xref: /llvm-project/llvm/lib/Target/LoongArch/MCTargetDesc/LoongArchAsmBackend.cpp (revision 814b34f31e163e76b816194004689985f5b9fd7b)
1 //===-- LoongArchAsmBackend.cpp - LoongArch Assembler Backend -*- C++ -*---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LoongArchAsmBackend class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LoongArchAsmBackend.h"
14 #include "LoongArchFixupKinds.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCAssembler.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/MC/MCELFObjectWriter.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCSection.h"
21 #include "llvm/MC/MCValue.h"
22 #include "llvm/Support/EndianStream.h"
23 #include "llvm/Support/LEB128.h"
24 #include "llvm/Support/MathExtras.h"
25 
26 #define DEBUG_TYPE "loongarch-asmbackend"
27 
28 using namespace llvm;
29 
30 std::optional<MCFixupKind>
31 LoongArchAsmBackend::getFixupKind(StringRef Name) const {
32   if (STI.getTargetTriple().isOSBinFormatELF()) {
33     auto Type = llvm::StringSwitch<unsigned>(Name)
34 #define ELF_RELOC(X, Y) .Case(#X, Y)
35 #include "llvm/BinaryFormat/ELFRelocs/LoongArch.def"
36 #undef ELF_RELOC
37                     .Case("BFD_RELOC_NONE", ELF::R_LARCH_NONE)
38                     .Case("BFD_RELOC_32", ELF::R_LARCH_32)
39                     .Case("BFD_RELOC_64", ELF::R_LARCH_64)
40                     .Default(-1u);
41     if (Type != -1u)
42       return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
43   }
44   return std::nullopt;
45 }
46 
47 const MCFixupKindInfo &
48 LoongArchAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
49   const static MCFixupKindInfo Infos[] = {
50       // This table *must* be in the order that the fixup_* kinds are defined in
51       // LoongArchFixupKinds.h.
52       //
53       // {name, offset, bits, flags}
54       {"fixup_loongarch_b16", 10, 16, MCFixupKindInfo::FKF_IsPCRel},
55       {"fixup_loongarch_b21", 0, 26, MCFixupKindInfo::FKF_IsPCRel},
56       {"fixup_loongarch_b26", 0, 26, MCFixupKindInfo::FKF_IsPCRel},
57       {"fixup_loongarch_abs_hi20", 5, 20, 0},
58       {"fixup_loongarch_abs_lo12", 10, 12, 0},
59       {"fixup_loongarch_abs64_lo20", 5, 20, 0},
60       {"fixup_loongarch_abs64_hi12", 10, 12, 0},
61       {"fixup_loongarch_tls_le_hi20", 5, 20, 0},
62       {"fixup_loongarch_tls_le_lo12", 10, 12, 0},
63       {"fixup_loongarch_tls_le64_lo20", 5, 20, 0},
64       {"fixup_loongarch_tls_le64_hi12", 10, 12, 0},
65       // TODO: Add more fixup kinds.
66   };
67 
68   static_assert((std::size(Infos)) == LoongArch::NumTargetFixupKinds,
69                 "Not all fixup kinds added to Infos array");
70 
71   // Fixup kinds from .reloc directive are like R_LARCH_NONE. They
72   // do not require any extra processing.
