1 //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "HexagonISelLowering.h" 10 #include "HexagonRegisterInfo.h" 11 #include "HexagonSubtarget.h" 12 #include "llvm/ADT/SetVector.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Analysis/MemoryLocation.h" 15 #include "llvm/CodeGen/MachineBasicBlock.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/MachineInstr.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/IR/IntrinsicsHexagon.h" 22 #include "llvm/Support/CommandLine.h" 23 24 #include <algorithm> 25 #include <string> 26 #include <utility> 27 28 using namespace llvm; 29 30 static cl::opt<unsigned> HvxWidenThreshold("hexagon-hvx-widen", 31 cl::Hidden, cl::init(16), 32 cl::desc("Lower threshold (in bytes) for widening to HVX vectors")); 33 34 static const MVT LegalV64[] = { MVT::v64i8, MVT::v32i16, MVT::v16i32 }; 35 static const MVT LegalW64[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 }; 36 static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 }; 37 static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 }; 38 39 static std::tuple<unsigned, unsigned, unsigned> getIEEEProperties(MVT Ty) { 40 // For a float scalar type, return (exp-bits, exp-bias, fraction-bits) 41 MVT ElemTy = Ty.getScalarType(); 42 switch (ElemTy.SimpleTy) { 43 case MVT::f16: 44 return std::make_tuple(5, 15, 10); 45 case MVT::f32: 46 return std::make_tuple(8, 127, 23); 47 case MVT::f64: 48 return std::make_tuple(11, 1023, 52); 49 default: 50 break; 51 } 52 llvm_unreachable(("Unexpected type: " + EVT(ElemTy).getEVTString()).c_str()); 53 } 54 55 void 56 HexagonTargetLowering::initializeHVXLowering() { 57 if (Subtarget.useHVX64BOps()) { 58 addRegisterClass(MVT::v64i8, &Hexagon::HvxVRRegClass); 59 addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass); 60 addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass); 61 addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass); 62 addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass); 63 addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass); 64 // These "short" boolean vector types should be legal because 65 // they will appear as results of vector compares. If they were 66 // not legal, type legalization would try to make them legal 67 // and that would require using operations that do not use or 68 // produce such types. That, in turn, would imply using custom 69 // nodes, which would be unoptimizable by the DAG combiner. 70 // The idea is to rely on target-independent operations as much 71 // as possible. 72 addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass); 73 addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass); 74 addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass); 75 } else if (Subtarget.useHVX128BOps()) { 76 addRegisterClass(MVT::v128i8, &Hexagon::HvxVRRegClass); 77 addRegisterClass(MVT::v64i16, &Hexagon::HvxVRRegClass); 78 addRegisterClass(MVT::v32i32, &Hexagon::HvxVRRegClass); 79 addRegisterClass(MVT::v256i8, &Hexagon::HvxWRRegClass); 80 addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass); 81 addRegisterClass(MVT::v64i32, &Hexagon::HvxWRRegClass); 82 addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass); 83 addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass); 84 addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass); 85 if (Subtarget.useHVXV68Ops() && Subtarget.useHVXFloatingPoint()) { 86 addRegisterClass(MVT::v32f32, &Hexagon::HvxVRRegClass); 87 addRegisterClass(MVT::v64f16, &Hexagon::HvxVRRegClass); 88 addRegisterClass(MVT::v64f32, &Hexagon::HvxWRRegClass); 89 addRegisterClass(MVT::v128f16, &Hexagon::HvxWRRegClass); 90 } 91 } 92 93 // Set up operation actions. 94 95 bool Use64b = Subtarget.useHVX64BOps(); 96 ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128; 97 ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128; 98 MVT ByteV = Use64b ? MVT::v64i8 : MVT::v128i8; 99 MVT WordV = Use64b ? MVT::v16i32 : MVT::v32i32; 100 MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8; 101 102 auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) { 103 setOperationAction(Opc, FromTy, Promote); 104 AddPromotedToType(Opc, FromTy, ToTy); 105 }; 106 107 // Handle bitcasts of vector predicates to scalars (e.g. v32i1 to i32). 108 // Note: v16i1 -> i16 is handled in type legalization instead of op 109 // legalization. 110 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 111 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 112 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 113 setOperationAction(ISD::BITCAST, MVT::v16i1, Custom); 114 setOperationAction(ISD::BITCAST, MVT::v128i1, Custom); 115 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 116 setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal); 117 setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal); 118 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 119 120 if (Subtarget.useHVX128BOps() && Subtarget.useHVXV68Ops() && 121 Subtarget.useHVXFloatingPoint()) { 122 123 static const MVT FloatV[] = { MVT::v64f16, MVT::v32f32 }; 124 static const MVT FloatW[] = { MVT::v128f16, MVT::v64f32 }; 125 126 for (MVT T : FloatV) { 127 setOperationAction(ISD::FADD, T, Legal); 128 setOperationAction(ISD::FSUB, T, Legal); 129 setOperationAction(ISD::FMUL, T, Legal); 130 setOperationAction(ISD::FMINNUM, T, Legal); 131 setOperationAction(ISD::FMAXNUM, T, Legal); 132 133 setOperationAction(ISD::INSERT_SUBVECTOR, T, Custom); 134 setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom); 135 136 setOperationAction(ISD::SPLAT_VECTOR, T, Legal); 137 setOperationAction(ISD::SPLAT_VECTOR, T, Legal); 138 139 setOperationAction(ISD::MLOAD, T, Custom); 140 setOperationAction(ISD::MSTORE, T, Custom); 141 // Custom-lower BUILD_VECTOR. The standard (target-independent) 142 // handling of it would convert it to a load, which is not always 143 // the optimal choice. 144 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 145 } 146 147 148 // BUILD_VECTOR with f16 operands cannot be promoted without 149 // promoting the result, so lower the node to vsplat or constant pool 150 setOperationAction(ISD::BUILD_VECTOR, MVT::f16, Custom); 151 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::f16, Custom); 152 setOperationAction(ISD::SPLAT_VECTOR, MVT::f16, Custom); 153 154 // Vector shuffle is always promoted to ByteV and a bitcast to f16 is 155 // generated. 156 setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v128f16, ByteW); 157 setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v64f16, ByteV); 158 setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v64f32, ByteW); 159 setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v32f32, ByteV); 160 161 for (MVT P : FloatW) { 162 setOperationAction(ISD::LOAD, P, Custom); 163 setOperationAction(ISD::STORE, P, Custom); 164 setOperationAction(ISD::FADD, P, Custom); 165 setOperationAction(ISD::FSUB, P, Custom); 166 setOperationAction(ISD::FMUL, P, Custom); 167 setOperationAction(ISD::FMINNUM, P, Custom); 168 setOperationAction(ISD::FMAXNUM, P, Custom); 169 setOperationAction(ISD::SETCC, P, Custom); 170 setOperationAction(ISD::VSELECT, P, Custom); 171 172 // Custom-lower BUILD_VECTOR. The standard (target-independent) 173 // handling of it would convert it to a load, which is not always 174 // the optimal choice. 175 setOperationAction(ISD::BUILD_VECTOR, P, Custom); 176 // Make concat-vectors custom to handle concats of more than 2 vectors. 177 setOperationAction(ISD::CONCAT_VECTORS, P, Custom); 178 179 setOperationAction(ISD::MLOAD, P, Custom); 180 setOperationAction(ISD::MSTORE, P, Custom); 181 } 182 183 if (Subtarget.useHVXQFloatOps()) { 184 setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Custom); 185 setOperationAction(ISD::FP_ROUND, MVT::v64f16, Legal); 186 } else if (Subtarget.useHVXIEEEFPOps()) { 187 setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Legal); 188 setOperationAction(ISD::FP_ROUND, MVT::v64f16, Legal); 189 } 190 } 191 192 for (MVT T : LegalV) { 193 setIndexedLoadAction(ISD::POST_INC, T, Legal); 194 setIndexedStoreAction(ISD::POST_INC, T, Legal); 195 196 setOperationAction(ISD::ABS, T, Legal); 197 setOperationAction(ISD::AND, T, Legal); 198 setOperationAction(ISD::OR, T, Legal); 199 setOperationAction(ISD::XOR, T, Legal); 200 setOperationAction(ISD::ADD, T, Legal); 201 setOperationAction(ISD::SUB, T, Legal); 202 setOperationAction(ISD::MUL, T, Legal); 203 setOperationAction(ISD::CTPOP, T, Legal); 204 setOperationAction(ISD::CTLZ, T, Legal); 205 setOperationAction(ISD::SELECT, T, Legal); 206 setOperationAction(ISD::SPLAT_VECTOR, T, Legal); 207 if (T != ByteV) { 208 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal); 209 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal); 210 setOperationAction(ISD::BSWAP, T, Legal); 211 } 212 213 setOperationAction(ISD::SMIN, T, Legal); 214 setOperationAction(ISD::SMAX, T, Legal); 215 if (T.getScalarType() != MVT::i32) { 216 setOperationAction(ISD::UMIN, T, Legal); 217 setOperationAction(ISD::UMAX, T, Legal); 218 } 219 220 setOperationAction(ISD::CTTZ, T, Custom); 221 setOperationAction(ISD::LOAD, T, Custom); 222 setOperationAction(ISD::MLOAD, T, Custom); 223 setOperationAction(ISD::MSTORE, T, Custom); 224 if (T.getScalarType() != MVT::i32) { 225 setOperationAction(ISD::MULHS, T, Legal); 226 setOperationAction(ISD::MULHU, T, Legal); 227 } 228 229 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 230 // Make concat-vectors custom to handle concats of more than 2 vectors. 231 setOperationAction(ISD::CONCAT_VECTORS, T, Custom); 232 setOperationAction(ISD::INSERT_SUBVECTOR, T, Custom); 233 setOperationAction(ISD::INSERT_VECTOR_ELT, T, Custom); 234 setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom); 235 setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom); 236 setOperationAction(ISD::ANY_EXTEND, T, Custom); 237 setOperationAction(ISD::SIGN_EXTEND, T, Custom); 238 setOperationAction(ISD::ZERO_EXTEND, T, Custom); 239 setOperationAction(ISD::FSHL, T, Custom); 240 setOperationAction(ISD::FSHR, T, Custom); 241 if (T != ByteV) { 242 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom); 243 // HVX only has shifts of words and halfwords. 244 setOperationAction(ISD::SRA, T, Custom); 245 setOperationAction(ISD::SHL, T, Custom); 246 setOperationAction(ISD::SRL, T, Custom); 247 248 // Promote all shuffles to operate on vectors of bytes. 249 setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV); 250 } 251 252 if (Subtarget.useHVXFloatingPoint()) { 253 // Same action for both QFloat and IEEE. 254 setOperationAction(ISD::SINT_TO_FP, T, Custom); 255 setOperationAction(ISD::UINT_TO_FP, T, Custom); 256 setOperationAction(ISD::FP_TO_SINT, T, Custom); 257 setOperationAction(ISD::FP_TO_UINT, T, Custom); 258 } 259 260 setCondCodeAction(ISD::SETNE, T, Expand); 261 setCondCodeAction(ISD::SETLE, T, Expand); 262 setCondCodeAction(ISD::SETGE, T, Expand); 263 setCondCodeAction(ISD::SETLT, T, Expand); 264 setCondCodeAction(ISD::SETULE, T, Expand); 265 setCondCodeAction(ISD::SETUGE, T, Expand); 266 setCondCodeAction(ISD::SETULT, T, Expand); 267 } 268 269 for (MVT T : LegalW) { 270 // Custom-lower BUILD_VECTOR for vector pairs. The standard (target- 271 // independent) handling of it would convert it to a load, which is 272 // not always the optimal choice. 273 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 274 // Make concat-vectors custom to handle concats of more than 2 vectors. 275 setOperationAction(ISD::CONCAT_VECTORS, T, Custom); 276 277 // Custom-lower these operations for pairs. Expand them into a concat 278 // of the corresponding operations on individual vectors. 279 setOperationAction(ISD::ANY_EXTEND, T, Custom); 280 setOperationAction(ISD::SIGN_EXTEND, T, Custom); 281 setOperationAction(ISD::ZERO_EXTEND, T, Custom); 282 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Custom); 283 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom); 284 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal); 285 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal); 286 setOperationAction(ISD::SPLAT_VECTOR, T, Custom); 287 288 setOperationAction(ISD::LOAD, T, Custom); 289 setOperationAction(ISD::STORE, T, Custom); 290 setOperationAction(ISD::MLOAD, T, Custom); 291 setOperationAction(ISD::MSTORE, T, Custom); 292 setOperationAction(ISD::ABS, T, Custom); 293 setOperationAction(ISD::CTLZ, T, Custom); 294 setOperationAction(ISD::CTTZ, T, Custom); 295 setOperationAction(ISD::CTPOP, T, Custom); 296 297 setOperationAction(ISD::ADD, T, Legal); 298 setOperationAction(ISD::SUB, T, Legal); 299 setOperationAction(ISD::MUL, T, Custom); 300 setOperationAction(ISD::MULHS, T, Custom); 301 setOperationAction(ISD::MULHU, T, Custom); 302 setOperationAction(ISD::AND, T, Custom); 303 setOperationAction(ISD::OR, T, Custom); 304 setOperationAction(ISD::XOR, T, Custom); 305 setOperationAction(ISD::SETCC, T, Custom); 306 setOperationAction(ISD::VSELECT, T, Custom); 307 if (T != ByteW) { 308 setOperationAction(ISD::SRA, T, Custom); 309 setOperationAction(ISD::SHL, T, Custom); 310 setOperationAction(ISD::SRL, T, Custom); 311 312 // Promote all shuffles to operate on vectors of bytes. 313 setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW); 314 } 315 setOperationAction(ISD::FSHL, T, Custom); 316 setOperationAction(ISD::FSHR, T, Custom); 317 318 setOperationAction(ISD::SMIN, T, Custom); 319 setOperationAction(ISD::SMAX, T, Custom); 320 if (T.getScalarType() != MVT::i32) { 321 setOperationAction(ISD::UMIN, T, Custom); 322 setOperationAction(ISD::UMAX, T, Custom); 323 } 324 325 if (Subtarget.useHVXFloatingPoint()) { 326 // Same action for both QFloat and IEEE. 327 setOperationAction(ISD::SINT_TO_FP, T, Custom); 328 setOperationAction(ISD::UINT_TO_FP, T, Custom); 329 setOperationAction(ISD::FP_TO_SINT, T, Custom); 330 setOperationAction(ISD::FP_TO_UINT, T, Custom); 331 } 332 } 333 334 // Legalize all of these to HexagonISD::[SU]MUL_LOHI. 335 setOperationAction(ISD::MULHS, WordV, Custom); // -> _LOHI 336 setOperationAction(ISD::MULHU, WordV, Custom); // -> _LOHI 337 setOperationAction(ISD::SMUL_LOHI, WordV, Custom); 338 setOperationAction(ISD::UMUL_LOHI, WordV, Custom); 339 340 setCondCodeAction(ISD::SETNE, MVT::v64f16, Expand); 341 setCondCodeAction(ISD::SETLE, MVT::v64f16, Expand); 342 setCondCodeAction(ISD::SETGE, MVT::v64f16, Expand); 343 setCondCodeAction(ISD::SETLT, MVT::v64f16, Expand); 344 setCondCodeAction(ISD::SETONE, MVT::v64f16, Expand); 345 setCondCodeAction(ISD::SETOLE, MVT::v64f16, Expand); 346 setCondCodeAction(ISD::SETOGE, MVT::v64f16, Expand); 347 setCondCodeAction(ISD::SETOLT, MVT::v64f16, Expand); 348 setCondCodeAction(ISD::SETUNE, MVT::v64f16, Expand); 349 setCondCodeAction(ISD::SETULE, MVT::v64f16, Expand); 350 setCondCodeAction(ISD::SETUGE, MVT::v64f16, Expand); 351 setCondCodeAction(ISD::SETULT, MVT::v64f16, Expand); 352 353 setCondCodeAction(ISD::SETNE, MVT::v32f32, Expand); 354 setCondCodeAction(ISD::SETLE, MVT::v32f32, Expand); 355 setCondCodeAction(ISD::SETGE, MVT::v32f32, Expand); 356 setCondCodeAction(ISD::SETLT, MVT::v32f32, Expand); 357 setCondCodeAction(ISD::SETONE, MVT::v32f32, Expand); 358 setCondCodeAction(ISD::SETOLE, MVT::v32f32, Expand); 359 setCondCodeAction(ISD::SETOGE, MVT::v32f32, Expand); 360 setCondCodeAction(ISD::SETOLT, MVT::v32f32, Expand); 361 setCondCodeAction(ISD::SETUNE, MVT::v32f32, Expand); 362 setCondCodeAction(ISD::SETULE, MVT::v32f32, Expand); 363 setCondCodeAction(ISD::SETUGE, MVT::v32f32, Expand); 364 setCondCodeAction(ISD::SETULT, MVT::v32f32, Expand); 365 366 // Boolean vectors. 367 368 for (MVT T : LegalW) { 369 // Boolean types for vector pairs will overlap with the boolean 370 // types for single vectors, e.g. 371 // v64i8 -> v64i1 (single) 372 // v64i16 -> v64i1 (pair) 373 // Set these actions first, and allow the single actions to overwrite 374 // any duplicates. 375 MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements()); 376 setOperationAction(ISD::SETCC, BoolW, Custom); 377 setOperationAction(ISD::AND, BoolW, Custom); 378 setOperationAction(ISD::OR, BoolW, Custom); 379 setOperationAction(ISD::XOR, BoolW, Custom); 380 // Masked load/store takes a mask that may need splitting. 381 setOperationAction(ISD::MLOAD, BoolW, Custom); 382 setOperationAction(ISD::MSTORE, BoolW, Custom); 383 } 384 385 for (MVT T : LegalV) { 386 MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements()); 387 setOperationAction(ISD::BUILD_VECTOR, BoolV, Custom); 388 setOperationAction(ISD::CONCAT_VECTORS, BoolV, Custom); 389 setOperationAction(ISD::INSERT_SUBVECTOR, BoolV, Custom); 390 setOperationAction(ISD::INSERT_VECTOR_ELT, BoolV, Custom); 391 setOperationAction(ISD::EXTRACT_SUBVECTOR, BoolV, Custom); 392 setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom); 393 setOperationAction(ISD::SELECT, BoolV, Custom); 394 setOperationAction(ISD::AND, BoolV, Legal); 395 setOperationAction(ISD::OR, BoolV, Legal); 396 setOperationAction(ISD::XOR, BoolV, Legal); 397 } 398 399 if (Use64b) { 400 for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32}) 401 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal); 402 } else { 403 for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32}) 404 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal); 405 } 406 407 // Handle store widening for short vectors. 