1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // OpenMP specific optimizations:
10 //
11 // - Deduplication of runtime calls, e.g., omp_get_thread_num.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/IPO/OpenMPOpt.h"
16
17 #include "llvm/ADT/EnumeratedArray.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/CallGraph.h"
21 #include "llvm/Analysis/CallGraphSCCPass.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Frontend/OpenMP/OMPConstants.h"
25 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/IntrinsicsAMDGPU.h"
28 #include "llvm/IR/IntrinsicsNVPTX.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Transforms/IPO.h"
32 #include "llvm/Transforms/IPO/Attributor.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/CallGraphUpdater.h"
35 #include "llvm/Transforms/Utils/CodeExtractor.h"
36
37 using namespace llvm;
38 using namespace omp;
39
40 #define DEBUG_TYPE "openmp-opt"
41
42 static cl::opt<bool> DisableOpenMPOptimizations(
43 "openmp-opt-disable", cl::ZeroOrMore,
44 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden,
45 cl::init(false));
46
47 static cl::opt<bool> EnableParallelRegionMerging(
48 "openmp-opt-enable-merging", cl::ZeroOrMore,
49 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden,
50 cl::init(false));
51
52 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
53 cl::Hidden);
54 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
55 cl::init(false), cl::Hidden);
56
57 static cl::opt<bool> HideMemoryTransferLatency(
58 "openmp-hide-memory-transfer-latency",
59 cl::desc("[WIP] Tries to hide the latency of host to device memory"
60 " transfers"),
61 cl::Hidden, cl::init(false));
62
63 STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
64 "Number of OpenMP runtime calls deduplicated");
65 STATISTIC(NumOpenMPParallelRegionsDeleted,
66 "Number of OpenMP parallel regions deleted");
67 STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
68 "Number of OpenMP runtime functions identified");
69 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
70 "Number of OpenMP runtime function uses identified");
71 STATISTIC(NumOpenMPTargetRegionKernels,
72 "Number of OpenMP target region entry points (=kernels) identified");
73 STATISTIC(
74 NumOpenMPParallelRegionsReplacedInGPUStateMachine,
75 "Number of OpenMP parallel regions replaced with ID in GPU state machines");
76 STATISTIC(NumOpenMPParallelRegionsMerged,
77 "Number of OpenMP parallel regions merged");
78
79 #if !defined(NDEBUG)
80 static constexpr auto TAG = "[" DEBUG_TYPE "]";
81 #endif
82
83 namespace {
84
85 struct AAExecutionDomain
86 : public StateWrapper<BooleanState, AbstractAttribute> {
87 using Base = StateWrapper<BooleanState, AbstractAttribute>;
AAExecutionDomain__anonf8ae38920111::AAExecutionDomain88 AAExecutionDomain(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
89
90 /// Create an abstract attribute view for the position \p IRP.
91 static AAExecutionDomain &createForPosition(const IRPosition &IRP,
92 Attributor &A);
93
94 /// See AbstractAttribute::getName().
getName__anonf8ae38920111::AAExecutionDomain95 const std::string getName() const override { return "AAExecutionDomain"; }
96
97 /// See AbstractAttribute::getIdAddr().
getIdAddr__anonf8ae38920111::AAExecutionDomain98 const char *getIdAddr() const override { return &ID; }
99
100 /// Check if an instruction is executed by a single thread.
101 virtual bool isSingleThreadExecution(const Instruction &) const = 0;
102
103 virtual bool isSingleThreadExecution(const BasicBlock &) const = 0;
104
105 /// This function should return true if the type of the \p AA is
106 /// AAExecutionDomain.
classof__anonf8ae38920111::AAExecutionDomain107 static bool classof(const AbstractAttribute *AA) {
108 return (AA->getIdAddr() == &ID);
109 }
110
111 /// Unique ID (due to the unique address)
112 static const char ID;
113 };
114
115 struct AAICVTracker;
116
117 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for
118 /// Attributor runs.
119 struct OMPInformationCache : public InformationCache {
OMPInformationCache__anonf8ae38920111::OMPInformationCache120 OMPInformationCache(Module &M, AnalysisGetter &AG,
121 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC,
122 SmallPtrSetImpl<Kernel> &Kernels)
123 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M),
124 Kernels(Kernels) {
125
126 OMPBuilder.initialize();
127 initializeRuntimeFunctions();
128 initializeInternalControlVars();
129 }
130
131 /// Generic information that describes an internal control variable.
132 struct InternalControlVarInfo {
133 /// The kind, as described by InternalControlVar enum.
134 InternalControlVar Kind;
135
136 /// The name of the ICV.
137 StringRef Name;
138
139 /// Environment variable associated with this ICV.
140 StringRef EnvVarName;
141
142 /// Initial value kind.
143 ICVInitValue InitKind;
144
145 /// Initial value.
146 ConstantInt *InitValue;
147
148 /// Setter RTL function associated with this ICV.
149 RuntimeFunction Setter;
150
151 /// Getter RTL function associated with this ICV.
152 RuntimeFunction Getter;
153
154 /// RTL Function corresponding to the override clause of this ICV
155 RuntimeFunction Clause;
156 };
157
158 /// Generic information that describes a runtime function
159 struct RuntimeFunctionInfo {
160
161 /// The kind, as described by the RuntimeFunction enum.
162 RuntimeFunction Kind;
163
164 /// The name of the function.
165 StringRef Name;
166
167 /// Flag to indicate a variadic function.
168 bool IsVarArg;
169
170 /// The return type of the function.
171 Type *ReturnType;
172
173 /// The argument types of the function.
174 SmallVector<Type *, 8> ArgumentTypes;
175
176 /// The declaration if available.
177 Function *Declaration = nullptr;
178
179 /// Uses of this runtime function per function containing the use.
180 using UseVector = SmallVector<Use *, 16>;
181
182 /// Clear UsesMap for runtime function.
clearUsesMap__anonf8ae38920111::OMPInformationCache::RuntimeFunctionInfo183 void clearUsesMap() { UsesMap.clear(); }
184
185 /// Boolean conversion that is true if the runtime function was found.
operator bool__anonf8ae38920111::OMPInformationCache::RuntimeFunctionInfo186 operator bool() const { return Declaration; }
187
188 /// Return the vector of uses in function \p F.
getOrCreateUseVector__anonf8ae38920111::OMPInformationCache::RuntimeFunctionInfo189 UseVector &getOrCreateUseVector(Function *F) {
190 std::shared_ptr<UseVector> &UV = UsesMap[F];
191 if (!UV)
192 UV = std::make_shared<UseVector>();
193 return *UV;
194 }
195
196 /// Return the vector of uses in function \p F or `nullptr` if there are
197 /// none.
getUseVector__anonf8ae38920111::OMPInformationCache::RuntimeFunctionInfo198 const UseVector *getUseVector(Function &F) const {
199 auto I = UsesMap.find(&F);
200 if (I != UsesMap.end())
201 return I->second.get();
202 return nullptr;
203 }
204
205 /// Return how many functions contain uses of this runtime function.
getNumFunctionsWithUses__anonf8ae38920111::OMPInformationCache::RuntimeFunctionInfo206 size_t getNumFunctionsWithUses() const { return UsesMap.size(); }
207
208 /// Return the number of arguments (or the minimal number for variadic
209 /// functions).
getNumArgs__anonf8ae38920111::OMPInformationCache::RuntimeFunctionInfo210 size_t getNumArgs() const { return ArgumentTypes.size(); }
211
212 /// Run the callback \p CB on each use and forget the use if the result is
213 /// true. The callback will be fed the function in which the use was
214 /// encountered as second argument.
foreachUse__anonf8ae38920111::OMPInformationCache::RuntimeFunctionInfo215 void foreachUse(SmallVectorImpl<Function *> &SCC,
216 function_ref<bool(Use &, Function &)> CB) {
217 for (Function *F : SCC)
218 foreachUse(CB, F);
219 }
220
221 /// Run the callback \p CB on each use within the function \p F and forget
222 /// the use if the result is true.
foreachUse__anonf8ae38920111::OMPInformationCache::RuntimeFunctionInfo223 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) {
224 SmallVector<unsigned, 8> ToBeDeleted;
225 ToBeDeleted.clear();
226
227 unsigned Idx = 0;
228 UseVector &UV = getOrCreateUseVector(F);
229
230 for (Use *U : UV) {
231 if (CB(*U, *F))
232 ToBeDeleted.push_back(Idx);
233 ++Idx;
234 }
235
236 // Remove the to-be-deleted indices in reverse order as prior
237 // modifications will not modify the smaller indices.
238 while (!ToBeDeleted.empty()) {
239 unsigned Idx = ToBeDeleted.pop_back_val();
240 UV[Idx] = UV.back();
241 UV.pop_back();
242 }
243 }
244
245 private:
246 /// Map from functions to all uses of this runtime function contained in
247 /// them.
248 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap;
249 };
250
251 /// An OpenMP-IR-Builder instance
252 OpenMPIRBuilder OMPBuilder;
253
254 /// Map from runtime function kind to the runtime function description.
255 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
256 RuntimeFunction::OMPRTL___last>
257 RFIs;
258
259 /// Map from ICV kind to the ICV description.
260 EnumeratedArray<InternalControlVarInfo, InternalControlVar,
261 InternalControlVar::ICV___last>
262 ICVs;
263
264 /// Helper to initialize all internal control variable information for those
265 /// defined in OMPKinds.def.
initializeInternalControlVars__anonf8ae38920111::OMPInformationCache266 void initializeInternalControlVars() {
267 #define ICV_RT_SET(_Name, RTL) \
268 { \
269 auto &ICV = ICVs[_Name]; \
270 ICV.Setter = RTL; \
271 }
272 #define ICV_RT_GET(Name, RTL) \
273 { \
274 auto &ICV = ICVs[Name]; \
275 ICV.Getter = RTL; \
276 }
277 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \
278 { \
279 auto &ICV = ICVs[Enum]; \
280 ICV.Name = _Name; \
281 ICV.Kind = Enum; \
282 ICV.InitKind = Init; \
283 ICV.EnvVarName = _EnvVarName; \
284 switch (ICV.InitKind) { \
285 case ICV_IMPLEMENTATION_DEFINED: \
286 ICV.InitValue = nullptr; \
287 break; \
288 case ICV_ZERO: \
289 ICV.InitValue = ConstantInt::get( \
290 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \
291 break; \
292 case ICV_FALSE: \
293 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \
294 break; \
295 case ICV_LAST: \
296 break; \
297 } \
298 }
299 #include "llvm/Frontend/OpenMP/OMPKinds.def"
300 }
301
302 /// Returns true if the function declaration \p F matches the runtime
303 /// function types, that is, return type \p RTFRetType, and argument types
304 /// \p RTFArgTypes.
declMatchesRTFTypes__anonf8ae38920111::OMPInformationCache305 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
306 SmallVector<Type *, 8> &RTFArgTypes) {
307 // TODO: We should output information to the user (under debug output
308 // and via remarks).
309
310 if (!F)
311 return false;
312 if (F->getReturnType() != RTFRetType)
313 return false;
314 if (F->arg_size() != RTFArgTypes.size())
315 return false;
316
317 auto RTFTyIt = RTFArgTypes.begin();
318 for (Argument &Arg : F->args()) {
319 if (Arg.getType() != *RTFTyIt)
320 return false;
321
322 ++RTFTyIt;
323 }
324
325 return true;
326 }
327
328 // Helper to collect all uses of the declaration in the UsesMap.
collectUses__anonf8ae38920111::OMPInformationCache329 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) {
330 unsigned NumUses = 0;
331 if (!RFI.Declaration)
332 return NumUses;
333 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);
334
335 if (CollectStats) {
336 NumOpenMPRuntimeFunctionsIdentified += 1;
337 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
338 }
339
340 // TODO: We directly convert uses into proper calls and unknown uses.
