1 //===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the InstructionSelector class for
10 /// AArch64.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64GlobalISelUtils.h"
15 #include "AArch64InstrInfo.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64RegisterBankInfo.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "AArch64TargetMachine.h"
21 #include "AArch64GlobalISelUtils.h"
22 #include "MCTargetDesc/AArch64AddressingModes.h"
23 #include "MCTargetDesc/AArch64MCTargetDesc.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
26 #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
27 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
28 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/TargetOpcodes.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/IntrinsicsAArch64.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47
48 #define DEBUG_TYPE "aarch64-isel"
49
50 using namespace llvm;
51 using namespace MIPatternMatch;
52 using namespace AArch64GISelUtils;
53
54 namespace llvm {
55 class BlockFrequencyInfo;
56 class ProfileSummaryInfo;
57 }
58
59 namespace {
60
61 #define GET_GLOBALISEL_PREDICATE_BITSET
62 #include "AArch64GenGlobalISel.inc"
63 #undef GET_GLOBALISEL_PREDICATE_BITSET
64
65 class AArch64InstructionSelector : public InstructionSelector {
66 public:
67 AArch64InstructionSelector(const AArch64TargetMachine &TM,
68 const AArch64Subtarget &STI,
69 const AArch64RegisterBankInfo &RBI);
70
71 bool select(MachineInstr &I) override;
getName()72 static const char *getName() { return DEBUG_TYPE; }
73
setupMF(MachineFunction & MF,GISelKnownBits * KB,CodeGenCoverage & CoverageInfo,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)74 void setupMF(MachineFunction &MF, GISelKnownBits *KB,
75 CodeGenCoverage &CoverageInfo, ProfileSummaryInfo *PSI,
76 BlockFrequencyInfo *BFI) override {
77 InstructionSelector::setupMF(MF, KB, CoverageInfo, PSI, BFI);
78 MIB.setMF(MF);
79
80 // hasFnAttribute() is expensive to call on every BRCOND selection, so
81 // cache it here for each run of the selector.
82 ProduceNonFlagSettingCondBr =
83 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
84 MFReturnAddr = Register();
85
86 processPHIs(MF);
87 }
88
89 private:
90 /// tblgen-erated 'select' implementation, used as the initial selector for
91 /// the patterns that don't require complex C++.
92 bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
93
94 // A lowering phase that runs before any selection attempts.
95 // Returns true if the instruction was modified.
96 bool preISelLower(MachineInstr &I);
97
98 // An early selection function that runs before the selectImpl() call.
99 bool earlySelect(MachineInstr &I);
100
101 // Do some preprocessing of G_PHIs before we begin selection.
102 void processPHIs(MachineFunction &MF);
103
104 bool earlySelectSHL(MachineInstr &I, MachineRegisterInfo &MRI);
105
106 /// Eliminate same-sized cross-bank copies into stores before selectImpl().
107 bool contractCrossBankCopyIntoStore(MachineInstr &I,
108 MachineRegisterInfo &MRI);
109
110 bool convertPtrAddToAdd(MachineInstr &I, MachineRegisterInfo &MRI);
111
112 bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF,
113 MachineRegisterInfo &MRI) const;
114 bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF,
115 MachineRegisterInfo &MRI) const;
116
117 ///@{
118 /// Helper functions for selectCompareBranch.
119 bool selectCompareBranchFedByFCmp(MachineInstr &I, MachineInstr &FCmp,
120 MachineIRBuilder &MIB) const;
121 bool selectCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp,
122 MachineIRBuilder &MIB) const;
123 bool tryOptCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp,
124 MachineIRBuilder &MIB) const;
125 bool tryOptAndIntoCompareBranch(MachineInstr &AndInst, bool Invert,
126 MachineBasicBlock *DstMBB,
127 MachineIRBuilder &MIB) const;
128 ///@}
129
130 bool selectCompareBranch(MachineInstr &I, MachineFunction &MF,
131 MachineRegisterInfo &MRI);
132
133 bool selectVectorAshrLshr(MachineInstr &I, MachineRegisterInfo &MRI);
134 bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI);
135
136 // Helper to generate an equivalent of scalar_to_vector into a new register,
137 // returned via 'Dst'.
138 MachineInstr *emitScalarToVector(unsigned EltSize,
139 const TargetRegisterClass *DstRC,
140 Register Scalar,
141 MachineIRBuilder &MIRBuilder) const;
142
143 /// Emit a lane insert into \p DstReg, or a new vector register if None is
144 /// provided.
145 ///
146 /// The lane inserted into is defined by \p LaneIdx. The vector source
147 /// register is given by \p SrcReg. The register containing the element is
148 /// given by \p EltReg.
149 MachineInstr *emitLaneInsert(Optional<Register> DstReg, Register SrcReg,
150 Register EltReg, unsigned LaneIdx,
151 const RegisterBank &RB,
152 MachineIRBuilder &MIRBuilder) const;
153
154 /// Emit a sequence of instructions representing a constant \p CV for a
155 /// vector register \p Dst. (E.g. a MOV, or a load from a constant pool.)
156 ///
157 /// \returns the last instruction in the sequence on success, and nullptr
158 /// otherwise.
159 MachineInstr *emitConstantVector(Register Dst, Constant *CV,
160 MachineIRBuilder &MIRBuilder,
161 MachineRegisterInfo &MRI);
162
163 bool selectInsertElt(MachineInstr &I, MachineRegisterInfo &MRI);
164 bool tryOptConstantBuildVec(MachineInstr &MI, LLT DstTy,
165 MachineRegisterInfo &MRI);
166 bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI);
167 bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI);
168 bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI);
169
170 bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI);
171 bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI);
172 bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI);
173 bool selectSplitVectorUnmerge(MachineInstr &I, MachineRegisterInfo &MRI);
174 bool selectIntrinsicWithSideEffects(MachineInstr &I,
175 MachineRegisterInfo &MRI);
176 bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI);
177 bool selectVectorICmp(MachineInstr &I, MachineRegisterInfo &MRI);
178 bool selectIntrinsicTrunc(MachineInstr &I, MachineRegisterInfo &MRI) const;
179 bool selectIntrinsicRound(MachineInstr &I, MachineRegisterInfo &MRI) const;
180 bool selectJumpTable(MachineInstr &I, MachineRegisterInfo &MRI);
181 bool selectBrJT(MachineInstr &I, MachineRegisterInfo &MRI);
182 bool selectTLSGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI);
183 bool selectReduction(MachineInstr &I, MachineRegisterInfo &MRI);
184
185 unsigned emitConstantPoolEntry(const Constant *CPVal,
186 MachineFunction &MF) const;
187 MachineInstr *emitLoadFromConstantPool(const Constant *CPVal,
188 MachineIRBuilder &MIRBuilder) const;
189
190 // Emit a vector concat operation.
191 MachineInstr *emitVectorConcat(Optional<Register> Dst, Register Op1,
192 Register Op2,
193 MachineIRBuilder &MIRBuilder) const;
194
195 // Emit an integer compare between LHS and RHS, which checks for Predicate.
196 MachineInstr *emitIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
197 MachineOperand &Predicate,
198 MachineIRBuilder &MIRBuilder) const;
199
200 /// Emit a floating point comparison between \p LHS and \p RHS.
201 /// \p Pred if given is the intended predicate to use.
202 MachineInstr *emitFPCompare(Register LHS, Register RHS,
203 MachineIRBuilder &MIRBuilder,
204 Optional<CmpInst::Predicate> = None) const;
205
206 MachineInstr *emitInstr(unsigned Opcode,
207 std::initializer_list<llvm::DstOp> DstOps,
208 std::initializer_list<llvm::SrcOp> SrcOps,
209 MachineIRBuilder &MIRBuilder,
210 const ComplexRendererFns &RenderFns = None) const;
211 /// Helper function to emit an add or sub instruction.
212 ///
213 /// \p AddrModeAndSizeToOpcode must contain each of the opcode variants above
214 /// in a specific order.
215 ///
216 /// Below is an example of the expected input to \p AddrModeAndSizeToOpcode.
217 ///
218 /// \code
219 /// const std::array<std::array<unsigned, 2>, 4> Table {
220 /// {{AArch64::ADDXri, AArch64::ADDWri},
221 /// {AArch64::ADDXrs, AArch64::ADDWrs},
222 /// {AArch64::ADDXrr, AArch64::ADDWrr},
223 /// {AArch64::SUBXri, AArch64::SUBWri},
224 /// {AArch64::ADDXrx, AArch64::ADDWrx}}};
225 /// \endcode
226 ///
227 /// Each row in the table corresponds to a different addressing mode. Each
228 /// column corresponds to a different register size.
229 ///
230 /// \attention Rows must be structured as follows:
231 /// - Row 0: The ri opcode variants
232 /// - Row 1: The rs opcode variants
233 /// - Row 2: The rr opcode variants
234 /// - Row 3: The ri opcode variants for negative immediates
235 /// - Row 4: The rx opcode variants
236 ///
237 /// \attention Columns must be structured as follows:
238 /// - Column 0: The 64-bit opcode variants
239 /// - Column 1: The 32-bit opcode variants
240 ///
241 /// \p Dst is the destination register of the binop to emit.
242 /// \p LHS is the left-hand operand of the binop to emit.
243 /// \p RHS is the right-hand operand of the binop to emit.
244 MachineInstr *emitAddSub(
245 const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode,
246 Register Dst, MachineOperand &LHS, MachineOperand &RHS,
247 MachineIRBuilder &MIRBuilder) const;
248 MachineInstr *emitADD(Register DefReg, MachineOperand &LHS,
249 MachineOperand &RHS,
250 MachineIRBuilder &MIRBuilder) const;
251 MachineInstr *emitADDS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
252 MachineIRBuilder &MIRBuilder) const;
253 MachineInstr *emitSUBS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
254 MachineIRBuilder &MIRBuilder) const;
255 MachineInstr *emitCMN(MachineOperand &LHS, MachineOperand &RHS,
256 MachineIRBuilder &MIRBuilder) const;
257 MachineInstr *emitTST(MachineOperand &LHS, MachineOperand &RHS,
258 MachineIRBuilder &MIRBuilder) const;
259 MachineInstr *emitSelect(Register Dst, Register LHS, Register RHS,
260 AArch64CC::CondCode CC,
261 MachineIRBuilder &MIRBuilder) const;
262 MachineInstr *emitExtractVectorElt(Optional<Register> DstReg,
263 const RegisterBank &DstRB, LLT ScalarTy,
264 Register VecReg, unsigned LaneIdx,
265 MachineIRBuilder &MIRBuilder) const;
266
267 /// Emit a CSet for an integer compare.
268 ///
269 /// \p DefReg and \p SrcReg are expected to be 32-bit scalar registers.
270 MachineInstr *emitCSetForICMP(Register DefReg, unsigned Pred,
271 MachineIRBuilder &MIRBuilder,
272 Register SrcReg = AArch64::WZR) const;
273 /// Emit a CSet for a FP compare.
274 ///
275 /// \p Dst is expected to be a 32-bit scalar register.
276 MachineInstr *emitCSetForFCmp(Register Dst, CmpInst::Predicate Pred,
277 MachineIRBuilder &MIRBuilder) const;
278
279 /// Emit the overflow op for \p Opcode.
280 ///
281 /// \p Opcode is expected to be an overflow op's opcode, e.g. G_UADDO,
282 /// G_USUBO, etc.
283 std::pair<MachineInstr *, AArch64CC::CondCode>
284 emitOverflowOp(unsigned Opcode, Register Dst, MachineOperand &LHS,
285 MachineOperand &RHS, MachineIRBuilder &MIRBuilder) const;
286
287 /// Emit a TB(N)Z instruction which tests \p Bit in \p TestReg.
288 /// \p IsNegative is true if the test should be "not zero".
289 /// This will also optimize the test bit instruction when possible.
290 MachineInstr *emitTestBit(Register TestReg, uint64_t Bit, bool IsNegative,
291 MachineBasicBlock *DstMBB,
292 MachineIRBuilder &MIB) const;
293
294 /// Emit a CB(N)Z instruction which branches to \p DestMBB.
295 MachineInstr *emitCBZ(Register CompareReg, bool IsNegative,
296 MachineBasicBlock *DestMBB,
297 MachineIRBuilder &MIB) const;
298
299 // Equivalent to the i32shift_a and friends from AArch64InstrInfo.td.
300 // We use these manually instead of using the importer since it doesn't
301 // support SDNodeXForm.
302 ComplexRendererFns selectShiftA_32(const MachineOperand &Root) const;
303 ComplexRendererFns selectShiftB_32(const MachineOperand &Root) const;
304 ComplexRendererFns selectShiftA_64(const MachineOperand &Root) const;
305 ComplexRendererFns selectShiftB_64(const MachineOperand &Root) const;
306
307 ComplexRendererFns select12BitValueWithLeftShift(uint64_t Immed) const;
308 ComplexRendererFns selectArithImmed(MachineOperand &Root) const;
309 ComplexRendererFns selectNegArithImmed(MachineOperand &Root) const;
310
311 ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root,
312 unsigned Size) const;
313
selectAddrModeUnscaled8(MachineOperand & Root) const314 ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const {
315 return selectAddrModeUnscaled(Root, 1);
316 }
selectAddrModeUnscaled16(MachineOperand & Root) const317 ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const {
318 return selectAddrModeUnscaled(Root, 2);
319 }
selectAddrModeUnscaled32(MachineOperand & Root) const320 ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const {
321 return selectAddrModeUnscaled(Root, 4);
322 }
selectAddrModeUnscaled64(MachineOperand & Root) const323 ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const {
324 return selectAddrModeUnscaled(Root, 8);
325 }
selectAddrModeUnscaled128(MachineOperand & Root) const326 ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const {
327 return selectAddrModeUnscaled(Root, 16);
328 }
329
330 /// Helper to try to fold in a GISEL_ADD_LOW into an immediate, to be used
331 /// from complex pattern matchers like selectAddrModeIndexed().
332 ComplexRendererFns tryFoldAddLowIntoImm(MachineInstr &RootDef, unsigned Size,
333 MachineRegisterInfo &MRI) const;
334
335 ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root,
336 unsigned Size) const;
337 template <int Width>
selectAddrModeIndexed(MachineOperand & Root) const338 ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const {
339 return selectAddrModeIndexed(Root, Width / 8);
340 }
341
342 bool isWorthFoldingIntoExtendedReg(MachineInstr &MI,
343 const MachineRegisterInfo &MRI) const;
344 ComplexRendererFns
345 selectAddrModeShiftedExtendXReg(MachineOperand &Root,
346 unsigned SizeInBytes) const;
347
348 /// Returns a \p ComplexRendererFns which contains a base, offset, and whether
349 /// or not a shift + extend should be folded into an addressing mode. Returns
350 /// None when this is not profitable or possible.
351 ComplexRendererFns
352 selectExtendedSHL(MachineOperand &Root, MachineOperand &Base,
353 MachineOperand &Offset, unsigned SizeInBytes,
354 bool WantsExt) const;
355 ComplexRendererFns selectAddrModeRegisterOffset(MachineOperand &Root) const;
356 ComplexRendererFns selectAddrModeXRO(MachineOperand &Root,
357 unsigned SizeInBytes) const;
358 template <int Width>
selectAddrModeXRO(MachineOperand & Root) const359 ComplexRendererFns selectAddrModeXRO(MachineOperand &Root) const {
360 return selectAddrModeXRO(Root, Width / 8);
361 }
362
363 ComplexRendererFns selectAddrModeWRO(MachineOperand &Root,
364 unsigned SizeInBytes) const;
365 template <int Width>
selectAddrModeWRO(MachineOperand & Root) const366 ComplexRendererFns selectAddrModeWRO(MachineOperand &Root) const {
367 return selectAddrModeWRO(Root, Width / 8);
368 }
369
370 ComplexRendererFns selectShiftedRegister(MachineOperand &Root) const;
371
selectArithShiftedRegister(MachineOperand & Root) const372 ComplexRendererFns selectArithShiftedRegister(MachineOperand &Root) const {
373 return selectShiftedRegister(Root);
374 }
375
selectLogicalShiftedRegister(MachineOperand & Root) const376 ComplexRendererFns selectLogicalShiftedRegister(MachineOperand &Root) const {
377 // TODO: selectShiftedRegister should allow for rotates on logical shifts.
378 // For now, make them the same. The only difference between the two is that
379 // logical shifts are allowed to fold in rotates. Otherwise, these are
380 // functionally the same.
381 return selectShiftedRegister(Root);
382 }
383
384 /// Given an extend instruction, determine the correct shift-extend type for
385 /// that instruction.
386 ///
387 /// If the instruction is going to be used in a load or store, pass
388 /// \p IsLoadStore = true.
389 AArch64_AM::ShiftExtendType
390 getExtendTypeForInst(MachineInstr &MI, MachineRegisterInfo &MRI,
391 bool IsLoadStore = false) const;
392
393 /// Move \p Reg to \p RC if \p Reg is not already on \p RC.
394 ///
395 /// \returns Either \p Reg if no change was necessary, or the new register
396 /// created by moving \p Reg.
397 ///
398 /// Note: This uses emitCopy right now.
399 Register moveScalarRegClass(Register Reg, const TargetRegisterClass &RC,
400 MachineIRBuilder &MIB) const;
401
402 ComplexRendererFns selectArithExtendedRegister(MachineOperand &Root) const;
403
404 void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI,
405 int OpIdx = -1) const;
406 void renderLogicalImm32(MachineInstrBuilder &MIB, const MachineInstr &I,
407 int OpIdx = -1) const;
408 void renderLogicalImm64(MachineInstrBuilder &MIB, const MachineInstr &I,
409 int OpIdx = -1) const;
410 void renderFPImm16(MachineInstrBuilder &MIB, const MachineInstr &MI,
411 int OpIdx = -1) const;
412 void renderFPImm32(MachineInstrBuilder &MIB, const MachineInstr &MI,
413 int OpIdx = -1) const;
414 void renderFPImm64(MachineInstrBuilder &MIB, const MachineInstr &MI,
415 int OpIdx = -1) const;
416
417 // Materialize a GlobalValue or BlockAddress using a movz+movk sequence.
418 void materializeLargeCMVal(MachineInstr &I, const Value *V, unsigned OpFlags);
419
420 // Optimization methods.
421 bool tryOptSelect(MachineInstr &MI);
422 MachineInstr *tryFoldIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
423 MachineOperand &Predicate,
424 MachineIRBuilder &MIRBuilder) const;
425
426 /// Return true if \p MI is a load or store of \p NumBytes bytes.
427 bool isLoadStoreOfNumBytes(const MachineInstr &MI, unsigned NumBytes) const;
428
429 /// Returns true if \p MI is guaranteed to have the high-half of a 64-bit
430 /// register zeroed out. In other words, the result of MI has been explicitly
431 /// zero extended.
432 bool isDef32(const MachineInstr &MI) const;
433
434 const AArch64TargetMachine &TM;
435 const AArch64Subtarget &STI;
436 const AArch64InstrInfo &TII;
437 const AArch64RegisterInfo &TRI;
438 const AArch64RegisterBankInfo &RBI;
439
440 bool ProduceNonFlagSettingCondBr = false;
441
442 // Some cached values used during selection.
443 // We use LR as a live-in register, and we keep track of it here as it can be
444 // clobbered by calls.
445 Register MFReturnAddr;
446
447 MachineIRBuilder MIB;
448
449 #define GET_GLOBALISEL_PREDICATES_DECL
450 #include "AArch64GenGlobalISel.inc"
451 #undef GET_GLOBALISEL_PREDICATES_DECL
452
453 // We declare the temporaries used by selectImpl() in the class to minimize the
454 // cost of constructing placeholder values.
455 #define GET_GLOBALISEL_TEMPORARIES_DECL
456 #include "AArch64GenGlobalISel.inc"
457 #undef GET_GLOBALISEL_TEMPORARIES_DECL
458 };
459
460 } // end anonymous namespace
461
462 #define GET_GLOBALISEL_IMPL
463 #include "AArch64GenGlobalISel.inc"
464 #undef GET_GLOBALISEL_IMPL
465
AArch64InstructionSelector(const AArch64TargetMachine & TM,const AArch64Subtarget & STI,const AArch64RegisterBankInfo & RBI)466 AArch64InstructionSelector::AArch64InstructionSelector(
467 const AArch64TargetMachine &TM, const AArch64Subtarget &STI,
468 const AArch64RegisterBankInfo &RBI)
469 : InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()),
470 TRI(*STI.getRegisterInfo()), RBI(RBI),
471 #define GET_GLOBALISEL_PREDICATES_INIT
472 #include "AArch64GenGlobalISel.inc"
473 #undef GET_GLOBALISEL_PREDICATES_INIT
474 #define GET_GLOBALISEL_TEMPORARIES_INIT
475 #include "AArch64GenGlobalISel.inc"
476 #undef GET_GLOBALISEL_TEMPORARIES_INIT
477 {
478 }
479
480 // FIXME: This should be target-independent, inferred from the types declared
481 // for each class in the bank.
482 static const TargetRegisterClass *
getRegClassForTypeOnBank(LLT Ty,const RegisterBank & RB,const RegisterBankInfo & RBI,bool GetAllRegSet=false)483 getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB,
484 const RegisterBankInfo &RBI,
485 bool GetAllRegSet = false) {
486 if (RB.getID() == AArch64::GPRRegBankID) {
487 if (Ty.getSizeInBits() <= 32)
488 return GetAllRegSet ? &AArch64::GPR32allRegClass
489 : &AArch64::GPR32RegClass;
490 if (Ty.getSizeInBits() == 64)
491 return GetAllRegSet ? &AArch64::GPR64allRegClass
492 : &AArch64::GPR64RegClass;
493 if (Ty.getSizeInBits() == 128)
494 return &AArch64::XSeqPairsClassRegClass;
495 return nullptr;
496 }
497
498 if (RB.getID() == AArch64::FPRRegBankID) {
499 if (Ty.getSizeInBits() <= 16)
500 return &AArch64::FPR16RegClass;
501 if (Ty.getSizeInBits() == 32)
502 return &AArch64::FPR32RegClass;
503 if (Ty.getSizeInBits() == 64)
504 return &AArch64::FPR64RegClass;
505 if (Ty.getSizeInBits() == 128)
506 return &AArch64::FPR128RegClass;
507 return nullptr;
508 }
509
510 return nullptr;
511 }
512
513 /// Given a register bank, and size in bits, return the smallest register class
514 /// that can represent that combination.
515 static const TargetRegisterClass *
getMinClassForRegBank(const RegisterBank & RB,unsigned SizeInBits,bool GetAllRegSet=false)516 getMinClassForRegBank(const RegisterBank &RB, unsigned SizeInBits,
517 bool GetAllRegSet = false) {
518 unsigned RegBankID = RB.getID();
519
520 if (RegBankID == AArch64::GPRRegBankID) {
521 if (SizeInBits <= 32)
522 return GetAllRegSet ? &AArch64::GPR32allRegClass
523 : &AArch64::GPR32RegClass;
524 if (SizeInBits == 64)
525 return GetAllRegSet ? &AArch64::GPR64allRegClass
526 : &AArch64::GPR64RegClass;
527 if (SizeInBits == 128)
528 return &AArch64::XSeqPairsClassRegClass;
529 }
530
531 if (RegBankID == AArch64::FPRRegBankID) {
532 switch (SizeInBits) {
533 default:
534 return nullptr;
535 case 8:
536 return &AArch64::FPR8RegClass;
537 case 16:
538 return &AArch64::FPR16RegClass;
539 case 32:
540 return &AArch64::FPR32RegClass;
541 case 64:
542 return &AArch64::FPR64RegClass;
543 case 128:
544 return &AArch64::FPR128RegClass;
545 }
546 }
547
548 return nullptr;
549 }
550
551 /// Returns the correct subregister to use for a given register class.
getSubRegForClass(const TargetRegisterClass * RC,const TargetRegisterInfo & TRI,unsigned & SubReg)552 static bool getSubRegForClass(const TargetRegisterClass *RC,
553 const TargetRegisterInfo &TRI, unsigned &SubReg) {
554 switch (TRI.getRegSizeInBits(*RC)) {
555 case 8:
556 SubReg = AArch64::bsub;
557 break;
558 case 16:
559 SubReg = AArch64::hsub;
560 break;
561 case 32:
562 if (RC != &AArch64::FPR32RegClass)
563 SubReg = AArch64::sub_32;
564 else
565 SubReg = AArch64::ssub;
566 break;
567 case 64:
568 SubReg = AArch64::dsub;
569 break;
570 default:
571 LLVM_DEBUG(
572 dbgs() << "Couldn't find appropriate subregister for register class.");
573 return false;
574 }
575
576 return true;
577 }
578
579 /// Returns the minimum size the given register bank can hold.
getMinSizeForRegBank(const RegisterBank & RB)580 static unsigned getMinSizeForRegBank(const RegisterBank &RB) {
581 switch (RB.getID()) {
582 case AArch64::GPRRegBankID:
583 return 32;
584 case AArch64::FPRRegBankID:
585 return 8;
586 default:
587 llvm_unreachable("Tried to get minimum size for unknown register bank.");
588 }
589 }
590
getImmedFromMO(const MachineOperand & Root)591 static Optional<uint64_t> getImmedFromMO(const MachineOperand &Root) {
592 auto &MI = *Root.getParent();
593 auto &MBB = *MI.getParent();
594 auto &MF = *MBB.getParent();
595 auto &MRI = MF.getRegInfo();
596 uint64_t Immed;
597 if (Root.isImm())
598 Immed = Root.getImm();
599 else if (Root.isCImm())
600 Immed = Root.getCImm()->getZExtValue();
601 else if (Root.isReg()) {
602 auto ValAndVReg =
603 getConstantVRegValWithLookThrough(Root.getReg(), MRI, true);
604 if (!ValAndVReg)
605 return None;
606 Immed = ValAndVReg->Value.getSExtValue();
607 } else
608 return None;
609 return Immed;
610 }
611
612 /// Check whether \p I is a currently unsupported binary operation:
613 /// - it has an unsized type
614 /// - an operand is not a vreg
615 /// - all operands are not in the same bank
616 /// These are checks that should someday live in the verifier, but right now,
617 /// these are mostly limitations of the aarch64 selector.
unsupportedBinOp(const MachineInstr & I,const AArch64RegisterBankInfo & RBI,const MachineRegisterInfo & MRI,const AArch64RegisterInfo & TRI)618 static bool unsupportedBinOp(const MachineInstr &I,
619 const AArch64RegisterBankInfo &RBI,
620 const MachineRegisterInfo &MRI,
621 const AArch64RegisterInfo &TRI) {
622 LLT Ty = MRI.getType(I.getOperand(0).getReg());
623 if (!Ty.isValid()) {
624 LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n");
625 return true;
626 }
627
628 const RegisterBank *PrevOpBank = nullptr;
629 for (auto &MO : I.operands()) {
630 // FIXME: Support non-register operands.
631 if (!MO.isReg()) {
632 LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n");
633 return true;
634 }
635
636 // FIXME: Can generic operations have physical registers operands? If
637 // so, this will need to be taught about that, and we'll need to get the
638 // bank out of the minimal class for the register.
639 // Either way, this needs to be documented (and possibly verified).
640 if (!Register::isVirtualRegister(MO.getReg())) {
641 LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n");
642 return true;
643 }
644
645 const RegisterBank *OpBank = RBI.getRegBank(MO.getReg(), MRI, TRI);
646 if (!OpBank) {
647 LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n");
648 return true;
649 }
650
651 if (PrevOpBank && OpBank != PrevOpBank) {
652 LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n");
653 return true;
654 }
655 PrevOpBank = OpBank;
656 }
657 return false;
658 }
659
660 /// Select the AArch64 opcode for the basic binary operation \p GenericOpc
661 /// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID
662 /// and of size \p OpSize.
663 /// \returns \p GenericOpc if the combination is unsupported.
selectBinaryOp(unsigned GenericOpc,unsigned RegBankID,unsigned OpSize)664 static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID,
665 unsigned OpSize) {
666 switch (RegBankID) {
667 case AArch64::GPRRegBankID:
668 if (OpSize == 32) {
669 switch (GenericOpc) {
670 case TargetOpcode::G_SHL:
671 return AArch64::LSLVWr;
672 case TargetOpcode::G_LSHR:
673 return AArch64::LSRVWr;
674 case TargetOpcode::G_ASHR:
675 return AArch64::ASRVWr;
676 default:
677 return GenericOpc;
678 }
679 } else if (OpSize == 64) {
680 switch (GenericOpc) {
681 case TargetOpcode::G_PTR_ADD:
682 return AArch64::ADDXrr;
683 case TargetOpcode::G_SHL:
684 return AArch64::LSLVXr;
685 case TargetOpcode::G_LSHR:
686 return AArch64::LSRVXr;
687 case TargetOpcode::G_ASHR:
688 return AArch64::ASRVXr;
689 default:
690 return GenericOpc;
691 }
692 }
693 break;
694 case AArch64::FPRRegBankID:
695 switch (OpSize) {
696 case 32:
697 switch (GenericOpc) {
698 case TargetOpcode::G_FADD:
699 return AArch64::FADDSrr;
700 case TargetOpcode::G_FSUB:
701 return AArch64::FSUBSrr;
702 case TargetOpcode::G_FMUL:
703 return AArch64::FMULSrr;
704 case TargetOpcode::G_FDIV:
705 return AArch64::FDIVSrr;
706 default:
707 return GenericOpc;
708 }
709 case 64:
710 switch (GenericOpc) {
711 case TargetOpcode::G_FADD:
712 return AArch64::FADDDrr;
713 case TargetOpcode::G_FSUB:
714 return AArch64::FSUBDrr;
715 case TargetOpcode::G_FMUL:
716 return AArch64::FMULDrr;
717 case TargetOpcode::G_FDIV:
718 return AArch64::FDIVDrr;
719 case TargetOpcode::G_OR:
720 return AArch64::ORRv8i8;
721 default:
722 return GenericOpc;
723 }
724 }
725 break;
726 }
727 return GenericOpc;
728 }
729
730 /// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc,
731 /// appropriate for the (value) register bank \p RegBankID and of memory access
732 /// size \p OpSize. This returns the variant with the base+unsigned-immediate
733 /// addressing mode (e.g., LDRXui).
734 /// \returns \p GenericOpc if the combination is unsupported.
selectLoadStoreUIOp(unsigned GenericOpc,unsigned RegBankID,unsigned OpSize)735 static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID,
736 unsigned OpSize) {
737 const bool isStore = GenericOpc == TargetOpcode::G_STORE;
738 switch (RegBankID) {
739 case AArch64::GPRRegBankID:
740 switch (OpSize) {
741 case 8:
742 return isStore ? AArch64::STRBBui : AArch64::LDRBBui;
743 case 16:
744 return isStore ? AArch64::STRHHui : AArch64::LDRHHui;
745 case 32:
746 return isStore ? AArch64::STRWui : AArch64::LDRWui;
747 case 64:
748 return isStore ? AArch64::STRXui : AArch64::LDRXui;
749 }
750 break;
751 case AArch64::FPRRegBankID:
752 switch (OpSize) {
753 case 8:
754 return isStore ? AArch64::STRBui : AArch64::LDRBui;
755 case 16:
756 return isStore ? AArch64::STRHui : AArch64::LDRHui;
757 case 32:
758 return isStore ? AArch64::STRSui : AArch64::LDRSui;
759 case 64:
760 return isStore ? AArch64::STRDui : AArch64::LDRDui;
761 }
762 break;
763 }
764 return GenericOpc;
765 }
766
767 #ifndef NDEBUG
768 /// Helper function that verifies that we have a valid copy at the end of
769 /// selectCopy. Verifies that the source and dest have the expected sizes and
770 /// then returns true.
isValidCopy(const MachineInstr & I,const RegisterBank & DstBank,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,const RegisterBankInfo & RBI)771 static bool isValidCopy(const MachineInstr &I, const RegisterBank &DstBank,
772 const MachineRegisterInfo &MRI,
773 const TargetRegisterInfo &TRI,
774 const RegisterBankInfo &RBI) {
775 const Register DstReg = I.getOperand(0).getReg();
776 const Register SrcReg = I.getOperand(1).getReg();
777 const unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
778 const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
779
780 // Make sure the size of the source and dest line up.
781 assert(
782 (DstSize == SrcSize ||
783 // Copies are a mean to setup initial types, the number of
784 // bits may not exactly match.
785 (Register::isPhysicalRegister(SrcReg) && DstSize <= SrcSize) ||
786 // Copies are a mean to copy bits around, as long as we are
787 // on the same register class, that's fine. Otherwise, that
788 // means we need some SUBREG_TO_REG or AND & co.
789 (((DstSize + 31) / 32 == (SrcSize + 31) / 32) && DstSize > SrcSize)) &&
790 "Copy with different width?!");
791
792 // Check the size of the destination.
793 assert((DstSize <= 64 || DstBank.getID() == AArch64::FPRRegBankID) &&
794 "GPRs cannot get more than 64-bit width values");
795
796 return true;
797 }
798 #endif
799
800 /// Helper function for selectCopy. Inserts a subregister copy from \p SrcReg
801 /// to \p *To.
802 ///
803 /// E.g "To = COPY SrcReg:SubReg"
copySubReg(MachineInstr & I,MachineRegisterInfo & MRI,const RegisterBankInfo & RBI,Register SrcReg,const TargetRegisterClass * To,unsigned SubReg)804 static bool copySubReg(MachineInstr &I, MachineRegisterInfo &MRI,
805 const RegisterBankInfo &RBI, Register SrcReg,
806 const TargetRegisterClass *To, unsigned SubReg) {
807 assert(SrcReg.isValid() && "Expected a valid source register?");
808 assert(To && "Destination register class cannot be null");
809 assert(SubReg && "Expected a valid subregister");
810
811 MachineIRBuilder MIB(I);
812 auto SubRegCopy =
813 MIB.buildInstr(TargetOpcode::COPY, {To}, {}).addReg(SrcReg, 0, SubReg);
814 MachineOperand &RegOp = I.getOperand(1);
815 RegOp.setReg(SubRegCopy.getReg(0));
816
817 // It's possible that the destination register won't be constrained. Make
818 // sure that happens.