408 unsigned HwLen = Subtarget.getVectorLength(); 409 for (MVT ElemTy : Subtarget.getHVXElementTypes()) { 410 if (ElemTy == MVT::i1) 411 continue; 412 int ElemWidth = ElemTy.getFixedSizeInBits(); 413 int MaxElems = (8*HwLen) / ElemWidth; 414 for (int N = 2; N < MaxElems; N *= 2) { 415 MVT VecTy = MVT::getVectorVT(ElemTy, N); 416 auto Action = getPreferredVectorAction(VecTy); 417 if (Action == TargetLoweringBase::TypeWidenVector) { 418 setOperationAction(ISD::LOAD, VecTy, Custom); 419 setOperationAction(ISD::STORE, VecTy, Custom); 420 setOperationAction(ISD::SETCC, VecTy, Custom); 421 setOperationAction(ISD::TRUNCATE, VecTy, Custom); 422 setOperationAction(ISD::ANY_EXTEND, VecTy, Custom); 423 setOperationAction(ISD::SIGN_EXTEND, VecTy, Custom); 424 setOperationAction(ISD::ZERO_EXTEND, VecTy, Custom); 425 if (Subtarget.useHVXFloatingPoint()) { 426 setOperationAction(ISD::FP_TO_SINT, VecTy, Custom); 427 setOperationAction(ISD::FP_TO_UINT, VecTy, Custom); 428 setOperationAction(ISD::SINT_TO_FP, VecTy, Custom); 429 setOperationAction(ISD::UINT_TO_FP, VecTy, Custom); 430 } 431 432 MVT BoolTy = MVT::getVectorVT(MVT::i1, N); 433 if (!isTypeLegal(BoolTy)) 434 setOperationAction(ISD::SETCC, BoolTy, Custom); 435 } 436 } 437 } 438 439 setTargetDAGCombine({ISD::CONCAT_VECTORS, ISD::TRUNCATE, ISD::VSELECT}); 440 } 441 442 unsigned 443 HexagonTargetLowering::getPreferredHvxVectorAction(MVT VecTy) const { 444 MVT ElemTy = VecTy.getVectorElementType(); 445 unsigned VecLen = VecTy.getVectorNumElements(); 446 unsigned HwLen = Subtarget.getVectorLength(); 447 448 // Split vectors of i1 that exceed byte vector length. 449 if (ElemTy == MVT::i1 && VecLen > HwLen) 450 return TargetLoweringBase::TypeSplitVector; 451 452 ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes(); 453 // For shorter vectors of i1, widen them if any of the corresponding 454 // vectors of integers needs to be widened. 455 if (ElemTy == MVT::i1) { 456 for (MVT T : Tys) { 457 assert(T != MVT::i1); 458 auto A = getPreferredHvxVectorAction(MVT::getVectorVT(T, VecLen)); 459 if (A != ~0u) 460 return A; 461 } 462 return ~0u; 463 } 464 465 // If the size of VecTy is at least half of the vector length, 466 // widen the vector. Note: the threshold was not selected in 467 // any scientific way. 468 if (llvm::is_contained(Tys, ElemTy)) { 469 unsigned VecWidth = VecTy.getSizeInBits(); 470 unsigned HwWidth = 8*HwLen; 471 if (VecWidth > 2*HwWidth) 472 return TargetLoweringBase::TypeSplitVector; 473 474 bool HaveThreshold = HvxWidenThreshold.getNumOccurrences() > 0; 475 if (HaveThreshold && 8*HvxWidenThreshold <= VecWidth) 476 return TargetLoweringBase::TypeWidenVector; 477 if (VecWidth >= HwWidth/2 && VecWidth < HwWidth) 478 return TargetLoweringBase::TypeWidenVector; 479 } 480 481 // Defer to default. 482 return ~0u; 483 } 484 485 unsigned 486 HexagonTargetLowering::getCustomHvxOperationAction(SDNode &Op) const { 487 unsigned Opc = Op.getOpcode(); 488 switch (Opc) { 489 case HexagonISD::SMUL_LOHI: 490 case HexagonISD::UMUL_LOHI: 491 case HexagonISD::USMUL_LOHI: 492 return TargetLoweringBase::Custom; 493 } 494 return TargetLoweringBase::Legal; 495 } 496 497 SDValue 498 HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops, 499 const SDLoc &dl, SelectionDAG &DAG) const { 500 SmallVector<SDValue,4> IntOps; 501 IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32)); 502 append_range(IntOps, Ops); 503 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps); 504 } 505 506 MVT 507 HexagonTargetLowering::typeJoin(const TypePair &Tys) const { 508 assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType()); 509 510 MVT ElemTy = Tys.first.getVectorElementType(); 511 return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() + 512 Tys.second.getVectorNumElements()); 513 } 514 515 HexagonTargetLowering::TypePair 516 HexagonTargetLowering::typeSplit(MVT VecTy) const { 517 assert(VecTy.isVector()); 518 unsigned NumElem = VecTy.getVectorNumElements(); 519 assert((NumElem % 2) == 0 && "Expecting even-sized vector type"); 520 MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2); 521 return { HalfTy, HalfTy }; 522 } 523 524 MVT 525 HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const { 526 MVT ElemTy = VecTy.getVectorElementType(); 527 MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor); 528 return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements()); 529 } 530 531 MVT 532 HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const { 533 MVT ElemTy = VecTy.getVectorElementType(); 534 MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor); 535 return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements()); 536 } 537 538 SDValue 539 HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy, 540 SelectionDAG &DAG) const { 541 if (ty(Vec).getVectorElementType() == ElemTy) 542 return Vec; 543 MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy); 544 return DAG.getBitcast(CastTy, Vec); 545 } 546 547 SDValue 548 HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl, 549 SelectionDAG &DAG) const { 550 return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)), 551 Ops.first, Ops.second); 552 } 553 554 HexagonTargetLowering::VectorPair 555 HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl, 556 SelectionDAG &DAG) const { 557 TypePair Tys = typeSplit(ty(Vec)); 558 if (Vec.getOpcode() == HexagonISD::QCAT) 559 return VectorPair(Vec.getOperand(0), Vec.getOperand(1)); 560 return DAG.SplitVector(Vec, dl, Tys.first, Tys.second); 561 } 562 563 bool 564 HexagonTargetLowering::isHvxSingleTy(MVT Ty) const { 565 return Subtarget.isHVXVectorType(Ty) && 566 Ty.getSizeInBits() == 8 * Subtarget.getVectorLength(); 567 } 568 569 bool 570 HexagonTargetLowering::isHvxPairTy(MVT Ty) const { 571 return Subtarget.isHVXVectorType(Ty) && 572 Ty.getSizeInBits() == 16 * Subtarget.getVectorLength(); 573 } 574 575 bool 576 HexagonTargetLowering::isHvxBoolTy(MVT Ty) const { 577 return Subtarget.isHVXVectorType(Ty, true) && 578 Ty.getVectorElementType() == MVT::i1; 579 } 580 581 bool HexagonTargetLowering::allowsHvxMemoryAccess( 582 MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const { 583 // Bool vectors are excluded by default, but make it explicit to 584 // emphasize that bool vectors cannot be loaded or stored. 585 // Also, disallow double vector stores (to prevent unnecessary 586 // store widening in DAG combiner). 587 if (VecTy.getSizeInBits() > 8*Subtarget.getVectorLength()) 588 return false; 589 if (!Subtarget.isHVXVectorType(VecTy, /*IncludeBool=*/false)) 590 return false; 591 if (Fast) 592 *Fast = 1; 593 return true; 594 } 595 596 bool HexagonTargetLowering::allowsHvxMisalignedMemoryAccesses( 597 MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const { 598 if (!Subtarget.isHVXVectorType(VecTy)) 599 return false; 600 // XXX Should this be false? vmemu are a bit slower than vmem. 601 if (Fast) 602 *Fast = 1; 603 return true; 604 } 605 606 void HexagonTargetLowering::AdjustHvxInstrPostInstrSelection( 607 MachineInstr &MI, SDNode *Node) const { 608 unsigned Opc = MI.getOpcode(); 609 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 610 MachineBasicBlock &MB = *MI.getParent(); 611 MachineFunction &MF = *MB.getParent(); 612 MachineRegisterInfo &MRI = MF.getRegInfo(); 613 DebugLoc DL = MI.getDebugLoc(); 614 auto At = MI.getIterator(); 615 616 switch (Opc) { 617 case Hexagon::PS_vsplatib: 618 if (Subtarget.useHVXV62Ops()) { 619 // SplatV = A2_tfrsi #imm 620 // OutV = V6_lvsplatb SplatV 621 Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 622 BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) 623 .add(MI.getOperand(1)); 624 Register OutV = MI.getOperand(0).getReg(); 625 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV) 626 .addReg(SplatV); 627 } else { 628 // SplatV = A2_tfrsi #imm:#imm:#imm:#imm 629 // OutV = V6_lvsplatw SplatV 630 Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 631 const MachineOperand &InpOp = MI.getOperand(1); 632 assert(InpOp.isImm()); 633 uint32_t V = InpOp.getImm() & 0xFF; 634 BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) 635 .addImm(V << 24 | V << 16 | V << 8 | V); 636 Register OutV = MI.getOperand(0).getReg(); 637 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); 638 } 639 MB.erase(At); 640 break; 641 case Hexagon::PS_vsplatrb: 642 if (Subtarget.useHVXV62Ops()) { 643 // OutV = V6_lvsplatb Inp 644 Register OutV = MI.getOperand(0).getReg(); 645 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV) 646 .add(MI.getOperand(1)); 647 } else { 648 Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 649 const MachineOperand &InpOp = MI.getOperand(1); 650 BuildMI(MB, At, DL, TII.get(Hexagon::S2_vsplatrb), SplatV) 651 .addReg(InpOp.getReg(), 0, InpOp.getSubReg()); 652 Register OutV = MI.getOperand(0).getReg(); 653 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV) 654 .addReg(SplatV); 655 } 656 MB.erase(At); 657 break; 658 case Hexagon::PS_vsplatih: 659 if (Subtarget.useHVXV62Ops()) { 660 // SplatV = A2_tfrsi #imm 661 // OutV = V6_lvsplath SplatV 662 Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 663 BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) 664 .add(MI.getOperand(1)); 665 Register OutV = MI.getOperand(0).getReg(); 666 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV) 667 .addReg(SplatV); 668 } else { 669 // SplatV = A2_tfrsi #imm:#imm 670 // OutV = V6_lvsplatw SplatV 671 Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 672 const MachineOperand &InpOp = MI.getOperand(1); 673 assert(InpOp.isImm()); 674 uint32_t V = InpOp.getImm() & 0xFFFF; 675 BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) 676 .addImm(V << 16 | V); 677 Register OutV = MI.getOperand(0).getReg(); 678 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); 679 } 680 MB.erase(At); 681 break; 682 case Hexagon::PS_vsplatrh: 683 if (Subtarget.useHVXV62Ops()) { 684 // OutV = V6_lvsplath Inp 685 Register OutV = MI.getOperand(0).getReg(); 686 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV) 687 .add(MI.getOperand(1)); 688 } else { 689 // SplatV = A2_combine_ll Inp, Inp 690 // OutV = V6_lvsplatw SplatV 691 Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 692 const MachineOperand &InpOp = MI.getOperand(1); 693 BuildMI(MB, At, DL, TII.get(Hexagon::A2_combine_ll), SplatV) 694 .addReg(InpOp.getReg(), 0, InpOp.getSubReg()) 695 .addReg(InpOp.getReg(), 0, InpOp.getSubReg()); 696 Register OutV = MI.getOperand(0).getReg(); 697 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); 698 } 699 MB.erase(At); 700 break; 701 case Hexagon::PS_vsplatiw: 702 case Hexagon::PS_vsplatrw: 703 if (Opc == Hexagon::PS_vsplatiw) { 704 // SplatV = A2_tfrsi #imm 705 Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 706 BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) 707 .add(MI.getOperand(1)); 708 MI.getOperand(1).ChangeToRegister(SplatV, false); 709 } 710 // OutV = V6_lvsplatw SplatV/Inp 711 MI.setDesc(TII.get(Hexagon::V6_lvsplatw)); 712 break; 713 } 714 } 715 716 SDValue 717 HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy, 718 SelectionDAG &DAG) const { 719 if (ElemIdx.getValueType().getSimpleVT() != MVT::i32) 720 ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx); 721 722 unsigned ElemWidth = ElemTy.getSizeInBits(); 723 if (ElemWidth == 8) 724 return ElemIdx; 725 726 unsigned L = Log2_32(ElemWidth/8); 727 const SDLoc &dl(ElemIdx); 728 return DAG.getNode(ISD::SHL, dl, MVT::i32, 729 {ElemIdx, DAG.getConstant(L, dl, MVT::i32)}); 730 } 731 732 SDValue 733 HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy, 734 SelectionDAG &DAG) const { 735 unsigned ElemWidth = ElemTy.getSizeInBits(); 736 assert(ElemWidth >= 8 && ElemWidth <= 32); 737 if (ElemWidth == 32) 738 return Idx; 739 740 if (ty(Idx) != MVT::i32) 741 Idx = DAG.getBitcast(MVT::i32, Idx); 742 const SDLoc &dl(Idx); 743 SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32); 744 SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask}); 745 return SubIdx; 746 } 747 748 SDValue 749 HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0, 750 SDValue Op1, ArrayRef<int> Mask, 751 SelectionDAG &DAG) const { 752 MVT OpTy = ty(Op0); 753 assert(OpTy == ty(Op1)); 754 755 MVT ElemTy = OpTy.getVectorElementType(); 756 if (ElemTy == MVT::i8) 757 return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask); 758 assert(ElemTy.getSizeInBits() >= 8); 759 760 MVT ResTy = tyVector(OpTy, MVT::i8); 761 unsigned ElemSize = ElemTy.getSizeInBits() / 8; 762 763 SmallVector<int,128> ByteMask; 764 for (int M : Mask) { 765 if (M < 0) { 766 for (unsigned I = 0; I != ElemSize; ++I) 767 ByteMask.push_back(-1); 768 } else { 769 int NewM = M*ElemSize; 770 for (unsigned I = 0; I != ElemSize; ++I) 771 ByteMask.push_back(NewM+I); 772 } 773 } 774 assert(ResTy.getVectorNumElements() == ByteMask.size()); 775 return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG), 776 opCastElem(Op1, MVT::i8, DAG), ByteMask); 777 } 778 779 SDValue 780 HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values, 781 const SDLoc &dl, MVT VecTy, 782 SelectionDAG &DAG) const { 783 unsigned VecLen = Values.size(); 784 MachineFunction &MF = DAG.getMachineFunction(); 785 MVT ElemTy = VecTy.getVectorElementType(); 786 unsigned ElemWidth = ElemTy.getSizeInBits(); 787 unsigned HwLen = Subtarget.getVectorLength(); 788 789 unsigned ElemSize = ElemWidth / 8; 790 assert(ElemSize*VecLen == HwLen); 791 SmallVector<SDValue,32> Words; 792 793 if (VecTy.getVectorElementType() != MVT::i32 && 794 !(Subtarget.useHVXFloatingPoint() && 795 VecTy.getVectorElementType() == MVT::f32)) { 796 assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size"); 797 unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2; 798 MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord); 799 for (unsigned i = 0; i != VecLen; i += OpsPerWord) { 800 SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG); 801 Words.push_back(DAG.getBitcast(MVT::i32, W)); 802 } 803 } else { 804 for (SDValue V : Values) 805 Words.push_back(DAG.getBitcast(MVT::i32, V)); 806 } 807 auto isSplat = [] (ArrayRef<SDValue> Values, SDValue &SplatV) { 808 unsigned NumValues = Values.size(); 809 assert(NumValues > 0); 810 bool IsUndef = true; 811 for (unsigned i = 0; i != NumValues; ++i) { 812 if (Values[i].isUndef()) 813 continue; 814 IsUndef = false; 815 if (!SplatV.getNode()) 816 SplatV = Values[i]; 817 else if (SplatV != Values[i]) 818 return false; 819 } 820 if (IsUndef) 821 SplatV = Values[0]; 822 return true; 823 }; 824 825 unsigned NumWords = Words.size(); 826 SDValue SplatV; 827 bool IsSplat = isSplat(Words, SplatV); 828 if (IsSplat && isUndef(SplatV)) 829 return DAG.getUNDEF(VecTy); 830 if (IsSplat) { 831 assert(SplatV.getNode()); 832 if (isNullConstant(SplatV)) 833 return getZero(dl, VecTy, DAG); 834 MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4); 835 SDValue S = DAG.getNode(ISD::SPLAT_VECTOR, dl, WordTy, SplatV); 836 return DAG.getBitcast(VecTy, S); 837 } 838 839 // Delay recognizing constant vectors until here, so that we can generate 840 // a vsplat. 841 SmallVector<ConstantInt*, 128> Consts(VecLen); 842 bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts); 843 if (AllConst) { 844 ArrayRef<Constant*> Tmp((Constant**)Consts.begin(), 845 (Constant**)Consts.end()); 846 Constant *CV = ConstantVector::get(Tmp); 847 Align Alignment(HwLen); 848 SDValue CP = 849 LowerConstantPool(DAG.getConstantPool(CV, VecTy, Alignment), DAG); 850 return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP, 851 MachinePointerInfo::getConstantPool(MF), Alignment); 852 } 853 854 // A special case is a situation where the vector is built entirely from 855 // elements extracted from another vector. This could be done via a shuffle 856 // more efficiently, but typically, the size of the source vector will not 857 // match the size of the vector being built (which precludes the use of a 858 // shuffle directly). 859 // This only handles a single source vector, and the vector being built 860 // should be of a sub-vector type of the source vector type. 861 auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec, 862 SmallVectorImpl<int> &SrcIdx) { 863 SDValue Vec; 864 for (SDValue V : Values) { 865 if (isUndef(V)) { 866 SrcIdx.push_back(-1); 867 continue; 868 } 869 if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 870 return false; 871 // All extracts should come from the same vector. 872 SDValue T = V.getOperand(0); 873 if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode()) 874 return false; 875 Vec = T; 876 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1)); 877 if (C == nullptr) 878 return false; 879 int I = C->getSExtValue(); 880 assert(I >= 0 && "Negative element index"); 881 SrcIdx.push_back(I); 882 } 883 SrcVec = Vec; 884 return true; 885 }; 886 887 SmallVector<int,128> ExtIdx; 888 SDValue ExtVec; 889 if (IsBuildFromExtracts(ExtVec, ExtIdx)) { 890 MVT ExtTy = ty(ExtVec); 891 unsigned ExtLen = ExtTy.getVectorNumElements(); 892 if (ExtLen == VecLen || ExtLen == 2*VecLen) { 893 // Construct a new shuffle mask that will produce a vector with the same 894 // number of elements as the input vector, and such that the vector we 895 // want will be the initial subvector of it. 896 SmallVector<int,128> Mask; 897 BitVector Used(ExtLen); 898 899 for (int M : ExtIdx) { 900 Mask.push_back(M); 901 if (M >= 0) 902 Used.set(M); 903 } 904 // Fill the rest of the mask with the unused elements of ExtVec in hopes 905 // that it will result in a permutation of ExtVec's elements. It's still 906 // fine if it doesn't (e.g. if undefs are present, or elements are 907 // repeated), but permutations can always be done efficiently via vdelta 908 // and vrdelta. 