xref: /llvm-project/polly/include/polly/ScopInfo.h (revision 5aafc6d58f3405662902cee006be11e599801b88)
1 //===- polly/ScopInfo.h -----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Store the polyhedral model representation of a static control flow region,
10 // also called SCoP (Static Control Part).
11 //
12 // This representation is shared among several tools in the polyhedral
13 // community, which are e.g. CLooG, Pluto, Loopo, Graphite.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef POLLY_SCOPINFO_H
18 #define POLLY_SCOPINFO_H
19 
20 #include "polly/ScopDetection.h"
21 #include "polly/Support/SCEVAffinator.h"
22 #include "polly/Support/ScopHelper.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/Analysis/RegionPass.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/PassManager.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Pass.h"
33 #include "isl/isl-noexceptions.h"
34 #include <cassert>
35 #include <cstddef>
36 #include <forward_list>
37 #include <optional>
38 
39 namespace polly {
40 using llvm::AnalysisInfoMixin;
41 using llvm::ArrayRef;
42 using llvm::AssertingVH;
43 using llvm::AssumptionCache;
44 using llvm::cast;
45 using llvm::DataLayout;
46 using llvm::DenseMap;
47 using llvm::DenseSet;
48 using llvm::function_ref;
49 using llvm::isa;
50 using llvm::iterator_range;
51 using llvm::LoadInst;
52 using llvm::make_range;
53 using llvm::MapVector;
54 using llvm::MemIntrinsic;
55 using llvm::PassInfoMixin;
56 using llvm::PHINode;
57 using llvm::RegionNode;
58 using llvm::RegionPass;
59 using llvm::RGPassManager;
60 using llvm::SetVector;
61 using llvm::SmallPtrSetImpl;
62 using llvm::SmallVector;
63 using llvm::SmallVectorImpl;
64 using llvm::StringMap;
65 using llvm::Type;
66 using llvm::Use;
67 using llvm::Value;
68 using llvm::ValueToValueMap;
69 
70 class MemoryAccess;
71 
72 //===---------------------------------------------------------------------===//
73 
74 extern bool UseInstructionNames;
75 
76 // The maximal number of basic sets we allow during domain construction to
77 // be created. More complex scops will result in very high compile time and
78 // are also unlikely to result in good code.
79 extern unsigned const MaxDisjunctsInDomain;
80 
81 /// The different memory kinds used in Polly.
82 ///
83 /// We distinguish between arrays and various scalar memory objects. We use
84 /// the term ``array'' to describe memory objects that consist of a set of
85 /// individual data elements arranged in a multi-dimensional grid. A scalar
86 /// memory object describes an individual data element and is used to model
87 /// the definition and uses of llvm::Values.
88 ///
89 /// The polyhedral model does traditionally not reason about SSA values. To
90 /// reason about llvm::Values we model them "as if" they were zero-dimensional
91 /// memory objects, even though they were not actually allocated in (main)
92 /// memory.  Memory for such objects is only alloca[ed] at CodeGeneration
93 /// time. To relate the memory slots used during code generation with the
94 /// llvm::Values they belong to the new names for these corresponding stack
95 /// slots are derived by appending suffixes (currently ".s2a" and ".phiops")
96 /// to the name of the original llvm::Value. To describe how def/uses are
97 /// modeled exactly we use these suffixes here as well.
98 ///
99 /// There are currently four different kinds of memory objects:
100 enum class MemoryKind {
101   /// MemoryKind::Array: Models a one or multi-dimensional array
102   ///
103   /// A memory object that can be described by a multi-dimensional array.
104   /// Memory objects of this type are used to model actual multi-dimensional
105   /// arrays as they exist in LLVM-IR, but they are also used to describe
106   /// other objects:
107   ///   - A single data element allocated on the stack using 'alloca' is
108   ///     modeled as a one-dimensional, single-element array.
109   ///   - A single data element allocated as a global variable is modeled as
110   ///     one-dimensional, single-element array.
111   ///   - Certain multi-dimensional arrays with variable size, which in
112   ///     LLVM-IR are commonly expressed as a single-dimensional access with a
113   ///     complicated access function, are modeled as multi-dimensional
114   ///     memory objects (grep for "delinearization").
115   Array,
116 
117   /// MemoryKind::Value: Models an llvm::Value
118   ///
119   /// Memory objects of type MemoryKind::Value are used to model the data flow
120   /// induced by llvm::Values. For each llvm::Value that is used across
121   /// BasicBlocks, one ScopArrayInfo object is created. A single memory WRITE
122   /// stores the llvm::Value at its definition into the memory object and at
123   /// each use of the llvm::Value (ignoring trivial intra-block uses) a
124   /// corresponding READ is added. For instance, the use/def chain of a
125   /// llvm::Value %V depicted below
126   ///              ______________________
127   ///              |DefBB:              |
128   ///              |  %V = float op ... |
129   ///              ----------------------
130   ///               |                  |
131   /// _________________               _________________
132   /// |UseBB1:        |               |UseBB2:        |
133   /// |  use float %V |               |  use float %V |
134   /// -----------------               -----------------
135   ///
136   /// is modeled as if the following memory accesses occurred:
137   ///
138   ///                        __________________________
139   ///                        |entry:                  |
140   ///                        |  %V.s2a = alloca float |
141   ///                        --------------------------
142   ///                                     |
143   ///                    ___________________________________
144   ///                    |DefBB:                           |
145   ///                    |  store %float %V, float* %V.s2a |
146   ///                    -----------------------------------
147   ///                           |                   |
148   /// ____________________________________ ___________________________________
149   /// |UseBB1:                           | |UseBB2:                          |
150   /// |  %V.reload1 = load float* %V.s2a | |  %V.reload2 = load float* %V.s2a|
151   /// |  use float %V.reload1            | |  use float %V.reload2           |
152   /// ------------------------------------ -----------------------------------
153   ///
154   Value,
155 
156   /// MemoryKind::PHI: Models PHI nodes within the SCoP
157   ///
158   /// Besides the MemoryKind::Value memory object used to model the normal
159   /// llvm::Value dependences described above, PHI nodes require an additional
160   /// memory object of type MemoryKind::PHI to describe the forwarding of values
161   /// to
162   /// the PHI node.
163   ///
164   /// As an example, a PHIInst instructions
165   ///
166   /// %PHI = phi float [ %Val1, %IncomingBlock1 ], [ %Val2, %IncomingBlock2 ]
167   ///
168   /// is modeled as if the accesses occurred this way:
169   ///
170   ///                    _______________________________
171   ///                    |entry:                       |
172   ///                    |  %PHI.phiops = alloca float |
173   ///                    -------------------------------
174   ///                           |              |
175   /// __________________________________  __________________________________
176   /// |IncomingBlock1:                 |  |IncomingBlock2:                 |
177   /// |  ...                           |  |  ...                           |
178   /// |  store float %Val1 %PHI.phiops |  |  store float %Val2 %PHI.phiops |
179   /// |  br label % JoinBlock          |  |  br label %JoinBlock           |
180   /// ----------------------------------  ----------------------------------
181   ///                             \            /
182   ///                              \          /
183   ///               _________________________________________
184   ///               |JoinBlock:                             |
185   ///               |  %PHI = load float, float* PHI.phiops |
186   ///               -----------------------------------------
187   ///
188   /// Note that there can also be a scalar write access for %PHI if used in a
189   /// different BasicBlock, i.e. there can be a memory object %PHI.phiops as
190   /// well as a memory object %PHI.s2a.
191   PHI,
192 
193   /// MemoryKind::ExitPHI: Models PHI nodes in the SCoP's exit block
194   ///
195   /// For PHI nodes in the Scop's exit block a special memory object kind is
196   /// used. The modeling used is identical to MemoryKind::PHI, with the
197   /// exception
198   /// that there are no READs from these memory objects. The PHINode's
199   /// llvm::Value is treated as a value escaping the SCoP. WRITE accesses
200   /// write directly to the escaping value's ".s2a" alloca.
201   ExitPHI
202 };
203 
204 /// Maps from a loop to the affine function expressing its backedge taken count.
205 /// The backedge taken count already enough to express iteration domain as we
206 /// only allow loops with canonical induction variable.
207 /// A canonical induction variable is:
208 /// an integer recurrence that starts at 0 and increments by one each time
209 /// through the loop.
