1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements the new LLVM's Global Value Numbering pass. 11 /// GVN partitions values computed by a function into congruence classes. 12 /// Values ending up in the same congruence class are guaranteed to be the same 13 /// for every execution of the program. In that respect, congruency is a 14 /// compile-time approximation of equivalence of values at runtime. 15 /// The algorithm implemented here uses a sparse formulation and it's based 16 /// on the ideas described in the paper: 17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from 18 /// Karthik Gargi. 19 /// 20 /// A brief overview of the algorithm: The algorithm is essentially the same as 21 /// the standard RPO value numbering algorithm (a good reference is the paper 22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference: 23 /// The RPO algorithm proceeds, on every iteration, to process every reachable 24 /// block and every instruction in that block. This is because the standard RPO 25 /// algorithm does not track what things have the same value number, it only 26 /// tracks what the value number of a given operation is (the mapping is 27 /// operation -> value number). Thus, when a value number of an operation 28 /// changes, it must reprocess everything to ensure all uses of a value number 29 /// get updated properly. In constrast, the sparse algorithm we use *also* 30 /// tracks what operations have a given value number (IE it also tracks the 31 /// reverse mapping from value number -> operations with that value number), so 32 /// that it only needs to reprocess the instructions that are affected when 33 /// something's value number changes. The vast majority of complexity and code 34 /// in this file is devoted to tracking what value numbers could change for what 35 /// instructions when various things happen. The rest of the algorithm is 36 /// devoted to performing symbolic evaluation, forward propagation, and 37 /// simplification of operations based on the value numbers deduced so far 38 /// 39 /// In order to make the GVN mostly-complete, we use a technique derived from 40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time 41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA 42 /// based GVN algorithms is related to their inability to detect equivalence 43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)). 44 /// We resolve this issue by generating the equivalent "phi of ops" form for 45 /// each op of phis we see, in a way that only takes polynomial time to resolve. 46 /// 47 /// We also do not perform elimination by using any published algorithm. All 48 /// published algorithms are O(Instructions). Instead, we use a technique that 49 /// is O(number of operations with the same value number), enabling us to skip 50 /// trying to eliminate things that have unique value numbers. 51 // 52 //===----------------------------------------------------------------------===// 53 54 #include "llvm/Transforms/Scalar/NewGVN.h" 55 #include "llvm/ADT/ArrayRef.h" 56 #include "llvm/ADT/BitVector.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseMapInfo.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/DepthFirstIterator.h" 61 #include "llvm/ADT/GraphTraits.h" 62 #include "llvm/ADT/Hashing.h" 63 #include "llvm/ADT/PointerIntPair.h" 64 #include "llvm/ADT/PostOrderIterator.h" 65 #include "llvm/ADT/SetOperations.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/SparseBitVector.h" 69 #include "llvm/ADT/Statistic.h" 70 #include "llvm/ADT/iterator_range.h" 71 #include "llvm/Analysis/AliasAnalysis.h" 72 #include "llvm/Analysis/AssumptionCache.h" 73 #include "llvm/Analysis/CFGPrinter.h" 74 #include "llvm/Analysis/ConstantFolding.h" 75 #include "llvm/Analysis/GlobalsModRef.h" 76 #include "llvm/Analysis/InstructionSimplify.h" 77 #include "llvm/Analysis/MemoryBuiltins.h" 78 #include "llvm/Analysis/MemorySSA.h" 79 #include "llvm/Analysis/TargetLibraryInfo.h" 80 #include "llvm/Analysis/ValueTracking.h" 81 #include "llvm/IR/Argument.h" 82 #include "llvm/IR/BasicBlock.h" 83 #include "llvm/IR/Constant.h" 84 #include "llvm/IR/Constants.h" 85 #include "llvm/IR/Dominators.h" 86 #include "llvm/IR/Function.h" 87 #include "llvm/IR/InstrTypes.h" 88 #include "llvm/IR/Instruction.h" 89 #include "llvm/IR/Instructions.h" 90 #include "llvm/IR/IntrinsicInst.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/Use.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/Support/Allocator.h" 97 #include "llvm/Support/ArrayRecycler.h" 98 #include "llvm/Support/Casting.h" 99 #include "llvm/Support/CommandLine.h" 100 #include "llvm/Support/Debug.h" 101 #include "llvm/Support/DebugCounter.h" 102 #include "llvm/Support/ErrorHandling.h" 103 #include "llvm/Support/PointerLikeTypeTraits.h" 104 #include "llvm/Support/raw_ostream.h" 105 #include "llvm/Transforms/Scalar/GVNExpression.h" 106 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 107 #include "llvm/Transforms/Utils/Local.h" 108 #include "llvm/Transforms/Utils/PredicateInfo.h" 109 #include "llvm/Transforms/Utils/VNCoercion.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstdint> 113 #include <iterator> 114 #include <map> 115 #include <memory> 116 #include <set> 117 #include <string> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 using namespace llvm::GVNExpression; 124 using namespace llvm::VNCoercion; 125 using namespace llvm::PatternMatch; 126 127 #define DEBUG_TYPE "newgvn" 128 129 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted"); 130 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted"); 131 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified"); 132 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same"); 133 STATISTIC(NumGVNMaxIterations, 134 "Maximum Number of iterations it took to converge GVN"); 135 STATISTIC(NumGVNLeaderChanges, "Number of leader changes"); 136 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes"); 137 STATISTIC(NumGVNAvoidedSortedLeaderChanges, 138 "Number of avoided sorted leader changes"); 139 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated"); 140 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created"); 141 STATISTIC(NumGVNPHIOfOpsEliminations, 142 "Number of things eliminated using PHI of ops"); 143 DEBUG_COUNTER(VNCounter, "newgvn-vn", 144 "Controls which instructions are value numbered"); 145 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi", 146 "Controls which instructions we create phi of ops for"); 147 // Currently store defining access refinement is too slow due to basicaa being 148 // egregiously slow. This flag lets us keep it working while we work on this 149 // issue. 150 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement", 151 cl::init(false), cl::Hidden); 152 153 /// Currently, the generation "phi of ops" can result in correctness issues. 154 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true), 155 cl::Hidden); 156 157 //===----------------------------------------------------------------------===// 158 // GVN Pass 159 //===----------------------------------------------------------------------===// 160 161 // Anchor methods. 162 namespace llvm { 163 namespace GVNExpression { 164 165 Expression::~Expression() = default; 166 BasicExpression::~BasicExpression() = default; 167 CallExpression::~CallExpression() = default; 168 LoadExpression::~LoadExpression() = default; 169 StoreExpression::~StoreExpression() = default; 170 AggregateValueExpression::~AggregateValueExpression() = default; 171 PHIExpression::~PHIExpression() = default; 172 173 } // end namespace GVNExpression 174 } // end namespace llvm 175 176 namespace { 177 178 // Tarjan's SCC finding algorithm with Nuutila's improvements 179 // SCCIterator is actually fairly complex for the simple thing we want. 180 // It also wants to hand us SCC's that are unrelated to the phi node we ask 181 // about, and have us process them there or risk redoing work. 182 // Graph traits over a filter iterator also doesn't work that well here. 183 // This SCC finder is specialized to walk use-def chains, and only follows 184 // instructions, 185 // not generic values (arguments, etc). 186 struct TarjanSCC { 187 TarjanSCC() : Components(1) {} 188 189 void Start(const Instruction *Start) { 190 if (Root.lookup(Start) == 0) 191 FindSCC(Start); 192 } 193 194 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const { 195 unsigned ComponentID = ValueToComponent.lookup(V); 196 197 assert(ComponentID > 0 && 198 "Asking for a component for a value we never processed"); 199 return Components[ComponentID]; 200 } 201 202 private: 203 void FindSCC(const Instruction *I) { 204 Root[I] = ++DFSNum; 205 // Store the DFS Number we had before it possibly gets incremented. 206 unsigned int OurDFS = DFSNum; 207 for (const auto &Op : I->operands()) { 208 if (auto *InstOp = dyn_cast<Instruction>(Op)) { 209 if (Root.lookup(Op) == 0) 210 FindSCC(InstOp); 211 if (!InComponent.count(Op)) 212 Root[I] = std::min(Root.lookup(I), Root.lookup(Op)); 213 } 214 } 215 // See if we really were the root of a component, by seeing if we still have 216 // our DFSNumber. If we do, we are the root of the component, and we have 217 // completed a component. If we do not, we are not the root of a component, 218 // and belong on the component stack. 219 if (Root.lookup(I) == OurDFS) { 220 unsigned ComponentID = Components.size(); 221 Components.resize(Components.size() + 1); 222 auto &Component = Components.back(); 223 Component.insert(I); 224 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n"); 225 InComponent.insert(I); 226 ValueToComponent[I] = ComponentID; 227 // Pop a component off the stack and label it. 228 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) { 229 auto *Member = Stack.back(); 230 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n"); 231 Component.insert(Member); 232 InComponent.insert(Member); 233 ValueToComponent[Member] = ComponentID; 234 Stack.pop_back(); 235 } 236 } else { 237 // Part of a component, push to stack 238 Stack.push_back(I); 239 } 240 } 241 242 unsigned int DFSNum = 1; 243 SmallPtrSet<const Value *, 8> InComponent; 244 DenseMap<const Value *, unsigned int> Root; 245 SmallVector<const Value *, 8> Stack; 246 247 // Store the components as vector of ptr sets, because we need the topo order 248 // of SCC's, but not individual member order 249 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components; 250 251 DenseMap<const Value *, unsigned> ValueToComponent; 252 }; 253 254 // Congruence classes represent the set of expressions/instructions 255 // that are all the same *during some scope in the function*. 256 // That is, because of the way we perform equality propagation, and 257 // because of memory value numbering, it is not correct to assume 258 // you can willy-nilly replace any member with any other at any 259 // point in the function. 260 // 261 // For any Value in the Member set, it is valid to replace any dominated member 262 // with that Value. 263 // 264 // Every congruence class has a leader, and the leader is used to symbolize 265 // instructions in a canonical way (IE every operand of an instruction that is a 266 // member of the same congruence class will always be replaced with leader 267 // during symbolization). To simplify symbolization, we keep the leader as a 268 // constant if class can be proved to be a constant value. Otherwise, the 269 // leader is the member of the value set with the smallest DFS number. Each 270 // congruence class also has a defining expression, though the expression may be 271 // null. If it exists, it can be used for forward propagation and reassociation 272 // of values. 273 274 // For memory, we also track a representative MemoryAccess, and a set of memory 275 // members for MemoryPhis (which have no real instructions). Note that for 276 // memory, it seems tempting to try to split the memory members into a 277 // MemoryCongruenceClass or something. Unfortunately, this does not work 278 // easily. The value numbering of a given memory expression depends on the 279 // leader of the memory congruence class, and the leader of memory congruence 280 // class depends on the value numbering of a given memory expression. This 281 // leads to wasted propagation, and in some cases, missed optimization. For 282 // example: If we had value numbered two stores together before, but now do not, 283 // we move them to a new value congruence class. This in turn will move at one 284 // of the memorydefs to a new memory congruence class. Which in turn, affects 285 // the value numbering of the stores we just value numbered (because the memory 286 // congruence class is part of the value number). So while theoretically 287 // possible to split them up, it turns out to be *incredibly* complicated to get 288 // it to work right, because of the interdependency. While structurally 289 // slightly messier, it is algorithmically much simpler and faster to do what we 290 // do here, and track them both at once in the same class. 291 // Note: The default iterators for this class iterate over values 292 class CongruenceClass { 293 public: 294 using MemberType = Value; 295 using MemberSet = SmallPtrSet<MemberType *, 4>; 296 using MemoryMemberType = MemoryPhi; 297 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>; 298 299 explicit CongruenceClass(unsigned ID) : ID(ID) {} 300 CongruenceClass(unsigned ID, std::pair<Value *, unsigned int> Leader, 301 const Expression *E) 302 : ID(ID), RepLeader(Leader), DefiningExpr(E) {} 303 304 unsigned getID() const { return ID; } 305 306 // True if this class has no members left. This is mainly used for assertion 307 // purposes, and for skipping empty classes. 308 bool isDead() const { 309 // If it's both dead from a value perspective, and dead from a memory 310 // perspective, it's really dead. 311 return empty() && memory_empty(); 312 } 313 314 // Leader functions 315 Value *getLeader() const { return RepLeader.first; } 316 void setLeader(std::pair<Value *, unsigned int> Leader) { 317 RepLeader = Leader; 318 } 319 const std::pair<Value *, unsigned int> &getNextLeader() const { 320 return NextLeader; 321 } 322 void resetNextLeader() { NextLeader = {nullptr, ~0}; } 323 bool addPossibleLeader(std::pair<Value *, unsigned int> LeaderPair) { 324 if (LeaderPair.second < RepLeader.second) { 325 NextLeader = RepLeader; 326 RepLeader = LeaderPair; 327 return true; 328 } else if (LeaderPair.second < NextLeader.second) { 329 NextLeader = LeaderPair; 330 } 331 return false; 332 } 333 334 Value *getStoredValue() const { return RepStoredValue; } 335 void setStoredValue(Value *Leader) { RepStoredValue = Leader; } 336 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; } 337 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; } 338 339 // Forward propagation info 340 const Expression *getDefiningExpr() const { return DefiningExpr; } 341 342 // Value member set 343 bool empty() const { return Members.empty(); } 344 unsigned size() const { return Members.size(); } 345 MemberSet::const_iterator begin() const { return Members.begin(); } 346 MemberSet::const_iterator end() const { return Members.end(); } 347 void insert(MemberType *M) { Members.insert(M); } 348 void erase(MemberType *M) { Members.erase(M); } 349 void swap(MemberSet &Other) { Members.swap(Other); } 350 351 // Memory member set 352 bool memory_empty() const { return MemoryMembers.empty(); } 353 unsigned memory_size() const { return MemoryMembers.size(); } 354 MemoryMemberSet::const_iterator memory_begin() const { 355 return MemoryMembers.begin(); 356 } 357 MemoryMemberSet::const_iterator memory_end() const { 358 return MemoryMembers.end(); 359 } 360 iterator_range<MemoryMemberSet::const_iterator> memory() const { 361 return make_range(memory_begin(), memory_end()); 362 } 363 364 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); } 365 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); } 366 367 // Store count 368 unsigned getStoreCount() const { return StoreCount; } 369 void incStoreCount() { ++StoreCount; } 370 void decStoreCount() { 371 assert(StoreCount != 0 && "Store count went negative"); 372 --StoreCount; 373 } 374 375 // True if this class has no memory members. 376 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); } 377 378 // Return true if two congruence classes are equivalent to each other. This 379 // means that every field but the ID number and the dead field are equivalent. 380 bool isEquivalentTo(const CongruenceClass *Other) const { 381 if (!Other) 382 return false; 383 if (this == Other) 384 return true; 385 386 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) != 387 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue, 388 Other->RepMemoryAccess)) 389 return false; 390 if (DefiningExpr != Other->DefiningExpr) 391 if (!DefiningExpr || !Other->DefiningExpr || 392 *DefiningExpr != *Other->DefiningExpr) 393 return false; 394 395 if (Members.size() != Other->Members.size()) 396 return false; 397 398 return llvm::set_is_subset(Members, Other->Members); 399 } 400 401 private: 402 unsigned ID; 403 404 // Representative leader and its corresponding RPO number. 405 // The leader must have the lowest RPO number. 406 std::pair<Value *, unsigned int> RepLeader = {nullptr, ~0U}; 407 408 // The most dominating leader after our current leader (given by the RPO 409 // number), because the member set is not sorted and is expensive to keep 410 // sorted all the time. 411 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U}; 412 413 // If this is represented by a store, the value of the store. 414 Value *RepStoredValue = nullptr; 415 416 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory 417 // access. 418 const MemoryAccess *RepMemoryAccess = nullptr; 419 420 // Defining Expression. 421 const Expression *DefiningExpr = nullptr; 422 423 // Actual members of this class. 424 MemberSet Members; 425 426 // This is the set of MemoryPhis that exist in the class. MemoryDefs and 427 // MemoryUses have real instructions representing them, so we only need to 428 // track MemoryPhis here. 429 MemoryMemberSet MemoryMembers; 430 431 // Number of stores in this congruence class. 432 // This is used so we can detect store equivalence changes properly. 433 int StoreCount = 0; 434 }; 435 436 } // end anonymous namespace 437 438 namespace llvm { 439 440 struct ExactEqualsExpression { 441 const Expression &E; 442 443 explicit ExactEqualsExpression(const Expression &E) : E(E) {} 444 445 hash_code getComputedHash() const { return E.getComputedHash(); } 446 447 bool operator==(const Expression &Other) const { 448 return E.exactlyEquals(Other); 449 } 450 }; 451 452 template <> struct DenseMapInfo<const Expression *> { 453 static const Expression *getEmptyKey() { 454 auto Val = static_cast<uintptr_t>(-1); 455 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; 456 return reinterpret_cast<const Expression *>(Val); 457 } 458 459 static const Expression *getTombstoneKey() { 460 auto Val = static_cast<uintptr_t>(~1U); 461 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; 462 return reinterpret_cast<const Expression *>(Val); 463 } 464 465 static unsigned getHashValue(const Expression *E) { 466 return E->getComputedHash(); 467 } 468 469 static unsigned getHashValue(const ExactEqualsExpression &E) { 470 return E.getComputedHash(); 471 } 472 473 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) { 474 if (RHS == getTombstoneKey() || RHS == getEmptyKey()) 475 return false; 476 return LHS == *RHS; 477 } 478 479 static bool isEqual(const Expression *LHS, const Expression *RHS) { 480 if (LHS == RHS) 481 return true; 482 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() || 483 LHS == getEmptyKey() || RHS == getEmptyKey()) 484 return false; 485 // Compare hashes before equality. This is *not* what the hashtable does, 486 // since it is computing it modulo the number of buckets, whereas we are 487 // using the full hash keyspace. Since the hashes are precomputed, this 488 // check is *much* faster than equality. 489 if (LHS->getComputedHash() != RHS->getComputedHash()) 490 return false; 491 return *LHS == *RHS; 492 } 493 }; 494 495 } // end namespace llvm 496 497 namespace { 498 499 class NewGVN { 500 Function &F; 501 DominatorTree *DT = nullptr; 502 const TargetLibraryInfo *TLI = nullptr; 503 AliasAnalysis *AA = nullptr; 504 MemorySSA *MSSA = nullptr; 505 MemorySSAWalker *MSSAWalker = nullptr; 506 AssumptionCache *AC = nullptr; 507 const DataLayout &DL; 508 std::unique_ptr<PredicateInfo> PredInfo; 509 510 // These are the only two things the create* functions should have 511 // side-effects on due to allocating memory. 512 mutable BumpPtrAllocator ExpressionAllocator; 513 mutable ArrayRecycler<Value *> ArgRecycler; 514 mutable TarjanSCC SCCFinder; 515 const SimplifyQuery SQ; 516 517 // Number of function arguments, used by ranking 518 unsigned int NumFuncArgs = 0; 519 520 // RPOOrdering of basic blocks 521 DenseMap<const DomTreeNode *, unsigned> RPOOrdering; 522 523 // Congruence class info. 524 525 // This class is called INITIAL in the paper. It is the class everything 526 // startsout in, and represents any value. Being an optimistic analysis, 527 // anything in the TOP class has the value TOP, which is indeterminate and 528 // equivalent to everything. 529 CongruenceClass *TOPClass = nullptr; 530 std::vector<CongruenceClass *> CongruenceClasses; 531 unsigned NextCongruenceNum = 0; 532 533 // Value Mappings. 534 DenseMap<Value *, CongruenceClass *> ValueToClass; 535 DenseMap<Value *, const Expression *> ValueToExpression; 536 537 // Value PHI handling, used to make equivalence between phi(op, op) and 538 // op(phi, phi). 