819 if (!Register::isPhysicalRegister(I.getOperand(0).getReg()))
820 RBI.constrainGenericRegister(I.getOperand(0).getReg(), *To, MRI);
821
822 return true;
823 }
824
825 /// Helper function to get the source and destination register classes for a
826 /// copy. Returns a std::pair containing the source register class for the
827 /// copy, and the destination register class for the copy. If a register class
828 /// cannot be determined, then it will be nullptr.
829 static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
getRegClassesForCopy(MachineInstr & I,const TargetInstrInfo & TII,MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,const RegisterBankInfo & RBI)830 getRegClassesForCopy(MachineInstr &I, const TargetInstrInfo &TII,
831 MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
832 const RegisterBankInfo &RBI) {
833 Register DstReg = I.getOperand(0).getReg();
834 Register SrcReg = I.getOperand(1).getReg();
835 const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
836 const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
837 unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
838 unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
839
840 // Special casing for cross-bank copies of s1s. We can technically represent
841 // a 1-bit value with any size of register. The minimum size for a GPR is 32
842 // bits. So, we need to put the FPR on 32 bits as well.
843 //
844 // FIXME: I'm not sure if this case holds true outside of copies. If it does,
845 // then we can pull it into the helpers that get the appropriate class for a
846 // register bank. Or make a new helper that carries along some constraint
847 // information.
848 if (SrcRegBank != DstRegBank && (DstSize == 1 && SrcSize == 1))
849 SrcSize = DstSize = 32;
850
851 return {getMinClassForRegBank(SrcRegBank, SrcSize, true),
852 getMinClassForRegBank(DstRegBank, DstSize, true)};
853 }
854
selectCopy(MachineInstr & I,const TargetInstrInfo & TII,MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,const RegisterBankInfo & RBI)855 static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII,
856 MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
857 const RegisterBankInfo &RBI) {
858 Register DstReg = I.getOperand(0).getReg();
859 Register SrcReg = I.getOperand(1).getReg();
860 const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
861 const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
862
863 // Find the correct register classes for the source and destination registers.
864 const TargetRegisterClass *SrcRC;
865 const TargetRegisterClass *DstRC;
866 std::tie(SrcRC, DstRC) = getRegClassesForCopy(I, TII, MRI, TRI, RBI);
867
868 if (!DstRC) {
869 LLVM_DEBUG(dbgs() << "Unexpected dest size "
870 << RBI.getSizeInBits(DstReg, MRI, TRI) << '\n');
871 return false;
872 }
873
874 // A couple helpers below, for making sure that the copy we produce is valid.
875
876 // Set to true if we insert a SUBREG_TO_REG. If we do this, then we don't want
877 // to verify that the src and dst are the same size, since that's handled by
878 // the SUBREG_TO_REG.
879 bool KnownValid = false;
880
881 // Returns true, or asserts if something we don't expect happens. Instead of
882 // returning true, we return isValidCopy() to ensure that we verify the
883 // result.
884 auto CheckCopy = [&]() {
885 // If we have a bitcast or something, we can't have physical registers.
886 assert((I.isCopy() ||
887 (!Register::isPhysicalRegister(I.getOperand(0).getReg()) &&
888 !Register::isPhysicalRegister(I.getOperand(1).getReg()))) &&
889 "No phys reg on generic operator!");
890 bool ValidCopy = true;
891 #ifndef NDEBUG
892 ValidCopy = KnownValid || isValidCopy(I, DstRegBank, MRI, TRI, RBI);
893 assert(ValidCopy && "Invalid copy.");
894 #endif
895 (void)KnownValid;
896 return ValidCopy;
897 };
898
899 // Is this a copy? If so, then we may need to insert a subregister copy.
900 if (I.isCopy()) {
901 // Yes. Check if there's anything to fix up.
902 if (!SrcRC) {
903 LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n");
904 return false;
905 }
906
907 unsigned SrcSize = TRI.getRegSizeInBits(*SrcRC);
908 unsigned DstSize = TRI.getRegSizeInBits(*DstRC);
909 unsigned SubReg;
910
911 // If the source bank doesn't support a subregister copy small enough,
912 // then we first need to copy to the destination bank.
913 if (getMinSizeForRegBank(SrcRegBank) > DstSize) {
914 const TargetRegisterClass *DstTempRC =
915 getMinClassForRegBank(DstRegBank, SrcSize, /* GetAllRegSet */ true);
916 getSubRegForClass(DstRC, TRI, SubReg);
917
918 MachineIRBuilder MIB(I);
919 auto Copy = MIB.buildCopy({DstTempRC}, {SrcReg});
920 copySubReg(I, MRI, RBI, Copy.getReg(0), DstRC, SubReg);
921 } else if (SrcSize > DstSize) {
922 // If the source register is bigger than the destination we need to
923 // perform a subregister copy.
924 const TargetRegisterClass *SubRegRC =
925 getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true);
926 getSubRegForClass(SubRegRC, TRI, SubReg);
927 copySubReg(I, MRI, RBI, SrcReg, DstRC, SubReg);
928 } else if (DstSize > SrcSize) {
929 // If the destination register is bigger than the source we need to do
930 // a promotion using SUBREG_TO_REG.
931 const TargetRegisterClass *PromotionRC =
932 getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true);
933 getSubRegForClass(SrcRC, TRI, SubReg);
934
935 Register PromoteReg = MRI.createVirtualRegister(PromotionRC);
936 BuildMI(*I.getParent(), I, I.getDebugLoc(),
937 TII.get(AArch64::SUBREG_TO_REG), PromoteReg)
938 .addImm(0)
939 .addUse(SrcReg)
940 .addImm(SubReg);
941 MachineOperand &RegOp = I.getOperand(1);
942 RegOp.setReg(PromoteReg);
943
944 // Promise that the copy is implicitly validated by the SUBREG_TO_REG.
945 KnownValid = true;
946 }
947
948 // If the destination is a physical register, then there's nothing to
949 // change, so we're done.
950 if (Register::isPhysicalRegister(DstReg))
951 return CheckCopy();
952 }
953
954 // No need to constrain SrcReg. It will get constrained when we hit another
955 // of its use or its defs. Copies do not have constraints.
956 if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
957 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
958 << " operand\n");
959 return false;
960 }
961 I.setDesc(TII.get(AArch64::COPY));
962 return CheckCopy();
963 }
964
selectFPConvOpc(unsigned GenericOpc,LLT DstTy,LLT SrcTy)965 static unsigned selectFPConvOpc(unsigned GenericOpc, LLT DstTy, LLT SrcTy) {
966 if (!DstTy.isScalar() || !SrcTy.isScalar())
967 return GenericOpc;
968
969 const unsigned DstSize = DstTy.getSizeInBits();
970 const unsigned SrcSize = SrcTy.getSizeInBits();
971
972 switch (DstSize) {
973 case 32:
974 switch (SrcSize) {
975 case 32:
976 switch (GenericOpc) {
977 case TargetOpcode::G_SITOFP:
978 return AArch64::SCVTFUWSri;
979 case TargetOpcode::G_UITOFP:
980 return AArch64::UCVTFUWSri;
981 case TargetOpcode::G_FPTOSI:
982 return AArch64::FCVTZSUWSr;
983 case TargetOpcode::G_FPTOUI:
984 return AArch64::FCVTZUUWSr;
985 default:
986 return GenericOpc;
987 }
988 case 64:
989 switch (GenericOpc) {
990 case TargetOpcode::G_SITOFP:
991 return AArch64::SCVTFUXSri;
992 case TargetOpcode::G_UITOFP:
993 return AArch64::UCVTFUXSri;
994 case TargetOpcode::G_FPTOSI:
995 return AArch64::FCVTZSUWDr;
996 case TargetOpcode::G_FPTOUI:
997 return AArch64::FCVTZUUWDr;
998 default:
999 return GenericOpc;
1000 }
1001 default:
1002 return GenericOpc;
1003 }
1004 case 64:
1005 switch (SrcSize) {
1006 case 32:
1007 switch (GenericOpc) {
1008 case TargetOpcode::G_SITOFP:
1009 return AArch64::SCVTFUWDri;
1010 case TargetOpcode::G_UITOFP:
1011 return AArch64::UCVTFUWDri;
1012 case TargetOpcode::G_FPTOSI:
1013 return AArch64::FCVTZSUXSr;
1014 case TargetOpcode::G_FPTOUI:
1015 return AArch64::FCVTZUUXSr;
1016 default:
1017 return GenericOpc;
1018 }
1019 case 64:
1020 switch (GenericOpc) {
1021 case TargetOpcode::G_SITOFP:
1022 return AArch64::SCVTFUXDri;
1023 case TargetOpcode::G_UITOFP:
1024 return AArch64::UCVTFUXDri;
1025 case TargetOpcode::G_FPTOSI:
1026 return AArch64::FCVTZSUXDr;
1027 case TargetOpcode::G_FPTOUI:
1028 return AArch64::FCVTZUUXDr;
1029 default:
1030 return GenericOpc;
1031 }
1032 default:
1033 return GenericOpc;
1034 }
1035 default:
1036 return GenericOpc;
1037 };
1038 return GenericOpc;
1039 }
1040
1041 MachineInstr *
emitSelect(Register Dst,Register True,Register False,AArch64CC::CondCode CC,MachineIRBuilder & MIB) const1042 AArch64InstructionSelector::emitSelect(Register Dst, Register True,
1043 Register False, AArch64CC::CondCode CC,
1044 MachineIRBuilder &MIB) const {
1045 MachineRegisterInfo &MRI = *MIB.getMRI();
1046 assert(RBI.getRegBank(False, MRI, TRI)->getID() ==
1047 RBI.getRegBank(True, MRI, TRI)->getID() &&
1048 "Expected both select operands to have the same regbank?");
1049 LLT Ty = MRI.getType(True);
1050 if (Ty.isVector())
1051 return nullptr;
1052 const unsigned Size = Ty.getSizeInBits();
1053 assert((Size == 32 || Size == 64) &&
1054 "Expected 32 bit or 64 bit select only?");
1055 const bool Is32Bit = Size == 32;
1056 if (RBI.getRegBank(True, MRI, TRI)->getID() != AArch64::GPRRegBankID) {
1057 unsigned Opc = Is32Bit ? AArch64::FCSELSrrr : AArch64::FCSELDrrr;
1058 auto FCSel = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC);
1059 constrainSelectedInstRegOperands(*FCSel, TII, TRI, RBI);
1060 return &*FCSel;
1061 }
1062
1063 // By default, we'll try and emit a CSEL.
1064 unsigned Opc = Is32Bit ? AArch64::CSELWr : AArch64::CSELXr;
1065 bool Optimized = false;
1066 auto TryFoldBinOpIntoSelect = [&Opc, Is32Bit, &CC, &MRI,
1067 &Optimized](Register &Reg, Register &OtherReg,
1068 bool Invert) {
1069 if (Optimized)
1070 return false;
1071
1072 // Attempt to fold:
1073 //
1074 // %sub = G_SUB 0, %x
1075 // %select = G_SELECT cc, %reg, %sub
1076 //
1077 // Into:
1078 // %select = CSNEG %reg, %x, cc
1079 Register MatchReg;
1080 if (mi_match(Reg, MRI, m_Neg(m_Reg(MatchReg)))) {
1081 Opc = Is32Bit ? AArch64::CSNEGWr : AArch64::CSNEGXr;
1082 Reg = MatchReg;
1083 if (Invert) {
1084 CC = AArch64CC::getInvertedCondCode(CC);
1085 std::swap(Reg, OtherReg);
1086 }
1087 return true;
1088 }
1089
1090 // Attempt to fold:
1091 //
1092 // %xor = G_XOR %x, -1
1093 // %select = G_SELECT cc, %reg, %xor
1094 //
1095 // Into:
1096 // %select = CSINV %reg, %x, cc
1097 if (mi_match(Reg, MRI, m_Not(m_Reg(MatchReg)))) {
1098 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1099 Reg = MatchReg;
1100 if (Invert) {
1101 CC = AArch64CC::getInvertedCondCode(CC);
1102 std::swap(Reg, OtherReg);
1103 }
1104 return true;
1105 }
1106
1107 // Attempt to fold:
1108 //
1109 // %add = G_ADD %x, 1
1110 // %select = G_SELECT cc, %reg, %add
1111 //
1112 // Into:
1113 // %select = CSINC %reg, %x, cc
1114 if (mi_match(Reg, MRI,
1115 m_any_of(m_GAdd(m_Reg(MatchReg), m_SpecificICst(1)),
1116 m_GPtrAdd(m_Reg(MatchReg), m_SpecificICst(1))))) {
1117 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1118 Reg = MatchReg;
1119 if (Invert) {
1120 CC = AArch64CC::getInvertedCondCode(CC);
1121 std::swap(Reg, OtherReg);
1122 }
1123 return true;
1124 }
1125
1126 return false;
1127 };
1128
1129 // Helper lambda which tries to use CSINC/CSINV for the instruction when its
1130 // true/false values are constants.
1131 // FIXME: All of these patterns already exist in tablegen. We should be
1132 // able to import these.
1133 auto TryOptSelectCst = [&Opc, &True, &False, &CC, Is32Bit, &MRI,
1134 &Optimized]() {
1135 if (Optimized)
1136 return false;
1137 auto TrueCst = getConstantVRegValWithLookThrough(True, MRI);
1138 auto FalseCst = getConstantVRegValWithLookThrough(False, MRI);
1139 if (!TrueCst && !FalseCst)
1140 return false;
1141
1142 Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR;
1143 if (TrueCst && FalseCst) {
1144 int64_t T = TrueCst->Value.getSExtValue();
1145 int64_t F = FalseCst->Value.getSExtValue();
1146
1147 if (T == 0 && F == 1) {
1148 // G_SELECT cc, 0, 1 -> CSINC zreg, zreg, cc
1149 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1150 True = ZReg;
1151 False = ZReg;
1152 return true;
1153 }
1154
1155 if (T == 0 && F == -1) {
1156 // G_SELECT cc 0, -1 -> CSINV zreg, zreg cc
1157 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1158 True = ZReg;
1159 False = ZReg;
1160 return true;
1161 }
1162 }
1163
1164 if (TrueCst) {
1165 int64_t T = TrueCst->Value.getSExtValue();
1166 if (T == 1) {
1167 // G_SELECT cc, 1, f -> CSINC f, zreg, inv_cc
1168 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1169 True = False;
1170 False = ZReg;
1171 CC = AArch64CC::getInvertedCondCode(CC);
1172 return true;
1173 }
1174
1175 if (T == -1) {
1176 // G_SELECT cc, -1, f -> CSINV f, zreg, inv_cc
1177 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1178 True = False;
1179 False = ZReg;
1180 CC = AArch64CC::getInvertedCondCode(CC);
1181 return true;
1182 }
1183 }
1184
1185 if (FalseCst) {
1186 int64_t F = FalseCst->Value.getSExtValue();
1187 if (F == 1) {
1188 // G_SELECT cc, t, 1 -> CSINC t, zreg, cc
1189 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1190 False = ZReg;
1191 return true;
1192 }
1193
1194 if (F == -1) {
1195 // G_SELECT cc, t, -1 -> CSINC t, zreg, cc
1196 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1197 False = ZReg;
1198 return true;
1199 }
1200 }
1201 return false;
1202 };
1203
1204 Optimized |= TryFoldBinOpIntoSelect(False, True, /*Invert = */ false);
1205 Optimized |= TryFoldBinOpIntoSelect(True, False, /*Invert = */ true);
1206 Optimized |= TryOptSelectCst();
1207 auto SelectInst = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC);
1208 constrainSelectedInstRegOperands(*SelectInst, TII, TRI, RBI);
1209 return &*SelectInst;
1210 }
1211
changeICMPPredToAArch64CC(CmpInst::Predicate P)1212 static AArch64CC::CondCode changeICMPPredToAArch64CC(CmpInst::Predicate P) {
1213 switch (P) {
1214 default:
1215 llvm_unreachable("Unknown condition code!");
1216 case CmpInst::ICMP_NE:
1217 return AArch64CC::NE;
1218 case CmpInst::ICMP_EQ:
1219 return AArch64CC::EQ;
1220 case CmpInst::ICMP_SGT:
1221 return AArch64CC::GT;
1222 case CmpInst::ICMP_SGE:
1223 return AArch64CC::GE;
1224 case CmpInst::ICMP_SLT:
1225 return AArch64CC::LT;
1226 case CmpInst::ICMP_SLE:
1227 return AArch64CC::LE;
1228 case CmpInst::ICMP_UGT:
1229 return AArch64CC::HI;
1230 case CmpInst::ICMP_UGE:
1231 return AArch64CC::HS;
1232 case CmpInst::ICMP_ULT:
1233 return AArch64CC::LO;
1234 case CmpInst::ICMP_ULE:
1235 return AArch64CC::LS;
1236 }
1237 }
1238
1239 /// Return a register which can be used as a bit to test in a TB(N)Z.
getTestBitReg(Register Reg,uint64_t & Bit,bool & Invert,MachineRegisterInfo & MRI)1240 static Register getTestBitReg(Register Reg, uint64_t &Bit, bool &Invert,
1241 MachineRegisterInfo &MRI) {
1242 assert(Reg.isValid() && "Expected valid register!");
1243 while (MachineInstr *MI = getDefIgnoringCopies(Reg, MRI)) {
1244 unsigned Opc = MI->getOpcode();
1245
1246 if (!MI->getOperand(0).isReg() ||
1247 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1248 break;
1249
1250 // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
1251 //
1252 // (tbz (trunc x), b) -> (tbz x, b) is always safe, because the bit number
1253 // on the truncated x is the same as the bit number on x.
1254 if (Opc == TargetOpcode::G_ANYEXT || Opc == TargetOpcode::G_ZEXT ||
1255 Opc == TargetOpcode::G_TRUNC) {
1256 Register NextReg = MI->getOperand(1).getReg();
1257 // Did we find something worth folding?
1258 if (!NextReg.isValid() || !MRI.hasOneNonDBGUse(NextReg))
1259 break;
1260
1261 // NextReg is worth folding. Keep looking.
1262 Reg = NextReg;
1263 continue;
1264 }
1265
1266 // Attempt to find a suitable operation with a constant on one side.
1267 Optional<uint64_t> C;
1268 Register TestReg;
1269 switch (Opc) {
1270 default:
1271 break;
1272 case TargetOpcode::G_AND:
1273 case TargetOpcode::G_XOR: {
1274 TestReg = MI->getOperand(1).getReg();
1275 Register ConstantReg = MI->getOperand(2).getReg();
1276 auto VRegAndVal = getConstantVRegValWithLookThrough(ConstantReg, MRI);
1277 if (!VRegAndVal) {
1278 // AND commutes, check the other side for a constant.
1279 // FIXME: Can we canonicalize the constant so that it's always on the
1280 // same side at some point earlier?
1281 std::swap(ConstantReg, TestReg);
1282 VRegAndVal = getConstantVRegValWithLookThrough(ConstantReg, MRI);
1283 }
1284 if (VRegAndVal)
1285 C = VRegAndVal->Value.getSExtValue();
1286 break;
1287 }
1288 case TargetOpcode::G_ASHR:
1289 case TargetOpcode::G_LSHR:
1290 case TargetOpcode::G_SHL: {
1291 TestReg = MI->getOperand(1).getReg();
1292 auto VRegAndVal =
1293 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1294 if (VRegAndVal)
1295 C = VRegAndVal->Value.getSExtValue();
1296 break;
1297 }
1298 }
1299
1300 // Didn't find a constant or viable register. Bail out of the loop.
1301 if (!C || !TestReg.isValid())
1302 break;
1303
1304 // We found a suitable instruction with a constant. Check to see if we can
1305 // walk through the instruction.
1306 Register NextReg;
1307 unsigned TestRegSize = MRI.getType(TestReg).getSizeInBits();
1308 switch (Opc) {
1309 default:
1310 break;
1311 case TargetOpcode::G_AND:
1312 // (tbz (and x, m), b) -> (tbz x, b) when the b-th bit of m is set.
1313 if ((*C >> Bit) & 1)
1314 NextReg = TestReg;
1315 break;
1316 case TargetOpcode::G_SHL:
1317 // (tbz (shl x, c), b) -> (tbz x, b-c) when b-c is positive and fits in
1318 // the type of the register.
1319 if (*C <= Bit && (Bit - *C) < TestRegSize) {
1320 NextReg = TestReg;
1321 Bit = Bit - *C;
1322 }
1323 break;
1324 case TargetOpcode::G_ASHR:
1325 // (tbz (ashr x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits
1326 // in x
1327 NextReg = TestReg;
1328 Bit = Bit + *C;
1329 if (Bit >= TestRegSize)
1330 Bit = TestRegSize - 1;
1331 break;
1332 case TargetOpcode::G_LSHR:
1333 // (tbz (lshr x, c), b) -> (tbz x, b+c) when b + c is < # bits in x
1334 if ((Bit + *C) < TestRegSize) {
1335 NextReg = TestReg;
1336 Bit = Bit + *C;
1337 }
1338 break;
1339 case TargetOpcode::G_XOR:
1340 // We can walk through a G_XOR by inverting whether we use tbz/tbnz when
1341 // appropriate.
1342 //
1343 // e.g. If x' = xor x, c, and the b-th bit is set in c then
1344 //
1345 // tbz x', b -> tbnz x, b
1346 //
1347 // Because x' only has the b-th bit set if x does not.
1348 if ((*C >> Bit) & 1)
1349 Invert = !Invert;
1350 NextReg = TestReg;
1351 break;
1352 }
1353
1354 // Check if we found anything worth folding.
1355 if (!NextReg.isValid())
1356 return Reg;
1357 Reg = NextReg;
1358 }
1359
1360 return Reg;
1361 }
1362
emitTestBit(Register TestReg,uint64_t Bit,bool IsNegative,MachineBasicBlock * DstMBB,MachineIRBuilder & MIB) const1363 MachineInstr *AArch64InstructionSelector::emitTestBit(
1364 Register TestReg, uint64_t Bit, bool IsNegative, MachineBasicBlock *DstMBB,
1365 MachineIRBuilder &MIB) const {
1366 assert(TestReg.isValid());
1367 assert(ProduceNonFlagSettingCondBr &&
1368 "Cannot emit TB(N)Z with speculation tracking!");
1369 MachineRegisterInfo &MRI = *MIB.getMRI();
1370
1371 // Attempt to optimize the test bit by walking over instructions.
1372 TestReg = getTestBitReg(TestReg, Bit, IsNegative, MRI);
1373 LLT Ty = MRI.getType(TestReg);
1374 unsigned Size = Ty.getSizeInBits();
1375 assert(!Ty.isVector() && "Expected a scalar!");
1376 assert(Bit < 64 && "Bit is too large!");
1377
1378 // When the test register is a 64-bit register, we have to narrow to make
1379 // TBNZW work.
1380 bool UseWReg = Bit < 32;
1381 unsigned NecessarySize = UseWReg ? 32 : 64;
1382 if (Size != NecessarySize)
1383 TestReg = moveScalarRegClass(
1384 TestReg, UseWReg ? AArch64::GPR32RegClass : AArch64::GPR64RegClass,
1385 MIB);
1386
1387 static const unsigned OpcTable[2][2] = {{AArch64::TBZX, AArch64::TBNZX},
1388 {AArch64::TBZW, AArch64::TBNZW}};
1389 unsigned Opc = OpcTable[UseWReg][IsNegative];
1390 auto TestBitMI =
1391 MIB.buildInstr(Opc).addReg(TestReg).addImm(Bit).addMBB(DstMBB);
1392 constrainSelectedInstRegOperands(*TestBitMI, TII, TRI, RBI);
1393 return &*TestBitMI;
1394 }
1395
tryOptAndIntoCompareBranch(MachineInstr & AndInst,bool Invert,MachineBasicBlock * DstMBB,MachineIRBuilder & MIB) const1396 bool AArch64InstructionSelector::tryOptAndIntoCompareBranch(
1397 MachineInstr &AndInst, bool Invert, MachineBasicBlock *DstMBB,
1398 MachineIRBuilder &MIB) const {
1399 assert(AndInst.getOpcode() == TargetOpcode::G_AND && "Expected G_AND only?");
1400 // Given something like this:
1401 //
1402 // %x = ...Something...
1403 // %one = G_CONSTANT i64 1
1404 // %zero = G_CONSTANT i64 0
1405 // %and = G_AND %x, %one
1406 // %cmp = G_ICMP intpred(ne), %and, %zero
1407 // %cmp_trunc = G_TRUNC %cmp
1408 // G_BRCOND %cmp_trunc, %bb.3
1409 //
1410 // We want to try and fold the AND into the G_BRCOND and produce either a
1411 // TBNZ (when we have intpred(ne)) or a TBZ (when we have intpred(eq)).
1412 //
1413 // In this case, we'd get
1414 //
1415 // TBNZ %x %bb.3
1416 //
1417
1418 // Check if the AND has a constant on its RHS which we can use as a mask.
1419 // If it's a power of 2, then it's the same as checking a specific bit.
1420 // (e.g, ANDing with 8 == ANDing with 000...100 == testing if bit 3 is set)
1421 auto MaybeBit = getConstantVRegValWithLookThrough(
1422 AndInst.getOperand(2).getReg(), *MIB.getMRI());
1423 if (!MaybeBit)
1424 return false;
1425
1426 int32_t Bit = MaybeBit->Value.exactLogBase2();
1427 if (Bit < 0)
1428 return false;
1429
1430 Register TestReg = AndInst.getOperand(1).getReg();
1431
1432 // Emit a TB(N)Z.
1433 emitTestBit(TestReg, Bit, Invert, DstMBB, MIB);
1434 return true;
1435 }
1436
emitCBZ(Register CompareReg,bool IsNegative,MachineBasicBlock * DestMBB,MachineIRBuilder & MIB) const1437 MachineInstr *AArch64InstructionSelector::emitCBZ(Register CompareReg,
1438 bool IsNegative,
1439 MachineBasicBlock *DestMBB,
1440 MachineIRBuilder &MIB) const {
1441 assert(ProduceNonFlagSettingCondBr && "CBZ does not set flags!");
1442 MachineRegisterInfo &MRI = *MIB.getMRI();
1443 assert(RBI.getRegBank(CompareReg, MRI, TRI)->getID() ==
1444 AArch64::GPRRegBankID &&
1445 "Expected GPRs only?");
1446 auto Ty = MRI.getType(CompareReg);
1447 unsigned Width = Ty.getSizeInBits();
1448 assert(!Ty.isVector() && "Expected scalar only?");
1449 assert(Width <= 64 && "Expected width to be at most 64?");
1450 static const unsigned OpcTable[2][2] = {{AArch64::CBZW, AArch64::CBZX},
1451 {AArch64::CBNZW, AArch64::CBNZX}};
1452 unsigned Opc = OpcTable[IsNegative][Width == 64];
1453 auto BranchMI = MIB.buildInstr(Opc, {}, {CompareReg}).addMBB(DestMBB);
1454 constrainSelectedInstRegOperands(*BranchMI, TII, TRI, RBI);
1455 return &*BranchMI;
1456 }
1457
selectCompareBranchFedByFCmp(MachineInstr & I,MachineInstr & FCmp,MachineIRBuilder & MIB) const1458 bool AArch64InstructionSelector::selectCompareBranchFedByFCmp(
1459 MachineInstr &I, MachineInstr &FCmp, MachineIRBuilder &MIB) const {
1460 assert(FCmp.getOpcode() == TargetOpcode::G_FCMP);
1461 assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1462 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
1463 // totally clean. Some of them require two branches to implement.
1464 auto Pred = (CmpInst::Predicate)FCmp.getOperand(1).getPredicate();
1465 emitFPCompare(FCmp.getOperand(2).getReg(), FCmp.getOperand(3).getReg(), MIB,
1466 Pred);
1467 AArch64CC::CondCode CC1, CC2;
1468 changeFCMPPredToAArch64CC(static_cast<CmpInst::Predicate>(Pred), CC1, CC2);
1469 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1470 MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC1).addMBB(DestMBB);
1471 if (CC2 != AArch64CC::AL)
1472 MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC2).addMBB(DestMBB);
1473 I.eraseFromParent();
1474 return true;
1475 }
1476
tryOptCompareBranchFedByICmp(MachineInstr & I,MachineInstr & ICmp,MachineIRBuilder & MIB) const1477 bool AArch64InstructionSelector::tryOptCompareBranchFedByICmp(
1478 MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const {
1479 assert(ICmp.getOpcode() == TargetOpcode::G_ICMP);
1480 assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1481 // Attempt to optimize the G_BRCOND + G_ICMP into a TB(N)Z/CB(N)Z.
1482 //
1483 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
1484 // instructions will not be produced, as they are conditional branch
1485 // instructions that do not set flags.
1486 if (!ProduceNonFlagSettingCondBr)
1487 return false;
1488
1489 MachineRegisterInfo &MRI = *MIB.getMRI();
1490 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1491 auto Pred =
1492 static_cast<CmpInst::Predicate>(ICmp.getOperand(1).getPredicate());
1493 Register LHS = ICmp.getOperand(2).getReg();
1494 Register RHS = ICmp.getOperand(3).getReg();
1495
1496 // We're allowed to emit a TB(N)Z/CB(N)Z. Try to do that.
1497 auto VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
1498 MachineInstr *AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI);
1499
1500 // When we can emit a TB(N)Z, prefer that.
1501 //
1502 // Handle non-commutative condition codes first.
1503 // Note that we don't want to do this when we have a G_AND because it can
1504 // become a tst. The tst will make the test bit in the TB(N)Z redundant.
1505 if (VRegAndVal && !AndInst) {
1506 int64_t C = VRegAndVal->Value.getSExtValue();
1507
1508 // When we have a greater-than comparison, we can just test if the msb is
1509 // zero.
1510 if (C == -1 && Pred == CmpInst::ICMP_SGT) {
1511 uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
1512 emitTestBit(LHS, Bit, /*IsNegative = */ false, DestMBB, MIB);
1513 I.eraseFromParent();
1514 return true;
1515 }
1516
1517 // When we have a less than comparison, we can just test if the msb is not
1518 // zero.
1519 if (C == 0 && Pred == CmpInst::ICMP_SLT) {
1520 uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
1521 emitTestBit(LHS, Bit, /*IsNegative = */ true, DestMBB, MIB);
1522 I.eraseFromParent();
1523 return true;
1524 }
1525 }
1526
1527 // Attempt to handle commutative condition codes. Right now, that's only
1528 // eq/ne.
1529 if (ICmpInst::isEquality(Pred)) {
1530 if (!VRegAndVal) {
1531 std::swap(RHS, LHS);
1532 VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
1533 AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI);
1534 }
1535
1536 if (VRegAndVal && VRegAndVal->Value == 0) {
1537 // If there's a G_AND feeding into this branch, try to fold it away by
1538 // emitting a TB(N)Z instead.
1539 //
1540 // Note: If we have LT, then it *is* possible to fold, but it wouldn't be
1541 // beneficial. When we have an AND and LT, we need a TST/ANDS, so folding
1542 // would be redundant.
1543 if (AndInst &&
1544 tryOptAndIntoCompareBranch(
1545 *AndInst, /*Invert = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB)) {
1546 I.eraseFromParent();
1547 return true;
1548 }
1549
1550 // Otherwise, try to emit a CB(N)Z instead.
1551 auto LHSTy = MRI.getType(LHS);
1552 if (!LHSTy.isVector() && LHSTy.getSizeInBits() <= 64) {
1553 emitCBZ(LHS, /*IsNegative = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB);
1554 I.eraseFromParent();
1555 return true;
1556 }
1557 }
1558 }
1559
1560 return false;
1561 }
1562
selectCompareBranchFedByICmp(MachineInstr & I,MachineInstr & ICmp,MachineIRBuilder & MIB) const1563 bool AArch64InstructionSelector::selectCompareBranchFedByICmp(
1564 MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const {
1565 assert(ICmp.getOpcode() == TargetOpcode::G_ICMP);
1566 assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1567 if (tryOptCompareBranchFedByICmp(I, ICmp, MIB))
1568 return true;
1569
1570 // Couldn't optimize. Emit a compare + a Bcc.
1571 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1572 auto PredOp = ICmp.getOperand(1);
1573 emitIntegerCompare(ICmp.getOperand(2), ICmp.getOperand(3), PredOp, MIB);
1574 const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(
1575 static_cast<CmpInst::Predicate>(PredOp.getPredicate()));
1576 MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC).addMBB(DestMBB);
1577 I.eraseFromParent();
1578 return true;
1579 }
1580
selectCompareBranch(MachineInstr & I,MachineFunction & MF,MachineRegisterInfo & MRI)1581 bool AArch64InstructionSelector::selectCompareBranch(
1582 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) {
1583 Register CondReg = I.getOperand(0).getReg();
1584 MachineInstr *CCMI = MRI.getVRegDef(CondReg);
1585 if (CCMI->getOpcode() == TargetOpcode::G_TRUNC) {
1586 CondReg = CCMI->getOperand(1).getReg();
1587 CCMI = MRI.getVRegDef(CondReg);
1588 }
1589
1590 // Try to select the G_BRCOND using whatever is feeding the condition if
1591 // possible.
1592 unsigned CCMIOpc = CCMI->getOpcode();
1593 if (CCMIOpc == TargetOpcode::G_FCMP)
1594 return selectCompareBranchFedByFCmp(I, *CCMI, MIB);
1595 if (CCMIOpc == TargetOpcode::G_ICMP)
1596 return selectCompareBranchFedByICmp(I, *CCMI, MIB);
1597
1598 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
1599 // instructions will not be produced, as they are conditional branch
1600 // instructions that do not set flags.
