convertToParamAS(Value *OldUser, Value *Param) {
164   Instruction *I = dyn_cast<Instruction>(OldUser);
165   assert(I && "OldUser must be an instruction");
166   struct IP {
167     Instruction *OldInstruction;
168     Value *NewParam;
169   };
170   SmallVector<IP> ItemsToConvert = {{I, Param}};
171   SmallVector<Instruction *> InstructionsToDelete;
172 
173   auto CloneInstInParamAS = [](const IP &I) -> Value * {
174     if (auto *LI = dyn_cast<LoadInst>(I.OldInstruction)) {
175       LI->setOperand(0, I.NewParam);
176       return LI;
177     }
178     if (auto *GEP = dyn_cast<GetElementPtrInst>(I.OldInstruction)) {
179       SmallVector<Value *, 4> Indices(GEP->indices());
180       auto *NewGEP = GetElementPtrInst::Create(nullptr, I.NewParam, Indices,
181                                                GEP->getName(), GEP);
182       NewGEP->setIsInBounds(GEP->isInBounds());
183       return NewGEP;
184     }
185     if (auto *BC = dyn_cast<BitCastInst>(I.OldInstruction)) {
186       auto *NewBCType = BC->getType()->getPointerElementType()->getPointerTo(
187           ADDRESS_SPACE_PARAM);
188       return BitCastInst::Create(BC->getOpcode(), I.NewParam, NewBCType,
189                                  BC->getName(), BC);
190     }
191     if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I.OldInstruction)) {
192       assert(ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM);
193       (void)ASC;
194       // Just pass through the argument, the old ASC is no longer needed.
195       return I.NewParam;
196     }
197     llvm_unreachable("Unsupported instruction");
198   };
199 
200   while (!ItemsToConvert.empty()) {
201     IP I = ItemsToConvert.pop_back_val();
202     Value *NewInst = CloneInstInParamAS(I);
203 
204     if (NewInst && NewInst != I.OldInstruction) {
205       // We've created a new instruction. Queue users of the old instruction to
206       // be converted and the instruction itself to be deleted. We can't delete
207       // the old instruction yet, because it's still in use by a load somewhere.
208       llvm::for_each(
209           I.OldInstruction->users(), [NewInst, &ItemsToConvert](Value *V) {
210             ItemsToConvert.push_back({cast<Instruction>(V), NewInst});
211           });
212 
213       InstructionsToDelete.push_back(I.OldInstruction);
214     }
215   }
216 
217   // Now we know that all argument loads are using addresses in parameter space
218   // and we can finally remove the old instructions in generic AS.  Instructions
219   // scheduled for removal should be processed in reverse order so the ones
220   // closest to the load are deleted first. Otherwise they may still be in use.
221   // E.g if we have Value = Load(BitCast(GEP(arg))), InstructionsToDelete will
222   // have {GEP,BitCast}. GEP can't be deleted first, because it's still used by
223   // the BitCast.
224   llvm::for_each(reverse(InstructionsToDelete),
225                  [](Instruction *I) { I->eraseFromParent(); });
226 }
227 
handleByValParam(Argument * Arg)228 void NVPTXLowerArgs::handleByValParam(Argument *Arg) {
229   Function *Func = Arg->getParent();
230   Instruction *FirstInst = &(Func->getEntryBlock().front());
231   PointerType *PType = dyn_cast<PointerType>(Arg->getType());
232 
233   assert(PType && "Expecting pointer type in handleByValParam");
234 
235   Type *StructType = PType->getElementType();
236 
237   auto IsALoadChain = [&](Value *Start) {
238     SmallVector<Value *, 16> ValuesToCheck = {Start};
239     auto IsALoadChainInstr = [](Value *V) -> bool {
240       if (isa<GetElementPtrInst>(V) || isa<BitCastInst>(V) || isa<LoadInst>(V))
241         return true;
242       // ASC to param space are OK, too -- we'll just strip them.
243       if (auto *ASC = dyn_cast<AddrSpaceCastInst>(V)) {
244         if (ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM)
245           return true;
246       }
247       return false;
248     };
249 
250     while (!ValuesToCheck.empty()) {
251       Value *V = ValuesToCheck.pop_back_val();
252       if (!IsALoadChainInstr(V)) {
253         LLVM_DEBUG(dbgs() << "Need a copy of " << *Arg << " because of " << *V
254                           << "\n");
255         (void)Arg;
256         return false;
257       }
258       if (!isa<LoadInst>(V))
259         llvm::append_range(ValuesToCheck, V->users());
260     }
261     return true;
262   };
263 
264   if (llvm::all_of(Arg->users(), IsALoadChain)) {
265     // Convert all loads and intermediate operations to use parameter AS and
266     // skip creation of a local copy of the argument.
267     SmallVector<User *, 16> UsersToUpdate(Arg->users());
268     Value *ArgInParamAS = new AddrSpaceCastInst(
269         Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
270         FirstInst);
271     llvm::for_each(UsersToUpdate, [ArgInParamAS](Value *V) {
272       convertToParamAS(V, ArgInParamAS);
273     });
274     LLVM_DEBUG(dbgs() << "No need to copy " << *Arg << "\n");
275     return;
276   }
277 
278   // Otherwise we have to create a temporary copy.