539 // These mappings just store various data that would normally be part of the 540 // IR. 541 SmallPtrSet<const Instruction *, 8> PHINodeUses; 542 543 // The cached results, in general, are only valid for the specific block where 544 // they were computed. The unsigned part of the key is a unique block 545 // identifier 546 DenseMap<std::pair<const Value *, unsigned>, bool> OpSafeForPHIOfOps; 547 unsigned CacheIdx; 548 549 // Map a temporary instruction we created to a parent block. 550 DenseMap<const Value *, BasicBlock *> TempToBlock; 551 552 // Map between the already in-program instructions and the temporary phis we 553 // created that they are known equivalent to. 554 DenseMap<const Value *, PHINode *> RealToTemp; 555 556 // In order to know when we should re-process instructions that have 557 // phi-of-ops, we track the set of expressions that they needed as 558 // leaders. When we discover new leaders for those expressions, we process the 559 // associated phi-of-op instructions again in case they have changed. The 560 // other way they may change is if they had leaders, and those leaders 561 // disappear. However, at the point they have leaders, there are uses of the 562 // relevant operands in the created phi node, and so they will get reprocessed 563 // through the normal user marking we perform. 564 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers; 565 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>> 566 ExpressionToPhiOfOps; 567 568 // Map from temporary operation to MemoryAccess. 569 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory; 570 571 // Set of all temporary instructions we created. 572 // Note: This will include instructions that were just created during value 573 // numbering. The way to test if something is using them is to check 574 // RealToTemp. 575 DenseSet<Instruction *> AllTempInstructions; 576 577 // This is the set of instructions to revisit on a reachability change. At 578 // the end of the main iteration loop it will contain at least all the phi of 579 // ops instructions that will be changed to phis, as well as regular phis. 580 // During the iteration loop, it may contain other things, such as phi of ops 581 // instructions that used edge reachability to reach a result, and so need to 582 // be revisited when the edge changes, independent of whether the phi they 583 // depended on changes. 584 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange; 585 586 // Mapping from predicate info we used to the instructions we used it with. 587 // In order to correctly ensure propagation, we must keep track of what 588 // comparisons we used, so that when the values of the comparisons change, we 589 // propagate the information to the places we used the comparison. 590 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>> 591 PredicateToUsers; 592 593 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for 594 // stores, we no longer can rely solely on the def-use chains of MemorySSA. 595 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>> 596 MemoryToUsers; 597 598 // A table storing which memorydefs/phis represent a memory state provably 599 // equivalent to another memory state. 600 // We could use the congruence class machinery, but the MemoryAccess's are 601 // abstract memory states, so they can only ever be equivalent to each other, 602 // and not to constants, etc. 603 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass; 604 605 // We could, if we wanted, build MemoryPhiExpressions and 606 // MemoryVariableExpressions, etc, and value number them the same way we value 607 // number phi expressions. For the moment, this seems like overkill. They 608 // can only exist in one of three states: they can be TOP (equal to 609 // everything), Equivalent to something else, or unique. Because we do not 610 // create expressions for them, we need to simulate leader change not just 611 // when they change class, but when they change state. Note: We can do the 612 // same thing for phis, and avoid having phi expressions if we wanted, We 613 // should eventually unify in one direction or the other, so this is a little 614 // bit of an experiment in which turns out easier to maintain. 615 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique }; 616 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState; 617 618 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle }; 619 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState; 620 621 // Expression to class mapping. 622 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>; 623 ExpressionClassMap ExpressionToClass; 624 625 // We have a single expression that represents currently DeadExpressions. 626 // For dead expressions we can prove will stay dead, we mark them with 627 // DFS number zero. However, it's possible in the case of phi nodes 628 // for us to assume/prove all arguments are dead during fixpointing. 629 // We use DeadExpression for that case. 630 DeadExpression *SingletonDeadExpression = nullptr; 631 632 // Which values have changed as a result of leader changes. 633 SmallPtrSet<Value *, 8> LeaderChanges; 634 635 // Reachability info. 636 using BlockEdge = BasicBlockEdge; 637 DenseSet<BlockEdge> ReachableEdges; 638 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks; 639 640 // This is a bitvector because, on larger functions, we may have 641 // thousands of touched instructions at once (entire blocks, 642 // instructions with hundreds of uses, etc). Even with optimization 643 // for when we mark whole blocks as touched, when this was a 644 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all 645 // the time in GVN just managing this list. The bitvector, on the 646 // other hand, efficiently supports test/set/clear of both 647 // individual and ranges, as well as "find next element" This 648 // enables us to use it as a worklist with essentially 0 cost. 649 BitVector TouchedInstructions; 650 651 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange; 652 mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred; 653 654 #ifndef NDEBUG 655 // Debugging for how many times each block and instruction got processed. 656 DenseMap<const Value *, unsigned> ProcessedCount; 657 #endif 658 659 // DFS info. 660 // This contains a mapping from Instructions to DFS numbers. 661 // The numbering starts at 1. An instruction with DFS number zero 662 // means that the instruction is dead. 663 DenseMap<const Value *, unsigned> InstrDFS; 664 665 // This contains the mapping DFS numbers to instructions. 666 SmallVector<Value *, 32> DFSToInstr; 667 668 // Deletion info. 669 SmallPtrSet<Instruction *, 8> InstructionsToErase; 670 671 public: 672 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC, 673 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA, 674 const DataLayout &DL) 675 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL), 676 PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)), 677 SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false, 678 /*CanUseUndef=*/false) {} 679 680 bool runGVN(); 681 682 private: 683 /// Helper struct return a Expression with an optional extra dependency. 684 struct ExprResult { 685 const Expression *Expr; 686 Value *ExtraDep; 687 const PredicateBase *PredDep; 688 689 ExprResult(const Expression *Expr, Value *ExtraDep = nullptr, 690 const PredicateBase *PredDep = nullptr) 691 : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {} 692 ExprResult(const ExprResult &) = delete; 693 ExprResult(ExprResult &&Other) 694 : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) { 695 Other.Expr = nullptr; 696 Other.ExtraDep = nullptr; 697 Other.PredDep = nullptr; 698 } 699 ExprResult &operator=(const ExprResult &Other) = delete; 700 ExprResult &operator=(ExprResult &&Other) = delete; 701 702 ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); } 703 704 operator bool() const { return Expr; } 705 706 static ExprResult none() { return {nullptr, nullptr, nullptr}; } 707 static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) { 708 return {Expr, ExtraDep, nullptr}; 709 } 710 static ExprResult some(const Expression *Expr, 711 const PredicateBase *PredDep) { 712 return {Expr, nullptr, PredDep}; 713 } 714 static ExprResult some(const Expression *Expr, Value *ExtraDep, 715 const PredicateBase *PredDep) { 716 return {Expr, ExtraDep, PredDep}; 717 } 718 }; 719 720 // Expression handling. 721 ExprResult createExpression(Instruction *) const; 722 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *, 723 Instruction *) const; 724 725 // Our canonical form for phi arguments is a pair of incoming value, incoming 726 // basic block. 727 using ValPair = std::pair<Value *, BasicBlock *>; 728 729 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *, 730 BasicBlock *, bool &HasBackEdge, 731 bool &OriginalOpsConstant) const; 732 const DeadExpression *createDeadExpression() const; 733 const VariableExpression *createVariableExpression(Value *) const; 734 const ConstantExpression *createConstantExpression(Constant *) const; 735 const Expression *createVariableOrConstant(Value *V) const; 736 const UnknownExpression *createUnknownExpression(Instruction *) const; 737 const StoreExpression *createStoreExpression(StoreInst *, 738 const MemoryAccess *) const; 739 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *, 740 const MemoryAccess *) const; 741 const CallExpression *createCallExpression(CallInst *, 742 const MemoryAccess *) const; 743 const AggregateValueExpression * 744 createAggregateValueExpression(Instruction *) const; 745 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const; 746 747 // Congruence class handling. 748 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) { 749 // Set RPO to 0 for values that are always available (constants and function 750 // args). These should always be made leader. 751 unsigned LeaderDFS = 0; 752 753 // If Leader is not specified, either we have a memory class or the leader 754 // will be set later. Otherwise, if Leader is an Instruction, set LeaderDFS 755 // to its RPO number. 756 if (!Leader) 757 LeaderDFS = ~0; 758 else if (auto *I = dyn_cast<Instruction>(Leader)) 759 LeaderDFS = InstrToDFSNum(I); 760 auto *result = 761 new CongruenceClass(NextCongruenceNum++, {Leader, LeaderDFS}, E); 762 CongruenceClasses.emplace_back(result); 763 return result; 764 } 765 766 CongruenceClass *createMemoryClass(MemoryAccess *MA) { 767 auto *CC = createCongruenceClass(nullptr, nullptr); 768 CC->setMemoryLeader(MA); 769 return CC; 770 } 771 772 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) { 773 auto *CC = getMemoryClass(MA); 774 if (CC->getMemoryLeader() != MA) 775 CC = createMemoryClass(MA); 776 return CC; 777 } 778 779 CongruenceClass *createSingletonCongruenceClass(Value *Member) { 780 CongruenceClass *CClass = createCongruenceClass(Member, nullptr); 781 CClass->insert(Member); 782 ValueToClass[Member] = CClass; 783 return CClass; 784 } 785 786 void initializeCongruenceClasses(Function &F); 787 const Expression *makePossiblePHIOfOps(Instruction *, 788 SmallPtrSetImpl<Value *> &); 789 Value *findLeaderForInst(Instruction *ValueOp, 790 SmallPtrSetImpl<Value *> &Visited, 791 MemoryAccess *MemAccess, Instruction *OrigInst, 792 BasicBlock *PredBB); 793 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock, 794 SmallPtrSetImpl<const Value *> &); 795 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue); 796 void removePhiOfOps(Instruction *I, PHINode *PHITemp); 797 798 // Value number an Instruction or MemoryPhi. 799 void valueNumberMemoryPhi(MemoryPhi *); 800 void valueNumberInstruction(Instruction *); 801 802 // Symbolic evaluation. 803 ExprResult checkExprResults(Expression *, Instruction *, Value *) const; 804 ExprResult performSymbolicEvaluation(Instruction *, 805 SmallPtrSetImpl<Value *> &) const; 806 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *, 807 Instruction *, 808 MemoryAccess *) const; 809 const Expression *performSymbolicLoadEvaluation(Instruction *) const; 810 const Expression *performSymbolicStoreEvaluation(Instruction *) const; 811 ExprResult performSymbolicCallEvaluation(Instruction *) const; 812 void sortPHIOps(MutableArrayRef<ValPair> Ops) const; 813 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>, 814 Instruction *I, 815 BasicBlock *PHIBlock) const; 816 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const; 817 ExprResult performSymbolicCmpEvaluation(Instruction *) const; 818 ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const; 819 820 // Congruence finding. 821 bool someEquivalentDominates(const Instruction *, const Instruction *) const; 822 Value *lookupOperandLeader(Value *) const; 823 CongruenceClass *getClassForExpression(const Expression *E) const; 824 void performCongruenceFinding(Instruction *, const Expression *); 825 void moveValueToNewCongruenceClass(Instruction *, const Expression *, 826 CongruenceClass *, CongruenceClass *); 827 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *, 828 CongruenceClass *, CongruenceClass *); 829 Value *getNextValueLeader(CongruenceClass *) const; 830 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const; 831 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To); 832 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const; 833 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const; 834 bool isMemoryAccessTOP(const MemoryAccess *) const; 835 836 // Ranking 837 unsigned int getRank(const Value *) const; 838 bool shouldSwapOperands(const Value *, const Value *) const; 839 bool shouldSwapOperandsForIntrinsic(const Value *, const Value *, 840 const IntrinsicInst *I) const; 841 842 // Reachability handling. 843 void updateReachableEdge(BasicBlock *, BasicBlock *); 844 void processOutgoingEdges(Instruction *, BasicBlock *); 845 Value *findConditionEquivalence(Value *) const; 846 847 // Elimination. 848 struct ValueDFS; 849 void convertClassToDFSOrdered(const CongruenceClass &, 850 SmallVectorImpl<ValueDFS> &, 851 DenseMap<const Value *, unsigned int> &, 852 SmallPtrSetImpl<Instruction *> &) const; 853 void convertClassToLoadsAndStores(const CongruenceClass &, 854 SmallVectorImpl<ValueDFS> &) const; 855 856 bool eliminateInstructions(Function &); 857 void replaceInstruction(Instruction *, Value *); 858 void markInstructionForDeletion(Instruction *); 859 void deleteInstructionsInBlock(BasicBlock *); 860 Value *findPHIOfOpsLeader(const Expression *, const Instruction *, 861 const BasicBlock *) const; 862 863 // Various instruction touch utilities 864 template <typename Map, typename KeyType> 865 void touchAndErase(Map &, const KeyType &); 866 void markUsersTouched(Value *); 867 void markMemoryUsersTouched(const MemoryAccess *); 868 void markMemoryDefTouched(const MemoryAccess *); 869 void markPredicateUsersTouched(Instruction *); 870 void markValueLeaderChangeTouched(CongruenceClass *CC); 871 void markMemoryLeaderChangeTouched(CongruenceClass *CC); 872 void markPhiOfOpsChanged(const Expression *E); 873 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const; 874 void addAdditionalUsers(Value *To, Value *User) const; 875 void addAdditionalUsers(ExprResult &Res, Instruction *User) const; 876 877 // Main loop of value numbering 878 void iterateTouchedInstructions(); 879 880 // Utilities. 881 void cleanupTables(); 882 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned); 883 void updateProcessedCount(const Value *V); 884 void verifyMemoryCongruency() const; 885 void verifyIterationSettled(Function &F); 886 void verifyStoreExpressions() const; 887 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &, 888 const MemoryAccess *, const MemoryAccess *) const; 889 BasicBlock *getBlockForValue(Value *V) const; 890 void deleteExpression(const Expression *E) const; 891 MemoryUseOrDef *getMemoryAccess(const Instruction *) const; 892 MemoryPhi *getMemoryAccess(const BasicBlock *) const; 893 template <class T, class Range> T *getMinDFSOfRange(const Range &) const; 894 895 unsigned InstrToDFSNum(const Value *V) const { 896 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses"); 897 return InstrDFS.lookup(V); 898 } 899 900 unsigned InstrToDFSNum(const MemoryAccess *MA) const { 901 return MemoryToDFSNum(MA); 902 } 903 904 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; } 905 906 // Given a MemoryAccess, return the relevant instruction DFS number. Note: 907 // This deliberately takes a value so it can be used with Use's, which will 908 // auto-convert to Value's but not to MemoryAccess's. 909 unsigned MemoryToDFSNum(const Value *MA) const { 910 assert(isa<MemoryAccess>(MA) && 911 "This should not be used with instructions"); 912 return isa<MemoryUseOrDef>(MA) 913 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst()) 914 : InstrDFS.lookup(MA); 915 } 916 917 bool isCycleFree(const Instruction *) const; 918 bool isBackedge(BasicBlock *From, BasicBlock *To) const; 919 920 // Debug counter info. When verifying, we have to reset the value numbering 921 // debug counter to the same state it started in to get the same results. 922 DebugCounter::CounterState StartingVNCounter; 923 }; 924 925 } // end anonymous namespace 926 927 template <typename T> 928 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) { 929 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS)) 930 return false; 931 return LHS.MemoryExpression::equals(RHS); 932 } 933 934 bool LoadExpression::equals(const Expression &Other) const { 935 return equalsLoadStoreHelper(*this, Other); 936 } 937 938 bool StoreExpression::equals(const Expression &Other) const { 939 if (!equalsLoadStoreHelper(*this, Other)) 940 return false; 941 // Make sure that store vs store includes the value operand. 942 if (const auto *S = dyn_cast<StoreExpression>(&Other)) 943 if (getStoredValue() != S->getStoredValue()) 944 return false; 945 return true; 946 } 947 948 bool CallExpression::equals(const Expression &Other) const { 949 if (!MemoryExpression::equals(Other)) 950 return false; 951 952 if (auto *RHS = dyn_cast<CallExpression>(&Other)) 953 return Call->getAttributes() 954 .intersectWith(Call->getContext(), RHS->Call->getAttributes()) 955 .has_value(); 956 957 return false; 958 } 959 960 // Determine if the edge From->To is a backedge 961 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const { 962 return From == To || 963 RPOOrdering.lookup(DT->getNode(From)) >= 964 RPOOrdering.lookup(DT->getNode(To)); 965 } 966 967 #ifndef NDEBUG 968 static std::string getBlockName(const BasicBlock *B) { 969 return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr); 970 } 971 #endif 972 973 // Get a MemoryAccess for an instruction, fake or real. 974 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const { 975 auto *Result = MSSA->getMemoryAccess(I); 976 return Result ? Result : TempToMemory.lookup(I); 977 } 978 979 // Get a MemoryPhi for a basic block. These are all real. 980 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const { 981 return MSSA->getMemoryAccess(BB); 982 } 983 984 // Get the basic block from an instruction/memory value. 985 BasicBlock *NewGVN::getBlockForValue(Value *V) const { 986 if (auto *I = dyn_cast<Instruction>(V)) { 987 auto *Parent = I->getParent(); 988 if (Parent) 989 return Parent; 990 Parent = TempToBlock.lookup(V); 991 assert(Parent && "Every fake instruction should have a block"); 992 return Parent; 993 } 994 995 auto *MP = dyn_cast<MemoryPhi>(V); 996 assert(MP && "Should have been an instruction or a MemoryPhi"); 997 return MP->getBlock(); 998 } 999 1000 // Delete a definitely dead expression, so it can be reused by the expression 1001 // allocator. Some of these are not in creation functions, so we have to accept 1002 // const versions. 1003 void NewGVN::deleteExpression(const Expression *E) const { 1004 assert(isa<BasicExpression>(E)); 1005 auto *BE = cast<BasicExpression>(E); 1006 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler); 1007 ExpressionAllocator.Deallocate(E); 1008 } 1009 1010 // If V is a predicateinfo copy, get the thing it is a copy of. 1011 static Value *getCopyOf(const Value *V) { 1012 if (auto *II = dyn_cast<IntrinsicInst>(V)) 1013 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 1014 return II->getOperand(0); 1015 return nullptr; 1016 } 1017 1018 // Return true if V is really PN, even accounting for predicateinfo copies. 1019 static bool isCopyOfPHI(const Value *V, const PHINode *PN) { 1020 return V == PN || getCopyOf(V) == PN; 1021 } 1022 1023 static bool isCopyOfAPHI(const Value *V) { 1024 auto *CO = getCopyOf(V); 1025 return CO && isa<PHINode>(CO); 1026 } 1027 1028 // Sort PHI Operands into a canonical order. What we use here is an RPO 1029 // order. The BlockInstRange numbers are generated in an RPO walk of the basic 1030 // blocks. 1031 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const { 1032 llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) { 1033 return BlockInstRange.lookup(P1.second).first < 1034 BlockInstRange.lookup(P2.second).first; 1035 }); 1036 } 1037 1038 // Return true if V is a value that will always be available (IE can 1039 // be placed anywhere) in the function. We don't do globals here 1040 // because they are often worse to put in place. 1041 static bool alwaysAvailable(Value *V) { 1042 return isa<Constant>(V) || isa<Argument>(V); 1043 } 1044 1045 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is 1046 // the original instruction we are creating a PHIExpression for (but may not be 1047 // a phi node). We require, as an invariant, that all the PHIOperands in the 1048 // same block are sorted the same way. sortPHIOps will sort them into a 1049 // canonical order. 