341 for (Use &U : RFI.Declaration->uses()) {
342 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
343 if (ModuleSlice.count(UserI->getFunction())) {
344 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U);
345 ++NumUses;
346 }
347 } else {
348 RFI.getOrCreateUseVector(nullptr).push_back(&U);
349 ++NumUses;
350 }
351 }
352 return NumUses;
353 }
354
355 // Helper function to recollect uses of a runtime function.
recollectUsesForFunction__anonf8ae38920111::OMPInformationCache356 void recollectUsesForFunction(RuntimeFunction RTF) {
357 auto &RFI = RFIs[RTF];
358 RFI.clearUsesMap();
359 collectUses(RFI, /*CollectStats*/ false);
360 }
361
362 // Helper function to recollect uses of all runtime functions.
recollectUses__anonf8ae38920111::OMPInformationCache363 void recollectUses() {
364 for (int Idx = 0; Idx < RFIs.size(); ++Idx)
365 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx));
366 }
367
368 /// Helper to initialize all runtime function information for those defined
369 /// in OpenMPKinds.def.
initializeRuntimeFunctions__anonf8ae38920111::OMPInformationCache370 void initializeRuntimeFunctions() {
371 Module &M = *((*ModuleSlice.begin())->getParent());
372
373 // Helper macros for handling __VA_ARGS__ in OMP_RTL
374 #define OMP_TYPE(VarName, ...) \
375 Type *VarName = OMPBuilder.VarName; \
376 (void)VarName;
377
378 #define OMP_ARRAY_TYPE(VarName, ...) \
379 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \
380 (void)VarName##Ty; \
381 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \
382 (void)VarName##PtrTy;
383
384 #define OMP_FUNCTION_TYPE(VarName, ...) \
385 FunctionType *VarName = OMPBuilder.VarName; \
386 (void)VarName; \
387 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
388 (void)VarName##Ptr;
389
390 #define OMP_STRUCT_TYPE(VarName, ...) \
391 StructType *VarName = OMPBuilder.VarName; \
392 (void)VarName; \
393 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
394 (void)VarName##Ptr;
395
396 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \
397 { \
398 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \
399 Function *F = M.getFunction(_Name); \
400 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \
401 auto &RFI = RFIs[_Enum]; \
402 RFI.Kind = _Enum; \
403 RFI.Name = _Name; \
404 RFI.IsVarArg = _IsVarArg; \
405 RFI.ReturnType = OMPBuilder._ReturnType; \
406 RFI.ArgumentTypes = std::move(ArgsTypes); \
407 RFI.Declaration = F; \
408 unsigned NumUses = collectUses(RFI); \
409 (void)NumUses; \
410 LLVM_DEBUG({ \
411 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \
412 << " found\n"; \
413 if (RFI.Declaration) \
414 dbgs() << TAG << "-> got " << NumUses << " uses in " \
415 << RFI.getNumFunctionsWithUses() \
416 << " different functions.\n"; \
417 }); \
418 } \
419 }
420 #include "llvm/Frontend/OpenMP/OMPKinds.def"
421
422 // TODO: We should attach the attributes defined in OMPKinds.def.
423 }
424
425 /// Collection of known kernels (\see Kernel) in the module.
426 SmallPtrSetImpl<Kernel> &Kernels;
427 };
428
429 /// Used to map the values physically (in the IR) stored in an offload
430 /// array, to a vector in memory.
431 struct OffloadArray {
432 /// Physical array (in the IR).
433 AllocaInst *Array = nullptr;
434 /// Mapped values.
435 SmallVector<Value *, 8> StoredValues;
436 /// Last stores made in the offload array.
437 SmallVector<StoreInst *, 8> LastAccesses;
438
439 OffloadArray() = default;
440
441 /// Initializes the OffloadArray with the values stored in \p Array before
442 /// instruction \p Before is reached. Returns false if the initialization
443 /// fails.
444 /// This MUST be used immediately after the construction of the object.
initialize__anonf8ae38920111::OffloadArray445 bool initialize(AllocaInst &Array, Instruction &Before) {
446 if (!Array.getAllocatedType()->isArrayTy())
447 return false;
448
449 if (!getValues(Array, Before))
450 return false;
451
452 this->Array = &Array;
453 return true;
454 }
455
456 static const unsigned DeviceIDArgNum = 1;
457 static const unsigned BasePtrsArgNum = 3;
458 static const unsigned PtrsArgNum = 4;
459 static const unsigned SizesArgNum = 5;
460
461 private:
462 /// Traverses the BasicBlock where \p Array is, collecting the stores made to
463 /// \p Array, leaving StoredValues with the values stored before the
464 /// instruction \p Before is reached.
getValues__anonf8ae38920111::OffloadArray465 bool getValues(AllocaInst &Array, Instruction &Before) {
466 // Initialize container.
467 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements();
468 StoredValues.assign(NumValues, nullptr);
469 LastAccesses.assign(NumValues, nullptr);
470
471 // TODO: This assumes the instruction \p Before is in the same
472 // BasicBlock as Array. Make it general, for any control flow graph.
473 BasicBlock *BB = Array.getParent();
474 if (BB != Before.getParent())
475 return false;
476
477 const DataLayout &DL = Array.getModule()->getDataLayout();
478 const unsigned int PointerSize = DL.getPointerSize();
479
480 for (Instruction &I : *BB) {
481 if (&I == &Before)
482 break;
483
484 if (!isa<StoreInst>(&I))
485 continue;
486
487 auto *S = cast<StoreInst>(&I);
488 int64_t Offset = -1;
489 auto *Dst =
490 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL);
491 if (Dst == &Array) {
492 int64_t Idx = Offset / PointerSize;
493 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand());
494 LastAccesses[Idx] = S;
495 }
496 }
497
498 return isFilled();
499 }
500
501 /// Returns true if all values in StoredValues and
502 /// LastAccesses are not nullptrs.
isFilled__anonf8ae38920111::OffloadArray503 bool isFilled() {
504 const unsigned NumValues = StoredValues.size();
505 for (unsigned I = 0; I < NumValues; ++I) {
506 if (!StoredValues[I] || !LastAccesses[I])
507 return false;
508 }
509
510 return true;
511 }
512 };
513
514 struct OpenMPOpt {
515
516 using OptimizationRemarkGetter =
517 function_ref<OptimizationRemarkEmitter &(Function *)>;
518
OpenMPOpt__anonf8ae38920111::OpenMPOpt519 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater,
520 OptimizationRemarkGetter OREGetter,
521 OMPInformationCache &OMPInfoCache, Attributor &A)
522 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater),
523 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {}
524
525 /// Check if any remarks are enabled for openmp-opt
remarksEnabled__anonf8ae38920111::OpenMPOpt526 bool remarksEnabled() {
527 auto &Ctx = M.getContext();
528 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE);
529 }
530
531 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice.
run__anonf8ae38920111::OpenMPOpt532 bool run(bool IsModulePass) {
533 if (SCC.empty())
534 return false;
535
536 bool Changed = false;
537
538 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
539 << " functions in a slice with "
540 << OMPInfoCache.ModuleSlice.size() << " functions\n");
541
542 if (IsModulePass) {
543 Changed |= runAttributor();
544
545 if (remarksEnabled())
546 analysisGlobalization();
547 } else {
548 if (PrintICVValues)
549 printICVs();
550 if (PrintOpenMPKernels)
551 printKernels();
552
553 Changed |= rewriteDeviceCodeStateMachine();
554
555 Changed |= runAttributor();
556
557 // Recollect uses, in case Attributor deleted any.
558 OMPInfoCache.recollectUses();
559
560 Changed |= deleteParallelRegions();
561 if (HideMemoryTransferLatency)
562 Changed |= hideMemTransfersLatency();
563 Changed |= deduplicateRuntimeCalls();
564 if (EnableParallelRegionMerging) {
565 if (mergeParallelRegions()) {
566 deduplicateRuntimeCalls();
567 Changed = true;
568 }
569 }
570 }
571
572 return Changed;
573 }
574
575 /// Print initial ICV values for testing.
576 /// FIXME: This should be done from the Attributor once it is added.
printICVs__anonf8ae38920111::OpenMPOpt577 void printICVs() const {
578 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel,
579 ICV_proc_bind};
580
581 for (Function *F : OMPInfoCache.ModuleSlice) {
582 for (auto ICV : ICVs) {
583 auto ICVInfo = OMPInfoCache.ICVs[ICV];
584 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
585 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name)
586 << " Value: "
587 << (ICVInfo.InitValue
588 ? ICVInfo.InitValue->getValue().toString(10, true)
589 : "IMPLEMENTATION_DEFINED");
590 };
591
592 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark);
593 }
594 }
595 }
596
597 /// Print OpenMP GPU kernels for testing.
printKernels__anonf8ae38920111::OpenMPOpt598 void printKernels() const {
599 for (Function *F : SCC) {
600 if (!OMPInfoCache.Kernels.count(F))
601 continue;
602
603 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
604 return ORA << "OpenMP GPU kernel "
605 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n";
606 };
607
608 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark);
609 }
610 }
611
612 /// Return the call if \p U is a callee use in a regular call. If \p RFI is
613 /// given it has to be the callee or a nullptr is returned.
getCallIfRegularCall__anonf8ae38920111::OpenMPOpt614 static CallInst *getCallIfRegularCall(
615 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
616 CallInst *CI = dyn_cast<CallInst>(U.getUser());
617 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
618 (!RFI || CI->getCalledFunction() == RFI->Declaration))
619 return CI;
620 return nullptr;
621 }
622
623 /// Return the call if \p V is a regular call. If \p RFI is given it has to be
624 /// the callee or a nullptr is returned.
getCallIfRegularCall__anonf8ae38920111::OpenMPOpt625 static CallInst *getCallIfRegularCall(
626 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
627 CallInst *CI = dyn_cast<CallInst>(&V);
628 if (CI && !CI->hasOperandBundles() &&
629 (!RFI || CI->getCalledFunction() == RFI->Declaration))
630 return CI;
631 return nullptr;
632 }
633
634 private:
635 /// Merge parallel regions when it is safe.
mergeParallelRegions__anonf8ae38920111::OpenMPOpt636 bool mergeParallelRegions() {
637 const unsigned CallbackCalleeOperand = 2;
638 const unsigned CallbackFirstArgOperand = 3;
639 using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
640
641 // Check if there are any __kmpc_fork_call calls to merge.
642 OMPInformationCache::RuntimeFunctionInfo &RFI =
643 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
644
645 if (!RFI.Declaration)
646 return false;
647
648 // Unmergable calls that prevent merging a parallel region.
649 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = {
650 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind],
651 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads],
652 };
653
654 bool Changed = false;
655 LoopInfo *LI = nullptr;
656 DominatorTree *DT = nullptr;
657
658 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap;
659
660 BasicBlock *StartBB = nullptr, *EndBB = nullptr;
661 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
662 BasicBlock &ContinuationIP) {
663 BasicBlock *CGStartBB = CodeGenIP.getBlock();
664 BasicBlock *CGEndBB =
665 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
666 assert(StartBB != nullptr && "StartBB should not be null");
667 CGStartBB->getTerminator()->setSuccessor(0, StartBB);
668 assert(EndBB != nullptr && "EndBB should not be null");
669 EndBB->getTerminator()->setSuccessor(0, CGEndBB);
670 };
671
672 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &,
673 Value &Inner, Value *&ReplacementValue) -> InsertPointTy {
674 ReplacementValue = &Inner;
675 return CodeGenIP;
676 };
677
678 auto FiniCB = [&](InsertPointTy CodeGenIP) {};
679
680 /// Create a sequential execution region within a merged parallel region,
681 /// encapsulated in a master construct with a barrier for synchronization.
682 auto CreateSequentialRegion = [&](Function *OuterFn,
683 BasicBlock *OuterPredBB,
684 Instruction *SeqStartI,
685 Instruction *SeqEndI) {
686 // Isolate the instructions of the sequential region to a separate
687 // block.
688 BasicBlock *ParentBB = SeqStartI->getParent();
689 BasicBlock *SeqEndBB =
690 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI);
691 BasicBlock *SeqAfterBB =
692 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI);
693 BasicBlock *SeqStartBB =
694 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged");
695
696 assert(ParentBB->getUniqueSuccessor() == SeqStartBB &&
697 "Expected a different CFG");
698 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
699 ParentBB->getTerminator()->eraseFromParent();
700
701 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
702 BasicBlock &ContinuationIP) {
703 BasicBlock *CGStartBB = CodeGenIP.getBlock();
704 BasicBlock *CGEndBB =
705 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
706 assert(SeqStartBB != nullptr && "SeqStartBB should not be null");
707 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB);
708 assert(SeqEndBB != nullptr && "SeqEndBB should not be null");
709 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB);
710 };
711 auto FiniCB = [&](InsertPointTy CodeGenIP) {};
712
713 // Find outputs from the sequential region to outside users and
714 // broadcast their values to them.