1601 if (ProduceNonFlagSettingCondBr) {
1602 emitTestBit(CondReg, /*Bit = */ 0, /*IsNegative = */ true,
1603 I.getOperand(1).getMBB(), MIB);
1604 I.eraseFromParent();
1605 return true;
1606 }
1607
1608 // Can't emit TB(N)Z/CB(N)Z. Emit a tst + bcc instead.
1609 auto TstMI =
1610 MIB.buildInstr(AArch64::ANDSWri, {LLT::scalar(32)}, {CondReg}).addImm(1);
1611 constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
1612 auto Bcc = MIB.buildInstr(AArch64::Bcc)
1613 .addImm(AArch64CC::EQ)
1614 .addMBB(I.getOperand(1).getMBB());
1615 I.eraseFromParent();
1616 return constrainSelectedInstRegOperands(*Bcc, TII, TRI, RBI);
1617 }
1618
1619 /// Returns the element immediate value of a vector shift operand if found.
1620 /// This needs to detect a splat-like operation, e.g. a G_BUILD_VECTOR.
getVectorShiftImm(Register Reg,MachineRegisterInfo & MRI)1621 static Optional<int64_t> getVectorShiftImm(Register Reg,
1622 MachineRegisterInfo &MRI) {
1623 assert(MRI.getType(Reg).isVector() && "Expected a *vector* shift operand");
1624 MachineInstr *OpMI = MRI.getVRegDef(Reg);
1625 assert(OpMI && "Expected to find a vreg def for vector shift operand");
1626 return getAArch64VectorSplatScalar(*OpMI, MRI);
1627 }
1628
1629 /// Matches and returns the shift immediate value for a SHL instruction given
1630 /// a shift operand.
getVectorSHLImm(LLT SrcTy,Register Reg,MachineRegisterInfo & MRI)1631 static Optional<int64_t> getVectorSHLImm(LLT SrcTy, Register Reg, MachineRegisterInfo &MRI) {
1632 Optional<int64_t> ShiftImm = getVectorShiftImm(Reg, MRI);
1633 if (!ShiftImm)
1634 return None;
1635 // Check the immediate is in range for a SHL.
1636 int64_t Imm = *ShiftImm;
1637 if (Imm < 0)
1638 return None;
1639 switch (SrcTy.getElementType().getSizeInBits()) {
1640 default:
1641 LLVM_DEBUG(dbgs() << "Unhandled element type for vector shift");
1642 return None;
1643 case 8:
1644 if (Imm > 7)
1645 return None;
1646 break;
1647 case 16:
1648 if (Imm > 15)
1649 return None;
1650 break;
1651 case 32:
1652 if (Imm > 31)
1653 return None;
1654 break;
1655 case 64:
1656 if (Imm > 63)
1657 return None;
1658 break;
1659 }
1660 return Imm;
1661 }
1662
selectVectorSHL(MachineInstr & I,MachineRegisterInfo & MRI)1663 bool AArch64InstructionSelector::selectVectorSHL(MachineInstr &I,
1664 MachineRegisterInfo &MRI) {
1665 assert(I.getOpcode() == TargetOpcode::G_SHL);
1666 Register DstReg = I.getOperand(0).getReg();
1667 const LLT Ty = MRI.getType(DstReg);
1668 Register Src1Reg = I.getOperand(1).getReg();
1669 Register Src2Reg = I.getOperand(2).getReg();
1670
1671 if (!Ty.isVector())
1672 return false;
1673
1674 // Check if we have a vector of constants on RHS that we can select as the
1675 // immediate form.
1676 Optional<int64_t> ImmVal = getVectorSHLImm(Ty, Src2Reg, MRI);
1677
1678 unsigned Opc = 0;
1679 if (Ty == LLT::vector(2, 64)) {
1680 Opc = ImmVal ? AArch64::SHLv2i64_shift : AArch64::USHLv2i64;
1681 } else if (Ty == LLT::vector(4, 32)) {
1682 Opc = ImmVal ? AArch64::SHLv4i32_shift : AArch64::USHLv4i32;
1683 } else if (Ty == LLT::vector(2, 32)) {
1684 Opc = ImmVal ? AArch64::SHLv2i32_shift : AArch64::USHLv2i32;
1685 } else if (Ty == LLT::vector(4, 16)) {
1686 Opc = ImmVal ? AArch64::SHLv4i16_shift : AArch64::USHLv4i16;
1687 } else if (Ty == LLT::vector(8, 16)) {
1688 Opc = ImmVal ? AArch64::SHLv8i16_shift : AArch64::USHLv8i16;
1689 } else if (Ty == LLT::vector(16, 8)) {
1690 Opc = ImmVal ? AArch64::SHLv16i8_shift : AArch64::USHLv16i8;
1691 } else if (Ty == LLT::vector(8, 8)) {
1692 Opc = ImmVal ? AArch64::SHLv8i8_shift : AArch64::USHLv8i8;
1693 } else {
1694 LLVM_DEBUG(dbgs() << "Unhandled G_SHL type");
1695 return false;
1696 }
1697
1698 auto Shl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg});
1699 if (ImmVal)
1700 Shl.addImm(*ImmVal);
1701 else
1702 Shl.addUse(Src2Reg);
1703 constrainSelectedInstRegOperands(*Shl, TII, TRI, RBI);
1704 I.eraseFromParent();
1705 return true;
1706 }
1707
selectVectorAshrLshr(MachineInstr & I,MachineRegisterInfo & MRI)1708 bool AArch64InstructionSelector::selectVectorAshrLshr(
1709 MachineInstr &I, MachineRegisterInfo &MRI) {
1710 assert(I.getOpcode() == TargetOpcode::G_ASHR ||
1711 I.getOpcode() == TargetOpcode::G_LSHR);
1712 Register DstReg = I.getOperand(0).getReg();
1713 const LLT Ty = MRI.getType(DstReg);
1714 Register Src1Reg = I.getOperand(1).getReg();
1715 Register Src2Reg = I.getOperand(2).getReg();
1716
1717 if (!Ty.isVector())
1718 return false;
1719
1720 bool IsASHR = I.getOpcode() == TargetOpcode::G_ASHR;
1721
1722 // We expect the immediate case to be lowered in the PostLegalCombiner to
1723 // AArch64ISD::VASHR or AArch64ISD::VLSHR equivalents.
1724
1725 // There is not a shift right register instruction, but the shift left
1726 // register instruction takes a signed value, where negative numbers specify a
1727 // right shift.
1728
1729 unsigned Opc = 0;
1730 unsigned NegOpc = 0;
1731 const TargetRegisterClass *RC =
1732 getRegClassForTypeOnBank(Ty, RBI.getRegBank(AArch64::FPRRegBankID), RBI);
1733 if (Ty == LLT::vector(2, 64)) {
1734 Opc = IsASHR ? AArch64::SSHLv2i64 : AArch64::USHLv2i64;
1735 NegOpc = AArch64::NEGv2i64;
1736 } else if (Ty == LLT::vector(4, 32)) {
1737 Opc = IsASHR ? AArch64::SSHLv4i32 : AArch64::USHLv4i32;
1738 NegOpc = AArch64::NEGv4i32;
1739 } else if (Ty == LLT::vector(2, 32)) {
1740 Opc = IsASHR ? AArch64::SSHLv2i32 : AArch64::USHLv2i32;
1741 NegOpc = AArch64::NEGv2i32;
1742 } else if (Ty == LLT::vector(4, 16)) {
1743 Opc = IsASHR ? AArch64::SSHLv4i16 : AArch64::USHLv4i16;
1744 NegOpc = AArch64::NEGv4i16;
1745 } else if (Ty == LLT::vector(8, 16)) {
1746 Opc = IsASHR ? AArch64::SSHLv8i16 : AArch64::USHLv8i16;
1747 NegOpc = AArch64::NEGv8i16;
1748 } else if (Ty == LLT::vector(16, 8)) {
1749 Opc = IsASHR ? AArch64::SSHLv16i8 : AArch64::USHLv16i8;
1750 NegOpc = AArch64::NEGv16i8;
1751 } else if (Ty == LLT::vector(8, 8)) {
1752 Opc = IsASHR ? AArch64::SSHLv8i8 : AArch64::USHLv8i8;
1753 NegOpc = AArch64::NEGv8i8;
1754 } else {
1755 LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type");
1756 return false;
1757 }
1758
1759 auto Neg = MIB.buildInstr(NegOpc, {RC}, {Src2Reg});
1760 constrainSelectedInstRegOperands(*Neg, TII, TRI, RBI);
1761 auto SShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Neg});
1762 constrainSelectedInstRegOperands(*SShl, TII, TRI, RBI);
1763 I.eraseFromParent();
1764 return true;
1765 }
1766
selectVaStartAAPCS(MachineInstr & I,MachineFunction & MF,MachineRegisterInfo & MRI) const1767 bool AArch64InstructionSelector::selectVaStartAAPCS(
1768 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
1769 return false;
1770 }
1771
selectVaStartDarwin(MachineInstr & I,MachineFunction & MF,MachineRegisterInfo & MRI) const1772 bool AArch64InstructionSelector::selectVaStartDarwin(
1773 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
1774 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
1775 Register ListReg = I.getOperand(0).getReg();
1776
1777 Register ArgsAddrReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1778
1779 auto MIB =
1780 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::ADDXri))
1781 .addDef(ArgsAddrReg)
1782 .addFrameIndex(FuncInfo->getVarArgsStackIndex())
1783 .addImm(0)
1784 .addImm(0);
1785
1786 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
1787
1788 MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRXui))
1789 .addUse(ArgsAddrReg)
1790 .addUse(ListReg)
1791 .addImm(0)
1792 .addMemOperand(*I.memoperands_begin());
1793
1794 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
1795 I.eraseFromParent();
1796 return true;
1797 }
1798
materializeLargeCMVal(MachineInstr & I,const Value * V,unsigned OpFlags)1799 void AArch64InstructionSelector::materializeLargeCMVal(
1800 MachineInstr &I, const Value *V, unsigned OpFlags) {
1801 MachineBasicBlock &MBB = *I.getParent();
1802 MachineFunction &MF = *MBB.getParent();
1803 MachineRegisterInfo &MRI = MF.getRegInfo();
1804
1805 auto MovZ = MIB.buildInstr(AArch64::MOVZXi, {&AArch64::GPR64RegClass}, {});
1806 MovZ->addOperand(MF, I.getOperand(1));
1807 MovZ->getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_G0 |
1808 AArch64II::MO_NC);
1809 MovZ->addOperand(MF, MachineOperand::CreateImm(0));
1810 constrainSelectedInstRegOperands(*MovZ, TII, TRI, RBI);
1811
1812 auto BuildMovK = [&](Register SrcReg, unsigned char Flags, unsigned Offset,
1813 Register ForceDstReg) {
1814 Register DstReg = ForceDstReg
1815 ? ForceDstReg
1816 : MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1817 auto MovI = MIB.buildInstr(AArch64::MOVKXi).addDef(DstReg).addUse(SrcReg);
1818 if (auto *GV = dyn_cast<GlobalValue>(V)) {
1819 MovI->addOperand(MF, MachineOperand::CreateGA(
1820 GV, MovZ->getOperand(1).getOffset(), Flags));
1821 } else {
1822 MovI->addOperand(
1823 MF, MachineOperand::CreateBA(cast<BlockAddress>(V),
1824 MovZ->getOperand(1).getOffset(), Flags));
1825 }
1826 MovI->addOperand(MF, MachineOperand::CreateImm(Offset));
1827 constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI);
1828 return DstReg;
1829 };
1830 Register DstReg = BuildMovK(MovZ.getReg(0),
1831 AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0);
1832 DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0);
1833 BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(0).getReg());
1834 }
1835
preISelLower(MachineInstr & I)1836 bool AArch64InstructionSelector::preISelLower(MachineInstr &I) {
1837 MachineBasicBlock &MBB = *I.getParent();
1838 MachineFunction &MF = *MBB.getParent();
1839 MachineRegisterInfo &MRI = MF.getRegInfo();
1840
1841 switch (I.getOpcode()) {
1842 case TargetOpcode::G_SHL:
1843 case TargetOpcode::G_ASHR:
1844 case TargetOpcode::G_LSHR: {
1845 // These shifts are legalized to have 64 bit shift amounts because we want
1846 // to take advantage of the existing imported selection patterns that assume
1847 // the immediates are s64s. However, if the shifted type is 32 bits and for
1848 // some reason we receive input GMIR that has an s64 shift amount that's not
1849 // a G_CONSTANT, insert a truncate so that we can still select the s32
1850 // register-register variant.
1851 Register SrcReg = I.getOperand(1).getReg();
1852 Register ShiftReg = I.getOperand(2).getReg();
1853 const LLT ShiftTy = MRI.getType(ShiftReg);
1854 const LLT SrcTy = MRI.getType(SrcReg);
1855 if (SrcTy.isVector())
1856 return false;
1857 assert(!ShiftTy.isVector() && "unexpected vector shift ty");
1858 if (SrcTy.getSizeInBits() != 32 || ShiftTy.getSizeInBits() != 64)
1859 return false;
1860 auto *AmtMI = MRI.getVRegDef(ShiftReg);
1861 assert(AmtMI && "could not find a vreg definition for shift amount");
1862 if (AmtMI->getOpcode() != TargetOpcode::G_CONSTANT) {
1863 // Insert a subregister copy to implement a 64->32 trunc
1864 auto Trunc = MIB.buildInstr(TargetOpcode::COPY, {SrcTy}, {})
1865 .addReg(ShiftReg, 0, AArch64::sub_32);
1866 MRI.setRegBank(Trunc.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
1867 I.getOperand(2).setReg(Trunc.getReg(0));
1868 }
1869 return true;
1870 }
1871 case TargetOpcode::G_STORE: {
1872 bool Changed = contractCrossBankCopyIntoStore(I, MRI);
1873 MachineOperand &SrcOp = I.getOperand(0);
1874 if (MRI.getType(SrcOp.getReg()).isPointer()) {
1875 // Allow matching with imported patterns for stores of pointers. Unlike
1876 // G_LOAD/G_PTR_ADD, we may not have selected all users. So, emit a copy
1877 // and constrain.
1878 auto Copy = MIB.buildCopy(LLT::scalar(64), SrcOp);
1879 Register NewSrc = Copy.getReg(0);
1880 SrcOp.setReg(NewSrc);
1881 RBI.constrainGenericRegister(NewSrc, AArch64::GPR64RegClass, MRI);
1882 Changed = true;
1883 }
1884 return Changed;
1885 }
1886 case TargetOpcode::G_PTR_ADD:
1887 return convertPtrAddToAdd(I, MRI);
1888 case TargetOpcode::G_LOAD: {
1889 // For scalar loads of pointers, we try to convert the dest type from p0
1890 // to s64 so that our imported patterns can match. Like with the G_PTR_ADD
1891 // conversion, this should be ok because all users should have been
1892 // selected already, so the type doesn't matter for them.
1893 Register DstReg = I.getOperand(0).getReg();
1894 const LLT DstTy = MRI.getType(DstReg);
1895 if (!DstTy.isPointer())
1896 return false;
1897 MRI.setType(DstReg, LLT::scalar(64));
1898 return true;
1899 }
1900 case AArch64::G_DUP: {
1901 // Convert the type from p0 to s64 to help selection.
1902 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
1903 if (!DstTy.getElementType().isPointer())
1904 return false;
1905 auto NewSrc = MIB.buildCopy(LLT::scalar(64), I.getOperand(1).getReg());
1906 MRI.setType(I.getOperand(0).getReg(),
1907 DstTy.changeElementType(LLT::scalar(64)));
1908 MRI.setRegClass(NewSrc.getReg(0), &AArch64::GPR64RegClass);
1909 I.getOperand(1).setReg(NewSrc.getReg(0));
1910 return true;
1911 }
1912 case TargetOpcode::G_UITOFP:
1913 case TargetOpcode::G_SITOFP: {
1914 // If both source and destination regbanks are FPR, then convert the opcode
1915 // to G_SITOF so that the importer can select it to an fpr variant.
1916 // Otherwise, it ends up matching an fpr/gpr variant and adding a cross-bank
1917 // copy.
1918 Register SrcReg = I.getOperand(1).getReg();
1919 LLT SrcTy = MRI.getType(SrcReg);
1920 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
1921 if (SrcTy.isVector() || SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1922 return false;
1923
1924 if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::FPRRegBankID) {
1925 if (I.getOpcode() == TargetOpcode::G_SITOFP)
1926 I.setDesc(TII.get(AArch64::G_SITOF));
1927 else
1928 I.setDesc(TII.get(AArch64::G_UITOF));
1929 return true;
1930 }
1931 return false;
1932 }
1933 default:
1934 return false;
1935 }
1936 }
1937
1938 /// This lowering tries to look for G_PTR_ADD instructions and then converts
1939 /// them to a standard G_ADD with a COPY on the source.
1940 ///
1941 /// The motivation behind this is to expose the add semantics to the imported
1942 /// tablegen patterns. We shouldn't need to check for uses being loads/stores,
1943 /// because the selector works bottom up, uses before defs. By the time we
1944 /// end up trying to select a G_PTR_ADD, we should have already attempted to
1945 /// fold this into addressing modes and were therefore unsuccessful.
convertPtrAddToAdd(MachineInstr & I,MachineRegisterInfo & MRI)1946 bool AArch64InstructionSelector::convertPtrAddToAdd(
1947 MachineInstr &I, MachineRegisterInfo &MRI) {
1948 assert(I.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
1949 Register DstReg = I.getOperand(0).getReg();
1950 Register AddOp1Reg = I.getOperand(1).getReg();
1951 const LLT PtrTy = MRI.getType(DstReg);
1952 if (PtrTy.getAddressSpace() != 0)
1953 return false;
1954
1955 const LLT CastPtrTy = PtrTy.isVector() ? LLT::vector(2, 64) : LLT::scalar(64);
1956 auto PtrToInt = MIB.buildPtrToInt(CastPtrTy, AddOp1Reg);
1957 // Set regbanks on the registers.
1958 if (PtrTy.isVector())
1959 MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::FPRRegBankID));
1960 else
1961 MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
1962
1963 // Now turn the %dst(p0) = G_PTR_ADD %base, off into:
1964 // %dst(intty) = G_ADD %intbase, off
1965 I.setDesc(TII.get(TargetOpcode::G_ADD));
1966 MRI.setType(DstReg, CastPtrTy);
1967 I.getOperand(1).setReg(PtrToInt.getReg(0));
1968 if (!select(*PtrToInt)) {
1969 LLVM_DEBUG(dbgs() << "Failed to select G_PTRTOINT in convertPtrAddToAdd");
1970 return false;
1971 }
1972
1973 // Also take the opportunity here to try to do some optimization.
1974 // Try to convert this into a G_SUB if the offset is a 0-x negate idiom.
1975 Register NegatedReg;
1976 if (!mi_match(I.getOperand(2).getReg(), MRI, m_Neg(m_Reg(NegatedReg))))
1977 return true;
1978 I.getOperand(2).setReg(NegatedReg);
1979 I.setDesc(TII.get(TargetOpcode::G_SUB));
1980 return true;
1981 }
1982
earlySelectSHL(MachineInstr & I,MachineRegisterInfo & MRI)1983 bool AArch64InstructionSelector::earlySelectSHL(MachineInstr &I,
1984 MachineRegisterInfo &MRI) {
1985 // We try to match the immediate variant of LSL, which is actually an alias
1986 // for a special case of UBFM. Otherwise, we fall back to the imported
1987 // selector which will match the register variant.
1988 assert(I.getOpcode() == TargetOpcode::G_SHL && "unexpected op");
1989 const auto &MO = I.getOperand(2);
1990 auto VRegAndVal = getConstantVRegVal(MO.getReg(), MRI);
1991 if (!VRegAndVal)
1992 return false;
1993
1994 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
1995 if (DstTy.isVector())
1996 return false;
1997 bool Is64Bit = DstTy.getSizeInBits() == 64;
1998 auto Imm1Fn = Is64Bit ? selectShiftA_64(MO) : selectShiftA_32(MO);
1999 auto Imm2Fn = Is64Bit ? selectShiftB_64(MO) : selectShiftB_32(MO);
2000
2001 if (!Imm1Fn || !Imm2Fn)
2002 return false;
2003
2004 auto NewI =
2005 MIB.buildInstr(Is64Bit ? AArch64::UBFMXri : AArch64::UBFMWri,
2006 {I.getOperand(0).getReg()}, {I.getOperand(1).getReg()});
2007
2008 for (auto &RenderFn : *Imm1Fn)
2009 RenderFn(NewI);
2010 for (auto &RenderFn : *Imm2Fn)
2011 RenderFn(NewI);
2012
2013 I.eraseFromParent();
2014 return constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI);
2015 }
2016
contractCrossBankCopyIntoStore(MachineInstr & I,MachineRegisterInfo & MRI)2017 bool AArch64InstructionSelector::contractCrossBankCopyIntoStore(
2018 MachineInstr &I, MachineRegisterInfo &MRI) {
2019 assert(I.getOpcode() == TargetOpcode::G_STORE && "Expected G_STORE");
2020 // If we're storing a scalar, it doesn't matter what register bank that
2021 // scalar is on. All that matters is the size.
2022 //
2023 // So, if we see something like this (with a 32-bit scalar as an example):
2024 //
2025 // %x:gpr(s32) = ... something ...
2026 // %y:fpr(s32) = COPY %x:gpr(s32)
2027 // G_STORE %y:fpr(s32)
2028 //
2029 // We can fix this up into something like this:
2030 //
2031 // G_STORE %x:gpr(s32)
2032 //
2033 // And then continue the selection process normally.
2034 Register DefDstReg = getSrcRegIgnoringCopies(I.getOperand(0).getReg(), MRI);
2035 if (!DefDstReg.isValid())
2036 return false;
2037 LLT DefDstTy = MRI.getType(DefDstReg);
2038 Register StoreSrcReg = I.getOperand(0).getReg();
2039 LLT StoreSrcTy = MRI.getType(StoreSrcReg);
2040
2041 // If we get something strange like a physical register, then we shouldn't
2042 // go any further.
2043 if (!DefDstTy.isValid())
2044 return false;
2045
2046 // Are the source and dst types the same size?
2047 if (DefDstTy.getSizeInBits() != StoreSrcTy.getSizeInBits())
2048 return false;
2049
2050 if (RBI.getRegBank(StoreSrcReg, MRI, TRI) ==
2051 RBI.getRegBank(DefDstReg, MRI, TRI))
2052 return false;
2053
2054 // We have a cross-bank copy, which is entering a store. Let's fold it.
2055 I.getOperand(0).setReg(DefDstReg);
2056 return true;
2057 }
2058
earlySelect(MachineInstr & I)2059 bool AArch64InstructionSelector::earlySelect(MachineInstr &I) {
2060 assert(I.getParent() && "Instruction should be in a basic block!");
2061 assert(I.getParent()->getParent() && "Instruction should be in a function!");
2062
2063 MachineBasicBlock &MBB = *I.getParent();
2064 MachineFunction &MF = *MBB.getParent();
2065 MachineRegisterInfo &MRI = MF.getRegInfo();
2066
2067 switch (I.getOpcode()) {
2068 case AArch64::G_DUP: {
2069 // Before selecting a DUP instruction, check if it is better selected as a
2070 // MOV or load from a constant pool.
2071 Register Src = I.getOperand(1).getReg();
2072 auto ValAndVReg = getConstantVRegValWithLookThrough(Src, MRI);
2073 if (!ValAndVReg)
2074 return false;
2075 LLVMContext &Ctx = MF.getFunction().getContext();
2076 Register Dst = I.getOperand(0).getReg();
2077 auto *CV = ConstantDataVector::getSplat(
2078 MRI.getType(Dst).getNumElements(),
2079 ConstantInt::get(Type::getIntNTy(Ctx, MRI.getType(Src).getSizeInBits()),
2080 ValAndVReg->Value));
2081 if (!emitConstantVector(Dst, CV, MIB, MRI))
2082 return false;
2083 I.eraseFromParent();
2084 return true;
2085 }
2086 case TargetOpcode::G_BR: {
2087 // If the branch jumps to the fallthrough block, don't bother emitting it.
2088 // Only do this for -O0 for a good code size improvement, because when
2089 // optimizations are enabled we want to leave this choice to
2090 // MachineBlockPlacement.
2091 bool EnableOpt = MF.getTarget().getOptLevel() != CodeGenOpt::None;
2092 if (EnableOpt || !MBB.isLayoutSuccessor(I.getOperand(0).getMBB()))
2093 return false;
2094 I.eraseFromParent();
2095 return true;
2096 }
2097 case TargetOpcode::G_SHL:
2098 return earlySelectSHL(I, MRI);
2099 case TargetOpcode::G_CONSTANT: {
2100 bool IsZero = false;
2101 if (I.getOperand(1).isCImm())
2102 IsZero = I.getOperand(1).getCImm()->getZExtValue() == 0;
2103 else if (I.getOperand(1).isImm())
2104 IsZero = I.getOperand(1).getImm() == 0;
2105
2106 if (!IsZero)
2107 return false;
2108
2109 Register DefReg = I.getOperand(0).getReg();
2110 LLT Ty = MRI.getType(DefReg);
2111 if (Ty.getSizeInBits() == 64) {
2112 I.getOperand(1).ChangeToRegister(AArch64::XZR, false);
2113 RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
2114 } else if (Ty.getSizeInBits() == 32) {
2115 I.getOperand(1).ChangeToRegister(AArch64::WZR, false);
2116 RBI.constrainGenericRegister(DefReg, AArch64::GPR32RegClass, MRI);
2117 } else
2118 return false;
2119
2120 I.setDesc(TII.get(TargetOpcode::COPY));
2121 return true;
2122 }
2123
2124 case TargetOpcode::G_ADD: {
2125 // Check if this is being fed by a G_ICMP on either side.
2126 //
2127 // (cmp pred, x, y) + z
2128 //
2129 // In the above case, when the cmp is true, we increment z by 1. So, we can
2130 // fold the add into the cset for the cmp by using cinc.
2131 //
2132 // FIXME: This would probably be a lot nicer in PostLegalizerLowering.
2133 Register X = I.getOperand(1).getReg();
2134
2135 // Only handle scalars. Scalar G_ICMP is only legal for s32, so bail out
2136 // early if we see it.
2137 LLT Ty = MRI.getType(X);
2138 if (Ty.isVector() || Ty.getSizeInBits() != 32)
2139 return false;
2140
2141 Register CmpReg = I.getOperand(2).getReg();
2142 MachineInstr *Cmp = getOpcodeDef(TargetOpcode::G_ICMP, CmpReg, MRI);
2143 if (!Cmp) {
2144 std::swap(X, CmpReg);
2145 Cmp = getOpcodeDef(TargetOpcode::G_ICMP, CmpReg, MRI);
2146 if (!Cmp)
2147 return false;
2148 }
2149 auto Pred =
2150 static_cast<CmpInst::Predicate>(Cmp->getOperand(1).getPredicate());
2151 emitIntegerCompare(Cmp->getOperand(2), Cmp->getOperand(3),
2152 Cmp->getOperand(1), MIB);
2153 emitCSetForICMP(I.getOperand(0).getReg(), Pred, MIB, X);
2154 I.eraseFromParent();
2155 return true;
2156 }
2157 default:
2158 return false;
2159 }
2160 }
2161
select(MachineInstr & I)2162 bool AArch64InstructionSelector::select(MachineInstr &I) {
2163 assert(I.getParent() && "Instruction should be in a basic block!");
2164 assert(I.getParent()->getParent() && "Instruction should be in a function!");
2165
2166 MachineBasicBlock &MBB = *I.getParent();
2167 MachineFunction &MF = *MBB.getParent();
2168 MachineRegisterInfo &MRI = MF.getRegInfo();
2169
2170 const AArch64Subtarget *Subtarget =
2171 &static_cast<const AArch64Subtarget &>(MF.getSubtarget());
2172 if (Subtarget->requiresStrictAlign()) {
2173 // We don't support this feature yet.
2174 LLVM_DEBUG(dbgs() << "AArch64 GISel does not support strict-align yet\n");
2175 return false;
2176 }
2177
2178 MIB.setInstrAndDebugLoc(I);
2179
2180 unsigned Opcode = I.getOpcode();
2181 // G_PHI requires same handling as PHI
2182 if (!I.isPreISelOpcode() || Opcode == TargetOpcode::G_PHI) {
2183 // Certain non-generic instructions also need some special handling.
2184
2185 if (Opcode == TargetOpcode::LOAD_STACK_GUARD)
2186 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2187
2188 if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) {
2189 const Register DefReg = I.getOperand(0).getReg();
2190 const LLT DefTy = MRI.getType(DefReg);
2191
2192 const RegClassOrRegBank &RegClassOrBank =
2193 MRI.getRegClassOrRegBank(DefReg);
2194
2195 const TargetRegisterClass *DefRC
2196 = RegClassOrBank.dyn_cast<const TargetRegisterClass *>();
2197 if (!DefRC) {
2198 if (!DefTy.isValid()) {
2199 LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n");
2200 return false;
2201 }
2202 const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>();
2203 DefRC = getRegClassForTypeOnBank(DefTy, RB, RBI);
2204 if (!DefRC) {
2205 LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n");
2206 return false;
2207 }
2208 }
2209
2210 I.setDesc(TII.get(TargetOpcode::PHI));
2211
2212 return RBI.constrainGenericRegister(DefReg, *DefRC, MRI);
2213 }
2214
2215 if (I.isCopy())
2216 return selectCopy(I, TII, MRI, TRI, RBI);
2217
2218 return true;
2219 }
2220
2221
2222 if (I.getNumOperands() != I.getNumExplicitOperands()) {
2223 LLVM_DEBUG(
2224 dbgs() << "Generic instruction has unexpected implicit operands\n");
2225 return false;
2226 }
2227
2228 // Try to do some lowering before we start instruction selecting. These
2229 // lowerings are purely transformations on the input G_MIR and so selection
2230 // must continue after any modification of the instruction.
2231 if (preISelLower(I)) {
2232 Opcode = I.getOpcode(); // The opcode may have been modified, refresh it.
2233 }
2234
2235 // There may be patterns where the importer can't deal with them optimally,
2236 // but does select it to a suboptimal sequence so our custom C++ selection
2237 // code later never has a chance to work on it. Therefore, we have an early
2238 // selection attempt here to give priority to certain selection routines
2239 // over the imported ones.
2240 if (earlySelect(I))
2241 return true;
2242
2243 if (selectImpl(I, *CoverageInfo))
2244 return true;
2245
2246 LLT Ty =
2247 I.getOperand(0).isReg() ? MRI.getType(I.getOperand(0).getReg()) : LLT{};
2248
2249 switch (Opcode) {
2250 case TargetOpcode::G_SBFX:
2251 case TargetOpcode::G_UBFX: {
2252 static const unsigned OpcTable[2][2] = {
2253 {AArch64::UBFMWri, AArch64::UBFMXri},
2254 {AArch64::SBFMWri, AArch64::SBFMXri}};
2255 bool IsSigned = Opcode == TargetOpcode::G_SBFX;
2256 unsigned Size = Ty.getSizeInBits();
2257 unsigned Opc = OpcTable[IsSigned][Size == 64];
2258 auto Cst1 =
2259 getConstantVRegValWithLookThrough(I.getOperand(2).getReg(), MRI);
2260 assert(Cst1 && "Should have gotten a constant for src 1?");
2261 auto Cst2 =
2262 getConstantVRegValWithLookThrough(I.getOperand(3).getReg(), MRI);
2263 assert(Cst2 && "Should have gotten a constant for src 2?");
2264 auto LSB = Cst1->Value.getZExtValue();
2265 auto Width = Cst2->Value.getZExtValue();
2266 auto BitfieldInst =
2267 MIB.buildInstr(Opc, {I.getOperand(0)}, {I.getOperand(1)})
2268 .addImm(LSB)
2269 .addImm(LSB + Width - 1);
2270 I.eraseFromParent();
2271 return constrainSelectedInstRegOperands(*BitfieldInst, TII, TRI, RBI);
2272 }
2273 case TargetOpcode::G_BRCOND:
2274 return selectCompareBranch(I, MF, MRI);
2275
2276 case TargetOpcode::G_BRINDIRECT: {
2277 I.setDesc(TII.get(AArch64::BR));
2278 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2279 }
2280
2281 case TargetOpcode::G_BRJT:
2282 return selectBrJT(I, MRI);
2283
2284 case AArch64::G_ADD_LOW: {
2285 // This op may have been separated from it's ADRP companion by the localizer
2286 // or some other code motion pass. Given that many CPUs will try to
2287 // macro fuse these operations anyway, select this into a MOVaddr pseudo
2288 // which will later be expanded into an ADRP+ADD pair after scheduling.
2289 MachineInstr *BaseMI = MRI.getVRegDef(I.getOperand(1).getReg());
2290 if (BaseMI->getOpcode() != AArch64::ADRP) {
2291 I.setDesc(TII.get(AArch64::ADDXri));
2292 I.addOperand(MachineOperand::CreateImm(0));
2293 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2294 }
2295 assert(TM.getCodeModel() == CodeModel::Small &&
2296 "Expected small code model");
2297 auto Op1 = BaseMI->getOperand(1);
2298 auto Op2 = I.getOperand(2);
2299 auto MovAddr = MIB.buildInstr(AArch64::MOVaddr, {I.getOperand(0)}, {})
2300 .addGlobalAddress(Op1.getGlobal(), Op1.getOffset(),
2301 Op1.getTargetFlags())
2302 .addGlobalAddress(Op2.getGlobal(), Op2.getOffset(),
2303 Op2.getTargetFlags());
2304 I.eraseFromParent();
2305 return constrainSelectedInstRegOperands(*MovAddr, TII, TRI, RBI);
2306 }
2307
2308 case TargetOpcode::G_BSWAP: {
2309 // Handle vector types for G_BSWAP directly.