909 for (unsigned I = 0; I != ExtLen; ++I) { 910 if (Mask.size() == ExtLen) 911 break; 912 if (!Used.test(I)) 913 Mask.push_back(I); 914 } 915 916 SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec, 917 DAG.getUNDEF(ExtTy), Mask); 918 return ExtLen == VecLen ? S : LoHalf(S, DAG); 919 } 920 } 921 922 // Find most common element to initialize vector with. This is to avoid 923 // unnecessary vinsert/valign for cases where the same value is present 924 // many times. Creates a histogram of the vector's elements to find the 925 // most common element n. 926 assert(4*Words.size() == Subtarget.getVectorLength()); 927 int VecHist[32]; 928 int n = 0; 929 for (unsigned i = 0; i != NumWords; ++i) { 930 VecHist[i] = 0; 931 if (Words[i].isUndef()) 932 continue; 933 for (unsigned j = i; j != NumWords; ++j) 934 if (Words[i] == Words[j]) 935 VecHist[i]++; 936 937 if (VecHist[i] > VecHist[n]) 938 n = i; 939 } 940 941 SDValue HalfV = getZero(dl, VecTy, DAG); 942 if (VecHist[n] > 1) { 943 SDValue SplatV = DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Words[n]); 944 HalfV = DAG.getNode(HexagonISD::VALIGN, dl, VecTy, 945 {HalfV, SplatV, DAG.getConstant(HwLen/2, dl, MVT::i32)}); 946 } 947 SDValue HalfV0 = HalfV; 948 SDValue HalfV1 = HalfV; 949 950 // Construct two halves in parallel, then or them together. Rn and Rm count 951 // number of rotations needed before the next element. One last rotation is 952 // performed post-loop to position the last element. 953 int Rn = 0, Rm = 0; 954 SDValue Sn, Sm; 955 SDValue N = HalfV0; 956 SDValue M = HalfV1; 957 for (unsigned i = 0; i != NumWords/2; ++i) { 958 // Rotate by element count since last insertion. 959 if (Words[i] != Words[n] || VecHist[n] <= 1) { 960 Sn = DAG.getConstant(Rn, dl, MVT::i32); 961 HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn}); 962 N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, 963 {HalfV0, Words[i]}); 964 Rn = 0; 965 } 966 if (Words[i+NumWords/2] != Words[n] || VecHist[n] <= 1) { 967 Sm = DAG.getConstant(Rm, dl, MVT::i32); 968 HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm}); 969 M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, 970 {HalfV1, Words[i+NumWords/2]}); 971 Rm = 0; 972 } 973 Rn += 4; 974 Rm += 4; 975 } 976 // Perform last rotation. 977 Sn = DAG.getConstant(Rn+HwLen/2, dl, MVT::i32); 978 Sm = DAG.getConstant(Rm, dl, MVT::i32); 979 HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn}); 980 HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm}); 981 982 SDValue T0 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV0); 983 SDValue T1 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV1); 984 985 SDValue DstV = DAG.getNode(ISD::OR, dl, ty(T0), {T0, T1}); 986 987 SDValue OutV = 988 DAG.getBitcast(tyVector(ty(DstV), VecTy.getVectorElementType()), DstV); 989 return OutV; 990 } 991 992 SDValue 993 HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl, 994 unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const { 995 MVT PredTy = ty(PredV); 996 unsigned HwLen = Subtarget.getVectorLength(); 997 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); 998 999 if (Subtarget.isHVXVectorType(PredTy, true)) { 1000 // Move the vector predicate SubV to a vector register, and scale it 1001 // down to match the representation (bytes per type element) that VecV 1002 // uses. The scaling down will pick every 2nd or 4th (every Scale-th 1003 // in general) element and put them at the front of the resulting 1004 // vector. This subvector will then be inserted into the Q2V of VecV. 1005 // To avoid having an operation that generates an illegal type (short 1006 // vector), generate a full size vector. 1007 // 1008 SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV); 1009 SmallVector<int,128> Mask(HwLen); 1010 // Scale = BitBytes(PredV) / Given BitBytes. 1011 unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes); 1012 unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes; 1013 1014 for (unsigned i = 0; i != HwLen; ++i) { 1015 unsigned Num = i % Scale; 1016 unsigned Off = i / Scale; 1017 Mask[BlockLen*Num + Off] = i; 1018 } 1019 SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask); 1020 if (!ZeroFill) 1021 return S; 1022 // Fill the bytes beyond BlockLen with 0s. 1023 // V6_pred_scalar2 cannot fill the entire predicate, so it only works 1024 // when BlockLen < HwLen. 1025 assert(BlockLen < HwLen && "vsetq(v1) prerequisite"); 1026 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); 1027 SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, 1028 {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG); 1029 SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q); 1030 return DAG.getNode(ISD::AND, dl, ByteTy, S, M); 1031 } 1032 1033 // Make sure that this is a valid scalar predicate. 1034 assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1); 1035 1036 unsigned Bytes = 8 / PredTy.getVectorNumElements(); 1037 SmallVector<SDValue,4> Words[2]; 1038 unsigned IdxW = 0; 1039 1040 SDValue W0 = isUndef(PredV) 1041 ? DAG.getUNDEF(MVT::i64) 1042 : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV); 1043 Words[IdxW].push_back(HiHalf(W0, DAG)); 1044 Words[IdxW].push_back(LoHalf(W0, DAG)); 1045 1046 while (Bytes < BitBytes) { 1047 IdxW ^= 1; 1048 Words[IdxW].clear(); 1049 1050 if (Bytes < 4) { 1051 for (const SDValue &W : Words[IdxW ^ 1]) { 1052 SDValue T = expandPredicate(W, dl, DAG); 1053 Words[IdxW].push_back(HiHalf(T, DAG)); 1054 Words[IdxW].push_back(LoHalf(T, DAG)); 1055 } 1056 } else { 1057 for (const SDValue &W : Words[IdxW ^ 1]) { 1058 Words[IdxW].push_back(W); 1059 Words[IdxW].push_back(W); 1060 } 1061 } 1062 Bytes *= 2; 1063 } 1064 1065 assert(Bytes == BitBytes); 1066 1067 SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy); 1068 SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32); 1069 for (const SDValue &W : Words[IdxW]) { 1070 Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4); 1071 Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W); 1072 } 1073 1074 return Vec; 1075 } 1076 1077 SDValue 1078 HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values, 1079 const SDLoc &dl, MVT VecTy, 1080 SelectionDAG &DAG) const { 1081 // Construct a vector V of bytes, such that a comparison V >u 0 would 1082 // produce the required vector predicate. 1083 unsigned VecLen = Values.size(); 1084 unsigned HwLen = Subtarget.getVectorLength(); 1085 assert(VecLen <= HwLen || VecLen == 8*HwLen); 1086 SmallVector<SDValue,128> Bytes; 1087 bool AllT = true, AllF = true; 1088 1089 auto IsTrue = [] (SDValue V) { 1090 if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode())) 1091 return !N->isZero(); 1092 return false; 1093 }; 1094 auto IsFalse = [] (SDValue V) { 1095 if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode())) 1096 return N->isZero(); 1097 return false; 1098 }; 1099 1100 if (VecLen <= HwLen) { 1101 // In the hardware, each bit of a vector predicate corresponds to a byte 1102 // of a vector register. Calculate how many bytes does a bit of VecTy 1103 // correspond to. 1104 assert(HwLen % VecLen == 0); 1105 unsigned BitBytes = HwLen / VecLen; 1106 for (SDValue V : Values) { 1107 AllT &= IsTrue(V); 1108 AllF &= IsFalse(V); 1109 1110 SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8) 1111 : DAG.getUNDEF(MVT::i8); 1112 for (unsigned B = 0; B != BitBytes; ++B) 1113 Bytes.push_back(Ext); 1114 } 1115 } else { 1116 // There are as many i1 values, as there are bits in a vector register. 1117 // Divide the values into groups of 8 and check that each group consists 1118 // of the same value (ignoring undefs). 1119 for (unsigned I = 0; I != VecLen; I += 8) { 1120 unsigned B = 0; 1121 // Find the first non-undef value in this group. 1122 for (; B != 8; ++B) { 1123 if (!Values[I+B].isUndef()) 1124 break; 1125 } 1126 SDValue F = Values[I+B]; 1127 AllT &= IsTrue(F); 1128 AllF &= IsFalse(F); 1129 1130 SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8) 1131 : DAG.getUNDEF(MVT::i8); 1132 Bytes.push_back(Ext); 1133 // Verify that the rest of values in the group are the same as the 1134 // first. 1135 for (; B != 8; ++B) 1136 assert(Values[I+B].isUndef() || Values[I+B] == F); 1137 } 1138 } 1139 1140 if (AllT) 1141 return DAG.getNode(HexagonISD::QTRUE, dl, VecTy); 1142 if (AllF) 1143 return DAG.getNode(HexagonISD::QFALSE, dl, VecTy); 1144 1145 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); 1146 SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG); 1147 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec); 1148 } 1149 1150 SDValue 1151 HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV, 1152 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { 1153 MVT ElemTy = ty(VecV).getVectorElementType(); 1154 1155 unsigned ElemWidth = ElemTy.getSizeInBits(); 1156 assert(ElemWidth >= 8 && ElemWidth <= 32); 1157 (void)ElemWidth; 1158 1159 SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG); 1160 SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, 1161 {VecV, ByteIdx}); 1162 if (ElemTy == MVT::i32) 1163 return ExWord; 1164 1165 // Have an extracted word, need to extract the smaller element out of it. 1166 // 1. Extract the bits of (the original) IdxV that correspond to the index 1167 // of the desired element in the 32-bit word. 1168 SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG); 1169 // 2. Extract the element from the word. 1170 SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord); 1171 return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG); 1172 } 1173 1174 SDValue 1175 HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV, 1176 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { 1177 // Implement other return types if necessary. 1178 assert(ResTy == MVT::i1); 1179 1180 unsigned HwLen = Subtarget.getVectorLength(); 1181 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); 1182 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); 1183 1184 unsigned Scale = HwLen / ty(VecV).getVectorNumElements(); 1185 SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32); 1186 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV); 1187 1188 SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG); 1189 SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32); 1190 return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG); 1191 } 1192 1193 SDValue 1194 HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV, 1195 SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { 1196 MVT ElemTy = ty(VecV).getVectorElementType(); 1197 1198 unsigned ElemWidth = ElemTy.getSizeInBits(); 1199 assert(ElemWidth >= 8 && ElemWidth <= 32); 1200 (void)ElemWidth; 1201 1202 auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV, 1203 SDValue ByteIdxV) { 1204 MVT VecTy = ty(VecV); 1205 unsigned HwLen = Subtarget.getVectorLength(); 1206 SDValue MaskV = 1207 DAG.getNode(ISD::AND, dl, MVT::i32, 1208 {ByteIdxV, DAG.getSignedConstant(-4, dl, MVT::i32)}); 1209 SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV}); 1210 SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV}); 1211 SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32, 1212 {DAG.getConstant(HwLen, dl, MVT::i32), MaskV}); 1213 SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV}); 1214 return TorV; 1215 }; 1216 1217 SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG); 1218 if (ElemTy == MVT::i32) 1219 return InsertWord(VecV, ValV, ByteIdx); 1220 1221 // If this is not inserting a 32-bit word, convert it into such a thing. 1222 // 1. Extract the existing word from the target vector. 1223 SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32, 1224 {ByteIdx, DAG.getConstant(2, dl, MVT::i32)}); 1225 SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx, 1226 dl, MVT::i32, DAG); 1227 1228 // 2. Treating the extracted word as a 32-bit vector, insert the given 1229 // value into it. 1230 SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG); 1231 MVT SubVecTy = tyVector(ty(Ext), ElemTy); 1232 SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext), 1233 ValV, SubIdx, dl, ElemTy, DAG); 1234 1235 // 3. Insert the 32-bit word back into the original vector. 1236 return InsertWord(VecV, Ins, ByteIdx); 1237 } 1238 1239 SDValue 1240 HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV, 1241 SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { 1242 unsigned HwLen = Subtarget.getVectorLength(); 1243 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); 1244 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); 1245 1246 unsigned Scale = HwLen / ty(VecV).getVectorNumElements(); 1247 SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32); 1248 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV); 1249 ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV); 1250 1251 SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG); 1252 return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV); 1253 } 1254 1255 SDValue 1256 HexagonTargetLowering::extractHvxSubvectorReg(SDValue OrigOp, SDValue VecV, 1257 SDValue IdxV, const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { 1258 MVT VecTy = ty(VecV); 1259 unsigned HwLen = Subtarget.getVectorLength(); 1260 unsigned Idx = IdxV.getNode()->getAsZExtVal(); 1261 MVT ElemTy = VecTy.getVectorElementType(); 1262 unsigned ElemWidth = ElemTy.getSizeInBits(); 1263 1264 // If the source vector is a vector pair, get the single vector containing 1265 // the subvector of interest. The subvector will never overlap two single 1266 // vectors. 1267 if (isHvxPairTy(VecTy)) { 1268 if (Idx * ElemWidth >= 8*HwLen) 1269 Idx -= VecTy.getVectorNumElements() / 2; 1270 1271 VecV = OrigOp; 1272 if (typeSplit(VecTy).first == ResTy) 1273 return VecV; 1274 } 1275 1276 // The only meaningful subvectors of a single HVX vector are those that 1277 // fit in a scalar register. 1278 assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64); 1279 1280 MVT WordTy = tyVector(VecTy, MVT::i32); 1281 SDValue WordVec = DAG.getBitcast(WordTy, VecV); 1282 unsigned WordIdx = (Idx*ElemWidth) / 32; 1283 1284 SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32); 1285 SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG); 1286 if (ResTy.getSizeInBits() == 32) 1287 return DAG.getBitcast(ResTy, W0); 1288 1289 SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32); 1290 SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG); 1291 SDValue WW = getCombine(W1, W0, dl, MVT::i64, DAG); 1292 return DAG.getBitcast(ResTy, WW); 1293 } 1294 1295 SDValue 1296 HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV, 1297 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { 1298 MVT VecTy = ty(VecV); 1299 unsigned HwLen = Subtarget.getVectorLength(); 1300 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); 1301 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); 1302 // IdxV is required to be a constant. 1303 unsigned Idx = IdxV.getNode()->getAsZExtVal(); 1304 1305 unsigned ResLen = ResTy.getVectorNumElements(); 1306 unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); 1307 unsigned Offset = Idx * BitBytes; 1308 SDValue Undef = DAG.getUNDEF(ByteTy); 1309 SmallVector<int,128> Mask; 1310 1311 if (Subtarget.isHVXVectorType(ResTy, true)) { 1312 // Converting between two vector predicates. Since the result is shorter 1313 // than the source, it will correspond to a vector predicate with the 1314 // relevant bits replicated. The replication count is the ratio of the 1315 // source and target vector lengths. 1316 unsigned Rep = VecTy.getVectorNumElements() / ResLen; 1317 assert(isPowerOf2_32(Rep) && HwLen % Rep == 0); 1318 for (unsigned i = 0; i != HwLen/Rep; ++i) { 1319 for (unsigned j = 0; j != Rep; ++j) 1320 Mask.push_back(i + Offset); 1321 } 1322 SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask); 1323 return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV); 1324 } 1325 1326 // Converting between a vector predicate and a scalar predicate. In the 1327 // vector predicate, a group of BitBytes bits will correspond to a single 1328 // i1 element of the source vector type. Those bits will all have the same 1329 // value. The same will be true for ByteVec, where each byte corresponds 1330 // to a bit in the vector predicate. 1331 // The algorithm is to traverse the ByteVec, going over the i1 values from 1332 // the source vector, and generate the corresponding representation in an 1333 // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the 1334 // elements so that the interesting 8 bytes will be in the low end of the 1335 // vector. 1336 unsigned Rep = 8 / ResLen; 1337 // Make sure the output fill the entire vector register, so repeat the 1338 // 8-byte groups as many times as necessary. 1339 for (unsigned r = 0; r != HwLen/ResLen; ++r) { 1340 // This will generate the indexes of the 8 interesting bytes. 1341 for (unsigned i = 0; i != ResLen; ++i) { 1342 for (unsigned j = 0; j != Rep; ++j) 1343 Mask.push_back(Offset + i*BitBytes); 1344 } 1345 } 1346 1347 SDValue Zero = getZero(dl, MVT::i32, DAG); 1348 SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask); 1349 // Combine the two low words from ShuffV into a v8i8, and byte-compare 1350 // them against 0. 1351 SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero}); 1352 SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, 1353 {ShuffV, DAG.getConstant(4, dl, MVT::i32)}); 1354 SDValue Vec64 = getCombine(W1, W0, dl, MVT::v8i8, DAG); 1355 return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy, 1356 {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG); 1357 } 1358 1359 SDValue 1360 HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV, 1361 SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { 1362 MVT VecTy = ty(VecV); 1363 MVT SubTy = ty(SubV); 1364 unsigned HwLen = Subtarget.getVectorLength(); 1365 MVT ElemTy = VecTy.getVectorElementType(); 1366 unsigned ElemWidth = ElemTy.getSizeInBits(); 1367 1368 bool IsPair = isHvxPairTy(VecTy); 1369 MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth); 1370 // The two single vectors that VecV consists of, if it's a pair. 1371 SDValue V0, V1; 1372 SDValue SingleV = VecV; 1373 SDValue PickHi; 1374 1375 if (IsPair) { 1376 V0 = LoHalf(VecV, DAG); 1377 V1 = HiHalf(VecV, DAG); 1378 1379 SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(), 1380 dl, MVT::i32); 1381 PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT); 1382 if (isHvxSingleTy(SubTy)) { 1383 if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) { 1384 unsigned Idx = CN->getZExtValue(); 1385 assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2); 1386 unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi; 1387 return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV); 1388 } 1389 // If IdxV is not a constant, generate the two variants: with the 1390 // SubV as the high and as the low subregister, and select the right 1391 // pair based on the IdxV. 1392 SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1}); 1393 SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV}); 1394 return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo); 1395 } 1396 // The subvector being inserted must be entirely contained in one of 1397 // the vectors V0 or V1. Set SingleV to the correct one, and update 1398 // IdxV to be the index relative to the beginning of that vector. 