210 using LoopBoundMapType = std::map<const Loop *, const SCEV *>;
211 
212 using AccFuncVector = std::vector<std::unique_ptr<MemoryAccess>>;
213 
214 /// A class to store information about arrays in the SCoP.
215 ///
216 /// Objects are accessible via the ScoP, MemoryAccess or the id associated with
217 /// the MemoryAccess access function.
218 ///
219 class ScopArrayInfo final {
220 public:
221   /// Construct a ScopArrayInfo object.
222   ///
223   /// @param BasePtr        The array base pointer.
224   /// @param ElementType    The type of the elements stored in the array.
225   /// @param IslCtx         The isl context used to create the base pointer id.
226   /// @param DimensionSizes A vector containing the size of each dimension.
227   /// @param Kind           The kind of the array object.
228   /// @param DL             The data layout of the module.
229   /// @param S              The scop this array object belongs to.
230   /// @param BaseName       The optional name of this memory reference.
231   ScopArrayInfo(Value *BasePtr, Type *ElementType, isl::ctx IslCtx,
232                 ArrayRef<const SCEV *> DimensionSizes, MemoryKind Kind,
233                 const DataLayout &DL, Scop *S, const char *BaseName = nullptr);
234 
235   /// Destructor to free the isl id of the base pointer.
236   ~ScopArrayInfo();
237 
238   ///  Update the element type of the ScopArrayInfo object.
239   ///
240   ///  Memory accesses referencing this ScopArrayInfo object may use
241   ///  different element sizes. This function ensures the canonical element type
242   ///  stored is small enough to model accesses to the current element type as
243   ///  well as to @p NewElementType.
244   ///
245   ///  @param NewElementType An element type that is used to access this array.
246   void updateElementType(Type *NewElementType);
247 
248   ///  Update the sizes of the ScopArrayInfo object.
249   ///
250   ///  A ScopArrayInfo object may be created without all outer dimensions being
251   ///  available. This function is called when new memory accesses are added for
252   ///  this ScopArrayInfo object. It verifies that sizes are compatible and adds
253   ///  additional outer array dimensions, if needed.
254   ///
255   ///  @param Sizes       A vector of array sizes where the rightmost array
256   ///                     sizes need to match the innermost array sizes already
257   ///                     defined in SAI.
258   ///  @param CheckConsistency Update sizes, even if new sizes are inconsistent
259   ///                          with old sizes
260   bool updateSizes(ArrayRef<const SCEV *> Sizes, bool CheckConsistency = true);
261 
262   /// Set the base pointer to @p BP.
263   void setBasePtr(Value *BP) { BasePtr = BP; }
264 
265   /// Return the base pointer.
266   Value *getBasePtr() const { return BasePtr; }
267 
268   // Set IsOnHeap to the value in parameter.
269   void setIsOnHeap(bool value) { IsOnHeap = value; }
270 
271   /// For indirect accesses return the origin SAI of the BP, else null.
272   const ScopArrayInfo *getBasePtrOriginSAI() const { return BasePtrOriginSAI; }
273 
274   /// The set of derived indirect SAIs for this origin SAI.
275   const SmallSetVector<ScopArrayInfo *, 2> &getDerivedSAIs() const {
276     return DerivedSAIs;
277   }
278 
279   /// Return the number of dimensions.
280   unsigned getNumberOfDimensions() const {
281     if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI ||
282         Kind == MemoryKind::Value)
283       return 0;
284     return DimensionSizes.size();
285   }
286 
287   /// Return the size of dimension @p dim as SCEV*.
288   //
289   //  Scalars do not have array dimensions and the first dimension of
290   //  a (possibly multi-dimensional) array also does not carry any size
291   //  information, in case the array is not newly created.
292   const SCEV *getDimensionSize(unsigned Dim) const {
293     assert(Dim < getNumberOfDimensions() && "Invalid dimension");
294     return DimensionSizes[Dim];
295   }
296 
297   /// Return the size of dimension @p dim as isl::pw_aff.
298   //
299   //  Scalars do not have array dimensions and the first dimension of
300   //  a (possibly multi-dimensional) array also does not carry any size
301   //  information, in case the array is not newly created.
302   isl::pw_aff getDimensionSizePw(unsigned Dim) const {
303     assert(Dim < getNumberOfDimensions() && "Invalid dimension");
304     return DimensionSizesPw[Dim];
305   }
306 
307   /// Get the canonical element type of this array.
308   ///
309   /// @returns The canonical element type of this array.
310   Type *getElementType() const { return ElementType; }
311 
312   /// Get element size in bytes.
313   int getElemSizeInBytes() const;
314 
315   /// Get the name of this memory reference.
316   std::string getName() const;
317 
318   /// Return the isl id for the base pointer.
319   isl::id getBasePtrId() const;
320 
321   /// Return what kind of memory this represents.
322   MemoryKind getKind() const { return Kind; }
323 
324   /// Is this array info modeling an llvm::Value?
325   bool isValueKind() const { return Kind == MemoryKind::Value; }
326 
327   /// Is this array info modeling special PHI node memory?
328   ///
329   /// During code generation of PHI nodes, there is a need for two kinds of
330   /// virtual storage. The normal one as it is used for all scalar dependences,
331   /// where the result of the PHI node is stored and later loaded from as well
332   /// as a second one where the incoming values of the PHI nodes are stored
333   /// into and reloaded when the PHI is executed. As both memories use the
334   /// original PHI node as virtual base pointer, we have this additional
335   /// attribute to distinguish the PHI node specific array modeling from the
336   /// normal scalar array modeling.
337   bool isPHIKind() const { return Kind == MemoryKind::PHI; }
338 
339   /// Is this array info modeling an MemoryKind::ExitPHI?
340   bool isExitPHIKind() const { return Kind == MemoryKind::ExitPHI; }
341 
342   /// Is this array info modeling an array?
343   bool isArrayKind() const { return Kind == MemoryKind::Array; }
344 
345   /// Is this array allocated on heap
346   ///
347   /// This property is only relevant if the array is allocated by Polly instead
348   /// of pre-existing. If false, it is allocated using alloca instead malloca.
349   bool isOnHeap() const { return IsOnHeap; }
350 
351 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
352   /// Dump a readable representation to stderr.
353   void dump() const;
354 #endif
355 
356   /// Print a readable representation to @p OS.
357   ///
358   /// @param SizeAsPwAff Print the size as isl::pw_aff
359   void print(raw_ostream &OS, bool SizeAsPwAff = false) const;
360 
361   /// Access the ScopArrayInfo associated with an access function.
362   static const ScopArrayInfo *getFromAccessFunction(isl::pw_multi_aff PMA);
363 
364   /// Access the ScopArrayInfo associated with an isl Id.
365   static const ScopArrayInfo *getFromId(isl::id Id);
366 
367   /// Get the space of this array access.
368   isl::space getSpace() const;
369 
370   /// If the array is read only
371   bool isReadOnly();
372 
373   /// Verify that @p Array is compatible to this ScopArrayInfo.
374   ///
375   /// Two arrays are compatible if their dimensionality, the sizes of their
376   /// dimensions, and their element sizes match.
377   ///
378   /// @param Array The array to compare against.
379   ///
380   /// @returns True, if the arrays are compatible, False otherwise.
381   bool isCompatibleWith(const ScopArrayInfo *Array) const;
382 
383 private:
384   void addDerivedSAI(ScopArrayInfo *DerivedSAI) {
385     DerivedSAIs.insert(DerivedSAI);
386   }
387 
388   /// For indirect accesses this is the SAI of the BP origin.
389   const ScopArrayInfo *BasePtrOriginSAI;
390 
391   /// For origin SAIs the set of derived indirect SAIs.
392   SmallSetVector<ScopArrayInfo *, 2> DerivedSAIs;
393 
394   /// The base pointer.
395   AssertingVH<Value> BasePtr;
396 
397   /// The canonical element type of this array.
398   ///
399   /// The canonical element type describes the minimal accessible element in
400   /// this array. Not all elements accessed, need to be of the very same type,
401   /// but the allocation size of the type of the elements loaded/stored from/to
402   /// this array needs to be a multiple of the allocation size of the canonical
403   /// type.
404   Type *ElementType;
405 
406   /// The isl id for the base pointer.