715 for (Instruction &I : *SeqStartBB) {
716 SmallPtrSet<Instruction *, 4> OutsideUsers;
717 for (User *Usr : I.users()) {
718 Instruction &UsrI = *cast<Instruction>(Usr);
719 // Ignore outputs to LT intrinsics, code extraction for the merged
720 // parallel region will fix them.
721 if (UsrI.isLifetimeStartOrEnd())
722 continue;
723
724 if (UsrI.getParent() != SeqStartBB)
725 OutsideUsers.insert(&UsrI);
726 }
727
728 if (OutsideUsers.empty())
729 continue;
730
731 // Emit an alloca in the outer region to store the broadcasted
732 // value.
733 const DataLayout &DL = M.getDataLayout();
734 AllocaInst *AllocaI = new AllocaInst(
735 I.getType(), DL.getAllocaAddrSpace(), nullptr,
736 I.getName() + ".seq.output.alloc", &OuterFn->front().front());
737
738 // Emit a store instruction in the sequential BB to update the
739 // value.
740 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator());
741
742 // Emit a load instruction and replace the use of the output value
743 // with it.
744 for (Instruction *UsrI : OutsideUsers) {
745 LoadInst *LoadI = new LoadInst(
746 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI);
747 UsrI->replaceUsesOfWith(&I, LoadI);
748 }
749 }
750
751 OpenMPIRBuilder::LocationDescription Loc(
752 InsertPointTy(ParentBB, ParentBB->end()), DL);
753 InsertPointTy SeqAfterIP =
754 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB);
755
756 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel);
757
758 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock());
759
760 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn
761 << "\n");
762 };
763
764 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all
765 // contained in BB and only separated by instructions that can be
766 // redundantly executed in parallel. The block BB is split before the first
767 // call (in MergableCIs) and after the last so the entire region we merge
768 // into a single parallel region is contained in a single basic block
769 // without any other instructions. We use the OpenMPIRBuilder to outline
770 // that block and call the resulting function via __kmpc_fork_call.
771 auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) {
772 // TODO: Change the interface to allow single CIs expanded, e.g, to
773 // include an outer loop.
774 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs");
775
776 auto Remark = [&](OptimizationRemark OR) {
777 OR << "Parallel region at "
778 << ore::NV("OpenMPParallelMergeFront",
779 MergableCIs.front()->getDebugLoc())
780 << " merged with parallel regions at ";
781 for (auto *CI : llvm::drop_begin(MergableCIs)) {
782 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc());
783 if (CI != MergableCIs.back())
784 OR << ", ";
785 }
786 return OR;
787 };
788
789 emitRemark<OptimizationRemark>(MergableCIs.front(),
790 "OpenMPParallelRegionMerging", Remark);
791
792 Function *OriginalFn = BB->getParent();
793 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size()
794 << " parallel regions in " << OriginalFn->getName()
795 << "\n");
796
797 // Isolate the calls to merge in a separate block.
798 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI);
799 BasicBlock *AfterBB =
800 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI);
801 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr,
802 "omp.par.merged");
803
804 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG");
805 const DebugLoc DL = BB->getTerminator()->getDebugLoc();
806 BB->getTerminator()->eraseFromParent();
807
808 // Create sequential regions for sequential instructions that are
809 // in-between mergable parallel regions.
810 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1;
811 It != End; ++It) {
812 Instruction *ForkCI = *It;
813 Instruction *NextForkCI = *(It + 1);
814
815 // Continue if there are not in-between instructions.
816 if (ForkCI->getNextNode() == NextForkCI)
817 continue;
818
819 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(),
820 NextForkCI->getPrevNode());
821 }
822
823 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()),
824 DL);
825 IRBuilder<>::InsertPoint AllocaIP(
826 &OriginalFn->getEntryBlock(),
827 OriginalFn->getEntryBlock().getFirstInsertionPt());
828 // Create the merged parallel region with default proc binding, to
829 // avoid overriding binding settings, and without explicit cancellation.
830 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel(
831 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr,
832 OMP_PROC_BIND_default, /* IsCancellable */ false);
833 BranchInst::Create(AfterBB, AfterIP.getBlock());
834
835 // Perform the actual outlining.
836 OMPInfoCache.OMPBuilder.finalize(OriginalFn,
837 /* AllowExtractorSinking */ true);
838
839 Function *OutlinedFn = MergableCIs.front()->getCaller();
840
841 // Replace the __kmpc_fork_call calls with direct calls to the outlined
842 // callbacks.
843 SmallVector<Value *, 8> Args;
844 for (auto *CI : MergableCIs) {
845 Value *Callee =
846 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts();
847 FunctionType *FT =
848 cast<FunctionType>(Callee->getType()->getPointerElementType());
849 Args.clear();
850 Args.push_back(OutlinedFn->getArg(0));
851 Args.push_back(OutlinedFn->getArg(1));
852 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands();
853 U < E; ++U)
854 Args.push_back(CI->getArgOperand(U));
855
856 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI);
857 if (CI->getDebugLoc())
858 NewCI->setDebugLoc(CI->getDebugLoc());
859
860 // Forward parameter attributes from the callback to the callee.
861 for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands();
862 U < E; ++U)
863 for (const Attribute &A : CI->getAttributes().getParamAttributes(U))
864 NewCI->addParamAttr(
865 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A);
866
867 // Emit an explicit barrier to replace the implicit fork-join barrier.
868 if (CI != MergableCIs.back()) {
869 // TODO: Remove barrier if the merged parallel region includes the
870 // 'nowait' clause.
871 OMPInfoCache.OMPBuilder.createBarrier(
872 InsertPointTy(NewCI->getParent(),
873 NewCI->getNextNode()->getIterator()),
874 OMPD_parallel);
875 }
876
877 auto Remark = [&](OptimizationRemark OR) {
878 return OR << "Parallel region at "
879 << ore::NV("OpenMPParallelMerge", CI->getDebugLoc())
880 << " merged with "
881 << ore::NV("OpenMPParallelMergeFront",
882 MergableCIs.front()->getDebugLoc());
883 };
884 if (CI != MergableCIs.front())
885 emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionMerging",
886 Remark);
887
888 CI->eraseFromParent();
889 }
890
891 assert(OutlinedFn != OriginalFn && "Outlining failed");
892 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn);
893 CGUpdater.reanalyzeFunction(*OriginalFn);
894
895 NumOpenMPParallelRegionsMerged += MergableCIs.size();
896
897 return true;
898 };
899
900 // Helper function that identifes sequences of
901 // __kmpc_fork_call uses in a basic block.
902 auto DetectPRsCB = [&](Use &U, Function &F) {
903 CallInst *CI = getCallIfRegularCall(U, &RFI);
904 BB2PRMap[CI->getParent()].insert(CI);
905
906 return false;
907 };
908
909 BB2PRMap.clear();
910 RFI.foreachUse(SCC, DetectPRsCB);
911 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector;
912 // Find mergable parallel regions within a basic block that are
913 // safe to merge, that is any in-between instructions can safely
914 // execute in parallel after merging.
915 // TODO: support merging across basic-blocks.
916 for (auto &It : BB2PRMap) {
917 auto &CIs = It.getSecond();
918 if (CIs.size() < 2)
919 continue;
920
921 BasicBlock *BB = It.getFirst();
922 SmallVector<CallInst *, 4> MergableCIs;
923
924 /// Returns true if the instruction is mergable, false otherwise.
925 /// A terminator instruction is unmergable by definition since merging
926 /// works within a BB. Instructions before the mergable region are
927 /// mergable if they are not calls to OpenMP runtime functions that may
928 /// set different execution parameters for subsequent parallel regions.
929 /// Instructions in-between parallel regions are mergable if they are not
930 /// calls to any non-intrinsic function since that may call a non-mergable
931 /// OpenMP runtime function.
932 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) {
933 // We do not merge across BBs, hence return false (unmergable) if the
934 // instruction is a terminator.
935 if (I.isTerminator())
936 return false;
937
938 if (!isa<CallInst>(&I))
939 return true;
940
941 CallInst *CI = cast<CallInst>(&I);
942 if (IsBeforeMergableRegion) {
943 Function *CalledFunction = CI->getCalledFunction();
944 if (!CalledFunction)
945 return false;
946 // Return false (unmergable) if the call before the parallel
947 // region calls an explicit affinity (proc_bind) or number of
948 // threads (num_threads) compiler-generated function. Those settings
949 // may be incompatible with following parallel regions.
950 // TODO: ICV tracking to detect compatibility.
951 for (const auto &RFI : UnmergableCallsInfo) {
952 if (CalledFunction == RFI.Declaration)
953 return false;
954 }
955 } else {
956 // Return false (unmergable) if there is a call instruction
957 // in-between parallel regions when it is not an intrinsic. It
958 // may call an unmergable OpenMP runtime function in its callpath.
959 // TODO: Keep track of possible OpenMP calls in the callpath.
960 if (!isa<IntrinsicInst>(CI))
961 return false;
962 }
963
964 return true;
965 };
966 // Find maximal number of parallel region CIs that are safe to merge.
967 for (auto It = BB->begin(), End = BB->end(); It != End;) {
968 Instruction &I = *It;
969 ++It;
970
971 if (CIs.count(&I)) {
972 MergableCIs.push_back(cast<CallInst>(&I));
973 continue;
974 }
975
976 // Continue expanding if the instruction is mergable.
977 if (IsMergable(I, MergableCIs.empty()))
978 continue;
979
980 // Forward the instruction iterator to skip the next parallel region
981 // since there is an unmergable instruction which can affect it.
982 for (; It != End; ++It) {
983 Instruction &SkipI = *It;
984 if (CIs.count(&SkipI)) {
985 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI
986 << " due to " << I << "\n");
987 ++It;
988 break;
989 }
990 }
991
992 // Store mergable regions found.
993 if (MergableCIs.size() > 1) {
994 MergableCIsVector.push_back(MergableCIs);
995 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size()
996 << " parallel regions in block " << BB->getName()
997 << " of function " << BB->getParent()->getName()
998 << "\n";);
999 }
1000
1001 MergableCIs.clear();
1002 }
1003
1004 if (!MergableCIsVector.empty()) {
1005 Changed = true;
1006
1007 for (auto &MergableCIs : MergableCIsVector)
1008 Merge(MergableCIs, BB);
1009 MergableCIsVector.clear();
1010 }
1011 }
1012
1013 if (Changed) {
1014 /// Re-collect use for fork calls, emitted barrier calls, and
1015 /// any emitted master/end_master calls.