1399 SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV); 1400 IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV); 1401 SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0); 1402 } 1403 1404 // The only meaningful subvectors of a single HVX vector are those that 1405 // fit in a scalar register. 1406 assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64); 1407 // Convert IdxV to be index in bytes. 1408 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode()); 1409 if (!IdxN || !IdxN->isZero()) { 1410 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, 1411 DAG.getConstant(ElemWidth/8, dl, MVT::i32)); 1412 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV); 1413 } 1414 // When inserting a single word, the rotation back to the original position 1415 // would be by HwLen-Idx, but if two words are inserted, it will need to be 1416 // by (HwLen-4)-Idx. 1417 unsigned RolBase = HwLen; 1418 if (SubTy.getSizeInBits() == 32) { 1419 SDValue V = DAG.getBitcast(MVT::i32, SubV); 1420 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, V); 1421 } else { 1422 SDValue V = DAG.getBitcast(MVT::i64, SubV); 1423 SDValue R0 = LoHalf(V, DAG); 1424 SDValue R1 = HiHalf(V, DAG); 1425 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0); 1426 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, 1427 DAG.getConstant(4, dl, MVT::i32)); 1428 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1); 1429 RolBase = HwLen-4; 1430 } 1431 // If the vector wasn't ror'ed, don't ror it back. 1432 if (RolBase != 4 || !IdxN || !IdxN->isZero()) { 1433 SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32, 1434 DAG.getConstant(RolBase, dl, MVT::i32), IdxV); 1435 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV); 1436 } 1437 1438 if (IsPair) { 1439 SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1}); 1440 SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV}); 1441 return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo); 1442 } 1443 return SingleV; 1444 } 1445 1446 SDValue 1447 HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV, 1448 SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { 1449 MVT VecTy = ty(VecV); 1450 MVT SubTy = ty(SubV); 1451 assert(Subtarget.isHVXVectorType(VecTy, true)); 1452 // VecV is an HVX vector predicate. SubV may be either an HVX vector 1453 // predicate as well, or it can be a scalar predicate. 1454 1455 unsigned VecLen = VecTy.getVectorNumElements(); 1456 unsigned HwLen = Subtarget.getVectorLength(); 1457 assert(HwLen % VecLen == 0 && "Unexpected vector type"); 1458 1459 unsigned Scale = VecLen / SubTy.getVectorNumElements(); 1460 unsigned BitBytes = HwLen / VecLen; 1461 unsigned BlockLen = HwLen / Scale; 1462 1463 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); 1464 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); 1465 SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG); 1466 SDValue ByteIdx; 1467 1468 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode()); 1469 if (!IdxN || !IdxN->isZero()) { 1470 ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, 1471 DAG.getConstant(BitBytes, dl, MVT::i32)); 1472 ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx); 1473 } 1474 1475 // ByteVec is the target vector VecV rotated in such a way that the 1476 // subvector should be inserted at index 0. Generate a predicate mask 1477 // and use vmux to do the insertion. 1478 assert(BlockLen < HwLen && "vsetq(v1) prerequisite"); 1479 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); 1480 SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, 1481 {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG); 1482 ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG); 1483 // Rotate ByteVec back, and convert to a vector predicate. 1484 if (!IdxN || !IdxN->isZero()) { 1485 SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32); 1486 SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx); 1487 ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi); 1488 } 1489 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec); 1490 } 1491 1492 SDValue 1493 HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl, 1494 MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const { 1495 // Sign- and any-extending of a vector predicate to a vector register is 1496 // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and 1497 // a vector of 1s (where the 1s are of type matching the vector type). 1498 assert(Subtarget.isHVXVectorType(ResTy)); 1499 if (!ZeroExt) 1500 return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV); 1501 1502 assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements()); 1503 SDValue True = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, 1504 DAG.getConstant(1, dl, MVT::i32)); 1505 SDValue False = getZero(dl, ResTy, DAG); 1506 return DAG.getSelect(dl, ResTy, VecV, True, False); 1507 } 1508 1509 SDValue 1510 HexagonTargetLowering::compressHvxPred(SDValue VecQ, const SDLoc &dl, 1511 MVT ResTy, SelectionDAG &DAG) const { 1512 // Given a predicate register VecQ, transfer bits VecQ[0..HwLen-1] 1513 // (i.e. the entire predicate register) to bits [0..HwLen-1] of a 1514 // vector register. The remaining bits of the vector register are 1515 // unspecified. 1516 1517 MachineFunction &MF = DAG.getMachineFunction(); 1518 unsigned HwLen = Subtarget.getVectorLength(); 1519 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); 1520 MVT PredTy = ty(VecQ); 1521 unsigned PredLen = PredTy.getVectorNumElements(); 1522 assert(HwLen % PredLen == 0); 1523 MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(8*HwLen/PredLen), PredLen); 1524 1525 Type *Int8Ty = Type::getInt8Ty(*DAG.getContext()); 1526 SmallVector<Constant*, 128> Tmp; 1527 // Create an array of bytes (hex): 01,02,04,08,10,20,40,80, 01,02,04,08,... 1528 // These are bytes with the LSB rotated left with respect to their index. 1529 for (unsigned i = 0; i != HwLen/8; ++i) { 1530 for (unsigned j = 0; j != 8; ++j) 1531 Tmp.push_back(ConstantInt::get(Int8Ty, 1ull << j)); 1532 } 1533 Constant *CV = ConstantVector::get(Tmp); 1534 Align Alignment(HwLen); 1535 SDValue CP = 1536 LowerConstantPool(DAG.getConstantPool(CV, ByteTy, Alignment), DAG); 1537 SDValue Bytes = 1538 DAG.getLoad(ByteTy, dl, DAG.getEntryNode(), CP, 1539 MachinePointerInfo::getConstantPool(MF), Alignment); 1540 1541 // Select the bytes that correspond to true bits in the vector predicate. 1542 SDValue Sel = DAG.getSelect(dl, VecTy, VecQ, DAG.getBitcast(VecTy, Bytes), 1543 getZero(dl, VecTy, DAG)); 1544 // Calculate the OR of all bytes in each group of 8. That will compress 1545 // all the individual bits into a single byte. 1546 // First, OR groups of 4, via vrmpy with 0x01010101. 1547 SDValue All1 = 1548 DAG.getSplatBuildVector(MVT::v4i8, dl, DAG.getConstant(1, dl, MVT::i32)); 1549 SDValue Vrmpy = getInstr(Hexagon::V6_vrmpyub, dl, ByteTy, {Sel, All1}, DAG); 1550 // Then rotate the accumulated vector by 4 bytes, and do the final OR. 1551 SDValue Rot = getInstr(Hexagon::V6_valignbi, dl, ByteTy, 1552 {Vrmpy, Vrmpy, DAG.getTargetConstant(4, dl, MVT::i32)}, DAG); 1553 SDValue Vor = DAG.getNode(ISD::OR, dl, ByteTy, {Vrmpy, Rot}); 1554 1555 // Pick every 8th byte and coalesce them at the beginning of the output. 1556 // For symmetry, coalesce every 1+8th byte after that, then every 2+8th 1557 // byte and so on. 1558 SmallVector<int,128> Mask; 1559 for (unsigned i = 0; i != HwLen; ++i) 1560 Mask.push_back((8*i) % HwLen + i/(HwLen/8)); 1561 SDValue Collect = 1562 DAG.getVectorShuffle(ByteTy, dl, Vor, DAG.getUNDEF(ByteTy), Mask); 1563 return DAG.getBitcast(ResTy, Collect); 1564 } 1565 1566 SDValue 1567 HexagonTargetLowering::resizeToWidth(SDValue VecV, MVT ResTy, bool Signed, 1568 const SDLoc &dl, SelectionDAG &DAG) const { 1569 // Take a vector and resize the element type to match the given type. 1570 MVT InpTy = ty(VecV); 1571 if (InpTy == ResTy) 1572 return VecV; 1573 1574 unsigned InpWidth = InpTy.getSizeInBits(); 1575 unsigned ResWidth = ResTy.getSizeInBits(); 1576 1577 if (InpTy.isFloatingPoint()) { 1578 return InpWidth < ResWidth 1579 ? DAG.getNode(ISD::FP_EXTEND, dl, ResTy, VecV) 1580 : DAG.getNode(ISD::FP_ROUND, dl, ResTy, VecV, 1581 DAG.getTargetConstant(0, dl, MVT::i32)); 1582 } 1583 1584 assert(InpTy.isInteger()); 1585 1586 if (InpWidth < ResWidth) { 1587 unsigned ExtOpc = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 1588 return DAG.getNode(ExtOpc, dl, ResTy, VecV); 1589 } else { 1590 unsigned NarOpc = Signed ? HexagonISD::SSAT : HexagonISD::USAT; 1591 return DAG.getNode(NarOpc, dl, ResTy, VecV, DAG.getValueType(ResTy)); 1592 } 1593 } 1594 1595 SDValue 1596 HexagonTargetLowering::extractSubvector(SDValue Vec, MVT SubTy, unsigned SubIdx, 1597 SelectionDAG &DAG) const { 1598 assert(ty(Vec).getSizeInBits() % SubTy.getSizeInBits() == 0); 1599 1600 const SDLoc &dl(Vec); 1601 unsigned ElemIdx = SubIdx * SubTy.getVectorNumElements(); 1602 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubTy, 1603 {Vec, DAG.getConstant(ElemIdx, dl, MVT::i32)}); 1604 } 1605 1606 SDValue 1607 HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) 1608 const { 1609 const SDLoc &dl(Op); 1610 MVT VecTy = ty(Op); 1611 1612 unsigned Size = Op.getNumOperands(); 1613 SmallVector<SDValue,128> Ops; 1614 for (unsigned i = 0; i != Size; ++i) 1615 Ops.push_back(Op.getOperand(i)); 1616 1617 // First, split the BUILD_VECTOR for vector pairs. We could generate 1618 // some pairs directly (via splat), but splats should be generated 1619 // by the combiner prior to getting here. 1620 if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) { 1621 ArrayRef<SDValue> A(Ops); 1622 MVT SingleTy = typeSplit(VecTy).first; 1623 SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG); 1624 SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG); 1625 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1); 1626 } 1627 1628 if (VecTy.getVectorElementType() == MVT::i1) 1629 return buildHvxVectorPred(Ops, dl, VecTy, DAG); 1630 1631 // In case of MVT::f16 BUILD_VECTOR, since MVT::f16 is 1632 // not a legal type, just bitcast the node to use i16 1633 // types and bitcast the result back to f16 1634 if (VecTy.getVectorElementType() == MVT::f16) { 1635 SmallVector<SDValue,64> NewOps; 1636 for (unsigned i = 0; i != Size; i++) 1637 NewOps.push_back(DAG.getBitcast(MVT::i16, Ops[i])); 1638 1639 SDValue T0 = DAG.getNode(ISD::BUILD_VECTOR, dl, 1640 tyVector(VecTy, MVT::i16), NewOps); 1641 return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0); 1642 } 1643 1644 return buildHvxVectorReg(Ops, dl, VecTy, DAG); 1645 } 1646 1647 SDValue 1648 HexagonTargetLowering::LowerHvxSplatVector(SDValue Op, SelectionDAG &DAG) 1649 const { 1650 const SDLoc &dl(Op); 1651 MVT VecTy = ty(Op); 1652 MVT ArgTy = ty(Op.getOperand(0)); 1653 1654 if (ArgTy == MVT::f16) { 1655 MVT SplatTy = MVT::getVectorVT(MVT::i16, VecTy.getVectorNumElements()); 1656 SDValue ToInt16 = DAG.getBitcast(MVT::i16, Op.getOperand(0)); 1657 SDValue ToInt32 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, ToInt16); 1658 SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, dl, SplatTy, ToInt32); 1659 return DAG.getBitcast(VecTy, Splat); 1660 } 1661 1662 return SDValue(); 1663 } 1664 1665 SDValue 1666 HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) 1667 const { 1668 // Vector concatenation of two integer (non-bool) vectors does not need 1669 // special lowering. Custom-lower concats of bool vectors and expand 1670 // concats of more than 2 vectors. 1671 MVT VecTy = ty(Op); 1672 const SDLoc &dl(Op); 1673 unsigned NumOp = Op.getNumOperands(); 1674 if (VecTy.getVectorElementType() != MVT::i1) { 1675 if (NumOp == 2) 1676 return Op; 1677 // Expand the other cases into a build-vector. 1678 SmallVector<SDValue,8> Elems; 1679 for (SDValue V : Op.getNode()->ops()) 1680 DAG.ExtractVectorElements(V, Elems); 1681 // A vector of i16 will be broken up into a build_vector of i16's. 1682 // This is a problem, since at the time of operation legalization, 1683 // all operations are expected to be type-legalized, and i16 is not 1684 // a legal type. If any of the extracted elements is not of a valid 1685 // type, sign-extend it to a valid one. 1686 for (unsigned i = 0, e = Elems.size(); i != e; ++i) { 1687 SDValue V = Elems[i]; 1688 MVT Ty = ty(V); 1689 if (!isTypeLegal(Ty)) { 1690 MVT NTy = typeLegalize(Ty, DAG); 1691 if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1692 Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy, 1693 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy, 1694 V.getOperand(0), V.getOperand(1)), 1695 DAG.getValueType(Ty)); 1696 continue; 1697 } 1698 // A few less complicated cases. 1699 switch (V.getOpcode()) { 1700 case ISD::Constant: 1701 Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy); 1702 break; 1703 case ISD::UNDEF: 1704 Elems[i] = DAG.getUNDEF(NTy); 1705 break; 1706 case ISD::TRUNCATE: 1707 Elems[i] = V.getOperand(0); 1708 break; 1709 default: 1710 llvm_unreachable("Unexpected vector element"); 1711 } 1712 } 1713 } 1714 return DAG.getBuildVector(VecTy, dl, Elems); 1715 } 1716 1717 assert(VecTy.getVectorElementType() == MVT::i1); 1718 unsigned HwLen = Subtarget.getVectorLength(); 1719 assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0); 1720 1721 SDValue Op0 = Op.getOperand(0); 1722 1723 // If the operands are HVX types (i.e. not scalar predicates), then 1724 // defer the concatenation, and create QCAT instead. 1725 if (Subtarget.isHVXVectorType(ty(Op0), true)) { 1726 if (NumOp == 2) 1727 return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1)); 1728 1729 ArrayRef<SDUse> U(Op.getNode()->ops()); 1730 SmallVector<SDValue, 4> SV(U); 1731 ArrayRef<SDValue> Ops(SV); 1732 1733 MVT HalfTy = typeSplit(VecTy).first; 1734 SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy, 1735 Ops.take_front(NumOp/2)); 1736 SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy, 1737 Ops.take_back(NumOp/2)); 1738 return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1); 1739 } 1740 1741 // Count how many bytes (in a vector register) each bit in VecTy 1742 // corresponds to. 1743 unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); 1744 1745 SmallVector<SDValue,8> Prefixes; 1746 for (SDValue V : Op.getNode()->op_values()) { 1747 SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG); 1748 Prefixes.push_back(P); 1749 } 1750 1751 unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements(); 1752 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); 1753 SDValue S = DAG.getConstant(HwLen - InpLen*BitBytes, dl, MVT::i32); 1754 SDValue Res = getZero(dl, ByteTy, DAG); 1755 for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) { 1756 Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S); 1757 Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]); 1758 } 1759 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res); 1760 } 1761 1762 SDValue 1763 HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG) 1764 const { 1765 // Change the type of the extracted element to i32. 1766 SDValue VecV = Op.getOperand(0); 1767 MVT ElemTy = ty(VecV).getVectorElementType(); 1768 const SDLoc &dl(Op); 1769 SDValue IdxV = Op.getOperand(1); 1770 if (ElemTy == MVT::i1) 1771 return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG); 1772 1773 return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG); 1774 } 1775 1776 SDValue 1777 HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) 1778 const { 1779 const SDLoc &dl(Op); 1780 MVT VecTy = ty(Op); 1781 SDValue VecV = Op.getOperand(0); 1782 SDValue ValV = Op.getOperand(1); 1783 SDValue IdxV = Op.getOperand(2); 1784 MVT ElemTy = ty(VecV).getVectorElementType(); 1785 if (ElemTy == MVT::i1) 1786 return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG); 1787 1788 if (ElemTy == MVT::f16) { 1789 SDValue T0 = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, 1790 tyVector(VecTy, MVT::i16), 1791 DAG.getBitcast(tyVector(VecTy, MVT::i16), VecV), 1792 DAG.getBitcast(MVT::i16, ValV), IdxV); 1793 return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0); 1794 } 1795 1796 return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG); 1797 } 1798 1799 SDValue 1800 HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG) 1801 const { 1802 SDValue SrcV = Op.getOperand(0); 1803 MVT SrcTy = ty(SrcV); 1804 MVT DstTy = ty(Op); 1805 SDValue IdxV = Op.getOperand(1); 1806 unsigned Idx = IdxV.getNode()->getAsZExtVal(); 1807 assert(Idx % DstTy.getVectorNumElements() == 0); 1808 (void)Idx; 1809 const SDLoc &dl(Op); 1810 1811 MVT ElemTy = SrcTy.getVectorElementType(); 1812 if (ElemTy == MVT::i1) 1813 return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG); 1814 1815 return extractHvxSubvectorReg(Op, SrcV, IdxV, dl, DstTy, DAG); 1816 } 1817 1818 SDValue 1819 HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) 1820 const { 1821 // Idx does not need to be a constant. 