2310 Register DstReg = I.getOperand(0).getReg();
2311 LLT DstTy = MRI.getType(DstReg);
2312
2313 // We should only get vector types here; everything else is handled by the
2314 // importer right now.
2315 if (!DstTy.isVector() || DstTy.getSizeInBits() > 128) {
2316 LLVM_DEBUG(dbgs() << "Dst type for G_BSWAP currently unsupported.\n");
2317 return false;
2318 }
2319
2320 // Only handle 4 and 2 element vectors for now.
2321 // TODO: 16-bit elements.
2322 unsigned NumElts = DstTy.getNumElements();
2323 if (NumElts != 4 && NumElts != 2) {
2324 LLVM_DEBUG(dbgs() << "Unsupported number of elements for G_BSWAP.\n");
2325 return false;
2326 }
2327
2328 // Choose the correct opcode for the supported types. Right now, that's
2329 // v2s32, v4s32, and v2s64.
2330 unsigned Opc = 0;
2331 unsigned EltSize = DstTy.getElementType().getSizeInBits();
2332 if (EltSize == 32)
2333 Opc = (DstTy.getNumElements() == 2) ? AArch64::REV32v8i8
2334 : AArch64::REV32v16i8;
2335 else if (EltSize == 64)
2336 Opc = AArch64::REV64v16i8;
2337
2338 // We should always get something by the time we get here...
2339 assert(Opc != 0 && "Didn't get an opcode for G_BSWAP?");
2340
2341 I.setDesc(TII.get(Opc));
2342 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2343 }
2344
2345 case TargetOpcode::G_FCONSTANT:
2346 case TargetOpcode::G_CONSTANT: {
2347 const bool isFP = Opcode == TargetOpcode::G_FCONSTANT;
2348
2349 const LLT s8 = LLT::scalar(8);
2350 const LLT s16 = LLT::scalar(16);
2351 const LLT s32 = LLT::scalar(32);
2352 const LLT s64 = LLT::scalar(64);
2353 const LLT s128 = LLT::scalar(128);
2354 const LLT p0 = LLT::pointer(0, 64);
2355
2356 const Register DefReg = I.getOperand(0).getReg();
2357 const LLT DefTy = MRI.getType(DefReg);
2358 const unsigned DefSize = DefTy.getSizeInBits();
2359 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
2360
2361 // FIXME: Redundant check, but even less readable when factored out.
2362 if (isFP) {
2363 if (Ty != s32 && Ty != s64 && Ty != s128) {
2364 LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
2365 << " constant, expected: " << s32 << " or " << s64
2366 << " or " << s128 << '\n');
2367 return false;
2368 }
2369
2370 if (RB.getID() != AArch64::FPRRegBankID) {
2371 LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
2372 << " constant on bank: " << RB
2373 << ", expected: FPR\n");
2374 return false;
2375 }
2376
2377 // The case when we have 0.0 is covered by tablegen. Reject it here so we
2378 // can be sure tablegen works correctly and isn't rescued by this code.
2379 // 0.0 is not covered by tablegen for FP128. So we will handle this
2380 // scenario in the code here.
2381 if (DefSize != 128 && I.getOperand(1).getFPImm()->isExactlyValue(0.0))
2382 return false;
2383 } else {
2384 // s32 and s64 are covered by tablegen.
2385 if (Ty != p0 && Ty != s8 && Ty != s16) {
2386 LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
2387 << " constant, expected: " << s32 << ", " << s64
2388 << ", or " << p0 << '\n');
2389 return false;
2390 }
2391
2392 if (RB.getID() != AArch64::GPRRegBankID) {
2393 LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
2394 << " constant on bank: " << RB
2395 << ", expected: GPR\n");
2396 return false;
2397 }
2398 }
2399
2400 // We allow G_CONSTANT of types < 32b.
2401 const unsigned MovOpc =
2402 DefSize == 64 ? AArch64::MOVi64imm : AArch64::MOVi32imm;
2403
2404 if (isFP) {
2405 // Either emit a FMOV, or emit a copy to emit a normal mov.
2406 const TargetRegisterClass &GPRRC =
2407 DefSize == 32 ? AArch64::GPR32RegClass : AArch64::GPR64RegClass;
2408 const TargetRegisterClass &FPRRC =
2409 DefSize == 32 ? AArch64::FPR32RegClass
2410 : (DefSize == 64 ? AArch64::FPR64RegClass
2411 : AArch64::FPR128RegClass);
2412
2413 // For 64b values, emit a constant pool load instead.
2414 // For s32, use a cp load if we have optsize/minsize.
2415 if (DefSize == 64 || DefSize == 128 ||
2416 (DefSize == 32 && shouldOptForSize(&MF))) {
2417 auto *FPImm = I.getOperand(1).getFPImm();
2418 auto *LoadMI = emitLoadFromConstantPool(FPImm, MIB);
2419 if (!LoadMI) {
2420 LLVM_DEBUG(dbgs() << "Failed to load double constant pool entry\n");
2421 return false;
2422 }
2423 MIB.buildCopy({DefReg}, {LoadMI->getOperand(0).getReg()});
2424 I.eraseFromParent();
2425 return RBI.constrainGenericRegister(DefReg, FPRRC, MRI);
2426 }
2427
2428 // Nope. Emit a copy and use a normal mov instead.
2429 const Register DefGPRReg = MRI.createVirtualRegister(&GPRRC);
2430 MachineOperand &RegOp = I.getOperand(0);
2431 RegOp.setReg(DefGPRReg);
2432 MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
2433 MIB.buildCopy({DefReg}, {DefGPRReg});
2434
2435 if (!RBI.constrainGenericRegister(DefReg, FPRRC, MRI)) {
2436 LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n");
2437 return false;
2438 }
2439
2440 MachineOperand &ImmOp = I.getOperand(1);
2441 // FIXME: Is going through int64_t always correct?
2442 ImmOp.ChangeToImmediate(
2443 ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue());
2444 } else if (I.getOperand(1).isCImm()) {
2445 uint64_t Val = I.getOperand(1).getCImm()->getZExtValue();
2446 I.getOperand(1).ChangeToImmediate(Val);
2447 } else if (I.getOperand(1).isImm()) {
2448 uint64_t Val = I.getOperand(1).getImm();
2449 I.getOperand(1).ChangeToImmediate(Val);
2450 }
2451
2452 I.setDesc(TII.get(MovOpc));
2453 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2454 return true;
2455 }
2456 case TargetOpcode::G_EXTRACT: {
2457 Register DstReg = I.getOperand(0).getReg();
2458 Register SrcReg = I.getOperand(1).getReg();
2459 LLT SrcTy = MRI.getType(SrcReg);
2460 LLT DstTy = MRI.getType(DstReg);
2461 (void)DstTy;
2462 unsigned SrcSize = SrcTy.getSizeInBits();
2463
2464 if (SrcTy.getSizeInBits() > 64) {
2465 // This should be an extract of an s128, which is like a vector extract.
2466 if (SrcTy.getSizeInBits() != 128)
2467 return false;
2468 // Only support extracting 64 bits from an s128 at the moment.
2469 if (DstTy.getSizeInBits() != 64)
2470 return false;
2471
2472 unsigned Offset = I.getOperand(2).getImm();
2473 if (Offset % 64 != 0)
2474 return false;
2475
2476 // Check we have the right regbank always.
2477 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
2478 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
2479 assert(SrcRB.getID() == DstRB.getID() && "Wrong extract regbank!");
2480
2481 if (SrcRB.getID() == AArch64::GPRRegBankID) {
2482 MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {})
2483 .addUse(SrcReg, 0, Offset == 0 ? AArch64::sube64 : AArch64::subo64);
2484 I.eraseFromParent();
2485 return true;
2486 }
2487
2488 // Emit the same code as a vector extract.
2489 // Offset must be a multiple of 64.
2490 unsigned LaneIdx = Offset / 64;
2491 MachineInstr *Extract = emitExtractVectorElt(
2492 DstReg, DstRB, LLT::scalar(64), SrcReg, LaneIdx, MIB);
2493 if (!Extract)
2494 return false;
2495 I.eraseFromParent();
2496 return true;
2497 }
2498
2499 I.setDesc(TII.get(SrcSize == 64 ? AArch64::UBFMXri : AArch64::UBFMWri));
2500 MachineInstrBuilder(MF, I).addImm(I.getOperand(2).getImm() +
2501 Ty.getSizeInBits() - 1);
2502
2503 if (SrcSize < 64) {
2504 assert(SrcSize == 32 && DstTy.getSizeInBits() == 16 &&
2505 "unexpected G_EXTRACT types");
2506 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2507 }
2508
2509 DstReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
2510 MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
2511 MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
2512 .addReg(DstReg, 0, AArch64::sub_32);
2513 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
2514 AArch64::GPR32RegClass, MRI);
2515 I.getOperand(0).setReg(DstReg);
2516
2517 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2518 }
2519
2520 case TargetOpcode::G_INSERT: {
2521 LLT SrcTy = MRI.getType(I.getOperand(2).getReg());
2522 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2523 unsigned DstSize = DstTy.getSizeInBits();
2524 // Larger inserts are vectors, same-size ones should be something else by
2525 // now (split up or turned into COPYs).
2526 if (Ty.getSizeInBits() > 64 || SrcTy.getSizeInBits() > 32)
2527 return false;
2528
2529 I.setDesc(TII.get(DstSize == 64 ? AArch64::BFMXri : AArch64::BFMWri));
2530 unsigned LSB = I.getOperand(3).getImm();
2531 unsigned Width = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
2532 I.getOperand(3).setImm((DstSize - LSB) % DstSize);
2533 MachineInstrBuilder(MF, I).addImm(Width - 1);
2534
2535 if (DstSize < 64) {
2536 assert(DstSize == 32 && SrcTy.getSizeInBits() == 16 &&
2537 "unexpected G_INSERT types");
2538 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2539 }
2540
2541 Register SrcReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
2542 BuildMI(MBB, I.getIterator(), I.getDebugLoc(),
2543 TII.get(AArch64::SUBREG_TO_REG))
2544 .addDef(SrcReg)
2545 .addImm(0)
2546 .addUse(I.getOperand(2).getReg())
2547 .addImm(AArch64::sub_32);
2548 RBI.constrainGenericRegister(I.getOperand(2).getReg(),
2549 AArch64::GPR32RegClass, MRI);
2550 I.getOperand(2).setReg(SrcReg);
2551
2552 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2553 }
2554 case TargetOpcode::G_FRAME_INDEX: {
2555 // allocas and G_FRAME_INDEX are only supported in addrspace(0).
2556 if (Ty != LLT::pointer(0, 64)) {
2557 LLVM_DEBUG(dbgs() << "G_FRAME_INDEX pointer has type: " << Ty
2558 << ", expected: " << LLT::pointer(0, 64) << '\n');
2559 return false;
2560 }
2561 I.setDesc(TII.get(AArch64::ADDXri));
2562
2563 // MOs for a #0 shifted immediate.
2564 I.addOperand(MachineOperand::CreateImm(0));
2565 I.addOperand(MachineOperand::CreateImm(0));
2566
2567 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2568 }
2569
2570 case TargetOpcode::G_GLOBAL_VALUE: {
2571 auto GV = I.getOperand(1).getGlobal();
2572 if (GV->isThreadLocal())
2573 return selectTLSGlobalValue(I, MRI);
2574
2575 unsigned OpFlags = STI.ClassifyGlobalReference(GV, TM);
2576 if (OpFlags & AArch64II::MO_GOT) {
2577 I.setDesc(TII.get(AArch64::LOADgot));
2578 I.getOperand(1).setTargetFlags(OpFlags);
2579 } else if (TM.getCodeModel() == CodeModel::Large) {
2580 // Materialize the global using movz/movk instructions.
2581 materializeLargeCMVal(I, GV, OpFlags);
2582 I.eraseFromParent();
2583 return true;
2584 } else if (TM.getCodeModel() == CodeModel::Tiny) {
2585 I.setDesc(TII.get(AArch64::ADR));
2586 I.getOperand(1).setTargetFlags(OpFlags);
2587 } else {
2588 I.setDesc(TII.get(AArch64::MOVaddr));
2589 I.getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_PAGE);
2590 MachineInstrBuilder MIB(MF, I);
2591 MIB.addGlobalAddress(GV, I.getOperand(1).getOffset(),
2592 OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2593 }
2594 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2595 }
2596
2597 case TargetOpcode::G_ZEXTLOAD:
2598 case TargetOpcode::G_LOAD:
2599 case TargetOpcode::G_STORE: {
2600 bool IsZExtLoad = I.getOpcode() == TargetOpcode::G_ZEXTLOAD;
2601 LLT PtrTy = MRI.getType(I.getOperand(1).getReg());
2602
2603 if (PtrTy != LLT::pointer(0, 64)) {
2604 LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy
2605 << ", expected: " << LLT::pointer(0, 64) << '\n');
2606 return false;
2607 }
2608
2609 auto &MemOp = **I.memoperands_begin();
2610 uint64_t MemSizeInBytes = MemOp.getSize();
2611 unsigned MemSizeInBits = MemSizeInBytes * 8;
2612 AtomicOrdering Order = MemOp.getOrdering();
2613
2614 // Need special instructions for atomics that affect ordering.
2615 if (Order != AtomicOrdering::NotAtomic &&
2616 Order != AtomicOrdering::Unordered &&
2617 Order != AtomicOrdering::Monotonic)
2618 return false;
2619
2620 #ifndef NDEBUG
2621 const Register PtrReg = I.getOperand(1).getReg();
2622 const RegisterBank &PtrRB = *RBI.getRegBank(PtrReg, MRI, TRI);
2623 // Sanity-check the pointer register.
2624 assert(PtrRB.getID() == AArch64::GPRRegBankID &&
2625 "Load/Store pointer operand isn't a GPR");
2626 assert(MRI.getType(PtrReg).isPointer() &&
2627 "Load/Store pointer operand isn't a pointer");
2628 #endif
2629
2630 const Register ValReg = I.getOperand(0).getReg();
2631 const RegisterBank &RB = *RBI.getRegBank(ValReg, MRI, TRI);
2632
2633 // Helper lambda for partially selecting I. Either returns the original
2634 // instruction with an updated opcode, or a new instruction.
2635 auto SelectLoadStoreAddressingMode = [&]() -> MachineInstr * {
2636 bool IsStore = I.getOpcode() == TargetOpcode::G_STORE;
2637 const unsigned NewOpc =
2638 selectLoadStoreUIOp(I.getOpcode(), RB.getID(), MemSizeInBits);
2639 if (NewOpc == I.getOpcode())
2640 return nullptr;
2641 // Check if we can fold anything into the addressing mode.
2642 auto AddrModeFns =
2643 selectAddrModeIndexed(I.getOperand(1), MemSizeInBytes);
2644 if (!AddrModeFns) {
2645 // Can't fold anything. Use the original instruction.
2646 I.setDesc(TII.get(NewOpc));
2647 I.addOperand(MachineOperand::CreateImm(0));
2648 return &I;
2649 }
2650
2651 // Folded something. Create a new instruction and return it.
2652 auto NewInst = MIB.buildInstr(NewOpc, {}, {}, I.getFlags());
2653 IsStore ? NewInst.addUse(ValReg) : NewInst.addDef(ValReg);
2654 NewInst.cloneMemRefs(I);
2655 for (auto &Fn : *AddrModeFns)
2656 Fn(NewInst);
2657 I.eraseFromParent();
2658 return &*NewInst;
2659 };
2660
2661 MachineInstr *LoadStore = SelectLoadStoreAddressingMode();
2662 if (!LoadStore)
2663 return false;
2664
2665 // If we're storing a 0, use WZR/XZR.
2666 if (Opcode == TargetOpcode::G_STORE) {
2667 auto CVal = getConstantVRegValWithLookThrough(
2668 LoadStore->getOperand(0).getReg(), MRI, /*LookThroughInstrs = */ true,
2669 /*HandleFConstants = */ false);
2670 if (CVal && CVal->Value == 0) {
2671 switch (LoadStore->getOpcode()) {
2672 case AArch64::STRWui:
2673 case AArch64::STRHHui:
2674 case AArch64::STRBBui:
2675 LoadStore->getOperand(0).setReg(AArch64::WZR);
2676 break;
2677 case AArch64::STRXui:
2678 LoadStore->getOperand(0).setReg(AArch64::XZR);
2679 break;
2680 }
2681 }
2682 }
2683
2684 if (IsZExtLoad) {
2685 // The zextload from a smaller type to i32 should be handled by the
2686 // importer.
2687 if (MRI.getType(LoadStore->getOperand(0).getReg()).getSizeInBits() != 64)
2688 return false;
2689 // If we have a ZEXTLOAD then change the load's type to be a narrower reg
2690 // and zero_extend with SUBREG_TO_REG.
2691 Register LdReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
2692 Register DstReg = LoadStore->getOperand(0).getReg();
2693 LoadStore->getOperand(0).setReg(LdReg);
2694
2695 MIB.setInsertPt(MIB.getMBB(), std::next(LoadStore->getIterator()));
2696 MIB.buildInstr(AArch64::SUBREG_TO_REG, {DstReg}, {})
2697 .addImm(0)
2698 .addUse(LdReg)
2699 .addImm(AArch64::sub_32);
2700 constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI);
2701 return RBI.constrainGenericRegister(DstReg, AArch64::GPR64allRegClass,
2702 MRI);
2703 }
2704 return constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI);
2705 }
2706
2707 case TargetOpcode::G_SMULH:
2708 case TargetOpcode::G_UMULH: {
2709 // Reject the various things we don't support yet.
2710 if (unsupportedBinOp(I, RBI, MRI, TRI))
2711 return false;
2712
2713 const Register DefReg = I.getOperand(0).getReg();
2714 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
2715
2716 if (RB.getID() != AArch64::GPRRegBankID) {
2717 LLVM_DEBUG(dbgs() << "G_[SU]MULH on bank: " << RB << ", expected: GPR\n");
2718 return false;
2719 }
2720
2721 if (Ty != LLT::scalar(64)) {
2722 LLVM_DEBUG(dbgs() << "G_[SU]MULH has type: " << Ty
2723 << ", expected: " << LLT::scalar(64) << '\n');
2724 return false;
2725 }
2726
2727 unsigned NewOpc = I.getOpcode() == TargetOpcode::G_SMULH ? AArch64::SMULHrr
2728 : AArch64::UMULHrr;
2729 I.setDesc(TII.get(NewOpc));
2730
2731 // Now that we selected an opcode, we need to constrain the register
2732 // operands to use appropriate classes.
2733 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2734 }
2735 case TargetOpcode::G_LSHR:
2736 case TargetOpcode::G_ASHR:
2737 if (MRI.getType(I.getOperand(0).getReg()).isVector())
2738 return selectVectorAshrLshr(I, MRI);
2739 LLVM_FALLTHROUGH;
2740 case TargetOpcode::G_SHL:
2741 if (Opcode == TargetOpcode::G_SHL &&
2742 MRI.getType(I.getOperand(0).getReg()).isVector())
2743 return selectVectorSHL(I, MRI);
2744 LLVM_FALLTHROUGH;
2745 case TargetOpcode::G_FADD:
2746 case TargetOpcode::G_FSUB:
2747 case TargetOpcode::G_FMUL:
2748 case TargetOpcode::G_FDIV:
2749 case TargetOpcode::G_OR: {
2750 // Reject the various things we don't support yet.
2751 if (unsupportedBinOp(I, RBI, MRI, TRI))
2752 return false;
2753
2754 const unsigned OpSize = Ty.getSizeInBits();
2755
2756 const Register DefReg = I.getOperand(0).getReg();
2757 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
2758
2759 const unsigned NewOpc = selectBinaryOp(I.getOpcode(), RB.getID(), OpSize);
2760 if (NewOpc == I.getOpcode())
2761 return false;
2762
2763 I.setDesc(TII.get(NewOpc));
2764 // FIXME: Should the type be always reset in setDesc?
2765
2766 // Now that we selected an opcode, we need to constrain the register
2767 // operands to use appropriate classes.
2768 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2769 }
2770
2771 case TargetOpcode::G_PTR_ADD: {
2772 emitADD(I.getOperand(0).getReg(), I.getOperand(1), I.getOperand(2), MIB);
2773 I.eraseFromParent();
2774 return true;
2775 }
2776 case TargetOpcode::G_SADDO:
2777 case TargetOpcode::G_UADDO:
2778 case TargetOpcode::G_SSUBO:
2779 case TargetOpcode::G_USUBO: {
2780 // Emit the operation and get the correct condition code.
2781 auto OpAndCC = emitOverflowOp(Opcode, I.getOperand(0).getReg(),
2782 I.getOperand(2), I.getOperand(3), MIB);
2783
2784 // Now, put the overflow result in the register given by the first operand
2785 // to the overflow op. CSINC increments the result when the predicate is
2786 // false, so to get the increment when it's true, we need to use the
2787 // inverse. In this case, we want to increment when carry is set.
2788 Register ZReg = AArch64::WZR;
2789 auto CsetMI = MIB.buildInstr(AArch64::CSINCWr, {I.getOperand(1).getReg()},
2790 {ZReg, ZReg})
2791 .addImm(getInvertedCondCode(OpAndCC.second));
2792 constrainSelectedInstRegOperands(*CsetMI, TII, TRI, RBI);
2793 I.eraseFromParent();
2794 return true;
2795 }
2796
2797 case TargetOpcode::G_PTRMASK: {
2798 Register MaskReg = I.getOperand(2).getReg();
2799 Optional<int64_t> MaskVal = getConstantVRegSExtVal(MaskReg, MRI);
2800 // TODO: Implement arbitrary cases
2801 if (!MaskVal || !isShiftedMask_64(*MaskVal))
2802 return false;
2803
2804 uint64_t Mask = *MaskVal;
2805 I.setDesc(TII.get(AArch64::ANDXri));
2806 I.getOperand(2).ChangeToImmediate(
2807 AArch64_AM::encodeLogicalImmediate(Mask, 64));
2808
2809 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2810 }
2811 case TargetOpcode::G_PTRTOINT:
2812 case TargetOpcode::G_TRUNC: {
2813 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2814 const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
2815
2816 const Register DstReg = I.getOperand(0).getReg();
2817 const Register SrcReg = I.getOperand(1).getReg();
2818
2819 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
2820 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
2821
2822 if (DstRB.getID() != SrcRB.getID()) {
2823 LLVM_DEBUG(
2824 dbgs() << "G_TRUNC/G_PTRTOINT input/output on different banks\n");
2825 return false;
2826 }
2827
2828 if (DstRB.getID() == AArch64::GPRRegBankID) {
2829 const TargetRegisterClass *DstRC =
2830 getRegClassForTypeOnBank(DstTy, DstRB, RBI);
2831 if (!DstRC)
2832 return false;
2833
2834 const TargetRegisterClass *SrcRC =
2835 getRegClassForTypeOnBank(SrcTy, SrcRB, RBI);
2836 if (!SrcRC)
2837 return false;
2838
2839 if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
2840 !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
2841 LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC/G_PTRTOINT\n");
2842 return false;
2843 }
2844
2845 if (DstRC == SrcRC) {
2846 // Nothing to be done
2847 } else if (Opcode == TargetOpcode::G_TRUNC && DstTy == LLT::scalar(32) &&
2848 SrcTy == LLT::scalar(64)) {
2849 llvm_unreachable("TableGen can import this case");
2850 return false;
2851 } else if (DstRC == &AArch64::GPR32RegClass &&
2852 SrcRC == &AArch64::GPR64RegClass) {
2853 I.getOperand(1).setSubReg(AArch64::sub_32);
2854 } else {
2855 LLVM_DEBUG(
2856 dbgs() << "Unhandled mismatched classes in G_TRUNC/G_PTRTOINT\n");
2857 return false;
2858 }
2859
2860 I.setDesc(TII.get(TargetOpcode::COPY));
2861 return true;
2862 } else if (DstRB.getID() == AArch64::FPRRegBankID) {
2863 if (DstTy == LLT::vector(4, 16) && SrcTy == LLT::vector(4, 32)) {
2864 I.setDesc(TII.get(AArch64::XTNv4i16));
2865 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2866 return true;
2867 }
2868
2869 if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128) {
2870 MachineInstr *Extract = emitExtractVectorElt(
2871 DstReg, DstRB, LLT::scalar(DstTy.getSizeInBits()), SrcReg, 0, MIB);
2872 if (!Extract)
2873 return false;
2874 I.eraseFromParent();
2875 return true;
2876 }
2877
2878 // We might have a vector G_PTRTOINT, in which case just emit a COPY.
2879 if (Opcode == TargetOpcode::G_PTRTOINT) {
2880 assert(DstTy.isVector() && "Expected an FPR ptrtoint to be a vector");
2881 I.setDesc(TII.get(TargetOpcode::COPY));
2882 return true;
2883 }
2884 }
2885
2886 return false;
2887 }
2888
2889 case TargetOpcode::G_ANYEXT: {
2890 const Register DstReg = I.getOperand(0).getReg();
2891 const Register SrcReg = I.getOperand(1).getReg();
2892
2893 const RegisterBank &RBDst = *RBI.getRegBank(DstReg, MRI, TRI);
2894 if (RBDst.getID() != AArch64::GPRRegBankID) {
2895 LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBDst
2896 << ", expected: GPR\n");
2897 return false;
2898 }
2899
2900 const RegisterBank &RBSrc = *RBI.getRegBank(SrcReg, MRI, TRI);
2901 if (RBSrc.getID() != AArch64::GPRRegBankID) {
2902 LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBSrc
2903 << ", expected: GPR\n");
2904 return false;
2905 }
2906
2907 const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
2908
2909 if (DstSize == 0) {
2910 LLVM_DEBUG(dbgs() << "G_ANYEXT operand has no size, not a gvreg?\n");
2911 return false;
2912 }
2913
2914 if (DstSize != 64 && DstSize > 32) {
2915 LLVM_DEBUG(dbgs() << "G_ANYEXT to size: " << DstSize
2916 << ", expected: 32 or 64\n");
2917 return false;
2918 }
2919 // At this point G_ANYEXT is just like a plain COPY, but we need
2920 // to explicitly form the 64-bit value if any.
2921 if (DstSize > 32) {
2922 Register ExtSrc = MRI.createVirtualRegister(&AArch64::GPR64allRegClass);
2923 BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::SUBREG_TO_REG))
2924 .addDef(ExtSrc)
2925 .addImm(0)
2926 .addUse(SrcReg)
2927 .addImm(AArch64::sub_32);
2928 I.getOperand(1).setReg(ExtSrc);
2929 }
2930 return selectCopy(I, TII, MRI, TRI, RBI);
2931 }
2932
2933 case TargetOpcode::G_ZEXT:
2934 case TargetOpcode::G_SEXT_INREG:
2935 case TargetOpcode::G_SEXT: {
2936 unsigned Opcode = I.getOpcode();
2937 const bool IsSigned = Opcode != TargetOpcode::G_ZEXT;
2938 const Register DefReg = I.getOperand(0).getReg();
2939 Register SrcReg = I.getOperand(1).getReg();
2940 const LLT DstTy = MRI.getType(DefReg);
2941 const LLT SrcTy = MRI.getType(SrcReg);
2942 unsigned DstSize = DstTy.getSizeInBits();
2943 unsigned SrcSize = SrcTy.getSizeInBits();
2944
2945 // SEXT_INREG has the same src reg size as dst, the size of the value to be
2946 // extended is encoded in the imm.
2947 if (Opcode == TargetOpcode::G_SEXT_INREG)
2948 SrcSize = I.getOperand(2).getImm();
2949
2950 if (DstTy.isVector())
2951 return false; // Should be handled by imported patterns.
2952
2953 assert((*RBI.getRegBank(DefReg, MRI, TRI)).getID() ==
2954 AArch64::GPRRegBankID &&
2955 "Unexpected ext regbank");
2956
2957 MachineInstr *ExtI;
2958
2959 // First check if we're extending the result of a load which has a dest type
2960 // smaller than 32 bits, then this zext is redundant. GPR32 is the smallest
2961 // GPR register on AArch64 and all loads which are smaller automatically
2962 // zero-extend the upper bits. E.g.
2963 // %v(s8) = G_LOAD %p, :: (load 1)
2964 // %v2(s32) = G_ZEXT %v(s8)
2965 if (!IsSigned) {
2966 auto *LoadMI = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI);
2967 bool IsGPR =
2968 RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::GPRRegBankID;
2969 if (LoadMI && IsGPR) {
2970 const MachineMemOperand *MemOp = *LoadMI->memoperands_begin();
2971 unsigned BytesLoaded = MemOp->getSize();
2972 if (BytesLoaded < 4 && SrcTy.getSizeInBytes() == BytesLoaded)
2973 return selectCopy(I, TII, MRI, TRI, RBI);
2974 }
2975
2976 // For the 32-bit -> 64-bit case, we can emit a mov (ORRWrs)
2977 // + SUBREG_TO_REG.
2978 //
2979 // If we are zero extending from 32 bits to 64 bits, it's possible that
2980 // the instruction implicitly does the zero extend for us. In that case,
2981 // we only need the SUBREG_TO_REG.
2982 if (IsGPR && SrcSize == 32 && DstSize == 64) {
2983 // Unlike with the G_LOAD case, we don't want to look through copies
2984 // here. (See isDef32.)
2985 MachineInstr *Def = MRI.getVRegDef(SrcReg);
2986 Register SubregToRegSrc = SrcReg;
2987
2988 // Does the instruction implicitly zero extend?
2989 if (!Def || !isDef32(*Def)) {
2990 // No. Zero out using an OR.
2991 Register OrDst = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
2992 const Register ZReg = AArch64::WZR;
2993 MIB.buildInstr(AArch64::ORRWrs, {OrDst}, {ZReg, SrcReg}).addImm(0);
2994 SubregToRegSrc = OrDst;
2995 }
2996
2997 MIB.buildInstr(AArch64::SUBREG_TO_REG, {DefReg}, {})
2998 .addImm(0)
2999 .addUse(SubregToRegSrc)
3000 .addImm(AArch64::sub_32);
3001
3002 if (!RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass,
3003 MRI)) {
3004 LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT destination\n");
3005 return false;
3006 }
3007
3008 if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass,
3009 MRI)) {
3010 LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT source\n");
3011 return false;
3012 }
3013
3014 I.eraseFromParent();
3015 return true;
3016 }
3017 }
3018
3019 if (DstSize == 64) {
3020 if (Opcode != TargetOpcode::G_SEXT_INREG) {
3021 // FIXME: Can we avoid manually doing this?
3022 if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass,
3023 MRI)) {
3024 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(Opcode)
3025 << " operand\n");
3026 return false;
3027 }
3028 SrcReg = MIB.buildInstr(AArch64::SUBREG_TO_REG,
3029 {&AArch64::GPR64RegClass}, {})
3030 .addImm(0)
3031 .addUse(SrcReg)
3032 .addImm(AArch64::sub_32)
3033 .getReg(0);
3034 }
3035
3036 ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMXri : AArch64::UBFMXri,
3037 {DefReg}, {SrcReg})
3038 .addImm(0)
3039 .addImm(SrcSize - 1);
3040 } else if (DstSize <= 32) {
3041 ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMWri : AArch64::UBFMWri,
3042 {DefReg}, {SrcReg})
3043 .addImm(0)
3044 .addImm(SrcSize - 1);
3045 } else {
3046 return false;
3047 }
3048
3049 constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
3050 I.eraseFromParent();
3051 return true;
3052 }
3053
3054 case TargetOpcode::G_SITOFP:
3055 case TargetOpcode::G_UITOFP:
3056 case TargetOpcode::G_FPTOSI:
3057 case TargetOpcode::G_FPTOUI: {
3058 const LLT DstTy = MRI.getType(I.getOperand(0).getReg()),
3059 SrcTy = MRI.getType(I.getOperand(1).getReg());
3060 const unsigned NewOpc = selectFPConvOpc(Opcode, DstTy, SrcTy);
3061 if (NewOpc == Opcode)
3062 return false;
3063
3064 I.setDesc(TII.get(NewOpc));
3065 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3066
3067 return true;
3068 }
3069
3070 case TargetOpcode::G_FREEZE:
3071 return selectCopy(I, TII, MRI, TRI, RBI);
3072
3073 case TargetOpcode::G_INTTOPTR:
3074 // The importer is currently unable to import pointer types since they
3075 // didn't exist in SelectionDAG.
3076 return selectCopy(I, TII, MRI, TRI, RBI);
3077
3078 case TargetOpcode::G_BITCAST:
3079 // Imported SelectionDAG rules can handle every bitcast except those that
3080 // bitcast from a type to the same type. Ideally, these shouldn't occur
3081 // but we might not run an optimizer that deletes them. The other exception
3082 // is bitcasts involving pointer types, as SelectionDAG has no knowledge
3083 // of them.
3084 return selectCopy(I, TII, MRI, TRI, RBI);
3085
3086 case TargetOpcode::G_SELECT: {
3087 if (MRI.getType(I.getOperand(1).getReg()) != LLT::scalar(1)) {
3088 LLVM_DEBUG(dbgs() << "G_SELECT cond has type: " << Ty
3089 << ", expected: " << LLT::scalar(1) << '\n');
3090 return false;
3091 }
3092
3093 const Register CondReg = I.getOperand(1).getReg();
3094 const Register TReg = I.getOperand(2).getReg();
3095 const Register FReg = I.getOperand(3).getReg();
3096
3097 if (tryOptSelect(I))
3098 return true;
3099
3100 // Make sure to use an unused vreg instead of wzr, so that the peephole
3101 // optimizations will be able to optimize these.