73   if (Kind >= FirstLiteralRelocationKind)
74     return MCAsmBackend::getFixupKindInfo(FK_NONE);
75 
76   if (Kind < FirstTargetFixupKind)
77     return MCAsmBackend::getFixupKindInfo(Kind);
78 
79   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
80          "Invalid kind!");
81   return Infos[Kind - FirstTargetFixupKind];
82 }
83 
84 static void reportOutOfRangeError(MCContext &Ctx, SMLoc Loc, unsigned N) {
85   Ctx.reportError(Loc, "fixup value out of range [" + Twine(llvm::minIntN(N)) +
86                            ", " + Twine(llvm::maxIntN(N)) + "]");
87 }
88 
89 static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
90                                  MCContext &Ctx) {
91   switch (Fixup.getTargetKind()) {
92   default:
93     llvm_unreachable("Unknown fixup kind");
94   case FK_Data_1:
95   case FK_Data_2:
96   case FK_Data_4:
97   case FK_Data_8:
98   case FK_Data_leb128:
99     return Value;
100   case LoongArch::fixup_loongarch_b16: {
101     if (!isInt<18>(Value))
102       reportOutOfRangeError(Ctx, Fixup.getLoc(), 18);
103     if (Value % 4)
104       Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
105     return (Value >> 2) & 0xffff;
106   }
107   case LoongArch::fixup_loongarch_b21: {
108     if (!isInt<23>(Value))
109       reportOutOfRangeError(Ctx, Fixup.getLoc(), 23);
110     if (Value % 4)
111       Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
112     return ((Value & 0x3fffc) << 8) | ((Value >> 18) & 0x1f);
113   }
114   case LoongArch::fixup_loongarch_b26: {
115     if (!isInt<28>(Value))
116       reportOutOfRangeError(Ctx, Fixup.getLoc(), 28);
117     if (Value % 4)
118       Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
119     return ((Value & 0x3fffc) << 8) | ((Value >> 18) & 0x3ff);
120   }
121   case LoongArch::fixup_loongarch_abs_hi20:
122   case LoongArch::fixup_loongarch_tls_le_hi20:
123     return (Value >> 12) & 0xfffff;
124   case LoongArch::fixup_loongarch_abs_lo12:
125   case LoongArch::fixup_loongarch_tls_le_lo12:
126     return Value & 0xfff;
127   case LoongArch::fixup_loongarch_abs64_lo20:
128   case LoongArch::fixup_loongarch_tls_le64_lo20:
129     return (Value >> 32) & 0xfffff;
130   case LoongArch::fixup_loongarch_abs64_hi12:
131   case LoongArch::fixup_loongarch_tls_le64_hi12:
132     return (Value >> 52) & 0xfff;
133   }
134 }
135 
136 static void fixupLeb128(MCContext &Ctx, const MCFixup &Fixup,
137                         MutableArrayRef<char> Data, uint64_t Value) {
138   unsigned I;
139   for (I = 0; I != Data.size() && Value; ++I, Value >>= 7)
140     Data[I] |= uint8_t(Value & 0x7f);
141   if (Value)
142     Ctx.reportError(Fixup.getLoc(), "Invalid uleb128 value!");
143 }
144 
145 void LoongArchAsmBackend::applyFixup(const MCAssembler &Asm,
146                                      const MCFixup &Fixup,
147                                      const MCValue &Target,
148                                      MutableArrayRef<char> Data, uint64_t Value,
149                                      bool IsResolved,
150                                      const MCSubtargetInfo *STI) const {
151   if (!Value)
152     return; // Doesn't change encoding.
153 
154   MCFixupKind Kind = Fixup.getKind();
155   if (Kind >= FirstLiteralRelocationKind)
156     return;
157   MCFixupKindInfo Info = getFixupKindInfo(Kind);
158   MCContext &Ctx = Asm.getContext();
159 
160   // Fixup leb128 separately.
161   if (Fixup.getTargetKind() == FK_Data_leb128)
162     return fixupLeb128(Ctx, Fixup, Data, Value);
163 
164   // Apply any target-specific value adjustments.
165   Value = adjustFixupValue(Fixup, Value, Ctx);
166 
167   // Shift the value into position.
168   Value <<= Info.TargetOffset;
169 
170   unsigned Offset = Fixup.getOffset();
171   unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8;
172 
173   assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
174   // For each byte of the fragment that the fixup touches, mask in the
175   // bits from the fixup value.
176   for (unsigned I = 0; I != NumBytes; ++I) {
177     Data[Offset + I] |= uint8_t((Value >> (I * 8)) & 0xff);
178   }
179 }
180 
181 // Linker relaxation may change code size. We have to insert Nops
182 // for .align directive when linker relaxation enabled. So then Linker
183 // could satisfy alignment by removing Nops.
184 // The function returns the total Nops Size we need to insert.
185 bool LoongArchAsmBackend::shouldInsertExtraNopBytesForCodeAlign(
186     const MCAlignFragment &AF, unsigned &Size) {
187   // Calculate Nops Size only when linker relaxation enabled.
188   if (!AF.getSubtargetInfo()->hasFeature(LoongArch::FeatureRelax))
189     return false;
190 
191   // Ignore alignment if MaxBytesToEmit is less than the minimum Nop size.
192   const unsigned MinNopLen = 4;
193   if (AF.getMaxBytesToEmit() < MinNopLen)
194     return false;
195   Size = AF.getAlignment().value() - MinNopLen;
196   return AF.getAlignment() > MinNopLen;
197 }
198 
199 // We need to insert R_LARCH_ALIGN relocation type to indicate the
200 // position of Nops and the total bytes of the Nops have been inserted
201 // when linker relaxation enabled.