1822 SDValue VecV = Op.getOperand(0); 1823 SDValue ValV = Op.getOperand(1); 1824 SDValue IdxV = Op.getOperand(2); 1825 1826 const SDLoc &dl(Op); 1827 MVT VecTy = ty(VecV); 1828 MVT ElemTy = VecTy.getVectorElementType(); 1829 if (ElemTy == MVT::i1) 1830 return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG); 1831 1832 return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG); 1833 } 1834 1835 SDValue 1836 HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const { 1837 // Lower any-extends of boolean vectors to sign-extends, since they 1838 // translate directly to Q2V. Zero-extending could also be done equally 1839 // fast, but Q2V is used/recognized in more places. 1840 // For all other vectors, use zero-extend. 1841 MVT ResTy = ty(Op); 1842 SDValue InpV = Op.getOperand(0); 1843 MVT ElemTy = ty(InpV).getVectorElementType(); 1844 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) 1845 return LowerHvxSignExt(Op, DAG); 1846 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV); 1847 } 1848 1849 SDValue 1850 HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const { 1851 MVT ResTy = ty(Op); 1852 SDValue InpV = Op.getOperand(0); 1853 MVT ElemTy = ty(InpV).getVectorElementType(); 1854 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) 1855 return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG); 1856 return Op; 1857 } 1858 1859 SDValue 1860 HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const { 1861 MVT ResTy = ty(Op); 1862 SDValue InpV = Op.getOperand(0); 1863 MVT ElemTy = ty(InpV).getVectorElementType(); 1864 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) 1865 return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG); 1866 return Op; 1867 } 1868 1869 SDValue 1870 HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const { 1871 // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight): 1872 // cttz(x) = bitwidth(x) - ctlz(~x & (x-1)) 1873 const SDLoc &dl(Op); 1874 MVT ResTy = ty(Op); 1875 SDValue InpV = Op.getOperand(0); 1876 assert(ResTy == ty(InpV)); 1877 1878 // Calculate the vectors of 1 and bitwidth(x). 1879 MVT ElemTy = ty(InpV).getVectorElementType(); 1880 unsigned ElemWidth = ElemTy.getSizeInBits(); 1881 1882 SDValue Vec1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, 1883 DAG.getConstant(1, dl, MVT::i32)); 1884 SDValue VecW = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, 1885 DAG.getConstant(ElemWidth, dl, MVT::i32)); 1886 SDValue VecN1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, 1887 DAG.getAllOnesConstant(dl, MVT::i32)); 1888 1889 // Do not use DAG.getNOT, because that would create BUILD_VECTOR with 1890 // a BITCAST. Here we can skip the BITCAST (so we don't have to handle 1891 // it separately in custom combine or selection). 1892 SDValue A = DAG.getNode(ISD::AND, dl, ResTy, 1893 {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}), 1894 DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})}); 1895 return DAG.getNode(ISD::SUB, dl, ResTy, 1896 {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)}); 1897 } 1898 1899 SDValue 1900 HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const { 1901 const SDLoc &dl(Op); 1902 MVT ResTy = ty(Op); 1903 assert(ResTy.getVectorElementType() == MVT::i32); 1904 1905 SDValue Vs = Op.getOperand(0); 1906 SDValue Vt = Op.getOperand(1); 1907 1908 SDVTList ResTys = DAG.getVTList(ResTy, ResTy); 1909 unsigned Opc = Op.getOpcode(); 1910 1911 // On HVX v62+ producing the full product is cheap, so legalize MULH to LOHI. 1912 if (Opc == ISD::MULHU) 1913 return DAG.getNode(HexagonISD::UMUL_LOHI, dl, ResTys, {Vs, Vt}).getValue(1); 1914 if (Opc == ISD::MULHS) 1915 return DAG.getNode(HexagonISD::SMUL_LOHI, dl, ResTys, {Vs, Vt}).getValue(1); 1916 1917 #ifndef NDEBUG 1918 Op.dump(&DAG); 1919 #endif 1920 llvm_unreachable("Unexpected mulh operation"); 1921 } 1922 1923 SDValue 1924 HexagonTargetLowering::LowerHvxMulLoHi(SDValue Op, SelectionDAG &DAG) const { 1925 const SDLoc &dl(Op); 1926 unsigned Opc = Op.getOpcode(); 1927 SDValue Vu = Op.getOperand(0); 1928 SDValue Vv = Op.getOperand(1); 1929 1930 // If the HI part is not used, convert it to a regular MUL. 1931 if (auto HiVal = Op.getValue(1); HiVal.use_empty()) { 1932 // Need to preserve the types and the number of values. 1933 SDValue Hi = DAG.getUNDEF(ty(HiVal)); 1934 SDValue Lo = DAG.getNode(ISD::MUL, dl, ty(Op), {Vu, Vv}); 1935 return DAG.getMergeValues({Lo, Hi}, dl); 1936 } 1937 1938 bool SignedVu = Opc == HexagonISD::SMUL_LOHI; 1939 bool SignedVv = Opc == HexagonISD::SMUL_LOHI || Opc == HexagonISD::USMUL_LOHI; 1940 1941 // Legal on HVX v62+, but lower it here because patterns can't handle multi- 1942 // valued nodes. 1943 if (Subtarget.useHVXV62Ops()) 1944 return emitHvxMulLoHiV62(Vu, SignedVu, Vv, SignedVv, dl, DAG); 1945 1946 if (Opc == HexagonISD::SMUL_LOHI) { 1947 // Direct MULHS expansion is cheaper than doing the whole SMUL_LOHI, 1948 // for other signedness LOHI is cheaper. 1949 if (auto LoVal = Op.getValue(0); LoVal.use_empty()) { 1950 SDValue Hi = emitHvxMulHsV60(Vu, Vv, dl, DAG); 1951 SDValue Lo = DAG.getUNDEF(ty(LoVal)); 1952 return DAG.getMergeValues({Lo, Hi}, dl); 1953 } 1954 } 1955 1956 return emitHvxMulLoHiV60(Vu, SignedVu, Vv, SignedVv, dl, DAG); 1957 } 1958 1959 SDValue 1960 HexagonTargetLowering::LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const { 1961 SDValue Val = Op.getOperand(0); 1962 MVT ResTy = ty(Op); 1963 MVT ValTy = ty(Val); 1964 const SDLoc &dl(Op); 1965 1966 if (isHvxBoolTy(ValTy) && ResTy.isScalarInteger()) { 1967 unsigned HwLen = Subtarget.getVectorLength(); 1968 MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4); 1969 SDValue VQ = compressHvxPred(Val, dl, WordTy, DAG); 1970 unsigned BitWidth = ResTy.getSizeInBits(); 1971 1972 if (BitWidth < 64) { 1973 SDValue W0 = extractHvxElementReg(VQ, DAG.getConstant(0, dl, MVT::i32), 1974 dl, MVT::i32, DAG); 1975 if (BitWidth == 32) 1976 return W0; 1977 assert(BitWidth < 32u); 1978 return DAG.getZExtOrTrunc(W0, dl, ResTy); 1979 } 1980 1981 // The result is >= 64 bits. The only options are 64 or 128. 1982 assert(BitWidth == 64 || BitWidth == 128); 1983 SmallVector<SDValue,4> Words; 1984 for (unsigned i = 0; i != BitWidth/32; ++i) { 1985 SDValue W = extractHvxElementReg( 1986 VQ, DAG.getConstant(i, dl, MVT::i32), dl, MVT::i32, DAG); 1987 Words.push_back(W); 1988 } 1989 SmallVector<SDValue,2> Combines; 1990 assert(Words.size() % 2 == 0); 1991 for (unsigned i = 0, e = Words.size(); i < e; i += 2) { 1992 SDValue C = getCombine(Words[i+1], Words[i], dl, MVT::i64, DAG); 1993 Combines.push_back(C); 1994 } 1995 1996 if (BitWidth == 64) 1997 return Combines[0]; 1998 1999 return DAG.getNode(ISD::BUILD_PAIR, dl, ResTy, Combines); 2000 } 2001 if (isHvxBoolTy(ResTy) && ValTy.isScalarInteger()) { 2002 // Handle bitcast from i128 -> v128i1 and i64 -> v64i1. 2003 unsigned BitWidth = ValTy.getSizeInBits(); 2004 unsigned HwLen = Subtarget.getVectorLength(); 2005 assert(BitWidth == HwLen); 2006 2007 MVT ValAsVecTy = MVT::getVectorVT(MVT::i8, BitWidth / 8); 2008 SDValue ValAsVec = DAG.getBitcast(ValAsVecTy, Val); 2009 // Splat each byte of Val 8 times. 2010 // Bytes = [(b0)x8, (b1)x8, ...., (b15)x8] 2011 // where b0, b1,..., b15 are least to most significant bytes of I. 2012 SmallVector<SDValue, 128> Bytes; 2013 // Tmp: 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80, 0x01,0x02,0x04,0x08,... 2014 // These are bytes with the LSB rotated left with respect to their index. 2015 SmallVector<SDValue, 128> Tmp; 2016 for (unsigned I = 0; I != HwLen / 8; ++I) { 2017 SDValue Idx = DAG.getConstant(I, dl, MVT::i32); 2018 SDValue Byte = 2019 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i8, ValAsVec, Idx); 2020 for (unsigned J = 0; J != 8; ++J) { 2021 Bytes.push_back(Byte); 2022 Tmp.push_back(DAG.getConstant(1ull << J, dl, MVT::i8)); 2023 } 2024 } 2025 2026 MVT ConstantVecTy = MVT::getVectorVT(MVT::i8, HwLen); 2027 SDValue ConstantVec = DAG.getBuildVector(ConstantVecTy, dl, Tmp); 2028 SDValue I2V = buildHvxVectorReg(Bytes, dl, ConstantVecTy, DAG); 2029 2030 // Each Byte in the I2V will be set iff corresponding bit is set in Val. 2031 I2V = DAG.getNode(ISD::AND, dl, ConstantVecTy, {I2V, ConstantVec}); 2032 return DAG.getNode(HexagonISD::V2Q, dl, ResTy, I2V); 2033 } 2034 2035 return Op; 2036 } 2037 2038 SDValue 2039 HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const { 2040 // Sign- and zero-extends are legal. 2041 assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG); 2042 return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op), 2043 Op.getOperand(0)); 2044 } 2045 2046 SDValue 2047 HexagonTargetLowering::LowerHvxSelect(SDValue Op, SelectionDAG &DAG) const { 2048 MVT ResTy = ty(Op); 2049 if (ResTy.getVectorElementType() != MVT::i1) 2050 return Op; 2051 2052 const SDLoc &dl(Op); 2053 unsigned HwLen = Subtarget.getVectorLength(); 2054 unsigned VecLen = ResTy.getVectorNumElements(); 2055 assert(HwLen % VecLen == 0); 2056 unsigned ElemSize = HwLen / VecLen; 2057 2058 MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(ElemSize * 8), VecLen); 2059 SDValue S = 2060 DAG.getNode(ISD::SELECT, dl, VecTy, Op.getOperand(0), 2061 DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(1)), 2062 DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(2))); 2063 return DAG.getNode(HexagonISD::V2Q, dl, ResTy, S); 2064 } 2065 2066 SDValue 2067 HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const { 2068 if (SDValue S = getVectorShiftByInt(Op, DAG)) 2069 return S; 2070 return Op; 2071 } 2072 2073 SDValue 2074 HexagonTargetLowering::LowerHvxFunnelShift(SDValue Op, 2075 SelectionDAG &DAG) const { 2076 unsigned Opc = Op.getOpcode(); 2077 assert(Opc == ISD::FSHL || Opc == ISD::FSHR); 2078 2079 // Make sure the shift amount is within the range of the bitwidth 2080 // of the element type. 2081 SDValue A = Op.getOperand(0); 2082 SDValue B = Op.getOperand(1); 2083 SDValue S = Op.getOperand(2); 2084 2085 MVT InpTy = ty(A); 2086 MVT ElemTy = InpTy.getVectorElementType(); 2087 2088 const SDLoc &dl(Op); 2089 unsigned ElemWidth = ElemTy.getSizeInBits(); 2090 bool IsLeft = Opc == ISD::FSHL; 2091 2092 // The expansion into regular shifts produces worse code for i8 and for 2093 // right shift of i32 on v65+. 2094 bool UseShifts = ElemTy != MVT::i8; 2095 if (Subtarget.useHVXV65Ops() && ElemTy == MVT::i32) 2096 UseShifts = false; 2097 2098 if (SDValue SplatV = getSplatValue(S, DAG); SplatV && UseShifts) { 2099 // If this is a funnel shift by a scalar, lower it into regular shifts. 2100 SDValue Mask = DAG.getConstant(ElemWidth - 1, dl, MVT::i32); 2101 SDValue ModS = 2102 DAG.getNode(ISD::AND, dl, MVT::i32, 2103 {DAG.getZExtOrTrunc(SplatV, dl, MVT::i32), Mask}); 2104 SDValue NegS = 2105 DAG.getNode(ISD::SUB, dl, MVT::i32, 2106 {DAG.getConstant(ElemWidth, dl, MVT::i32), ModS}); 2107 SDValue IsZero = 2108 DAG.getSetCC(dl, MVT::i1, ModS, getZero(dl, MVT::i32, DAG), ISD::SETEQ); 2109 // FSHL A, B => A << | B >>n 2110 // FSHR A, B => A <<n | B >> 2111 SDValue Part1 = 2112 DAG.getNode(HexagonISD::VASL, dl, InpTy, {A, IsLeft ? ModS : NegS}); 2113 SDValue Part2 = 2114 DAG.getNode(HexagonISD::VLSR, dl, InpTy, {B, IsLeft ? NegS : ModS}); 2115 SDValue Or = DAG.getNode(ISD::OR, dl, InpTy, {Part1, Part2}); 2116 // If the shift amount was 0, pick A or B, depending on the direction. 2117 // The opposite shift will also be by 0, so the "Or" will be incorrect. 2118 return DAG.getNode(ISD::SELECT, dl, InpTy, {IsZero, (IsLeft ? A : B), Or}); 2119 } 2120 2121 SDValue Mask = DAG.getSplatBuildVector( 2122 InpTy, dl, DAG.getConstant(ElemWidth - 1, dl, ElemTy)); 2123 2124 unsigned MOpc = Opc == ISD::FSHL ? HexagonISD::MFSHL : HexagonISD::MFSHR; 2125 return DAG.getNode(MOpc, dl, ty(Op), 2126 {A, B, DAG.getNode(ISD::AND, dl, InpTy, {S, Mask})}); 2127 } 2128 2129 SDValue 2130 HexagonTargetLowering::LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const { 2131 const SDLoc &dl(Op); 2132 unsigned IntNo = Op.getConstantOperandVal(0); 2133 SmallVector<SDValue> Ops(Op->ops()); 2134 2135 auto Swap = [&](SDValue P) { 2136 return DAG.getMergeValues({P.getValue(1), P.getValue(0)}, dl); 2137 }; 2138 2139 switch (IntNo) { 2140 case Intrinsic::hexagon_V6_pred_typecast: 2141 case Intrinsic::hexagon_V6_pred_typecast_128B: { 2142 MVT ResTy = ty(Op), InpTy = ty(Ops[1]); 2143 if (isHvxBoolTy(ResTy) && isHvxBoolTy(InpTy)) { 2144 if (ResTy == InpTy) 2145 return Ops[1]; 2146 return DAG.getNode(HexagonISD::TYPECAST, dl, ResTy, Ops[1]); 2147 } 2148 break; 2149 } 2150 case Intrinsic::hexagon_V6_vmpyss_parts: 2151 case Intrinsic::hexagon_V6_vmpyss_parts_128B: 2152 return Swap(DAG.getNode(HexagonISD::SMUL_LOHI, dl, Op->getVTList(), 2153 {Ops[1], Ops[2]})); 2154 case Intrinsic::hexagon_V6_vmpyuu_parts: 2155 case Intrinsic::hexagon_V6_vmpyuu_parts_128B: 2156 return Swap(DAG.getNode(HexagonISD::UMUL_LOHI, dl, Op->getVTList(), 2157 {Ops[1], Ops[2]})); 2158 case Intrinsic::hexagon_V6_vmpyus_parts: 2159 case Intrinsic::hexagon_V6_vmpyus_parts_128B: { 2160 return Swap(DAG.getNode(HexagonISD::USMUL_LOHI, dl, Op->getVTList(), 2161 {Ops[1], Ops[2]})); 2162 } 2163 } // switch 2164 2165 return Op; 2166 } 2167 2168 SDValue 2169 HexagonTargetLowering::LowerHvxMaskedOp(SDValue Op, SelectionDAG &DAG) const { 2170 const SDLoc &dl(Op); 2171 unsigned HwLen = Subtarget.getVectorLength(); 2172 MachineFunction &MF = DAG.getMachineFunction(); 2173 auto *MaskN = cast<MaskedLoadStoreSDNode>(Op.getNode()); 2174 SDValue Mask = MaskN->getMask(); 2175 SDValue Chain = MaskN->getChain(); 2176 SDValue Base = MaskN->getBasePtr(); 2177 auto *MemOp = MF.getMachineMemOperand(MaskN->getMemOperand(), 0, HwLen); 2178 2179 unsigned Opc = Op->getOpcode(); 2180 assert(Opc == ISD::MLOAD || Opc == ISD::MSTORE); 2181 2182 if (Opc == ISD::MLOAD) { 2183 MVT ValTy = ty(Op); 2184 SDValue Load = DAG.getLoad(ValTy, dl, Chain, Base, MemOp); 2185 SDValue Thru = cast<MaskedLoadSDNode>(MaskN)->getPassThru(); 2186 if (isUndef(Thru)) 2187 return Load; 2188 SDValue VSel = DAG.getNode(ISD::VSELECT, dl, ValTy, Mask, Load, Thru); 2189 return DAG.getMergeValues({VSel, Load.getValue(1)}, dl); 2190 } 2191 2192 // MSTORE 2193 // HVX only has aligned masked stores. 2194 2195 // TODO: Fold negations of the mask into the store. 2196 unsigned StoreOpc = Hexagon::V6_vS32b_qpred_ai; 2197 SDValue Value = cast<MaskedStoreSDNode>(MaskN)->getValue(); 2198 SDValue Offset0 = DAG.getTargetConstant(0, dl, ty(Base)); 2199 2200 if (MaskN->getAlign().value() % HwLen == 0) { 2201 SDValue Store = getInstr(StoreOpc, dl, MVT::Other, 2202 {Mask, Base, Offset0, Value, Chain}, DAG); 2203 DAG.setNodeMemRefs(cast<MachineSDNode>(Store.getNode()), {MemOp}); 2204 return Store; 2205 } 2206 2207 // Unaligned case. 2208 auto StoreAlign = [&](SDValue V, SDValue A) { 2209 SDValue Z = getZero(dl, ty(V), DAG); 2210 // TODO: use funnel shifts? 2211 // vlalign(Vu,Vv,Rt) rotates the pair Vu:Vv left by Rt and takes the 2212 // upper half. 2213 SDValue LoV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {V, Z, A}, DAG); 2214 SDValue HiV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {Z, V, A}, DAG); 2215 return std::make_pair(LoV, HiV); 2216 }; 2217 2218 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); 2219 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); 2220 SDValue MaskV = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Mask); 2221 VectorPair Tmp = StoreAlign(MaskV, Base); 2222 VectorPair MaskU = {DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.first), 2223 DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.second)}; 2224 VectorPair ValueU = StoreAlign(Value, Base); 2225 2226 SDValue Offset1 = DAG.getTargetConstant(HwLen, dl, MVT::i32); 2227 SDValue StoreLo = 2228 getInstr(StoreOpc, dl, MVT::Other, 2229 {MaskU.first, Base, Offset0, ValueU.first, Chain}, DAG); 2230 SDValue StoreHi = 2231 getInstr(StoreOpc, dl, MVT::Other, 2232 {MaskU.second, Base, Offset1, ValueU.second, Chain}, DAG); 2233 DAG.setNodeMemRefs(cast<MachineSDNode>(StoreLo.getNode()), {MemOp}); 2234 DAG.setNodeMemRefs(cast<MachineSDNode>(StoreHi.getNode()), {MemOp}); 2235 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, {StoreLo, StoreHi}); 2236 } 2237 2238 SDValue HexagonTargetLowering::LowerHvxFpExtend(SDValue Op, 2239 SelectionDAG &DAG) const { 2240 // This conversion only applies to QFloat. IEEE extension from f16 to f32 2241 // is legal (done via a pattern). 2242 assert(Subtarget.useHVXQFloatOps()); 2243 2244 assert(Op->getOpcode() == ISD::FP_EXTEND); 2245 2246 MVT VecTy = ty(Op); 2247 MVT ArgTy = ty(Op.getOperand(0)); 2248 const SDLoc &dl(Op); 2249 assert(VecTy == MVT::v64f32 && ArgTy == MVT::v64f16); 2250 2251 SDValue F16Vec = Op.getOperand(0); 2252 2253 APFloat FloatVal = APFloat(1.0f); 2254 bool Ignored; 2255 FloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); 2256 SDValue Fp16Ones = DAG.getConstantFP(FloatVal, dl, ArgTy); 2257 SDValue VmpyVec = 2258 getInstr(Hexagon::V6_vmpy_qf32_hf, dl, VecTy, {F16Vec, Fp16Ones}, DAG); 2259 2260 MVT HalfTy = typeSplit(VecTy).first; 2261 VectorPair Pair = opSplit(VmpyVec, dl, DAG); 2262 SDValue LoVec = 2263 getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.first}, DAG); 2264 SDValue HiVec = 2265 getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.second}, DAG); 2266 2267 SDValue ShuffVec = 2268 getInstr(Hexagon::V6_vshuffvdd, dl, VecTy, 2269 {HiVec, LoVec, DAG.getSignedConstant(-4, dl, MVT::i32)}, DAG); 2270 2271 return ShuffVec; 2272 } 2273 2274 SDValue 2275 HexagonTargetLowering::LowerHvxFpToInt(SDValue Op, SelectionDAG &DAG) const { 2276 // Catch invalid conversion ops (just in case). 