3102 Register DeadVReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
3103 auto TstMI = MIB.buildInstr(AArch64::ANDSWri, {DeadVReg}, {CondReg})
3104 .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
3105 constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
3106 if (!emitSelect(I.getOperand(0).getReg(), TReg, FReg, AArch64CC::NE, MIB))
3107 return false;
3108 I.eraseFromParent();
3109 return true;
3110 }
3111 case TargetOpcode::G_ICMP: {
3112 if (Ty.isVector())
3113 return selectVectorICmp(I, MRI);
3114
3115 if (Ty != LLT::scalar(32)) {
3116 LLVM_DEBUG(dbgs() << "G_ICMP result has type: " << Ty
3117 << ", expected: " << LLT::scalar(32) << '\n');
3118 return false;
3119 }
3120
3121 auto Pred = static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate());
3122 emitIntegerCompare(I.getOperand(2), I.getOperand(3), I.getOperand(1),
3123 MIB);
3124 emitCSetForICMP(I.getOperand(0).getReg(), Pred, MIB);
3125 I.eraseFromParent();
3126 return true;
3127 }
3128
3129 case TargetOpcode::G_FCMP: {
3130 CmpInst::Predicate Pred =
3131 static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate());
3132 if (!emitFPCompare(I.getOperand(2).getReg(), I.getOperand(3).getReg(), MIB,
3133 Pred) ||
3134 !emitCSetForFCmp(I.getOperand(0).getReg(), Pred, MIB))
3135 return false;
3136 I.eraseFromParent();
3137 return true;
3138 }
3139 case TargetOpcode::G_VASTART:
3140 return STI.isTargetDarwin() ? selectVaStartDarwin(I, MF, MRI)
3141 : selectVaStartAAPCS(I, MF, MRI);
3142 case TargetOpcode::G_INTRINSIC:
3143 return selectIntrinsic(I, MRI);
3144 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
3145 return selectIntrinsicWithSideEffects(I, MRI);
3146 case TargetOpcode::G_IMPLICIT_DEF: {
3147 I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF));
3148 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3149 const Register DstReg = I.getOperand(0).getReg();
3150 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
3151 const TargetRegisterClass *DstRC =
3152 getRegClassForTypeOnBank(DstTy, DstRB, RBI);
3153 RBI.constrainGenericRegister(DstReg, *DstRC, MRI);
3154 return true;
3155 }
3156 case TargetOpcode::G_BLOCK_ADDR: {
3157 if (TM.getCodeModel() == CodeModel::Large) {
3158 materializeLargeCMVal(I, I.getOperand(1).getBlockAddress(), 0);
3159 I.eraseFromParent();
3160 return true;
3161 } else {
3162 I.setDesc(TII.get(AArch64::MOVaddrBA));
3163 auto MovMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::MOVaddrBA),
3164 I.getOperand(0).getReg())
3165 .addBlockAddress(I.getOperand(1).getBlockAddress(),
3166 /* Offset */ 0, AArch64II::MO_PAGE)
3167 .addBlockAddress(
3168 I.getOperand(1).getBlockAddress(), /* Offset */ 0,
3169 AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
3170 I.eraseFromParent();
3171 return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
3172 }
3173 }
3174 case AArch64::G_DUP: {
3175 // When the scalar of G_DUP is an s8/s16 gpr, they can't be selected by
3176 // imported patterns. Do it manually here. Avoiding generating s16 gpr is
3177 // difficult because at RBS we may end up pessimizing the fpr case if we
3178 // decided to add an anyextend to fix this. Manual selection is the most
3179 // robust solution for now.
3180 if (RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
3181 AArch64::GPRRegBankID)
3182 return false; // We expect the fpr regbank case to be imported.
3183 LLT VecTy = MRI.getType(I.getOperand(0).getReg());
3184 if (VecTy == LLT::vector(8, 8))
3185 I.setDesc(TII.get(AArch64::DUPv8i8gpr));
3186 else if (VecTy == LLT::vector(16, 8))
3187 I.setDesc(TII.get(AArch64::DUPv16i8gpr));
3188 else if (VecTy == LLT::vector(4, 16))
3189 I.setDesc(TII.get(AArch64::DUPv4i16gpr));
3190 else if (VecTy == LLT::vector(8, 16))
3191 I.setDesc(TII.get(AArch64::DUPv8i16gpr));
3192 else
3193 return false;
3194 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3195 }
3196 case TargetOpcode::G_INTRINSIC_TRUNC:
3197 return selectIntrinsicTrunc(I, MRI);
3198 case TargetOpcode::G_INTRINSIC_ROUND:
3199 return selectIntrinsicRound(I, MRI);
3200 case TargetOpcode::G_BUILD_VECTOR:
3201 return selectBuildVector(I, MRI);
3202 case TargetOpcode::G_MERGE_VALUES:
3203 return selectMergeValues(I, MRI);
3204 case TargetOpcode::G_UNMERGE_VALUES:
3205 return selectUnmergeValues(I, MRI);
3206 case TargetOpcode::G_SHUFFLE_VECTOR:
3207 return selectShuffleVector(I, MRI);
3208 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3209 return selectExtractElt(I, MRI);
3210 case TargetOpcode::G_INSERT_VECTOR_ELT:
3211 return selectInsertElt(I, MRI);
3212 case TargetOpcode::G_CONCAT_VECTORS:
3213 return selectConcatVectors(I, MRI);
3214 case TargetOpcode::G_JUMP_TABLE:
3215 return selectJumpTable(I, MRI);
3216 case TargetOpcode::G_VECREDUCE_FADD:
3217 case TargetOpcode::G_VECREDUCE_ADD:
3218 return selectReduction(I, MRI);
3219 }
3220
3221 return false;
3222 }
3223
selectReduction(MachineInstr & I,MachineRegisterInfo & MRI)3224 bool AArch64InstructionSelector::selectReduction(MachineInstr &I,
3225 MachineRegisterInfo &MRI) {
3226 Register VecReg = I.getOperand(1).getReg();
3227 LLT VecTy = MRI.getType(VecReg);
3228 if (I.getOpcode() == TargetOpcode::G_VECREDUCE_ADD) {
3229 // For <2 x i32> ADDPv2i32 generates an FPR64 value, so we need to emit
3230 // a subregister copy afterwards.
3231 if (VecTy == LLT::vector(2, 32)) {
3232 Register DstReg = I.getOperand(0).getReg();
3233 auto AddP = MIB.buildInstr(AArch64::ADDPv2i32, {&AArch64::FPR64RegClass},
3234 {VecReg, VecReg});
3235 auto Copy = MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {})
3236 .addReg(AddP.getReg(0), 0, AArch64::ssub)
3237 .getReg(0);
3238 RBI.constrainGenericRegister(Copy, AArch64::FPR32RegClass, MRI);
3239 I.eraseFromParent();
3240 return constrainSelectedInstRegOperands(*AddP, TII, TRI, RBI);
3241 }
3242
3243 unsigned Opc = 0;
3244 if (VecTy == LLT::vector(16, 8))
3245 Opc = AArch64::ADDVv16i8v;
3246 else if (VecTy == LLT::vector(8, 16))
3247 Opc = AArch64::ADDVv8i16v;
3248 else if (VecTy == LLT::vector(4, 32))
3249 Opc = AArch64::ADDVv4i32v;
3250 else if (VecTy == LLT::vector(2, 64))
3251 Opc = AArch64::ADDPv2i64p;
3252 else {
3253 LLVM_DEBUG(dbgs() << "Unhandled type for add reduction");
3254 return false;
3255 }
3256 I.setDesc(TII.get(Opc));
3257 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3258 }
3259
3260 if (I.getOpcode() == TargetOpcode::G_VECREDUCE_FADD) {
3261 unsigned Opc = 0;
3262 if (VecTy == LLT::vector(2, 32))
3263 Opc = AArch64::FADDPv2i32p;
3264 else if (VecTy == LLT::vector(2, 64))
3265 Opc = AArch64::FADDPv2i64p;
3266 else {
3267 LLVM_DEBUG(dbgs() << "Unhandled type for fadd reduction");
3268 return false;
3269 }
3270 I.setDesc(TII.get(Opc));
3271 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3272 }
3273 return false;
3274 }
3275
selectBrJT(MachineInstr & I,MachineRegisterInfo & MRI)3276 bool AArch64InstructionSelector::selectBrJT(MachineInstr &I,
3277 MachineRegisterInfo &MRI) {
3278 assert(I.getOpcode() == TargetOpcode::G_BRJT && "Expected G_BRJT");
3279 Register JTAddr = I.getOperand(0).getReg();
3280 unsigned JTI = I.getOperand(1).getIndex();
3281 Register Index = I.getOperand(2).getReg();
3282
3283 Register TargetReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
3284 Register ScratchReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
3285
3286 MF->getInfo<AArch64FunctionInfo>()->setJumpTableEntryInfo(JTI, 4, nullptr);
3287 auto JumpTableInst = MIB.buildInstr(AArch64::JumpTableDest32,
3288 {TargetReg, ScratchReg}, {JTAddr, Index})
3289 .addJumpTableIndex(JTI);
3290 // Build the indirect branch.
3291 MIB.buildInstr(AArch64::BR, {}, {TargetReg});
3292 I.eraseFromParent();
3293 return constrainSelectedInstRegOperands(*JumpTableInst, TII, TRI, RBI);
3294 }
3295
selectJumpTable(MachineInstr & I,MachineRegisterInfo & MRI)3296 bool AArch64InstructionSelector::selectJumpTable(MachineInstr &I,
3297 MachineRegisterInfo &MRI) {
3298 assert(I.getOpcode() == TargetOpcode::G_JUMP_TABLE && "Expected jump table");
3299 assert(I.getOperand(1).isJTI() && "Jump table op should have a JTI!");
3300
3301 Register DstReg = I.getOperand(0).getReg();
3302 unsigned JTI = I.getOperand(1).getIndex();
3303 // We generate a MOVaddrJT which will get expanded to an ADRP + ADD later.
3304 auto MovMI =
3305 MIB.buildInstr(AArch64::MOVaddrJT, {DstReg}, {})
3306 .addJumpTableIndex(JTI, AArch64II::MO_PAGE)
3307 .addJumpTableIndex(JTI, AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
3308 I.eraseFromParent();
3309 return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
3310 }
3311
selectTLSGlobalValue(MachineInstr & I,MachineRegisterInfo & MRI)3312 bool AArch64InstructionSelector::selectTLSGlobalValue(
3313 MachineInstr &I, MachineRegisterInfo &MRI) {
3314 if (!STI.isTargetMachO())
3315 return false;
3316 MachineFunction &MF = *I.getParent()->getParent();
3317 MF.getFrameInfo().setAdjustsStack(true);
3318
3319 const auto &GlobalOp = I.getOperand(1);
3320 assert(GlobalOp.getOffset() == 0 &&
3321 "Shouldn't have an offset on TLS globals!");
3322 const GlobalValue &GV = *GlobalOp.getGlobal();
3323
3324 auto LoadGOT =
3325 MIB.buildInstr(AArch64::LOADgot, {&AArch64::GPR64commonRegClass}, {})
3326 .addGlobalAddress(&GV, 0, AArch64II::MO_TLS);
3327
3328 auto Load = MIB.buildInstr(AArch64::LDRXui, {&AArch64::GPR64commonRegClass},
3329 {LoadGOT.getReg(0)})
3330 .addImm(0);
3331
3332 MIB.buildCopy(Register(AArch64::X0), LoadGOT.getReg(0));
3333 // TLS calls preserve all registers except those that absolutely must be
3334 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3335 // silly).
3336 MIB.buildInstr(getBLRCallOpcode(MF), {}, {Load})
3337 .addUse(AArch64::X0, RegState::Implicit)
3338 .addDef(AArch64::X0, RegState::Implicit)
3339 .addRegMask(TRI.getTLSCallPreservedMask());
3340
3341 MIB.buildCopy(I.getOperand(0).getReg(), Register(AArch64::X0));
3342 RBI.constrainGenericRegister(I.getOperand(0).getReg(), AArch64::GPR64RegClass,
3343 MRI);
3344 I.eraseFromParent();
3345 return true;
3346 }
3347
selectIntrinsicTrunc(MachineInstr & I,MachineRegisterInfo & MRI) const3348 bool AArch64InstructionSelector::selectIntrinsicTrunc(
3349 MachineInstr &I, MachineRegisterInfo &MRI) const {
3350 const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
3351
3352 // Select the correct opcode.
3353 unsigned Opc = 0;
3354 if (!SrcTy.isVector()) {
3355 switch (SrcTy.getSizeInBits()) {
3356 default:
3357 case 16:
3358 Opc = AArch64::FRINTZHr;
3359 break;
3360 case 32:
3361 Opc = AArch64::FRINTZSr;
3362 break;
3363 case 64:
3364 Opc = AArch64::FRINTZDr;
3365 break;
3366 }
3367 } else {
3368 unsigned NumElts = SrcTy.getNumElements();
3369 switch (SrcTy.getElementType().getSizeInBits()) {
3370 default:
3371 break;
3372 case 16:
3373 if (NumElts == 4)
3374 Opc = AArch64::FRINTZv4f16;
3375 else if (NumElts == 8)
3376 Opc = AArch64::FRINTZv8f16;
3377 break;
3378 case 32:
3379 if (NumElts == 2)
3380 Opc = AArch64::FRINTZv2f32;
3381 else if (NumElts == 4)
3382 Opc = AArch64::FRINTZv4f32;
3383 break;
3384 case 64:
3385 if (NumElts == 2)
3386 Opc = AArch64::FRINTZv2f64;
3387 break;
3388 }
3389 }
3390
3391 if (!Opc) {
3392 // Didn't get an opcode above, bail.
3393 LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_TRUNC!\n");
3394 return false;
3395 }
3396
3397 // Legalization would have set us up perfectly for this; we just need to
3398 // set the opcode and move on.
3399 I.setDesc(TII.get(Opc));
3400 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3401 }
3402
selectIntrinsicRound(MachineInstr & I,MachineRegisterInfo & MRI) const3403 bool AArch64InstructionSelector::selectIntrinsicRound(
3404 MachineInstr &I, MachineRegisterInfo &MRI) const {
3405 const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
3406
3407 // Select the correct opcode.
3408 unsigned Opc = 0;
3409 if (!SrcTy.isVector()) {
3410 switch (SrcTy.getSizeInBits()) {
3411 default:
3412 case 16:
3413 Opc = AArch64::FRINTAHr;
3414 break;
3415 case 32:
3416 Opc = AArch64::FRINTASr;
3417 break;
3418 case 64:
3419 Opc = AArch64::FRINTADr;
3420 break;
3421 }
3422 } else {
3423 unsigned NumElts = SrcTy.getNumElements();
3424 switch (SrcTy.getElementType().getSizeInBits()) {
3425 default:
3426 break;
3427 case 16:
3428 if (NumElts == 4)
3429 Opc = AArch64::FRINTAv4f16;
3430 else if (NumElts == 8)
3431 Opc = AArch64::FRINTAv8f16;
3432 break;
3433 case 32:
3434 if (NumElts == 2)
3435 Opc = AArch64::FRINTAv2f32;
3436 else if (NumElts == 4)
3437 Opc = AArch64::FRINTAv4f32;
3438 break;
3439 case 64:
3440 if (NumElts == 2)
3441 Opc = AArch64::FRINTAv2f64;
3442 break;
3443 }
3444 }
3445
3446 if (!Opc) {
3447 // Didn't get an opcode above, bail.
3448 LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_ROUND!\n");
3449 return false;
3450 }
3451
3452 // Legalization would have set us up perfectly for this; we just need to
3453 // set the opcode and move on.
3454 I.setDesc(TII.get(Opc));
3455 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3456 }
3457
selectVectorICmp(MachineInstr & I,MachineRegisterInfo & MRI)3458 bool AArch64InstructionSelector::selectVectorICmp(
3459 MachineInstr &I, MachineRegisterInfo &MRI) {
3460 Register DstReg = I.getOperand(0).getReg();
3461 LLT DstTy = MRI.getType(DstReg);
3462 Register SrcReg = I.getOperand(2).getReg();
3463 Register Src2Reg = I.getOperand(3).getReg();
3464 LLT SrcTy = MRI.getType(SrcReg);
3465
3466 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
3467 unsigned NumElts = DstTy.getNumElements();
3468
3469 // First index is element size, 0 == 8b, 1 == 16b, 2 == 32b, 3 == 64b
3470 // Second index is num elts, 0 == v2, 1 == v4, 2 == v8, 3 == v16
3471 // Third index is cc opcode:
3472 // 0 == eq
3473 // 1 == ugt
3474 // 2 == uge
3475 // 3 == ult
3476 // 4 == ule
3477 // 5 == sgt
3478 // 6 == sge
3479 // 7 == slt
3480 // 8 == sle
3481 // ne is done by negating 'eq' result.
3482
3483 // This table below assumes that for some comparisons the operands will be
3484 // commuted.
3485 // ult op == commute + ugt op
3486 // ule op == commute + uge op
3487 // slt op == commute + sgt op
3488 // sle op == commute + sge op
3489 unsigned PredIdx = 0;
3490 bool SwapOperands = false;
3491 CmpInst::Predicate Pred = (CmpInst::Predicate)I.getOperand(1).getPredicate();
3492 switch (Pred) {
3493 case CmpInst::ICMP_NE:
3494 case CmpInst::ICMP_EQ:
3495 PredIdx = 0;
3496 break;
3497 case CmpInst::ICMP_UGT:
3498 PredIdx = 1;
3499 break;
3500 case CmpInst::ICMP_UGE:
3501 PredIdx = 2;
3502 break;
3503 case CmpInst::ICMP_ULT:
3504 PredIdx = 3;
3505 SwapOperands = true;
3506 break;
3507 case CmpInst::ICMP_ULE:
3508 PredIdx = 4;
3509 SwapOperands = true;
3510 break;
3511 case CmpInst::ICMP_SGT:
3512 PredIdx = 5;
3513 break;
3514 case CmpInst::ICMP_SGE:
3515 PredIdx = 6;
3516 break;
3517 case CmpInst::ICMP_SLT:
3518 PredIdx = 7;
3519 SwapOperands = true;
3520 break;
3521 case CmpInst::ICMP_SLE:
3522 PredIdx = 8;
3523 SwapOperands = true;
3524 break;
3525 default:
3526 llvm_unreachable("Unhandled icmp predicate");
3527 return false;
3528 }
3529
3530 // This table obviously should be tablegen'd when we have our GISel native
3531 // tablegen selector.
3532
3533 static const unsigned OpcTable[4][4][9] = {
3534 {
3535 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3536 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3537 0 /* invalid */},
3538 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3539 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3540 0 /* invalid */},
3541 {AArch64::CMEQv8i8, AArch64::CMHIv8i8, AArch64::CMHSv8i8,
3542 AArch64::CMHIv8i8, AArch64::CMHSv8i8, AArch64::CMGTv8i8,
3543 AArch64::CMGEv8i8, AArch64::CMGTv8i8, AArch64::CMGEv8i8},
3544 {AArch64::CMEQv16i8, AArch64::CMHIv16i8, AArch64::CMHSv16i8,
3545 AArch64::CMHIv16i8, AArch64::CMHSv16i8, AArch64::CMGTv16i8,
3546 AArch64::CMGEv16i8, AArch64::CMGTv16i8, AArch64::CMGEv16i8}
3547 },
3548 {
3549 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3550 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3551 0 /* invalid */},
3552 {AArch64::CMEQv4i16, AArch64::CMHIv4i16, AArch64::CMHSv4i16,
3553 AArch64::CMHIv4i16, AArch64::CMHSv4i16, AArch64::CMGTv4i16,
3554 AArch64::CMGEv4i16, AArch64::CMGTv4i16, AArch64::CMGEv4i16},
3555 {AArch64::CMEQv8i16, AArch64::CMHIv8i16, AArch64::CMHSv8i16,
3556 AArch64::CMHIv8i16, AArch64::CMHSv8i16, AArch64::CMGTv8i16,
3557 AArch64::CMGEv8i16, AArch64::CMGTv8i16, AArch64::CMGEv8i16},
3558 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3559 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3560 0 /* invalid */}
3561 },
3562 {
3563 {AArch64::CMEQv2i32, AArch64::CMHIv2i32, AArch64::CMHSv2i32,
3564 AArch64::CMHIv2i32, AArch64::CMHSv2i32, AArch64::CMGTv2i32,
3565 AArch64::CMGEv2i32, AArch64::CMGTv2i32, AArch64::CMGEv2i32},
3566 {AArch64::CMEQv4i32, AArch64::CMHIv4i32, AArch64::CMHSv4i32,
3567 AArch64::CMHIv4i32, AArch64::CMHSv4i32, AArch64::CMGTv4i32,
3568 AArch64::CMGEv4i32, AArch64::CMGTv4i32, AArch64::CMGEv4i32},
3569 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3570 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3571 0 /* invalid */},
3572 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3573 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3574 0 /* invalid */}
3575 },
3576 {
3577 {AArch64::CMEQv2i64, AArch64::CMHIv2i64, AArch64::CMHSv2i64,
3578 AArch64::CMHIv2i64, AArch64::CMHSv2i64, AArch64::CMGTv2i64,
3579 AArch64::CMGEv2i64, AArch64::CMGTv2i64, AArch64::CMGEv2i64},
3580 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3581 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3582 0 /* invalid */},
3583 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3584 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3585 0 /* invalid */},
3586 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3587 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3588 0 /* invalid */}
3589 },
3590 };
3591 unsigned EltIdx = Log2_32(SrcEltSize / 8);
3592 unsigned NumEltsIdx = Log2_32(NumElts / 2);
3593 unsigned Opc = OpcTable[EltIdx][NumEltsIdx][PredIdx];
3594 if (!Opc) {
3595 LLVM_DEBUG(dbgs() << "Could not map G_ICMP to cmp opcode");
3596 return false;
3597 }
3598
3599 const RegisterBank &VecRB = *RBI.getRegBank(SrcReg, MRI, TRI);
3600 const TargetRegisterClass *SrcRC =
3601 getRegClassForTypeOnBank(SrcTy, VecRB, RBI, true);
3602 if (!SrcRC) {
3603 LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
3604 return false;
3605 }
3606
3607 unsigned NotOpc = Pred == ICmpInst::ICMP_NE ? AArch64::NOTv8i8 : 0;
3608 if (SrcTy.getSizeInBits() == 128)
3609 NotOpc = NotOpc ? AArch64::NOTv16i8 : 0;
3610
3611 if (SwapOperands)
3612 std::swap(SrcReg, Src2Reg);
3613
3614 auto Cmp = MIB.buildInstr(Opc, {SrcRC}, {SrcReg, Src2Reg});
3615 constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
3616
3617 // Invert if we had a 'ne' cc.
3618 if (NotOpc) {
3619 Cmp = MIB.buildInstr(NotOpc, {DstReg}, {Cmp});
3620 constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
3621 } else {
3622 MIB.buildCopy(DstReg, Cmp.getReg(0));
3623 }
3624 RBI.constrainGenericRegister(DstReg, *SrcRC, MRI);
3625 I.eraseFromParent();
3626 return true;
3627 }
3628
emitScalarToVector(unsigned EltSize,const TargetRegisterClass * DstRC,Register Scalar,MachineIRBuilder & MIRBuilder) const3629 MachineInstr *AArch64InstructionSelector::emitScalarToVector(
3630 unsigned EltSize, const TargetRegisterClass *DstRC, Register Scalar,
3631 MachineIRBuilder &MIRBuilder) const {
3632 auto Undef = MIRBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstRC}, {});
3633
3634 auto BuildFn = [&](unsigned SubregIndex) {
3635 auto Ins =
3636 MIRBuilder
3637 .buildInstr(TargetOpcode::INSERT_SUBREG, {DstRC}, {Undef, Scalar})
3638 .addImm(SubregIndex);
3639 constrainSelectedInstRegOperands(*Undef, TII, TRI, RBI);
3640 constrainSelectedInstRegOperands(*Ins, TII, TRI, RBI);
3641 return &*Ins;
3642 };
3643
3644 switch (EltSize) {
3645 case 16:
3646 return BuildFn(AArch64::hsub);
3647 case 32:
3648 return BuildFn(AArch64::ssub);
3649 case 64:
3650 return BuildFn(AArch64::dsub);
3651 default:
3652 return nullptr;
3653 }
3654 }
3655
selectMergeValues(MachineInstr & I,MachineRegisterInfo & MRI)3656 bool AArch64InstructionSelector::selectMergeValues(
3657 MachineInstr &I, MachineRegisterInfo &MRI) {
3658 assert(I.getOpcode() == TargetOpcode::G_MERGE_VALUES && "unexpected opcode");
3659 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3660 const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
3661 assert(!DstTy.isVector() && !SrcTy.isVector() && "invalid merge operation");
3662 const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
3663
3664 if (I.getNumOperands() != 3)
3665 return false;
3666
3667 // Merging 2 s64s into an s128.
3668 if (DstTy == LLT::scalar(128)) {
3669 if (SrcTy.getSizeInBits() != 64)
3670 return false;
3671 Register DstReg = I.getOperand(0).getReg();
3672 Register Src1Reg = I.getOperand(1).getReg();
3673 Register Src2Reg = I.getOperand(2).getReg();
3674 auto Tmp = MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstTy}, {});
3675 MachineInstr *InsMI =
3676 emitLaneInsert(None, Tmp.getReg(0), Src1Reg, /* LaneIdx */ 0, RB, MIB);
3677 if (!InsMI)
3678 return false;
3679 MachineInstr *Ins2MI = emitLaneInsert(DstReg, InsMI->getOperand(0).getReg(),
3680 Src2Reg, /* LaneIdx */ 1, RB, MIB);
3681 if (!Ins2MI)
3682 return false;
3683 constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
3684 constrainSelectedInstRegOperands(*Ins2MI, TII, TRI, RBI);
3685 I.eraseFromParent();
3686 return true;
3687 }
3688
3689 if (RB.getID() != AArch64::GPRRegBankID)
3690 return false;
3691
3692 if (DstTy.getSizeInBits() != 64 || SrcTy.getSizeInBits() != 32)
3693 return false;
3694
3695 auto *DstRC = &AArch64::GPR64RegClass;
3696 Register SubToRegDef = MRI.createVirtualRegister(DstRC);
3697 MachineInstr &SubRegMI = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
3698 TII.get(TargetOpcode::SUBREG_TO_REG))
3699 .addDef(SubToRegDef)
3700 .addImm(0)
3701 .addUse(I.getOperand(1).getReg())
3702 .addImm(AArch64::sub_32);
3703 Register SubToRegDef2 = MRI.createVirtualRegister(DstRC);
3704 // Need to anyext the second scalar before we can use bfm
3705 MachineInstr &SubRegMI2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
3706 TII.get(TargetOpcode::SUBREG_TO_REG))
3707 .addDef(SubToRegDef2)
3708 .addImm(0)
3709 .addUse(I.getOperand(2).getReg())
3710 .addImm(AArch64::sub_32);
3711 MachineInstr &BFM =
3712 *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::BFMXri))
3713 .addDef(I.getOperand(0).getReg())
3714 .addUse(SubToRegDef)
3715 .addUse(SubToRegDef2)
3716 .addImm(32)
3717 .addImm(31);
3718 constrainSelectedInstRegOperands(SubRegMI, TII, TRI, RBI);
3719 constrainSelectedInstRegOperands(SubRegMI2, TII, TRI, RBI);
3720 constrainSelectedInstRegOperands(BFM, TII, TRI, RBI);
3721 I.eraseFromParent();
3722 return true;
3723 }
3724
getLaneCopyOpcode(unsigned & CopyOpc,unsigned & ExtractSubReg,const unsigned EltSize)3725 static bool getLaneCopyOpcode(unsigned &CopyOpc, unsigned &ExtractSubReg,
3726 const unsigned EltSize) {
3727 // Choose a lane copy opcode and subregister based off of the size of the
3728 // vector's elements.
3729 switch (EltSize) {
3730 case 16:
3731 CopyOpc = AArch64::CPYi16;
3732 ExtractSubReg = AArch64::hsub;
3733 break;
3734 case 32:
3735 CopyOpc = AArch64::CPYi32;
3736 ExtractSubReg = AArch64::ssub;
3737 break;
3738 case 64:
3739 CopyOpc = AArch64::CPYi64;
3740 ExtractSubReg = AArch64::dsub;
3741 break;
3742 default:
3743 // Unknown size, bail out.
3744 LLVM_DEBUG(dbgs() << "Elt size '" << EltSize << "' unsupported.\n");
3745 return false;
3746 }
3747 return true;
3748 }
3749
emitExtractVectorElt(Optional<Register> DstReg,const RegisterBank & DstRB,LLT ScalarTy,Register VecReg,unsigned LaneIdx,MachineIRBuilder & MIRBuilder) const3750 MachineInstr *AArch64InstructionSelector::emitExtractVectorElt(
3751 Optional<Register> DstReg, const RegisterBank &DstRB, LLT ScalarTy,
3752 Register VecReg, unsigned LaneIdx, MachineIRBuilder &MIRBuilder) const {
3753 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
3754 unsigned CopyOpc = 0;
3755 unsigned ExtractSubReg = 0;
3756 if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, ScalarTy.getSizeInBits())) {
3757 LLVM_DEBUG(
3758 dbgs() << "Couldn't determine lane copy opcode for instruction.\n");
3759 return nullptr;
3760 }
3761
3762 const TargetRegisterClass *DstRC =
3763 getRegClassForTypeOnBank(ScalarTy, DstRB, RBI, true);
3764 if (!DstRC) {
3765 LLVM_DEBUG(dbgs() << "Could not determine destination register class.\n");
3766 return nullptr;
3767 }
3768
3769 const RegisterBank &VecRB = *RBI.getRegBank(VecReg, MRI, TRI);
3770 const LLT &VecTy = MRI.getType(VecReg);
3771 const TargetRegisterClass *VecRC =
3772 getRegClassForTypeOnBank(VecTy, VecRB, RBI, true);
3773 if (!VecRC) {
3774 LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
3775 return nullptr;
3776 }
3777
3778 // The register that we're going to copy into.
3779 Register InsertReg = VecReg;
3780 if (!DstReg)
3781 DstReg = MRI.createVirtualRegister(DstRC);
3782 // If the lane index is 0, we just use a subregister COPY.
3783 if (LaneIdx == 0) {
3784 auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {*DstReg}, {})
3785 .addReg(VecReg, 0, ExtractSubReg);
3786 RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
3787 return &*Copy;
3788 }
3789
3790 // Lane copies require 128-bit wide registers. If we're dealing with an
3791 // unpacked vector, then we need to move up to that width. Insert an implicit
3792 // def and a subregister insert to get us there.
3793 if (VecTy.getSizeInBits() != 128) {
3794 MachineInstr *ScalarToVector = emitScalarToVector(
3795 VecTy.getSizeInBits(), &AArch64::FPR128RegClass, VecReg, MIRBuilder);
3796 if (!ScalarToVector)
3797 return nullptr;
3798 InsertReg = ScalarToVector->getOperand(0).getReg();
3799 }
3800
3801 MachineInstr *LaneCopyMI =
3802 MIRBuilder.buildInstr(CopyOpc, {*DstReg}, {InsertReg}).addImm(LaneIdx);
3803 constrainSelectedInstRegOperands(*LaneCopyMI, TII, TRI, RBI);
3804
3805 // Make sure that we actually constrain the initial copy.
3806 RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
3807 return LaneCopyMI;
3808 }
3809
selectExtractElt(MachineInstr & I,MachineRegisterInfo & MRI)3810 bool AArch64InstructionSelector::selectExtractElt(
3811 MachineInstr &I, MachineRegisterInfo &MRI) {
3812 assert(I.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT &&
3813 "unexpected opcode!");
3814 Register DstReg = I.getOperand(0).getReg();
3815 const LLT NarrowTy = MRI.getType(DstReg);
3816 const Register SrcReg = I.getOperand(1).getReg();
3817 const LLT WideTy = MRI.getType(SrcReg);
3818 (void)WideTy;
3819 assert(WideTy.getSizeInBits() >= NarrowTy.getSizeInBits() &&
3820 "source register size too small!");
3821 assert(!NarrowTy.isVector() && "cannot extract vector into vector!");
3822
3823 // Need the lane index to determine the correct copy opcode.
3824 MachineOperand &LaneIdxOp = I.getOperand(2);
3825 assert(LaneIdxOp.isReg() && "Lane index operand was not a register?");
3826
3827 if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
3828 LLVM_DEBUG(dbgs() << "Cannot extract into GPR.\n");
3829 return false;
3830 }
3831
3832 // Find the index to extract from.
3833 auto VRegAndVal = getConstantVRegValWithLookThrough(LaneIdxOp.getReg(), MRI);
3834 if (!VRegAndVal)
3835 return false;
3836 unsigned LaneIdx = VRegAndVal->Value.getSExtValue();
3837
3838
3839 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
3840 MachineInstr *Extract = emitExtractVectorElt(DstReg, DstRB, NarrowTy, SrcReg,
3841 LaneIdx, MIB);
3842 if (!Extract)
3843 return false;
3844
3845 I.eraseFromParent();
3846 return true;
3847 }
3848
selectSplitVectorUnmerge(MachineInstr & I,MachineRegisterInfo & MRI)3849 bool AArch64InstructionSelector::selectSplitVectorUnmerge(
3850 MachineInstr &I, MachineRegisterInfo &MRI) {
3851 unsigned NumElts = I.getNumOperands() - 1;
3852 Register SrcReg = I.getOperand(NumElts).getReg();
3853 const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
3854 const LLT SrcTy = MRI.getType(SrcReg);
3855
3856 assert(NarrowTy.isVector() && "Expected an unmerge into vectors");
3857 if (SrcTy.getSizeInBits() > 128) {
3858 LLVM_DEBUG(dbgs() << "Unexpected vector type for vec split unmerge");
3859 return false;
3860 }
3861
3862 // We implement a split vector operation by treating the sub-vectors as
3863 // scalars and extracting them.