202 // The function inserts fixup_loongarch_align fixup which eventually will
203 // transfer to R_LARCH_ALIGN relocation type.
204 // The improved R_LARCH_ALIGN requires symbol index. The lowest 8 bits of
205 // addend represent alignment and the other bits of addend represent the
206 // maximum number of bytes to emit. The maximum number of bytes is zero
207 // means ignore the emit limit.
208 bool LoongArchAsmBackend::shouldInsertFixupForCodeAlign(MCAssembler &Asm,
209                                                         MCAlignFragment &AF) {
210   // Insert the fixup only when linker relaxation enabled.
211   if (!AF.getSubtargetInfo()->hasFeature(LoongArch::FeatureRelax))
212     return false;
213 
214   // Calculate total Nops we need to insert. If there are none to insert
215   // then simply return.
216   unsigned InsertedNopBytes;
217   if (!shouldInsertExtraNopBytesForCodeAlign(AF, InsertedNopBytes))
218     return false;
219 
220   MCSection *Sec = AF.getParent();
221   MCContext &Ctx = Asm.getContext();
222   const MCExpr *Dummy = MCConstantExpr::create(0, Ctx);
223   // Create fixup_loongarch_align fixup.
224   MCFixup Fixup =
225       MCFixup::create(0, Dummy, MCFixupKind(LoongArch::fixup_loongarch_align));
226   unsigned MaxBytesToEmit = AF.getMaxBytesToEmit();
227 
228   auto createExtendedValue = [&]() {
229     const MCSymbolRefExpr *MCSym = getSecToAlignSym()[Sec];
230     if (MCSym == nullptr) {
231       // Define a marker symbol at the section with an offset of 0.
232       MCSymbol *Sym = Ctx.createNamedTempSymbol("la-relax-align");
233       Sym->setFragment(&*Sec->getBeginSymbol()->getFragment());
234       Asm.registerSymbol(*Sym);
235       MCSym = MCSymbolRefExpr::create(Sym, Ctx);
236       getSecToAlignSym()[Sec] = MCSym;
237     }
238     return MCValue::get(MCSym, nullptr,
239                         MaxBytesToEmit << 8 | Log2(AF.getAlignment()));
240   };
241 
242   uint64_t FixedValue = 0;
243   MCValue Value = MaxBytesToEmit >= InsertedNopBytes
244                       ? MCValue::get(InsertedNopBytes)
245                       : createExtendedValue();
246   Asm.getWriter().recordRelocation(Asm, &AF, Fixup, Value, FixedValue);
247 
248   return true;
249 }
250 
251 bool LoongArchAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
252                                                 const MCFixup &Fixup,
253                                                 const MCValue &Target,
254                                                 const uint64_t,
255                                                 const MCSubtargetInfo *STI) {
256   if (Fixup.getKind() >= FirstLiteralRelocationKind)
257     return true;
258   switch (Fixup.getTargetKind()) {
259   default:
260     return STI->hasFeature(LoongArch::FeatureRelax);
261   case FK_Data_1:
262   case FK_Data_2:
263   case FK_Data_4:
264   case FK_Data_8:
265   case FK_Data_leb128:
266     return !Target.isAbsolute();
267   }
268 }
269 
270 static inline std::pair<MCFixupKind, MCFixupKind>
271 getRelocPairForSize(unsigned Size) {
272   switch (Size) {
273   default:
274     llvm_unreachable("unsupported fixup size");
275   case 6:
276     return std::make_pair(
277         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD6),
278         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB6));
279   case 8:
280     return std::make_pair(
281         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD8),
282         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB8));
283   case 16:
284     return std::make_pair(
285         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD16),
286         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB16));
287   case 32:
288     return std::make_pair(
289         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD32),
290         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB32));
291   case 64:
292     return std::make_pair(
293         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD64),
294         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB64));
295   case 128:
296     return std::make_pair(
297         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD_ULEB128),
298         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB_ULEB128));
299   }
300 }
301 
302 std::pair<bool, bool> LoongArchAsmBackend::relaxLEB128(const MCAssembler &Asm,
303                                                        MCLEBFragment &LF,
304                                                        int64_t &Value) const {
305   const MCExpr &Expr = LF.getValue();
306   if (LF.isSigned() || !Expr.evaluateKnownAbsolute(Value, Asm))
307     return std::make_pair(false, false);
308   LF.getFixups().push_back(
309       MCFixup::create(0, &Expr, FK_Data_leb128, Expr.getLoc()));
310   return std::make_pair(true, true);
311 }
312 
313 bool LoongArchAsmBackend::relaxDwarfLineAddr(const MCAssembler &Asm,
314                                              MCDwarfLineAddrFragment &DF,
315                                              bool &WasRelaxed) const {
316   MCContext &C = Asm.getContext();
317 
318   int64_t LineDelta = DF.getLineDelta();
319   const MCExpr &AddrDelta = DF.getAddrDelta();
320   SmallVectorImpl<char> &Data = DF.getContents();
321   SmallVectorImpl<MCFixup> &Fixups = DF.getFixups();
322   size_t OldSize = Data.size();
323 
324   int64_t Value;
325   if (AddrDelta.evaluateAsAbsolute(Value, Asm))
326     return false;
327   bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, Asm);
328   assert(IsAbsolute && "CFA with invalid expression");
329   (void)IsAbsolute;
330 
331   Data.clear();
332   Fixups.clear();
333   raw_svector_ostream OS(Data);
334 
335   // INT64_MAX is a signal that this is actually a DW_LNE_end_sequence.