1050 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands, 1051 const Instruction *I, 1052 BasicBlock *PHIBlock, 1053 bool &HasBackedge, 1054 bool &OriginalOpsConstant) const { 1055 unsigned NumOps = PHIOperands.size(); 1056 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock); 1057 1058 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1059 E->setType(PHIOperands.begin()->first->getType()); 1060 E->setOpcode(Instruction::PHI); 1061 1062 // Filter out unreachable phi operands. 1063 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) { 1064 auto *BB = P.second; 1065 if (auto *PHIOp = dyn_cast<PHINode>(I)) 1066 if (isCopyOfPHI(P.first, PHIOp)) 1067 return false; 1068 if (!ReachableEdges.count({BB, PHIBlock})) 1069 return false; 1070 // Things in TOPClass are equivalent to everything. 1071 if (ValueToClass.lookup(P.first) == TOPClass) 1072 return false; 1073 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first); 1074 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock); 1075 return lookupOperandLeader(P.first) != I; 1076 }); 1077 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E), 1078 [&](const ValPair &P) -> Value * { 1079 return lookupOperandLeader(P.first); 1080 }); 1081 return E; 1082 } 1083 1084 // Set basic expression info (Arguments, type, opcode) for Expression 1085 // E from Instruction I in block B. 1086 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const { 1087 bool AllConstant = true; 1088 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 1089 E->setType(GEP->getSourceElementType()); 1090 else 1091 E->setType(I->getType()); 1092 E->setOpcode(I->getOpcode()); 1093 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1094 1095 // Transform the operand array into an operand leader array, and keep track of 1096 // whether all members are constant. 1097 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) { 1098 auto Operand = lookupOperandLeader(O); 1099 AllConstant = AllConstant && isa<Constant>(Operand); 1100 return Operand; 1101 }); 1102 1103 return AllConstant; 1104 } 1105 1106 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T, 1107 Value *Arg1, Value *Arg2, 1108 Instruction *I) const { 1109 auto *E = new (ExpressionAllocator) BasicExpression(2); 1110 // TODO: we need to remove context instruction after Value Tracking 1111 // can run without context instruction 1112 const SimplifyQuery Q = SQ.getWithInstruction(I); 1113 1114 E->setType(T); 1115 E->setOpcode(Opcode); 1116 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1117 if (Instruction::isCommutative(Opcode)) { 1118 // Ensure that commutative instructions that only differ by a permutation 1119 // of their operands get the same value number by sorting the operand value 1120 // numbers. Since all commutative instructions have two operands it is more 1121 // efficient to sort by hand rather than using, say, std::sort. 1122 if (shouldSwapOperands(Arg1, Arg2)) 1123 std::swap(Arg1, Arg2); 1124 } 1125 E->op_push_back(lookupOperandLeader(Arg1)); 1126 E->op_push_back(lookupOperandLeader(Arg2)); 1127 1128 Value *V = simplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), Q); 1129 if (auto Simplified = checkExprResults(E, I, V)) { 1130 addAdditionalUsers(Simplified, I); 1131 return Simplified.Expr; 1132 } 1133 return E; 1134 } 1135 1136 // Take a Value returned by simplification of Expression E/Instruction 1137 // I, and see if it resulted in a simpler expression. If so, return 1138 // that expression. 1139 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I, 1140 Value *V) const { 1141 if (!V) 1142 return ExprResult::none(); 1143 1144 if (auto *C = dyn_cast<Constant>(V)) { 1145 if (I) 1146 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1147 << " constant " << *C << "\n"); 1148 NumGVNOpsSimplified++; 1149 assert(isa<BasicExpression>(E) && 1150 "We should always have had a basic expression here"); 1151 deleteExpression(E); 1152 return ExprResult::some(createConstantExpression(C)); 1153 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { 1154 if (I) 1155 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1156 << " variable " << *V << "\n"); 1157 deleteExpression(E); 1158 return ExprResult::some(createVariableExpression(V)); 1159 } 1160 1161 CongruenceClass *CC = ValueToClass.lookup(V); 1162 if (CC) { 1163 if (CC->getLeader() && CC->getLeader() != I) { 1164 return ExprResult::some(createVariableOrConstant(CC->getLeader()), V); 1165 } 1166 if (CC->getDefiningExpr()) { 1167 if (I) 1168 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1169 << " expression " << *CC->getDefiningExpr() << "\n"); 1170 NumGVNOpsSimplified++; 1171 deleteExpression(E); 1172 return ExprResult::some(CC->getDefiningExpr(), V); 1173 } 1174 } 1175 1176 return ExprResult::none(); 1177 } 1178 1179 // Create a value expression from the instruction I, replacing operands with 1180 // their leaders. 1181 1182 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const { 1183 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands()); 1184 // TODO: we need to remove context instruction after Value Tracking 1185 // can run without context instruction 1186 const SimplifyQuery Q = SQ.getWithInstruction(I); 1187 1188 bool AllConstant = setBasicExpressionInfo(I, E); 1189 1190 if (I->isCommutative()) { 1191 // Ensure that commutative instructions that only differ by a permutation 1192 // of their operands get the same value number by sorting the operand value 1193 // numbers. Since all commutative instructions have two operands it is more 1194 // efficient to sort by hand rather than using, say, std::sort. 1195 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); 1196 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) 1197 E->swapOperands(0, 1); 1198 } 1199 // Perform simplification. 1200 if (auto *CI = dyn_cast<CmpInst>(I)) { 1201 // Sort the operand value numbers so x<y and y>x get the same value 1202 // number. 1203 CmpInst::Predicate Predicate = CI->getPredicate(); 1204 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) { 1205 E->swapOperands(0, 1); 1206 Predicate = CmpInst::getSwappedPredicate(Predicate); 1207 } 1208 E->setOpcode((CI->getOpcode() << 8) | Predicate); 1209 // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands 1210 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() && 1211 "Wrong types on cmp instruction"); 1212 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() && 1213 E->getOperand(1)->getType() == I->getOperand(1)->getType())); 1214 Value *V = 1215 simplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), Q); 1216 if (auto Simplified = checkExprResults(E, I, V)) 1217 return Simplified; 1218 } else if (isa<SelectInst>(I)) { 1219 if (isa<Constant>(E->getOperand(0)) || 1220 E->getOperand(1) == E->getOperand(2)) { 1221 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() && 1222 E->getOperand(2)->getType() == I->getOperand(2)->getType()); 1223 Value *V = simplifySelectInst(E->getOperand(0), E->getOperand(1), 1224 E->getOperand(2), Q); 1225 if (auto Simplified = checkExprResults(E, I, V)) 1226 return Simplified; 1227 } 1228 } else if (I->isBinaryOp()) { 1229 Value *V = 1230 simplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), Q); 1231 if (auto Simplified = checkExprResults(E, I, V)) 1232 return Simplified; 1233 } else if (auto *CI = dyn_cast<CastInst>(I)) { 1234 Value *V = 1235 simplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), Q); 1236 if (auto Simplified = checkExprResults(E, I, V)) 1237 return Simplified; 1238 } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) { 1239 Value *V = simplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(), 1240 ArrayRef(std::next(E->op_begin()), E->op_end()), 1241 GEPI->getNoWrapFlags(), Q); 1242 if (auto Simplified = checkExprResults(E, I, V)) 1243 return Simplified; 1244 } else if (AllConstant) { 1245 // We don't bother trying to simplify unless all of the operands 1246 // were constant. 1247 // TODO: There are a lot of Simplify*'s we could call here, if we 1248 // wanted to. The original motivating case for this code was a 1249 // zext i1 false to i8, which we don't have an interface to 1250 // simplify (IE there is no SimplifyZExt). 1251 1252 SmallVector<Constant *, 8> C; 1253 for (Value *Arg : E->operands()) 1254 C.emplace_back(cast<Constant>(Arg)); 1255 1256 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI)) 1257 if (auto Simplified = checkExprResults(E, I, V)) 1258 return Simplified; 1259 } 1260 return ExprResult::some(E); 1261 } 1262 1263 const AggregateValueExpression * 1264 NewGVN::createAggregateValueExpression(Instruction *I) const { 1265 if (auto *II = dyn_cast<InsertValueInst>(I)) { 1266 auto *E = new (ExpressionAllocator) 1267 AggregateValueExpression(I->getNumOperands(), II->getNumIndices()); 1268 setBasicExpressionInfo(I, E); 1269 E->allocateIntOperands(ExpressionAllocator); 1270 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E)); 1271 return E; 1272 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) { 1273 auto *E = new (ExpressionAllocator) 1274 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices()); 1275 setBasicExpressionInfo(EI, E); 1276 E->allocateIntOperands(ExpressionAllocator); 1277 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E)); 1278 return E; 1279 } 1280 llvm_unreachable("Unhandled type of aggregate value operation"); 1281 } 1282 1283 const DeadExpression *NewGVN::createDeadExpression() const { 1284 // DeadExpression has no arguments and all DeadExpression's are the same, 1285 // so we only need one of them. 1286 return SingletonDeadExpression; 1287 } 1288 1289 const VariableExpression *NewGVN::createVariableExpression(Value *V) const { 1290 auto *E = new (ExpressionAllocator) VariableExpression(V); 1291 E->setOpcode(V->getValueID()); 1292 return E; 1293 } 1294 1295 const Expression *NewGVN::createVariableOrConstant(Value *V) const { 1296 if (auto *C = dyn_cast<Constant>(V)) 1297 return createConstantExpression(C); 1298 return createVariableExpression(V); 1299 } 1300 1301 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const { 1302 auto *E = new (ExpressionAllocator) ConstantExpression(C); 1303 E->setOpcode(C->getValueID()); 1304 return E; 1305 } 1306 1307 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const { 1308 auto *E = new (ExpressionAllocator) UnknownExpression(I); 1309 E->setOpcode(I->getOpcode()); 1310 return E; 1311 } 1312 1313 const CallExpression * 1314 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const { 1315 // FIXME: Add operand bundles for calls. 1316 auto *E = 1317 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA); 1318 setBasicExpressionInfo(CI, E); 1319 if (CI->isCommutative()) { 1320 // Ensure that commutative intrinsics that only differ by a permutation 1321 // of their operands get the same value number by sorting the operand value 1322 // numbers. 1323 assert(CI->getNumOperands() >= 2 && "Unsupported commutative intrinsic!"); 1324 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) 1325 E->swapOperands(0, 1); 1326 } 1327 return E; 1328 } 1329 1330 // Return true if some equivalent of instruction Inst dominates instruction U. 1331 bool NewGVN::someEquivalentDominates(const Instruction *Inst, 1332 const Instruction *U) const { 1333 auto *CC = ValueToClass.lookup(Inst); 1334 // This must be an instruction because we are only called from phi nodes 1335 // in the case that the value it needs to check against is an instruction. 1336 1337 // The most likely candidates for dominance are the leader and the next leader. 1338 // The leader or nextleader will dominate in all cases where there is an 1339 // equivalent that is higher up in the dom tree. 1340 // We can't *only* check them, however, because the 1341 // dominator tree could have an infinite number of non-dominating siblings 1342 // with instructions that are in the right congruence class. 1343 // A 1344 // B C D E F G 1345 // | 1346 // H 1347 // Instruction U could be in H, with equivalents in every other sibling. 1348 // Depending on the rpo order picked, the leader could be the equivalent in 1349 // any of these siblings. 1350 if (!CC) 1351 return false; 1352 if (alwaysAvailable(CC->getLeader())) 1353 return true; 1354 if (DT->dominates(cast<Instruction>(CC->getLeader()), U)) 1355 return true; 1356 if (CC->getNextLeader().first && 1357 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U)) 1358 return true; 1359 return llvm::any_of(*CC, [&](const Value *Member) { 1360 return Member != CC->getLeader() && 1361 DT->dominates(cast<Instruction>(Member), U); 1362 }); 1363 } 1364 1365 // See if we have a congruence class and leader for this operand, and if so, 1366 // return it. Otherwise, return the operand itself. 1367 Value *NewGVN::lookupOperandLeader(Value *V) const { 1368 CongruenceClass *CC = ValueToClass.lookup(V); 1369 if (CC) { 1370 // Everything in TOP is represented by poison, as it can be any value. 1371 // We do have to make sure we get the type right though, so we can't set the 1372 // RepLeader to poison. 1373 if (CC == TOPClass) 1374 return PoisonValue::get(V->getType()); 1375 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader(); 1376 } 1377 1378 return V; 1379 } 1380 1381 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const { 1382 auto *CC = getMemoryClass(MA); 1383 assert(CC->getMemoryLeader() && 1384 "Every MemoryAccess should be mapped to a congruence class with a " 1385 "representative memory access"); 1386 return CC->getMemoryLeader(); 1387 } 1388 1389 // Return true if the MemoryAccess is really equivalent to everything. This is 1390 // equivalent to the lattice value "TOP" in most lattices. This is the initial 1391 // state of all MemoryAccesses. 1392 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const { 1393 return getMemoryClass(MA) == TOPClass; 1394 } 1395 1396 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp, 1397 LoadInst *LI, 1398 const MemoryAccess *MA) const { 1399 auto *E = 1400 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA)); 1401 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1402 E->setType(LoadType); 1403 1404 // Give store and loads same opcode so they value number together. 1405 E->setOpcode(0); 1406 E->op_push_back(PointerOp); 1407 1408 // TODO: Value number heap versions. We may be able to discover 1409 // things alias analysis can't on it's own (IE that a store and a 1410 // load have the same value, and thus, it isn't clobbering the load). 1411 return E; 1412 } 1413 1414 const StoreExpression * 1415 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const { 1416 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand()); 1417 auto *E = new (ExpressionAllocator) 1418 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA); 1419 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1420 E->setType(SI->getValueOperand()->getType()); 1421 1422 // Give store and loads same opcode so they value number together. 1423 E->setOpcode(0); 1424 E->op_push_back(lookupOperandLeader(SI->getPointerOperand())); 1425 1426 // TODO: Value number heap versions. We may be able to discover 1427 // things alias analysis can't on it's own (IE that a store and a 1428 // load have the same value, and thus, it isn't clobbering the load). 1429 return E; 1430 } 1431 1432 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const { 1433 // Unlike loads, we never try to eliminate stores, so we do not check if they 1434 // are simple and avoid value numbering them. 1435 auto *SI = cast<StoreInst>(I); 1436 auto *StoreAccess = getMemoryAccess(SI); 1437 // Get the expression, if any, for the RHS of the MemoryDef. 1438 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess(); 1439 if (EnableStoreRefinement) 1440 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess); 1441 // If we bypassed the use-def chains, make sure we add a use. 1442 StoreRHS = lookupMemoryLeader(StoreRHS); 1443 if (StoreRHS != StoreAccess->getDefiningAccess()) 1444 addMemoryUsers(StoreRHS, StoreAccess); 1445 // If we are defined by ourselves, use the live on entry def. 1446 if (StoreRHS == StoreAccess) 1447 StoreRHS = MSSA->getLiveOnEntryDef(); 1448 1449 if (SI->isSimple()) { 1450 // See if we are defined by a previous store expression, it already has a 1451 // value, and it's the same value as our current store. FIXME: Right now, we 1452 // only do this for simple stores, we should expand to cover memcpys, etc. 1453 const auto *LastStore = createStoreExpression(SI, StoreRHS); 1454 const auto *LastCC = ExpressionToClass.lookup(LastStore); 1455 // We really want to check whether the expression we matched was a store. No 1456 // easy way to do that. However, we can check that the class we found has a 1457 // store, which, assuming the value numbering state is not corrupt, is 1458 // sufficient, because we must also be equivalent to that store's expression 1459 // for it to be in the same class as the load. 1460 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue()) 1461 return LastStore; 1462 // Also check if our value operand is defined by a load of the same memory 1463 // location, and the memory state is the same as it was then (otherwise, it 1464 // could have been overwritten later. See test32 in 1465 // transforms/DeadStoreElimination/simple.ll). 1466 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue())) 1467 if ((lookupOperandLeader(LI->getPointerOperand()) == 1468 LastStore->getOperand(0)) && 1469 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) == 1470 StoreRHS)) 1471 return LastStore; 1472 deleteExpression(LastStore); 1473 } 1474 1475 // If the store is not equivalent to anything, value number it as a store that 1476 // produces a unique memory state (instead of using it's MemoryUse, we use 1477 // it's MemoryDef). 1478 return createStoreExpression(SI, StoreAccess); 1479 } 1480 1481 // See if we can extract the value of a loaded pointer from a load, a store, or 1482 // a memory instruction. 1483 const Expression * 1484 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr, 1485 LoadInst *LI, Instruction *DepInst, 1486 MemoryAccess *DefiningAccess) const { 1487 assert((!LI || LI->isSimple()) && "Not a simple load"); 1488 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) { 1489 // Can't forward from non-atomic to atomic without violating memory model. 1490 // Also don't need to coerce if they are the same type, we will just 1491 // propagate. 1492 if (LI->isAtomic() > DepSI->isAtomic() || 1493 LoadType == DepSI->getValueOperand()->getType()) 1494 return nullptr; 1495 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL); 1496 if (Offset >= 0) { 1497 if (auto *C = dyn_cast<Constant>( 1498 lookupOperandLeader(DepSI->getValueOperand()))) { 1499 if (Constant *Res = getConstantValueForLoad(C, Offset, LoadType, DL)) { 1500 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI 1501 << " to constant " << *Res << "\n"); 1502 return createConstantExpression(Res); 1503 } 1504 } 1505 } 1506 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) { 1507 // Can't forward from non-atomic to atomic without violating memory model. 1508 if (LI->isAtomic() > DepLI->isAtomic()) 1509 return nullptr; 1510 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL); 1511 if (Offset >= 0) { 1512 // We can coerce a constant load into a load. 1513 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI))) 1514 if (auto *PossibleConstant = 1515 getConstantValueForLoad(C, Offset, LoadType, DL)) { 1516 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI 1517 << " to constant " << *PossibleConstant << "\n"); 1518 return createConstantExpression(PossibleConstant); 1519 } 1520 } 1521 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1522 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL); 1523 if (Offset >= 0) { 1524 if (auto *PossibleConstant = 1525 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) { 1526 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI 1527 << " to constant " << *PossibleConstant << "\n"); 1528 return createConstantExpression(PossibleConstant); 1529 } 1530 } 1531 } 1532 1533 // All of the below are only true if the loaded pointer is produced 1534 // by the dependent instruction. 1535 if (LoadPtr != lookupOperandLeader(DepInst) && 1536 !AA->isMustAlias(LoadPtr, DepInst)) 1537 return nullptr; 1538 // If this load really doesn't depend on anything, then we must be loading an 1539 // undef value. This can happen when loading for a fresh allocation with no 1540 // intervening stores, for example. Note that this is only true in the case 1541 // that the result of the allocation is pointer equal to the load ptr. 1542 if (isa<AllocaInst>(DepInst)) { 1543 return createConstantExpression(UndefValue::get(LoadType)); 1544 } 1545 // If this load occurs either right after a lifetime begin, 1546 // then the loaded value is undefined. 1547 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) { 1548 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1549 return createConstantExpression(UndefValue::get(LoadType)); 1550 } else if (auto *InitVal = 1551 getInitialValueOfAllocation(DepInst, TLI, LoadType)) 1552 return createConstantExpression(InitVal); 1553 1554 return nullptr; 1555 } 1556 1557 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const { 1558 auto *LI = cast<LoadInst>(I); 1559 1560 // We can eliminate in favor of non-simple loads, but we won't be able to 1561 // eliminate the loads themselves. 1562 if (!LI->isSimple()) 1563 return nullptr; 1564 1565 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand()); 1566 // Load of undef is UB. 1567 if (isa<UndefValue>(LoadAddressLeader)) 1568 return createConstantExpression(PoisonValue::get(LI->getType())); 1569 MemoryAccess *OriginalAccess = getMemoryAccess(I); 1570 MemoryAccess *DefiningAccess = 1571 MSSAWalker->getClobberingMemoryAccess(OriginalAccess); 1572 1573 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) { 1574 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) { 1575 Instruction *DefiningInst = MD->getMemoryInst(); 1576 // If the defining instruction is not reachable, replace with poison. 