279   const DataLayout &DL = Func->getParent()->getDataLayout();
280   unsigned AS = DL.getAllocaAddrSpace();
281   AllocaInst *AllocA = new AllocaInst(StructType, AS, Arg->getName(), FirstInst);
282   // Set the alignment to alignment of the byval parameter. This is because,
283   // later load/stores assume that alignment, and we are going to replace
284   // the use of the byval parameter with this alloca instruction.
285   AllocA->setAlignment(Func->getParamAlign(Arg->getArgNo())
286                            .getValueOr(DL.getPrefTypeAlign(StructType)));
287   Arg->replaceAllUsesWith(AllocA);
288 
289   Value *ArgInParam = new AddrSpaceCastInst(
290       Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
291       FirstInst);
292   // Be sure to propagate alignment to this load; LLVM doesn't know that NVPTX
293   // addrspacecast preserves alignment.  Since params are constant, this load is
294   // definitely not volatile.
295   LoadInst *LI =
296       new LoadInst(StructType, ArgInParam, Arg->getName(),
297                    /*isVolatile=*/false, AllocA->getAlign(), FirstInst);
298   new StoreInst(LI, AllocA, FirstInst);
299 }
300 
markPointerAsGlobal(Value * Ptr)301 void NVPTXLowerArgs::markPointerAsGlobal(Value *Ptr) {
302   if (Ptr->getType()->getPointerAddressSpace() == ADDRESS_SPACE_GLOBAL)
303     return;
304 
305   // Deciding where to emit the addrspacecast pair.
306   BasicBlock::iterator InsertPt;
307   if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
308     // Insert at the functon entry if Ptr is an argument.
309     InsertPt = Arg->getParent()->getEntryBlock().begin();
310   } else {
311     // Insert right after Ptr if Ptr is an instruction.
312     InsertPt = ++cast<Instruction>(Ptr)->getIterator();
313     assert(InsertPt != InsertPt->getParent()->end() &&
314            "We don't call this function with Ptr being a terminator.");
315   }
316 
317   Instruction *PtrInGlobal = new AddrSpaceCastInst(
318       Ptr, PointerType::get(Ptr->getType()->getPointerElementType(),
319                             ADDRESS_SPACE_GLOBAL),
320       Ptr->getName(), &*InsertPt);
321   Value *PtrInGeneric = new AddrSpaceCastInst(PtrInGlobal, Ptr->getType(),
322                                               Ptr->getName(), &*InsertPt);
323   // Replace with PtrInGeneric all uses of Ptr except PtrInGlobal.
324   Ptr->replaceAllUsesWith(PtrInGeneric);
325   PtrInGlobal->setOperand(0, Ptr);
326 }
327 
328 // =============================================================================
329 // Main function for this pass.
330 // =============================================================================
runOnKernelFunction(Function & F)331 bool NVPTXLowerArgs::runOnKernelFunction(Function &F) {
332   if (TM && TM->getDrvInterface() == NVPTX::CUDA) {
333     // Mark pointers in byval structs as global.
334     for (auto &B : F) {
335       for (auto &I : B) {
336         if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
337           if (LI->getType()->isPointerTy()) {
338             Value *UO = getUnderlyingObject(LI->getPointerOperand());
339             if (Argument *Arg = dyn_cast<Argument>(UO)) {
340               if (Arg->hasByValAttr()) {
341                 // LI is a load from a pointer within a byval kernel parameter.
342                 markPointerAsGlobal(LI);
343               }
344             }
345           }
346         }
347       }
348     }
349   }
350 
351   LLVM_DEBUG(dbgs() << "Lowering kernel args of " << F.getName() << "\n");
352   for (Argument &Arg : F.args()) {
353     if (Arg.getType()->isPointerTy()) {
354       if (Arg.hasByValAttr())
355         handleByValParam(&Arg);
356       else if (TM && TM->getDrvInterface() == NVPTX::CUDA)
357         markPointerAsGlobal(&Arg);
358     }
359   }
360   return true;
361 }
362 
363 // Device functions only need to copy byval args into local memory.
runOnDeviceFunction(Function & F)364 bool NVPTXLowerArgs::runOnDeviceFunction(Function &F) {
365   LLVM_DEBUG(dbgs() << "Lowering function args of " << F.getName() << "\n");
366   for (Argument &Arg : F.args())
367     if (Arg.getType()->isPointerTy() && Arg.hasByValAttr())
368       handleByValParam(&Arg);
369   return true;
370 }
371 
runOnFunction(Function & F)372 bool NVPTXLowerArgs::runOnFunction(Function &F) {
373   return isKernelFunction(F) ? runOnKernelFunction(F) : runOnDeviceFunction(F);
374 }
375 
376 FunctionPass *
createNVPTXLowerArgsPass(const NVPTXTargetMachine * TM)377 llvm::createNVPTXLowerArgsPass(const NVPTXTargetMachine *TM) {
378   return new NVPTXLowerArgs(TM);
379 }
380