2277 assert(Op.getOpcode() == ISD::FP_TO_SINT || 2278 Op.getOpcode() == ISD::FP_TO_UINT); 2279 2280 MVT ResTy = ty(Op); 2281 MVT FpTy = ty(Op.getOperand(0)).getVectorElementType(); 2282 MVT IntTy = ResTy.getVectorElementType(); 2283 2284 if (Subtarget.useHVXIEEEFPOps()) { 2285 // There are only conversions from f16. 2286 if (FpTy == MVT::f16) { 2287 // Other int types aren't legal in HVX, so we shouldn't see them here. 2288 assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32); 2289 // Conversions to i8 and i16 are legal. 2290 if (IntTy == MVT::i8 || IntTy == MVT::i16) 2291 return Op; 2292 } 2293 } 2294 2295 if (IntTy.getSizeInBits() != FpTy.getSizeInBits()) 2296 return EqualizeFpIntConversion(Op, DAG); 2297 2298 return ExpandHvxFpToInt(Op, DAG); 2299 } 2300 2301 SDValue 2302 HexagonTargetLowering::LowerHvxIntToFp(SDValue Op, SelectionDAG &DAG) const { 2303 // Catch invalid conversion ops (just in case). 2304 assert(Op.getOpcode() == ISD::SINT_TO_FP || 2305 Op.getOpcode() == ISD::UINT_TO_FP); 2306 2307 MVT ResTy = ty(Op); 2308 MVT IntTy = ty(Op.getOperand(0)).getVectorElementType(); 2309 MVT FpTy = ResTy.getVectorElementType(); 2310 2311 if (Subtarget.useHVXIEEEFPOps()) { 2312 // There are only conversions to f16. 2313 if (FpTy == MVT::f16) { 2314 // Other int types aren't legal in HVX, so we shouldn't see them here. 2315 assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32); 2316 // i8, i16 -> f16 is legal. 2317 if (IntTy == MVT::i8 || IntTy == MVT::i16) 2318 return Op; 2319 } 2320 } 2321 2322 if (IntTy.getSizeInBits() != FpTy.getSizeInBits()) 2323 return EqualizeFpIntConversion(Op, DAG); 2324 2325 return ExpandHvxIntToFp(Op, DAG); 2326 } 2327 2328 HexagonTargetLowering::TypePair 2329 HexagonTargetLowering::typeExtendToWider(MVT Ty0, MVT Ty1) const { 2330 // Compare the widths of elements of the two types, and extend the narrower 2331 // type to match the with of the wider type. For vector types, apply this 2332 // to the element type. 2333 assert(Ty0.isVector() == Ty1.isVector()); 2334 2335 MVT ElemTy0 = Ty0.getScalarType(); 2336 MVT ElemTy1 = Ty1.getScalarType(); 2337 2338 unsigned Width0 = ElemTy0.getSizeInBits(); 2339 unsigned Width1 = ElemTy1.getSizeInBits(); 2340 unsigned MaxWidth = std::max(Width0, Width1); 2341 2342 auto getScalarWithWidth = [](MVT ScalarTy, unsigned Width) { 2343 if (ScalarTy.isInteger()) 2344 return MVT::getIntegerVT(Width); 2345 assert(ScalarTy.isFloatingPoint()); 2346 return MVT::getFloatingPointVT(Width); 2347 }; 2348 2349 MVT WideETy0 = getScalarWithWidth(ElemTy0, MaxWidth); 2350 MVT WideETy1 = getScalarWithWidth(ElemTy1, MaxWidth); 2351 2352 if (!Ty0.isVector()) { 2353 // Both types are scalars. 2354 return {WideETy0, WideETy1}; 2355 } 2356 2357 // Vector types. 2358 unsigned NumElem = Ty0.getVectorNumElements(); 2359 assert(NumElem == Ty1.getVectorNumElements()); 2360 2361 return {MVT::getVectorVT(WideETy0, NumElem), 2362 MVT::getVectorVT(WideETy1, NumElem)}; 2363 } 2364 2365 HexagonTargetLowering::TypePair 2366 HexagonTargetLowering::typeWidenToWider(MVT Ty0, MVT Ty1) const { 2367 // Compare the numbers of elements of two vector types, and widen the 2368 // narrower one to match the number of elements in the wider one. 2369 assert(Ty0.isVector() && Ty1.isVector()); 2370 2371 unsigned Len0 = Ty0.getVectorNumElements(); 2372 unsigned Len1 = Ty1.getVectorNumElements(); 2373 if (Len0 == Len1) 2374 return {Ty0, Ty1}; 2375 2376 unsigned MaxLen = std::max(Len0, Len1); 2377 return {MVT::getVectorVT(Ty0.getVectorElementType(), MaxLen), 2378 MVT::getVectorVT(Ty1.getVectorElementType(), MaxLen)}; 2379 } 2380 2381 MVT 2382 HexagonTargetLowering::typeLegalize(MVT Ty, SelectionDAG &DAG) const { 2383 EVT LegalTy = getTypeToTransformTo(*DAG.getContext(), Ty); 2384 assert(LegalTy.isSimple()); 2385 return LegalTy.getSimpleVT(); 2386 } 2387 2388 MVT 2389 HexagonTargetLowering::typeWidenToHvx(MVT Ty) const { 2390 unsigned HwWidth = 8 * Subtarget.getVectorLength(); 2391 assert(Ty.getSizeInBits() <= HwWidth); 2392 if (Ty.getSizeInBits() == HwWidth) 2393 return Ty; 2394 2395 MVT ElemTy = Ty.getScalarType(); 2396 return MVT::getVectorVT(ElemTy, HwWidth / ElemTy.getSizeInBits()); 2397 } 2398 2399 HexagonTargetLowering::VectorPair 2400 HexagonTargetLowering::emitHvxAddWithOverflow(SDValue A, SDValue B, 2401 const SDLoc &dl, bool Signed, SelectionDAG &DAG) const { 2402 // Compute A+B, return {A+B, O}, where O = vector predicate indicating 2403 // whether an overflow has occured. 2404 MVT ResTy = ty(A); 2405 assert(ResTy == ty(B)); 2406 MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorNumElements()); 2407 2408 if (!Signed) { 2409 // V62+ has V6_vaddcarry, but it requires input predicate, so it doesn't 2410 // save any instructions. 2411 SDValue Add = DAG.getNode(ISD::ADD, dl, ResTy, {A, B}); 2412 SDValue Ovf = DAG.getSetCC(dl, PredTy, Add, A, ISD::SETULT); 2413 return {Add, Ovf}; 2414 } 2415 2416 // Signed overflow has happened, if: 2417 // (A, B have the same sign) and (A+B has a different sign from either) 2418 // i.e. (~A xor B) & ((A+B) xor B), then check the sign bit 2419 SDValue Add = DAG.getNode(ISD::ADD, dl, ResTy, {A, B}); 2420 SDValue NotA = 2421 DAG.getNode(ISD::XOR, dl, ResTy, {A, DAG.getAllOnesConstant(dl, ResTy)}); 2422 SDValue Xor0 = DAG.getNode(ISD::XOR, dl, ResTy, {NotA, B}); 2423 SDValue Xor1 = DAG.getNode(ISD::XOR, dl, ResTy, {Add, B}); 2424 SDValue And = DAG.getNode(ISD::AND, dl, ResTy, {Xor0, Xor1}); 2425 SDValue MSB = 2426 DAG.getSetCC(dl, PredTy, And, getZero(dl, ResTy, DAG), ISD::SETLT); 2427 return {Add, MSB}; 2428 } 2429 2430 HexagonTargetLowering::VectorPair 2431 HexagonTargetLowering::emitHvxShiftRightRnd(SDValue Val, unsigned Amt, 2432 bool Signed, SelectionDAG &DAG) const { 2433 // Shift Val right by Amt bits, round the result to the nearest integer, 2434 // tie-break by rounding halves to even integer. 2435 2436 const SDLoc &dl(Val); 2437 MVT ValTy = ty(Val); 2438 2439 // This should also work for signed integers. 2440 // 2441 // uint tmp0 = inp + ((1 << (Amt-1)) - 1); 2442 // bool ovf = (inp > tmp0); 2443 // uint rup = inp & (1 << (Amt+1)); 2444 // 2445 // uint tmp1 = inp >> (Amt-1); // tmp1 == tmp2 iff 2446 // uint tmp2 = tmp0 >> (Amt-1); // the Amt-1 lower bits were all 0 2447 // uint tmp3 = tmp2 + rup; 2448 // uint frac = (tmp1 != tmp2) ? tmp2 >> 1 : tmp3 >> 1; 2449 unsigned ElemWidth = ValTy.getVectorElementType().getSizeInBits(); 2450 MVT ElemTy = MVT::getIntegerVT(ElemWidth); 2451 MVT IntTy = tyVector(ValTy, ElemTy); 2452 MVT PredTy = MVT::getVectorVT(MVT::i1, IntTy.getVectorNumElements()); 2453 unsigned ShRight = Signed ? ISD::SRA : ISD::SRL; 2454 2455 SDValue Inp = DAG.getBitcast(IntTy, Val); 2456 SDValue LowBits = DAG.getConstant((1ull << (Amt - 1)) - 1, dl, IntTy); 2457 2458 SDValue AmtP1 = DAG.getConstant(1ull << Amt, dl, IntTy); 2459 SDValue And = DAG.getNode(ISD::AND, dl, IntTy, {Inp, AmtP1}); 2460 SDValue Zero = getZero(dl, IntTy, DAG); 2461 SDValue Bit = DAG.getSetCC(dl, PredTy, And, Zero, ISD::SETNE); 2462 SDValue Rup = DAG.getZExtOrTrunc(Bit, dl, IntTy); 2463 auto [Tmp0, Ovf] = emitHvxAddWithOverflow(Inp, LowBits, dl, Signed, DAG); 2464 2465 SDValue AmtM1 = DAG.getConstant(Amt - 1, dl, IntTy); 2466 SDValue Tmp1 = DAG.getNode(ShRight, dl, IntTy, Inp, AmtM1); 2467 SDValue Tmp2 = DAG.getNode(ShRight, dl, IntTy, Tmp0, AmtM1); 2468 SDValue Tmp3 = DAG.getNode(ISD::ADD, dl, IntTy, Tmp2, Rup); 2469 2470 SDValue Eq = DAG.getSetCC(dl, PredTy, Tmp1, Tmp2, ISD::SETEQ); 2471 SDValue One = DAG.getConstant(1, dl, IntTy); 2472 SDValue Tmp4 = DAG.getNode(ShRight, dl, IntTy, {Tmp2, One}); 2473 SDValue Tmp5 = DAG.getNode(ShRight, dl, IntTy, {Tmp3, One}); 2474 SDValue Mux = DAG.getNode(ISD::VSELECT, dl, IntTy, {Eq, Tmp5, Tmp4}); 2475 return {Mux, Ovf}; 2476 } 2477 2478 SDValue 2479 HexagonTargetLowering::emitHvxMulHsV60(SDValue A, SDValue B, const SDLoc &dl, 2480 SelectionDAG &DAG) const { 2481 MVT VecTy = ty(A); 2482 MVT PairTy = typeJoin({VecTy, VecTy}); 2483 assert(VecTy.getVectorElementType() == MVT::i32); 2484 2485 SDValue S16 = DAG.getConstant(16, dl, MVT::i32); 2486 2487 // mulhs(A,B) = 2488 // = [(Hi(A)*2^16 + Lo(A)) *s (Hi(B)*2^16 + Lo(B))] >> 32 2489 // = [Hi(A)*2^16 *s Hi(B)*2^16 + Hi(A) *su Lo(B)*2^16 2490 // + Lo(A) *us (Hi(B)*2^16 + Lo(B))] >> 32 2491 // = [Hi(A) *s Hi(B)*2^32 + Hi(A) *su Lo(B)*2^16 + Lo(A) *us B] >> 32 2492 // The low half of Lo(A)*Lo(B) will be discarded (it's not added to 2493 // anything, so it cannot produce any carry over to higher bits), 2494 // so everything in [] can be shifted by 16 without loss of precision. 2495 // = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + Lo(A)*B >> 16] >> 16 2496 // = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + V6_vmpyewuh(A,B)] >> 16 2497 // The final additions need to make sure to properly maintain any carry- 2498 // out bits. 2499 // 2500 // Hi(B) Lo(B) 2501 // Hi(A) Lo(A) 2502 // -------------- 2503 // Lo(B)*Lo(A) | T0 = V6_vmpyewuh(B,A) does this, 2504 // Hi(B)*Lo(A) | + dropping the low 16 bits 2505 // Hi(A)*Lo(B) | T2 2506 // Hi(B)*Hi(A) 2507 2508 SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, VecTy, {B, A}, DAG); 2509 // T1 = get Hi(A) into low halves. 2510 SDValue T1 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {A, S16}, DAG); 2511 // P0 = interleaved T1.h*B.uh (full precision product) 2512 SDValue P0 = getInstr(Hexagon::V6_vmpyhus, dl, PairTy, {T1, B}, DAG); 2513 // T2 = T1.even(h) * B.even(uh), i.e. Hi(A)*Lo(B) 2514 SDValue T2 = LoHalf(P0, DAG); 2515 // We need to add T0+T2, recording the carry-out, which will be 1<<16 2516 // added to the final sum. 2517 // P1 = interleaved even/odd 32-bit (unsigned) sums of 16-bit halves 2518 SDValue P1 = getInstr(Hexagon::V6_vadduhw, dl, PairTy, {T0, T2}, DAG); 2519 // P2 = interleaved even/odd 32-bit (signed) sums of 16-bit halves 2520 SDValue P2 = getInstr(Hexagon::V6_vaddhw, dl, PairTy, {T0, T2}, DAG); 2521 // T3 = full-precision(T0+T2) >> 16 2522 // The low halves are added-unsigned, the high ones are added-signed. 2523 SDValue T3 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy, 2524 {HiHalf(P2, DAG), LoHalf(P1, DAG), S16}, DAG); 2525 SDValue T4 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {B, S16}, DAG); 2526 // P3 = interleaved Hi(B)*Hi(A) (full precision), 2527 // which is now Lo(T1)*Lo(T4), so we want to keep the even product. 2528 SDValue P3 = getInstr(Hexagon::V6_vmpyhv, dl, PairTy, {T1, T4}, DAG); 2529 SDValue T5 = LoHalf(P3, DAG); 2530 // Add: 2531 SDValue T6 = DAG.getNode(ISD::ADD, dl, VecTy, {T3, T5}); 2532 return T6; 2533 } 2534 2535 SDValue 2536 HexagonTargetLowering::emitHvxMulLoHiV60(SDValue A, bool SignedA, SDValue B, 2537 bool SignedB, const SDLoc &dl, 2538 SelectionDAG &DAG) const { 2539 MVT VecTy = ty(A); 2540 MVT PairTy = typeJoin({VecTy, VecTy}); 2541 assert(VecTy.getVectorElementType() == MVT::i32); 2542 2543 SDValue S16 = DAG.getConstant(16, dl, MVT::i32); 2544 2545 if (SignedA && !SignedB) { 2546 // Make A:unsigned, B:signed. 2547 std::swap(A, B); 2548 std::swap(SignedA, SignedB); 2549 } 2550 2551 // Do halfword-wise multiplications for unsigned*unsigned product, then 2552 // add corrections for signed and unsigned*signed. 2553 2554 SDValue Lo, Hi; 2555 2556 // P0:lo = (uu) products of low halves of A and B, 2557 // P0:hi = (uu) products of high halves. 2558 SDValue P0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, B}, DAG); 2559 2560 // Swap low/high halves in B 2561 SDValue T0 = getInstr(Hexagon::V6_lvsplatw, dl, VecTy, 2562 {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG); 2563 SDValue T1 = getInstr(Hexagon::V6_vdelta, dl, VecTy, {B, T0}, DAG); 2564 // P1 = products of even/odd halfwords. 2565 // P1:lo = (uu) products of even(A.uh) * odd(B.uh) 2566 // P1:hi = (uu) products of odd(A.uh) * even(B.uh) 2567 SDValue P1 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, T1}, DAG); 2568 2569 // P2:lo = low halves of P1:lo + P1:hi, 2570 // P2:hi = high halves of P1:lo + P1:hi. 2571 SDValue P2 = getInstr(Hexagon::V6_vadduhw, dl, PairTy, 2572 {HiHalf(P1, DAG), LoHalf(P1, DAG)}, DAG); 2573 // Still need to add the high halves of P0:lo to P2:lo 2574 SDValue T2 = 2575 getInstr(Hexagon::V6_vlsrw, dl, VecTy, {LoHalf(P0, DAG), S16}, DAG); 2576 SDValue T3 = DAG.getNode(ISD::ADD, dl, VecTy, {LoHalf(P2, DAG), T2}); 2577 2578 // The high halves of T3 will contribute to the HI part of LOHI. 2579 SDValue T4 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy, 2580 {HiHalf(P2, DAG), T3, S16}, DAG); 2581 2582 // The low halves of P2 need to be added to high halves of the LO part. 2583 Lo = getInstr(Hexagon::V6_vaslw_acc, dl, VecTy, 2584 {LoHalf(P0, DAG), LoHalf(P2, DAG), S16}, DAG); 2585 Hi = DAG.getNode(ISD::ADD, dl, VecTy, {HiHalf(P0, DAG), T4}); 2586 2587 if (SignedA) { 2588 assert(SignedB && "Signed A and unsigned B should have been inverted"); 2589 2590 MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); 2591 SDValue Zero = getZero(dl, VecTy, DAG); 2592 SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); 2593 SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); 2594 SDValue X0 = DAG.getNode(ISD::VSELECT, dl, VecTy, {Q0, B, Zero}); 2595 SDValue X1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, X0, A}, DAG); 2596 Hi = getInstr(Hexagon::V6_vsubw, dl, VecTy, {Hi, X1}, DAG); 2597 } else if (SignedB) { 2598 // Same correction as for mulhus: 2599 // mulhus(A.uw,B.w) = mulhu(A.uw,B.uw) - (A.w if B < 0) 2600 MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); 2601 SDValue Zero = getZero(dl, VecTy, DAG); 2602 SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); 2603 Hi = getInstr(Hexagon::V6_vsubwq, dl, VecTy, {Q1, Hi, A}, DAG); 2604 } else { 2605 assert(!SignedA && !SignedB); 2606 } 2607 2608 return DAG.getMergeValues({Lo, Hi}, dl); 2609 } 2610 2611 SDValue 2612 HexagonTargetLowering::emitHvxMulLoHiV62(SDValue A, bool SignedA, 2613 SDValue B, bool SignedB, 2614 const SDLoc &dl, 2615 SelectionDAG &DAG) const { 2616 MVT VecTy = ty(A); 2617 MVT PairTy = typeJoin({VecTy, VecTy}); 2618 assert(VecTy.getVectorElementType() == MVT::i32); 2619 2620 if (SignedA && !SignedB) { 2621 // Make A:unsigned, B:signed. 2622 std::swap(A, B); 2623 std::swap(SignedA, SignedB); 2624 } 2625 2626 // Do S*S first, then make corrections for U*S or U*U if needed. 2627 SDValue P0 = getInstr(Hexagon::V6_vmpyewuh_64, dl, PairTy, {A, B}, DAG); 2628 SDValue P1 = 2629 getInstr(Hexagon::V6_vmpyowh_64_acc, dl, PairTy, {P0, A, B}, DAG); 2630 SDValue Lo = LoHalf(P1, DAG); 2631 SDValue Hi = HiHalf(P1, DAG); 2632 2633 if (!SignedB) { 2634 assert(!SignedA && "Signed A and unsigned B should have been inverted"); 2635 SDValue Zero = getZero(dl, VecTy, DAG); 2636 MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); 2637 2638 // Mulhu(X, Y) = Mulhs(X, Y) + (X, if Y < 0) + (Y, if X < 0). 2639 // def: Pat<(VecI32 (mulhu HVI32:$A, HVI32:$B)), 2640 // (V6_vaddw (HiHalf (Muls64O $A, $B)), 2641 // (V6_vaddwq (V6_vgtw (V6_vd0), $B), 2642 // (V6_vandvqv (V6_vgtw (V6_vd0), $A), $B), 2643 // $A))>; 2644 SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); 2645 SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); 2646 SDValue T0 = getInstr(Hexagon::V6_vandvqv, dl, VecTy, {Q0, B}, DAG); 2647 SDValue T1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, T0, A}, DAG); 2648 Hi = getInstr(Hexagon::V6_vaddw, dl, VecTy, {Hi, T1}, DAG); 2649 } else if (!SignedA) { 2650 SDValue Zero = getZero(dl, VecTy, DAG); 2651 MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); 2652 2653 // Mulhus(unsigned X, signed Y) = Mulhs(X, Y) + (Y, if X < 0). 2654 // def: Pat<(VecI32 (HexagonMULHUS HVI32:$A, HVI32:$B)), 2655 // (V6_vaddwq (V6_vgtw (V6_vd0), $A), 2656 // (HiHalf (Muls64O $A, $B)), 2657 // $B)>; 2658 SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); 2659 Hi = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q0, Hi, B}, DAG); 2660 } 2661 2662 return DAG.getMergeValues({Lo, Hi}, dl); 2663 } 2664 2665 SDValue 2666 HexagonTargetLowering::EqualizeFpIntConversion(SDValue Op, SelectionDAG &DAG) 2667 const { 2668 // Rewrite conversion between integer and floating-point in such a way that 2669 // the integer type is extended/narrowed to match the bitwidth of the 2670 // floating-point type, combined with additional integer-integer extensions 2671 // or narrowings to match the original input/result types. 2672 // E.g. f32 -> i8 ==> f32 -> i32 -> i8 2673 // 2674 // The input/result types are not required to be legal, but if they are 2675 // legal, this function should not introduce illegal types. 2676 2677 unsigned Opc = Op.getOpcode(); 2678 assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT || 2679 Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP); 2680 2681 SDValue Inp = Op.getOperand(0); 2682 MVT InpTy = ty(Inp); 2683 MVT ResTy = ty(Op); 2684 2685 if (InpTy == ResTy) 2686 return Op; 2687 2688 const SDLoc &dl(Op); 2689 bool Signed = Opc == ISD::FP_TO_SINT || Opc == ISD::SINT_TO_FP; 2690 2691 auto [WInpTy, WResTy] = typeExtendToWider(InpTy, ResTy); 2692 SDValue WInp = resizeToWidth(Inp, WInpTy, Signed, dl, DAG); 2693 SDValue Conv = DAG.getNode(Opc, dl, WResTy, WInp); 2694 SDValue Res = resizeToWidth(Conv, ResTy, Signed, dl, DAG); 2695 return Res; 2696 } 2697 2698 SDValue 2699 HexagonTargetLowering::ExpandHvxFpToInt(SDValue Op, SelectionDAG &DAG) const { 2700 unsigned Opc = Op.getOpcode(); 2701 assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT); 2702 2703 const SDLoc &dl(Op); 2704 SDValue Op0 = Op.getOperand(0); 2705 MVT InpTy = ty(Op0); 2706 MVT ResTy = ty(Op); 2707 assert(InpTy.changeTypeToInteger() == ResTy); 2708 2709 // int32_t conv_f32_to_i32(uint32_t inp) { 2710 // // s | exp8 | frac23 2711 // 2712 // int neg = (int32_t)inp < 0; 2713 // 2714 // // "expm1" is the actual exponent minus 1: instead of "bias", subtract 2715 // // "bias+1". When the encoded exp is "all-1" (i.e. inf/nan), this will 2716 // // produce a large positive "expm1", which will result in max u/int. 2717 // // In all IEEE formats, bias is the largest positive number that can be 2718 // // represented in bias-width bits (i.e. 011..1). 