407   isl::id Id;
408 
409   /// True if the newly allocated array is on heap.
410   bool IsOnHeap = false;
411 
412   /// The sizes of each dimension as SCEV*.
413   SmallVector<const SCEV *, 4> DimensionSizes;
414 
415   /// The sizes of each dimension as isl::pw_aff.
416   SmallVector<isl::pw_aff, 4> DimensionSizesPw;
417 
418   /// The type of this scop array info object.
419   ///
420   /// We distinguish between SCALAR, PHI and ARRAY objects.
421   MemoryKind Kind;
422 
423   /// The data layout of the module.
424   const DataLayout &DL;
425 
426   /// The scop this SAI object belongs to.
427   Scop &S;
428 };
429 
430 /// Represent memory accesses in statements.
431 class MemoryAccess final {
432   friend class Scop;
433   friend class ScopStmt;
434   friend class ScopBuilder;
435 
436 public:
437   /// The access type of a memory access
438   ///
439   /// There are three kind of access types:
440   ///
441   /// * A read access
442   ///
443   /// A certain set of memory locations are read and may be used for internal
444   /// calculations.
445   ///
446   /// * A must-write access
447   ///
448   /// A certain set of memory locations is definitely written. The old value is
449   /// replaced by a newly calculated value. The old value is not read or used at
450   /// all.
451   ///
452   /// * A may-write access
453   ///
454   /// A certain set of memory locations may be written. The memory location may
455   /// contain a new value if there is actually a write or the old value may
456   /// remain, if no write happens.
457   enum AccessType {
458     READ = 0x1,
459     MUST_WRITE = 0x2,
460     MAY_WRITE = 0x3,
461   };
462 
463   /// Reduction access type
464   ///
465   /// Commutative and associative binary operations suitable for reductions
466   enum ReductionType {
467     RT_NONE, ///< Indicate no reduction at all
468     RT_ADD,  ///< Addition
469     RT_MUL,  ///< Multiplication
470     RT_BOR,  ///< Bitwise Or
471     RT_BXOR, ///< Bitwise XOr
472     RT_BAND, ///< Bitwise And
473 
474     RT_BOTTOM, ///< Pseudo type for the data flow analysis
475   };
476 
477   using SubscriptsTy = SmallVector<const SCEV *, 4>;
478 
479 private:
480   /// A unique identifier for this memory access.
481   ///
482   /// The identifier is unique between all memory accesses belonging to the same
483   /// scop statement.
484   isl::id Id;
485 
486   /// What is modeled by this MemoryAccess.
487   /// @see MemoryKind
488   MemoryKind Kind;
489 
490   /// Whether it a reading or writing access, and if writing, whether it
491   /// is conditional (MAY_WRITE).
492   enum AccessType AccType;
493 
494   /// Reduction type for reduction like accesses, RT_NONE otherwise
495   ///
496   /// An access is reduction like if it is part of a load-store chain in which
497   /// both access the same memory location (use the same LLVM-IR value
498   /// as pointer reference). Furthermore, between the load and the store there
499   /// is exactly one binary operator which is known to be associative and
500   /// commutative.
501   ///
502   /// TODO:
503   ///
504   /// We can later lift the constraint that the same LLVM-IR value defines the
505   /// memory location to handle scops such as the following:
506   ///
507   ///    for i
508   ///      for j
509   ///        sum[i+j] = sum[i] + 3;
510   ///
511   /// Here not all iterations access the same memory location, but iterations
512   /// for which j = 0 holds do. After lifting the equality check in ScopBuilder,
513   /// subsequent transformations do not only need check if a statement is
514   /// reduction like, but they also need to verify that the reduction
515   /// property is only exploited for statement instances that load from and
516   /// store to the same data location. Doing so at dependence analysis time
517   /// could allow us to handle the above example.
518   ReductionType RedType = RT_NONE;
519 
520   /// Parent ScopStmt of this access.
521   ScopStmt *Statement;
522 
523   /// The domain under which this access is not modeled precisely.
524   ///
525   /// The invalid domain for an access describes all parameter combinations
526   /// under which the statement looks to be executed but is in fact not because
527   /// some assumption/restriction makes the access invalid.
528   isl::set InvalidDomain;
529 
530   // Properties describing the accessed array.
531   // TODO: It might be possible to move them to ScopArrayInfo.
532   // @{
533 
534   /// The base address (e.g., A for A[i+j]).
535   ///
536   /// The #BaseAddr of a memory access of kind MemoryKind::Array is the base
537   /// pointer of the memory access.
538   /// The #BaseAddr of a memory access of kind MemoryKind::PHI or
539   /// MemoryKind::ExitPHI is the PHI node itself.
540   /// The #BaseAddr of a memory access of kind MemoryKind::Value is the
541   /// instruction defining the value.
542   AssertingVH<Value> BaseAddr;
543 
544   /// Type a single array element wrt. this access.
545   Type *ElementType;
546 
547   /// Size of each dimension of the accessed array.
548   SmallVector<const SCEV *, 4> Sizes;
549   // @}
550 
551   // Properties describing the accessed element.
552   // @{
553 
554   /// The access instruction of this memory access.
555   ///
556   /// For memory accesses of kind MemoryKind::Array the access instruction is
557   /// the Load or Store instruction performing the access.
558   ///
559   /// For memory accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI the
560   /// access instruction of a load access is the PHI instruction. The access
561   /// instruction of a PHI-store is the incoming's block's terminator
562   /// instruction.
563   ///
564   /// For memory accesses of kind MemoryKind::Value the access instruction of a
565   /// load access is nullptr because generally there can be multiple
566   /// instructions in the statement using the same llvm::Value. The access
567   /// instruction of a write access is the instruction that defines the
568   /// llvm::Value.
569   Instruction *AccessInstruction = nullptr;
570 
571   /// Incoming block and value of a PHINode.
572   SmallVector<std::pair<BasicBlock *, Value *>, 4> Incoming;
573 
574   /// The value associated with this memory access.
575   ///
576   ///  - For array memory accesses (MemoryKind::Array) it is the loaded result
577   ///    or the stored value. If the access instruction is a memory intrinsic it
578   ///    the access value is also the memory intrinsic.
579   ///  - For accesses of kind MemoryKind::Value it is the access instruction
580   ///    itself.
581   ///  - For accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI it is the
582   ///    PHI node itself (for both, READ and WRITE accesses).
583   ///
584   AssertingVH<Value> AccessValue;
585 
586   /// Are all the subscripts affine expression?
587   bool IsAffine = true;
588 
589   /// Subscript expression for each dimension.
590   SubscriptsTy Subscripts;
591 
592   /// Relation from statement instances to the accessed array elements.
593   ///
594   /// In the common case this relation is a function that maps a set of loop
595   /// indices to the memory address from which a value is loaded/stored:
596   ///
597   ///      for i
598   ///        for j
599   ///    S:     A[i + 3 j] = ...
600   ///
601   ///    => { S[i,j] -> A[i + 3j] }
602   ///
603   /// In case the exact access function is not known, the access relation may
604   /// also be a one to all mapping { S[i,j] -> A[o] } describing that any
605   /// element accessible through A might be accessed.
606   ///
607   /// In case of an access to a larger element belonging to an array that also
608   /// contains smaller elements, the access relation models the larger access
609   /// with multiple smaller accesses of the size of the minimal array element
610   /// type:
611   ///
612   ///      short *A;
613   ///
614   ///      for i
615   ///    S:     A[i] = *((double*)&A[4 * i]);
616   ///
617   ///    => { S[i] -> A[i]; S[i] -> A[o] : 4i <= o <= 4i + 3 }
618   isl::map AccessRelation;
619 
620   /// Updated access relation read from JSCOP file.
621   isl::map NewAccessRelation;
622   // @}
623 
624   isl::basic_map createBasicAccessMap(ScopStmt *Statement);
625 
626   isl::set assumeNoOutOfBound();
627 
628   /// Compute bounds on an over approximated  access relation.
629   ///
630   /// @param ElementSize The size of one element accessed.
631   void computeBoundsOnAccessRelation(unsigned ElementSize);
632 
633   /// Get the original access function as read from IR.
634   isl::map getOriginalAccessRelation() const;
635 
636   /// Return the space in which the access relation lives in.