3864 const RegisterBank &DstRB =
3865 *RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI);
3866 for (unsigned OpIdx = 0; OpIdx < NumElts; ++OpIdx) {
3867 Register Dst = I.getOperand(OpIdx).getReg();
3868 MachineInstr *Extract =
3869 emitExtractVectorElt(Dst, DstRB, NarrowTy, SrcReg, OpIdx, MIB);
3870 if (!Extract)
3871 return false;
3872 }
3873 I.eraseFromParent();
3874 return true;
3875 }
3876
selectUnmergeValues(MachineInstr & I,MachineRegisterInfo & MRI)3877 bool AArch64InstructionSelector::selectUnmergeValues(MachineInstr &I,
3878 MachineRegisterInfo &MRI) {
3879 assert(I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
3880 "unexpected opcode");
3881
3882 // TODO: Handle unmerging into GPRs and from scalars to scalars.
3883 if (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
3884 AArch64::FPRRegBankID ||
3885 RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
3886 AArch64::FPRRegBankID) {
3887 LLVM_DEBUG(dbgs() << "Unmerging vector-to-gpr and scalar-to-scalar "
3888 "currently unsupported.\n");
3889 return false;
3890 }
3891
3892 // The last operand is the vector source register, and every other operand is
3893 // a register to unpack into.
3894 unsigned NumElts = I.getNumOperands() - 1;
3895 Register SrcReg = I.getOperand(NumElts).getReg();
3896 const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
3897 const LLT WideTy = MRI.getType(SrcReg);
3898 (void)WideTy;
3899 assert((WideTy.isVector() || WideTy.getSizeInBits() == 128) &&
3900 "can only unmerge from vector or s128 types!");
3901 assert(WideTy.getSizeInBits() > NarrowTy.getSizeInBits() &&
3902 "source register size too small!");
3903
3904 if (!NarrowTy.isScalar())
3905 return selectSplitVectorUnmerge(I, MRI);
3906
3907 // Choose a lane copy opcode and subregister based off of the size of the
3908 // vector's elements.
3909 unsigned CopyOpc = 0;
3910 unsigned ExtractSubReg = 0;
3911 if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, NarrowTy.getSizeInBits()))
3912 return false;
3913
3914 // Set up for the lane copies.
3915 MachineBasicBlock &MBB = *I.getParent();
3916
3917 // Stores the registers we'll be copying from.
3918 SmallVector<Register, 4> InsertRegs;
3919
3920 // We'll use the first register twice, so we only need NumElts-1 registers.
3921 unsigned NumInsertRegs = NumElts - 1;
3922
3923 // If our elements fit into exactly 128 bits, then we can copy from the source
3924 // directly. Otherwise, we need to do a bit of setup with some subregister
3925 // inserts.
3926 if (NarrowTy.getSizeInBits() * NumElts == 128) {
3927 InsertRegs = SmallVector<Register, 4>(NumInsertRegs, SrcReg);
3928 } else {
3929 // No. We have to perform subregister inserts. For each insert, create an
3930 // implicit def and a subregister insert, and save the register we create.
3931 for (unsigned Idx = 0; Idx < NumInsertRegs; ++Idx) {
3932 Register ImpDefReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
3933 MachineInstr &ImpDefMI =
3934 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF),
3935 ImpDefReg);
3936
3937 // Now, create the subregister insert from SrcReg.
3938 Register InsertReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
3939 MachineInstr &InsMI =
3940 *BuildMI(MBB, I, I.getDebugLoc(),
3941 TII.get(TargetOpcode::INSERT_SUBREG), InsertReg)
3942 .addUse(ImpDefReg)
3943 .addUse(SrcReg)
3944 .addImm(AArch64::dsub);
3945
3946 constrainSelectedInstRegOperands(ImpDefMI, TII, TRI, RBI);
3947 constrainSelectedInstRegOperands(InsMI, TII, TRI, RBI);
3948
3949 // Save the register so that we can copy from it after.
3950 InsertRegs.push_back(InsertReg);
3951 }
3952 }
3953
3954 // Now that we've created any necessary subregister inserts, we can
3955 // create the copies.
3956 //
3957 // Perform the first copy separately as a subregister copy.
3958 Register CopyTo = I.getOperand(0).getReg();
3959 auto FirstCopy = MIB.buildInstr(TargetOpcode::COPY, {CopyTo}, {})
3960 .addReg(InsertRegs[0], 0, ExtractSubReg);
3961 constrainSelectedInstRegOperands(*FirstCopy, TII, TRI, RBI);
3962
3963 // Now, perform the remaining copies as vector lane copies.
3964 unsigned LaneIdx = 1;
3965 for (Register InsReg : InsertRegs) {
3966 Register CopyTo = I.getOperand(LaneIdx).getReg();
3967 MachineInstr &CopyInst =
3968 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CopyOpc), CopyTo)
3969 .addUse(InsReg)
3970 .addImm(LaneIdx);
3971 constrainSelectedInstRegOperands(CopyInst, TII, TRI, RBI);
3972 ++LaneIdx;
3973 }
3974
3975 // Separately constrain the first copy's destination. Because of the
3976 // limitation in constrainOperandRegClass, we can't guarantee that this will
3977 // actually be constrained. So, do it ourselves using the second operand.
3978 const TargetRegisterClass *RC =
3979 MRI.getRegClassOrNull(I.getOperand(1).getReg());
3980 if (!RC) {
3981 LLVM_DEBUG(dbgs() << "Couldn't constrain copy destination.\n");
3982 return false;
3983 }
3984
3985 RBI.constrainGenericRegister(CopyTo, *RC, MRI);
3986 I.eraseFromParent();
3987 return true;
3988 }
3989
selectConcatVectors(MachineInstr & I,MachineRegisterInfo & MRI)3990 bool AArch64InstructionSelector::selectConcatVectors(
3991 MachineInstr &I, MachineRegisterInfo &MRI) {
3992 assert(I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
3993 "Unexpected opcode");
3994 Register Dst = I.getOperand(0).getReg();
3995 Register Op1 = I.getOperand(1).getReg();
3996 Register Op2 = I.getOperand(2).getReg();
3997 MachineInstr *ConcatMI = emitVectorConcat(Dst, Op1, Op2, MIB);
3998 if (!ConcatMI)
3999 return false;
4000 I.eraseFromParent();
4001 return true;
4002 }
4003
4004 unsigned
emitConstantPoolEntry(const Constant * CPVal,MachineFunction & MF) const4005 AArch64InstructionSelector::emitConstantPoolEntry(const Constant *CPVal,
4006 MachineFunction &MF) const {
4007 Type *CPTy = CPVal->getType();
4008 Align Alignment = MF.getDataLayout().getPrefTypeAlign(CPTy);
4009
4010 MachineConstantPool *MCP = MF.getConstantPool();
4011 return MCP->getConstantPoolIndex(CPVal, Alignment);
4012 }
4013
emitLoadFromConstantPool(const Constant * CPVal,MachineIRBuilder & MIRBuilder) const4014 MachineInstr *AArch64InstructionSelector::emitLoadFromConstantPool(
4015 const Constant *CPVal, MachineIRBuilder &MIRBuilder) const {
4016 auto &MF = MIRBuilder.getMF();
4017 unsigned CPIdx = emitConstantPoolEntry(CPVal, MF);
4018
4019 auto Adrp =
4020 MIRBuilder.buildInstr(AArch64::ADRP, {&AArch64::GPR64RegClass}, {})
4021 .addConstantPoolIndex(CPIdx, 0, AArch64II::MO_PAGE);
4022
4023 MachineInstr *LoadMI = nullptr;
4024 MachinePointerInfo PtrInfo = MachinePointerInfo::getConstantPool(MF);
4025 unsigned Size = MIRBuilder.getDataLayout().getTypeStoreSize(CPVal->getType());
4026 switch (Size) {
4027 case 16:
4028 LoadMI =
4029 &*MIRBuilder
4030 .buildInstr(AArch64::LDRQui, {&AArch64::FPR128RegClass}, {Adrp})
4031 .addConstantPoolIndex(CPIdx, 0,
4032 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4033 break;
4034 case 8:
4035 LoadMI =
4036 &*MIRBuilder
4037 .buildInstr(AArch64::LDRDui, {&AArch64::FPR64RegClass}, {Adrp})
4038 .addConstantPoolIndex(CPIdx, 0,
4039 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4040 break;
4041 case 4:
4042 LoadMI =
4043 &*MIRBuilder
4044 .buildInstr(AArch64::LDRSui, {&AArch64::FPR32RegClass}, {Adrp})
4045 .addConstantPoolIndex(CPIdx, 0,
4046 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4047 break;
4048 default:
4049 LLVM_DEBUG(dbgs() << "Could not load from constant pool of type "
4050 << *CPVal->getType());
4051 return nullptr;
4052 }
4053 LoadMI->addMemOperand(MF, MF.getMachineMemOperand(PtrInfo,
4054 MachineMemOperand::MOLoad,
4055 Size, Align(Size)));
4056 constrainSelectedInstRegOperands(*Adrp, TII, TRI, RBI);
4057 constrainSelectedInstRegOperands(*LoadMI, TII, TRI, RBI);
4058 return LoadMI;
4059 }
4060
4061 /// Return an <Opcode, SubregIndex> pair to do an vector elt insert of a given
4062 /// size and RB.
4063 static std::pair<unsigned, unsigned>
getInsertVecEltOpInfo(const RegisterBank & RB,unsigned EltSize)4064 getInsertVecEltOpInfo(const RegisterBank &RB, unsigned EltSize) {
4065 unsigned Opc, SubregIdx;
4066 if (RB.getID() == AArch64::GPRRegBankID) {
4067 if (EltSize == 16) {
4068 Opc = AArch64::INSvi16gpr;
4069 SubregIdx = AArch64::ssub;
4070 } else if (EltSize == 32) {
4071 Opc = AArch64::INSvi32gpr;
4072 SubregIdx = AArch64::ssub;
4073 } else if (EltSize == 64) {
4074 Opc = AArch64::INSvi64gpr;
4075 SubregIdx = AArch64::dsub;
4076 } else {
4077 llvm_unreachable("invalid elt size!");
4078 }
4079 } else {
4080 if (EltSize == 8) {
4081 Opc = AArch64::INSvi8lane;
4082 SubregIdx = AArch64::bsub;
4083 } else if (EltSize == 16) {
4084 Opc = AArch64::INSvi16lane;
4085 SubregIdx = AArch64::hsub;
4086 } else if (EltSize == 32) {
4087 Opc = AArch64::INSvi32lane;
4088 SubregIdx = AArch64::ssub;
4089 } else if (EltSize == 64) {
4090 Opc = AArch64::INSvi64lane;
4091 SubregIdx = AArch64::dsub;
4092 } else {
4093 llvm_unreachable("invalid elt size!");
4094 }
4095 }
4096 return std::make_pair(Opc, SubregIdx);
4097 }
4098
emitInstr(unsigned Opcode,std::initializer_list<llvm::DstOp> DstOps,std::initializer_list<llvm::SrcOp> SrcOps,MachineIRBuilder & MIRBuilder,const ComplexRendererFns & RenderFns) const4099 MachineInstr *AArch64InstructionSelector::emitInstr(
4100 unsigned Opcode, std::initializer_list<llvm::DstOp> DstOps,
4101 std::initializer_list<llvm::SrcOp> SrcOps, MachineIRBuilder &MIRBuilder,
4102 const ComplexRendererFns &RenderFns) const {
4103 assert(Opcode && "Expected an opcode?");
4104 assert(!isPreISelGenericOpcode(Opcode) &&
4105 "Function should only be used to produce selected instructions!");
4106 auto MI = MIRBuilder.buildInstr(Opcode, DstOps, SrcOps);
4107 if (RenderFns)
4108 for (auto &Fn : *RenderFns)
4109 Fn(MI);
4110 constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
4111 return &*MI;
4112 }
4113
emitAddSub(const std::array<std::array<unsigned,2>,5> & AddrModeAndSizeToOpcode,Register Dst,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4114 MachineInstr *AArch64InstructionSelector::emitAddSub(
4115 const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode,
4116 Register Dst, MachineOperand &LHS, MachineOperand &RHS,
4117 MachineIRBuilder &MIRBuilder) const {
4118 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4119 assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
4120 auto Ty = MRI.getType(LHS.getReg());
4121 assert(!Ty.isVector() && "Expected a scalar or pointer?");
4122 unsigned Size = Ty.getSizeInBits();
4123 assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit type only");
4124 bool Is32Bit = Size == 32;
4125
4126 // INSTRri form with positive arithmetic immediate.
4127 if (auto Fns = selectArithImmed(RHS))
4128 return emitInstr(AddrModeAndSizeToOpcode[0][Is32Bit], {Dst}, {LHS},
4129 MIRBuilder, Fns);
4130
4131 // INSTRri form with negative arithmetic immediate.
4132 if (auto Fns = selectNegArithImmed(RHS))
4133 return emitInstr(AddrModeAndSizeToOpcode[3][Is32Bit], {Dst}, {LHS},
4134 MIRBuilder, Fns);
4135
4136 // INSTRrx form.
4137 if (auto Fns = selectArithExtendedRegister(RHS))
4138 return emitInstr(AddrModeAndSizeToOpcode[4][Is32Bit], {Dst}, {LHS},
4139 MIRBuilder, Fns);
4140
4141 // INSTRrs form.
4142 if (auto Fns = selectShiftedRegister(RHS))
4143 return emitInstr(AddrModeAndSizeToOpcode[1][Is32Bit], {Dst}, {LHS},
4144 MIRBuilder, Fns);
4145 return emitInstr(AddrModeAndSizeToOpcode[2][Is32Bit], {Dst}, {LHS, RHS},
4146 MIRBuilder);
4147 }
4148
4149 MachineInstr *
emitADD(Register DefReg,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4150 AArch64InstructionSelector::emitADD(Register DefReg, MachineOperand &LHS,
4151 MachineOperand &RHS,
4152 MachineIRBuilder &MIRBuilder) const {
4153 const std::array<std::array<unsigned, 2>, 5> OpcTable{
4154 {{AArch64::ADDXri, AArch64::ADDWri},
4155 {AArch64::ADDXrs, AArch64::ADDWrs},
4156 {AArch64::ADDXrr, AArch64::ADDWrr},
4157 {AArch64::SUBXri, AArch64::SUBWri},
4158 {AArch64::ADDXrx, AArch64::ADDWrx}}};
4159 return emitAddSub(OpcTable, DefReg, LHS, RHS, MIRBuilder);
4160 }
4161
4162 MachineInstr *
emitADDS(Register Dst,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4163 AArch64InstructionSelector::emitADDS(Register Dst, MachineOperand &LHS,
4164 MachineOperand &RHS,
4165 MachineIRBuilder &MIRBuilder) const {
4166 const std::array<std::array<unsigned, 2>, 5> OpcTable{
4167 {{AArch64::ADDSXri, AArch64::ADDSWri},
4168 {AArch64::ADDSXrs, AArch64::ADDSWrs},
4169 {AArch64::ADDSXrr, AArch64::ADDSWrr},
4170 {AArch64::SUBSXri, AArch64::SUBSWri},
4171 {AArch64::ADDSXrx, AArch64::ADDSWrx}}};
4172 return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder);
4173 }
4174
4175 MachineInstr *
emitSUBS(Register Dst,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4176 AArch64InstructionSelector::emitSUBS(Register Dst, MachineOperand &LHS,
4177 MachineOperand &RHS,
4178 MachineIRBuilder &MIRBuilder) const {
4179 const std::array<std::array<unsigned, 2>, 5> OpcTable{
4180 {{AArch64::SUBSXri, AArch64::SUBSWri},
4181 {AArch64::SUBSXrs, AArch64::SUBSWrs},
4182 {AArch64::SUBSXrr, AArch64::SUBSWrr},
4183 {AArch64::ADDSXri, AArch64::ADDSWri},
4184 {AArch64::SUBSXrx, AArch64::SUBSWrx}}};
4185 return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder);
4186 }
4187
4188 MachineInstr *
emitCMN(MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4189 AArch64InstructionSelector::emitCMN(MachineOperand &LHS, MachineOperand &RHS,
4190 MachineIRBuilder &MIRBuilder) const {
4191 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4192 bool Is32Bit = (MRI.getType(LHS.getReg()).getSizeInBits() == 32);
4193 auto RC = Is32Bit ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass;
4194 return emitADDS(MRI.createVirtualRegister(RC), LHS, RHS, MIRBuilder);
4195 }
4196
4197 MachineInstr *
emitTST(MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4198 AArch64InstructionSelector::emitTST(MachineOperand &LHS, MachineOperand &RHS,
4199 MachineIRBuilder &MIRBuilder) const {
4200 assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
4201 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4202 LLT Ty = MRI.getType(LHS.getReg());
4203 unsigned RegSize = Ty.getSizeInBits();
4204 bool Is32Bit = (RegSize == 32);
4205 const unsigned OpcTable[3][2] = {{AArch64::ANDSXri, AArch64::ANDSWri},
4206 {AArch64::ANDSXrs, AArch64::ANDSWrs},
4207 {AArch64::ANDSXrr, AArch64::ANDSWrr}};
4208 // ANDS needs a logical immediate for its immediate form. Check if we can
4209 // fold one in.
4210 if (auto ValAndVReg = getConstantVRegValWithLookThrough(RHS.getReg(), MRI)) {
4211 int64_t Imm = ValAndVReg->Value.getSExtValue();
4212
4213 if (AArch64_AM::isLogicalImmediate(Imm, RegSize)) {
4214 auto TstMI = MIRBuilder.buildInstr(OpcTable[0][Is32Bit], {Ty}, {LHS});
4215 TstMI.addImm(AArch64_AM::encodeLogicalImmediate(Imm, RegSize));
4216 constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
4217 return &*TstMI;
4218 }
4219 }
4220
4221 if (auto Fns = selectLogicalShiftedRegister(RHS))
4222 return emitInstr(OpcTable[1][Is32Bit], {Ty}, {LHS}, MIRBuilder, Fns);
4223 return emitInstr(OpcTable[2][Is32Bit], {Ty}, {LHS, RHS}, MIRBuilder);
4224 }
4225
emitIntegerCompare(MachineOperand & LHS,MachineOperand & RHS,MachineOperand & Predicate,MachineIRBuilder & MIRBuilder) const4226 MachineInstr *AArch64InstructionSelector::emitIntegerCompare(
4227 MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
4228 MachineIRBuilder &MIRBuilder) const {
4229 assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
4230 assert(Predicate.isPredicate() && "Expected predicate?");
4231 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4232 LLT CmpTy = MRI.getType(LHS.getReg());
4233 assert(!CmpTy.isVector() && "Expected scalar or pointer");
4234 unsigned Size = CmpTy.getSizeInBits();
4235 (void)Size;
4236 assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit LHS/RHS?");
4237 // Fold the compare into a cmn or tst if possible.
4238 if (auto FoldCmp = tryFoldIntegerCompare(LHS, RHS, Predicate, MIRBuilder))
4239 return FoldCmp;
4240 auto Dst = MRI.cloneVirtualRegister(LHS.getReg());
4241 return emitSUBS(Dst, LHS, RHS, MIRBuilder);
4242 }
4243
emitCSetForFCmp(Register Dst,CmpInst::Predicate Pred,MachineIRBuilder & MIRBuilder) const4244 MachineInstr *AArch64InstructionSelector::emitCSetForFCmp(
4245 Register Dst, CmpInst::Predicate Pred, MachineIRBuilder &MIRBuilder) const {
4246 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4247 #ifndef NDEBUG
4248 LLT Ty = MRI.getType(Dst);
4249 assert(!Ty.isVector() && Ty.getSizeInBits() == 32 &&
4250 "Expected a 32-bit scalar register?");
4251 #endif
4252 const Register ZeroReg = AArch64::WZR;
4253 auto EmitCSet = [&](Register CsetDst, AArch64CC::CondCode CC) {
4254 auto CSet =
4255 MIRBuilder.buildInstr(AArch64::CSINCWr, {CsetDst}, {ZeroReg, ZeroReg})
4256 .addImm(getInvertedCondCode(CC));
4257 constrainSelectedInstRegOperands(*CSet, TII, TRI, RBI);
4258 return &*CSet;
4259 };
4260
4261 AArch64CC::CondCode CC1, CC2;
4262 changeFCMPPredToAArch64CC(Pred, CC1, CC2);
4263 if (CC2 == AArch64CC::AL)
4264 return EmitCSet(Dst, CC1);
4265
4266 const TargetRegisterClass *RC = &AArch64::GPR32RegClass;
4267 Register Def1Reg = MRI.createVirtualRegister(RC);
4268 Register Def2Reg = MRI.createVirtualRegister(RC);
4269 EmitCSet(Def1Reg, CC1);
4270 EmitCSet(Def2Reg, CC2);
4271 auto OrMI = MIRBuilder.buildInstr(AArch64::ORRWrr, {Dst}, {Def1Reg, Def2Reg});
4272 constrainSelectedInstRegOperands(*OrMI, TII, TRI, RBI);
4273 return &*OrMI;
4274 }
4275
4276 MachineInstr *
emitFPCompare(Register LHS,Register RHS,MachineIRBuilder & MIRBuilder,Optional<CmpInst::Predicate> Pred) const4277 AArch64InstructionSelector::emitFPCompare(Register LHS, Register RHS,
4278 MachineIRBuilder &MIRBuilder,
4279 Optional<CmpInst::Predicate> Pred) const {
4280 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4281 LLT Ty = MRI.getType(LHS);
4282 if (Ty.isVector())
4283 return nullptr;
4284 unsigned OpSize = Ty.getSizeInBits();
4285 if (OpSize != 32 && OpSize != 64)
4286 return nullptr;
4287
4288 // If this is a compare against +0.0, then we don't have
4289 // to explicitly materialize a constant.
4290 const ConstantFP *FPImm = getConstantFPVRegVal(RHS, MRI);
4291 bool ShouldUseImm = FPImm && (FPImm->isZero() && !FPImm->isNegative());
4292
4293 auto IsEqualityPred = [](CmpInst::Predicate P) {
4294 return P == CmpInst::FCMP_OEQ || P == CmpInst::FCMP_ONE ||
4295 P == CmpInst::FCMP_UEQ || P == CmpInst::FCMP_UNE;
4296 };
4297 if (!ShouldUseImm && Pred && IsEqualityPred(*Pred)) {
4298 // Try commutating the operands.
4299 const ConstantFP *LHSImm = getConstantFPVRegVal(LHS, MRI);
4300 if (LHSImm && (LHSImm->isZero() && !LHSImm->isNegative())) {
4301 ShouldUseImm = true;
4302 std::swap(LHS, RHS);
4303 }
4304 }
4305 unsigned CmpOpcTbl[2][2] = {{AArch64::FCMPSrr, AArch64::FCMPDrr},
4306 {AArch64::FCMPSri, AArch64::FCMPDri}};
4307 unsigned CmpOpc = CmpOpcTbl[ShouldUseImm][OpSize == 64];
4308
4309 // Partially build the compare. Decide if we need to add a use for the
4310 // third operand based off whether or not we're comparing against 0.0.
4311 auto CmpMI = MIRBuilder.buildInstr(CmpOpc).addUse(LHS);
4312 if (!ShouldUseImm)
4313 CmpMI.addUse(RHS);
4314 constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
4315 return &*CmpMI;
4316 }
4317
emitVectorConcat(Optional<Register> Dst,Register Op1,Register Op2,MachineIRBuilder & MIRBuilder) const4318 MachineInstr *AArch64InstructionSelector::emitVectorConcat(
4319 Optional<Register> Dst, Register Op1, Register Op2,
4320 MachineIRBuilder &MIRBuilder) const {
4321 // We implement a vector concat by:
4322 // 1. Use scalar_to_vector to insert the lower vector into the larger dest
4323 // 2. Insert the upper vector into the destination's upper element
4324 // TODO: some of this code is common with G_BUILD_VECTOR handling.
4325 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4326
4327 const LLT Op1Ty = MRI.getType(Op1);
4328 const LLT Op2Ty = MRI.getType(Op2);
4329
4330 if (Op1Ty != Op2Ty) {
4331 LLVM_DEBUG(dbgs() << "Could not do vector concat of differing vector tys");
4332 return nullptr;
4333 }
4334 assert(Op1Ty.isVector() && "Expected a vector for vector concat");
4335
4336 if (Op1Ty.getSizeInBits() >= 128) {
4337 LLVM_DEBUG(dbgs() << "Vector concat not supported for full size vectors");
4338 return nullptr;
4339 }
4340
4341 // At the moment we just support 64 bit vector concats.
4342 if (Op1Ty.getSizeInBits() != 64) {
4343 LLVM_DEBUG(dbgs() << "Vector concat supported for 64b vectors");
4344 return nullptr;
4345 }
4346
4347 const LLT ScalarTy = LLT::scalar(Op1Ty.getSizeInBits());
4348 const RegisterBank &FPRBank = *RBI.getRegBank(Op1, MRI, TRI);
4349 const TargetRegisterClass *DstRC =
4350 getMinClassForRegBank(FPRBank, Op1Ty.getSizeInBits() * 2);
4351
4352 MachineInstr *WidenedOp1 =
4353 emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op1, MIRBuilder);
4354 MachineInstr *WidenedOp2 =
4355 emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op2, MIRBuilder);
4356 if (!WidenedOp1 || !WidenedOp2) {
4357 LLVM_DEBUG(dbgs() << "Could not emit a vector from scalar value");
4358 return nullptr;
4359 }
4360
4361 // Now do the insert of the upper element.
4362 unsigned InsertOpc, InsSubRegIdx;
4363 std::tie(InsertOpc, InsSubRegIdx) =
4364 getInsertVecEltOpInfo(FPRBank, ScalarTy.getSizeInBits());
4365
4366 if (!Dst)
4367 Dst = MRI.createVirtualRegister(DstRC);
4368 auto InsElt =
4369 MIRBuilder
4370 .buildInstr(InsertOpc, {*Dst}, {WidenedOp1->getOperand(0).getReg()})
4371 .addImm(1) /* Lane index */
4372 .addUse(WidenedOp2->getOperand(0).getReg())
4373 .addImm(0);
4374 constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
4375 return &*InsElt;
4376 }
4377
4378 MachineInstr *
emitCSetForICMP(Register DefReg,unsigned Pred,MachineIRBuilder & MIRBuilder,Register SrcReg) const4379 AArch64InstructionSelector::emitCSetForICMP(Register DefReg, unsigned Pred,
4380 MachineIRBuilder &MIRBuilder,
4381 Register SrcReg) const {
4382 // CSINC increments the result when the predicate is false. Invert it.
4383 const AArch64CC::CondCode InvCC = changeICMPPredToAArch64CC(
4384 CmpInst::getInversePredicate((CmpInst::Predicate)Pred));
4385 auto I = MIRBuilder.buildInstr(AArch64::CSINCWr, {DefReg}, {SrcReg, SrcReg})
4386 .addImm(InvCC);
4387 constrainSelectedInstRegOperands(*I, TII, TRI, RBI);
4388 return &*I;
4389 }
4390
4391 std::pair<MachineInstr *, AArch64CC::CondCode>
emitOverflowOp(unsigned Opcode,Register Dst,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4392 AArch64InstructionSelector::emitOverflowOp(unsigned Opcode, Register Dst,
4393 MachineOperand &LHS,
4394 MachineOperand &RHS,
4395 MachineIRBuilder &MIRBuilder) const {
4396 switch (Opcode) {
4397 default:
4398 llvm_unreachable("Unexpected opcode!");
4399 case TargetOpcode::G_SADDO:
4400 return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
4401 case TargetOpcode::G_UADDO:
4402 return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::HS);
4403 case TargetOpcode::G_SSUBO:
4404 return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
4405 case TargetOpcode::G_USUBO:
4406 return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::LO);
4407 }
4408 }
4409
tryOptSelect(MachineInstr & I)4410 bool AArch64InstructionSelector::tryOptSelect(MachineInstr &I) {
4411 MachineRegisterInfo &MRI = *MIB.getMRI();
4412 // We want to recognize this pattern:
4413 //
4414 // $z = G_FCMP pred, $x, $y
4415 // ...
4416 // $w = G_SELECT $z, $a, $b
4417 //
4418 // Where the value of $z is *only* ever used by the G_SELECT (possibly with
4419 // some copies/truncs in between.)
4420 //
4421 // If we see this, then we can emit something like this:
4422 //
4423 // fcmp $x, $y
4424 // fcsel $w, $a, $b, pred
4425 //
4426 // Rather than emitting both of the rather long sequences in the standard
4427 // G_FCMP/G_SELECT select methods.
4428
4429 // First, check if the condition is defined by a compare.
4430 MachineInstr *CondDef = MRI.getVRegDef(I.getOperand(1).getReg());
4431 while (CondDef) {
4432 // We can only fold if all of the defs have one use.
4433 Register CondDefReg = CondDef->getOperand(0).getReg();
4434 if (!MRI.hasOneNonDBGUse(CondDefReg)) {
4435 // Unless it's another select.
4436 for (const MachineInstr &UI : MRI.use_nodbg_instructions(CondDefReg)) {
4437 if (CondDef == &UI)
4438 continue;
4439 if (UI.getOpcode() != TargetOpcode::G_SELECT)
4440 return false;
4441 }
4442 }
4443
4444 // We can skip over G_TRUNC since the condition is 1-bit.
4445 // Truncating/extending can have no impact on the value.
4446 unsigned Opc = CondDef->getOpcode();
4447 if (Opc != TargetOpcode::COPY && Opc != TargetOpcode::G_TRUNC)
4448 break;
4449
4450 // Can't see past copies from physregs.
4451 if (Opc == TargetOpcode::COPY &&
4452 Register::isPhysicalRegister(CondDef->getOperand(1).getReg()))
4453 return false;
4454
4455 CondDef = MRI.getVRegDef(CondDef->getOperand(1).getReg());
4456 }
4457
4458 // Is the condition defined by a compare?
4459 if (!CondDef)
4460 return false;
4461
4462 unsigned CondOpc = CondDef->getOpcode();
4463 if (CondOpc != TargetOpcode::G_ICMP && CondOpc != TargetOpcode::G_FCMP)
4464 return false;
4465
4466 AArch64CC::CondCode CondCode;
4467 if (CondOpc == TargetOpcode::G_ICMP) {
4468 auto Pred =
4469 static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate());
4470 CondCode = changeICMPPredToAArch64CC(Pred);
4471 emitIntegerCompare(CondDef->getOperand(2), CondDef->getOperand(3),
4472 CondDef->getOperand(1), MIB);
4473 } else {
4474 // Get the condition code for the select.
4475 auto Pred =
4476 static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate());
4477 AArch64CC::CondCode CondCode2;
4478 changeFCMPPredToAArch64CC(Pred, CondCode, CondCode2);
4479
4480 // changeFCMPPredToAArch64CC sets CondCode2 to AL when we require two
4481 // instructions to emit the comparison.
4482 // TODO: Handle FCMP_UEQ and FCMP_ONE. After that, this check will be
4483 // unnecessary.
4484 if (CondCode2 != AArch64CC::AL)
4485 return false;
4486
4487 if (!emitFPCompare(CondDef->getOperand(2).getReg(),
4488 CondDef->getOperand(3).getReg(), MIB)) {
4489 LLVM_DEBUG(dbgs() << "Couldn't emit compare for select!\n");
4490 return false;
4491 }
4492 }
4493
4494 // Emit the select.
4495 emitSelect(I.getOperand(0).getReg(), I.getOperand(2).getReg(),
4496 I.getOperand(3).getReg(), CondCode, MIB);
4497 I.eraseFromParent();
4498 return true;
4499 }
4500
tryFoldIntegerCompare(MachineOperand & LHS,MachineOperand & RHS,MachineOperand & Predicate,MachineIRBuilder & MIRBuilder) const4501 MachineInstr *AArch64InstructionSelector::tryFoldIntegerCompare(
4502 MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
4503 MachineIRBuilder &MIRBuilder) const {
4504 assert(LHS.isReg() && RHS.isReg() && Predicate.isPredicate() &&
4505 "Unexpected MachineOperand");
4506 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4507 // We want to find this sort of thing:
4508 // x = G_SUB 0, y
4509 // G_ICMP z, x
4510 //
4511 // In this case, we can fold the G_SUB into the G_ICMP using a CMN instead.
4512 // e.g:
4513 //
4514 // cmn z, y
4515
4516 // Check if the RHS or LHS of the G_ICMP is defined by a SUB
4517 MachineInstr *LHSDef = getDefIgnoringCopies(LHS.getReg(), MRI);
4518 MachineInstr *RHSDef = getDefIgnoringCopies(RHS.getReg(), MRI);
4519 auto P = static_cast<CmpInst::Predicate>(Predicate.getPredicate());
4520 // Given this:
4521 //
4522 // x = G_SUB 0, y
4523 // G_ICMP x, z
4524 //
4525 // Produce this:
4526 //
4527 // cmn y, z
4528 if (isCMN(LHSDef, P, MRI))
4529 return emitCMN(LHSDef->getOperand(2), RHS, MIRBuilder);
4530
4531 // Same idea here, but with the RHS of the compare instead:
4532 //
4533 // Given this:
4534 //
4535 // x = G_SUB 0, y
4536 // G_ICMP z, x
4537 //
4538 // Produce this:
4539 //
4540 // cmn z, y
4541 if (isCMN(RHSDef, P, MRI))
4542 return emitCMN(LHS, RHSDef->getOperand(2), MIRBuilder);
4543
4544 // Given this:
4545 //
4546 // z = G_AND x, y
4547 // G_ICMP z, 0
4548 //
4549 // Produce this if the compare is signed:
4550 //
4551 // tst x, y
4552 if (!CmpInst::isUnsigned(P) && LHSDef &&
4553 LHSDef->getOpcode() == TargetOpcode::G_AND) {
4554 // Make sure that the RHS is 0.