1577 if (!ReachableBlocks.count(DefiningInst->getParent())) 1578 return createConstantExpression(PoisonValue::get(LI->getType())); 1579 // This will handle stores and memory insts. We only do if it the 1580 // defining access has a different type, or it is a pointer produced by 1581 // certain memory operations that cause the memory to have a fixed value 1582 // (IE things like calloc). 1583 if (const auto *CoercionResult = 1584 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI, 1585 DefiningInst, DefiningAccess)) 1586 return CoercionResult; 1587 } 1588 } 1589 1590 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI, 1591 DefiningAccess); 1592 // If our MemoryLeader is not our defining access, add a use to the 1593 // MemoryLeader, so that we get reprocessed when it changes. 1594 if (LE->getMemoryLeader() != DefiningAccess) 1595 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess); 1596 return LE; 1597 } 1598 1599 NewGVN::ExprResult 1600 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const { 1601 auto *PI = PredInfo->getPredicateInfoFor(I); 1602 if (!PI) 1603 return ExprResult::none(); 1604 1605 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n"); 1606 1607 const std::optional<PredicateConstraint> &Constraint = PI->getConstraint(); 1608 if (!Constraint) 1609 return ExprResult::none(); 1610 1611 CmpInst::Predicate Predicate = Constraint->Predicate; 1612 Value *CmpOp0 = I->getOperand(0); 1613 Value *CmpOp1 = Constraint->OtherOp; 1614 1615 Value *FirstOp = lookupOperandLeader(CmpOp0); 1616 Value *SecondOp = lookupOperandLeader(CmpOp1); 1617 Value *AdditionallyUsedValue = CmpOp0; 1618 1619 // Sort the ops. 1620 if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) { 1621 std::swap(FirstOp, SecondOp); 1622 Predicate = CmpInst::getSwappedPredicate(Predicate); 1623 AdditionallyUsedValue = CmpOp1; 1624 } 1625 1626 if (Predicate == CmpInst::ICMP_EQ) 1627 return ExprResult::some(createVariableOrConstant(FirstOp), 1628 AdditionallyUsedValue, PI); 1629 1630 // Handle the special case of floating point. 1631 if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) && 1632 !cast<ConstantFP>(FirstOp)->isZero()) 1633 return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)), 1634 AdditionallyUsedValue, PI); 1635 1636 return ExprResult::none(); 1637 } 1638 1639 // Evaluate read only and pure calls, and create an expression result. 1640 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const { 1641 auto *CI = cast<CallInst>(I); 1642 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1643 // Intrinsics with the returned attribute are copies of arguments. 1644 if (auto *ReturnedValue = II->getReturnedArgOperand()) { 1645 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 1646 if (auto Res = performSymbolicPredicateInfoEvaluation(II)) 1647 return Res; 1648 return ExprResult::some(createVariableOrConstant(ReturnedValue)); 1649 } 1650 } 1651 1652 // FIXME: Currently the calls which may access the thread id may 1653 // be considered as not accessing the memory. But this is 1654 // problematic for coroutines, since coroutines may resume in a 1655 // different thread. So we disable the optimization here for the 1656 // correctness. However, it may block many other correct 1657 // optimizations. Revert this one when we detect the memory 1658 // accessing kind more precisely. 1659 if (CI->getFunction()->isPresplitCoroutine()) 1660 return ExprResult::none(); 1661 1662 // Do not combine convergent calls since they implicitly depend on the set of 1663 // threads that is currently executing, and they might be in different basic 1664 // blocks. 1665 if (CI->isConvergent()) 1666 return ExprResult::none(); 1667 1668 if (AA->doesNotAccessMemory(CI)) { 1669 return ExprResult::some( 1670 createCallExpression(CI, TOPClass->getMemoryLeader())); 1671 } else if (AA->onlyReadsMemory(CI)) { 1672 if (auto *MA = MSSA->getMemoryAccess(CI)) { 1673 auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA); 1674 return ExprResult::some(createCallExpression(CI, DefiningAccess)); 1675 } else // MSSA determined that CI does not access memory. 1676 return ExprResult::some( 1677 createCallExpression(CI, TOPClass->getMemoryLeader())); 1678 } 1679 return ExprResult::none(); 1680 } 1681 1682 // Retrieve the memory class for a given MemoryAccess. 1683 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const { 1684 auto *Result = MemoryAccessToClass.lookup(MA); 1685 assert(Result && "Should have found memory class"); 1686 return Result; 1687 } 1688 1689 // Update the MemoryAccess equivalence table to say that From is equal to To, 1690 // and return true if this is different from what already existed in the table. 1691 bool NewGVN::setMemoryClass(const MemoryAccess *From, 1692 CongruenceClass *NewClass) { 1693 assert(NewClass && 1694 "Every MemoryAccess should be getting mapped to a non-null class"); 1695 LLVM_DEBUG(dbgs() << "Setting " << *From); 1696 LLVM_DEBUG(dbgs() << " equivalent to congruence class "); 1697 LLVM_DEBUG(dbgs() << NewClass->getID() 1698 << " with current MemoryAccess leader "); 1699 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n"); 1700 1701 auto LookupResult = MemoryAccessToClass.find(From); 1702 bool Changed = false; 1703 // If it's already in the table, see if the value changed. 1704 if (LookupResult != MemoryAccessToClass.end()) { 1705 auto *OldClass = LookupResult->second; 1706 if (OldClass != NewClass) { 1707 // If this is a phi, we have to handle memory member updates. 1708 if (auto *MP = dyn_cast<MemoryPhi>(From)) { 1709 OldClass->memory_erase(MP); 1710 NewClass->memory_insert(MP); 1711 // This may have killed the class if it had no non-memory members 1712 if (OldClass->getMemoryLeader() == From) { 1713 if (OldClass->definesNoMemory()) { 1714 OldClass->setMemoryLeader(nullptr); 1715 } else { 1716 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass)); 1717 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 1718 << OldClass->getID() << " to " 1719 << *OldClass->getMemoryLeader() 1720 << " due to removal of a memory member " << *From 1721 << "\n"); 1722 markMemoryLeaderChangeTouched(OldClass); 1723 } 1724 } 1725 } 1726 // It wasn't equivalent before, and now it is. 1727 LookupResult->second = NewClass; 1728 Changed = true; 1729 } 1730 } 1731 1732 return Changed; 1733 } 1734 1735 // Determine if a instruction is cycle-free. That means the values in the 1736 // instruction don't depend on any expressions that can change value as a result 1737 // of the instruction. For example, a non-cycle free instruction would be v = 1738 // phi(0, v+1). 1739 bool NewGVN::isCycleFree(const Instruction *I) const { 1740 // In order to compute cycle-freeness, we do SCC finding on the instruction, 1741 // and see what kind of SCC it ends up in. If it is a singleton, it is 1742 // cycle-free. If it is not in a singleton, it is only cycle free if the 1743 // other members are all phi nodes (as they do not compute anything, they are 1744 // copies). 1745 auto ICS = InstCycleState.lookup(I); 1746 if (ICS == ICS_Unknown) { 1747 SCCFinder.Start(I); 1748 auto &SCC = SCCFinder.getComponentFor(I); 1749 // It's cycle free if it's size 1 or the SCC is *only* phi nodes. 1750 if (SCC.size() == 1) 1751 InstCycleState.insert({I, ICS_CycleFree}); 1752 else { 1753 bool AllPhis = llvm::all_of(SCC, [](const Value *V) { 1754 return isa<PHINode>(V) || isCopyOfAPHI(V); 1755 }); 1756 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle; 1757 for (const auto *Member : SCC) 1758 if (auto *MemberPhi = dyn_cast<PHINode>(Member)) 1759 InstCycleState.insert({MemberPhi, ICS}); 1760 } 1761 } 1762 if (ICS == ICS_Cycle) 1763 return false; 1764 return true; 1765 } 1766 1767 // Evaluate PHI nodes symbolically and create an expression result. 1768 const Expression * 1769 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps, 1770 Instruction *I, 1771 BasicBlock *PHIBlock) const { 1772 // True if one of the incoming phi edges is a backedge. 1773 bool HasBackedge = false; 1774 // All constant tracks the state of whether all the *original* phi operands 1775 // This is really shorthand for "this phi cannot cycle due to forward 1776 // change in value of the phi is guaranteed not to later change the value of 1777 // the phi. IE it can't be v = phi(undef, v+1) 1778 bool OriginalOpsConstant = true; 1779 auto *E = cast<PHIExpression>(createPHIExpression( 1780 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant)); 1781 // We match the semantics of SimplifyPhiNode from InstructionSimplify here. 1782 // See if all arguments are the same. 1783 // We track if any were undef because they need special handling. 1784 bool HasUndef = false, HasPoison = false; 1785 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) { 1786 if (isa<PoisonValue>(Arg)) { 1787 HasPoison = true; 1788 return false; 1789 } 1790 if (isa<UndefValue>(Arg)) { 1791 HasUndef = true; 1792 return false; 1793 } 1794 return true; 1795 }); 1796 // If we are left with no operands, it's dead. 1797 if (Filtered.empty()) { 1798 // If it has undef or poison at this point, it means there are no-non-undef 1799 // arguments, and thus, the value of the phi node must be undef. 1800 if (HasUndef) { 1801 LLVM_DEBUG( 1802 dbgs() << "PHI Node " << *I 1803 << " has no non-undef arguments, valuing it as undef\n"); 1804 return createConstantExpression(UndefValue::get(I->getType())); 1805 } 1806 if (HasPoison) { 1807 LLVM_DEBUG( 1808 dbgs() << "PHI Node " << *I 1809 << " has no non-poison arguments, valuing it as poison\n"); 1810 return createConstantExpression(PoisonValue::get(I->getType())); 1811 } 1812 1813 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n"); 1814 deleteExpression(E); 1815 return createDeadExpression(); 1816 } 1817 Value *AllSameValue = *(Filtered.begin()); 1818 ++Filtered.begin(); 1819 // Can't use std::equal here, sadly, because filter.begin moves. 1820 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) { 1821 // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef 1822 // in the worst case). 1823 if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT)) 1824 return E; 1825 1826 // In LLVM's non-standard representation of phi nodes, it's possible to have 1827 // phi nodes with cycles (IE dependent on other phis that are .... dependent 1828 // on the original phi node), especially in weird CFG's where some arguments 1829 // are unreachable, or uninitialized along certain paths. This can cause 1830 // infinite loops during evaluation. We work around this by not trying to 1831 // really evaluate them independently, but instead using a variable 1832 // expression to say if one is equivalent to the other. 1833 // We also special case undef/poison, so that if we have an undef, we can't 1834 // use the common value unless it dominates the phi block. 1835 if (HasPoison || HasUndef) { 1836 // If we have undef and at least one other value, this is really a 1837 // multivalued phi, and we need to know if it's cycle free in order to 1838 // evaluate whether we can ignore the undef. The other parts of this are 1839 // just shortcuts. If there is no backedge, or all operands are 1840 // constants, it also must be cycle free. 1841 if (HasBackedge && !OriginalOpsConstant && 1842 !isa<UndefValue>(AllSameValue) && !isCycleFree(I)) 1843 return E; 1844 1845 // Only have to check for instructions 1846 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue)) 1847 if (!someEquivalentDominates(AllSameInst, I)) 1848 return E; 1849 } 1850 // Can't simplify to something that comes later in the iteration. 1851 // Otherwise, when and if it changes congruence class, we will never catch 1852 // up. We will always be a class behind it. 1853 if (isa<Instruction>(AllSameValue) && 1854 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I)) 1855 return E; 1856 NumGVNPhisAllSame++; 1857 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue 1858 << "\n"); 1859 deleteExpression(E); 1860 return createVariableOrConstant(AllSameValue); 1861 } 1862 return E; 1863 } 1864 1865 const Expression * 1866 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const { 1867 if (auto *EI = dyn_cast<ExtractValueInst>(I)) { 1868 auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 1869 if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) 1870 // EI is an extract from one of our with.overflow intrinsics. Synthesize 1871 // a semantically equivalent expression instead of an extract value 1872 // expression. 1873 return createBinaryExpression(WO->getBinaryOp(), EI->getType(), 1874 WO->getLHS(), WO->getRHS(), I); 1875 } 1876 1877 return createAggregateValueExpression(I); 1878 } 1879 1880 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const { 1881 assert(isa<CmpInst>(I) && "Expected a cmp instruction."); 1882 1883 auto *CI = cast<CmpInst>(I); 1884 // See if our operands are equal to those of a previous predicate, and if so, 1885 // if it implies true or false. 1886 auto Op0 = lookupOperandLeader(CI->getOperand(0)); 1887 auto Op1 = lookupOperandLeader(CI->getOperand(1)); 1888 auto OurPredicate = CI->getPredicate(); 1889 if (shouldSwapOperands(Op0, Op1)) { 1890 std::swap(Op0, Op1); 1891 OurPredicate = CI->getSwappedPredicate(); 1892 } 1893 1894 // Avoid processing the same info twice. 1895 const PredicateBase *LastPredInfo = nullptr; 1896 // See if we know something about the comparison itself, like it is the target 1897 // of an assume. 1898 auto *CmpPI = PredInfo->getPredicateInfoFor(I); 1899 if (isa_and_nonnull<PredicateAssume>(CmpPI)) 1900 return ExprResult::some( 1901 createConstantExpression(ConstantInt::getTrue(CI->getType()))); 1902 1903 if (Op0 == Op1) { 1904 // This condition does not depend on predicates, no need to add users 1905 if (CI->isTrueWhenEqual()) 1906 return ExprResult::some( 1907 createConstantExpression(ConstantInt::getTrue(CI->getType()))); 1908 else if (CI->isFalseWhenEqual()) 1909 return ExprResult::some( 1910 createConstantExpression(ConstantInt::getFalse(CI->getType()))); 1911 } 1912 1913 // NOTE: Because we are comparing both operands here and below, and using 1914 // previous comparisons, we rely on fact that predicateinfo knows to mark 1915 // comparisons that use renamed operands as users of the earlier comparisons. 1916 // It is *not* enough to just mark predicateinfo renamed operands as users of 1917 // the earlier comparisons, because the *other* operand may have changed in a 1918 // previous iteration. 1919 // Example: 1920 // icmp slt %a, %b 1921 // %b.0 = ssa.copy(%b) 1922 // false branch: 1923 // icmp slt %c, %b.0 1924 1925 // %c and %a may start out equal, and thus, the code below will say the second 1926 // %icmp is false. c may become equal to something else, and in that case the 1927 // %second icmp *must* be reexamined, but would not if only the renamed 1928 // %operands are considered users of the icmp. 1929 1930 // *Currently* we only check one level of comparisons back, and only mark one 1931 // level back as touched when changes happen. If you modify this code to look 1932 // back farther through comparisons, you *must* mark the appropriate 1933 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if 1934 // we know something just from the operands themselves 1935 1936 // See if our operands have predicate info, so that we may be able to derive 1937 // something from a previous comparison. 1938 for (const auto &Op : CI->operands()) { 1939 auto *PI = PredInfo->getPredicateInfoFor(Op); 1940 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) { 1941 if (PI == LastPredInfo) 1942 continue; 1943 LastPredInfo = PI; 1944 // In phi of ops cases, we may have predicate info that we are evaluating 1945 // in a different context. 1946 if (!DT->dominates(PBranch->To, I->getParent())) 1947 continue; 1948 // TODO: Along the false edge, we may know more things too, like 1949 // icmp of 1950 // same operands is false. 1951 // TODO: We only handle actual comparison conditions below, not 1952 // and/or. 1953 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition); 1954 if (!BranchCond) 1955 continue; 1956 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0)); 1957 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1)); 1958 auto BranchPredicate = BranchCond->getPredicate(); 1959 if (shouldSwapOperands(BranchOp0, BranchOp1)) { 1960 std::swap(BranchOp0, BranchOp1); 1961 BranchPredicate = BranchCond->getSwappedPredicate(); 1962 } 1963 if (BranchOp0 == Op0 && BranchOp1 == Op1) { 1964 if (PBranch->TrueEdge) { 1965 // If we know the previous predicate is true and we are in the true 1966 // edge then we may be implied true or false. 1967 if (auto R = ICmpInst::isImpliedByMatchingCmp(BranchPredicate, 1968 OurPredicate)) { 1969 auto *C = ConstantInt::getBool(CI->getType(), *R); 1970 return ExprResult::some(createConstantExpression(C), PI); 1971 } 1972 } else { 1973 // Just handle the ne and eq cases, where if we have the same 1974 // operands, we may know something. 1975 if (BranchPredicate == OurPredicate) { 1976 // Same predicate, same ops,we know it was false, so this is false. 1977 return ExprResult::some( 1978 createConstantExpression(ConstantInt::getFalse(CI->getType())), 1979 PI); 1980 } else if (BranchPredicate == 1981 CmpInst::getInversePredicate(OurPredicate)) { 1982 // Inverse predicate, we know the other was false, so this is true. 1983 return ExprResult::some( 1984 createConstantExpression(ConstantInt::getTrue(CI->getType())), 1985 PI); 1986 } 1987 } 1988 } 1989 } 1990 } 1991 // Create expression will take care of simplifyCmpInst 1992 return createExpression(I); 1993 } 1994 1995 // Substitute and symbolize the instruction before value numbering. 1996 NewGVN::ExprResult 1997 NewGVN::performSymbolicEvaluation(Instruction *I, 1998 SmallPtrSetImpl<Value *> &Visited) const { 1999 2000 const Expression *E = nullptr; 2001 // TODO: memory intrinsics. 2002 // TODO: Some day, we should do the forward propagation and reassociation 2003 // parts of the algorithm. 2004 switch (I->getOpcode()) { 2005 case Instruction::ExtractValue: 2006 case Instruction::InsertValue: 2007 E = performSymbolicAggrValueEvaluation(I); 2008 break; 2009 case Instruction::PHI: { 2010 SmallVector<ValPair, 3> Ops; 2011 auto *PN = cast<PHINode>(I); 2012 for (unsigned i = 0; i < PN->getNumOperands(); ++i) 2013 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)}); 2014 // Sort to ensure the invariant createPHIExpression requires is met. 2015 sortPHIOps(Ops); 2016 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I)); 2017 } break; 2018 case Instruction::Call: 2019 return performSymbolicCallEvaluation(I); 2020 break; 2021 case Instruction::Store: 2022 E = performSymbolicStoreEvaluation(I); 2023 break; 2024 case Instruction::Load: 2025 E = performSymbolicLoadEvaluation(I); 2026 break; 2027 case Instruction::BitCast: 2028 case Instruction::AddrSpaceCast: 2029 case Instruction::Freeze: 2030 return createExpression(I); 2031 break; 2032 case Instruction::ICmp: 2033 case Instruction::FCmp: 2034 return performSymbolicCmpEvaluation(I); 2035 break; 2036 case Instruction::FNeg: 2037 case Instruction::Add: 2038 case Instruction::FAdd: 2039 case Instruction::Sub: 2040 case Instruction::FSub: 2041 case Instruction::Mul: 2042 case Instruction::FMul: 2043 case Instruction::UDiv: 2044 case Instruction::SDiv: 2045 case Instruction::FDiv: 2046 case Instruction::URem: 2047 case Instruction::SRem: 2048 case Instruction::FRem: 2049 case Instruction::Shl: 2050 case Instruction::LShr: 2051 case Instruction::AShr: 2052 case Instruction::And: 2053 case Instruction::Or: 2054 case Instruction::Xor: 2055 case Instruction::Trunc: 2056 case Instruction::ZExt: 2057 case Instruction::SExt: 2058 case Instruction::FPToUI: 2059 case Instruction::FPToSI: 2060 case Instruction::UIToFP: 2061 case Instruction::SIToFP: 2062 case Instruction::FPTrunc: 2063 case Instruction::FPExt: 2064 case Instruction::PtrToInt: 2065 case Instruction::IntToPtr: 2066 case Instruction::Select: 2067 case Instruction::ExtractElement: 2068 case Instruction::InsertElement: 2069 case Instruction::GetElementPtr: 2070 return createExpression(I); 2071 break; 2072 case Instruction::ShuffleVector: 2073 // FIXME: Add support for shufflevector to createExpression. 2074 return ExprResult::none(); 2075 default: 2076 return ExprResult::none(); 2077 } 2078 return ExprResult::some(E); 2079 } 2080 2081 // Look up a container of values/instructions in a map, and touch all the 2082 // instructions in the container. Then erase value from the map. 2083 template <typename Map, typename KeyType> 2084 void NewGVN::touchAndErase(Map &M, const KeyType &Key) { 2085 const auto Result = M.find_as(Key); 2086 if (Result != M.end()) { 2087 for (const typename Map::mapped_type::value_type Mapped : Result->second) 2088 TouchedInstructions.set(InstrToDFSNum(Mapped)); 2089 M.erase(Result); 2090 } 2091 } 2092 2093 void NewGVN::addAdditionalUsers(Value *To, Value *User) const { 2094 assert(User && To != User); 2095 if (isa<Instruction>(To)) 2096 AdditionalUsers[To].insert(User); 2097 } 2098 2099 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const { 2100 if (Res.ExtraDep && Res.ExtraDep != User) 2101 addAdditionalUsers(Res.ExtraDep, User); 2102 Res.ExtraDep = nullptr; 2103 2104 if (Res.PredDep) { 2105 if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep)) 2106 PredicateToUsers[PBranch->Condition].insert(User); 2107 else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep)) 2108 PredicateToUsers[PAssume->Condition].insert(User); 2109 } 2110 Res.PredDep = nullptr; 2111 } 2112 2113 void NewGVN::markUsersTouched(Value *V) { 2114 // Now mark the users as touched. 