637   isl::space getOriginalAccessRelationSpace() const;
638 
639   /// Get the new access function imported or set by a pass
640   isl::map getNewAccessRelation() const;
641 
642   /// Fold the memory access to consider parametric offsets
643   ///
644   /// To recover memory accesses with array size parameters in the subscript
645   /// expression we post-process the delinearization results.
646   ///
647   /// We would normally recover from an access A[exp0(i) * N + exp1(i)] into an
648   /// array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid
649   /// delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the
650   /// range of exp1(i) - may be preferable. Specifically, for cases where we
651   /// know exp1(i) is negative, we want to choose the latter expression.
652   ///
653   /// As we commonly do not have any information about the range of exp1(i),
654   /// we do not choose one of the two options, but instead create a piecewise
655   /// access function that adds the (-1, N) offsets as soon as exp1(i) becomes
656   /// negative. For a 2D array such an access function is created by applying
657   /// the piecewise map:
658   ///
659   /// [i,j] -> [i, j] :      j >= 0
660   /// [i,j] -> [i-1, j+N] :  j <  0
661   ///
662   /// We can generalize this mapping to arbitrary dimensions by applying this
663   /// piecewise mapping pairwise from the rightmost to the leftmost access
664   /// dimension. It would also be possible to cover a wider range by introducing
665   /// more cases and adding multiple of Ns to these cases. However, this has
666   /// not yet been necessary.
667   /// The introduction of different cases necessarily complicates the memory
668   /// access function, but cases that can be statically proven to not happen
669   /// will be eliminated later on.
670   void foldAccessRelation();
671 
672   /// Create the access relation for the underlying memory intrinsic.
673   void buildMemIntrinsicAccessRelation();
674 
675   /// Assemble the access relation from all available information.
676   ///
677   /// In particular, used the information passes in the constructor and the
678   /// parent ScopStmt set by setStatment().
679   ///
680   /// @param SAI Info object for the accessed array.
681   void buildAccessRelation(const ScopArrayInfo *SAI);
682 
683   /// Carry index overflows of dimensions with constant size to the next higher
684   /// dimension.
685   ///
686   /// For dimensions that have constant size, modulo the index by the size and
687   /// add up the carry (floored division) to the next higher dimension. This is
688   /// how overflow is defined in row-major order.
689   /// It happens e.g. when ScalarEvolution computes the offset to the base
690   /// pointer and would algebraically sum up all lower dimensions' indices of
691   /// constant size.
692   ///
693   /// Example:
694   ///   float (*A)[4];
695   ///   A[1][6] -> A[2][2]
696   void wrapConstantDimensions();
697 
698 public:
699   /// Create a new MemoryAccess.
700   ///
701   /// @param Stmt       The parent statement.
702   /// @param AccessInst The instruction doing the access.
703   /// @param BaseAddr   The accessed array's address.
704   /// @param ElemType   The type of the accessed array elements.
705   /// @param AccType    Whether read or write access.
706   /// @param IsAffine   Whether the subscripts are affine expressions.
707   /// @param Kind       The kind of memory accessed.
708   /// @param Subscripts Subscript expressions
709   /// @param Sizes      Dimension lengths of the accessed array.
710   MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst, AccessType AccType,
711                Value *BaseAddress, Type *ElemType, bool Affine,
712                ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
713                Value *AccessValue, MemoryKind Kind);
714 
715   /// Create a new MemoryAccess that corresponds to @p AccRel.
716   ///
717   /// Along with @p Stmt and @p AccType it uses information about dimension
718   /// lengths of the accessed array, the type of the accessed array elements,
719   /// the name of the accessed array that is derived from the object accessible
720   /// via @p AccRel.
721   ///
722   /// @param Stmt       The parent statement.
723   /// @param AccType    Whether read or write access.
724   /// @param AccRel     The access relation that describes the memory access.
725   MemoryAccess(ScopStmt *Stmt, AccessType AccType, isl::map AccRel);
726 
727   MemoryAccess(const MemoryAccess &) = delete;
728   MemoryAccess &operator=(const MemoryAccess &) = delete;
729   ~MemoryAccess();
730 
731   /// Add a new incoming block/value pairs for this PHI/ExitPHI access.
732   ///
733   /// @param IncomingBlock The PHI's incoming block.
734   /// @param IncomingValue The value when reaching the PHI from the @p
735   ///                      IncomingBlock.
736   void addIncoming(BasicBlock *IncomingBlock, Value *IncomingValue) {
737     assert(!isRead());
738     assert(isAnyPHIKind());
739     Incoming.emplace_back(std::make_pair(IncomingBlock, IncomingValue));
740   }
741 
742   /// Return the list of possible PHI/ExitPHI values.
743   ///
744   /// After code generation moves some PHIs around during region simplification,
745   /// we cannot reliably locate the original PHI node and its incoming values
746   /// anymore. For this reason we remember these explicitly for all PHI-kind
747   /// accesses.
748   ArrayRef<std::pair<BasicBlock *, Value *>> getIncoming() const {
749     assert(isAnyPHIKind());
750     return Incoming;
751   }
752 
753   /// Get the type of a memory access.
754   enum AccessType getType() { return AccType; }
755 
756   /// Is this a reduction like access?
757   bool isReductionLike() const { return RedType != RT_NONE; }
758 
759   /// Is this a read memory access?
760   bool isRead() const { return AccType == MemoryAccess::READ; }
761 
762   /// Is this a must-write memory access?
763   bool isMustWrite() const { return AccType == MemoryAccess::MUST_WRITE; }
764 
765   /// Is this a may-write memory access?
766   bool isMayWrite() const { return AccType == MemoryAccess::MAY_WRITE; }
767 
768   /// Is this a write memory access?
769   bool isWrite() const { return isMustWrite() || isMayWrite(); }
770 
771   /// Is this a memory intrinsic access (memcpy, memset, memmove)?
772   bool isMemoryIntrinsic() const {
773     return isa<MemIntrinsic>(getAccessInstruction());
774   }
775 
776   /// Check if a new access relation was imported or set by a pass.
777   bool hasNewAccessRelation() const { return !NewAccessRelation.is_null(); }
778 
779   /// Return the newest access relation of this access.
780   ///
781   /// There are two possibilities:
782   ///   1) The original access relation read from the LLVM-IR.
783   ///   2) A new access relation imported from a json file or set by another
784   ///      pass (e.g., for privatization).
785   ///
786   /// As 2) is by construction "newer" than 1) we return the new access
787   /// relation if present.
788   ///
789   isl::map getLatestAccessRelation() const {
790     return hasNewAccessRelation() ? getNewAccessRelation()
791                                   : getOriginalAccessRelation();
792   }
793 
794   /// Old name of getLatestAccessRelation().
795   isl::map getAccessRelation() const { return getLatestAccessRelation(); }
796 
797   /// Get an isl map describing the memory address accessed.
798   ///
799   /// In most cases the memory address accessed is well described by the access
800   /// relation obtained with getAccessRelation. However, in case of arrays
801   /// accessed with types of different size the access relation maps one access
802   /// to multiple smaller address locations. This method returns an isl map that
803   /// relates each dynamic statement instance to the unique memory location
804   /// that is loaded from / stored to.
805   ///
806   /// For an access relation { S[i] -> A[o] : 4i <= o <= 4i + 3 } this method
807   /// will return the address function { S[i] -> A[4i] }.
808   ///
809   /// @returns The address function for this memory access.
810   isl::map getAddressFunction() const;
811 
812   /// Return the access relation after the schedule was applied.
813   isl::pw_multi_aff
814   applyScheduleToAccessRelation(isl::union_map Schedule) const;
815 
816   /// Get an isl string representing the access function read from IR.
817   std::string getOriginalAccessRelationStr() const;
818 
819   /// Get an isl string representing a new access function, if available.
820   std::string getNewAccessRelationStr() const;
821 
822   /// Get an isl string representing the latest access relation.
823   std::string getAccessRelationStr() const;
824 
825   /// Get the original base address of this access (e.g. A for A[i+j]) when
826   /// detected.
827   ///
828   /// This address may differ from the base address referenced by the original
829   /// ScopArrayInfo to which this array belongs, as this memory access may
830   /// have been canonicalized to a ScopArrayInfo which has a different but
831   /// identically-valued base pointer in case invariant load hoisting is
832   /// enabled.