1016 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call);
1017 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier);
1018 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master);
1019 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master);
1020 }
1021
1022 return Changed;
1023 }
1024
1025 /// Try to delete parallel regions if possible.
deleteParallelRegions__anonf8ae38920111::OpenMPOpt1026 bool deleteParallelRegions() {
1027 const unsigned CallbackCalleeOperand = 2;
1028
1029 OMPInformationCache::RuntimeFunctionInfo &RFI =
1030 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
1031
1032 if (!RFI.Declaration)
1033 return false;
1034
1035 bool Changed = false;
1036 auto DeleteCallCB = [&](Use &U, Function &) {
1037 CallInst *CI = getCallIfRegularCall(U);
1038 if (!CI)
1039 return false;
1040 auto *Fn = dyn_cast<Function>(
1041 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
1042 if (!Fn)
1043 return false;
1044 if (!Fn->onlyReadsMemory())
1045 return false;
1046 if (!Fn->hasFnAttribute(Attribute::WillReturn))
1047 return false;
1048
1049 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
1050 << CI->getCaller()->getName() << "\n");
1051
1052 auto Remark = [&](OptimizationRemark OR) {
1053 return OR << "Parallel region in "
1054 << ore::NV("OpenMPParallelDelete", CI->getCaller()->getName())
1055 << " deleted";
1056 };
1057 emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionDeletion",
1058 Remark);
1059
1060 CGUpdater.removeCallSite(*CI);
1061 CI->eraseFromParent();
1062 Changed = true;
1063 ++NumOpenMPParallelRegionsDeleted;
1064 return true;
1065 };
1066
1067 RFI.foreachUse(SCC, DeleteCallCB);
1068
1069 return Changed;
1070 }
1071
1072 /// Try to eliminate runtime calls by reusing existing ones.
deduplicateRuntimeCalls__anonf8ae38920111::OpenMPOpt1073 bool deduplicateRuntimeCalls() {
1074 bool Changed = false;
1075
1076 RuntimeFunction DeduplicableRuntimeCallIDs[] = {
1077 OMPRTL_omp_get_num_threads,
1078 OMPRTL_omp_in_parallel,
1079 OMPRTL_omp_get_cancellation,
1080 OMPRTL_omp_get_thread_limit,
1081 OMPRTL_omp_get_supported_active_levels,
1082 OMPRTL_omp_get_level,
1083 OMPRTL_omp_get_ancestor_thread_num,
1084 OMPRTL_omp_get_team_size,
1085 OMPRTL_omp_get_active_level,
1086 OMPRTL_omp_in_final,
1087 OMPRTL_omp_get_proc_bind,
1088 OMPRTL_omp_get_num_places,
1089 OMPRTL_omp_get_num_procs,
1090 OMPRTL_omp_get_place_num,
1091 OMPRTL_omp_get_partition_num_places,
1092 OMPRTL_omp_get_partition_place_nums};
1093
1094 // Global-tid is handled separately.
1095 SmallSetVector<Value *, 16> GTIdArgs;
1096 collectGlobalThreadIdArguments(GTIdArgs);
1097 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
1098 << " global thread ID arguments\n");
1099
1100 for (Function *F : SCC) {
1101 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
1102 Changed |= deduplicateRuntimeCalls(
1103 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]);
1104
1105 // __kmpc_global_thread_num is special as we can replace it with an
1106 // argument in enough cases to make it worth trying.
1107 Value *GTIdArg = nullptr;
1108 for (Argument &Arg : F->args())
1109 if (GTIdArgs.count(&Arg)) {
1110 GTIdArg = &Arg;
1111 break;
1112 }
1113 Changed |= deduplicateRuntimeCalls(
1114 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
1115 }
1116
1117 return Changed;
1118 }
1119
1120 /// Tries to hide the latency of runtime calls that involve host to
1121 /// device memory transfers by splitting them into their "issue" and "wait"
1122 /// versions. The "issue" is moved upwards as much as possible. The "wait" is
1123 /// moved downards as much as possible. The "issue" issues the memory transfer
1124 /// asynchronously, returning a handle. The "wait" waits in the returned
1125 /// handle for the memory transfer to finish.
hideMemTransfersLatency__anonf8ae38920111::OpenMPOpt1126 bool hideMemTransfersLatency() {
1127 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper];
1128 bool Changed = false;
1129 auto SplitMemTransfers = [&](Use &U, Function &Decl) {
1130 auto *RTCall = getCallIfRegularCall(U, &RFI);
1131 if (!RTCall)
1132 return false;
1133
1134 OffloadArray OffloadArrays[3];
1135 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays))
1136 return false;
1137
1138 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays));
1139
1140 // TODO: Check if can be moved upwards.
1141 bool WasSplit = false;
1142 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall);
1143 if (WaitMovementPoint)
1144 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint);
1145
1146 Changed |= WasSplit;
1147 return WasSplit;
1148 };
1149 RFI.foreachUse(SCC, SplitMemTransfers);
1150
1151 return Changed;
1152 }
1153
analysisGlobalization__anonf8ae38920111::OpenMPOpt1154 void analysisGlobalization() {
1155 RuntimeFunction GlobalizationRuntimeIDs[] = {
1156 OMPRTL___kmpc_data_sharing_coalesced_push_stack,
1157 OMPRTL___kmpc_data_sharing_push_stack};
1158
1159 for (const auto GlobalizationCallID : GlobalizationRuntimeIDs) {
1160 auto &RFI = OMPInfoCache.RFIs[GlobalizationCallID];
1161
1162 auto CheckGlobalization = [&](Use &U, Function &Decl) {
1163 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) {
1164 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
1165 return ORA
1166 << "Found thread data sharing on the GPU. "
1167 << "Expect degraded performance due to data globalization.";
1168 };
1169 emitRemark<OptimizationRemarkAnalysis>(CI, "OpenMPGlobalization",
1170 Remark);
1171 }
1172
1173 return false;
1174 };
1175
1176 RFI.foreachUse(SCC, CheckGlobalization);
1177 }
1178 }
1179
1180 /// Maps the values stored in the offload arrays passed as arguments to
1181 /// \p RuntimeCall into the offload arrays in \p OAs.
getValuesInOffloadArrays__anonf8ae38920111::OpenMPOpt1182 bool getValuesInOffloadArrays(CallInst &RuntimeCall,
1183 MutableArrayRef<OffloadArray> OAs) {
1184 assert(OAs.size() == 3 && "Need space for three offload arrays!");
1185
1186 // A runtime call that involves memory offloading looks something like:
1187 // call void @__tgt_target_data_begin_mapper(arg0, arg1,
1188 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
1189 // ...)
1190 // So, the idea is to access the allocas that allocate space for these
1191 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
1192 // Therefore:
1193 // i8** %offload_baseptrs.
1194 Value *BasePtrsArg =
1195 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum);
1196 // i8** %offload_ptrs.
1197 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum);
1198 // i8** %offload_sizes.
1199 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum);
1200
1201 // Get values stored in **offload_baseptrs.
1202 auto *V = getUnderlyingObject(BasePtrsArg);
1203 if (!isa<AllocaInst>(V))
1204 return false;
1205 auto *BasePtrsArray = cast<AllocaInst>(V);
1206 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall))
1207 return false;
1208
1209 // Get values stored in **offload_baseptrs.
1210 V = getUnderlyingObject(PtrsArg);
1211 if (!isa<AllocaInst>(V))
1212 return false;
1213 auto *PtrsArray = cast<AllocaInst>(V);
1214 if (!OAs[1].initialize(*PtrsArray, RuntimeCall))
1215 return false;
1216
1217 // Get values stored in **offload_sizes.
1218 V = getUnderlyingObject(SizesArg);
1219 // If it's a [constant] global array don't analyze it.
1220 if (isa<GlobalValue>(V))
1221 return isa<Constant>(V);
1222 if (!isa<AllocaInst>(V))
1223 return false;
1224
1225 auto *SizesArray = cast<AllocaInst>(V);
1226 if (!OAs[2].initialize(*SizesArray, RuntimeCall))
1227 return false;
1228
1229 return true;
1230 }
1231
1232 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
1233 /// For now this is a way to test that the function getValuesInOffloadArrays
1234 /// is working properly.
1235 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
dumpValuesInOffloadArrays__anonf8ae38920111::OpenMPOpt1236 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) {
1237 assert(OAs.size() == 3 && "There are three offload arrays to debug!");
1238
1239 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n");
1240 std::string ValuesStr;
1241 raw_string_ostream Printer(ValuesStr);
1242 std::string Separator = " --- ";
1243
1244 for (auto *BP : OAs[0].StoredValues) {
1245 BP->print(Printer);
1246 Printer << Separator;
1247 }
1248 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n");
1249 ValuesStr.clear();
1250
1251 for (auto *P : OAs[1].StoredValues) {
1252 P->print(Printer);
1253 Printer << Separator;
1254 }
1255 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n");
1256 ValuesStr.clear();
1257
1258 for (auto *S : OAs[2].StoredValues) {
1259 S->print(Printer);
1260 Printer << Separator;
1261 }
1262 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n");
1263 }
1264
1265 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
1266 /// moved. Returns nullptr if the movement is not possible, or not worth it.
canBeMovedDownwards__anonf8ae38920111::OpenMPOpt1267 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) {
1268 // FIXME: This traverses only the BasicBlock where RuntimeCall is.
1269 // Make it traverse the CFG.
1270
1271 Instruction *CurrentI = &RuntimeCall;
1272 bool IsWorthIt = false;
1273 while ((CurrentI = CurrentI->getNextNode())) {
1274
1275 // TODO: Once we detect the regions to be offloaded we should use the
1276 // alias analysis manager to check if CurrentI may modify one of
1277 // the offloaded regions.
1278 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) {
1279 if (IsWorthIt)
1280 return CurrentI;
1281
1282 return nullptr;
1283 }
1284
1285 // FIXME: For now if we move it over anything without side effect
1286 // is worth it.
1287 IsWorthIt = true;
1288 }
1289
1290 // Return end of BasicBlock.
1291 return RuntimeCall.getParent()->getTerminator();
1292 }
1293
1294 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
splitTargetDataBeginRTC__anonf8ae38920111::OpenMPOpt1295 bool splitTargetDataBeginRTC(CallInst &RuntimeCall,
1296 Instruction &WaitMovementPoint) {
1297 // Create stack allocated handle (__tgt_async_info) at the beginning of the
1298 // function. Used for storing information of the async transfer, allowing to
1299 // wait on it later.
1300 auto &IRBuilder = OMPInfoCache.OMPBuilder;
1301 auto *F = RuntimeCall.getCaller();
1302 Instruction *FirstInst = &(F->getEntryBlock().front());
1303 AllocaInst *Handle = new AllocaInst(
1304 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst);
1305
1306 // Add "issue" runtime call declaration:
1307 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
1308 // i8**, i8**, i64*, i64*)
1309 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction(
1310 M, OMPRTL___tgt_target_data_begin_mapper_issue);
1311
1312 // Change RuntimeCall call site for its asynchronous version.
1313 SmallVector<Value *, 16> Args;
1314 for (auto &Arg : RuntimeCall.args())
1315 Args.push_back(Arg.get());
1316 Args.push_back(Handle);
1317
1318 CallInst *IssueCallsite =
1319 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall);
1320 RuntimeCall.eraseFromParent();
1321
1322 // Add "wait" runtime call declaration:
1323 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
1324 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction(
1325 M, OMPRTL___tgt_target_data_begin_mapper_wait);
1326
1327 Value *WaitParams[2] = {
1328 IssueCallsite->getArgOperand(
1329 OffloadArray::DeviceIDArgNum), // device_id.
1330 Handle // handle to wait on.
1331 };
1332 CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint);
1333
1334 return true;
1335 }
1336
combinedIdentStruct__anonf8ae38920111::OpenMPOpt1337 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent,
1338 bool GlobalOnly, bool &SingleChoice) {
1339 if (CurrentIdent == NextIdent)
1340 return CurrentIdent;
1341
1342 // TODO: Figure out how to actually combine multiple debug locations. For
1343 // now we just keep an existing one if there is a single choice.
1344 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) {
1345 SingleChoice = !CurrentIdent;
1346 return NextIdent;
1347 }
1348 return nullptr;
1349 }
1350
1351 /// Return an `struct ident_t*` value that represents the ones used in the
1352 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
1353 /// return a local `struct ident_t*`. For now, if we cannot find a suitable
1354 /// return value we create one from scratch. We also do not yet combine
1355 /// information, e.g., the source locations, see combinedIdentStruct.
1356 Value *
getCombinedIdentFromCallUsesIn__anonf8ae38920111::OpenMPOpt1357 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI,
1358 Function &F, bool GlobalOnly) {
1359 bool SingleChoice = true;
1360 Value *Ident = nullptr;
1361 auto CombineIdentStruct = [&](Use &U, Function &Caller) {
1362 CallInst *CI = getCallIfRegularCall(U, &RFI);
1363 if (!CI || &F != &Caller)
1364 return false;
1365 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
1366 /* GlobalOnly */ true, SingleChoice);
1367 return false;
1368 };
1369 RFI.foreachUse(SCC, CombineIdentStruct);
1370
1371 if (!Ident || !SingleChoice) {
1372 // The IRBuilder uses the insertion block to get to the module, this is
1373 // unfortunate but we work around it for now.
1374 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock())
1375 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
1376 &F.getEntryBlock(), F.getEntryBlock().begin()));
1377 // Create a fallback location if non was found.
1378 // TODO: Use the debug locations of the calls instead.