2115 for (auto *User : V->users()) { 2116 assert(isa<Instruction>(User) && "Use of value not within an instruction?"); 2117 TouchedInstructions.set(InstrToDFSNum(User)); 2118 } 2119 touchAndErase(AdditionalUsers, V); 2120 } 2121 2122 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const { 2123 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n"); 2124 MemoryToUsers[To].insert(U); 2125 } 2126 2127 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) { 2128 TouchedInstructions.set(MemoryToDFSNum(MA)); 2129 } 2130 2131 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) { 2132 if (isa<MemoryUse>(MA)) 2133 return; 2134 for (const auto *U : MA->users()) 2135 TouchedInstructions.set(MemoryToDFSNum(U)); 2136 touchAndErase(MemoryToUsers, MA); 2137 } 2138 2139 // Touch all the predicates that depend on this instruction. 2140 void NewGVN::markPredicateUsersTouched(Instruction *I) { 2141 touchAndErase(PredicateToUsers, I); 2142 } 2143 2144 // Mark users affected by a memory leader change. 2145 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) { 2146 for (const auto *M : CC->memory()) 2147 markMemoryDefTouched(M); 2148 } 2149 2150 // Touch the instructions that need to be updated after a congruence class has a 2151 // leader change, and mark changed values. 2152 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) { 2153 for (auto *M : *CC) { 2154 if (auto *I = dyn_cast<Instruction>(M)) 2155 TouchedInstructions.set(InstrToDFSNum(I)); 2156 LeaderChanges.insert(M); 2157 } 2158 } 2159 2160 // Give a range of things that have instruction DFS numbers, this will return 2161 // the member of the range with the smallest dfs number. 2162 template <class T, class Range> 2163 T *NewGVN::getMinDFSOfRange(const Range &R) const { 2164 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U}; 2165 for (const auto X : R) { 2166 auto DFSNum = InstrToDFSNum(X); 2167 if (DFSNum < MinDFS.second) 2168 MinDFS = {X, DFSNum}; 2169 } 2170 return MinDFS.first; 2171 } 2172 2173 // This function returns the MemoryAccess that should be the next leader of 2174 // congruence class CC, under the assumption that the current leader is going to 2175 // disappear. 2176 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const { 2177 // TODO: If this ends up to slow, we can maintain a next memory leader like we 2178 // do for regular leaders. 2179 // Make sure there will be a leader to find. 2180 assert(!CC->definesNoMemory() && "Can't get next leader if there is none"); 2181 if (CC->getStoreCount() > 0) { 2182 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first)) 2183 return getMemoryAccess(NL); 2184 // Find the store with the minimum DFS number. 2185 auto *V = getMinDFSOfRange<Value>(make_filter_range( 2186 *CC, [&](const Value *V) { return isa<StoreInst>(V); })); 2187 return getMemoryAccess(cast<StoreInst>(V)); 2188 } 2189 assert(CC->getStoreCount() == 0); 2190 2191 // Given our assertion, hitting this part must mean 2192 // !OldClass->memory_empty() 2193 if (CC->memory_size() == 1) 2194 return *CC->memory_begin(); 2195 return getMinDFSOfRange<const MemoryPhi>(CC->memory()); 2196 } 2197 2198 // This function returns the next value leader of a congruence class, under the 2199 // assumption that the current leader is going away. This should end up being 2200 // the next most dominating member. 2201 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const { 2202 // We don't need to sort members if there is only 1, and we don't care about 2203 // sorting the TOP class because everything either gets out of it or is 2204 // unreachable. 2205 2206 if (CC->size() == 1 || CC == TOPClass) { 2207 return *(CC->begin()); 2208 } else if (CC->getNextLeader().first) { 2209 ++NumGVNAvoidedSortedLeaderChanges; 2210 return CC->getNextLeader().first; 2211 } else { 2212 ++NumGVNSortedLeaderChanges; 2213 // NOTE: If this ends up to slow, we can maintain a dual structure for 2214 // member testing/insertion, or keep things mostly sorted, and sort only 2215 // here, or use SparseBitVector or .... 2216 return getMinDFSOfRange<Value>(*CC); 2217 } 2218 } 2219 2220 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to 2221 // the memory members, etc for the move. 2222 // 2223 // The invariants of this function are: 2224 // 2225 // - I must be moving to NewClass from OldClass 2226 // - The StoreCount of OldClass and NewClass is expected to have been updated 2227 // for I already if it is a store. 2228 // - The OldClass memory leader has not been updated yet if I was the leader. 2229 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I, 2230 MemoryAccess *InstMA, 2231 CongruenceClass *OldClass, 2232 CongruenceClass *NewClass) { 2233 // If the leader is I, and we had a representative MemoryAccess, it should 2234 // be the MemoryAccess of OldClass. 2235 assert((!InstMA || !OldClass->getMemoryLeader() || 2236 OldClass->getLeader() != I || 2237 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) == 2238 MemoryAccessToClass.lookup(InstMA)) && 2239 "Representative MemoryAccess mismatch"); 2240 // First, see what happens to the new class 2241 if (!NewClass->getMemoryLeader()) { 2242 // Should be a new class, or a store becoming a leader of a new class. 2243 assert(NewClass->size() == 1 || 2244 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1)); 2245 NewClass->setMemoryLeader(InstMA); 2246 // Mark it touched if we didn't just create a singleton 2247 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 2248 << NewClass->getID() 2249 << " due to new memory instruction becoming leader\n"); 2250 markMemoryLeaderChangeTouched(NewClass); 2251 } 2252 setMemoryClass(InstMA, NewClass); 2253 // Now, fixup the old class if necessary 2254 if (OldClass->getMemoryLeader() == InstMA) { 2255 if (!OldClass->definesNoMemory()) { 2256 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass)); 2257 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 2258 << OldClass->getID() << " to " 2259 << *OldClass->getMemoryLeader() 2260 << " due to removal of old leader " << *InstMA << "\n"); 2261 markMemoryLeaderChangeTouched(OldClass); 2262 } else 2263 OldClass->setMemoryLeader(nullptr); 2264 } 2265 } 2266 2267 // Move a value, currently in OldClass, to be part of NewClass 2268 // Update OldClass and NewClass for the move (including changing leaders, etc). 2269 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E, 2270 CongruenceClass *OldClass, 2271 CongruenceClass *NewClass) { 2272 if (I == OldClass->getNextLeader().first) 2273 OldClass->resetNextLeader(); 2274 2275 OldClass->erase(I); 2276 NewClass->insert(I); 2277 2278 // Ensure that the leader has the lowest RPO. If the leader changed notify all 2279 // members of the class. 2280 if (NewClass->getLeader() != I && 2281 NewClass->addPossibleLeader({I, InstrToDFSNum(I)})) { 2282 markValueLeaderChangeTouched(NewClass); 2283 } 2284 2285 // Handle our special casing of stores. 2286 if (auto *SI = dyn_cast<StoreInst>(I)) { 2287 OldClass->decStoreCount(); 2288 // Okay, so when do we want to make a store a leader of a class? 2289 // If we have a store defined by an earlier load, we want the earlier load 2290 // to lead the class. 2291 // If we have a store defined by something else, we want the store to lead 2292 // the class so everything else gets the "something else" as a value. 2293 // If we have a store as the single member of the class, we want the store 2294 // as the leader 2295 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) { 2296 // If it's a store expression we are using, it means we are not equivalent 2297 // to something earlier. 2298 if (auto *SE = dyn_cast<StoreExpression>(E)) { 2299 NewClass->setStoredValue(SE->getStoredValue()); 2300 markValueLeaderChangeTouched(NewClass); 2301 // Shift the new class leader to be the store 2302 LLVM_DEBUG(dbgs() << "Changing leader of congruence class " 2303 << NewClass->getID() << " from " 2304 << *NewClass->getLeader() << " to " << *SI 2305 << " because store joined class\n"); 2306 // If we changed the leader, we have to mark it changed because we don't 2307 // know what it will do to symbolic evaluation. 2308 NewClass->setLeader({SI, InstrToDFSNum(SI)}); 2309 } 2310 // We rely on the code below handling the MemoryAccess change. 2311 } 2312 NewClass->incStoreCount(); 2313 } 2314 // True if there is no memory instructions left in a class that had memory 2315 // instructions before. 2316 2317 // If it's not a memory use, set the MemoryAccess equivalence 2318 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I)); 2319 if (InstMA) 2320 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass); 2321 ValueToClass[I] = NewClass; 2322 // See if we destroyed the class or need to swap leaders. 2323 if (OldClass->empty() && OldClass != TOPClass) { 2324 if (OldClass->getDefiningExpr()) { 2325 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr() 2326 << " from table\n"); 2327 // We erase it as an exact expression to make sure we don't just erase an 2328 // equivalent one. 2329 auto Iter = ExpressionToClass.find_as( 2330 ExactEqualsExpression(*OldClass->getDefiningExpr())); 2331 if (Iter != ExpressionToClass.end()) 2332 ExpressionToClass.erase(Iter); 2333 #ifdef EXPENSIVE_CHECKS 2334 assert( 2335 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) && 2336 "We erased the expression we just inserted, which should not happen"); 2337 #endif 2338 } 2339 } else if (OldClass->getLeader() == I) { 2340 // When the leader changes, the value numbering of 2341 // everything may change due to symbolization changes, so we need to 2342 // reprocess. 2343 LLVM_DEBUG(dbgs() << "Value class leader change for class " 2344 << OldClass->getID() << "\n"); 2345 ++NumGVNLeaderChanges; 2346 // Destroy the stored value if there are no more stores to represent it. 2347 // Note that this is basically clean up for the expression removal that 2348 // happens below. If we remove stores from a class, we may leave it as a 2349 // class of equivalent memory phis. 2350 if (OldClass->getStoreCount() == 0) { 2351 if (OldClass->getStoredValue()) 2352 OldClass->setStoredValue(nullptr); 2353 } 2354 OldClass->setLeader({getNextValueLeader(OldClass), 2355 InstrToDFSNum(getNextValueLeader(OldClass))}); 2356 OldClass->resetNextLeader(); 2357 markValueLeaderChangeTouched(OldClass); 2358 } 2359 } 2360 2361 // For a given expression, mark the phi of ops instructions that could have 2362 // changed as a result. 2363 void NewGVN::markPhiOfOpsChanged(const Expression *E) { 2364 touchAndErase(ExpressionToPhiOfOps, E); 2365 } 2366 2367 // Perform congruence finding on a given value numbering expression. 2368 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) { 2369 // This is guaranteed to return something, since it will at least find 2370 // TOP. 2371 2372 CongruenceClass *IClass = ValueToClass.lookup(I); 2373 assert(IClass && "Should have found a IClass"); 2374 // Dead classes should have been eliminated from the mapping. 2375 assert(!IClass->isDead() && "Found a dead class"); 2376 2377 CongruenceClass *EClass = nullptr; 2378 if (const auto *VE = dyn_cast<VariableExpression>(E)) { 2379 EClass = ValueToClass.lookup(VE->getVariableValue()); 2380 } else if (isa<DeadExpression>(E)) { 2381 EClass = TOPClass; 2382 } 2383 if (!EClass) { 2384 auto lookupResult = ExpressionToClass.insert({E, nullptr}); 2385 2386 // If it's not in the value table, create a new congruence class. 2387 if (lookupResult.second) { 2388 CongruenceClass *NewClass = createCongruenceClass(nullptr, E); 2389 auto place = lookupResult.first; 2390 place->second = NewClass; 2391 2392 // Constants and variables should always be made the leader. 2393 if (const auto *CE = dyn_cast<ConstantExpression>(E)) { 2394 NewClass->setLeader({CE->getConstantValue(), 0}); 2395 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) { 2396 StoreInst *SI = SE->getStoreInst(); 2397 NewClass->setLeader({SI, InstrToDFSNum(SI)}); 2398 NewClass->setStoredValue(SE->getStoredValue()); 2399 // The RepMemoryAccess field will be filled in properly by the 2400 // moveValueToNewCongruenceClass call. 2401 } else { 2402 NewClass->setLeader({I, InstrToDFSNum(I)}); 2403 } 2404 assert(!isa<VariableExpression>(E) && 2405 "VariableExpression should have been handled already"); 2406 2407 EClass = NewClass; 2408 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I 2409 << " using expression " << *E << " at " 2410 << NewClass->getID() << " and leader " 2411 << *(NewClass->getLeader())); 2412 if (NewClass->getStoredValue()) 2413 LLVM_DEBUG(dbgs() << " and stored value " 2414 << *(NewClass->getStoredValue())); 2415 LLVM_DEBUG(dbgs() << "\n"); 2416 } else { 2417 EClass = lookupResult.first->second; 2418 if (isa<ConstantExpression>(E)) 2419 assert((isa<Constant>(EClass->getLeader()) || 2420 (EClass->getStoredValue() && 2421 isa<Constant>(EClass->getStoredValue()))) && 2422 "Any class with a constant expression should have a " 2423 "constant leader"); 2424 2425 assert(EClass && "Somehow don't have an eclass"); 2426 2427 assert(!EClass->isDead() && "We accidentally looked up a dead class"); 2428 } 2429 } 2430 bool ClassChanged = IClass != EClass; 2431 bool LeaderChanged = LeaderChanges.erase(I); 2432 if (ClassChanged || LeaderChanged) { 2433 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression " 2434 << *E << "\n"); 2435 if (ClassChanged) { 2436 moveValueToNewCongruenceClass(I, E, IClass, EClass); 2437 markPhiOfOpsChanged(E); 2438 } 2439 2440 markUsersTouched(I); 2441 if (MemoryAccess *MA = getMemoryAccess(I)) 2442 markMemoryUsersTouched(MA); 2443 if (auto *CI = dyn_cast<CmpInst>(I)) 2444 markPredicateUsersTouched(CI); 2445 } 2446 // If we changed the class of the store, we want to ensure nothing finds the 2447 // old store expression. In particular, loads do not compare against stored 2448 // value, so they will find old store expressions (and associated class 2449 // mappings) if we leave them in the table. 2450 if (ClassChanged && isa<StoreInst>(I)) { 2451 auto *OldE = ValueToExpression.lookup(I); 2452 // It could just be that the old class died. We don't want to erase it if we 2453 // just moved classes. 2454 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) { 2455 // Erase this as an exact expression to ensure we don't erase expressions 2456 // equivalent to it. 2457 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE)); 2458 if (Iter != ExpressionToClass.end()) 2459 ExpressionToClass.erase(Iter); 2460 } 2461 } 2462 ValueToExpression[I] = E; 2463 } 2464 2465 // Process the fact that Edge (from, to) is reachable, including marking 2466 // any newly reachable blocks and instructions for processing. 2467 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) { 2468 // Check if the Edge was reachable before. 2469 if (ReachableEdges.insert({From, To}).second) { 2470 // If this block wasn't reachable before, all instructions are touched. 2471 if (ReachableBlocks.insert(To).second) { 2472 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To) 2473 << " marked reachable\n"); 2474 const auto &InstRange = BlockInstRange.lookup(To); 2475 TouchedInstructions.set(InstRange.first, InstRange.second); 2476 } else { 2477 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To) 2478 << " was reachable, but new edge {" 2479 << getBlockName(From) << "," << getBlockName(To) 2480 << "} to it found\n"); 2481 2482 // We've made an edge reachable to an existing block, which may 2483 // impact predicates. Otherwise, only mark the phi nodes as touched, as 2484 // they are the only thing that depend on new edges. Anything using their 2485 // values will get propagated to if necessary. 2486 if (MemoryAccess *MemPhi = getMemoryAccess(To)) 2487 TouchedInstructions.set(InstrToDFSNum(MemPhi)); 2488 2489 // FIXME: We should just add a union op on a Bitvector and 2490 // SparseBitVector. We can do it word by word faster than we are doing it 2491 // here. 2492 for (auto InstNum : RevisitOnReachabilityChange[To]) 2493 TouchedInstructions.set(InstNum); 2494 } 2495 } 2496 } 2497 2498 // Given a predicate condition (from a switch, cmp, or whatever) and a block, 2499 // see if we know some constant value for it already. 2500 Value *NewGVN::findConditionEquivalence(Value *Cond) const { 2501 auto Result = lookupOperandLeader(Cond); 2502 return isa<Constant>(Result) ? Result : nullptr; 2503 } 2504 2505 // Process the outgoing edges of a block for reachability. 2506 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) { 2507 // Evaluate reachability of terminator instruction. 2508 Value *Cond; 2509 BasicBlock *TrueSucc, *FalseSucc; 2510 if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) { 2511 Value *CondEvaluated = findConditionEquivalence(Cond); 2512 if (!CondEvaluated) { 2513 if (auto *I = dyn_cast<Instruction>(Cond)) { 2514 SmallPtrSet<Value *, 4> Visited; 2515 auto Res = performSymbolicEvaluation(I, Visited); 2516 if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) { 2517 CondEvaluated = CE->getConstantValue(); 2518 addAdditionalUsers(Res, I); 2519 } else { 2520 // Did not use simplification result, no need to add the extra 2521 // dependency. 2522 Res.ExtraDep = nullptr; 2523 } 2524 } else if (isa<ConstantInt>(Cond)) { 2525 CondEvaluated = Cond; 2526 } 2527 } 2528 ConstantInt *CI; 2529 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) { 2530 if (CI->isOne()) { 2531 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI 2532 << " evaluated to true\n"); 2533 updateReachableEdge(B, TrueSucc); 2534 } else if (CI->isZero()) { 2535 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI 2536 << " evaluated to false\n"); 2537 updateReachableEdge(B, FalseSucc); 2538 } 2539 } else { 2540 updateReachableEdge(B, TrueSucc); 2541 updateReachableEdge(B, FalseSucc); 2542 } 2543 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 2544 // For switches, propagate the case values into the case 2545 // destinations. 2546 2547 Value *SwitchCond = SI->getCondition(); 2548 Value *CondEvaluated = findConditionEquivalence(SwitchCond); 2549 // See if we were able to turn this switch statement into a constant. 2550 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) { 2551 auto *CondVal = cast<ConstantInt>(CondEvaluated); 2552 // We should be able to get case value for this. 2553 auto Case = *SI->findCaseValue(CondVal); 2554 if (Case.getCaseSuccessor() == SI->getDefaultDest()) { 2555 // We proved the value is outside of the range of the case. 2556 // We can't do anything other than mark the default dest as reachable, 2557 // and go home. 2558 updateReachableEdge(B, SI->getDefaultDest()); 2559 return; 2560 } 2561 // Now get where it goes and mark it reachable. 2562 BasicBlock *TargetBlock = Case.getCaseSuccessor(); 2563 updateReachableEdge(B, TargetBlock); 2564 } else { 2565 for (BasicBlock *TargetBlock : successors(SI->getParent())) 2566 updateReachableEdge(B, TargetBlock); 2567 } 2568 } else { 2569 // Otherwise this is either unconditional, or a type we have no 2570 // idea about. Just mark successors as reachable. 2571 for (BasicBlock *TargetBlock : successors(TI->getParent())) 2572 updateReachableEdge(B, TargetBlock); 2573 2574 // This also may be a memory defining terminator, in which case, set it 2575 // equivalent only to itself. 2576 // 2577 auto *MA = getMemoryAccess(TI); 2578 if (MA && !isa<MemoryUse>(MA)) { 2579 auto *CC = ensureLeaderOfMemoryClass(MA); 2580 if (setMemoryClass(MA, CC)) 2581 markMemoryUsersTouched(MA); 2582 } 2583 } 2584 } 2585 2586 // Remove the PHI of Ops PHI for I 2587 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) { 2588 InstrDFS.erase(PHITemp); 2589 // It's still a temp instruction. We keep it in the array so it gets erased. 2590 // However, it's no longer used by I, or in the block 2591 TempToBlock.erase(PHITemp); 2592 RealToTemp.erase(I); 2593 // We don't remove the users from the phi node uses. This wastes a little 2594 // time, but such is life. We could use two sets to track which were there 2595 // are the start of NewGVN, and which were added, but right nowt he cost of 2596 // tracking is more than the cost of checking for more phi of ops. 2597 } 2598 2599 // Add PHI Op in BB as a PHI of operations version of ExistingValue. 2600 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB, 2601 Instruction *ExistingValue) { 2602 InstrDFS[Op] = InstrToDFSNum(ExistingValue); 2603 AllTempInstructions.insert(Op); 2604 TempToBlock[Op] = BB; 2605 RealToTemp[ExistingValue] = Op; 2606 // Add all users to phi node use, as they are now uses of the phi of ops phis 2607 // and may themselves be phi of ops. 2608 for (auto *U : ExistingValue->users()) 2609 if (auto *UI = dyn_cast<Instruction>(U)) 2610 PHINodeUses.insert(UI); 2611 } 2612 2613 static bool okayForPHIOfOps(const Instruction *I) { 2614 if (!EnablePhiOfOps) 2615 return false; 2616 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) || 2617 isa<LoadInst>(I); 2618 } 2619 2620 // Return true if this operand will be safe to use for phi of ops. 2621 // 2622 // The reason some operands are unsafe is that we are not trying to recursively 2623 // translate everything back through phi nodes. We actually expect some lookups 2624 // of expressions to fail. In particular, a lookup where the expression cannot 2625 // exist in the predecessor. This is true even if the expression, as shown, can 2626 // be determined to be constant. 2627 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock, 2628 SmallPtrSetImpl<const Value *> &Visited) { 2629 SmallVector<Value *, 4> Worklist; 2630 Worklist.push_back(V); 2631 while (!Worklist.empty()) { 2632 auto *I = Worklist.pop_back_val(); 2633 if (!isa<Instruction>(I)) 2634 continue; 2635 2636 auto OISIt = OpSafeForPHIOfOps.find({I, CacheIdx}); 2637 if (OISIt != OpSafeForPHIOfOps.end()) 2638 return OISIt->second; 2639 2640 // Keep walking until we either dominate the phi block, or hit a phi, or run 2641 // out of things to check. 