833   Value *getOriginalBaseAddr() const { return BaseAddr; }
834 
835   /// Get the detection-time base array isl::id for this access.
836   isl::id getOriginalArrayId() const;
837 
838   /// Get the base array isl::id for this access, modifiable through
839   /// setNewAccessRelation().
840   isl::id getLatestArrayId() const;
841 
842   /// Old name of getOriginalArrayId().
843   isl::id getArrayId() const { return getOriginalArrayId(); }
844 
845   /// Get the detection-time ScopArrayInfo object for the base address.
846   const ScopArrayInfo *getOriginalScopArrayInfo() const;
847 
848   /// Get the ScopArrayInfo object for the base address, or the one set
849   /// by setNewAccessRelation().
850   const ScopArrayInfo *getLatestScopArrayInfo() const;
851 
852   /// Legacy name of getOriginalScopArrayInfo().
853   const ScopArrayInfo *getScopArrayInfo() const {
854     return getOriginalScopArrayInfo();
855   }
856 
857   /// Return a string representation of the access's reduction type.
858   const std::string getReductionOperatorStr() const;
859 
860   /// Return a string representation of the reduction type @p RT.
861   static const std::string getReductionOperatorStr(ReductionType RT);
862 
863   /// Return the element type of the accessed array wrt. this access.
864   Type *getElementType() const { return ElementType; }
865 
866   /// Return the access value of this memory access.
867   Value *getAccessValue() const { return AccessValue; }
868 
869   /// Return llvm::Value that is stored by this access, if available.
870   ///
871   /// PHI nodes may not have a unique value available that is stored, as in
872   /// case of region statements one out of possibly several llvm::Values
873   /// might be stored. In this case nullptr is returned.
874   Value *tryGetValueStored() {
875     assert(isWrite() && "Only write statement store values");
876     if (isAnyPHIKind()) {
877       if (Incoming.size() == 1)
878         return Incoming[0].second;
879       return nullptr;
880     }
881     return AccessValue;
882   }
883 
884   /// Return the access instruction of this memory access.
885   Instruction *getAccessInstruction() const { return AccessInstruction; }
886 
887   ///  Return an iterator range containing the subscripts.
888   iterator_range<SubscriptsTy::const_iterator> subscripts() const {
889     return make_range(Subscripts.begin(), Subscripts.end());
890   }
891 
892   /// Return the number of access function subscript.
893   unsigned getNumSubscripts() const { return Subscripts.size(); }
894 
895   /// Return the access function subscript in the dimension @p Dim.
896   const SCEV *getSubscript(unsigned Dim) const { return Subscripts[Dim]; }
897 
898   /// Compute the isl representation for the SCEV @p E wrt. this access.
899   ///
900   /// Note that this function will also adjust the invalid context accordingly.
901   isl::pw_aff getPwAff(const SCEV *E);
902 
903   /// Get the invalid domain for this access.
904   isl::set getInvalidDomain() const { return InvalidDomain; }
905 
906   /// Get the invalid context for this access.
907   isl::set getInvalidContext() const { return getInvalidDomain().params(); }
908 
909   /// Get the stride of this memory access in the specified Schedule. Schedule
910   /// is a map from the statement to a schedule where the innermost dimension is
911   /// the dimension of the innermost loop containing the statement.
912   isl::set getStride(isl::map Schedule) const;
913 
914   /// Is the stride of the access equal to a certain width? Schedule is a map
915   /// from the statement to a schedule where the innermost dimension is the
916   /// dimension of the innermost loop containing the statement.
917   bool isStrideX(isl::map Schedule, int StrideWidth) const;
918 
919   /// Is consecutive memory accessed for a given statement instance set?
920   /// Schedule is a map from the statement to a schedule where the innermost
921   /// dimension is the dimension of the innermost loop containing the
922   /// statement.
923   bool isStrideOne(isl::map Schedule) const;
924 
925   /// Is always the same memory accessed for a given statement instance set?
926   /// Schedule is a map from the statement to a schedule where the innermost
927   /// dimension is the dimension of the innermost loop containing the
928   /// statement.
929   bool isStrideZero(isl::map Schedule) const;
930 
931   /// Return the kind when this access was first detected.
932   MemoryKind getOriginalKind() const {
933     assert(!getOriginalScopArrayInfo() /* not yet initialized */ ||
934            getOriginalScopArrayInfo()->getKind() == Kind);
935     return Kind;
936   }
937 
938   /// Return the kind considering a potential setNewAccessRelation.
939   MemoryKind getLatestKind() const {
940     return getLatestScopArrayInfo()->getKind();
941   }
942 
943   /// Whether this is an access of an explicit load or store in the IR.
944   bool isOriginalArrayKind() const {
945     return getOriginalKind() == MemoryKind::Array;
946   }
947 
948   /// Whether storage memory is either an custom .s2a/.phiops alloca
949   /// (false) or an existing pointer into an array (true).
950   bool isLatestArrayKind() const {
951     return getLatestKind() == MemoryKind::Array;
952   }
953 
954   /// Old name of isOriginalArrayKind.
955   bool isArrayKind() const { return isOriginalArrayKind(); }
956 
957   /// Whether this access is an array to a scalar memory object, without
958   /// considering changes by setNewAccessRelation.
959   ///
960   /// Scalar accesses are accesses to MemoryKind::Value, MemoryKind::PHI or
961   /// MemoryKind::ExitPHI.
962   bool isOriginalScalarKind() const {
963     return getOriginalKind() != MemoryKind::Array;
964   }
965 
966   /// Whether this access is an array to a scalar memory object, also
967   /// considering changes by setNewAccessRelation.
968   bool isLatestScalarKind() const {
969     return getLatestKind() != MemoryKind::Array;
970   }
971 
972   /// Old name of isOriginalScalarKind.
973   bool isScalarKind() const { return isOriginalScalarKind(); }
974 
975   /// Was this MemoryAccess detected as a scalar dependences?
976   bool isOriginalValueKind() const {
977     return getOriginalKind() == MemoryKind::Value;
978   }
979 
980   /// Is this MemoryAccess currently modeling scalar dependences?
981   bool isLatestValueKind() const {
982     return getLatestKind() == MemoryKind::Value;
983   }
984 
985   /// Old name of isOriginalValueKind().
986   bool isValueKind() const { return isOriginalValueKind(); }
987 
988   /// Was this MemoryAccess detected as a special PHI node access?
989   bool isOriginalPHIKind() const {
990     return getOriginalKind() == MemoryKind::PHI;
991   }
992 
993   /// Is this MemoryAccess modeling special PHI node accesses, also
994   /// considering a potential change by setNewAccessRelation?
995   bool isLatestPHIKind() const { return getLatestKind() == MemoryKind::PHI; }
996 
997   /// Old name of isOriginalPHIKind.
998   bool isPHIKind() const { return isOriginalPHIKind(); }
999 
1000   /// Was this MemoryAccess detected as the accesses of a PHI node in the
1001   /// SCoP's exit block?
1002   bool isOriginalExitPHIKind() const {
1003     return getOriginalKind() == MemoryKind::ExitPHI;
1004   }
1005 
1006   /// Is this MemoryAccess modeling the accesses of a PHI node in the
1007   /// SCoP's exit block? Can be changed to an array access using
1008   /// setNewAccessRelation().
1009   bool isLatestExitPHIKind() const {
1010     return getLatestKind() == MemoryKind::ExitPHI;
1011   }
1012 
1013   /// Old name of isOriginalExitPHIKind().
1014   bool isExitPHIKind() const { return isOriginalExitPHIKind(); }
1015 
1016   /// Was this access detected as one of the two PHI types?
1017   bool isOriginalAnyPHIKind() const {
1018     return isOriginalPHIKind() || isOriginalExitPHIKind();
1019   }
1020 
1021   /// Does this access originate from one of the two PHI types? Can be
1022   /// changed to an array access using setNewAccessRelation().
1023   bool isLatestAnyPHIKind() const {
1024     return isLatestPHIKind() || isLatestExitPHIKind();
1025   }
1026 
1027   /// Old name of isOriginalAnyPHIKind().
1028   bool isAnyPHIKind() const { return isOriginalAnyPHIKind(); }
1029 
1030   /// Get the statement that contains this memory access.
1031   ScopStmt *getStatement() const { return Statement; }
1032 
1033   /// Get the reduction type of this access
1034   ReductionType getReductionType() const { return RedType; }
1035 
1036   /// Update the original access relation.