1379 Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr();
1380 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc);
1381 }
1382 return Ident;
1383 }
1384
1385 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
1386 /// \p ReplVal if given.
deduplicateRuntimeCalls__anonf8ae38920111::OpenMPOpt1387 bool deduplicateRuntimeCalls(Function &F,
1388 OMPInformationCache::RuntimeFunctionInfo &RFI,
1389 Value *ReplVal = nullptr) {
1390 auto *UV = RFI.getUseVector(F);
1391 if (!UV || UV->size() + (ReplVal != nullptr) < 2)
1392 return false;
1393
1394 LLVM_DEBUG(
1395 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name
1396 << (ReplVal ? " with an existing value\n" : "\n") << "\n");
1397
1398 assert((!ReplVal || (isa<Argument>(ReplVal) &&
1399 cast<Argument>(ReplVal)->getParent() == &F)) &&
1400 "Unexpected replacement value!");
1401
1402 // TODO: Use dominance to find a good position instead.
1403 auto CanBeMoved = [this](CallBase &CB) {
1404 unsigned NumArgs = CB.getNumArgOperands();
1405 if (NumArgs == 0)
1406 return true;
1407 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr)
1408 return false;
1409 for (unsigned u = 1; u < NumArgs; ++u)
1410 if (isa<Instruction>(CB.getArgOperand(u)))
1411 return false;
1412 return true;
1413 };
1414
1415 if (!ReplVal) {
1416 for (Use *U : *UV)
1417 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
1418 if (!CanBeMoved(*CI))
1419 continue;
1420
1421 auto Remark = [&](OptimizationRemark OR) {
1422 return OR << "OpenMP runtime call "
1423 << ore::NV("OpenMPOptRuntime", RFI.Name)
1424 << " moved to beginning of OpenMP region";
1425 };
1426 emitRemark<OptimizationRemark>(&F, "OpenMPRuntimeCodeMotion", Remark);
1427
1428 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt());
1429 ReplVal = CI;
1430 break;
1431 }
1432 if (!ReplVal)
1433 return false;
1434 }
1435
1436 // If we use a call as a replacement value we need to make sure the ident is
1437 // valid at the new location. For now we just pick a global one, either
1438 // existing and used by one of the calls, or created from scratch.
1439 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
1440 if (CI->getNumArgOperands() > 0 &&
1441 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) {
1442 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
1443 /* GlobalOnly */ true);
1444 CI->setArgOperand(0, Ident);
1445 }
1446 }
1447
1448 bool Changed = false;
1449 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
1450 CallInst *CI = getCallIfRegularCall(U, &RFI);
1451 if (!CI || CI == ReplVal || &F != &Caller)
1452 return false;
1453 assert(CI->getCaller() == &F && "Unexpected call!");
1454
1455 auto Remark = [&](OptimizationRemark OR) {
1456 return OR << "OpenMP runtime call "
1457 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated";
1458 };
1459 emitRemark<OptimizationRemark>(&F, "OpenMPRuntimeDeduplicated", Remark);
1460
1461 CGUpdater.removeCallSite(*CI);
1462 CI->replaceAllUsesWith(ReplVal);
1463 CI->eraseFromParent();
1464 ++NumOpenMPRuntimeCallsDeduplicated;
1465 Changed = true;
1466 return true;
1467 };
1468 RFI.foreachUse(SCC, ReplaceAndDeleteCB);
1469
1470 return Changed;
1471 }
1472
1473 /// Collect arguments that represent the global thread id in \p GTIdArgs.
collectGlobalThreadIdArguments__anonf8ae38920111::OpenMPOpt1474 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) {
1475 // TODO: Below we basically perform a fixpoint iteration with a pessimistic
1476 // initialization. We could define an AbstractAttribute instead and
1477 // run the Attributor here once it can be run as an SCC pass.
1478
1479 // Helper to check the argument \p ArgNo at all call sites of \p F for
1480 // a GTId.
1481 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
1482 if (!F.hasLocalLinkage())
1483 return false;
1484 for (Use &U : F.uses()) {
1485 if (CallInst *CI = getCallIfRegularCall(U)) {
1486 Value *ArgOp = CI->getArgOperand(ArgNo);
1487 if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
1488 getCallIfRegularCall(
1489 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]))
1490 continue;
1491 }
1492 return false;
1493 }
1494 return true;
1495 };
1496
1497 // Helper to identify uses of a GTId as GTId arguments.
1498 auto AddUserArgs = [&](Value >Id) {
1499 for (Use &U : GTId.uses())
1500 if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
1501 if (CI->isArgOperand(&U))
1502 if (Function *Callee = CI->getCalledFunction())
1503 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
1504 GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
1505 };
1506
1507 // The argument users of __kmpc_global_thread_num calls are GTIds.
1508 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI =
1509 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num];
1510
1511 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) {
1512 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI))
1513 AddUserArgs(*CI);
1514 return false;
1515 });
1516
1517 // Transitively search for more arguments by looking at the users of the
1518 // ones we know already. During the search the GTIdArgs vector is extended
1519 // so we cannot cache the size nor can we use a range based for.
1520 for (unsigned u = 0; u < GTIdArgs.size(); ++u)
1521 AddUserArgs(*GTIdArgs[u]);
1522 }
1523
1524 /// Kernel (=GPU) optimizations and utility functions
1525 ///
1526 ///{{
1527
1528 /// Check if \p F is a kernel, hence entry point for target offloading.
isKernel__anonf8ae38920111::OpenMPOpt1529 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); }
1530
1531 /// Cache to remember the unique kernel for a function.
1532 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap;
1533
1534 /// Find the unique kernel that will execute \p F, if any.
1535 Kernel getUniqueKernelFor(Function &F);
1536
1537 /// Find the unique kernel that will execute \p I, if any.
getUniqueKernelFor__anonf8ae38920111::OpenMPOpt1538 Kernel getUniqueKernelFor(Instruction &I) {
1539 return getUniqueKernelFor(*I.getFunction());
1540 }
1541
1542 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
1543 /// the cases we can avoid taking the address of a function.
1544 bool rewriteDeviceCodeStateMachine();
1545
1546 ///
1547 ///}}
1548
1549 /// Emit a remark generically
1550 ///
1551 /// This template function can be used to generically emit a remark. The
1552 /// RemarkKind should be one of the following:
1553 /// - OptimizationRemark to indicate a successful optimization attempt
1554 /// - OptimizationRemarkMissed to report a failed optimization attempt
1555 /// - OptimizationRemarkAnalysis to provide additional information about an
1556 /// optimization attempt
1557 ///
1558 /// The remark is built using a callback function provided by the caller that
1559 /// takes a RemarkKind as input and returns a RemarkKind.
1560 template <typename RemarkKind, typename RemarkCallBack>
emitRemark__anonf8ae38920111::OpenMPOpt1561 void emitRemark(Instruction *I, StringRef RemarkName,
1562 RemarkCallBack &&RemarkCB) const {
1563 Function *F = I->getParent()->getParent();
1564 auto &ORE = OREGetter(F);
1565
1566 ORE.emit([&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); });
1567 }
1568
1569 /// Emit a remark on a function.
1570 template <typename RemarkKind, typename RemarkCallBack>
emitRemark__anonf8ae38920111::OpenMPOpt1571 void emitRemark(Function *F, StringRef RemarkName,
1572 RemarkCallBack &&RemarkCB) const {
1573 auto &ORE = OREGetter(F);
1574
1575 ORE.emit([&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); });
1576 }
1577
1578 /// The underlying module.
1579 Module &M;
1580
1581 /// The SCC we are operating on.
1582 SmallVectorImpl<Function *> &SCC;
1583
1584 /// Callback to update the call graph, the first argument is a removed call,
1585 /// the second an optional replacement call.
1586 CallGraphUpdater &CGUpdater;
1587
1588 /// Callback to get an OptimizationRemarkEmitter from a Function *
1589 OptimizationRemarkGetter OREGetter;
1590
1591 /// OpenMP-specific information cache. Also Used for Attributor runs.
1592 OMPInformationCache &OMPInfoCache;
1593
1594 /// Attributor instance.
1595 Attributor &A;
1596
1597 /// Helper function to run Attributor on SCC.
runAttributor__anonf8ae38920111::OpenMPOpt1598 bool runAttributor() {
1599 if (SCC.empty())
1600 return false;
1601
1602 registerAAs();
1603
1604 ChangeStatus Changed = A.run();
1605
1606 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size()
1607 << " functions, result: " << Changed << ".\n");
1608
1609 return Changed == ChangeStatus::CHANGED;
1610 }
1611
1612 /// Populate the Attributor with abstract attribute opportunities in the
1613 /// function.
registerAAs__anonf8ae38920111::OpenMPOpt1614 void registerAAs() {
1615 if (SCC.empty())
1616 return;
1617
1618 // Create CallSite AA for all Getters.
1619 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) {
1620 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)];
1621
1622 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter];
1623
1624 auto CreateAA = [&](Use &U, Function &Caller) {
1625 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI);
1626 if (!CI)
1627 return false;
1628
1629 auto &CB = cast<CallBase>(*CI);
1630
1631 IRPosition CBPos = IRPosition::callsite_function(CB);
1632 A.getOrCreateAAFor<AAICVTracker>(CBPos);
1633 return false;
1634 };
1635
1636 GetterRFI.foreachUse(SCC, CreateAA);
1637 }
1638
1639 for (auto &F : M) {
1640 if (!F.isDeclaration())
1641 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(F));
1642 }
1643 }
1644 };
1645
getUniqueKernelFor(Function & F)1646 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) {
1647 if (!OMPInfoCache.ModuleSlice.count(&F))
1648 return nullptr;
1649
1650 // Use a scope to keep the lifetime of the CachedKernel short.
1651 {
1652 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F];
1653 if (CachedKernel)
1654 return *CachedKernel;
1655
1656 // TODO: We should use an AA to create an (optimistic and callback
1657 // call-aware) call graph. For now we stick to simple patterns that
1658 // are less powerful, basically the worst fixpoint.
1659 if (isKernel(F)) {
1660 CachedKernel = Kernel(&F);
1661 return *CachedKernel;
1662 }
1663
1664 CachedKernel = nullptr;
1665 if (!F.hasLocalLinkage()) {
1666
1667 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html
1668 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
1669 return ORA
1670 << "[OMP100] Potentially unknown OpenMP target region caller";
1671 };
1672 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark);
1673
1674 return nullptr;
1675 }
1676 }
1677
1678 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel {
1679 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
1680 // Allow use in equality comparisons.
1681 if (Cmp->isEquality())
1682 return getUniqueKernelFor(*Cmp);
1683 return nullptr;
1684 }
1685 if (auto *CB = dyn_cast<CallBase>(U.getUser())) {
1686 // Allow direct calls.
1687 if (CB->isCallee(&U))
1688 return getUniqueKernelFor(*CB);
1689
1690 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
1691 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
1692 // Allow the use in __kmpc_parallel_51 calls.
1693 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI))
1694 return getUniqueKernelFor(*CB);
1695 return nullptr;
1696 }
1697 // Disallow every other use.
1698 return nullptr;
1699 };
1700
1701 // TODO: In the future we want to track more than just a unique kernel.
1702 SmallPtrSet<Kernel, 2> PotentialKernels;
1703 OMPInformationCache::foreachUse(F, [&](const Use &U) {
1704 PotentialKernels.insert(GetUniqueKernelForUse(U));
1705 });
1706
1707 Kernel K = nullptr;
1708 if (PotentialKernels.size() == 1)
1709 K = *PotentialKernels.begin();
1710
1711 // Cache the result.
1712 UniqueKernelMap[&F] = K;
1713
1714 return K;
1715 }
1716
rewriteDeviceCodeStateMachine()1717 bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
1718 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
1719 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
1720
1721 bool Changed = false;
1722 if (!KernelParallelRFI)
1723 return Changed;
1724
1725 for (Function *F : SCC) {
1726
1727 // Check if the function is a use in a __kmpc_parallel_51 call at
1728 // all.