4555 auto ValAndVReg = getConstantVRegValWithLookThrough(RHS.getReg(), MRI);
4556 if (!ValAndVReg || ValAndVReg->Value != 0)
4557 return nullptr;
4558
4559 return emitTST(LHSDef->getOperand(1),
4560 LHSDef->getOperand(2), MIRBuilder);
4561 }
4562
4563 return nullptr;
4564 }
4565
selectShuffleVector(MachineInstr & I,MachineRegisterInfo & MRI)4566 bool AArch64InstructionSelector::selectShuffleVector(
4567 MachineInstr &I, MachineRegisterInfo &MRI) {
4568 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
4569 Register Src1Reg = I.getOperand(1).getReg();
4570 const LLT Src1Ty = MRI.getType(Src1Reg);
4571 Register Src2Reg = I.getOperand(2).getReg();
4572 const LLT Src2Ty = MRI.getType(Src2Reg);
4573 ArrayRef<int> Mask = I.getOperand(3).getShuffleMask();
4574
4575 MachineBasicBlock &MBB = *I.getParent();
4576 MachineFunction &MF = *MBB.getParent();
4577 LLVMContext &Ctx = MF.getFunction().getContext();
4578
4579 // G_SHUFFLE_VECTOR is weird in that the source operands can be scalars, if
4580 // it's originated from a <1 x T> type. Those should have been lowered into
4581 // G_BUILD_VECTOR earlier.
4582 if (!Src1Ty.isVector() || !Src2Ty.isVector()) {
4583 LLVM_DEBUG(dbgs() << "Could not select a \"scalar\" G_SHUFFLE_VECTOR\n");
4584 return false;
4585 }
4586
4587 unsigned BytesPerElt = DstTy.getElementType().getSizeInBits() / 8;
4588
4589 SmallVector<Constant *, 64> CstIdxs;
4590 for (int Val : Mask) {
4591 // For now, any undef indexes we'll just assume to be 0. This should be
4592 // optimized in future, e.g. to select DUP etc.
4593 Val = Val < 0 ? 0 : Val;
4594 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
4595 unsigned Offset = Byte + Val * BytesPerElt;
4596 CstIdxs.emplace_back(ConstantInt::get(Type::getInt8Ty(Ctx), Offset));
4597 }
4598 }
4599
4600 // Use a constant pool to load the index vector for TBL.
4601 Constant *CPVal = ConstantVector::get(CstIdxs);
4602 MachineInstr *IndexLoad = emitLoadFromConstantPool(CPVal, MIB);
4603 if (!IndexLoad) {
4604 LLVM_DEBUG(dbgs() << "Could not load from a constant pool");
4605 return false;
4606 }
4607
4608 if (DstTy.getSizeInBits() != 128) {
4609 assert(DstTy.getSizeInBits() == 64 && "Unexpected shuffle result ty");
4610 // This case can be done with TBL1.
4611 MachineInstr *Concat = emitVectorConcat(None, Src1Reg, Src2Reg, MIB);
4612 if (!Concat) {
4613 LLVM_DEBUG(dbgs() << "Could not do vector concat for tbl1");
4614 return false;
4615 }
4616
4617 // The constant pool load will be 64 bits, so need to convert to FPR128 reg.
4618 IndexLoad = emitScalarToVector(64, &AArch64::FPR128RegClass,
4619 IndexLoad->getOperand(0).getReg(), MIB);
4620
4621 auto TBL1 = MIB.buildInstr(
4622 AArch64::TBLv16i8One, {&AArch64::FPR128RegClass},
4623 {Concat->getOperand(0).getReg(), IndexLoad->getOperand(0).getReg()});
4624 constrainSelectedInstRegOperands(*TBL1, TII, TRI, RBI);
4625
4626 auto Copy =
4627 MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
4628 .addReg(TBL1.getReg(0), 0, AArch64::dsub);
4629 RBI.constrainGenericRegister(Copy.getReg(0), AArch64::FPR64RegClass, MRI);
4630 I.eraseFromParent();
4631 return true;
4632 }
4633
4634 // For TBL2 we need to emit a REG_SEQUENCE to tie together two consecutive
4635 // Q registers for regalloc.
4636 auto RegSeq = MIB.buildInstr(TargetOpcode::REG_SEQUENCE,
4637 {&AArch64::QQRegClass}, {Src1Reg})
4638 .addImm(AArch64::qsub0)
4639 .addUse(Src2Reg)
4640 .addImm(AArch64::qsub1);
4641
4642 auto TBL2 = MIB.buildInstr(AArch64::TBLv16i8Two, {I.getOperand(0)},
4643 {RegSeq, IndexLoad->getOperand(0)});
4644 constrainSelectedInstRegOperands(*RegSeq, TII, TRI, RBI);
4645 constrainSelectedInstRegOperands(*TBL2, TII, TRI, RBI);
4646 I.eraseFromParent();
4647 return true;
4648 }
4649
emitLaneInsert(Optional<Register> DstReg,Register SrcReg,Register EltReg,unsigned LaneIdx,const RegisterBank & RB,MachineIRBuilder & MIRBuilder) const4650 MachineInstr *AArch64InstructionSelector::emitLaneInsert(
4651 Optional<Register> DstReg, Register SrcReg, Register EltReg,
4652 unsigned LaneIdx, const RegisterBank &RB,
4653 MachineIRBuilder &MIRBuilder) const {
4654 MachineInstr *InsElt = nullptr;
4655 const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
4656 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4657
4658 // Create a register to define with the insert if one wasn't passed in.
4659 if (!DstReg)
4660 DstReg = MRI.createVirtualRegister(DstRC);
4661
4662 unsigned EltSize = MRI.getType(EltReg).getSizeInBits();
4663 unsigned Opc = getInsertVecEltOpInfo(RB, EltSize).first;
4664
4665 if (RB.getID() == AArch64::FPRRegBankID) {
4666 auto InsSub = emitScalarToVector(EltSize, DstRC, EltReg, MIRBuilder);
4667 InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
4668 .addImm(LaneIdx)
4669 .addUse(InsSub->getOperand(0).getReg())
4670 .addImm(0);
4671 } else {
4672 InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
4673 .addImm(LaneIdx)
4674 .addUse(EltReg);
4675 }
4676
4677 constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
4678 return InsElt;
4679 }
4680
selectInsertElt(MachineInstr & I,MachineRegisterInfo & MRI)4681 bool AArch64InstructionSelector::selectInsertElt(MachineInstr &I,
4682 MachineRegisterInfo &MRI) {
4683 assert(I.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT);
4684
4685 // Get information on the destination.
4686 Register DstReg = I.getOperand(0).getReg();
4687 const LLT DstTy = MRI.getType(DstReg);
4688 unsigned VecSize = DstTy.getSizeInBits();
4689
4690 // Get information on the element we want to insert into the destination.
4691 Register EltReg = I.getOperand(2).getReg();
4692 const LLT EltTy = MRI.getType(EltReg);
4693 unsigned EltSize = EltTy.getSizeInBits();
4694 if (EltSize < 16 || EltSize > 64)
4695 return false; // Don't support all element types yet.
4696
4697 // Find the definition of the index. Bail out if it's not defined by a
4698 // G_CONSTANT.
4699 Register IdxReg = I.getOperand(3).getReg();
4700 auto VRegAndVal = getConstantVRegValWithLookThrough(IdxReg, MRI);
4701 if (!VRegAndVal)
4702 return false;
4703 unsigned LaneIdx = VRegAndVal->Value.getSExtValue();
4704
4705 // Perform the lane insert.
4706 Register SrcReg = I.getOperand(1).getReg();
4707 const RegisterBank &EltRB = *RBI.getRegBank(EltReg, MRI, TRI);
4708
4709 if (VecSize < 128) {
4710 // If the vector we're inserting into is smaller than 128 bits, widen it
4711 // to 128 to do the insert.
4712 MachineInstr *ScalarToVec =
4713 emitScalarToVector(VecSize, &AArch64::FPR128RegClass, SrcReg, MIB);
4714 if (!ScalarToVec)
4715 return false;
4716 SrcReg = ScalarToVec->getOperand(0).getReg();
4717 }
4718
4719 // Create an insert into a new FPR128 register.
4720 // Note that if our vector is already 128 bits, we end up emitting an extra
4721 // register.
4722 MachineInstr *InsMI =
4723 emitLaneInsert(None, SrcReg, EltReg, LaneIdx, EltRB, MIB);
4724
4725 if (VecSize < 128) {
4726 // If we had to widen to perform the insert, then we have to demote back to
4727 // the original size to get the result we want.
4728 Register DemoteVec = InsMI->getOperand(0).getReg();
4729 const TargetRegisterClass *RC =
4730 getMinClassForRegBank(*RBI.getRegBank(DemoteVec, MRI, TRI), VecSize);
4731 if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
4732 LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
4733 return false;
4734 }
4735 unsigned SubReg = 0;
4736 if (!getSubRegForClass(RC, TRI, SubReg))
4737 return false;
4738 if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
4739 LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << VecSize
4740 << "\n");
4741 return false;
4742 }
4743 MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {})
4744 .addReg(DemoteVec, 0, SubReg);
4745 RBI.constrainGenericRegister(DstReg, *RC, MRI);
4746 } else {
4747 // No widening needed.
4748 InsMI->getOperand(0).setReg(DstReg);
4749 constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
4750 }
4751
4752 I.eraseFromParent();
4753 return true;
4754 }
4755
4756 MachineInstr *
emitConstantVector(Register Dst,Constant * CV,MachineIRBuilder & MIRBuilder,MachineRegisterInfo & MRI)4757 AArch64InstructionSelector::emitConstantVector(Register Dst, Constant *CV,
4758 MachineIRBuilder &MIRBuilder,
4759 MachineRegisterInfo &MRI) {
4760 LLT DstTy = MRI.getType(Dst);
4761 unsigned DstSize = DstTy.getSizeInBits();
4762 if (CV->isNullValue()) {
4763 if (DstSize == 128) {
4764 auto Mov =
4765 MIRBuilder.buildInstr(AArch64::MOVIv2d_ns, {Dst}, {}).addImm(0);
4766 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
4767 return &*Mov;
4768 }
4769
4770 if (DstSize == 64) {
4771 auto Mov =
4772 MIRBuilder
4773 .buildInstr(AArch64::MOVIv2d_ns, {&AArch64::FPR128RegClass}, {})
4774 .addImm(0);
4775 auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {Dst}, {})
4776 .addReg(Mov.getReg(0), 0, AArch64::dsub);
4777 RBI.constrainGenericRegister(Dst, AArch64::FPR64RegClass, MRI);
4778 return &*Copy;
4779 }
4780 }
4781
4782 auto *CPLoad = emitLoadFromConstantPool(CV, MIRBuilder);
4783 if (!CPLoad) {
4784 LLVM_DEBUG(dbgs() << "Could not generate cp load for constant vector!");
4785 return nullptr;
4786 }
4787
4788 auto Copy = MIRBuilder.buildCopy(Dst, CPLoad->getOperand(0));
4789 RBI.constrainGenericRegister(
4790 Dst, *MRI.getRegClass(CPLoad->getOperand(0).getReg()), MRI);
4791 return &*Copy;
4792 }
4793
tryOptConstantBuildVec(MachineInstr & I,LLT DstTy,MachineRegisterInfo & MRI)4794 bool AArch64InstructionSelector::tryOptConstantBuildVec(
4795 MachineInstr &I, LLT DstTy, MachineRegisterInfo &MRI) {
4796 assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
4797 unsigned DstSize = DstTy.getSizeInBits();
4798 assert(DstSize <= 128 && "Unexpected build_vec type!");
4799 if (DstSize < 32)
4800 return false;
4801 // Check if we're building a constant vector, in which case we want to
4802 // generate a constant pool load instead of a vector insert sequence.
4803 SmallVector<Constant *, 16> Csts;
4804 for (unsigned Idx = 1; Idx < I.getNumOperands(); ++Idx) {
4805 // Try to find G_CONSTANT or G_FCONSTANT
4806 auto *OpMI =
4807 getOpcodeDef(TargetOpcode::G_CONSTANT, I.getOperand(Idx).getReg(), MRI);
4808 if (OpMI)
4809 Csts.emplace_back(
4810 const_cast<ConstantInt *>(OpMI->getOperand(1).getCImm()));
4811 else if ((OpMI = getOpcodeDef(TargetOpcode::G_FCONSTANT,
4812 I.getOperand(Idx).getReg(), MRI)))
4813 Csts.emplace_back(
4814 const_cast<ConstantFP *>(OpMI->getOperand(1).getFPImm()));
4815 else
4816 return false;
4817 }
4818 Constant *CV = ConstantVector::get(Csts);
4819 if (!emitConstantVector(I.getOperand(0).getReg(), CV, MIB, MRI))
4820 return false;
4821 I.eraseFromParent();
4822 return true;
4823 }
4824
selectBuildVector(MachineInstr & I,MachineRegisterInfo & MRI)4825 bool AArch64InstructionSelector::selectBuildVector(MachineInstr &I,
4826 MachineRegisterInfo &MRI) {
4827 assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
4828 // Until we port more of the optimized selections, for now just use a vector
4829 // insert sequence.
4830 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
4831 const LLT EltTy = MRI.getType(I.getOperand(1).getReg());
4832 unsigned EltSize = EltTy.getSizeInBits();
4833
4834 if (tryOptConstantBuildVec(I, DstTy, MRI))
4835 return true;
4836 if (EltSize < 16 || EltSize > 64)
4837 return false; // Don't support all element types yet.
4838 const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
4839
4840 const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
4841 MachineInstr *ScalarToVec =
4842 emitScalarToVector(DstTy.getElementType().getSizeInBits(), DstRC,
4843 I.getOperand(1).getReg(), MIB);
4844 if (!ScalarToVec)
4845 return false;
4846
4847 Register DstVec = ScalarToVec->getOperand(0).getReg();
4848 unsigned DstSize = DstTy.getSizeInBits();
4849
4850 // Keep track of the last MI we inserted. Later on, we might be able to save
4851 // a copy using it.
4852 MachineInstr *PrevMI = nullptr;
4853 for (unsigned i = 2, e = DstSize / EltSize + 1; i < e; ++i) {
4854 // Note that if we don't do a subregister copy, we can end up making an
4855 // extra register.
4856 PrevMI = &*emitLaneInsert(None, DstVec, I.getOperand(i).getReg(), i - 1, RB,
4857 MIB);
4858 DstVec = PrevMI->getOperand(0).getReg();
4859 }
4860
4861 // If DstTy's size in bits is less than 128, then emit a subregister copy
4862 // from DstVec to the last register we've defined.
4863 if (DstSize < 128) {
4864 // Force this to be FPR using the destination vector.
4865 const TargetRegisterClass *RC =
4866 getMinClassForRegBank(*RBI.getRegBank(DstVec, MRI, TRI), DstSize);
4867 if (!RC)
4868 return false;
4869 if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
4870 LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
4871 return false;
4872 }
4873
4874 unsigned SubReg = 0;
4875 if (!getSubRegForClass(RC, TRI, SubReg))
4876 return false;
4877 if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
4878 LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << DstSize
4879 << "\n");
4880 return false;
4881 }
4882
4883 Register Reg = MRI.createVirtualRegister(RC);
4884 Register DstReg = I.getOperand(0).getReg();
4885
4886 MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {}).addReg(DstVec, 0, SubReg);
4887 MachineOperand &RegOp = I.getOperand(1);
4888 RegOp.setReg(Reg);
4889 RBI.constrainGenericRegister(DstReg, *RC, MRI);
4890 } else {
4891 // We don't need a subregister copy. Save a copy by re-using the
4892 // destination register on the final insert.
4893 assert(PrevMI && "PrevMI was null?");
4894 PrevMI->getOperand(0).setReg(I.getOperand(0).getReg());
4895 constrainSelectedInstRegOperands(*PrevMI, TII, TRI, RBI);
4896 }
4897
4898 I.eraseFromParent();
4899 return true;
4900 }
4901
4902 /// Helper function to find an intrinsic ID on an a MachineInstr. Returns the
4903 /// ID if it exists, and 0 otherwise.
findIntrinsicID(MachineInstr & I)4904 static unsigned findIntrinsicID(MachineInstr &I) {
4905 auto IntrinOp = find_if(I.operands(), [&](const MachineOperand &Op) {
4906 return Op.isIntrinsicID();
4907 });
4908 if (IntrinOp == I.operands_end())
4909 return 0;
4910 return IntrinOp->getIntrinsicID();
4911 }
4912
selectIntrinsicWithSideEffects(MachineInstr & I,MachineRegisterInfo & MRI)4913 bool AArch64InstructionSelector::selectIntrinsicWithSideEffects(
4914 MachineInstr &I, MachineRegisterInfo &MRI) {
4915 // Find the intrinsic ID.
4916 unsigned IntrinID = findIntrinsicID(I);
4917 if (!IntrinID)
4918 return false;
4919
4920 // Select the instruction.
4921 switch (IntrinID) {
4922 default:
4923 return false;
4924 case Intrinsic::aarch64_ldxp:
4925 case Intrinsic::aarch64_ldaxp: {
4926 auto NewI = MIB.buildInstr(
4927 IntrinID == Intrinsic::aarch64_ldxp ? AArch64::LDXPX : AArch64::LDAXPX,
4928 {I.getOperand(0).getReg(), I.getOperand(1).getReg()},
4929 {I.getOperand(3)});
4930 NewI.cloneMemRefs(I);
4931 break;
4932 }
4933 case Intrinsic::trap:
4934 MIB.buildInstr(AArch64::BRK, {}, {}).addImm(1);
4935 break;
4936 case Intrinsic::debugtrap:
4937 MIB.buildInstr(AArch64::BRK, {}, {}).addImm(0xF000);
4938 break;
4939 case Intrinsic::ubsantrap:
4940 MIB.buildInstr(AArch64::BRK, {}, {})
4941 .addImm(I.getOperand(1).getImm() | ('U' << 8));
4942 break;
4943 }
4944
4945 I.eraseFromParent();
4946 return true;
4947 }
4948
selectIntrinsic(MachineInstr & I,MachineRegisterInfo & MRI)4949 bool AArch64InstructionSelector::selectIntrinsic(MachineInstr &I,
4950 MachineRegisterInfo &MRI) {
4951 unsigned IntrinID = findIntrinsicID(I);
4952 if (!IntrinID)
4953 return false;
4954
4955 switch (IntrinID) {
4956 default:
4957 break;
4958 case Intrinsic::aarch64_crypto_sha1h: {
4959 Register DstReg = I.getOperand(0).getReg();
4960 Register SrcReg = I.getOperand(2).getReg();
4961
4962 // FIXME: Should this be an assert?
4963 if (MRI.getType(DstReg).getSizeInBits() != 32 ||
4964 MRI.getType(SrcReg).getSizeInBits() != 32)
4965 return false;
4966
4967 // The operation has to happen on FPRs. Set up some new FPR registers for
4968 // the source and destination if they are on GPRs.
4969 if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
4970 SrcReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
4971 MIB.buildCopy({SrcReg}, {I.getOperand(2)});
4972
4973 // Make sure the copy ends up getting constrained properly.
4974 RBI.constrainGenericRegister(I.getOperand(2).getReg(),
4975 AArch64::GPR32RegClass, MRI);
4976 }
4977
4978 if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID)
4979 DstReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
4980
4981 // Actually insert the instruction.
4982 auto SHA1Inst = MIB.buildInstr(AArch64::SHA1Hrr, {DstReg}, {SrcReg});
4983 constrainSelectedInstRegOperands(*SHA1Inst, TII, TRI, RBI);
4984
4985 // Did we create a new register for the destination?
4986 if (DstReg != I.getOperand(0).getReg()) {
4987 // Yep. Copy the result of the instruction back into the original
4988 // destination.
4989 MIB.buildCopy({I.getOperand(0)}, {DstReg});
4990 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
4991 AArch64::GPR32RegClass, MRI);
4992 }
4993
4994 I.eraseFromParent();
4995 return true;
4996 }
4997 case Intrinsic::frameaddress:
4998 case Intrinsic::returnaddress: {
4999 MachineFunction &MF = *I.getParent()->getParent();
5000 MachineFrameInfo &MFI = MF.getFrameInfo();
5001
5002 unsigned Depth = I.getOperand(2).getImm();
5003 Register DstReg = I.getOperand(0).getReg();
5004 RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI);
5005
5006 if (Depth == 0 && IntrinID == Intrinsic::returnaddress) {
5007 if (!MFReturnAddr) {
5008 // Insert the copy from LR/X30 into the entry block, before it can be
5009 // clobbered by anything.
5010 MFI.setReturnAddressIsTaken(true);
5011 MFReturnAddr = getFunctionLiveInPhysReg(MF, TII, AArch64::LR,
5012 AArch64::GPR64RegClass);
5013 }
5014
5015 if (STI.hasPAuth()) {
5016 MIB.buildInstr(AArch64::XPACI, {DstReg}, {MFReturnAddr});
5017 } else {
5018 MIB.buildCopy({Register(AArch64::LR)}, {MFReturnAddr});
5019 MIB.buildInstr(AArch64::XPACLRI);
5020 MIB.buildCopy({DstReg}, {Register(AArch64::LR)});
5021 }
5022
5023 I.eraseFromParent();
5024 return true;
5025 }
5026
5027 MFI.setFrameAddressIsTaken(true);
5028 Register FrameAddr(AArch64::FP);
5029 while (Depth--) {
5030 Register NextFrame = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
5031 auto Ldr =
5032 MIB.buildInstr(AArch64::LDRXui, {NextFrame}, {FrameAddr}).addImm(0);
5033 constrainSelectedInstRegOperands(*Ldr, TII, TRI, RBI);
5034 FrameAddr = NextFrame;
5035 }
5036
5037 if (IntrinID == Intrinsic::frameaddress)
5038 MIB.buildCopy({DstReg}, {FrameAddr});
5039 else {
5040 MFI.setReturnAddressIsTaken(true);
5041
5042 if (STI.hasPAuth()) {
5043 Register TmpReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
5044 MIB.buildInstr(AArch64::LDRXui, {TmpReg}, {FrameAddr}).addImm(1);
5045 MIB.buildInstr(AArch64::XPACI, {DstReg}, {TmpReg});
5046 } else {
5047 MIB.buildInstr(AArch64::LDRXui, {Register(AArch64::LR)}, {FrameAddr})
5048 .addImm(1);
5049 MIB.buildInstr(AArch64::XPACLRI);
5050 MIB.buildCopy({DstReg}, {Register(AArch64::LR)});
5051 }
5052 }
5053
5054 I.eraseFromParent();
5055 return true;
5056 }
5057 case Intrinsic::swift_async_context_addr:
5058 auto Sub = MIB.buildInstr(AArch64::SUBXri, {I.getOperand(0).getReg()},
5059 {Register(AArch64::FP)})
5060 .addImm(8)
5061 .addImm(0);
5062 constrainSelectedInstRegOperands(*Sub, TII, TRI, RBI);
5063
5064 MF->getFrameInfo().setFrameAddressIsTaken(true);
5065 MF->getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);
5066 I.eraseFromParent();
5067 return true;
5068 }
5069 return false;
5070 }
5071
5072 InstructionSelector::ComplexRendererFns
selectShiftA_32(const MachineOperand & Root) const5073 AArch64InstructionSelector::selectShiftA_32(const MachineOperand &Root) const {
5074 auto MaybeImmed = getImmedFromMO(Root);
5075 if (MaybeImmed == None || *MaybeImmed > 31)
5076 return None;
5077 uint64_t Enc = (32 - *MaybeImmed) & 0x1f;
5078 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
5079 }
5080
5081 InstructionSelector::ComplexRendererFns
selectShiftB_32(const MachineOperand & Root) const5082 AArch64InstructionSelector::selectShiftB_32(const MachineOperand &Root) const {
5083 auto MaybeImmed = getImmedFromMO(Root);
5084 if (MaybeImmed == None || *MaybeImmed > 31)
5085 return None;
5086 uint64_t Enc = 31 - *MaybeImmed;
5087 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
5088 }
5089
5090 InstructionSelector::ComplexRendererFns
selectShiftA_64(const MachineOperand & Root) const5091 AArch64InstructionSelector::selectShiftA_64(const MachineOperand &Root) const {
5092 auto MaybeImmed = getImmedFromMO(Root);
5093 if (MaybeImmed == None || *MaybeImmed > 63)
5094 return None;
5095 uint64_t Enc = (64 - *MaybeImmed) & 0x3f;
5096 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
5097 }
5098
5099 InstructionSelector::ComplexRendererFns
selectShiftB_64(const MachineOperand & Root) const5100 AArch64InstructionSelector::selectShiftB_64(const MachineOperand &Root) const {
5101 auto MaybeImmed = getImmedFromMO(Root);
5102 if (MaybeImmed == None || *MaybeImmed > 63)
5103 return None;
5104 uint64_t Enc = 63 - *MaybeImmed;
5105 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
5106 }
5107
5108 /// Helper to select an immediate value that can be represented as a 12-bit
5109 /// value shifted left by either 0 or 12. If it is possible to do so, return
5110 /// the immediate and shift value. If not, return None.
5111 ///
5112 /// Used by selectArithImmed and selectNegArithImmed.
5113 InstructionSelector::ComplexRendererFns
select12BitValueWithLeftShift(uint64_t Immed) const5114 AArch64InstructionSelector::select12BitValueWithLeftShift(
5115 uint64_t Immed) const {
5116 unsigned ShiftAmt;
5117 if (Immed >> 12 == 0) {
5118 ShiftAmt = 0;
5119 } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
5120 ShiftAmt = 12;
5121 Immed = Immed >> 12;
5122 } else
5123 return None;
5124
5125 unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
5126 return {{
5127 [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed); },
5128 [=](MachineInstrBuilder &MIB) { MIB.addImm(ShVal); },
5129 }};
5130 }
5131
5132 /// SelectArithImmed - Select an immediate value that can be represented as
5133 /// a 12-bit value shifted left by either 0 or 12. If so, return true with
5134 /// Val set to the 12-bit value and Shift set to the shifter operand.
5135 InstructionSelector::ComplexRendererFns
selectArithImmed(MachineOperand & Root) const5136 AArch64InstructionSelector::selectArithImmed(MachineOperand &Root) const {
5137 // This function is called from the addsub_shifted_imm ComplexPattern,
5138 // which lists [imm] as the list of opcode it's interested in, however
5139 // we still need to check whether the operand is actually an immediate
5140 // here because the ComplexPattern opcode list is only used in
5141 // root-level opcode matching.
5142 auto MaybeImmed = getImmedFromMO(Root);
5143 if (MaybeImmed == None)
5144 return None;
5145 return select12BitValueWithLeftShift(*MaybeImmed);
5146 }
5147
5148 /// SelectNegArithImmed - As above, but negates the value before trying to
5149 /// select it.
5150 InstructionSelector::ComplexRendererFns
selectNegArithImmed(MachineOperand & Root) const5151 AArch64InstructionSelector::selectNegArithImmed(MachineOperand &Root) const {
5152 // We need a register here, because we need to know if we have a 64 or 32
5153 // bit immediate.
5154 if (!Root.isReg())
5155 return None;
5156 auto MaybeImmed = getImmedFromMO(Root);
5157 if (MaybeImmed == None)
5158 return None;
5159 uint64_t Immed = *MaybeImmed;
5160
5161 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
5162 // have the opposite effect on the C flag, so this pattern mustn't match under
5163 // those circumstances.
5164 if (Immed == 0)
5165 return None;
5166
5167 // Check if we're dealing with a 32-bit type on the root or a 64-bit type on
5168 // the root.
5169 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
5170 if (MRI.getType(Root.getReg()).getSizeInBits() == 32)
5171 Immed = ~((uint32_t)Immed) + 1;
5172 else
5173 Immed = ~Immed + 1ULL;
5174
5175 if (Immed & 0xFFFFFFFFFF000000ULL)
5176 return None;
5177
5178 Immed &= 0xFFFFFFULL;
5179 return select12BitValueWithLeftShift(Immed);
5180 }
5181
5182 /// Return true if it is worth folding MI into an extended register. That is,
5183 /// if it's safe to pull it into the addressing mode of a load or store as a
5184 /// shift.
isWorthFoldingIntoExtendedReg(MachineInstr & MI,const MachineRegisterInfo & MRI) const5185 bool AArch64InstructionSelector::isWorthFoldingIntoExtendedReg(
5186 MachineInstr &MI, const MachineRegisterInfo &MRI) const {
5187 // Always fold if there is one use, or if we're optimizing for size.
5188 Register DefReg = MI.getOperand(0).getReg();
5189 if (MRI.hasOneNonDBGUse(DefReg) ||
5190 MI.getParent()->getParent()->getFunction().hasOptSize())
5191 return true;
5192
5193 // It's better to avoid folding and recomputing shifts when we don't have a
5194 // fastpath.
5195 if (!STI.hasLSLFast())
5196 return false;
5197
5198 // We have a fastpath, so folding a shift in and potentially computing it
5199 // many times may be beneficial. Check if this is only used in memory ops.
5200 // If it is, then we should fold.
5201 return all_of(MRI.use_nodbg_instructions(DefReg),
5202 [](MachineInstr &Use) { return Use.mayLoadOrStore(); });
5203 }
5204
isSignExtendShiftType(AArch64_AM::ShiftExtendType Type)5205 static bool isSignExtendShiftType(AArch64_AM::ShiftExtendType Type) {
5206 switch (Type) {
5207 case AArch64_AM::SXTB:
5208 case AArch64_AM::SXTH:
5209 case AArch64_AM::SXTW:
5210 return true;
5211 default:
5212 return false;
5213 }
5214 }
5215
5216 InstructionSelector::ComplexRendererFns
selectExtendedSHL(MachineOperand & Root,MachineOperand & Base,MachineOperand & Offset,unsigned SizeInBytes,bool WantsExt) const5217 AArch64InstructionSelector::selectExtendedSHL(
5218 MachineOperand &Root, MachineOperand &Base, MachineOperand &Offset,
5219 unsigned SizeInBytes, bool WantsExt) const {
5220 assert(Base.isReg() && "Expected base to be a register operand");
5221 assert(Offset.isReg() && "Expected offset to be a register operand");
5222
5223 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
5224 MachineInstr *OffsetInst = MRI.getVRegDef(Offset.getReg());
5225 if (!OffsetInst)
5226 return None;
5227
5228 unsigned OffsetOpc = OffsetInst->getOpcode();
5229 bool LookedThroughZExt = false;
5230 if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL) {
5231 // Try to look through a ZEXT.
5232 if (OffsetOpc != TargetOpcode::G_ZEXT || !WantsExt)
5233 return None;
5234
5235 OffsetInst = MRI.getVRegDef(OffsetInst->getOperand(1).getReg());
5236 OffsetOpc = OffsetInst->getOpcode();
5237 LookedThroughZExt = true;
5238
5239 if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL)
5240 return None;
5241 }
5242 // Make sure that the memory op is a valid size.
5243 int64_t LegalShiftVal = Log2_32(SizeInBytes);
5244 if (LegalShiftVal == 0)
5245 return None;
5246 if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
5247 return None;
5248
5249 // Now, try to find the specific G_CONSTANT. Start by assuming that the
5250 // register we will offset is the LHS, and the register containing the
5251 // constant is the RHS.
5252 Register OffsetReg = OffsetInst->getOperand(1).getReg();
5253 Register ConstantReg = OffsetInst->getOperand(2).getReg();
5254 auto ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
5255 if (!ValAndVReg) {
5256 // We didn't get a constant on the RHS. If the opcode is a shift, then
5257 // we're done.
5258 if (OffsetOpc == TargetOpcode::G_SHL)
5259 return None;
5260
5261 // If we have a G_MUL, we can use either register. Try looking at the RHS.
5262 std::swap(OffsetReg, ConstantReg);
5263 ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
5264 if (!ValAndVReg)
5265 return None;
5266 }
5267
5268 // The value must fit into 3 bits, and must be positive. Make sure that is
5269 // true.
5270 int64_t ImmVal = ValAndVReg->Value.getSExtValue();
5271
5272 // Since we're going to pull this into a shift, the constant value must be
5273 // a power of 2. If we got a multiply, then we need to check this.
5274 if (OffsetOpc == TargetOpcode::G_MUL) {
5275 if (!isPowerOf2_32(ImmVal))
5276 return None;
5277
5278 // Got a power of 2. So, the amount we'll shift is the log base-2 of that.
5279 ImmVal = Log2_32(ImmVal);
5280 }
5281
5282 if ((ImmVal & 0x7) != ImmVal)
5283 return None;
5284
5285 // We are only allowed to shift by LegalShiftVal. This shift value is built
5286 // into the instruction, so we can't just use whatever we want.
5287 if (ImmVal != LegalShiftVal)
5288 return None;
5289
5290 unsigned SignExtend = 0;
5291 if (WantsExt) {
5292 // Check if the offset is defined by an extend, unless we looked through a
5293 // G_ZEXT earlier.
5294 if (!LookedThroughZExt) {
5295 MachineInstr *ExtInst = getDefIgnoringCopies(OffsetReg, MRI);
5296 auto Ext = getExtendTypeForInst(*ExtInst, MRI, true);
5297 if (Ext == AArch64_AM::InvalidShiftExtend)
5298 return None;
5299
5300 SignExtend = isSignExtendShiftType(Ext) ? 1 : 0;
5301 // We only support SXTW for signed extension here.
5302 if (SignExtend && Ext != AArch64_AM::SXTW)
5303 return None;
5304 OffsetReg = ExtInst->getOperand(1).getReg();
5305 }
5306
5307 // Need a 32-bit wide register here.