2642 if (DT->properlyDominates(getBlockForValue(I), PHIBlock)) { 2643 OpSafeForPHIOfOps.insert({{I, CacheIdx}, true}); 2644 continue; 2645 } 2646 // PHI in the same block. 2647 if (isa<PHINode>(I) && getBlockForValue(I) == PHIBlock) { 2648 OpSafeForPHIOfOps.insert({{I, CacheIdx}, false}); 2649 return false; 2650 } 2651 2652 auto *OrigI = cast<Instruction>(I); 2653 // When we hit an instruction that reads memory (load, call, etc), we must 2654 // consider any store that may happen in the loop. For now, we assume the 2655 // worst: there is a store in the loop that alias with this read. 2656 // The case where the load is outside the loop is already covered by the 2657 // dominator check above. 2658 // TODO: relax this condition 2659 if (OrigI->mayReadFromMemory()) 2660 return false; 2661 2662 // Check the operands of the current instruction. 2663 for (auto *Op : OrigI->operand_values()) { 2664 if (!isa<Instruction>(Op)) 2665 continue; 2666 // Stop now if we find an unsafe operand. 2667 auto OISIt = OpSafeForPHIOfOps.find({OrigI, CacheIdx}); 2668 if (OISIt != OpSafeForPHIOfOps.end()) { 2669 if (!OISIt->second) { 2670 OpSafeForPHIOfOps.insert({{I, CacheIdx}, false}); 2671 return false; 2672 } 2673 continue; 2674 } 2675 if (!Visited.insert(Op).second) 2676 continue; 2677 Worklist.push_back(cast<Instruction>(Op)); 2678 } 2679 } 2680 OpSafeForPHIOfOps.insert({{V, CacheIdx}, true}); 2681 return true; 2682 } 2683 2684 // Try to find a leader for instruction TransInst, which is a phi translated 2685 // version of something in our original program. Visited is used to ensure we 2686 // don't infinite loop during translations of cycles. OrigInst is the 2687 // instruction in the original program, and PredBB is the predecessor we 2688 // translated it through. 2689 Value *NewGVN::findLeaderForInst(Instruction *TransInst, 2690 SmallPtrSetImpl<Value *> &Visited, 2691 MemoryAccess *MemAccess, Instruction *OrigInst, 2692 BasicBlock *PredBB) { 2693 unsigned IDFSNum = InstrToDFSNum(OrigInst); 2694 // Make sure it's marked as a temporary instruction. 2695 AllTempInstructions.insert(TransInst); 2696 // and make sure anything that tries to add it's DFS number is 2697 // redirected to the instruction we are making a phi of ops 2698 // for. 2699 TempToBlock.insert({TransInst, PredBB}); 2700 InstrDFS.insert({TransInst, IDFSNum}); 2701 2702 auto Res = performSymbolicEvaluation(TransInst, Visited); 2703 const Expression *E = Res.Expr; 2704 addAdditionalUsers(Res, OrigInst); 2705 InstrDFS.erase(TransInst); 2706 AllTempInstructions.erase(TransInst); 2707 TempToBlock.erase(TransInst); 2708 if (MemAccess) 2709 TempToMemory.erase(TransInst); 2710 if (!E) 2711 return nullptr; 2712 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB); 2713 if (!FoundVal) { 2714 ExpressionToPhiOfOps[E].insert(OrigInst); 2715 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst 2716 << " in block " << getBlockName(PredBB) << "\n"); 2717 return nullptr; 2718 } 2719 if (auto *SI = dyn_cast<StoreInst>(FoundVal)) 2720 FoundVal = SI->getValueOperand(); 2721 return FoundVal; 2722 } 2723 2724 // When we see an instruction that is an op of phis, generate the equivalent phi 2725 // of ops form. 2726 const Expression * 2727 NewGVN::makePossiblePHIOfOps(Instruction *I, 2728 SmallPtrSetImpl<Value *> &Visited) { 2729 if (!okayForPHIOfOps(I)) 2730 return nullptr; 2731 2732 if (!Visited.insert(I).second) 2733 return nullptr; 2734 // For now, we require the instruction be cycle free because we don't 2735 // *always* create a phi of ops for instructions that could be done as phi 2736 // of ops, we only do it if we think it is useful. If we did do it all the 2737 // time, we could remove the cycle free check. 2738 if (!isCycleFree(I)) 2739 return nullptr; 2740 2741 SmallPtrSet<const Value *, 8> ProcessedPHIs; 2742 // TODO: We don't do phi translation on memory accesses because it's 2743 // complicated. For a load, we'd need to be able to simulate a new memoryuse, 2744 // which we don't have a good way of doing ATM. 2745 auto *MemAccess = getMemoryAccess(I); 2746 // If the memory operation is defined by a memory operation this block that 2747 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi 2748 // can't help, as it would still be killed by that memory operation. 2749 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) && 2750 MemAccess->getDefiningAccess()->getBlock() == I->getParent()) 2751 return nullptr; 2752 2753 // Convert op of phis to phi of ops 2754 SmallPtrSet<const Value *, 10> VisitedOps; 2755 SmallVector<Value *, 4> Ops(I->operand_values()); 2756 BasicBlock *SamePHIBlock = nullptr; 2757 PHINode *OpPHI = nullptr; 2758 if (!DebugCounter::shouldExecute(PHIOfOpsCounter)) 2759 return nullptr; 2760 for (auto *Op : Ops) { 2761 if (!isa<PHINode>(Op)) { 2762 auto *ValuePHI = RealToTemp.lookup(Op); 2763 if (!ValuePHI) 2764 continue; 2765 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n"); 2766 Op = ValuePHI; 2767 } 2768 OpPHI = cast<PHINode>(Op); 2769 if (!SamePHIBlock) { 2770 SamePHIBlock = getBlockForValue(OpPHI); 2771 } else if (SamePHIBlock != getBlockForValue(OpPHI)) { 2772 LLVM_DEBUG( 2773 dbgs() 2774 << "PHIs for operands are not all in the same block, aborting\n"); 2775 return nullptr; 2776 } 2777 // No point in doing this for one-operand phis. 2778 // Since all PHIs for operands must be in the same block, then they must 2779 // have the same number of operands so we can just abort. 2780 if (OpPHI->getNumOperands() == 1) 2781 return nullptr; 2782 } 2783 2784 if (!OpPHI) 2785 return nullptr; 2786 2787 SmallVector<ValPair, 4> PHIOps; 2788 SmallPtrSet<Value *, 4> Deps; 2789 auto *PHIBlock = getBlockForValue(OpPHI); 2790 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I)); 2791 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) { 2792 auto *PredBB = OpPHI->getIncomingBlock(PredNum); 2793 Value *FoundVal = nullptr; 2794 SmallPtrSet<Value *, 4> CurrentDeps; 2795 // We could just skip unreachable edges entirely but it's tricky to do 2796 // with rewriting existing phi nodes. 2797 if (ReachableEdges.count({PredBB, PHIBlock})) { 2798 // Clone the instruction, create an expression from it that is 2799 // translated back into the predecessor, and see if we have a leader. 2800 Instruction *ValueOp = I->clone(); 2801 // Emit the temporal instruction in the predecessor basic block where the 2802 // corresponding value is defined. 2803 ValueOp->insertBefore(PredBB->getTerminator()->getIterator()); 2804 if (MemAccess) 2805 TempToMemory.insert({ValueOp, MemAccess}); 2806 bool SafeForPHIOfOps = true; 2807 VisitedOps.clear(); 2808 for (auto &Op : ValueOp->operands()) { 2809 auto *OrigOp = &*Op; 2810 // When these operand changes, it could change whether there is a 2811 // leader for us or not, so we have to add additional users. 2812 if (isa<PHINode>(Op)) { 2813 Op = Op->DoPHITranslation(PHIBlock, PredBB); 2814 if (Op != OrigOp && Op != I) 2815 CurrentDeps.insert(Op); 2816 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) { 2817 if (getBlockForValue(ValuePHI) == PHIBlock) 2818 Op = ValuePHI->getIncomingValueForBlock(PredBB); 2819 } 2820 // If we phi-translated the op, it must be safe. 2821 SafeForPHIOfOps = 2822 SafeForPHIOfOps && 2823 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps)); 2824 } 2825 // FIXME: For those things that are not safe we could generate 2826 // expressions all the way down, and see if this comes out to a 2827 // constant. For anything where that is true, and unsafe, we should 2828 // have made a phi-of-ops (or value numbered it equivalent to something) 2829 // for the pieces already. 2830 FoundVal = !SafeForPHIOfOps ? nullptr 2831 : findLeaderForInst(ValueOp, Visited, 2832 MemAccess, I, PredBB); 2833 ValueOp->eraseFromParent(); 2834 if (!FoundVal) { 2835 // We failed to find a leader for the current ValueOp, but this might 2836 // change in case of the translated operands change. 2837 if (SafeForPHIOfOps) 2838 for (auto *Dep : CurrentDeps) 2839 addAdditionalUsers(Dep, I); 2840 2841 return nullptr; 2842 } 2843 Deps.insert(CurrentDeps.begin(), CurrentDeps.end()); 2844 } else { 2845 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block " 2846 << getBlockName(PredBB) 2847 << " because the block is unreachable\n"); 2848 FoundVal = PoisonValue::get(I->getType()); 2849 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I)); 2850 } 2851 2852 PHIOps.push_back({FoundVal, PredBB}); 2853 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in " 2854 << getBlockName(PredBB) << "\n"); 2855 } 2856 for (auto *Dep : Deps) 2857 addAdditionalUsers(Dep, I); 2858 sortPHIOps(PHIOps); 2859 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock); 2860 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) { 2861 LLVM_DEBUG( 2862 dbgs() 2863 << "Not creating real PHI of ops because it simplified to existing " 2864 "value or constant\n"); 2865 // We have leaders for all operands, but do not create a real PHI node with 2866 // those leaders as operands, so the link between the operands and the 2867 // PHI-of-ops is not materialized in the IR. If any of those leaders 2868 // changes, the PHI-of-op may change also, so we need to add the operands as 2869 // additional users. 2870 for (auto &O : PHIOps) 2871 addAdditionalUsers(O.first, I); 2872 2873 return E; 2874 } 2875 auto *ValuePHI = RealToTemp.lookup(I); 2876 bool NewPHI = false; 2877 if (!ValuePHI) { 2878 ValuePHI = 2879 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops"); 2880 addPhiOfOps(ValuePHI, PHIBlock, I); 2881 NewPHI = true; 2882 NumGVNPHIOfOpsCreated++; 2883 } 2884 if (NewPHI) { 2885 for (auto PHIOp : PHIOps) 2886 ValuePHI->addIncoming(PHIOp.first, PHIOp.second); 2887 } else { 2888 TempToBlock[ValuePHI] = PHIBlock; 2889 unsigned int i = 0; 2890 for (auto PHIOp : PHIOps) { 2891 ValuePHI->setIncomingValue(i, PHIOp.first); 2892 ValuePHI->setIncomingBlock(i, PHIOp.second); 2893 ++i; 2894 } 2895 } 2896 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I)); 2897 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I 2898 << "\n"); 2899 2900 return E; 2901 } 2902 2903 // The algorithm initially places the values of the routine in the TOP 2904 // congruence class. The leader of TOP is the undetermined value `poison`. 2905 // When the algorithm has finished, values still in TOP are unreachable. 2906 void NewGVN::initializeCongruenceClasses(Function &F) { 2907 NextCongruenceNum = 0; 2908 2909 // Note that even though we use the live on entry def as a representative 2910 // MemoryAccess, it is *not* the same as the actual live on entry def. We 2911 // have no real equivalent to poison for MemoryAccesses, and so we really 2912 // should be checking whether the MemoryAccess is top if we want to know if it 2913 // is equivalent to everything. Otherwise, what this really signifies is that 2914 // the access "it reaches all the way back to the beginning of the function" 2915 2916 // Initialize all other instructions to be in TOP class. 2917 TOPClass = createCongruenceClass(nullptr, nullptr); 2918 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef()); 2919 // The live on entry def gets put into it's own class 2920 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] = 2921 createMemoryClass(MSSA->getLiveOnEntryDef()); 2922 2923 for (auto *DTN : nodes(DT)) { 2924 BasicBlock *BB = DTN->getBlock(); 2925 // All MemoryAccesses are equivalent to live on entry to start. They must 2926 // be initialized to something so that initial changes are noticed. For 2927 // the maximal answer, we initialize them all to be the same as 2928 // liveOnEntry. 2929 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB); 2930 if (MemoryBlockDefs) 2931 for (const auto &Def : *MemoryBlockDefs) { 2932 MemoryAccessToClass[&Def] = TOPClass; 2933 auto *MD = dyn_cast<MemoryDef>(&Def); 2934 // Insert the memory phis into the member list. 2935 if (!MD) { 2936 const MemoryPhi *MP = cast<MemoryPhi>(&Def); 2937 TOPClass->memory_insert(MP); 2938 MemoryPhiState.insert({MP, MPS_TOP}); 2939 } 2940 2941 if (MD && isa<StoreInst>(MD->getMemoryInst())) 2942 TOPClass->incStoreCount(); 2943 } 2944 2945 // FIXME: This is trying to discover which instructions are uses of phi 2946 // nodes. We should move this into one of the myriad of places that walk 2947 // all the operands already. 2948 for (auto &I : *BB) { 2949 if (isa<PHINode>(&I)) 2950 for (auto *U : I.users()) 2951 if (auto *UInst = dyn_cast<Instruction>(U)) 2952 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst)) 2953 PHINodeUses.insert(UInst); 2954 // Don't insert void terminators into the class. We don't value number 2955 // them, and they just end up sitting in TOP. 2956 if (I.isTerminator() && I.getType()->isVoidTy()) 2957 continue; 2958 TOPClass->insert(&I); 2959 ValueToClass[&I] = TOPClass; 2960 } 2961 } 2962 2963 // Initialize arguments to be in their own unique congruence classes 2964 for (auto &FA : F.args()) 2965 createSingletonCongruenceClass(&FA); 2966 } 2967 2968 void NewGVN::cleanupTables() { 2969 for (CongruenceClass *&CC : CongruenceClasses) { 2970 LLVM_DEBUG(dbgs() << "Congruence class " << CC->getID() << " has " 2971 << CC->size() << " members\n"); 2972 // Make sure we delete the congruence class (probably worth switching to 2973 // a unique_ptr at some point. 2974 delete CC; 2975 CC = nullptr; 2976 } 2977 2978 // Destroy the value expressions 2979 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(), 2980 AllTempInstructions.end()); 2981 AllTempInstructions.clear(); 2982 2983 // We have to drop all references for everything first, so there are no uses 2984 // left as we delete them. 2985 for (auto *I : TempInst) { 2986 I->dropAllReferences(); 2987 } 2988 2989 while (!TempInst.empty()) { 2990 auto *I = TempInst.pop_back_val(); 2991 I->deleteValue(); 2992 } 2993 2994 ValueToClass.clear(); 2995 ArgRecycler.clear(ExpressionAllocator); 2996 ExpressionAllocator.Reset(); 2997 CongruenceClasses.clear(); 2998 ExpressionToClass.clear(); 2999 ValueToExpression.clear(); 3000 RealToTemp.clear(); 3001 AdditionalUsers.clear(); 3002 ExpressionToPhiOfOps.clear(); 3003 TempToBlock.clear(); 3004 TempToMemory.clear(); 3005 PHINodeUses.clear(); 3006 OpSafeForPHIOfOps.clear(); 3007 ReachableBlocks.clear(); 3008 ReachableEdges.clear(); 3009 #ifndef NDEBUG 3010 ProcessedCount.clear(); 3011 #endif 3012 InstrDFS.clear(); 3013 InstructionsToErase.clear(); 3014 DFSToInstr.clear(); 3015 BlockInstRange.clear(); 3016 TouchedInstructions.clear(); 3017 MemoryAccessToClass.clear(); 3018 PredicateToUsers.clear(); 3019 MemoryToUsers.clear(); 3020 RevisitOnReachabilityChange.clear(); 3021 IntrinsicInstPred.clear(); 3022 } 3023 3024 // Assign local DFS number mapping to instructions, and leave space for Value 3025 // PHI's. 3026 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B, 3027 unsigned Start) { 3028 unsigned End = Start; 3029 if (MemoryAccess *MemPhi = getMemoryAccess(B)) { 3030 InstrDFS[MemPhi] = End++; 3031 DFSToInstr.emplace_back(MemPhi); 3032 } 3033 3034 // Then the real block goes next. 3035 for (auto &I : *B) { 3036 // There's no need to call isInstructionTriviallyDead more than once on 3037 // an instruction. Therefore, once we know that an instruction is dead 3038 // we change its DFS number so that it doesn't get value numbered. 3039 if (isInstructionTriviallyDead(&I, TLI)) { 3040 InstrDFS[&I] = 0; 3041 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n"); 3042 markInstructionForDeletion(&I); 3043 continue; 3044 } 3045 if (isa<PHINode>(&I)) 3046 RevisitOnReachabilityChange[B].set(End); 3047 InstrDFS[&I] = End++; 3048 DFSToInstr.emplace_back(&I); 3049 } 3050 3051 // All of the range functions taken half-open ranges (open on the end side). 3052 // So we do not subtract one from count, because at this point it is one 3053 // greater than the last instruction. 3054 return std::make_pair(Start, End); 3055 } 3056 3057 void NewGVN::updateProcessedCount(const Value *V) { 3058 #ifndef NDEBUG 3059 if (ProcessedCount.count(V) == 0) { 3060 ProcessedCount.insert({V, 1}); 3061 } else { 3062 ++ProcessedCount[V]; 3063 assert(ProcessedCount[V] < 100 && 3064 "Seem to have processed the same Value a lot"); 3065 } 3066 #endif 3067 } 3068 3069 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes 3070 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) { 3071 // If all the arguments are the same, the MemoryPhi has the same value as the 3072 // argument. Filter out unreachable blocks and self phis from our operands. 3073 // TODO: We could do cycle-checking on the memory phis to allow valueizing for 3074 // self-phi checking. 3075 const BasicBlock *PHIBlock = MP->getBlock(); 3076 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) { 3077 return cast<MemoryAccess>(U) != MP && 3078 !isMemoryAccessTOP(cast<MemoryAccess>(U)) && 3079 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock}); 3080 }); 3081 // If all that is left is nothing, our memoryphi is poison. We keep it as 3082 // InitialClass. Note: The only case this should happen is if we have at 3083 // least one self-argument. 3084 if (Filtered.begin() == Filtered.end()) { 3085 if (setMemoryClass(MP, TOPClass)) 3086 markMemoryUsersTouched(MP); 3087 return; 3088 } 3089 3090 // Transform the remaining operands into operand leaders. 3091 // FIXME: mapped_iterator should have a range version. 3092 auto LookupFunc = [&](const Use &U) { 3093 return lookupMemoryLeader(cast<MemoryAccess>(U)); 3094 }; 3095 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc); 3096 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc); 3097 3098 // and now check if all the elements are equal. 3099 // Sadly, we can't use std::equals since these are random access iterators. 3100 const auto *AllSameValue = *MappedBegin; 3101 ++MappedBegin; 3102 bool AllEqual = std::all_of( 3103 MappedBegin, MappedEnd, 3104 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; }); 3105 3106 if (AllEqual) 3107 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue 3108 << "\n"); 3109 else 3110 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n"); 3111 // If it's equal to something, it's in that class. Otherwise, it has to be in 3112 // a class where it is the leader (other things may be equivalent to it, but 3113 // it needs to start off in its own class, which means it must have been the 3114 // leader, and it can't have stopped being the leader because it was never 3115 // removed). 3116 CongruenceClass *CC = 3117 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP); 3118 auto OldState = MemoryPhiState.lookup(MP); 3119 assert(OldState != MPS_Invalid && "Invalid memory phi state"); 3120 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique; 3121 MemoryPhiState[MP] = NewState; 3122 if (setMemoryClass(MP, CC) || OldState != NewState) 3123 markMemoryUsersTouched(MP); 3124 } 3125 3126 // Value number a single instruction, symbolically evaluating, performing 3127 // congruence finding, and updating mappings. 3128 void NewGVN::valueNumberInstruction(Instruction *I) { 3129 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n"); 3130 if (!I->isTerminator()) { 3131 const Expression *Symbolized = nullptr; 3132 SmallPtrSet<Value *, 2> Visited; 3133 if (DebugCounter::shouldExecute(VNCounter)) { 3134 auto Res = performSymbolicEvaluation(I, Visited); 3135 Symbolized = Res.Expr; 3136 addAdditionalUsers(Res, I); 3137 3138 // Make a phi of ops if necessary 3139 if (Symbolized && !isa<ConstantExpression>(Symbolized) && 3140 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) { 3141 auto *PHIE = makePossiblePHIOfOps(I, Visited); 3142 // If we created a phi of ops, use it. 3143 // If we couldn't create one, make sure we don't leave one lying around 3144 if (PHIE) { 3145 Symbolized = PHIE; 3146 } else if (auto *Op = RealToTemp.lookup(I)) { 3147 removePhiOfOps(I, Op); 3148 } 3149 } 3150 } else { 3151 // Mark the instruction as unused so we don't value number it again. 3152 InstrDFS[I] = 0; 3153 } 3154 // If we couldn't come up with a symbolic expression, use the unknown 3155 // expression 3156 if (Symbolized == nullptr) 3157 Symbolized = createUnknownExpression(I); 3158 performCongruenceFinding(I, Symbolized); 3159 } else { 3160 // Handle terminators that return values. All of them produce values we 3161 // don't currently understand. We don't place non-value producing 3162 // terminators in a class. 3163 if (!I->getType()->isVoidTy()) { 3164 auto *Symbolized = createUnknownExpression(I); 3165 performCongruenceFinding(I, Symbolized); 3166 } 3167 processOutgoingEdges(I, I->getParent()); 3168 } 3169 } 3170 3171 // Check if there is a path, using single or equal argument phi nodes, from 3172 // First to Second. 3173 bool NewGVN::singleReachablePHIPath( 3174 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First, 3175 const MemoryAccess *Second) const { 3176 if (First == Second) 3177 return true; 3178 if (MSSA->isLiveOnEntryDef(First)) 3179 return false; 3180 3181 // This is not perfect, but as we're just verifying here, we can live with 3182 // the loss of precision. The real solution would be that of doing strongly 3183 // connected component finding in this routine, and it's probably not worth 3184 // the complexity for the time being. So, we just keep a set of visited 3185 // MemoryAccess and return true when we hit a cycle. 