1729 bool UnknownUse = false;
1730 bool KernelParallelUse = false;
1731 unsigned NumDirectCalls = 0;
1732
1733 SmallVector<Use *, 2> ToBeReplacedStateMachineUses;
1734 OMPInformationCache::foreachUse(*F, [&](Use &U) {
1735 if (auto *CB = dyn_cast<CallBase>(U.getUser()))
1736 if (CB->isCallee(&U)) {
1737 ++NumDirectCalls;
1738 return;
1739 }
1740
1741 if (isa<ICmpInst>(U.getUser())) {
1742 ToBeReplacedStateMachineUses.push_back(&U);
1743 return;
1744 }
1745
1746 // Find wrapper functions that represent parallel kernels.
1747 CallInst *CI =
1748 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI);
1749 const unsigned int WrapperFunctionArgNo = 6;
1750 if (!KernelParallelUse && CI &&
1751 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) {
1752 KernelParallelUse = true;
1753 ToBeReplacedStateMachineUses.push_back(&U);
1754 return;
1755 }
1756 UnknownUse = true;
1757 });
1758
1759 // Do not emit a remark if we haven't seen a __kmpc_parallel_51
1760 // use.
1761 if (!KernelParallelUse)
1762 continue;
1763
1764 {
1765 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
1766 return ORA << "Found a parallel region that is called in a target "
1767 "region but not part of a combined target construct nor "
1768 "nested inside a target construct without intermediate "
1769 "code. This can lead to excessive register usage for "
1770 "unrelated target regions in the same translation unit "
1771 "due to spurious call edges assumed by ptxas.";
1772 };
1773 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPParallelRegionInNonSPMD",
1774 Remark);
1775 }
1776
1777 // If this ever hits, we should investigate.
1778 // TODO: Checking the number of uses is not a necessary restriction and
1779 // should be lifted.
1780 if (UnknownUse || NumDirectCalls != 1 ||
1781 ToBeReplacedStateMachineUses.size() != 2) {
1782 {
1783 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
1784 return ORA << "Parallel region is used in "
1785 << (UnknownUse ? "unknown" : "unexpected")
1786 << " ways; will not attempt to rewrite the state machine.";
1787 };
1788 emitRemark<OptimizationRemarkAnalysis>(
1789 F, "OpenMPParallelRegionInNonSPMD", Remark);
1790 }
1791 continue;
1792 }
1793
1794 // Even if we have __kmpc_parallel_51 calls, we (for now) give
1795 // up if the function is not called from a unique kernel.
1796 Kernel K = getUniqueKernelFor(*F);
1797 if (!K) {
1798 {
1799 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
1800 return ORA << "Parallel region is not known to be called from a "
1801 "unique single target region, maybe the surrounding "
1802 "function has external linkage?; will not attempt to "
1803 "rewrite the state machine use.";
1804 };
1805 emitRemark<OptimizationRemarkAnalysis>(
1806 F, "OpenMPParallelRegionInMultipleKernesl", Remark);
1807 }
1808 continue;
1809 }
1810
1811 // We now know F is a parallel body function called only from the kernel K.
1812 // We also identified the state machine uses in which we replace the
1813 // function pointer by a new global symbol for identification purposes. This
1814 // ensures only direct calls to the function are left.
1815
1816 {
1817 auto RemarkParalleRegion = [&](OptimizationRemarkAnalysis ORA) {
1818 return ORA << "Specialize parallel region that is only reached from a "
1819 "single target region to avoid spurious call edges and "
1820 "excessive register usage in other target regions. "
1821 "(parallel region ID: "
1822 << ore::NV("OpenMPParallelRegion", F->getName())
1823 << ", kernel ID: "
1824 << ore::NV("OpenMPTargetRegion", K->getName()) << ")";
1825 };
1826 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPParallelRegionInNonSPMD",
1827 RemarkParalleRegion);
1828 auto RemarkKernel = [&](OptimizationRemarkAnalysis ORA) {
1829 return ORA << "Target region containing the parallel region that is "
1830 "specialized. (parallel region ID: "
1831 << ore::NV("OpenMPParallelRegion", F->getName())
1832 << ", kernel ID: "
1833 << ore::NV("OpenMPTargetRegion", K->getName()) << ")";
1834 };
1835 emitRemark<OptimizationRemarkAnalysis>(K, "OpenMPParallelRegionInNonSPMD",
1836 RemarkKernel);
1837 }
1838
1839 Module &M = *F->getParent();
1840 Type *Int8Ty = Type::getInt8Ty(M.getContext());
1841
1842 auto *ID = new GlobalVariable(
1843 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage,
1844 UndefValue::get(Int8Ty), F->getName() + ".ID");
1845
1846 for (Use *U : ToBeReplacedStateMachineUses)
1847 U->set(ConstantExpr::getBitCast(ID, U->get()->getType()));
1848
1849 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine;
1850
1851 Changed = true;
1852 }
1853
1854 return Changed;
1855 }
1856
1857 /// Abstract Attribute for tracking ICV values.
1858 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> {
1859 using Base = StateWrapper<BooleanState, AbstractAttribute>;
AAICVTracker__anonf8ae38920111::AAICVTracker1860 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
1861
initialize__anonf8ae38920111::AAICVTracker1862 void initialize(Attributor &A) override {
1863 Function *F = getAnchorScope();
1864 if (!F || !A.isFunctionIPOAmendable(*F))
1865 indicatePessimisticFixpoint();
1866 }
1867
1868 /// Returns true if value is assumed to be tracked.
isAssumedTracked__anonf8ae38920111::AAICVTracker1869 bool isAssumedTracked() const { return getAssumed(); }
1870
1871 /// Returns true if value is known to be tracked.
isKnownTracked__anonf8ae38920111::AAICVTracker1872 bool isKnownTracked() const { return getAssumed(); }
1873
1874 /// Create an abstract attribute biew for the position \p IRP.
1875 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A);
1876
1877 /// Return the value with which \p I can be replaced for specific \p ICV.
getReplacementValue__anonf8ae38920111::AAICVTracker1878 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV,
1879 const Instruction *I,
1880 Attributor &A) const {
1881 return None;
1882 }
1883
1884 /// Return an assumed unique ICV value if a single candidate is found. If
1885 /// there cannot be one, return a nullptr. If it is not clear yet, return the
1886 /// Optional::NoneType.
1887 virtual Optional<Value *>
1888 getUniqueReplacementValue(InternalControlVar ICV) const = 0;
1889
1890 // Currently only nthreads is being tracked.
1891 // this array will only grow with time.
1892 InternalControlVar TrackableICVs[1] = {ICV_nthreads};
1893
1894 /// See AbstractAttribute::getName()
getName__anonf8ae38920111::AAICVTracker1895 const std::string getName() const override { return "AAICVTracker"; }
1896
1897 /// See AbstractAttribute::getIdAddr()
getIdAddr__anonf8ae38920111::AAICVTracker1898 const char *getIdAddr() const override { return &ID; }
1899
1900 /// This function should return true if the type of the \p AA is AAICVTracker
classof__anonf8ae38920111::AAICVTracker1901 static bool classof(const AbstractAttribute *AA) {
1902 return (AA->getIdAddr() == &ID);
1903 }
1904
1905 static const char ID;
1906 };
1907
1908 struct AAICVTrackerFunction : public AAICVTracker {
AAICVTrackerFunction__anonf8ae38920111::AAICVTrackerFunction1909 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A)
1910 : AAICVTracker(IRP, A) {}
1911
1912 // FIXME: come up with better string.
getAsStr__anonf8ae38920111::AAICVTrackerFunction1913 const std::string getAsStr() const override { return "ICVTrackerFunction"; }
1914
1915 // FIXME: come up with some stats.
trackStatistics__anonf8ae38920111::AAICVTrackerFunction1916 void trackStatistics() const override {}
1917
1918 /// We don't manifest anything for this AA.
manifest__anonf8ae38920111::AAICVTrackerFunction1919 ChangeStatus manifest(Attributor &A) override {
1920 return ChangeStatus::UNCHANGED;
1921 }
1922
1923 // Map of ICV to their values at specific program point.
1924 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar,
1925 InternalControlVar::ICV___last>
1926 ICVReplacementValuesMap;
1927
updateImpl__anonf8ae38920111::AAICVTrackerFunction1928 ChangeStatus updateImpl(Attributor &A) override {
1929 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
1930
1931 Function *F = getAnchorScope();
1932
1933 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
1934
1935 for (InternalControlVar ICV : TrackableICVs) {
1936 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
1937
1938 auto &ValuesMap = ICVReplacementValuesMap[ICV];
1939 auto TrackValues = [&](Use &U, Function &) {
1940 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U);
1941 if (!CI)
1942 return false;
1943
1944 // FIXME: handle setters with more that 1 arguments.
1945 /// Track new value.
1946 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second)
1947 HasChanged = ChangeStatus::CHANGED;
1948
1949 return false;
1950 };
1951
1952 auto CallCheck = [&](Instruction &I) {
1953 Optional<Value *> ReplVal = getValueForCall(A, &I, ICV);
1954 if (ReplVal.hasValue() &&
1955 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second)
1956 HasChanged = ChangeStatus::CHANGED;
1957
1958 return true;
1959 };
1960
1961 // Track all changes of an ICV.
1962 SetterRFI.foreachUse(TrackValues, F);
1963
1964 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call},
1965 /* CheckBBLivenessOnly */ true);
1966
1967 /// TODO: Figure out a way to avoid adding entry in
1968 /// ICVReplacementValuesMap
1969 Instruction *Entry = &F->getEntryBlock().front();
1970 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry))
1971 ValuesMap.insert(std::make_pair(Entry, nullptr));
1972 }
1973
1974 return HasChanged;
1975 }
1976
1977 /// Hepler to check if \p I is a call and get the value for it if it is
1978 /// unique.
getValueForCall__anonf8ae38920111::AAICVTrackerFunction1979 Optional<Value *> getValueForCall(Attributor &A, const Instruction *I,
1980 InternalControlVar &ICV) const {
1981
1982 const auto *CB = dyn_cast<CallBase>(I);
1983 if (!CB || CB->hasFnAttr("no_openmp") ||
1984 CB->hasFnAttr("no_openmp_routines"))
1985 return None;
1986
1987 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
1988 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter];
1989 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
1990 Function *CalledFunction = CB->getCalledFunction();
1991
1992 // Indirect call, assume ICV changes.
1993 if (CalledFunction == nullptr)
1994 return nullptr;
1995 if (CalledFunction == GetterRFI.Declaration)
1996 return None;
1997 if (CalledFunction == SetterRFI.Declaration) {
1998 if (ICVReplacementValuesMap[ICV].count(I))
1999 return ICVReplacementValuesMap[ICV].lookup(I);
2000
2001 return nullptr;
2002 }
2003
2004 // Since we don't know, assume it changes the ICV.
2005 if (CalledFunction->isDeclaration())
2006 return nullptr;
2007
2008 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2009 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED);
2010
2011 if (ICVTrackingAA.isAssumedTracked())
2012 return ICVTrackingAA.getUniqueReplacementValue(ICV);
2013
2014 // If we don't know, assume it changes.
2015 return nullptr;
2016 }
2017
2018 // We don't check unique value for a function, so return None.
2019 Optional<Value *>
getUniqueReplacementValue__anonf8ae38920111::AAICVTrackerFunction2020 getUniqueReplacementValue(InternalControlVar ICV) const override {
2021 return None;
2022 }
2023
2024 /// Return the value with which \p I can be replaced for specific \p ICV.
getReplacementValue__anonf8ae38920111::AAICVTrackerFunction2025 Optional<Value *> getReplacementValue(InternalControlVar ICV,
2026 const Instruction *I,
2027 Attributor &A) const override {
2028 const auto &ValuesMap = ICVReplacementValuesMap[ICV];
2029 if (ValuesMap.count(I))
2030 return ValuesMap.lookup(I);
2031
2032 SmallVector<const Instruction *, 16> Worklist;
2033 SmallPtrSet<const Instruction *, 16> Visited;
2034 Worklist.push_back(I);
2035
2036 Optional<Value *> ReplVal;
2037
2038 while (!Worklist.empty()) {
2039 const Instruction *CurrInst = Worklist.pop_back_val();
2040 if (!Visited.insert(CurrInst).second)
2041 continue;
2042
2043 const BasicBlock *CurrBB = CurrInst->getParent();
2044
2045 // Go up and look for all potential setters/calls that might change the
2046 // ICV.
2047 while ((CurrInst = CurrInst->getPrevNode())) {
2048 if (ValuesMap.count(CurrInst)) {
2049 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst);
2050 // Unknown value, track new.