2719 // int32_t expm1 = (inp << 1) - 0x80000000; 2720 // expm1 >>= 24; 2721 // 2722 // // Always insert the "implicit 1". Subnormal numbers will become 0 2723 // // regardless. 2724 // uint32_t frac = (inp << 8) | 0x80000000; 2725 // 2726 // // "frac" is the fraction part represented as Q1.31. If it was 2727 // // interpreted as uint32_t, it would be the fraction part multiplied 2728 // // by 2^31. 2729 // 2730 // // Calculate the amount of right shift, since shifting further to the 2731 // // left would lose significant bits. Limit it to 32, because we want 2732 // // shifts by 32+ to produce 0, whereas V6_vlsrwv treats the shift 2733 // // amount as a 6-bit signed value (so 33 is same as -31, i.e. shift 2734 // // left by 31). "rsh" can be negative. 2735 // int32_t rsh = min(31 - (expm1 + 1), 32); 2736 // 2737 // frac >>= rsh; // rsh == 32 will produce 0 2738 // 2739 // // Everything up to this point is the same for conversion to signed 2740 // // unsigned integer. 2741 // 2742 // if (neg) // Only for signed int 2743 // frac = -frac; // 2744 // if (rsh <= 0 && neg) // bound = neg ? 0x80000000 : 0x7fffffff 2745 // frac = 0x80000000; // frac = rsh <= 0 ? bound : frac 2746 // if (rsh <= 0 && !neg) // 2747 // frac = 0x7fffffff; // 2748 // 2749 // if (neg) // Only for unsigned int 2750 // frac = 0; // 2751 // if (rsh < 0 && !neg) // frac = rsh < 0 ? 0x7fffffff : frac; 2752 // frac = 0x7fffffff; // frac = neg ? 0 : frac; 2753 // 2754 // return frac; 2755 // } 2756 2757 MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorElementCount()); 2758 2759 // Zero = V6_vd0(); 2760 // Neg = V6_vgtw(Zero, Inp); 2761 // One = V6_lvsplatw(1); 2762 // M80 = V6_lvsplatw(0x80000000); 2763 // Exp00 = V6_vaslwv(Inp, One); 2764 // Exp01 = V6_vsubw(Exp00, M80); 2765 // ExpM1 = V6_vasrw(Exp01, 24); 2766 // Frc00 = V6_vaslw(Inp, 8); 2767 // Frc01 = V6_vor(Frc00, M80); 2768 // Rsh00 = V6_vsubw(V6_lvsplatw(30), ExpM1); 2769 // Rsh01 = V6_vminw(Rsh00, V6_lvsplatw(32)); 2770 // Frc02 = V6_vlsrwv(Frc01, Rsh01); 2771 2772 // if signed int: 2773 // Bnd = V6_vmux(Neg, M80, V6_lvsplatw(0x7fffffff)) 2774 // Pos = V6_vgtw(Rsh01, Zero); 2775 // Frc13 = V6_vsubw(Zero, Frc02); 2776 // Frc14 = V6_vmux(Neg, Frc13, Frc02); 2777 // Int = V6_vmux(Pos, Frc14, Bnd); 2778 // 2779 // if unsigned int: 2780 // Rsn = V6_vgtw(Zero, Rsh01) 2781 // Frc23 = V6_vmux(Rsn, V6_lvsplatw(0x7fffffff), Frc02) 2782 // Int = V6_vmux(Neg, Zero, Frc23) 2783 2784 auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(InpTy); 2785 unsigned ElemWidth = 1 + ExpWidth + FracWidth; 2786 assert((1ull << (ExpWidth - 1)) == (1 + ExpBias)); 2787 2788 SDValue Inp = DAG.getBitcast(ResTy, Op0); 2789 SDValue Zero = getZero(dl, ResTy, DAG); 2790 SDValue Neg = DAG.getSetCC(dl, PredTy, Inp, Zero, ISD::SETLT); 2791 SDValue M80 = DAG.getConstant(1ull << (ElemWidth - 1), dl, ResTy); 2792 SDValue M7F = DAG.getConstant((1ull << (ElemWidth - 1)) - 1, dl, ResTy); 2793 SDValue One = DAG.getConstant(1, dl, ResTy); 2794 SDValue Exp00 = DAG.getNode(ISD::SHL, dl, ResTy, {Inp, One}); 2795 SDValue Exp01 = DAG.getNode(ISD::SUB, dl, ResTy, {Exp00, M80}); 2796 SDValue MNE = DAG.getConstant(ElemWidth - ExpWidth, dl, ResTy); 2797 SDValue ExpM1 = DAG.getNode(ISD::SRA, dl, ResTy, {Exp01, MNE}); 2798 2799 SDValue ExpW = DAG.getConstant(ExpWidth, dl, ResTy); 2800 SDValue Frc00 = DAG.getNode(ISD::SHL, dl, ResTy, {Inp, ExpW}); 2801 SDValue Frc01 = DAG.getNode(ISD::OR, dl, ResTy, {Frc00, M80}); 2802 2803 SDValue MN2 = DAG.getConstant(ElemWidth - 2, dl, ResTy); 2804 SDValue Rsh00 = DAG.getNode(ISD::SUB, dl, ResTy, {MN2, ExpM1}); 2805 SDValue MW = DAG.getConstant(ElemWidth, dl, ResTy); 2806 SDValue Rsh01 = DAG.getNode(ISD::SMIN, dl, ResTy, {Rsh00, MW}); 2807 SDValue Frc02 = DAG.getNode(ISD::SRL, dl, ResTy, {Frc01, Rsh01}); 2808 2809 SDValue Int; 2810 2811 if (Opc == ISD::FP_TO_SINT) { 2812 SDValue Bnd = DAG.getNode(ISD::VSELECT, dl, ResTy, {Neg, M80, M7F}); 2813 SDValue Pos = DAG.getSetCC(dl, PredTy, Rsh01, Zero, ISD::SETGT); 2814 SDValue Frc13 = DAG.getNode(ISD::SUB, dl, ResTy, {Zero, Frc02}); 2815 SDValue Frc14 = DAG.getNode(ISD::VSELECT, dl, ResTy, {Neg, Frc13, Frc02}); 2816 Int = DAG.getNode(ISD::VSELECT, dl, ResTy, {Pos, Frc14, Bnd}); 2817 } else { 2818 assert(Opc == ISD::FP_TO_UINT); 2819 SDValue Rsn = DAG.getSetCC(dl, PredTy, Rsh01, Zero, ISD::SETLT); 2820 SDValue Frc23 = DAG.getNode(ISD::VSELECT, dl, ResTy, Rsn, M7F, Frc02); 2821 Int = DAG.getNode(ISD::VSELECT, dl, ResTy, Neg, Zero, Frc23); 2822 } 2823 2824 return Int; 2825 } 2826 2827 SDValue 2828 HexagonTargetLowering::ExpandHvxIntToFp(SDValue Op, SelectionDAG &DAG) const { 2829 unsigned Opc = Op.getOpcode(); 2830 assert(Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP); 2831 2832 const SDLoc &dl(Op); 2833 SDValue Op0 = Op.getOperand(0); 2834 MVT InpTy = ty(Op0); 2835 MVT ResTy = ty(Op); 2836 assert(ResTy.changeTypeToInteger() == InpTy); 2837 2838 // uint32_t vnoc1_rnd(int32_t w) { 2839 // int32_t iszero = w == 0; 2840 // int32_t isneg = w < 0; 2841 // uint32_t u = __builtin_HEXAGON_A2_abs(w); 2842 // 2843 // uint32_t norm_left = __builtin_HEXAGON_S2_cl0(u) + 1; 2844 // uint32_t frac0 = (uint64_t)u << norm_left; 2845 // 2846 // // Rounding: 2847 // uint32_t frac1 = frac0 + ((1 << 8) - 1); 2848 // uint32_t renorm = (frac0 > frac1); 2849 // uint32_t rup = (int)(frac0 << 22) < 0; 2850 // 2851 // uint32_t frac2 = frac0 >> 8; 2852 // uint32_t frac3 = frac1 >> 8; 2853 // uint32_t frac = (frac2 != frac3) ? frac3 >> 1 : (frac3 + rup) >> 1; 2854 // 2855 // int32_t exp = 32 - norm_left + renorm + 127; 2856 // exp <<= 23; 2857 // 2858 // uint32_t sign = 0x80000000 * isneg; 2859 // uint32_t f = sign | exp | frac; 2860 // return iszero ? 0 : f; 2861 // } 2862 2863 MVT PredTy = MVT::getVectorVT(MVT::i1, InpTy.getVectorElementCount()); 2864 bool Signed = Opc == ISD::SINT_TO_FP; 2865 2866 auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(ResTy); 2867 unsigned ElemWidth = 1 + ExpWidth + FracWidth; 2868 2869 SDValue Zero = getZero(dl, InpTy, DAG); 2870 SDValue One = DAG.getConstant(1, dl, InpTy); 2871 SDValue IsZero = DAG.getSetCC(dl, PredTy, Op0, Zero, ISD::SETEQ); 2872 SDValue Abs = Signed ? DAG.getNode(ISD::ABS, dl, InpTy, Op0) : Op0; 2873 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, InpTy, Abs); 2874 SDValue NLeft = DAG.getNode(ISD::ADD, dl, InpTy, {Clz, One}); 2875 SDValue Frac0 = DAG.getNode(ISD::SHL, dl, InpTy, {Abs, NLeft}); 2876 2877 auto [Frac, Ovf] = emitHvxShiftRightRnd(Frac0, ExpWidth + 1, false, DAG); 2878 if (Signed) { 2879 SDValue IsNeg = DAG.getSetCC(dl, PredTy, Op0, Zero, ISD::SETLT); 2880 SDValue M80 = DAG.getConstant(1ull << (ElemWidth - 1), dl, InpTy); 2881 SDValue Sign = DAG.getNode(ISD::VSELECT, dl, InpTy, {IsNeg, M80, Zero}); 2882 Frac = DAG.getNode(ISD::OR, dl, InpTy, {Sign, Frac}); 2883 } 2884 2885 SDValue Rnrm = DAG.getZExtOrTrunc(Ovf, dl, InpTy); 2886 SDValue Exp0 = DAG.getConstant(ElemWidth + ExpBias, dl, InpTy); 2887 SDValue Exp1 = DAG.getNode(ISD::ADD, dl, InpTy, {Rnrm, Exp0}); 2888 SDValue Exp2 = DAG.getNode(ISD::SUB, dl, InpTy, {Exp1, NLeft}); 2889 SDValue Exp3 = DAG.getNode(ISD::SHL, dl, InpTy, 2890 {Exp2, DAG.getConstant(FracWidth, dl, InpTy)}); 2891 SDValue Flt0 = DAG.getNode(ISD::OR, dl, InpTy, {Frac, Exp3}); 2892 SDValue Flt1 = DAG.getNode(ISD::VSELECT, dl, InpTy, {IsZero, Zero, Flt0}); 2893 SDValue Flt = DAG.getBitcast(ResTy, Flt1); 2894 2895 return Flt; 2896 } 2897 2898 SDValue 2899 HexagonTargetLowering::CreateTLWrapper(SDValue Op, SelectionDAG &DAG) const { 2900 unsigned Opc = Op.getOpcode(); 2901 unsigned TLOpc; 2902 switch (Opc) { 2903 case ISD::ANY_EXTEND: 2904 case ISD::SIGN_EXTEND: 2905 case ISD::ZERO_EXTEND: 2906 TLOpc = HexagonISD::TL_EXTEND; 2907 break; 2908 case ISD::TRUNCATE: 2909 TLOpc = HexagonISD::TL_TRUNCATE; 2910 break; 2911 #ifndef NDEBUG 2912 Op.dump(&DAG); 2913 #endif 2914 llvm_unreachable("Unepected operator"); 2915 } 2916 2917 const SDLoc &dl(Op); 2918 return DAG.getNode(TLOpc, dl, ty(Op), Op.getOperand(0), 2919 DAG.getUNDEF(MVT::i128), // illegal type 2920 DAG.getConstant(Opc, dl, MVT::i32)); 2921 } 2922 2923 SDValue 2924 HexagonTargetLowering::RemoveTLWrapper(SDValue Op, SelectionDAG &DAG) const { 2925 assert(Op.getOpcode() == HexagonISD::TL_EXTEND || 2926 Op.getOpcode() == HexagonISD::TL_TRUNCATE); 2927 unsigned Opc = Op.getConstantOperandVal(2); 2928 return DAG.getNode(Opc, SDLoc(Op), ty(Op), Op.getOperand(0)); 2929 } 2930 2931 HexagonTargetLowering::VectorPair 2932 HexagonTargetLowering::SplitVectorOp(SDValue Op, SelectionDAG &DAG) const { 2933 assert(!Op.isMachineOpcode()); 2934 SmallVector<SDValue, 2> OpsL, OpsH; 2935 const SDLoc &dl(Op); 2936 2937 auto SplitVTNode = [&DAG, this](const VTSDNode *N) { 2938 MVT Ty = typeSplit(N->getVT().getSimpleVT()).first; 2939 SDValue TV = DAG.getValueType(Ty); 2940 return std::make_pair(TV, TV); 2941 }; 2942 2943 for (SDValue A : Op.getNode()->ops()) { 2944 auto [Lo, Hi] = 2945 ty(A).isVector() ? opSplit(A, dl, DAG) : std::make_pair(A, A); 2946 // Special case for type operand. 2947 switch (Op.getOpcode()) { 2948 case ISD::SIGN_EXTEND_INREG: 2949 case HexagonISD::SSAT: 2950 case HexagonISD::USAT: 2951 if (const auto *N = dyn_cast<const VTSDNode>(A.getNode())) 2952 std::tie(Lo, Hi) = SplitVTNode(N); 2953 break; 2954 } 2955 OpsL.push_back(Lo); 2956 OpsH.push_back(Hi); 2957 } 2958 2959 MVT ResTy = ty(Op); 2960 MVT HalfTy = typeSplit(ResTy).first; 2961 SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL); 2962 SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH); 2963 return {L, H}; 2964 } 2965 2966 SDValue 2967 HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const { 2968 auto *MemN = cast<MemSDNode>(Op.getNode()); 2969 2970 MVT MemTy = MemN->getMemoryVT().getSimpleVT(); 2971 if (!isHvxPairTy(MemTy)) 2972 return Op; 2973 2974 const SDLoc &dl(Op); 2975 unsigned HwLen = Subtarget.getVectorLength(); 2976 MVT SingleTy = typeSplit(MemTy).first; 2977 SDValue Chain = MemN->getChain(); 2978 SDValue Base0 = MemN->getBasePtr(); 2979 SDValue Base1 = 2980 DAG.getMemBasePlusOffset(Base0, TypeSize::getFixed(HwLen), dl); 2981 unsigned MemOpc = MemN->getOpcode(); 2982 2983 MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr; 2984 if (MachineMemOperand *MMO = MemN->getMemOperand()) { 2985 MachineFunction &MF = DAG.getMachineFunction(); 2986 uint64_t MemSize = (MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE) 2987 ? (uint64_t)MemoryLocation::UnknownSize 2988 : HwLen; 2989 MOp0 = MF.getMachineMemOperand(MMO, 0, MemSize); 2990 MOp1 = MF.getMachineMemOperand(MMO, HwLen, MemSize); 2991 } 2992 2993 if (MemOpc == ISD::LOAD) { 2994 assert(cast<LoadSDNode>(Op)->isUnindexed()); 2995 SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0); 2996 SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1); 2997 return DAG.getMergeValues( 2998 { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1), 2999 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3000 Load0.getValue(1), Load1.getValue(1)) }, dl); 3001 } 3002 if (MemOpc == ISD::STORE) { 3003 assert(cast<StoreSDNode>(Op)->isUnindexed()); 3004 VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG); 3005 SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0); 3006 SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1); 3007 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1); 3008 } 3009 3010 assert(MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE); 3011 3012 auto MaskN = cast<MaskedLoadStoreSDNode>(Op); 3013 assert(MaskN->isUnindexed()); 3014 VectorPair Masks = opSplit(MaskN->getMask(), dl, DAG); 3015 SDValue Offset = DAG.getUNDEF(MVT::i32); 3016 3017 if (MemOpc == ISD::MLOAD) { 3018 VectorPair Thru = 3019 opSplit(cast<MaskedLoadSDNode>(Op)->getPassThru(), dl, DAG); 3020 SDValue MLoad0 = 3021 DAG.getMaskedLoad(SingleTy, dl, Chain, Base0, Offset, Masks.first, 3022 Thru.first, SingleTy, MOp0, ISD::UNINDEXED, 3023 ISD::NON_EXTLOAD, false); 3024 SDValue MLoad1 = 3025 DAG.getMaskedLoad(SingleTy, dl, Chain, Base1, Offset, Masks.second, 3026 Thru.second, SingleTy, MOp1, ISD::UNINDEXED, 3027 ISD::NON_EXTLOAD, false); 3028 return DAG.getMergeValues( 3029 { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, MLoad0, MLoad1), 3030 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3031 MLoad0.getValue(1), MLoad1.getValue(1)) }, dl); 3032 } 3033 if (MemOpc == ISD::MSTORE) { 3034 VectorPair Vals = opSplit(cast<MaskedStoreSDNode>(Op)->getValue(), dl, DAG); 3035 SDValue MStore0 = DAG.getMaskedStore(Chain, dl, Vals.first, Base0, Offset, 3036 Masks.first, SingleTy, MOp0, 3037 ISD::UNINDEXED, false, false); 3038 SDValue MStore1 = DAG.getMaskedStore(Chain, dl, Vals.second, Base1, Offset, 3039 Masks.second, SingleTy, MOp1, 3040 ISD::UNINDEXED, false, false); 3041 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MStore0, MStore1); 3042 } 3043 3044 std::string Name = "Unexpected operation: " + Op->getOperationName(&DAG); 3045 llvm_unreachable(Name.c_str()); 3046 } 3047 3048 SDValue 3049 HexagonTargetLowering::WidenHvxLoad(SDValue Op, SelectionDAG &DAG) const { 3050 const SDLoc &dl(Op); 3051 auto *LoadN = cast<LoadSDNode>(Op.getNode()); 3052 assert(LoadN->isUnindexed() && "Not widening indexed loads yet"); 3053 assert(LoadN->getMemoryVT().getVectorElementType() != MVT::i1 && 3054 "Not widening loads of i1 yet"); 3055 3056 SDValue Chain = LoadN->getChain(); 3057 SDValue Base = LoadN->getBasePtr(); 3058 SDValue Offset = DAG.getUNDEF(MVT::i32); 3059 3060 MVT ResTy = ty(Op); 3061 unsigned HwLen = Subtarget.getVectorLength(); 3062 unsigned ResLen = ResTy.getStoreSize(); 3063 assert(ResLen < HwLen && "vsetq(v1) prerequisite"); 3064 3065 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); 3066 SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, 3067 {DAG.getConstant(ResLen, dl, MVT::i32)}, DAG); 3068 3069 MVT LoadTy = MVT::getVectorVT(MVT::i8, HwLen); 3070 MachineFunction &MF = DAG.getMachineFunction(); 3071 auto *MemOp = MF.getMachineMemOperand(LoadN->getMemOperand(), 0, HwLen); 3072 3073 SDValue Load = DAG.getMaskedLoad(LoadTy, dl, Chain, Base, Offset, Mask, 3074 DAG.getUNDEF(LoadTy), LoadTy, MemOp, 3075 ISD::UNINDEXED, ISD::NON_EXTLOAD, false); 3076 SDValue Value = opCastElem(Load, ResTy.getVectorElementType(), DAG); 3077 return DAG.getMergeValues({Value, Load.getValue(1)}, dl); 3078 } 3079 3080 SDValue 3081 HexagonTargetLowering::WidenHvxStore(SDValue Op, SelectionDAG &DAG) const { 3082 const SDLoc &dl(Op); 3083 auto *StoreN = cast<StoreSDNode>(Op.getNode()); 3084 assert(StoreN->isUnindexed() && "Not widening indexed stores yet"); 3085 assert(StoreN->getMemoryVT().getVectorElementType() != MVT::i1 && 3086 "Not widening stores of i1 yet"); 3087 3088 SDValue Chain = StoreN->getChain(); 3089 SDValue Base = StoreN->getBasePtr(); 3090 SDValue Offset = DAG.getUNDEF(MVT::i32); 3091 3092 SDValue Value = opCastElem(StoreN->getValue(), MVT::i8, DAG); 3093 MVT ValueTy = ty(Value); 3094 unsigned ValueLen = ValueTy.getVectorNumElements(); 3095 unsigned HwLen = Subtarget.getVectorLength(); 3096 assert(isPowerOf2_32(ValueLen)); 3097 3098 for (unsigned Len = ValueLen; Len < HwLen; ) { 3099 Value = opJoin({Value, DAG.getUNDEF(ty(Value))}, dl, DAG); 3100 Len = ty(Value).getVectorNumElements(); // This is Len *= 2 3101 } 3102 assert(ty(Value).getVectorNumElements() == HwLen); // Paranoia 3103 3104 assert(ValueLen < HwLen && "vsetq(v1) prerequisite"); 3105 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); 3106 SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, 3107 {DAG.getConstant(ValueLen, dl, MVT::i32)}, DAG); 3108 MachineFunction &MF = DAG.getMachineFunction(); 3109 auto *MemOp = MF.getMachineMemOperand(StoreN->getMemOperand(), 0, HwLen); 3110 return DAG.getMaskedStore(Chain, dl, Value, Base, Offset, Mask, ty(Value), 3111 MemOp, ISD::UNINDEXED, false, false); 3112 } 3113 3114 SDValue 3115 HexagonTargetLowering::WidenHvxSetCC(SDValue Op, SelectionDAG &DAG) const { 3116 const SDLoc &dl(Op); 3117 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 3118 MVT ElemTy = ty(Op0).getVectorElementType(); 3119 unsigned HwLen = Subtarget.getVectorLength(); 3120 3121 unsigned WideOpLen = (8 * HwLen) / ElemTy.getSizeInBits(); 3122 assert(WideOpLen * ElemTy.getSizeInBits() == 8 * HwLen); 3123 MVT WideOpTy = MVT::getVectorVT(ElemTy, WideOpLen); 3124 if (!Subtarget.isHVXVectorType(WideOpTy, true)) 3125 return SDValue(); 3126 3127 SDValue WideOp0 = appendUndef(Op0, WideOpTy, DAG); 3128 SDValue WideOp1 = appendUndef(Op1, WideOpTy, DAG); 3129 EVT ResTy = 3130 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), WideOpTy); 3131 SDValue SetCC = DAG.getNode(ISD::SETCC, dl, ResTy, 3132 {WideOp0, WideOp1, Op.getOperand(2)}); 3133 3134 EVT RetTy = typeLegalize(ty(Op), DAG); 3135 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, RetTy, 3136 {SetCC, getZero(dl, MVT::i32, DAG)}); 3137 } 3138 3139 SDValue 3140 HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const { 3141 unsigned Opc = Op.getOpcode(); 3142 bool IsPairOp = isHvxPairTy(ty(Op)) || 3143 llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) { 3144 return isHvxPairTy(ty(V)); 3145 }); 3146 3147 if (IsPairOp) { 3148 switch (Opc) { 3149 default: 3150 break; 3151 case ISD::LOAD: 3152 case ISD::STORE: 3153 case ISD::MLOAD: 3154 case ISD::MSTORE: 3155 return SplitHvxMemOp(Op, DAG); 3156 case ISD::SINT_TO_FP: 3157 case ISD::UINT_TO_FP: 3158 case ISD::FP_TO_SINT: 3159 case ISD::FP_TO_UINT: 3160 if (ty(Op).getSizeInBits() == ty(Op.getOperand(0)).getSizeInBits()) 3161 return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); 3162 break; 3163 case ISD::ABS: 3164 case ISD::CTPOP: 3165 case ISD::CTLZ: 3166 case ISD::CTTZ: 3167 case ISD::MUL: 3168 case ISD::FADD: 3169 case ISD::FSUB: 3170 case ISD::FMUL: 3171 case ISD::FMINNUM: 3172 case ISD::FMAXNUM: 3173 case ISD::MULHS: 3174 case ISD::MULHU: 3175 case ISD::AND: 3176 case ISD::OR: 3177 case ISD::XOR: 3178 case ISD::SRA: 3179 case ISD::SHL: 3180 case ISD::SRL: 3181 case ISD::FSHL: 3182 case ISD::FSHR: 3183 case ISD::SMIN: 3184 case ISD::SMAX: 3185 case ISD::UMIN: 3186 case ISD::UMAX: 3187 case ISD::SETCC: 3188 case ISD::VSELECT: 3189 case ISD::SIGN_EXTEND_INREG: 3190 case ISD::SPLAT_VECTOR: 3191 return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); 3192 case ISD::SIGN_EXTEND: 3193 case ISD::ZERO_EXTEND: 3194 // In general, sign- and zero-extends can't be split and still 3195 // be legal. The only exception is extending bool vectors. 