3186 if (!Visited.insert(First).second) 3187 return true; 3188 3189 const auto *EndDef = First; 3190 for (const auto *ChainDef : optimized_def_chain(First)) { 3191 if (ChainDef == Second) 3192 return true; 3193 if (MSSA->isLiveOnEntryDef(ChainDef)) 3194 return false; 3195 EndDef = ChainDef; 3196 } 3197 auto *MP = cast<MemoryPhi>(EndDef); 3198 auto ReachableOperandPred = [&](const Use &U) { 3199 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()}); 3200 }; 3201 auto FilteredPhiArgs = 3202 make_filter_range(MP->operands(), ReachableOperandPred); 3203 SmallVector<const Value *, 32> OperandList; 3204 llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList)); 3205 bool Okay = all_equal(OperandList); 3206 if (Okay) 3207 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]), 3208 Second); 3209 return false; 3210 } 3211 3212 // Verify the that the memory equivalence table makes sense relative to the 3213 // congruence classes. Note that this checking is not perfect, and is currently 3214 // subject to very rare false negatives. It is only useful for 3215 // testing/debugging. 3216 void NewGVN::verifyMemoryCongruency() const { 3217 #ifndef NDEBUG 3218 // Verify that the memory table equivalence and memory member set match 3219 for (const auto *CC : CongruenceClasses) { 3220 if (CC == TOPClass || CC->isDead()) 3221 continue; 3222 if (CC->getStoreCount() != 0) { 3223 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) && 3224 "Any class with a store as a leader should have a " 3225 "representative stored value"); 3226 assert(CC->getMemoryLeader() && 3227 "Any congruence class with a store should have a " 3228 "representative access"); 3229 } 3230 3231 if (CC->getMemoryLeader()) 3232 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC && 3233 "Representative MemoryAccess does not appear to be reverse " 3234 "mapped properly"); 3235 for (const auto *M : CC->memory()) 3236 assert(MemoryAccessToClass.lookup(M) == CC && 3237 "Memory member does not appear to be reverse mapped properly"); 3238 } 3239 3240 // Anything equivalent in the MemoryAccess table should be in the same 3241 // congruence class. 3242 3243 // Filter out the unreachable and trivially dead entries, because they may 3244 // never have been updated if the instructions were not processed. 3245 auto ReachableAccessPred = 3246 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) { 3247 bool Result = ReachableBlocks.count(Pair.first->getBlock()); 3248 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) || 3249 MemoryToDFSNum(Pair.first) == 0) 3250 return false; 3251 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first)) 3252 return !isInstructionTriviallyDead(MemDef->getMemoryInst()); 3253 3254 // We could have phi nodes which operands are all trivially dead, 3255 // so we don't process them. 3256 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) { 3257 for (const auto &U : MemPHI->incoming_values()) { 3258 if (auto *I = dyn_cast<Instruction>(&*U)) { 3259 if (!isInstructionTriviallyDead(I)) 3260 return true; 3261 } 3262 } 3263 return false; 3264 } 3265 3266 return true; 3267 }; 3268 3269 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred); 3270 for (auto KV : Filtered) { 3271 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) { 3272 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader()); 3273 if (FirstMUD && SecondMUD) { 3274 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS; 3275 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) || 3276 ValueToClass.lookup(FirstMUD->getMemoryInst()) == 3277 ValueToClass.lookup(SecondMUD->getMemoryInst())) && 3278 "The instructions for these memory operations should have " 3279 "been in the same congruence class or reachable through" 3280 "a single argument phi"); 3281 } 3282 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) { 3283 // We can only sanely verify that MemoryDefs in the operand list all have 3284 // the same class. 3285 auto ReachableOperandPred = [&](const Use &U) { 3286 return ReachableEdges.count( 3287 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) && 3288 isa<MemoryDef>(U); 3289 }; 3290 // All arguments should in the same class, ignoring unreachable arguments 3291 auto FilteredPhiArgs = 3292 make_filter_range(FirstMP->operands(), ReachableOperandPred); 3293 SmallVector<const CongruenceClass *, 16> PhiOpClasses; 3294 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(), 3295 std::back_inserter(PhiOpClasses), [&](const Use &U) { 3296 const MemoryDef *MD = cast<MemoryDef>(U); 3297 return ValueToClass.lookup(MD->getMemoryInst()); 3298 }); 3299 assert(all_equal(PhiOpClasses) && 3300 "All MemoryPhi arguments should be in the same class"); 3301 } 3302 } 3303 #endif 3304 } 3305 3306 // Verify that the sparse propagation we did actually found the maximal fixpoint 3307 // We do this by storing the value to class mapping, touching all instructions, 3308 // and redoing the iteration to see if anything changed. 3309 void NewGVN::verifyIterationSettled(Function &F) { 3310 #ifndef NDEBUG 3311 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n"); 3312 if (DebugCounter::isCounterSet(VNCounter)) 3313 DebugCounter::setCounterState(VNCounter, StartingVNCounter); 3314 3315 // Note that we have to store the actual classes, as we may change existing 3316 // classes during iteration. This is because our memory iteration propagation 3317 // is not perfect, and so may waste a little work. But it should generate 3318 // exactly the same congruence classes we have now, with different IDs. 3319 std::map<const Value *, CongruenceClass> BeforeIteration; 3320 3321 for (auto &KV : ValueToClass) { 3322 if (auto *I = dyn_cast<Instruction>(KV.first)) 3323 // Skip unused/dead instructions. 3324 if (InstrToDFSNum(I) == 0) 3325 continue; 3326 BeforeIteration.insert({KV.first, *KV.second}); 3327 } 3328 3329 TouchedInstructions.set(); 3330 TouchedInstructions.reset(0); 3331 OpSafeForPHIOfOps.clear(); 3332 CacheIdx = 0; 3333 iterateTouchedInstructions(); 3334 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>> 3335 EqualClasses; 3336 for (const auto &KV : ValueToClass) { 3337 if (auto *I = dyn_cast<Instruction>(KV.first)) 3338 // Skip unused/dead instructions. 3339 if (InstrToDFSNum(I) == 0) 3340 continue; 3341 // We could sink these uses, but i think this adds a bit of clarity here as 3342 // to what we are comparing. 3343 auto *BeforeCC = &BeforeIteration.find(KV.first)->second; 3344 auto *AfterCC = KV.second; 3345 // Note that the classes can't change at this point, so we memoize the set 3346 // that are equal. 3347 if (!EqualClasses.count({BeforeCC, AfterCC})) { 3348 assert(BeforeCC->isEquivalentTo(AfterCC) && 3349 "Value number changed after main loop completed!"); 3350 EqualClasses.insert({BeforeCC, AfterCC}); 3351 } 3352 } 3353 #endif 3354 } 3355 3356 // Verify that for each store expression in the expression to class mapping, 3357 // only the latest appears, and multiple ones do not appear. 3358 // Because loads do not use the stored value when doing equality with stores, 3359 // if we don't erase the old store expressions from the table, a load can find 3360 // a no-longer valid StoreExpression. 3361 void NewGVN::verifyStoreExpressions() const { 3362 #ifndef NDEBUG 3363 // This is the only use of this, and it's not worth defining a complicated 3364 // densemapinfo hash/equality function for it. 3365 std::set< 3366 std::pair<const Value *, 3367 std::tuple<const Value *, const CongruenceClass *, Value *>>> 3368 StoreExpressionSet; 3369 for (const auto &KV : ExpressionToClass) { 3370 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) { 3371 // Make sure a version that will conflict with loads is not already there 3372 auto Res = StoreExpressionSet.insert( 3373 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second, 3374 SE->getStoredValue())}); 3375 bool Okay = Res.second; 3376 // It's okay to have the same expression already in there if it is 3377 // identical in nature. 3378 // This can happen when the leader of the stored value changes over time. 3379 if (!Okay) 3380 Okay = (std::get<1>(Res.first->second) == KV.second) && 3381 (lookupOperandLeader(std::get<2>(Res.first->second)) == 3382 lookupOperandLeader(SE->getStoredValue())); 3383 assert(Okay && "Stored expression conflict exists in expression table"); 3384 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst()); 3385 assert(ValueExpr && ValueExpr->equals(*SE) && 3386 "StoreExpression in ExpressionToClass is not latest " 3387 "StoreExpression for value"); 3388 } 3389 } 3390 #endif 3391 } 3392 3393 // This is the main value numbering loop, it iterates over the initial touched 3394 // instruction set, propagating value numbers, marking things touched, etc, 3395 // until the set of touched instructions is completely empty. 3396 void NewGVN::iterateTouchedInstructions() { 3397 uint64_t Iterations = 0; 3398 // Figure out where touchedinstructions starts 3399 int FirstInstr = TouchedInstructions.find_first(); 3400 // Nothing set, nothing to iterate, just return. 3401 if (FirstInstr == -1) 3402 return; 3403 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr)); 3404 while (TouchedInstructions.any()) { 3405 ++Iterations; 3406 // Walk through all the instructions in all the blocks in RPO. 3407 // TODO: As we hit a new block, we should push and pop equalities into a 3408 // table lookupOperandLeader can use, to catch things PredicateInfo 3409 // might miss, like edge-only equivalences. 3410 for (unsigned InstrNum : TouchedInstructions.set_bits()) { 3411 3412 // This instruction was found to be dead. We don't bother looking 3413 // at it again. 3414 if (InstrNum == 0) { 3415 TouchedInstructions.reset(InstrNum); 3416 continue; 3417 } 3418 3419 Value *V = InstrFromDFSNum(InstrNum); 3420 const BasicBlock *CurrBlock = getBlockForValue(V); 3421 3422 // If we hit a new block, do reachability processing. 3423 if (CurrBlock != LastBlock) { 3424 LastBlock = CurrBlock; 3425 bool BlockReachable = ReachableBlocks.count(CurrBlock); 3426 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock); 3427 3428 // If it's not reachable, erase any touched instructions and move on. 3429 if (!BlockReachable) { 3430 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second); 3431 LLVM_DEBUG(dbgs() << "Skipping instructions in block " 3432 << getBlockName(CurrBlock) 3433 << " because it is unreachable\n"); 3434 continue; 3435 } 3436 // Use the appropriate cache for "OpIsSafeForPHIOfOps". 3437 CacheIdx = RPOOrdering.lookup(DT->getNode(CurrBlock)) - 1; 3438 updateProcessedCount(CurrBlock); 3439 } 3440 // Reset after processing (because we may mark ourselves as touched when 3441 // we propagate equalities). 3442 TouchedInstructions.reset(InstrNum); 3443 3444 if (auto *MP = dyn_cast<MemoryPhi>(V)) { 3445 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n"); 3446 valueNumberMemoryPhi(MP); 3447 } else if (auto *I = dyn_cast<Instruction>(V)) { 3448 valueNumberInstruction(I); 3449 } else { 3450 llvm_unreachable("Should have been a MemoryPhi or Instruction"); 3451 } 3452 updateProcessedCount(V); 3453 } 3454 } 3455 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations); 3456 } 3457 3458 // This is the main transformation entry point. 3459 bool NewGVN::runGVN() { 3460 if (DebugCounter::isCounterSet(VNCounter)) 3461 StartingVNCounter = DebugCounter::getCounterState(VNCounter); 3462 bool Changed = false; 3463 NumFuncArgs = F.arg_size(); 3464 MSSAWalker = MSSA->getWalker(); 3465 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression(); 3466 3467 // Count number of instructions for sizing of hash tables, and come 3468 // up with a global dfs numbering for instructions. 3469 unsigned ICount = 1; 3470 // Add an empty instruction to account for the fact that we start at 1 3471 DFSToInstr.emplace_back(nullptr); 3472 // Note: We want ideal RPO traversal of the blocks, which is not quite the 3473 // same as dominator tree order, particularly with regard whether backedges 3474 // get visited first or second, given a block with multiple successors. 3475 // If we visit in the wrong order, we will end up performing N times as many 3476 // iterations. 3477 // The dominator tree does guarantee that, for a given dom tree node, it's 3478 // parent must occur before it in the RPO ordering. Thus, we only need to sort 3479 // the siblings. 3480 ReversePostOrderTraversal<Function *> RPOT(&F); 3481 unsigned Counter = 0; 3482 for (auto &B : RPOT) { 3483 auto *Node = DT->getNode(B); 3484 assert(Node && "RPO and Dominator tree should have same reachability"); 3485 RPOOrdering[Node] = ++Counter; 3486 } 3487 // Sort dominator tree children arrays into RPO. 3488 for (auto &B : RPOT) { 3489 auto *Node = DT->getNode(B); 3490 if (Node->getNumChildren() > 1) 3491 llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) { 3492 return RPOOrdering[A] < RPOOrdering[B]; 3493 }); 3494 } 3495 3496 // Now a standard depth first ordering of the domtree is equivalent to RPO. 3497 for (auto *DTN : depth_first(DT->getRootNode())) { 3498 BasicBlock *B = DTN->getBlock(); 3499 const auto &BlockRange = assignDFSNumbers(B, ICount); 3500 BlockInstRange.insert({B, BlockRange}); 3501 ICount += BlockRange.second - BlockRange.first; 3502 } 3503 initializeCongruenceClasses(F); 3504 3505 TouchedInstructions.resize(ICount); 3506 // Ensure we don't end up resizing the expressionToClass map, as 3507 // that can be quite expensive. At most, we have one expression per 3508 // instruction. 3509 ExpressionToClass.reserve(ICount); 3510 3511 // Initialize the touched instructions to include the entry block. 3512 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock()); 3513 TouchedInstructions.set(InstRange.first, InstRange.second); 3514 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock()) 3515 << " marked reachable\n"); 3516 ReachableBlocks.insert(&F.getEntryBlock()); 3517 // Use index corresponding to entry block. 3518 CacheIdx = 0; 3519 3520 iterateTouchedInstructions(); 3521 verifyMemoryCongruency(); 3522 verifyIterationSettled(F); 3523 verifyStoreExpressions(); 3524 3525 Changed |= eliminateInstructions(F); 3526 3527 // Delete all instructions marked for deletion. 3528 for (Instruction *ToErase : InstructionsToErase) { 3529 if (!ToErase->use_empty()) 3530 ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType())); 3531 3532 assert(ToErase->getParent() && 3533 "BB containing ToErase deleted unexpectedly!"); 3534 ToErase->eraseFromParent(); 3535 } 3536 Changed |= !InstructionsToErase.empty(); 3537 3538 // Delete all unreachable blocks. 3539 auto UnreachableBlockPred = [&](const BasicBlock &BB) { 3540 return !ReachableBlocks.count(&BB); 3541 }; 3542 3543 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) { 3544 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB) 3545 << " is unreachable\n"); 3546 deleteInstructionsInBlock(&BB); 3547 Changed = true; 3548 } 3549 3550 cleanupTables(); 3551 return Changed; 3552 } 3553 3554 struct NewGVN::ValueDFS { 3555 int DFSIn = 0; 3556 int DFSOut = 0; 3557 int LocalNum = 0; 3558 3559 // Only one of Def and U will be set. 3560 // The bool in the Def tells us whether the Def is the stored value of a 3561 // store. 3562 PointerIntPair<Value *, 1, bool> Def; 3563 Use *U = nullptr; 3564 3565 bool operator<(const ValueDFS &Other) const { 3566 // It's not enough that any given field be less than - we have sets 3567 // of fields that need to be evaluated together to give a proper ordering. 3568 // For example, if you have; 3569 // DFS (1, 3) 3570 // Val 0 3571 // DFS (1, 2) 3572 // Val 50 3573 // We want the second to be less than the first, but if we just go field 3574 // by field, we will get to Val 0 < Val 50 and say the first is less than 3575 // the second. We only want it to be less than if the DFS orders are equal. 3576 // 3577 // Each LLVM instruction only produces one value, and thus the lowest-level 3578 // differentiator that really matters for the stack (and what we use as a 3579 // replacement) is the local dfs number. 3580 // Everything else in the structure is instruction level, and only affects 3581 // the order in which we will replace operands of a given instruction. 3582 // 3583 // For a given instruction (IE things with equal dfsin, dfsout, localnum), 3584 // the order of replacement of uses does not matter. 3585 // IE given, 3586 // a = 5 3587 // b = a + a 3588 // When you hit b, you will have two valuedfs with the same dfsin, out, and 3589 // localnum. 3590 // The .val will be the same as well. 3591 // The .u's will be different. 3592 // You will replace both, and it does not matter what order you replace them 3593 // in (IE whether you replace operand 2, then operand 1, or operand 1, then 3594 // operand 2). 3595 // Similarly for the case of same dfsin, dfsout, localnum, but different 3596 // .val's 3597 // a = 5 3598 // b = 6 3599 // c = a + b 3600 // in c, we will a valuedfs for a, and one for b,with everything the same 3601 // but .val and .u. 3602 // It does not matter what order we replace these operands in. 3603 // You will always end up with the same IR, and this is guaranteed. 3604 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) < 3605 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def, 3606 Other.U); 3607 } 3608 }; 3609 3610 // This function converts the set of members for a congruence class from values, 3611 // to sets of defs and uses with associated DFS info. The total number of 3612 // reachable uses for each value is stored in UseCount, and instructions that 3613 // seem 3614 // dead (have no non-dead uses) are stored in ProbablyDead. 3615 void NewGVN::convertClassToDFSOrdered( 3616 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet, 3617 DenseMap<const Value *, unsigned int> &UseCounts, 3618 SmallPtrSetImpl<Instruction *> &ProbablyDead) const { 3619 for (auto *D : Dense) { 3620 // First add the value. 3621 BasicBlock *BB = getBlockForValue(D); 3622 // Constants are handled prior to ever calling this function, so 3623 // we should only be left with instructions as members. 3624 assert(BB && "Should have figured out a basic block for value"); 3625 ValueDFS VDDef; 3626 DomTreeNode *DomNode = DT->getNode(BB); 3627 VDDef.DFSIn = DomNode->getDFSNumIn(); 3628 VDDef.DFSOut = DomNode->getDFSNumOut(); 3629 // If it's a store, use the leader of the value operand, if it's always 3630 // available, or the value operand. TODO: We could do dominance checks to 3631 // find a dominating leader, but not worth it ATM. 3632 if (auto *SI = dyn_cast<StoreInst>(D)) { 3633 auto Leader = lookupOperandLeader(SI->getValueOperand()); 3634 if (alwaysAvailable(Leader)) { 3635 VDDef.Def.setPointer(Leader); 3636 } else { 3637 VDDef.Def.setPointer(SI->getValueOperand()); 3638 VDDef.Def.setInt(true); 3639 } 3640 } else { 3641 VDDef.Def.setPointer(D); 3642 } 3643 assert(isa<Instruction>(D) && 3644 "The dense set member should always be an instruction"); 3645 Instruction *Def = cast<Instruction>(D); 3646 VDDef.LocalNum = InstrToDFSNum(D); 3647 DFSOrderedSet.push_back(VDDef); 3648 // If there is a phi node equivalent, add it 3649 if (auto *PN = RealToTemp.lookup(Def)) { 3650 auto *PHIE = 3651 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def)); 3652 if (PHIE) { 3653 VDDef.Def.setInt(false); 3654 VDDef.Def.setPointer(PN); 3655 VDDef.LocalNum = 0; 3656 DFSOrderedSet.push_back(VDDef); 3657 } 3658 } 3659 3660 unsigned int UseCount = 0; 3661 // Now add the uses. 3662 for (auto &U : Def->uses()) { 3663 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 3664 // Don't try to replace into dead uses 3665 if (InstructionsToErase.count(I)) 3666 continue; 3667 ValueDFS VDUse; 3668 // Put the phi node uses in the incoming block. 3669 BasicBlock *IBlock; 3670 if (auto *P = dyn_cast<PHINode>(I)) { 3671 IBlock = P->getIncomingBlock(U); 3672 // Make phi node users appear last in the incoming block 3673 // they are from. 3674 VDUse.LocalNum = InstrDFS.size() + 1; 3675 } else { 3676 IBlock = getBlockForValue(I); 3677 VDUse.LocalNum = InstrToDFSNum(I); 3678 } 3679 3680 // Skip uses in unreachable blocks, as we're going 3681 // to delete them. 3682 if (!ReachableBlocks.contains(IBlock)) 3683 continue; 3684 3685 DomTreeNode *DomNode = DT->getNode(IBlock); 3686 VDUse.DFSIn = DomNode->getDFSNumIn(); 3687 VDUse.DFSOut = DomNode->getDFSNumOut(); 3688 VDUse.U = &U; 3689 ++UseCount; 3690 DFSOrderedSet.emplace_back(VDUse); 3691 } 3692 } 3693 3694 // If there are no uses, it's probably dead (but it may have side-effects, 3695 // so not definitely dead. Otherwise, store the number of uses so we can 3696 // track if it becomes dead later). 3697 if (UseCount == 0) 3698 ProbablyDead.insert(Def); 3699 else 3700 UseCounts[Def] = UseCount; 3701 } 3702 } 3703 3704 // This function converts the set of members for a congruence class from values, 3705 // to the set of defs for loads and stores, with associated DFS info. 3706 void NewGVN::convertClassToLoadsAndStores( 3707 const CongruenceClass &Dense, 3708 SmallVectorImpl<ValueDFS> &LoadsAndStores) const { 3709 for (auto *D : Dense) { 3710 if (!isa<LoadInst>(D) && !isa<StoreInst>(D)) 3711 continue; 3712 3713 BasicBlock *BB = getBlockForValue(D); 3714 ValueDFS VD; 3715 DomTreeNode *DomNode = DT->getNode(BB); 3716 VD.DFSIn = DomNode->getDFSNumIn(); 3717 VD.DFSOut = DomNode->getDFSNumOut(); 3718 VD.Def.setPointer(D); 3719 3720 // If it's an instruction, use the real local dfs number. 3721 if (auto *I = dyn_cast<Instruction>(D)) 3722 VD.LocalNum = InstrToDFSNum(I); 3723 else 3724 llvm_unreachable("Should have been an instruction"); 3725 3726 LoadsAndStores.emplace_back(VD); 3727 } 3728 } 3729 3730 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 3731 patchReplacementInstruction(I, Repl); 3732 I->replaceAllUsesWith(Repl); 3733 } 3734 3735 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) { 3736 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 3737 ++NumGVNBlocksDeleted; 3738 3739 // Delete the instructions backwards, as it has a reduced likelihood of having 3740 // to update as many def-use and use-def chains. Start after the terminator. 