2051 if (!ReplVal.hasValue()) {
2052 ReplVal = NewReplVal;
2053 break;
2054 }
2055
2056 // If we found a new value, we can't know the icv value anymore.
2057 if (NewReplVal.hasValue())
2058 if (ReplVal != NewReplVal)
2059 return nullptr;
2060
2061 break;
2062 }
2063
2064 Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV);
2065 if (!NewReplVal.hasValue())
2066 continue;
2067
2068 // Unknown value, track new.
2069 if (!ReplVal.hasValue()) {
2070 ReplVal = NewReplVal;
2071 break;
2072 }
2073
2074 // if (NewReplVal.hasValue())
2075 // We found a new value, we can't know the icv value anymore.
2076 if (ReplVal != NewReplVal)
2077 return nullptr;
2078 }
2079
2080 // If we are in the same BB and we have a value, we are done.
2081 if (CurrBB == I->getParent() && ReplVal.hasValue())
2082 return ReplVal;
2083
2084 // Go through all predecessors and add terminators for analysis.
2085 for (const BasicBlock *Pred : predecessors(CurrBB))
2086 if (const Instruction *Terminator = Pred->getTerminator())
2087 Worklist.push_back(Terminator);
2088 }
2089
2090 return ReplVal;
2091 }
2092 };
2093
2094 struct AAICVTrackerFunctionReturned : AAICVTracker {
AAICVTrackerFunctionReturned__anonf8ae38920111::AAICVTrackerFunctionReturned2095 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A)
2096 : AAICVTracker(IRP, A) {}
2097
2098 // FIXME: come up with better string.
getAsStr__anonf8ae38920111::AAICVTrackerFunctionReturned2099 const std::string getAsStr() const override {
2100 return "ICVTrackerFunctionReturned";
2101 }
2102
2103 // FIXME: come up with some stats.
trackStatistics__anonf8ae38920111::AAICVTrackerFunctionReturned2104 void trackStatistics() const override {}
2105
2106 /// We don't manifest anything for this AA.
manifest__anonf8ae38920111::AAICVTrackerFunctionReturned2107 ChangeStatus manifest(Attributor &A) override {
2108 return ChangeStatus::UNCHANGED;
2109 }
2110
2111 // Map of ICV to their values at specific program point.
2112 EnumeratedArray<Optional<Value *>, InternalControlVar,
2113 InternalControlVar::ICV___last>
2114 ICVReplacementValuesMap;
2115
2116 /// Return the value with which \p I can be replaced for specific \p ICV.
2117 Optional<Value *>
getUniqueReplacementValue__anonf8ae38920111::AAICVTrackerFunctionReturned2118 getUniqueReplacementValue(InternalControlVar ICV) const override {
2119 return ICVReplacementValuesMap[ICV];
2120 }
2121
updateImpl__anonf8ae38920111::AAICVTrackerFunctionReturned2122 ChangeStatus updateImpl(Attributor &A) override {
2123 ChangeStatus Changed = ChangeStatus::UNCHANGED;
2124 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2125 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2126
2127 if (!ICVTrackingAA.isAssumedTracked())
2128 return indicatePessimisticFixpoint();
2129
2130 for (InternalControlVar ICV : TrackableICVs) {
2131 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2132 Optional<Value *> UniqueICVValue;
2133
2134 auto CheckReturnInst = [&](Instruction &I) {
2135 Optional<Value *> NewReplVal =
2136 ICVTrackingAA.getReplacementValue(ICV, &I, A);
2137
2138 // If we found a second ICV value there is no unique returned value.
2139 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal)
2140 return false;
2141
2142 UniqueICVValue = NewReplVal;
2143
2144 return true;
2145 };
2146
2147 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret},
2148 /* CheckBBLivenessOnly */ true))
2149 UniqueICVValue = nullptr;
2150
2151 if (UniqueICVValue == ReplVal)
2152 continue;
2153
2154 ReplVal = UniqueICVValue;
2155 Changed = ChangeStatus::CHANGED;
2156 }
2157
2158 return Changed;
2159 }
2160 };
2161
2162 struct AAICVTrackerCallSite : AAICVTracker {
AAICVTrackerCallSite__anonf8ae38920111::AAICVTrackerCallSite2163 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A)
2164 : AAICVTracker(IRP, A) {}
2165
initialize__anonf8ae38920111::AAICVTrackerCallSite2166 void initialize(Attributor &A) override {
2167 Function *F = getAnchorScope();
2168 if (!F || !A.isFunctionIPOAmendable(*F))
2169 indicatePessimisticFixpoint();
2170
2171 // We only initialize this AA for getters, so we need to know which ICV it
2172 // gets.
2173 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2174 for (InternalControlVar ICV : TrackableICVs) {
2175 auto ICVInfo = OMPInfoCache.ICVs[ICV];
2176 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter];
2177 if (Getter.Declaration == getAssociatedFunction()) {
2178 AssociatedICV = ICVInfo.Kind;
2179 return;
2180 }
2181 }
2182
2183 /// Unknown ICV.
2184 indicatePessimisticFixpoint();
2185 }
2186
manifest__anonf8ae38920111::AAICVTrackerCallSite2187 ChangeStatus manifest(Attributor &A) override {
2188 if (!ReplVal.hasValue() || !ReplVal.getValue())
2189 return ChangeStatus::UNCHANGED;
2190
2191 A.changeValueAfterManifest(*getCtxI(), **ReplVal);
2192 A.deleteAfterManifest(*getCtxI());
2193
2194 return ChangeStatus::CHANGED;
2195 }
2196
2197 // FIXME: come up with better string.
getAsStr__anonf8ae38920111::AAICVTrackerCallSite2198 const std::string getAsStr() const override { return "ICVTrackerCallSite"; }
2199
2200 // FIXME: come up with some stats.
trackStatistics__anonf8ae38920111::AAICVTrackerCallSite2201 void trackStatistics() const override {}
2202
2203 InternalControlVar AssociatedICV;
2204 Optional<Value *> ReplVal;
2205
updateImpl__anonf8ae38920111::AAICVTrackerCallSite2206 ChangeStatus updateImpl(Attributor &A) override {
2207 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2208 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2209
2210 // We don't have any information, so we assume it changes the ICV.
2211 if (!ICVTrackingAA.isAssumedTracked())
2212 return indicatePessimisticFixpoint();
2213
2214 Optional<Value *> NewReplVal =
2215 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A);
2216
2217 if (ReplVal == NewReplVal)
2218 return ChangeStatus::UNCHANGED;
2219
2220 ReplVal = NewReplVal;
2221 return ChangeStatus::CHANGED;
2222 }
2223
2224 // Return the value with which associated value can be replaced for specific
2225 // \p ICV.
2226 Optional<Value *>
getUniqueReplacementValue__anonf8ae38920111::AAICVTrackerCallSite2227 getUniqueReplacementValue(InternalControlVar ICV) const override {
2228 return ReplVal;
2229 }
2230 };
2231
2232 struct AAICVTrackerCallSiteReturned : AAICVTracker {
AAICVTrackerCallSiteReturned__anonf8ae38920111::AAICVTrackerCallSiteReturned2233 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A)
2234 : AAICVTracker(IRP, A) {}
2235
2236 // FIXME: come up with better string.
getAsStr__anonf8ae38920111::AAICVTrackerCallSiteReturned2237 const std::string getAsStr() const override {
2238 return "ICVTrackerCallSiteReturned";
2239 }
2240
2241 // FIXME: come up with some stats.
trackStatistics__anonf8ae38920111::AAICVTrackerCallSiteReturned2242 void trackStatistics() const override {}
2243
2244 /// We don't manifest anything for this AA.
manifest__anonf8ae38920111::AAICVTrackerCallSiteReturned2245 ChangeStatus manifest(Attributor &A) override {
2246 return ChangeStatus::UNCHANGED;
2247 }
2248
2249 // Map of ICV to their values at specific program point.
2250 EnumeratedArray<Optional<Value *>, InternalControlVar,
2251 InternalControlVar::ICV___last>
2252 ICVReplacementValuesMap;
2253
2254 /// Return the value with which associated value can be replaced for specific
2255 /// \p ICV.
2256 Optional<Value *>
getUniqueReplacementValue__anonf8ae38920111::AAICVTrackerCallSiteReturned2257 getUniqueReplacementValue(InternalControlVar ICV) const override {
2258 return ICVReplacementValuesMap[ICV];
2259 }
2260
updateImpl__anonf8ae38920111::AAICVTrackerCallSiteReturned2261 ChangeStatus updateImpl(Attributor &A) override {
2262 ChangeStatus Changed = ChangeStatus::UNCHANGED;
2263 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2264 *this, IRPosition::returned(*getAssociatedFunction()),
2265 DepClassTy::REQUIRED);
2266
2267 // We don't have any information, so we assume it changes the ICV.
2268 if (!ICVTrackingAA.isAssumedTracked())
2269 return indicatePessimisticFixpoint();
2270
2271 for (InternalControlVar ICV : TrackableICVs) {
2272 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2273 Optional<Value *> NewReplVal =
2274 ICVTrackingAA.getUniqueReplacementValue(ICV);
2275
2276 if (ReplVal == NewReplVal)
2277 continue;
2278
2279 ReplVal = NewReplVal;
2280 Changed = ChangeStatus::CHANGED;
2281 }
2282 return Changed;
2283 }
2284 };
2285
2286 struct AAExecutionDomainFunction : public AAExecutionDomain {
AAExecutionDomainFunction__anonf8ae38920111::AAExecutionDomainFunction2287 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A)
2288 : AAExecutionDomain(IRP, A) {}
2289
getAsStr__anonf8ae38920111::AAExecutionDomainFunction2290 const std::string getAsStr() const override {
2291 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) +
2292 "/" + std::to_string(NumBBs) + " BBs thread 0 only.";
2293 }
2294
2295 /// See AbstractAttribute::trackStatistics().
trackStatistics__anonf8ae38920111::AAExecutionDomainFunction2296 void trackStatistics() const override {}
2297
initialize__anonf8ae38920111::AAExecutionDomainFunction2298 void initialize(Attributor &A) override {
2299 Function *F = getAnchorScope();
2300 for (const auto &BB : *F)
2301 SingleThreadedBBs.insert(&BB);
2302 NumBBs = SingleThreadedBBs.size();
2303 }
2304
manifest__anonf8ae38920111::AAExecutionDomainFunction2305 ChangeStatus manifest(Attributor &A) override {
2306 LLVM_DEBUG({
2307 for (const BasicBlock *BB : SingleThreadedBBs)
2308 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " "
2309 << BB->getName() << " is executed by a single thread.\n";
2310 });
2311 return ChangeStatus::UNCHANGED;
2312 }
2313
2314 ChangeStatus updateImpl(Attributor &A) override;
2315
2316 /// Check if an instruction is executed by a single thread.
isSingleThreadExecution__anonf8ae38920111::AAExecutionDomainFunction2317 bool isSingleThreadExecution(const Instruction &I) const override {
2318 return isSingleThreadExecution(*I.getParent());
2319 }
2320
isSingleThreadExecution__anonf8ae38920111::AAExecutionDomainFunction2321 bool isSingleThreadExecution(const BasicBlock &BB) const override {
2322 return SingleThreadedBBs.contains(&BB);
2323 }
2324
2325 /// Set of basic blocks that are executed by a single thread.
2326 DenseSet<const BasicBlock *> SingleThreadedBBs;
2327
2328 /// Total number of basic blocks in this function.
2329 long unsigned NumBBs;
2330 };
2331
updateImpl(Attributor & A)2332 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) {
2333 Function *F = getAnchorScope();
2334 ReversePostOrderTraversal<Function *> RPOT(F);
2335 auto NumSingleThreadedBBs = SingleThreadedBBs.size();
2336
2337 bool AllCallSitesKnown;
2338 auto PredForCallSite = [&](AbstractCallSite ACS) {
2339 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>(
2340 *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2341 DepClassTy::REQUIRED);
2342 return ExecutionDomainAA.isSingleThreadExecution(*ACS.getInstruction());
2343 };
2344
2345 if (!A.checkForAllCallSites(PredForCallSite, *this,
2346 /* RequiresAllCallSites */ true,
2347 AllCallSitesKnown))
2348 SingleThreadedBBs.erase(&F->getEntryBlock());
2349
2350 // Check if the edge into the successor block compares a thread-id function to
2351 // a constant zero.