3196 if (ty(Op.getOperand(0)).getVectorElementType() == MVT::i1) 3197 return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); 3198 break; 3199 } 3200 } 3201 3202 switch (Opc) { 3203 default: 3204 break; 3205 case ISD::BUILD_VECTOR: return LowerHvxBuildVector(Op, DAG); 3206 case ISD::SPLAT_VECTOR: return LowerHvxSplatVector(Op, DAG); 3207 case ISD::CONCAT_VECTORS: return LowerHvxConcatVectors(Op, DAG); 3208 case ISD::INSERT_SUBVECTOR: return LowerHvxInsertSubvector(Op, DAG); 3209 case ISD::INSERT_VECTOR_ELT: return LowerHvxInsertElement(Op, DAG); 3210 case ISD::EXTRACT_SUBVECTOR: return LowerHvxExtractSubvector(Op, DAG); 3211 case ISD::EXTRACT_VECTOR_ELT: return LowerHvxExtractElement(Op, DAG); 3212 case ISD::BITCAST: return LowerHvxBitcast(Op, DAG); 3213 case ISD::ANY_EXTEND: return LowerHvxAnyExt(Op, DAG); 3214 case ISD::SIGN_EXTEND: return LowerHvxSignExt(Op, DAG); 3215 case ISD::ZERO_EXTEND: return LowerHvxZeroExt(Op, DAG); 3216 case ISD::CTTZ: return LowerHvxCttz(Op, DAG); 3217 case ISD::SELECT: return LowerHvxSelect(Op, DAG); 3218 case ISD::SRA: 3219 case ISD::SHL: 3220 case ISD::SRL: return LowerHvxShift(Op, DAG); 3221 case ISD::FSHL: 3222 case ISD::FSHR: return LowerHvxFunnelShift(Op, DAG); 3223 case ISD::MULHS: 3224 case ISD::MULHU: return LowerHvxMulh(Op, DAG); 3225 case ISD::SMUL_LOHI: 3226 case ISD::UMUL_LOHI: return LowerHvxMulLoHi(Op, DAG); 3227 case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG); 3228 case ISD::SETCC: 3229 case ISD::INTRINSIC_VOID: return Op; 3230 case ISD::INTRINSIC_WO_CHAIN: return LowerHvxIntrinsic(Op, DAG); 3231 case ISD::MLOAD: 3232 case ISD::MSTORE: return LowerHvxMaskedOp(Op, DAG); 3233 // Unaligned loads will be handled by the default lowering. 3234 case ISD::LOAD: return SDValue(); 3235 case ISD::FP_EXTEND: return LowerHvxFpExtend(Op, DAG); 3236 case ISD::FP_TO_SINT: 3237 case ISD::FP_TO_UINT: return LowerHvxFpToInt(Op, DAG); 3238 case ISD::SINT_TO_FP: 3239 case ISD::UINT_TO_FP: return LowerHvxIntToFp(Op, DAG); 3240 3241 // Special nodes: 3242 case HexagonISD::SMUL_LOHI: 3243 case HexagonISD::UMUL_LOHI: 3244 case HexagonISD::USMUL_LOHI: return LowerHvxMulLoHi(Op, DAG); 3245 } 3246 #ifndef NDEBUG 3247 Op.dumpr(&DAG); 3248 #endif 3249 llvm_unreachable("Unhandled HVX operation"); 3250 } 3251 3252 SDValue 3253 HexagonTargetLowering::ExpandHvxResizeIntoSteps(SDValue Op, SelectionDAG &DAG) 3254 const { 3255 // Rewrite the extension/truncation/saturation op into steps where each 3256 // step changes the type widths by a factor of 2. 3257 // E.g. i8 -> i16 remains unchanged, but i8 -> i32 ==> i8 -> i16 -> i32. 3258 // 3259 // Some of the vector types in Op may not be legal. 3260 3261 unsigned Opc = Op.getOpcode(); 3262 switch (Opc) { 3263 case HexagonISD::SSAT: 3264 case HexagonISD::USAT: 3265 case HexagonISD::TL_EXTEND: 3266 case HexagonISD::TL_TRUNCATE: 3267 break; 3268 case ISD::ANY_EXTEND: 3269 case ISD::ZERO_EXTEND: 3270 case ISD::SIGN_EXTEND: 3271 case ISD::TRUNCATE: 3272 llvm_unreachable("ISD:: ops will be auto-folded"); 3273 break; 3274 #ifndef NDEBUG 3275 Op.dump(&DAG); 3276 #endif 3277 llvm_unreachable("Unexpected operation"); 3278 } 3279 3280 SDValue Inp = Op.getOperand(0); 3281 MVT InpTy = ty(Inp); 3282 MVT ResTy = ty(Op); 3283 3284 unsigned InpWidth = InpTy.getVectorElementType().getSizeInBits(); 3285 unsigned ResWidth = ResTy.getVectorElementType().getSizeInBits(); 3286 assert(InpWidth != ResWidth); 3287 3288 if (InpWidth == 2 * ResWidth || ResWidth == 2 * InpWidth) 3289 return Op; 3290 3291 const SDLoc &dl(Op); 3292 unsigned NumElems = InpTy.getVectorNumElements(); 3293 assert(NumElems == ResTy.getVectorNumElements()); 3294 3295 auto repeatOp = [&](unsigned NewWidth, SDValue Arg) { 3296 MVT Ty = MVT::getVectorVT(MVT::getIntegerVT(NewWidth), NumElems); 3297 switch (Opc) { 3298 case HexagonISD::SSAT: 3299 case HexagonISD::USAT: 3300 return DAG.getNode(Opc, dl, Ty, {Arg, DAG.getValueType(Ty)}); 3301 case HexagonISD::TL_EXTEND: 3302 case HexagonISD::TL_TRUNCATE: 3303 return DAG.getNode(Opc, dl, Ty, {Arg, Op.getOperand(1), Op.getOperand(2)}); 3304 default: 3305 llvm_unreachable("Unexpected opcode"); 3306 } 3307 }; 3308 3309 SDValue S = Inp; 3310 if (InpWidth < ResWidth) { 3311 assert(ResWidth % InpWidth == 0 && isPowerOf2_32(ResWidth / InpWidth)); 3312 while (InpWidth * 2 <= ResWidth) 3313 S = repeatOp(InpWidth *= 2, S); 3314 } else { 3315 // InpWidth > ResWidth 3316 assert(InpWidth % ResWidth == 0 && isPowerOf2_32(InpWidth / ResWidth)); 3317 while (InpWidth / 2 >= ResWidth) 3318 S = repeatOp(InpWidth /= 2, S); 3319 } 3320 return S; 3321 } 3322 3323 SDValue 3324 HexagonTargetLowering::LegalizeHvxResize(SDValue Op, SelectionDAG &DAG) const { 3325 SDValue Inp0 = Op.getOperand(0); 3326 MVT InpTy = ty(Inp0); 3327 MVT ResTy = ty(Op); 3328 unsigned InpWidth = InpTy.getSizeInBits(); 3329 unsigned ResWidth = ResTy.getSizeInBits(); 3330 unsigned Opc = Op.getOpcode(); 3331 3332 if (shouldWidenToHvx(InpTy, DAG) || shouldWidenToHvx(ResTy, DAG)) { 3333 // First, make sure that the narrower type is widened to HVX. 3334 // This may cause the result to be wider than what the legalizer 3335 // expects, so insert EXTRACT_SUBVECTOR to bring it back to the 3336 // desired type. 3337 auto [WInpTy, WResTy] = 3338 InpWidth < ResWidth ? typeWidenToWider(typeWidenToHvx(InpTy), ResTy) 3339 : typeWidenToWider(InpTy, typeWidenToHvx(ResTy)); 3340 SDValue W = appendUndef(Inp0, WInpTy, DAG); 3341 SDValue S; 3342 if (Opc == HexagonISD::TL_EXTEND || Opc == HexagonISD::TL_TRUNCATE) { 3343 S = DAG.getNode(Opc, SDLoc(Op), WResTy, W, Op.getOperand(1), 3344 Op.getOperand(2)); 3345 } else { 3346 S = DAG.getNode(Opc, SDLoc(Op), WResTy, W, DAG.getValueType(WResTy)); 3347 } 3348 SDValue T = ExpandHvxResizeIntoSteps(S, DAG); 3349 return extractSubvector(T, typeLegalize(ResTy, DAG), 0, DAG); 3350 } else if (shouldSplitToHvx(InpWidth < ResWidth ? ResTy : InpTy, DAG)) { 3351 return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); 3352 } else { 3353 assert(isTypeLegal(InpTy) && isTypeLegal(ResTy)); 3354 return RemoveTLWrapper(Op, DAG); 3355 } 3356 llvm_unreachable("Unexpected situation"); 3357 } 3358 3359 void 3360 HexagonTargetLowering::LowerHvxOperationWrapper(SDNode *N, 3361 SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 3362 unsigned Opc = N->getOpcode(); 3363 SDValue Op(N, 0); 3364 SDValue Inp0; // Optional first argument. 3365 if (N->getNumOperands() > 0) 3366 Inp0 = Op.getOperand(0); 3367 3368 switch (Opc) { 3369 case ISD::ANY_EXTEND: 3370 case ISD::SIGN_EXTEND: 3371 case ISD::ZERO_EXTEND: 3372 case ISD::TRUNCATE: 3373 if (Subtarget.isHVXElementType(ty(Op)) && 3374 Subtarget.isHVXElementType(ty(Inp0))) { 3375 Results.push_back(CreateTLWrapper(Op, DAG)); 3376 } 3377 break; 3378 case ISD::SETCC: 3379 if (shouldWidenToHvx(ty(Inp0), DAG)) { 3380 if (SDValue T = WidenHvxSetCC(Op, DAG)) 3381 Results.push_back(T); 3382 } 3383 break; 3384 case ISD::STORE: { 3385 if (shouldWidenToHvx(ty(cast<StoreSDNode>(N)->getValue()), DAG)) { 3386 SDValue Store = WidenHvxStore(Op, DAG); 3387 Results.push_back(Store); 3388 } 3389 break; 3390 } 3391 case ISD::MLOAD: 3392 if (isHvxPairTy(ty(Op))) { 3393 SDValue S = SplitHvxMemOp(Op, DAG); 3394 assert(S->getOpcode() == ISD::MERGE_VALUES); 3395 Results.push_back(S.getOperand(0)); 3396 Results.push_back(S.getOperand(1)); 3397 } 3398 break; 3399 case ISD::MSTORE: 3400 if (isHvxPairTy(ty(Op->getOperand(1)))) { // Stored value 3401 SDValue S = SplitHvxMemOp(Op, DAG); 3402 Results.push_back(S); 3403 } 3404 break; 3405 case ISD::SINT_TO_FP: 3406 case ISD::UINT_TO_FP: 3407 case ISD::FP_TO_SINT: 3408 case ISD::FP_TO_UINT: 3409 if (ty(Op).getSizeInBits() != ty(Inp0).getSizeInBits()) { 3410 SDValue T = EqualizeFpIntConversion(Op, DAG); 3411 Results.push_back(T); 3412 } 3413 break; 3414 case HexagonISD::SSAT: 3415 case HexagonISD::USAT: 3416 case HexagonISD::TL_EXTEND: 3417 case HexagonISD::TL_TRUNCATE: 3418 Results.push_back(LegalizeHvxResize(Op, DAG)); 3419 break; 3420 default: 3421 break; 3422 } 3423 } 3424 3425 void 3426 HexagonTargetLowering::ReplaceHvxNodeResults(SDNode *N, 3427 SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 3428 unsigned Opc = N->getOpcode(); 3429 SDValue Op(N, 0); 3430 SDValue Inp0; // Optional first argument. 3431 if (N->getNumOperands() > 0) 3432 Inp0 = Op.getOperand(0); 3433 3434 switch (Opc) { 3435 case ISD::ANY_EXTEND: 3436 case ISD::SIGN_EXTEND: 3437 case ISD::ZERO_EXTEND: 3438 case ISD::TRUNCATE: 3439 if (Subtarget.isHVXElementType(ty(Op)) && 3440 Subtarget.isHVXElementType(ty(Inp0))) { 3441 Results.push_back(CreateTLWrapper(Op, DAG)); 3442 } 3443 break; 3444 case ISD::SETCC: 3445 if (shouldWidenToHvx(ty(Op), DAG)) { 3446 if (SDValue T = WidenHvxSetCC(Op, DAG)) 3447 Results.push_back(T); 3448 } 3449 break; 3450 case ISD::LOAD: { 3451 if (shouldWidenToHvx(ty(Op), DAG)) { 3452 SDValue Load = WidenHvxLoad(Op, DAG); 3453 assert(Load->getOpcode() == ISD::MERGE_VALUES); 3454 Results.push_back(Load.getOperand(0)); 3455 Results.push_back(Load.getOperand(1)); 3456 } 3457 break; 3458 } 3459 case ISD::BITCAST: 3460 if (isHvxBoolTy(ty(Inp0))) { 3461 SDValue C = LowerHvxBitcast(Op, DAG); 3462 Results.push_back(C); 3463 } 3464 break; 3465 case ISD::FP_TO_SINT: 3466 case ISD::FP_TO_UINT: 3467 if (ty(Op).getSizeInBits() != ty(Inp0).getSizeInBits()) { 3468 SDValue T = EqualizeFpIntConversion(Op, DAG); 3469 Results.push_back(T); 3470 } 3471 break; 3472 case HexagonISD::SSAT: 3473 case HexagonISD::USAT: 3474 case HexagonISD::TL_EXTEND: 3475 case HexagonISD::TL_TRUNCATE: 3476 Results.push_back(LegalizeHvxResize(Op, DAG)); 3477 break; 3478 default: 3479 break; 3480 } 3481 } 3482 3483 SDValue 3484 HexagonTargetLowering::combineTruncateBeforeLegal(SDValue Op, 3485 DAGCombinerInfo &DCI) const { 3486 // Simplify V:v2NiB --(bitcast)--> vNi2B --(truncate)--> vNiB 3487 // to extract-subvector (shuffle V, pick even, pick odd) 3488 3489 assert(Op.getOpcode() == ISD::TRUNCATE); 3490 SelectionDAG &DAG = DCI.DAG; 3491 const SDLoc &dl(Op); 3492 3493 if (Op.getOperand(0).getOpcode() == ISD::BITCAST) 3494 return SDValue(); 3495 SDValue Cast = Op.getOperand(0); 3496 SDValue Src = Cast.getOperand(0); 3497 3498 EVT TruncTy = Op.getValueType(); 3499 EVT CastTy = Cast.getValueType(); 3500 EVT SrcTy = Src.getValueType(); 3501 if (SrcTy.isSimple()) 3502 return SDValue(); 3503 if (SrcTy.getVectorElementType() != TruncTy.getVectorElementType()) 3504 return SDValue(); 3505 unsigned SrcLen = SrcTy.getVectorNumElements(); 3506 unsigned CastLen = CastTy.getVectorNumElements(); 3507 if (2 * CastLen != SrcLen) 3508 return SDValue(); 3509 3510 SmallVector<int, 128> Mask(SrcLen); 3511 for (int i = 0; i != static_cast<int>(CastLen); ++i) { 3512 Mask[i] = 2 * i; 3513 Mask[i + CastLen] = 2 * i + 1; 3514 } 3515 SDValue Deal = 3516 DAG.getVectorShuffle(SrcTy, dl, Src, DAG.getUNDEF(SrcTy), Mask); 3517 return opSplit(Deal, dl, DAG).first; 3518 } 3519 3520 SDValue 3521 HexagonTargetLowering::combineConcatVectorsBeforeLegal( 3522 SDValue Op, DAGCombinerInfo &DCI) const { 3523 // Fold 3524 // concat (shuffle x, y, m1), (shuffle x, y, m2) 3525 // into 3526 // shuffle (concat x, y), undef, m3 3527 if (Op.getNumOperands() != 2) 3528 return SDValue(); 3529 3530 SelectionDAG &DAG = DCI.DAG; 3531 const SDLoc &dl(Op); 3532 SDValue V0 = Op.getOperand(0); 3533 SDValue V1 = Op.getOperand(1); 3534 3535 if (V0.getOpcode() != ISD::VECTOR_SHUFFLE) 3536 return SDValue(); 3537 if (V1.getOpcode() != ISD::VECTOR_SHUFFLE) 3538 return SDValue(); 3539 3540 SetVector<SDValue> Order; 3541 Order.insert(V0.getOperand(0)); 3542 Order.insert(V0.getOperand(1)); 3543 Order.insert(V1.getOperand(0)); 3544 Order.insert(V1.getOperand(1)); 3545 3546 if (Order.size() > 2) 3547 return SDValue(); 3548 3549 // In ISD::VECTOR_SHUFFLE, the types of each input and the type of the 3550 // result must be the same. 3551 EVT InpTy = V0.getValueType(); 3552 assert(InpTy.isVector()); 3553 unsigned InpLen = InpTy.getVectorNumElements(); 3554 3555 SmallVector<int, 128> LongMask; 3556 auto AppendToMask = [&](SDValue Shuffle) { 3557 auto *SV = cast<ShuffleVectorSDNode>(Shuffle.getNode()); 3558 ArrayRef<int> Mask = SV->getMask(); 3559 SDValue X = Shuffle.getOperand(0); 3560 SDValue Y = Shuffle.getOperand(1); 3561 for (int M : Mask) { 3562 if (M == -1) { 3563 LongMask.push_back(M); 3564 continue; 3565 } 3566 SDValue Src = static_cast<unsigned>(M) < InpLen ? X : Y; 3567 if (static_cast<unsigned>(M) >= InpLen) 3568 M -= InpLen; 3569 3570 int OutOffset = Order[0] == Src ? 0 : InpLen; 3571 LongMask.push_back(M + OutOffset); 3572 } 3573 }; 3574 3575 AppendToMask(V0); 3576 AppendToMask(V1); 3577 3578 SDValue C0 = Order.front(); 3579 SDValue C1 = Order.back(); // Can be same as front 3580 EVT LongTy = InpTy.getDoubleNumVectorElementsVT(*DAG.getContext()); 3581 3582 SDValue Cat = DAG.getNode(ISD::CONCAT_VECTORS, dl, LongTy, {C0, C1}); 3583 return DAG.getVectorShuffle(LongTy, dl, Cat, DAG.getUNDEF(LongTy), LongMask); 3584 } 3585 3586 SDValue 3587 HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI) 3588 const { 3589 const SDLoc &dl(N); 3590 SelectionDAG &DAG = DCI.DAG; 3591 SDValue Op(N, 0); 3592 unsigned Opc = Op.getOpcode(); 3593 3594 SmallVector<SDValue, 4> Ops(N->ops()); 3595 3596 if (Opc == ISD::TRUNCATE) 3597 return combineTruncateBeforeLegal(Op, DCI); 3598 if (Opc == ISD::CONCAT_VECTORS) 3599 return combineConcatVectorsBeforeLegal(Op, DCI); 3600 3601 if (DCI.isBeforeLegalizeOps()) 3602 return SDValue(); 3603 3604 switch (Opc) { 3605 case ISD::VSELECT: { 3606 // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0) 3607 SDValue Cond = Ops[0]; 3608 if (Cond->getOpcode() == ISD::XOR) { 3609 SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1); 3610 if (C1->getOpcode() == HexagonISD::QTRUE) 3611 return DAG.getNode(ISD::VSELECT, dl, ty(Op), C0, Ops[2], Ops[1]); 3612 } 3613 break; 3614 } 3615 case HexagonISD::V2Q: 3616 if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR) { 3617 if (const auto *C = dyn_cast<ConstantSDNode>(Ops[0].getOperand(0))) 3618 return C->isZero() ? DAG.getNode(HexagonISD::QFALSE, dl, ty(Op)) 3619 : DAG.getNode(HexagonISD::QTRUE, dl, ty(Op)); 3620 } 3621 break; 3622 case HexagonISD::Q2V: 3623 if (Ops[0].getOpcode() == HexagonISD::QTRUE) 3624 return DAG.getNode(ISD::SPLAT_VECTOR, dl, ty(Op), 3625 DAG.getAllOnesConstant(dl, MVT::i32)); 3626 if (Ops[0].getOpcode() == HexagonISD::QFALSE) 3627 return getZero(dl, ty(Op), DAG); 3628 break; 3629 case HexagonISD::VINSERTW0: 3630 if (isUndef(Ops[1])) 3631 return Ops[0]; 3632 break; 3633 case HexagonISD::VROR: { 3634 if (Ops[0].getOpcode() == HexagonISD::VROR) { 3635 SDValue Vec = Ops[0].getOperand(0); 3636 SDValue Rot0 = Ops[1], Rot1 = Ops[0].getOperand(1); 3637 SDValue Rot = DAG.getNode(ISD::ADD, dl, ty(Rot0), {Rot0, Rot1}); 3638 return DAG.getNode(HexagonISD::VROR, dl, ty(Op), {Vec, Rot}); 3639 } 3640 break; 3641 } 3642 } 3643 3644 return SDValue(); 3645 } 3646 3647 bool 3648 HexagonTargetLowering::shouldSplitToHvx(MVT Ty, SelectionDAG &DAG) const { 3649 if (Subtarget.isHVXVectorType(Ty, true)) 3650 return false; 3651 auto Action = getPreferredHvxVectorAction(Ty); 3652 if (Action == TargetLoweringBase::TypeSplitVector) 3653 return Subtarget.isHVXVectorType(typeLegalize(Ty, DAG), true); 3654 return false; 3655 } 3656 3657 bool 3658 HexagonTargetLowering::shouldWidenToHvx(MVT Ty, SelectionDAG &DAG) const { 3659 if (Subtarget.isHVXVectorType(Ty, true)) 3660 return false; 3661 auto Action = getPreferredHvxVectorAction(Ty); 3662 if (Action == TargetLoweringBase::TypeWidenVector) 3663 return Subtarget.isHVXVectorType(typeLegalize(Ty, DAG), true); 3664 return false; 3665 } 3666 3667 bool 3668 HexagonTargetLowering::isHvxOperation(SDNode *N, SelectionDAG &DAG) const { 3669 if (!Subtarget.useHVXOps()) 3670 return false; 3671 // If the type of any result, or any operand type are HVX vector types, 3672 // this is an HVX operation. 3673 auto IsHvxTy = [this](EVT Ty) { 3674 return Ty.isSimple() && Subtarget.isHVXVectorType(Ty.getSimpleVT(), true); 3675 }; 3676 auto IsHvxOp = [this](SDValue Op) { 3677 return Op.getValueType().isSimple() && 3678 Subtarget.isHVXVectorType(ty(Op), true); 3679 }; 3680 if (llvm::any_of(N->values(), IsHvxTy) || llvm::any_of(N->ops(), IsHvxOp)) 3681 return true; 3682 3683 // Check if this could be an HVX operation after type widening. 3684 auto IsWidenedToHvx = [this, &DAG](SDValue Op) { 3685 if (!Op.getValueType().isSimple()) 3686 return false; 3687 MVT ValTy = ty(Op); 3688 return ValTy.isVector() && shouldWidenToHvx(ValTy, DAG); 3689 }; 3690 3691 for (int i = 0, e = N->getNumValues(); i != e; ++i) { 3692 if (IsWidenedToHvx(SDValue(N, i))) 3693 return true; 3694 } 3695 return llvm::any_of(N->ops(), IsWidenedToHvx); 3696 } 3697