5308 MachineIRBuilder MIB(*MRI.getVRegDef(Root.getReg()));
5309 OffsetReg = moveScalarRegClass(OffsetReg, AArch64::GPR32RegClass, MIB);
5310 }
5311
5312 // We can use the LHS of the GEP as the base, and the LHS of the shift as an
5313 // offset. Signify that we are shifting by setting the shift flag to 1.
5314 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(Base.getReg()); },
5315 [=](MachineInstrBuilder &MIB) { MIB.addUse(OffsetReg); },
5316 [=](MachineInstrBuilder &MIB) {
5317 // Need to add both immediates here to make sure that they are both
5318 // added to the instruction.
5319 MIB.addImm(SignExtend);
5320 MIB.addImm(1);
5321 }}};
5322 }
5323
5324 /// This is used for computing addresses like this:
5325 ///
5326 /// ldr x1, [x2, x3, lsl #3]
5327 ///
5328 /// Where x2 is the base register, and x3 is an offset register. The shift-left
5329 /// is a constant value specific to this load instruction. That is, we'll never
5330 /// see anything other than a 3 here (which corresponds to the size of the
5331 /// element being loaded.)
5332 InstructionSelector::ComplexRendererFns
selectAddrModeShiftedExtendXReg(MachineOperand & Root,unsigned SizeInBytes) const5333 AArch64InstructionSelector::selectAddrModeShiftedExtendXReg(
5334 MachineOperand &Root, unsigned SizeInBytes) const {
5335 if (!Root.isReg())
5336 return None;
5337 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
5338
5339 // We want to find something like this:
5340 //
5341 // val = G_CONSTANT LegalShiftVal
5342 // shift = G_SHL off_reg val
5343 // ptr = G_PTR_ADD base_reg shift
5344 // x = G_LOAD ptr
5345 //
5346 // And fold it into this addressing mode:
5347 //
5348 // ldr x, [base_reg, off_reg, lsl #LegalShiftVal]
5349
5350 // Check if we can find the G_PTR_ADD.
5351 MachineInstr *PtrAdd =
5352 getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
5353 if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI))
5354 return None;
5355
5356 // Now, try to match an opcode which will match our specific offset.
5357 // We want a G_SHL or a G_MUL.
5358 MachineInstr *OffsetInst =
5359 getDefIgnoringCopies(PtrAdd->getOperand(2).getReg(), MRI);
5360 return selectExtendedSHL(Root, PtrAdd->getOperand(1),
5361 OffsetInst->getOperand(0), SizeInBytes,
5362 /*WantsExt=*/false);
5363 }
5364
5365 /// This is used for computing addresses like this:
5366 ///
5367 /// ldr x1, [x2, x3]
5368 ///
5369 /// Where x2 is the base register, and x3 is an offset register.
5370 ///
5371 /// When possible (or profitable) to fold a G_PTR_ADD into the address calculation,
5372 /// this will do so. Otherwise, it will return None.
5373 InstructionSelector::ComplexRendererFns
selectAddrModeRegisterOffset(MachineOperand & Root) const5374 AArch64InstructionSelector::selectAddrModeRegisterOffset(
5375 MachineOperand &Root) const {
5376 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
5377
5378 // We need a GEP.
5379 MachineInstr *Gep = MRI.getVRegDef(Root.getReg());
5380 if (!Gep || Gep->getOpcode() != TargetOpcode::G_PTR_ADD)
5381 return None;
5382
5383 // If this is used more than once, let's not bother folding.
5384 // TODO: Check if they are memory ops. If they are, then we can still fold
5385 // without having to recompute anything.
5386 if (!MRI.hasOneNonDBGUse(Gep->getOperand(0).getReg()))
5387 return None;
5388
5389 // Base is the GEP's LHS, offset is its RHS.
5390 return {{[=](MachineInstrBuilder &MIB) {
5391 MIB.addUse(Gep->getOperand(1).getReg());
5392 },
5393 [=](MachineInstrBuilder &MIB) {
5394 MIB.addUse(Gep->getOperand(2).getReg());
5395 },
5396 [=](MachineInstrBuilder &MIB) {
5397 // Need to add both immediates here to make sure that they are both
5398 // added to the instruction.
5399 MIB.addImm(0);
5400 MIB.addImm(0);
5401 }}};
5402 }
5403
5404 /// This is intended to be equivalent to selectAddrModeXRO in
5405 /// AArch64ISelDAGtoDAG. It's used for selecting X register offset loads.
5406 InstructionSelector::ComplexRendererFns
selectAddrModeXRO(MachineOperand & Root,unsigned SizeInBytes) const5407 AArch64InstructionSelector::selectAddrModeXRO(MachineOperand &Root,
5408 unsigned SizeInBytes) const {
5409 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
5410 if (!Root.isReg())
5411 return None;
5412 MachineInstr *PtrAdd =
5413 getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
5414 if (!PtrAdd)
5415 return None;
5416
5417 // Check for an immediates which cannot be encoded in the [base + imm]
5418 // addressing mode, and can't be encoded in an add/sub. If this happens, we'll
5419 // end up with code like:
5420 //
5421 // mov x0, wide
5422 // add x1 base, x0
5423 // ldr x2, [x1, x0]
5424 //
5425 // In this situation, we can use the [base, xreg] addressing mode to save an
5426 // add/sub:
5427 //
5428 // mov x0, wide
5429 // ldr x2, [base, x0]
5430 auto ValAndVReg =
5431 getConstantVRegValWithLookThrough(PtrAdd->getOperand(2).getReg(), MRI);
5432 if (ValAndVReg) {
5433 unsigned Scale = Log2_32(SizeInBytes);
5434 int64_t ImmOff = ValAndVReg->Value.getSExtValue();
5435
5436 // Skip immediates that can be selected in the load/store addresing
5437 // mode.
5438 if (ImmOff % SizeInBytes == 0 && ImmOff >= 0 &&
5439 ImmOff < (0x1000 << Scale))
5440 return None;
5441
5442 // Helper lambda to decide whether or not it is preferable to emit an add.
5443 auto isPreferredADD = [](int64_t ImmOff) {
5444 // Constants in [0x0, 0xfff] can be encoded in an add.
5445 if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
5446 return true;
5447
5448 // Can it be encoded in an add lsl #12?
5449 if ((ImmOff & 0xffffffffff000fffLL) != 0x0LL)
5450 return false;
5451
5452 // It can be encoded in an add lsl #12, but we may not want to. If it is
5453 // possible to select this as a single movz, then prefer that. A single
5454 // movz is faster than an add with a shift.
5455 return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
5456 (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
5457 };
5458
5459 // If the immediate can be encoded in a single add/sub, then bail out.
5460 if (isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
5461 return None;
5462 }
5463
5464 // Try to fold shifts into the addressing mode.
5465 auto AddrModeFns = selectAddrModeShiftedExtendXReg(Root, SizeInBytes);
5466 if (AddrModeFns)
5467 return AddrModeFns;
5468
5469 // If that doesn't work, see if it's possible to fold in registers from
5470 // a GEP.
5471 return selectAddrModeRegisterOffset(Root);
5472 }
5473
5474 /// This is used for computing addresses like this:
5475 ///
5476 /// ldr x0, [xBase, wOffset, sxtw #LegalShiftVal]
5477 ///
5478 /// Where we have a 64-bit base register, a 32-bit offset register, and an
5479 /// extend (which may or may not be signed).
5480 InstructionSelector::ComplexRendererFns
selectAddrModeWRO(MachineOperand & Root,unsigned SizeInBytes) const5481 AArch64InstructionSelector::selectAddrModeWRO(MachineOperand &Root,
5482 unsigned SizeInBytes) const {
5483 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
5484
5485 MachineInstr *PtrAdd =
5486 getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
5487 if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI))
5488 return None;
5489
5490 MachineOperand &LHS = PtrAdd->getOperand(1);
5491 MachineOperand &RHS = PtrAdd->getOperand(2);
5492 MachineInstr *OffsetInst = getDefIgnoringCopies(RHS.getReg(), MRI);
5493
5494 // The first case is the same as selectAddrModeXRO, except we need an extend.
5495 // In this case, we try to find a shift and extend, and fold them into the
5496 // addressing mode.
5497 //
5498 // E.g.
5499 //
5500 // off_reg = G_Z/S/ANYEXT ext_reg
5501 // val = G_CONSTANT LegalShiftVal
5502 // shift = G_SHL off_reg val
5503 // ptr = G_PTR_ADD base_reg shift
5504 // x = G_LOAD ptr
5505 //
5506 // In this case we can get a load like this:
5507 //
5508 // ldr x0, [base_reg, ext_reg, sxtw #LegalShiftVal]
5509 auto ExtendedShl = selectExtendedSHL(Root, LHS, OffsetInst->getOperand(0),
5510 SizeInBytes, /*WantsExt=*/true);
5511 if (ExtendedShl)
5512 return ExtendedShl;
5513
5514 // There was no shift. We can try and fold a G_Z/S/ANYEXT in alone though.
5515 //
5516 // e.g.
5517 // ldr something, [base_reg, ext_reg, sxtw]
5518 if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
5519 return None;
5520
5521 // Check if this is an extend. We'll get an extend type if it is.
5522 AArch64_AM::ShiftExtendType Ext =
5523 getExtendTypeForInst(*OffsetInst, MRI, /*IsLoadStore=*/true);
5524 if (Ext == AArch64_AM::InvalidShiftExtend)
5525 return None;
5526
5527 // Need a 32-bit wide register.
5528 MachineIRBuilder MIB(*PtrAdd);
5529 Register ExtReg = moveScalarRegClass(OffsetInst->getOperand(1).getReg(),
5530 AArch64::GPR32RegClass, MIB);
5531 unsigned SignExtend = Ext == AArch64_AM::SXTW;
5532
5533 // Base is LHS, offset is ExtReg.
5534 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(LHS.getReg()); },
5535 [=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
5536 [=](MachineInstrBuilder &MIB) {
5537 MIB.addImm(SignExtend);
5538 MIB.addImm(0);
5539 }}};
5540 }
5541
5542 /// Select a "register plus unscaled signed 9-bit immediate" address. This
5543 /// should only match when there is an offset that is not valid for a scaled
5544 /// immediate addressing mode. The "Size" argument is the size in bytes of the
5545 /// memory reference, which is needed here to know what is valid for a scaled
5546 /// immediate.
5547 InstructionSelector::ComplexRendererFns
selectAddrModeUnscaled(MachineOperand & Root,unsigned Size) const5548 AArch64InstructionSelector::selectAddrModeUnscaled(MachineOperand &Root,
5549 unsigned Size) const {
5550 MachineRegisterInfo &MRI =
5551 Root.getParent()->getParent()->getParent()->getRegInfo();
5552
5553 if (!Root.isReg())
5554 return None;
5555
5556 if (!isBaseWithConstantOffset(Root, MRI))
5557 return None;
5558
5559 MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
5560 if (!RootDef)
5561 return None;
5562
5563 MachineOperand &OffImm = RootDef->getOperand(2);
5564 if (!OffImm.isReg())
5565 return None;
5566 MachineInstr *RHS = MRI.getVRegDef(OffImm.getReg());
5567 if (!RHS || RHS->getOpcode() != TargetOpcode::G_CONSTANT)
5568 return None;
5569 int64_t RHSC;
5570 MachineOperand &RHSOp1 = RHS->getOperand(1);
5571 if (!RHSOp1.isCImm() || RHSOp1.getCImm()->getBitWidth() > 64)
5572 return None;
5573 RHSC = RHSOp1.getCImm()->getSExtValue();
5574
5575 // If the offset is valid as a scaled immediate, don't match here.
5576 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Log2_32(Size)))
5577 return None;
5578 if (RHSC >= -256 && RHSC < 256) {
5579 MachineOperand &Base = RootDef->getOperand(1);
5580 return {{
5581 [=](MachineInstrBuilder &MIB) { MIB.add(Base); },
5582 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC); },
5583 }};
5584 }
5585 return None;
5586 }
5587
5588 InstructionSelector::ComplexRendererFns
tryFoldAddLowIntoImm(MachineInstr & RootDef,unsigned Size,MachineRegisterInfo & MRI) const5589 AArch64InstructionSelector::tryFoldAddLowIntoImm(MachineInstr &RootDef,
5590 unsigned Size,
5591 MachineRegisterInfo &MRI) const {
5592 if (RootDef.getOpcode() != AArch64::G_ADD_LOW)
5593 return None;
5594 MachineInstr &Adrp = *MRI.getVRegDef(RootDef.getOperand(1).getReg());
5595 if (Adrp.getOpcode() != AArch64::ADRP)
5596 return None;
5597
5598 // TODO: add heuristics like isWorthFoldingADDlow() from SelectionDAG.
5599 auto Offset = Adrp.getOperand(1).getOffset();
5600 if (Offset % Size != 0)
5601 return None;
5602
5603 auto GV = Adrp.getOperand(1).getGlobal();
5604 if (GV->isThreadLocal())
5605 return None;
5606
5607 auto &MF = *RootDef.getParent()->getParent();
5608 if (GV->getPointerAlignment(MF.getDataLayout()) < Size)
5609 return None;
5610
5611 unsigned OpFlags = STI.ClassifyGlobalReference(GV, MF.getTarget());
5612 MachineIRBuilder MIRBuilder(RootDef);
5613 Register AdrpReg = Adrp.getOperand(0).getReg();
5614 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(AdrpReg); },
5615 [=](MachineInstrBuilder &MIB) {
5616 MIB.addGlobalAddress(GV, Offset,
5617 OpFlags | AArch64II::MO_PAGEOFF |
5618 AArch64II::MO_NC);
5619 }}};
5620 }
5621
5622 /// Select a "register plus scaled unsigned 12-bit immediate" address. The
5623 /// "Size" argument is the size in bytes of the memory reference, which
5624 /// determines the scale.
5625 InstructionSelector::ComplexRendererFns
selectAddrModeIndexed(MachineOperand & Root,unsigned Size) const5626 AArch64InstructionSelector::selectAddrModeIndexed(MachineOperand &Root,
5627 unsigned Size) const {
5628 MachineFunction &MF = *Root.getParent()->getParent()->getParent();
5629 MachineRegisterInfo &MRI = MF.getRegInfo();
5630
5631 if (!Root.isReg())
5632 return None;
5633
5634 MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
5635 if (!RootDef)
5636 return None;
5637
5638 if (RootDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
5639 return {{
5640 [=](MachineInstrBuilder &MIB) { MIB.add(RootDef->getOperand(1)); },
5641 [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
5642 }};
5643 }
5644
5645 CodeModel::Model CM = MF.getTarget().getCodeModel();
5646 // Check if we can fold in the ADD of small code model ADRP + ADD address.
5647 if (CM == CodeModel::Small) {
5648 auto OpFns = tryFoldAddLowIntoImm(*RootDef, Size, MRI);
5649 if (OpFns)
5650 return OpFns;
5651 }
5652
5653 if (isBaseWithConstantOffset(Root, MRI)) {
5654 MachineOperand &LHS = RootDef->getOperand(1);
5655 MachineOperand &RHS = RootDef->getOperand(2);
5656 MachineInstr *LHSDef = MRI.getVRegDef(LHS.getReg());
5657 MachineInstr *RHSDef = MRI.getVRegDef(RHS.getReg());
5658 if (LHSDef && RHSDef) {
5659 int64_t RHSC = (int64_t)RHSDef->getOperand(1).getCImm()->getZExtValue();
5660 unsigned Scale = Log2_32(Size);
5661 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
5662 if (LHSDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
5663 return {{
5664 [=](MachineInstrBuilder &MIB) { MIB.add(LHSDef->getOperand(1)); },
5665 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
5666 }};
5667
5668 return {{
5669 [=](MachineInstrBuilder &MIB) { MIB.add(LHS); },
5670 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
5671 }};
5672 }
5673 }
5674 }
5675
5676 // Before falling back to our general case, check if the unscaled
5677 // instructions can handle this. If so, that's preferable.
5678 if (selectAddrModeUnscaled(Root, Size).hasValue())
5679 return None;
5680
5681 return {{
5682 [=](MachineInstrBuilder &MIB) { MIB.add(Root); },
5683 [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
5684 }};
5685 }
5686
5687 /// Given a shift instruction, return the correct shift type for that
5688 /// instruction.
getShiftTypeForInst(MachineInstr & MI)5689 static AArch64_AM::ShiftExtendType getShiftTypeForInst(MachineInstr &MI) {
5690 // TODO: Handle AArch64_AM::ROR
5691 switch (MI.getOpcode()) {
5692 default:
5693 return AArch64_AM::InvalidShiftExtend;
5694 case TargetOpcode::G_SHL:
5695 return AArch64_AM::LSL;
5696 case TargetOpcode::G_LSHR:
5697 return AArch64_AM::LSR;
5698 case TargetOpcode::G_ASHR:
5699 return AArch64_AM::ASR;
5700 }
5701 }
5702
5703 /// Select a "shifted register" operand. If the value is not shifted, set the
5704 /// shift operand to a default value of "lsl 0".
5705 ///
5706 /// TODO: Allow shifted register to be rotated in logical instructions.
5707 InstructionSelector::ComplexRendererFns
selectShiftedRegister(MachineOperand & Root) const5708 AArch64InstructionSelector::selectShiftedRegister(MachineOperand &Root) const {
5709 if (!Root.isReg())
5710 return None;
5711 MachineRegisterInfo &MRI =
5712 Root.getParent()->getParent()->getParent()->getRegInfo();
5713
5714 // Check if the operand is defined by an instruction which corresponds to
5715 // a ShiftExtendType. E.g. a G_SHL, G_LSHR, etc.
5716 //
5717 // TODO: Handle AArch64_AM::ROR for logical instructions.
5718 MachineInstr *ShiftInst = MRI.getVRegDef(Root.getReg());
5719 if (!ShiftInst)
5720 return None;
5721 AArch64_AM::ShiftExtendType ShType = getShiftTypeForInst(*ShiftInst);
5722 if (ShType == AArch64_AM::InvalidShiftExtend)
5723 return None;
5724 if (!isWorthFoldingIntoExtendedReg(*ShiftInst, MRI))
5725 return None;
5726
5727 // Need an immediate on the RHS.
5728 MachineOperand &ShiftRHS = ShiftInst->getOperand(2);
5729 auto Immed = getImmedFromMO(ShiftRHS);
5730 if (!Immed)
5731 return None;
5732
5733 // We have something that we can fold. Fold in the shift's LHS and RHS into
5734 // the instruction.
5735 MachineOperand &ShiftLHS = ShiftInst->getOperand(1);
5736 Register ShiftReg = ShiftLHS.getReg();
5737
5738 unsigned NumBits = MRI.getType(ShiftReg).getSizeInBits();
5739 unsigned Val = *Immed & (NumBits - 1);
5740 unsigned ShiftVal = AArch64_AM::getShifterImm(ShType, Val);
5741
5742 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ShiftReg); },
5743 [=](MachineInstrBuilder &MIB) { MIB.addImm(ShiftVal); }}};
5744 }
5745
getExtendTypeForInst(MachineInstr & MI,MachineRegisterInfo & MRI,bool IsLoadStore) const5746 AArch64_AM::ShiftExtendType AArch64InstructionSelector::getExtendTypeForInst(
5747 MachineInstr &MI, MachineRegisterInfo &MRI, bool IsLoadStore) const {
5748 unsigned Opc = MI.getOpcode();
5749
5750 // Handle explicit extend instructions first.
5751 if (Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG) {
5752 unsigned Size;
5753 if (Opc == TargetOpcode::G_SEXT)
5754 Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5755 else
5756 Size = MI.getOperand(2).getImm();
5757 assert(Size != 64 && "Extend from 64 bits?");
5758 switch (Size) {
5759 case 8:
5760 return AArch64_AM::SXTB;
5761 case 16:
5762 return AArch64_AM::SXTH;
5763 case 32:
5764 return AArch64_AM::SXTW;
5765 default:
5766 return AArch64_AM::InvalidShiftExtend;
5767 }
5768 }
5769
5770 if (Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_ANYEXT) {
5771 unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5772 assert(Size != 64 && "Extend from 64 bits?");
5773 switch (Size) {
5774 case 8:
5775 return AArch64_AM::UXTB;
5776 case 16:
5777 return AArch64_AM::UXTH;
5778 case 32:
5779 return AArch64_AM::UXTW;
5780 default:
5781 return AArch64_AM::InvalidShiftExtend;
5782 }
5783 }
5784
5785 // Don't have an explicit extend. Try to handle a G_AND with a constant mask
5786 // on the RHS.
5787 if (Opc != TargetOpcode::G_AND)
5788 return AArch64_AM::InvalidShiftExtend;
5789
5790 Optional<uint64_t> MaybeAndMask = getImmedFromMO(MI.getOperand(2));
5791 if (!MaybeAndMask)
5792 return AArch64_AM::InvalidShiftExtend;
5793 uint64_t AndMask = *MaybeAndMask;
5794 switch (AndMask) {
5795 default:
5796 return AArch64_AM::InvalidShiftExtend;
5797 case 0xFF:
5798 return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
5799 case 0xFFFF:
5800 return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
5801 case 0xFFFFFFFF:
5802 return AArch64_AM::UXTW;
5803 }
5804 }
5805
moveScalarRegClass(Register Reg,const TargetRegisterClass & RC,MachineIRBuilder & MIB) const5806 Register AArch64InstructionSelector::moveScalarRegClass(
5807 Register Reg, const TargetRegisterClass &RC, MachineIRBuilder &MIB) const {
5808 MachineRegisterInfo &MRI = *MIB.getMRI();
5809 auto Ty = MRI.getType(Reg);
5810 assert(!Ty.isVector() && "Expected scalars only!");
5811 if (Ty.getSizeInBits() == TRI.getRegSizeInBits(RC))
5812 return Reg;
5813
5814 // Create a copy and immediately select it.
5815 // FIXME: We should have an emitCopy function?
5816 auto Copy = MIB.buildCopy({&RC}, {Reg});
5817 selectCopy(*Copy, TII, MRI, TRI, RBI);
5818 return Copy.getReg(0);
5819 }
5820
5821 /// Select an "extended register" operand. This operand folds in an extend
5822 /// followed by an optional left shift.
5823 InstructionSelector::ComplexRendererFns
selectArithExtendedRegister(MachineOperand & Root) const5824 AArch64InstructionSelector::selectArithExtendedRegister(
5825 MachineOperand &Root) const {
5826 if (!Root.isReg())
5827 return None;
5828 MachineRegisterInfo &MRI =
5829 Root.getParent()->getParent()->getParent()->getRegInfo();
5830
5831 uint64_t ShiftVal = 0;
5832 Register ExtReg;
5833 AArch64_AM::ShiftExtendType Ext;
5834 MachineInstr *RootDef = getDefIgnoringCopies(Root.getReg(), MRI);
5835 if (!RootDef)
5836 return None;
5837
5838 if (!isWorthFoldingIntoExtendedReg(*RootDef, MRI))
5839 return None;
5840
5841 // Check if we can fold a shift and an extend.
5842 if (RootDef->getOpcode() == TargetOpcode::G_SHL) {
5843 // Look for a constant on the RHS of the shift.
5844 MachineOperand &RHS = RootDef->getOperand(2);
5845 Optional<uint64_t> MaybeShiftVal = getImmedFromMO(RHS);
5846 if (!MaybeShiftVal)
5847 return None;
5848 ShiftVal = *MaybeShiftVal;
5849 if (ShiftVal > 4)
5850 return None;
5851 // Look for a valid extend instruction on the LHS of the shift.
5852 MachineOperand &LHS = RootDef->getOperand(1);
5853 MachineInstr *ExtDef = getDefIgnoringCopies(LHS.getReg(), MRI);
5854 if (!ExtDef)
5855 return None;
5856 Ext = getExtendTypeForInst(*ExtDef, MRI);
5857 if (Ext == AArch64_AM::InvalidShiftExtend)
5858 return None;
5859 ExtReg = ExtDef->getOperand(1).getReg();
5860 } else {
5861 // Didn't get a shift. Try just folding an extend.
5862 Ext = getExtendTypeForInst(*RootDef, MRI);
5863 if (Ext == AArch64_AM::InvalidShiftExtend)
5864 return None;
5865 ExtReg = RootDef->getOperand(1).getReg();
5866
5867 // If we have a 32 bit instruction which zeroes out the high half of a
5868 // register, we get an implicit zero extend for free. Check if we have one.
5869 // FIXME: We actually emit the extend right now even though we don't have
5870 // to.
5871 if (Ext == AArch64_AM::UXTW && MRI.getType(ExtReg).getSizeInBits() == 32) {
5872 MachineInstr *ExtInst = MRI.getVRegDef(ExtReg);
5873 if (ExtInst && isDef32(*ExtInst))
5874 return None;
5875 }
5876 }
5877
5878 // We require a GPR32 here. Narrow the ExtReg if needed using a subregister
5879 // copy.
5880 MachineIRBuilder MIB(*RootDef);
5881 ExtReg = moveScalarRegClass(ExtReg, AArch64::GPR32RegClass, MIB);
5882
5883 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
5884 [=](MachineInstrBuilder &MIB) {
5885 MIB.addImm(getArithExtendImm(Ext, ShiftVal));
5886 }}};
5887 }
5888
renderTruncImm(MachineInstrBuilder & MIB,const MachineInstr & MI,int OpIdx) const5889 void AArch64InstructionSelector::renderTruncImm(MachineInstrBuilder &MIB,
5890 const MachineInstr &MI,
5891 int OpIdx) const {
5892 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
5893 assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
5894 "Expected G_CONSTANT");
5895 Optional<int64_t> CstVal =
5896 getConstantVRegSExtVal(MI.getOperand(0).getReg(), MRI);
5897 assert(CstVal && "Expected constant value");
5898 MIB.addImm(CstVal.getValue());
5899 }
5900
renderLogicalImm32(MachineInstrBuilder & MIB,const MachineInstr & I,int OpIdx) const5901 void AArch64InstructionSelector::renderLogicalImm32(
5902 MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
5903 assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
5904 "Expected G_CONSTANT");
5905 uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
5906 uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 32);
5907 MIB.addImm(Enc);
5908 }
5909
renderLogicalImm64(MachineInstrBuilder & MIB,const MachineInstr & I,int OpIdx) const5910 void AArch64InstructionSelector::renderLogicalImm64(
5911 MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
5912 assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
5913 "Expected G_CONSTANT");
5914 uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
5915 uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 64);
5916 MIB.addImm(Enc);
5917 }
5918
renderFPImm16(MachineInstrBuilder & MIB,const MachineInstr & MI,int OpIdx) const5919 void AArch64InstructionSelector::renderFPImm16(MachineInstrBuilder &MIB,
5920 const MachineInstr &MI,
5921 int OpIdx) const {
5922 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
5923 "Expected G_FCONSTANT");
5924 MIB.addImm(
5925 AArch64_AM::getFP16Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
5926 }
5927
renderFPImm32(MachineInstrBuilder & MIB,const MachineInstr & MI,int OpIdx) const5928 void AArch64InstructionSelector::renderFPImm32(MachineInstrBuilder &MIB,
5929 const MachineInstr &MI,
5930 int OpIdx) const {
5931 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
5932 "Expected G_FCONSTANT");
5933 MIB.addImm(
5934 AArch64_AM::getFP32Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
5935 }
5936
renderFPImm64(MachineInstrBuilder & MIB,const MachineInstr & MI,int OpIdx) const5937 void AArch64InstructionSelector::renderFPImm64(MachineInstrBuilder &MIB,
5938 const MachineInstr &MI,
5939 int OpIdx) const {
5940 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
5941 "Expected G_FCONSTANT");
5942 MIB.addImm(
5943 AArch64_AM::getFP64Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
5944 }
5945
isLoadStoreOfNumBytes(const MachineInstr & MI,unsigned NumBytes) const5946 bool AArch64InstructionSelector::isLoadStoreOfNumBytes(
5947 const MachineInstr &MI, unsigned NumBytes) const {
5948 if (!MI.mayLoadOrStore())
5949 return false;
5950 assert(MI.hasOneMemOperand() &&
5951 "Expected load/store to have only one mem op!");
5952 return (*MI.memoperands_begin())->getSize() == NumBytes;
5953 }
5954
isDef32(const MachineInstr & MI) const5955 bool AArch64InstructionSelector::isDef32(const MachineInstr &MI) const {
5956 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
5957 if (MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() != 32)
5958 return false;
5959
5960 // Only return true if we know the operation will zero-out the high half of
5961 // the 64-bit register. Truncates can be subregister copies, which don't
5962 // zero out the high bits. Copies and other copy-like instructions can be
5963 // fed by truncates, or could be lowered as subregister copies.
5964 switch (MI.getOpcode()) {
5965 default:
5966 return true;
5967 case TargetOpcode::COPY:
5968 case TargetOpcode::G_BITCAST:
5969 case TargetOpcode::G_TRUNC:
5970 case TargetOpcode::G_PHI:
5971 return false;
5972 }
5973 }
5974
5975
5976 // Perform fixups on the given PHI instruction's operands to force them all
5977 // to be the same as the destination regbank.
fixupPHIOpBanks(MachineInstr & MI,MachineRegisterInfo & MRI,const AArch64RegisterBankInfo & RBI)5978 static void fixupPHIOpBanks(MachineInstr &MI, MachineRegisterInfo &MRI,
5979 const AArch64RegisterBankInfo &RBI) {
5980 assert(MI.getOpcode() == TargetOpcode::G_PHI && "Expected a G_PHI");
5981 Register DstReg = MI.getOperand(0).getReg();
5982 const RegisterBank *DstRB = MRI.getRegBankOrNull(DstReg);
5983 assert(DstRB && "Expected PHI dst to have regbank assigned");
5984 MachineIRBuilder MIB(MI);
5985
5986 // Go through each operand and ensure it has the same regbank.
5987 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
5988 MachineOperand &MO = MI.getOperand(OpIdx);
5989 if (!MO.isReg())
5990 continue;
5991 Register OpReg = MO.getReg();
5992 const RegisterBank *RB = MRI.getRegBankOrNull(OpReg);
5993 if (RB != DstRB) {
5994 // Insert a cross-bank copy.
5995 auto *OpDef = MRI.getVRegDef(OpReg);
5996 const LLT &Ty = MRI.getType(OpReg);
5997 MIB.setInsertPt(*OpDef->getParent(), std::next(OpDef->getIterator()));
5998 auto Copy = MIB.buildCopy(Ty, OpReg);
5999 MRI.setRegBank(Copy.getReg(0), *DstRB);
6000 MO.setReg(Copy.getReg(0));
6001 }
6002 }
6003 }
6004
processPHIs(MachineFunction & MF)6005 void AArch64InstructionSelector::processPHIs(MachineFunction &MF) {
6006 // We're looking for PHIs, build a list so we don't invalidate iterators.
6007 MachineRegisterInfo &MRI = MF.getRegInfo();
6008 SmallVector<MachineInstr *, 32> Phis;
6009 for (auto &BB : MF) {
6010 for (auto &MI : BB) {
6011 if (MI.getOpcode() == TargetOpcode::G_PHI)
6012 Phis.emplace_back(&MI);
6013 }
6014 }
6015
6016 for (auto *MI : Phis) {
6017 // We need to do some work here if the operand types are < 16 bit and they
6018 // are split across fpr/gpr banks. Since all types <32b on gpr
6019 // end up being assigned gpr32 regclasses, we can end up with PHIs here
6020 // which try to select between a gpr32 and an fpr16. Ideally RBS shouldn't
6021 // be selecting heterogenous regbanks for operands if possible, but we
6022 // still need to be able to deal with it here.
6023 //
6024 // To fix this, if we have a gpr-bank operand < 32b in size and at least
6025 // one other operand is on the fpr bank, then we add cross-bank copies
6026 // to homogenize the operand banks. For simplicity the bank that we choose
6027 // to settle on is whatever bank the def operand has. For example:
6028 //
6029 // %endbb:
6030 // %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2:fpr(s16), %bb2
6031 // =>
6032 // %bb2:
6033 // ...
6034 // %in2_copy:gpr(s16) = COPY %in2:fpr(s16)
6035 // ...
6036 // %endbb:
6037 // %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2_copy:gpr(s16), %bb2
6038 bool HasGPROp = false, HasFPROp = false;
6039 for (unsigned OpIdx = 1; OpIdx < MI->getNumOperands(); ++OpIdx) {
6040 const auto &MO = MI->getOperand(OpIdx);
6041 if (!MO.isReg())
6042 continue;
6043 const LLT &Ty = MRI.getType(MO.getReg());
6044 if (!Ty.isValid() || !Ty.isScalar())
6045 break;
6046 if (Ty.getSizeInBits() >= 32)
6047 break;
6048 const RegisterBank *RB = MRI.getRegBankOrNull(MO.getReg());
6049 // If for some reason we don't have a regbank yet. Don't try anything.
6050 if (!RB)
6051 break;
6052
6053 if (RB->getID() == AArch64::GPRRegBankID)
6054 HasGPROp = true;
6055 else
6056 HasFPROp = true;
6057 }
6058 // We have heterogenous regbanks, need to fixup.
6059 if (HasGPROp && HasFPROp)
6060 fixupPHIOpBanks(*MI, MRI, RBI);
6061 }
6062 }
6063
6064 namespace llvm {
6065 InstructionSelector *
createAArch64InstructionSelector(const AArch64TargetMachine & TM,AArch64Subtarget & Subtarget,AArch64RegisterBankInfo & RBI)6066 createAArch64InstructionSelector(const AArch64TargetMachine &TM,
6067 AArch64Subtarget &Subtarget,
6068 AArch64RegisterBankInfo &RBI) {
6069 return new AArch64InstructionSelector(TM, Subtarget, RBI);
6070 }
6071 }
6072