336   if (LineDelta != INT64_MAX) {
337     OS << uint8_t(dwarf::DW_LNS_advance_line);
338     encodeSLEB128(LineDelta, OS);
339   }
340 
341   unsigned Offset;
342   std::pair<MCFixupKind, MCFixupKind> FK;
343 
344   // According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode
345   // takes a single unsigned half (unencoded) operand. The maximum encodable
346   // value is therefore 65535.  Set a conservative upper bound for relaxation.
347   if (Value > 60000) {
348     unsigned PtrSize = C.getAsmInfo()->getCodePointerSize();
349 
350     OS << uint8_t(dwarf::DW_LNS_extended_op);
351     encodeULEB128(PtrSize + 1, OS);
352 
353     OS << uint8_t(dwarf::DW_LNE_set_address);
354     Offset = OS.tell();
355     assert((PtrSize == 4 || PtrSize == 8) && "Unexpected pointer size");
356     FK = getRelocPairForSize(PtrSize == 4 ? 32 : 64);
357     OS.write_zeros(PtrSize);
358   } else {
359     OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc);
360     Offset = OS.tell();
361     FK = getRelocPairForSize(16);
362     support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
363   }
364 
365   const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
366   Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(FK)));
367   Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(FK)));
368 
369   if (LineDelta == INT64_MAX) {
370     OS << uint8_t(dwarf::DW_LNS_extended_op);
371     OS << uint8_t(1);
372     OS << uint8_t(dwarf::DW_LNE_end_sequence);
373   } else {
374     OS << uint8_t(dwarf::DW_LNS_copy);
375   }
376 
377   WasRelaxed = OldSize != Data.size();
378   return true;
379 }
380 
381 bool LoongArchAsmBackend::relaxDwarfCFA(const MCAssembler &Asm,
382                                         MCDwarfCallFrameFragment &DF,
383                                         bool &WasRelaxed) const {
384   const MCExpr &AddrDelta = DF.getAddrDelta();
385   SmallVectorImpl<char> &Data = DF.getContents();
386   SmallVectorImpl<MCFixup> &Fixups = DF.getFixups();
387   size_t OldSize = Data.size();
388 
389   int64_t Value;
390   if (AddrDelta.evaluateAsAbsolute(Value, Asm))
391     return false;
392   bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, Asm);
393   assert(IsAbsolute && "CFA with invalid expression");
394   (void)IsAbsolute;
395 
396   Data.clear();
397   Fixups.clear();
398   raw_svector_ostream OS(Data);
399 
400   assert(Asm.getContext().getAsmInfo()->getMinInstAlignment() == 1 &&
401          "expected 1-byte alignment");
402   if (Value == 0) {
403     WasRelaxed = OldSize != Data.size();
404     return true;
405   }
406 
407   auto AddFixups = [&Fixups,
408                     &AddrDelta](unsigned Offset,
409                                 std::pair<MCFixupKind, MCFixupKind> FK) {
410     const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
411     Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(FK)));
412     Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(FK)));
413   };
414 
415   if (isUIntN(6, Value)) {
416     OS << uint8_t(dwarf::DW_CFA_advance_loc);
417     AddFixups(0, getRelocPairForSize(6));
418   } else if (isUInt<8>(Value)) {
419     OS << uint8_t(dwarf::DW_CFA_advance_loc1);
420     support::endian::write<uint8_t>(OS, 0, llvm::endianness::little);
421     AddFixups(1, getRelocPairForSize(8));
422   } else if (isUInt<16>(Value)) {
423     OS << uint8_t(dwarf::DW_CFA_advance_loc2);
424     support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
425     AddFixups(1, getRelocPairForSize(16));
426   } else if (isUInt<32>(Value)) {
427     OS << uint8_t(dwarf::DW_CFA_advance_loc4);
428     support::endian::write<uint32_t>(OS, 0, llvm::endianness::little);
429     AddFixups(1, getRelocPairForSize(32));
430   } else {
431     llvm_unreachable("unsupported CFA encoding");
432   }
433 
434   WasRelaxed = OldSize != Data.size();
435   return true;
436 }
437 
438 bool LoongArchAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
439                                        const MCSubtargetInfo *STI) const {
440   // We mostly follow binutils' convention here: align to 4-byte boundary with a
441   // 0-fill padding.