3741 auto StartPoint = BB->rbegin(); 3742 ++StartPoint; 3743 // Note that we explicitly recalculate BB->rend() on each iteration, 3744 // as it may change when we remove the first instruction. 3745 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) { 3746 Instruction &Inst = *I++; 3747 if (!Inst.use_empty()) 3748 Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType())); 3749 if (isa<LandingPadInst>(Inst)) 3750 continue; 3751 salvageKnowledge(&Inst, AC); 3752 3753 Inst.eraseFromParent(); 3754 ++NumGVNInstrDeleted; 3755 } 3756 // Now insert something that simplifycfg will turn into an unreachable. 3757 Type *Int8Ty = Type::getInt8Ty(BB->getContext()); 3758 new StoreInst( 3759 PoisonValue::get(Int8Ty), 3760 Constant::getNullValue(PointerType::getUnqual(BB->getContext())), 3761 BB->getTerminator()->getIterator()); 3762 } 3763 3764 void NewGVN::markInstructionForDeletion(Instruction *I) { 3765 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n"); 3766 InstructionsToErase.insert(I); 3767 } 3768 3769 void NewGVN::replaceInstruction(Instruction *I, Value *V) { 3770 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n"); 3771 patchAndReplaceAllUsesWith(I, V); 3772 // We save the actual erasing to avoid invalidating memory 3773 // dependencies until we are done with everything. 3774 markInstructionForDeletion(I); 3775 } 3776 3777 namespace { 3778 3779 // This is a stack that contains both the value and dfs info of where 3780 // that value is valid. 3781 class ValueDFSStack { 3782 public: 3783 Value *back() const { return ValueStack.back(); } 3784 std::pair<int, int> dfs_back() const { return DFSStack.back(); } 3785 3786 void push_back(Value *V, int DFSIn, int DFSOut) { 3787 ValueStack.emplace_back(V); 3788 DFSStack.emplace_back(DFSIn, DFSOut); 3789 } 3790 3791 bool empty() const { return DFSStack.empty(); } 3792 3793 bool isInScope(int DFSIn, int DFSOut) const { 3794 if (empty()) 3795 return false; 3796 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second; 3797 } 3798 3799 void popUntilDFSScope(int DFSIn, int DFSOut) { 3800 3801 // These two should always be in sync at this point. 3802 assert(ValueStack.size() == DFSStack.size() && 3803 "Mismatch between ValueStack and DFSStack"); 3804 while ( 3805 !DFSStack.empty() && 3806 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) { 3807 DFSStack.pop_back(); 3808 ValueStack.pop_back(); 3809 } 3810 } 3811 3812 private: 3813 SmallVector<Value *, 8> ValueStack; 3814 SmallVector<std::pair<int, int>, 8> DFSStack; 3815 }; 3816 3817 } // end anonymous namespace 3818 3819 // Given an expression, get the congruence class for it. 3820 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const { 3821 if (auto *VE = dyn_cast<VariableExpression>(E)) 3822 return ValueToClass.lookup(VE->getVariableValue()); 3823 else if (isa<DeadExpression>(E)) 3824 return TOPClass; 3825 return ExpressionToClass.lookup(E); 3826 } 3827 3828 // Given a value and a basic block we are trying to see if it is available in, 3829 // see if the value has a leader available in that block. 3830 Value *NewGVN::findPHIOfOpsLeader(const Expression *E, 3831 const Instruction *OrigInst, 3832 const BasicBlock *BB) const { 3833 // It would already be constant if we could make it constant 3834 if (auto *CE = dyn_cast<ConstantExpression>(E)) 3835 return CE->getConstantValue(); 3836 if (auto *VE = dyn_cast<VariableExpression>(E)) { 3837 auto *V = VE->getVariableValue(); 3838 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB)) 3839 return VE->getVariableValue(); 3840 } 3841 3842 auto *CC = getClassForExpression(E); 3843 if (!CC) 3844 return nullptr; 3845 if (alwaysAvailable(CC->getLeader())) 3846 return CC->getLeader(); 3847 3848 for (auto *Member : *CC) { 3849 auto *MemberInst = dyn_cast<Instruction>(Member); 3850 if (MemberInst == OrigInst) 3851 continue; 3852 // Anything that isn't an instruction is always available. 3853 if (!MemberInst) 3854 return Member; 3855 if (DT->dominates(getBlockForValue(MemberInst), BB)) 3856 return Member; 3857 } 3858 return nullptr; 3859 } 3860 3861 bool NewGVN::eliminateInstructions(Function &F) { 3862 // This is a non-standard eliminator. The normal way to eliminate is 3863 // to walk the dominator tree in order, keeping track of available 3864 // values, and eliminating them. However, this is mildly 3865 // pointless. It requires doing lookups on every instruction, 3866 // regardless of whether we will ever eliminate it. For 3867 // instructions part of most singleton congruence classes, we know we 3868 // will never eliminate them. 3869 3870 // Instead, this eliminator looks at the congruence classes directly, sorts 3871 // them into a DFS ordering of the dominator tree, and then we just 3872 // perform elimination straight on the sets by walking the congruence 3873 // class member uses in order, and eliminate the ones dominated by the 3874 // last member. This is worst case O(E log E) where E = number of 3875 // instructions in a single congruence class. In theory, this is all 3876 // instructions. In practice, it is much faster, as most instructions are 3877 // either in singleton congruence classes or can't possibly be eliminated 3878 // anyway (if there are no overlapping DFS ranges in class). 3879 // When we find something not dominated, it becomes the new leader 3880 // for elimination purposes. 3881 // TODO: If we wanted to be faster, We could remove any members with no 3882 // overlapping ranges while sorting, as we will never eliminate anything 3883 // with those members, as they don't dominate anything else in our set. 3884 3885 bool AnythingReplaced = false; 3886 3887 // Since we are going to walk the domtree anyway, and we can't guarantee the 3888 // DFS numbers are updated, we compute some ourselves. 3889 DT->updateDFSNumbers(); 3890 3891 // Go through all of our phi nodes, and kill the arguments associated with 3892 // unreachable edges. 3893 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) { 3894 for (auto &Operand : PHI->incoming_values()) 3895 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) { 3896 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI 3897 << " for block " 3898 << getBlockName(PHI->getIncomingBlock(Operand)) 3899 << " with poison due to it being unreachable\n"); 3900 Operand.set(PoisonValue::get(PHI->getType())); 3901 } 3902 }; 3903 // Replace unreachable phi arguments. 3904 // At this point, RevisitOnReachabilityChange only contains: 3905 // 3906 // 1. PHIs 3907 // 2. Temporaries that will convert to PHIs 3908 // 3. Operations that are affected by an unreachable edge but do not fit into 3909 // 1 or 2 (rare). 3910 // So it is a slight overshoot of what we want. We could make it exact by 3911 // using two SparseBitVectors per block. 3912 DenseMap<const BasicBlock *, unsigned> ReachablePredCount; 3913 for (auto &KV : ReachableEdges) 3914 ReachablePredCount[KV.getEnd()]++; 3915 for (auto &BBPair : RevisitOnReachabilityChange) { 3916 for (auto InstNum : BBPair.second) { 3917 auto *Inst = InstrFromDFSNum(InstNum); 3918 auto *PHI = dyn_cast<PHINode>(Inst); 3919 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst)); 3920 if (!PHI) 3921 continue; 3922 auto *BB = BBPair.first; 3923 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues()) 3924 ReplaceUnreachablePHIArgs(PHI, BB); 3925 } 3926 } 3927 3928 // Map to store the use counts 3929 DenseMap<const Value *, unsigned int> UseCounts; 3930 for (auto *CC : reverse(CongruenceClasses)) { 3931 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID() 3932 << "\n"); 3933 // Track the equivalent store info so we can decide whether to try 3934 // dead store elimination. 3935 SmallVector<ValueDFS, 8> PossibleDeadStores; 3936 SmallPtrSet<Instruction *, 8> ProbablyDead; 3937 if (CC->isDead() || CC->empty()) 3938 continue; 3939 // Everything still in the TOP class is unreachable or dead. 3940 if (CC == TOPClass) { 3941 for (auto *M : *CC) { 3942 auto *VTE = ValueToExpression.lookup(M); 3943 if (VTE && isa<DeadExpression>(VTE)) 3944 markInstructionForDeletion(cast<Instruction>(M)); 3945 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) || 3946 InstructionsToErase.count(cast<Instruction>(M))) && 3947 "Everything in TOP should be unreachable or dead at this " 3948 "point"); 3949 } 3950 continue; 3951 } 3952 3953 assert(CC->getLeader() && "We should have had a leader"); 3954 // If this is a leader that is always available, and it's a 3955 // constant or has no equivalences, just replace everything with 3956 // it. We then update the congruence class with whatever members 3957 // are left. 3958 Value *Leader = 3959 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader(); 3960 if (alwaysAvailable(Leader)) { 3961 CongruenceClass::MemberSet MembersLeft; 3962 for (auto *M : *CC) { 3963 Value *Member = M; 3964 // Void things have no uses we can replace. 3965 if (Member == Leader || !isa<Instruction>(Member) || 3966 Member->getType()->isVoidTy()) { 3967 MembersLeft.insert(Member); 3968 continue; 3969 } 3970 3971 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for " 3972 << *Member << "\n"); 3973 auto *I = cast<Instruction>(Member); 3974 assert(Leader != I && "About to accidentally remove our leader"); 3975 replaceInstruction(I, Leader); 3976 AnythingReplaced = true; 3977 } 3978 CC->swap(MembersLeft); 3979 } else { 3980 // If this is a singleton, we can skip it. 3981 if (CC->size() != 1 || RealToTemp.count(Leader)) { 3982 // This is a stack because equality replacement/etc may place 3983 // constants in the middle of the member list, and we want to use 3984 // those constant values in preference to the current leader, over 3985 // the scope of those constants. 3986 ValueDFSStack EliminationStack; 3987 3988 // Convert the members to DFS ordered sets and then merge them. 3989 SmallVector<ValueDFS, 8> DFSOrderedSet; 3990 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead); 3991 3992 // Sort the whole thing. 3993 llvm::sort(DFSOrderedSet); 3994 for (auto &VD : DFSOrderedSet) { 3995 int MemberDFSIn = VD.DFSIn; 3996 int MemberDFSOut = VD.DFSOut; 3997 Value *Def = VD.Def.getPointer(); 3998 bool FromStore = VD.Def.getInt(); 3999 Use *U = VD.U; 4000 // We ignore void things because we can't get a value from them. 4001 if (Def && Def->getType()->isVoidTy()) 4002 continue; 4003 auto *DefInst = dyn_cast_or_null<Instruction>(Def); 4004 if (DefInst && AllTempInstructions.count(DefInst)) { 4005 auto *PN = cast<PHINode>(DefInst); 4006 4007 // If this is a value phi and that's the expression we used, insert 4008 // it into the program 4009 // remove from temp instruction list. 4010 AllTempInstructions.erase(PN); 4011 auto *DefBlock = getBlockForValue(Def); 4012 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def 4013 << " into block " 4014 << getBlockName(getBlockForValue(Def)) << "\n"); 4015 PN->insertBefore(DefBlock->begin()); 4016 Def = PN; 4017 NumGVNPHIOfOpsEliminations++; 4018 } 4019 4020 if (EliminationStack.empty()) { 4021 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n"); 4022 } else { 4023 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are (" 4024 << EliminationStack.dfs_back().first << "," 4025 << EliminationStack.dfs_back().second << ")\n"); 4026 } 4027 4028 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << "," 4029 << MemberDFSOut << ")\n"); 4030 // First, we see if we are out of scope or empty. If so, 4031 // and there equivalences, we try to replace the top of 4032 // stack with equivalences (if it's on the stack, it must 4033 // not have been eliminated yet). 4034 // Then we synchronize to our current scope, by 4035 // popping until we are back within a DFS scope that 4036 // dominates the current member. 4037 // Then, what happens depends on a few factors 4038 // If the stack is now empty, we need to push 4039 // If we have a constant or a local equivalence we want to 4040 // start using, we also push. 4041 // Otherwise, we walk along, processing members who are 4042 // dominated by this scope, and eliminate them. 4043 bool ShouldPush = Def && EliminationStack.empty(); 4044 bool OutOfScope = 4045 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut); 4046 4047 if (OutOfScope || ShouldPush) { 4048 // Sync to our current scope. 4049 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); 4050 bool ShouldPush = Def && EliminationStack.empty(); 4051 if (ShouldPush) { 4052 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut); 4053 } 4054 } 4055 4056 // Skip the Def's, we only want to eliminate on their uses. But mark 4057 // dominated defs as dead. 4058 if (Def) { 4059 // For anything in this case, what and how we value number 4060 // guarantees that any side-effects that would have occurred (ie 4061 // throwing, etc) can be proven to either still occur (because it's 4062 // dominated by something that has the same side-effects), or never 4063 // occur. Otherwise, we would not have been able to prove it value 4064 // equivalent to something else. For these things, we can just mark 4065 // it all dead. Note that this is different from the "ProbablyDead" 4066 // set, which may not be dominated by anything, and thus, are only 4067 // easy to prove dead if they are also side-effect free. Note that 4068 // because stores are put in terms of the stored value, we skip 4069 // stored values here. If the stored value is really dead, it will 4070 // still be marked for deletion when we process it in its own class. 4071 auto *DefI = dyn_cast<Instruction>(Def); 4072 if (!EliminationStack.empty() && DefI && !FromStore) { 4073 Value *DominatingLeader = EliminationStack.back(); 4074 if (DominatingLeader != Def) { 4075 // Even if the instruction is removed, we still need to update 4076 // flags/metadata due to downstreams users of the leader. 4077 if (!match(DefI, m_Intrinsic<Intrinsic::ssa_copy>())) 4078 patchReplacementInstruction(DefI, DominatingLeader); 4079 4080 markInstructionForDeletion(DefI); 4081 } 4082 } 4083 continue; 4084 } 4085 // At this point, we know it is a Use we are trying to possibly 4086 // replace. 4087 4088 assert(isa<Instruction>(U->get()) && 4089 "Current def should have been an instruction"); 4090 assert(isa<Instruction>(U->getUser()) && 4091 "Current user should have been an instruction"); 4092 4093 // If the thing we are replacing into is already marked to be dead, 4094 // this use is dead. Note that this is true regardless of whether 4095 // we have anything dominating the use or not. We do this here 4096 // because we are already walking all the uses anyway. 4097 Instruction *InstUse = cast<Instruction>(U->getUser()); 4098 if (InstructionsToErase.count(InstUse)) { 4099 auto &UseCount = UseCounts[U->get()]; 4100 if (--UseCount == 0) { 4101 ProbablyDead.insert(cast<Instruction>(U->get())); 4102 } 4103 } 4104 4105 // If we get to this point, and the stack is empty we must have a use 4106 // with nothing we can use to eliminate this use, so just skip it. 4107 if (EliminationStack.empty()) 4108 continue; 4109 4110 Value *DominatingLeader = EliminationStack.back(); 4111 4112 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader); 4113 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy; 4114 if (isSSACopy) 4115 DominatingLeader = II->getOperand(0); 4116 4117 // Don't replace our existing users with ourselves. 4118 if (U->get() == DominatingLeader) 4119 continue; 4120 4121 // If we replaced something in an instruction, handle the patching of 4122 // metadata. Skip this if we are replacing predicateinfo with its 4123 // original operand, as we already know we can just drop it. 4124 auto *ReplacedInst = cast<Instruction>(U->get()); 4125 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst); 4126 if (!PI || DominatingLeader != PI->OriginalOp) 4127 patchReplacementInstruction(ReplacedInst, DominatingLeader); 4128 4129 LLVM_DEBUG(dbgs() 4130 << "Found replacement " << *DominatingLeader << " for " 4131 << *U->get() << " in " << *(U->getUser()) << "\n"); 4132 U->set(DominatingLeader); 4133 // This is now a use of the dominating leader, which means if the 4134 // dominating leader was dead, it's now live! 4135 auto &LeaderUseCount = UseCounts[DominatingLeader]; 4136 // It's about to be alive again. 4137 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader)) 4138 ProbablyDead.erase(cast<Instruction>(DominatingLeader)); 4139 // For copy instructions, we use their operand as a leader, 4140 // which means we remove a user of the copy and it may become dead. 4141 if (isSSACopy) { 4142 auto It = UseCounts.find(II); 4143 if (It != UseCounts.end()) { 4144 unsigned &IIUseCount = It->second; 4145 if (--IIUseCount == 0) 4146 ProbablyDead.insert(II); 4147 } 4148 } 4149 ++LeaderUseCount; 4150 AnythingReplaced = true; 4151 } 4152 } 4153 } 4154 4155 // At this point, anything still in the ProbablyDead set is actually dead if 4156 // would be trivially dead. 4157 for (auto *I : ProbablyDead) 4158 if (wouldInstructionBeTriviallyDead(I)) 4159 markInstructionForDeletion(I); 4160 4161 // Cleanup the congruence class. 4162 CongruenceClass::MemberSet MembersLeft; 4163 for (auto *Member : *CC) 4164 if (!isa<Instruction>(Member) || 4165 !InstructionsToErase.count(cast<Instruction>(Member))) 4166 MembersLeft.insert(Member); 4167 CC->swap(MembersLeft); 4168 4169 // If we have possible dead stores to look at, try to eliminate them. 4170 if (CC->getStoreCount() > 0) { 4171 convertClassToLoadsAndStores(*CC, PossibleDeadStores); 4172 llvm::sort(PossibleDeadStores); 4173 ValueDFSStack EliminationStack; 4174 for (auto &VD : PossibleDeadStores) { 4175 int MemberDFSIn = VD.DFSIn; 4176 int MemberDFSOut = VD.DFSOut; 4177 Instruction *Member = cast<Instruction>(VD.Def.getPointer()); 4178 if (EliminationStack.empty() || 4179 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) { 4180 // Sync to our current scope. 4181 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); 4182 if (EliminationStack.empty()) { 4183 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut); 4184 continue; 4185 } 4186 } 4187 // We already did load elimination, so nothing to do here. 4188 if (isa<LoadInst>(Member)) 4189 continue; 4190 assert(!EliminationStack.empty()); 4191 Instruction *Leader = cast<Instruction>(EliminationStack.back()); 4192 (void)Leader; 4193 assert(DT->dominates(Leader->getParent(), Member->getParent())); 4194 // Member is dominater by Leader, and thus dead 4195 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member 4196 << " that is dominated by " << *Leader << "\n"); 4197 markInstructionForDeletion(Member); 4198 CC->erase(Member); 4199 ++NumGVNDeadStores; 4200 } 4201 } 4202 } 4203 return AnythingReplaced; 4204 } 4205 4206 // This function provides global ranking of operations so that we can place them 4207 // in a canonical order. Note that rank alone is not necessarily enough for a 4208 // complete ordering, as constants all have the same rank. However, generally, 4209 // we will simplify an operation with all constants so that it doesn't matter 4210 // what order they appear in. 4211 unsigned int NewGVN::getRank(const Value *V) const { 4212 // Prefer constants to undef to anything else 4213 // Undef is a constant, have to check it first. 4214 // Prefer poison to undef as it's less defined. 4215 // Prefer smaller constants to constantexprs 4216 // Note that the order here matters because of class inheritance 4217 if (isa<ConstantExpr>(V)) 4218 return 3; 4219 if (isa<PoisonValue>(V)) 4220 return 1; 4221 if (isa<UndefValue>(V)) 4222 return 2; 4223 if (isa<Constant>(V)) 4224 return 0; 4225 if (auto *A = dyn_cast<Argument>(V)) 4226 return 4 + A->getArgNo(); 4227 4228 // Need to shift the instruction DFS by number of arguments + 5 to account for 4229 // the constant and argument ranking above. 4230 unsigned Result = InstrToDFSNum(V); 4231 if (Result > 0) 4232 return 5 + NumFuncArgs + Result; 4233 // Unreachable or something else, just return a really large number. 4234 return ~0; 4235 } 4236 4237 // This is a function that says whether two commutative operations should 4238 // have their order swapped when canonicalizing. 4239 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const { 4240 // Because we only care about a total ordering, and don't rewrite expressions 4241 // in this order, we order by rank, which will give a strict weak ordering to 4242 // everything but constants, and then we order by pointer address. 4243 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B); 4244 } 4245 4246 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B, 4247 const IntrinsicInst *I) const { 4248 auto LookupResult = IntrinsicInstPred.find(I); 4249 if (shouldSwapOperands(A, B)) { 4250 if (LookupResult == IntrinsicInstPred.end()) 4251 IntrinsicInstPred.insert({I, B}); 4252 else 4253 LookupResult->second = B; 4254 return true; 4255 } 4256 4257 if (LookupResult != IntrinsicInstPred.end()) { 4258 auto *SeenPredicate = LookupResult->second; 4259 if (SeenPredicate) { 4260 if (SeenPredicate == B) 4261 return true; 4262 else 4263 LookupResult->second = nullptr; 4264 } 4265 } 4266 return false; 4267 } 4268 4269 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) { 4270 // Apparently the order in which we get these results matter for 4271 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep 4272 // the same order here, just in case. 4273 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4274 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4275 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4276 auto &AA = AM.getResult<AAManager>(F); 4277 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 4278 bool Changed = 4279 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getDataLayout()) 4280 .runGVN(); 4281 if (!Changed) 4282 return PreservedAnalyses::all(); 4283 PreservedAnalyses PA; 4284 PA.preserve<DominatorTreeAnalysis>(); 4285 return PA; 4286 } 4287