1037   ///
1038   /// We need to update the original access relation during scop construction,
1039   /// when unifying the memory accesses that access the same scop array info
1040   /// object. After the scop has been constructed, the original access relation
1041   /// should not be changed any more. Instead setNewAccessRelation should
1042   /// be called.
1043   void setAccessRelation(isl::map AccessRelation);
1044 
1045   /// Set the updated access relation read from JSCOP file.
1046   void setNewAccessRelation(isl::map NewAccessRelation);
1047 
1048   /// Return whether the MemoryyAccess is a partial access. That is, the access
1049   /// is not executed in some instances of the parent statement's domain.
1050   bool isLatestPartialAccess() const;
1051 
1052   /// Mark this a reduction like access
1053   void markAsReductionLike(ReductionType RT) { RedType = RT; }
1054 
1055   /// Align the parameters in the access relation to the scop context
1056   void realignParams();
1057 
1058   /// Update the dimensionality of the memory access.
1059   ///
1060   /// During scop construction some memory accesses may not be constructed with
1061   /// their full dimensionality, but outer dimensions may have been omitted if
1062   /// they took the value 'zero'. By updating the dimensionality of the
1063   /// statement we add additional zero-valued dimensions to match the
1064   /// dimensionality of the ScopArrayInfo object that belongs to this memory
1065   /// access.
1066   void updateDimensionality();
1067 
1068   /// Get identifier for the memory access.
1069   ///
1070   /// This identifier is unique for all accesses that belong to the same scop
1071   /// statement.
1072   isl::id getId() const;
1073 
1074   /// Print the MemoryAccess.
1075   ///
1076   /// @param OS The output stream the MemoryAccess is printed to.
1077   void print(raw_ostream &OS) const;
1078 
1079 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1080   /// Print the MemoryAccess to stderr.
1081   void dump() const;
1082 #endif
1083 
1084   /// Is the memory access affine?
1085   bool isAffine() const { return IsAffine; }
1086 };
1087 
1088 raw_ostream &operator<<(raw_ostream &OS, MemoryAccess::ReductionType RT);
1089 
1090 /// Ordered list type to hold accesses.
1091 using MemoryAccessList = std::forward_list<MemoryAccess *>;
1092 
1093 /// Helper structure for invariant memory accesses.
1094 struct InvariantAccess {
1095   /// The memory access that is (partially) invariant.
1096   MemoryAccess *MA;
1097 
1098   /// The context under which the access is not invariant.
1099   isl::set NonHoistableCtx;
1100 };
1101 
1102 /// Ordered container type to hold invariant accesses.
1103 using InvariantAccessesTy = SmallVector<InvariantAccess, 8>;
1104 
1105 /// Type for equivalent invariant accesses and their domain context.
1106 struct InvariantEquivClassTy {
1107   /// The pointer that identifies this equivalence class
1108   const SCEV *IdentifyingPointer;
1109 
1110   /// Memory accesses now treated invariant
1111   ///
1112   /// These memory accesses access the pointer location that identifies
1113   /// this equivalence class. They are treated as invariant and hoisted during
1114   /// code generation.
1115   MemoryAccessList InvariantAccesses;
1116 
1117   /// The execution context under which the memory location is accessed
1118   ///
1119   /// It is the union of the execution domains of the memory accesses in the
1120   /// InvariantAccesses list.
1121   isl::set ExecutionContext;
1122 
1123   /// The type of the invariant access
1124   ///
1125   /// It is used to differentiate between differently typed invariant loads from
1126   /// the same location.
1127   Type *AccessType;
1128 };
1129 
1130 /// Type for invariant accesses equivalence classes.
1131 using InvariantEquivClassesTy = SmallVector<InvariantEquivClassTy, 8>;
1132 
1133 /// Statement of the Scop
1134 ///
1135 /// A Scop statement represents an instruction in the Scop.
1136 ///
1137 /// It is further described by its iteration domain, its schedule and its data
1138 /// accesses.
1139 /// At the moment every statement represents a single basic block of LLVM-IR.
1140 class ScopStmt final {
1141   friend class ScopBuilder;
1142 
1143 public:
1144   using MemoryAccessVec = llvm::SmallVector<MemoryAccess *, 8>;
1145   /// Create the ScopStmt from a BasicBlock.
1146   ScopStmt(Scop &parent, BasicBlock &bb, StringRef Name, Loop *SurroundingLoop,
1147            std::vector<Instruction *> Instructions);
1148 
1149   /// Create an overapproximating ScopStmt for the region @p R.
1150   ///
1151   /// @param EntryBlockInstructions The list of instructions that belong to the
1152   ///                               entry block of the region statement.
1153   ///                               Instructions are only tracked for entry
1154   ///                               blocks for now. We currently do not allow
1155   ///                               to modify the instructions of blocks later
1156   ///                               in the region statement.
1157   ScopStmt(Scop &parent, Region &R, StringRef Name, Loop *SurroundingLoop,
1158            std::vector<Instruction *> EntryBlockInstructions);
1159 
1160   /// Create a copy statement.
1161   ///
1162   /// @param Stmt       The parent statement.
1163   /// @param SourceRel  The source location.
1164   /// @param TargetRel  The target location.
1165   /// @param Domain     The original domain under which the copy statement would
1166   ///                   be executed.
1167   ScopStmt(Scop &parent, isl::map SourceRel, isl::map TargetRel,
1168            isl::set Domain);
1169 
1170   ScopStmt(const ScopStmt &) = delete;
1171   const ScopStmt &operator=(const ScopStmt &) = delete;
1172   ~ScopStmt();
1173 
1174 private:
1175   /// Polyhedral description
1176   //@{
1177 
1178   /// The Scop containing this ScopStmt.
1179   Scop &Parent;
1180 
1181   /// The domain under which this statement is not modeled precisely.
1182   ///
1183   /// The invalid domain for a statement describes all parameter combinations
1184   /// under which the statement looks to be executed but is in fact not because
1185   /// some assumption/restriction makes the statement/scop invalid.
1186   isl::set InvalidDomain;
1187 
1188   /// The iteration domain describes the set of iterations for which this
1189   /// statement is executed.
1190   ///
1191   /// Example:
1192   ///     for (i = 0; i < 100 + b; ++i)
1193   ///       for (j = 0; j < i; ++j)
1194   ///         S(i,j);
1195   ///
1196   /// 'S' is executed for different values of i and j. A vector of all
1197   /// induction variables around S (i, j) is called iteration vector.
1198   /// The domain describes the set of possible iteration vectors.
1199   ///
1200   /// In this case it is:
1201   ///
1202   ///     Domain: 0 <= i <= 100 + b
1203   ///             0 <= j <= i
1204   ///
1205   /// A pair of statement and iteration vector (S, (5,3)) is called statement
1206   /// instance.
1207   isl::set Domain;
1208 
1209   /// The memory accesses of this statement.
1210   ///
1211   /// The only side effects of a statement are its memory accesses.
1212   MemoryAccessVec MemAccs;
1213 
1214   /// Mapping from instructions to (scalar) memory accesses.
1215   DenseMap<const Instruction *, MemoryAccessList> InstructionToAccess;
1216 
1217   /// The set of values defined elsewhere required in this ScopStmt and
1218   ///        their MemoryKind::Value READ MemoryAccesses.
1219   DenseMap<Value *, MemoryAccess *> ValueReads;
1220 
1221   /// The set of values defined in this ScopStmt that are required
1222   ///        elsewhere, mapped to their MemoryKind::Value WRITE MemoryAccesses.
1223   DenseMap<Instruction *, MemoryAccess *> ValueWrites;
1224 
1225   /// Map from PHI nodes to its incoming value when coming from this
1226   ///        statement.
1227   ///
1228   /// Non-affine subregions can have multiple exiting blocks that are incoming
1229   /// blocks of the PHI nodes. This map ensures that there is only one write
1230   /// operation for the complete subregion. A PHI selecting the relevant value
1231   /// will be inserted.
1232   DenseMap<PHINode *, MemoryAccess *> PHIWrites;
1233 
1234   /// Map from PHI nodes to its read access in this statement.