2352 // TODO: Use AAValueSimplify to simplify and propogate constants.
2353 // TODO: Check more than a single use for thread ID's.
2354 auto IsSingleThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) {
2355 if (!Edge || !Edge->isConditional())
2356 return false;
2357 if (Edge->getSuccessor(0) != SuccessorBB)
2358 return false;
2359
2360 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition());
2361 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality())
2362 return false;
2363
2364 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1));
2365 if (!C || !C->isZero())
2366 return false;
2367
2368 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2369 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x)
2370 return true;
2371 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2372 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x)
2373 return true;
2374
2375 return false;
2376 };
2377
2378 // Merge all the predecessor states into the current basic block. A basic
2379 // block is executed by a single thread if all of its predecessors are.
2380 auto MergePredecessorStates = [&](BasicBlock *BB) {
2381 if (pred_begin(BB) == pred_end(BB))
2382 return SingleThreadedBBs.contains(BB);
2383
2384 bool IsSingleThreaded = true;
2385 for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB);
2386 PredBB != PredEndBB; ++PredBB) {
2387 if (!IsSingleThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()),
2388 BB))
2389 IsSingleThreaded &= SingleThreadedBBs.contains(*PredBB);
2390 }
2391
2392 return IsSingleThreaded;
2393 };
2394
2395 for (auto *BB : RPOT) {
2396 if (!MergePredecessorStates(BB))
2397 SingleThreadedBBs.erase(BB);
2398 }
2399
2400 return (NumSingleThreadedBBs == SingleThreadedBBs.size())
2401 ? ChangeStatus::UNCHANGED
2402 : ChangeStatus::CHANGED;
2403 }
2404
2405 } // namespace
2406
2407 const char AAICVTracker::ID = 0;
2408 const char AAExecutionDomain::ID = 0;
2409
createForPosition(const IRPosition & IRP,Attributor & A)2410 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP,
2411 Attributor &A) {
2412 AAICVTracker *AA = nullptr;
2413 switch (IRP.getPositionKind()) {
2414 case IRPosition::IRP_INVALID:
2415 case IRPosition::IRP_FLOAT:
2416 case IRPosition::IRP_ARGUMENT:
2417 case IRPosition::IRP_CALL_SITE_ARGUMENT:
2418 llvm_unreachable("ICVTracker can only be created for function position!");
2419 case IRPosition::IRP_RETURNED:
2420 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A);
2421 break;
2422 case IRPosition::IRP_CALL_SITE_RETURNED:
2423 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A);
2424 break;
2425 case IRPosition::IRP_CALL_SITE:
2426 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A);
2427 break;
2428 case IRPosition::IRP_FUNCTION:
2429 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A);
2430 break;
2431 }
2432
2433 return *AA;
2434 }
2435
createForPosition(const IRPosition & IRP,Attributor & A)2436 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP,
2437 Attributor &A) {
2438 AAExecutionDomainFunction *AA = nullptr;
2439 switch (IRP.getPositionKind()) {
2440 case IRPosition::IRP_INVALID:
2441 case IRPosition::IRP_FLOAT:
2442 case IRPosition::IRP_ARGUMENT:
2443 case IRPosition::IRP_CALL_SITE_ARGUMENT:
2444 case IRPosition::IRP_RETURNED:
2445 case IRPosition::IRP_CALL_SITE_RETURNED:
2446 case IRPosition::IRP_CALL_SITE:
2447 llvm_unreachable(
2448 "AAExecutionDomain can only be created for function position!");
2449 case IRPosition::IRP_FUNCTION:
2450 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A);
2451 break;
2452 }
2453
2454 return *AA;
2455 }
2456
run(Module & M,ModuleAnalysisManager & AM)2457 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2458 if (!containsOpenMP(M, OMPInModule))
2459 return PreservedAnalyses::all();
2460
2461 if (DisableOpenMPOptimizations)
2462 return PreservedAnalyses::all();
2463
2464 // Look at every function definition in the Module.
2465 SmallVector<Function *, 16> SCC;
2466 for (Function &Fn : M)
2467 if (!Fn.isDeclaration())
2468 SCC.push_back(&Fn);
2469
2470 if (SCC.empty())
2471 return PreservedAnalyses::all();
2472
2473 FunctionAnalysisManager &FAM =
2474 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2475
2476 AnalysisGetter AG(FAM);
2477
2478 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
2479 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
2480 };
2481
2482 BumpPtrAllocator Allocator;
2483 CallGraphUpdater CGUpdater;
2484
2485 SetVector<Function *> Functions(SCC.begin(), SCC.end());
2486 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions,
2487 OMPInModule.getKernels());
2488
2489 Attributor A(Functions, InfoCache, CGUpdater);
2490
2491 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
2492 bool Changed = OMPOpt.run(true);
2493 if (Changed)
2494 return PreservedAnalyses::none();
2495
2496 return PreservedAnalyses::all();
2497 }
2498
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)2499 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C,
2500 CGSCCAnalysisManager &AM,
2501 LazyCallGraph &CG,
2502 CGSCCUpdateResult &UR) {
2503 if (!containsOpenMP(*C.begin()->getFunction().getParent(), OMPInModule))
2504 return PreservedAnalyses::all();
2505
2506 if (DisableOpenMPOptimizations)
2507 return PreservedAnalyses::all();
2508
2509 SmallVector<Function *, 16> SCC;
2510 // If there are kernels in the module, we have to run on all SCC's.
2511 bool SCCIsInteresting = !OMPInModule.getKernels().empty();
2512 for (LazyCallGraph::Node &N : C) {
2513 Function *Fn = &N.getFunction();
2514 SCC.push_back(Fn);
2515
2516 // Do we already know that the SCC contains kernels,
2517 // or that OpenMP functions are called from this SCC?
2518 if (SCCIsInteresting)
2519 continue;
2520 // If not, let's check that.
2521 SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn);
2522 }
2523
2524 if (!SCCIsInteresting || SCC.empty())
2525 return PreservedAnalyses::all();
2526
2527 FunctionAnalysisManager &FAM =
2528 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2529
2530 AnalysisGetter AG(FAM);
2531
2532 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
2533 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
2534 };
2535
2536 BumpPtrAllocator Allocator;
2537 CallGraphUpdater CGUpdater;
2538 CGUpdater.initialize(CG, C, AM, UR);
2539
2540 SetVector<Function *> Functions(SCC.begin(), SCC.end());
2541 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator,
2542 /*CGSCC*/ Functions, OMPInModule.getKernels());
2543
2544 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false);
2545
2546 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
2547 bool Changed = OMPOpt.run(false);
2548 if (Changed)
2549 return PreservedAnalyses::none();
2550
2551 return PreservedAnalyses::all();
2552 }
2553
2554 namespace {
2555
2556 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass {
2557 CallGraphUpdater CGUpdater;
2558 OpenMPInModule OMPInModule;
2559 static char ID;
2560
OpenMPOptCGSCCLegacyPass__anonf8ae38923011::OpenMPOptCGSCCLegacyPass2561 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) {
2562 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
2563 }
2564
getAnalysisUsage__anonf8ae38923011::OpenMPOptCGSCCLegacyPass2565 void getAnalysisUsage(AnalysisUsage &AU) const override {
2566 CallGraphSCCPass::getAnalysisUsage(AU);
2567 }
2568
doInitialization__anonf8ae38923011::OpenMPOptCGSCCLegacyPass2569 bool doInitialization(CallGraph &CG) override {
2570 // Disable the pass if there is no OpenMP (runtime call) in the module.
2571 containsOpenMP(CG.getModule(), OMPInModule);
2572 return false;
2573 }
2574
runOnSCC__anonf8ae38923011::OpenMPOptCGSCCLegacyPass2575 bool runOnSCC(CallGraphSCC &CGSCC) override {
2576 if (!containsOpenMP(CGSCC.getCallGraph().getModule(), OMPInModule))
2577 return false;
2578 if (DisableOpenMPOptimizations || skipSCC(CGSCC))
2579 return false;
2580
2581 SmallVector<Function *, 16> SCC;
2582 // If there are kernels in the module, we have to run on all SCC's.
2583 bool SCCIsInteresting = !OMPInModule.getKernels().empty();
2584 for (CallGraphNode *CGN : CGSCC) {
2585 Function *Fn = CGN->getFunction();
2586 if (!Fn || Fn->isDeclaration())
2587 continue;
2588 SCC.push_back(Fn);
2589
2590 // Do we already know that the SCC contains kernels,
2591 // or that OpenMP functions are called from this SCC?
2592 if (SCCIsInteresting)
2593 continue;
2594 // If not, let's check that.
2595 SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn);
2596 }
2597
2598 if (!SCCIsInteresting || SCC.empty())
2599 return false;
2600
2601 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
2602 CGUpdater.initialize(CG, CGSCC);
2603
2604 // Maintain a map of functions to avoid rebuilding the ORE
2605 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap;
2606 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & {
2607 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F];
2608 if (!ORE)
2609 ORE = std::make_unique<OptimizationRemarkEmitter>(F);
2610 return *ORE;
2611 };
2612
2613 AnalysisGetter AG;
2614 SetVector<Function *> Functions(SCC.begin(), SCC.end());
2615 BumpPtrAllocator Allocator;
2616 OMPInformationCache InfoCache(
2617 *(Functions.back()->getParent()), AG, Allocator,
2618 /*CGSCC*/ Functions, OMPInModule.getKernels());
2619
2620 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false);
2621
2622 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
2623 return OMPOpt.run(false);
2624 }
2625
doFinalization__anonf8ae38923011::OpenMPOptCGSCCLegacyPass2626 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
2627 };
2628
2629 } // end anonymous namespace
2630
identifyKernels(Module & M)2631 void OpenMPInModule::identifyKernels(Module &M) {
2632
2633 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
2634 if (!MD)
2635 return;
2636
2637 for (auto *Op : MD->operands()) {
2638 if (Op->getNumOperands() < 2)
2639 continue;
2640 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1));
2641 if (!KindID || KindID->getString() != "kernel")
2642 continue;
2643
2644 Function *KernelFn =
2645 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0));
2646 if (!KernelFn)
2647 continue;
2648
2649 ++NumOpenMPTargetRegionKernels;
2650
2651 Kernels.insert(KernelFn);
2652 }
2653 }
2654
containsOpenMP(Module & M,OpenMPInModule & OMPInModule)2655 bool llvm::omp::containsOpenMP(Module &M, OpenMPInModule &OMPInModule) {
2656 if (OMPInModule.isKnown())
2657 return OMPInModule;
2658
2659 auto RecordFunctionsContainingUsesOf = [&](Function *F) {
2660 for (User *U : F->users())
2661 if (auto *I = dyn_cast<Instruction>(U))
2662 OMPInModule.FuncsWithOMPRuntimeCalls.insert(I->getFunction());
2663 };
2664
2665 // MSVC doesn't like long if-else chains for some reason and instead just
2666 // issues an error. Work around it..
2667 do {
2668 #define OMP_RTL(_Enum, _Name, ...) \
2669 if (Function *F = M.getFunction(_Name)) { \
2670 RecordFunctionsContainingUsesOf(F); \
2671 OMPInModule = true; \
2672 }
2673 #include "llvm/Frontend/OpenMP/OMPKinds.def"
2674 } while (false);
2675
2676 // Identify kernels once. TODO: We should split the OMPInformationCache into a
2677 // module and an SCC part. The kernel information, among other things, could
2678 // go into the module part.
2679 if (OMPInModule.isKnown() && OMPInModule) {
2680 OMPInModule.identifyKernels(M);
2681 return true;
2682 }
2683
2684 return OMPInModule = false;
2685 }
2686
2687 char OpenMPOptCGSCCLegacyPass::ID = 0;
2688
2689 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc",
2690 "OpenMP specific optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)2691 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
2692 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc",
2693 "OpenMP specific optimizations", false, false)
2694
2695 Pass *llvm::createOpenMPOptCGSCCLegacyPass() {
2696 return new OpenMPOptCGSCCLegacyPass();
2697 }
2698