442   OS.write_zeros(Count % 4);
443 
444   // The remainder is now padded with 4-byte nops.
445   // nop: andi r0, r0, 0
446   for (; Count >= 4; Count -= 4)
447     OS.write("\0\0\x40\x03", 4);
448 
449   return true;
450 }
451 
452 bool LoongArchAsmBackend::handleAddSubRelocations(const MCAssembler &Asm,
453                                                   const MCFragment &F,
454                                                   const MCFixup &Fixup,
455                                                   const MCValue &Target,
456                                                   uint64_t &FixedValue) const {
457   std::pair<MCFixupKind, MCFixupKind> FK;
458   uint64_t FixedValueA, FixedValueB;
459   const MCSymbol &SA = Target.getSymA()->getSymbol();
460   const MCSymbol &SB = Target.getSymB()->getSymbol();
461 
462   bool force = !SA.isInSection() || !SB.isInSection();
463   if (!force) {
464     const MCSection &SecA = SA.getSection();
465     const MCSection &SecB = SB.getSection();
466 
467     // We need record relocation if SecA != SecB. Usually SecB is same as the
468     // section of Fixup, which will be record the relocation as PCRel. If SecB
469     // is not same as the section of Fixup, it will report error. Just return
470     // false and then this work can be finished by handleFixup.
471     if (&SecA != &SecB)
472       return false;
473 
474     // In SecA == SecB case. If the linker relaxation is enabled, we need record
475     // the ADD, SUB relocations. Otherwise the FixedValue has already been calc-
476     // ulated out in evaluateFixup, return true and avoid record relocations.
477     if (!STI.hasFeature(LoongArch::FeatureRelax))
478       return true;
479   }
480 
481   switch (Fixup.getKind()) {
482   case llvm::FK_Data_1:
483     FK = getRelocPairForSize(8);
484     break;
485   case llvm::FK_Data_2:
486     FK = getRelocPairForSize(16);
487     break;
488   case llvm::FK_Data_4:
489     FK = getRelocPairForSize(32);
490     break;
491   case llvm::FK_Data_8:
492     FK = getRelocPairForSize(64);
493     break;
494   case llvm::FK_Data_leb128:
495     FK = getRelocPairForSize(128);
496     break;
497   default:
498     llvm_unreachable("unsupported fixup size");
499   }
500   MCValue A = MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
501   MCValue B = MCValue::get(Target.getSymB());
502   auto FA = MCFixup::create(Fixup.getOffset(), nullptr, std::get<0>(FK));
503   auto FB = MCFixup::create(Fixup.getOffset(), nullptr, std::get<1>(FK));
504   auto &Assembler = const_cast<MCAssembler &>(Asm);
505   Asm.getWriter().recordRelocation(Assembler, &F, FA, A, FixedValueA);
506   Asm.getWriter().recordRelocation(Assembler, &F, FB, B, FixedValueB);
507   FixedValue = FixedValueA - FixedValueB;
508   return true;
509 }
510 
511 std::unique_ptr<MCObjectTargetWriter>
512 LoongArchAsmBackend::createObjectTargetWriter() const {
513   return createLoongArchELFObjectWriter(
514       OSABI, Is64Bit, STI.hasFeature(LoongArch::FeatureRelax));
515 }
516 
517 MCAsmBackend *llvm::createLoongArchAsmBackend(const Target &T,
518                                               const MCSubtargetInfo &STI,
519                                               const MCRegisterInfo &MRI,
520                                               const MCTargetOptions &Options) {
521   const Triple &TT = STI.getTargetTriple();
522   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
523   return new LoongArchAsmBackend(STI, OSABI, TT.isArch64Bit(), Options);
524 }
525