1235   DenseMap<PHINode *, MemoryAccess *> PHIReads;
1236 
1237   //@}
1238 
1239   /// A SCoP statement represents either a basic block (affine/precise case) or
1240   /// a whole region (non-affine case).
1241   ///
1242   /// Only one of the following two members will therefore be set and indicate
1243   /// which kind of statement this is.
1244   ///
1245   ///{
1246 
1247   /// The BasicBlock represented by this statement (in the affine case).
1248   BasicBlock *BB = nullptr;
1249 
1250   /// The region represented by this statement (in the non-affine case).
1251   Region *R = nullptr;
1252 
1253   ///}
1254 
1255   /// The isl AST build for the new generated AST.
1256   isl::ast_build Build;
1257 
1258   SmallVector<Loop *, 4> NestLoops;
1259 
1260   std::string BaseName;
1261 
1262   /// The closest loop that contains this statement.
1263   Loop *SurroundingLoop;
1264 
1265   /// Vector for Instructions in this statement.
1266   std::vector<Instruction *> Instructions;
1267 
1268   /// Remove @p MA from dictionaries pointing to them.
1269   void removeAccessData(MemoryAccess *MA);
1270 
1271 public:
1272   /// Get an isl_ctx pointer.
1273   isl::ctx getIslCtx() const;
1274 
1275   /// Get the iteration domain of this ScopStmt.
1276   ///
1277   /// @return The iteration domain of this ScopStmt.
1278   isl::set getDomain() const;
1279 
1280   /// Get the space of the iteration domain
1281   ///
1282   /// @return The space of the iteration domain
1283   isl::space getDomainSpace() const;
1284 
1285   /// Get the id of the iteration domain space
1286   ///
1287   /// @return The id of the iteration domain space
1288   isl::id getDomainId() const;
1289 
1290   /// Get an isl string representing this domain.
1291   std::string getDomainStr() const;
1292 
1293   /// Get the schedule function of this ScopStmt.
1294   ///
1295   /// @return The schedule function of this ScopStmt, if it does not contain
1296   /// extension nodes, and nullptr, otherwise.
1297   isl::map getSchedule() const;
1298 
1299   /// Get an isl string representing this schedule.
1300   ///
1301   /// @return An isl string representing this schedule, if it does not contain
1302   /// extension nodes, and an empty string, otherwise.
1303   std::string getScheduleStr() const;
1304 
1305   /// Get the invalid domain for this statement.
1306   isl::set getInvalidDomain() const { return InvalidDomain; }
1307 
1308   /// Get the invalid context for this statement.
1309   isl::set getInvalidContext() const { return getInvalidDomain().params(); }
1310 
1311   /// Set the invalid context for this statement to @p ID.
1312   void setInvalidDomain(isl::set ID);
1313 
1314   /// Get the BasicBlock represented by this ScopStmt (if any).
1315   ///
1316   /// @return The BasicBlock represented by this ScopStmt, or null if the
1317   ///         statement represents a region.
1318   BasicBlock *getBasicBlock() const { return BB; }
1319 
1320   /// Return true if this statement represents a single basic block.
1321   bool isBlockStmt() const { return BB != nullptr; }
1322 
1323   /// Return true if this is a copy statement.
1324   bool isCopyStmt() const { return BB == nullptr && R == nullptr; }
1325 
1326   /// Get the region represented by this ScopStmt (if any).
1327   ///
1328   /// @return The region represented by this ScopStmt, or null if the statement
1329   ///         represents a basic block.
1330   Region *getRegion() const { return R; }
1331 
1332   /// Return true if this statement represents a whole region.
1333   bool isRegionStmt() const { return R != nullptr; }
1334 
1335   /// Return a BasicBlock from this statement.
1336   ///
1337   /// For block statements, it returns the BasicBlock itself. For subregion
1338   /// statements, return its entry block.
1339   BasicBlock *getEntryBlock() const;
1340 
1341   /// Return whether @p L is boxed within this statement.
1342   bool contains(const Loop *L) const {
1343     // Block statements never contain loops.
1344     if (isBlockStmt())
1345       return false;
1346 
1347     return getRegion()->contains(L);
1348   }
1349 
1350   /// Return whether this statement represents @p BB.
1351   bool represents(BasicBlock *BB) const {
1352     if (isCopyStmt())
1353       return false;
1354     if (isBlockStmt())
1355       return BB == getBasicBlock();
1356     return getRegion()->contains(BB);
1357   }
1358 
1359   /// Return whether this statement contains @p Inst.
1360   bool contains(Instruction *Inst) const {
1361     if (!Inst)
1362       return false;
1363     if (isBlockStmt())
1364       return llvm::is_contained(Instructions, Inst);
1365     return represents(Inst->getParent());
1366   }
1367 
1368   /// Return the closest innermost loop that contains this statement, but is not
1369   /// contained in it.
1370   ///
1371   /// For block statement, this is just the loop that contains the block. Region
1372   /// statements can contain boxed loops, so getting the loop of one of the
1373   /// region's BBs might return such an inner loop. For instance, the region's
1374   /// entry could be a header of a loop, but the region might extend to BBs
1375   /// after the loop exit. Similarly, the region might only contain parts of the
1376   /// loop body and still include the loop header.
1377   ///
1378   /// Most of the time the surrounding loop is the top element of #NestLoops,
1379   /// except when it is empty. In that case it return the loop that the whole
1380   /// SCoP is contained in. That can be nullptr if there is no such loop.
1381   Loop *getSurroundingLoop() const {
1382     assert(!isCopyStmt() &&
1383            "No surrounding loop for artificially created statements");
1384     return SurroundingLoop;
1385   }
1386 
1387   /// Return true if this statement does not contain any accesses.
1388   bool isEmpty() const { return MemAccs.empty(); }
1389 
1390   /// Find all array accesses for @p Inst.
1391   ///
1392   /// @param Inst The instruction accessing an array.
1393   ///
1394   /// @return A list of array accesses (MemoryKind::Array) accessed by @p Inst.
1395   ///         If there is no such access, it returns nullptr.
1396   const MemoryAccessList *
1397   lookupArrayAccessesFor(const Instruction *Inst) const {
1398     auto It = InstructionToAccess.find(Inst);
1399     if (It == InstructionToAccess.end())
1400       return nullptr;
1401     if (It->second.empty())
1402       return nullptr;
1403     return &It->second;
1404   }
1405 
1406   /// Return the only array access for @p Inst, if existing.
1407   ///
1408   /// @param Inst The instruction for which to look up the access.
1409   /// @returns The unique array memory access related to Inst or nullptr if
1410   ///          no array access exists
1411   MemoryAccess *getArrayAccessOrNULLFor(const Instruction *Inst) const {
1412     auto It = InstructionToAccess.find(Inst);
1413     if (It == InstructionToAccess.end())
1414       return nullptr;
1415 
1416     MemoryAccess *ArrayAccess = nullptr;
1417 
1418     for (auto Access : It->getSecond()) {
1419       if (!Access->isArrayKind())
1420         continue;
1421 
1422       assert(!ArrayAccess && "More then one array access for instruction");
1423 
1424       ArrayAccess = Access;
1425     }
1426 
1427     return ArrayAccess;
1428   }
1429 
1430   /// Return the only array access for @p Inst.
1431   ///
1432   /// @param Inst The instruction for which to look up the access.
1433   /// @returns The unique array memory access related to Inst.
1434   MemoryAccess &getArrayAccessFor(const Instruction *Inst) const {
1435     MemoryAccess *ArrayAccess = getArrayAccessOrNULLFor(Inst);
1436 
1437     assert(ArrayAccess && "No array access found for instruction!");
1438     return *ArrayAccess;
1439   }
1440 
1441   /// Return the MemoryAccess that writes the value of an instruction
1442   ///        defined in this statement, or nullptr if not existing, respectively
1443   ///        not yet added.
1444   MemoryAccess *lookupValueWriteOf(Instruction *Inst) const {
1445     assert((isRegionStmt() && R->contains(Inst)) ||
1446            (!isRegionStmt() && Inst->getParent() == BB));
1447     return ValueWrites.lookup(Inst);
1448   }
1449 
1450   /// Return the MemoryAccess that reloads a value, or nullptr if not
1451   ///        existing, respectively not yet added.
1452   MemoryAccess *lookupValueReadOf(Value *Inst) const {
1453     return ValueReads.lookup(Inst);
1454   }
1455 
1456   /// Return the MemoryAccess that loads a PHINode value, or nullptr if not
1457   /// existing, respectively not yet added.
1458   MemoryAccess *lookupPHIReadOf(PHINode *PHI) const {
1459     return PHIReads.lookup(PHI);
1460   }
1461 
1462   /// Return the PHI write MemoryAccess for the incoming values from any
1463   ///        basic block in this ScopStmt, or nullptr if not existing,
1464   ///        respectively not yet added.
1465   MemoryAccess *lookupPHIWriteOf(PHINode *PHI) const {
1466     assert(isBlockStmt() || R->getExit() == PHI->getParent());
1467     return PHIWrites.lookup(PHI);
1468   }
1469 
1470   /// Return the input access of the value, or null if no such MemoryAccess
1471   /// exists.
1472   ///
1473   /// The input access is the MemoryAccess that makes an inter-statement value
1474   /// available in this statement by reading it at the start of this statement.
1475   /// This can be a MemoryKind::Value if defined in another statement or a
1476   /// MemoryKind::PHI if the value is a PHINode in this statement.
1477   MemoryAccess *lookupInputAccessOf(Value *Val) const {
1478     if (isa<PHINode>(Val))
1479       if (auto InputMA = lookupPHIReadOf(cast<PHINode>(Val))) {
1480         assert(!lookupValueReadOf(Val) && "input accesses must be unique; a "
1481                                           "statement cannot read a .s2a and "
1482                                           ".phiops simultaneously");
1483         return InputMA;
1484       }
1485 
1486     if (auto *InputMA = lookupValueReadOf(Val))
1487       return InputMA;
1488 
1489     return nullptr;
1490   }
1491 
1492   /// Add @p Access to this statement's list of accesses.
1493   ///
1494   /// @param Access  The access to add.
1495   /// @param Prepend If true, will add @p Access before all other instructions
1496   ///                (instead of appending it).
1497   void addAccess(MemoryAccess *Access, bool Prepend = false);
1498 
1499   /// Remove a MemoryAccess from this statement.
1500   ///
1501   /// Note that scalar accesses that are caused by MA will
1502   /// be eliminated too.
1503   void removeMemoryAccess(MemoryAccess *MA);
1504 
1505   /// Remove @p MA from this statement.
1506   ///
1507   /// In contrast to removeMemoryAccess(), no other access will be eliminated.
1508   ///
1509   /// @param MA            The MemoryAccess to be removed.
1510   /// @param AfterHoisting If true, also remove from data access lists.
1511   ///                      These lists are filled during
1512   ///                      ScopBuilder::buildAccessRelations. Therefore, if this
1513   ///                      method is called before buildAccessRelations, false
1514   ///                      must be passed.
1515   void removeSingleMemoryAccess(MemoryAccess *MA, bool AfterHoisting = true);
1516 
1517   using iterator = MemoryAccessVec::iterator;
1518   using const_iterator = MemoryAccessVec::const_iterator;
1519 
1520   iterator begin() { return MemAccs.begin(); }
1521   iterator end() { return MemAccs.end(); }
1522   const_iterator begin() const { return MemAccs.begin(); }
1523   const_iterator end() const { return MemAccs.end(); }
1524   size_t size() const { return MemAccs.size(); }
1525 
1526   unsigned getNumIterators() const;
1527 
1528   Scop *getParent() { return &Parent; }
1529   const Scop *getParent() const { return &Parent; }
1530 
1531   const std::vector<Instruction *> &getInstructions() const {
1532     return Instructions;
1533   }
1534 
1535   /// Set the list of instructions for this statement. It replaces the current
1536   /// list.
1537   void setInstructions(ArrayRef<Instruction *> Range) {
1538     Instructions.assign(Range.begin(), Range.end());
1539   }
1540 
1541   std::vector<Instruction *>::const_iterator insts_begin() const {
1542     return Instructions.begin();
1543   }
1544 
1545   std::vector<Instruction *>::const_iterator insts_end() const {
1546     return Instructions.end();
1547   }
1548 
1549   /// The range of instructions in this statement.
1550   iterator_range<std::vector<Instruction *>::const_iterator> insts() const {
1551     return {insts_begin(), insts_end()};
1552   }
1553 
1554   /// Insert an instruction before all other instructions in this statement.
1555   void prependInstruction(Instruction *Inst) {
1556     Instructions.insert(Instructions.begin(), Inst);
1557   }
1558 
1559   const char *getBaseName() const;
1560 
1561   /// Set the isl AST build.
1562   void setAstBuild(isl::ast_build B) { Build = B; }
1563 
1564   /// Get the isl AST build.
1565   isl::ast_build getAstBuild() const { return Build; }
1566 
1567   /// Restrict the domain of the statement.
1568   ///
1569   /// @param NewDomain The new statement domain.
1570   void restrictDomain(isl::set NewDomain);
1571 
1572   /// Get the loop for a dimension.
1573   ///
1574   /// @param Dimension The dimension of the induction variable
1575   /// @return The loop at a certain dimension.
1576   Loop *getLoopForDimension(unsigned Dimension) const;
1577 
1578   /// Align the parameters in the statement to the scop context
1579   void realignParams();
1580 
1581   /// Print the ScopStmt.
1582   ///
1583   /// @param OS                The output stream the ScopStmt is printed to.
1584   /// @param PrintInstructions Whether to print the statement's instructions as
1585   ///                          well.
1586   void print(raw_ostream &OS, bool PrintInstructions) const;
1587 
1588   /// Print the instructions in ScopStmt.
1589   ///
1590   void printInstructions(raw_ostream &OS) const;
1591 
1592   /// Check whether there is a value read access for @p V in this statement, and
1593   /// if not, create one.
1594   ///
1595   /// This allows to add MemoryAccesses after the initial creation of the Scop
1596   /// by ScopBuilder.
1597   ///
1598   /// @return The already existing or newly created MemoryKind::Value READ
1599   /// MemoryAccess.
1600   ///
1601   /// @see ScopBuilder::ensureValueRead(Value*,ScopStmt*)
1602   MemoryAccess *ensureValueRead(Value *V);
1603 
1604 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1605   /// Print the ScopStmt to stderr.
1606   void dump() const;
1607 #endif
1608 };
1609 
1610 /// Print ScopStmt S to raw_ostream OS.
1611 raw_ostream &operator<<(raw_ostream &OS, const ScopStmt &S);
1612 
1613 /// Static Control Part
1614 ///
1615 /// A Scop is the polyhedral representation of a control flow region detected
1616 /// by the Scop detection. It is generated by translating the LLVM-IR and
1617 /// abstracting its effects.
1618 ///
1619 /// A Scop consists of a set of:
1620 ///
1621 ///   * A set of statements executed in the Scop.
1622 ///
1623 ///   * A set of global parameters
1624 ///   Those parameters are scalar integer values, which are constant during
1625 ///   execution.
1626 ///
1627 ///   * A context
1628 ///   This context contains information about the values the parameters
1629 ///   can take and relations between different parameters.
1630 class Scop final {
1631 public:
1632   /// Type to represent a pair of minimal/maximal access to an array.
1633   using MinMaxAccessTy = std::pair<isl::pw_multi_aff, isl::pw_multi_aff>;
1634 
1635   /// Vector of minimal/maximal accesses to different arrays.
1636   using MinMaxVectorTy = SmallVector<MinMaxAccessTy, 4>;
1637 
1638   /// Pair of minimal/maximal access vectors representing
1639   /// read write and read only accesses
1640   using MinMaxVectorPairTy = std::pair<MinMaxVectorTy, MinMaxVectorTy>;
1641 
1642   /// Vector of pair of minimal/maximal access vectors representing
1643   /// non read only and read only accesses for each alias group.
1644   using MinMaxVectorPairVectorTy = SmallVector<MinMaxVectorPairTy, 4>;
1645 
1646 private:
1647   friend class ScopBuilder;
1648 
1649   /// Isl context.
1650   ///
1651   /// We need a shared_ptr with reference counter to delete the context when all
1652   /// isl objects are deleted. We will distribute the shared_ptr to all objects
1653   /// that use the context to create isl objects, and increase the reference
1654   /// counter. By doing this, we guarantee that the context is deleted when we
1655   /// delete the last object that creates isl objects with the context. This
1656   /// declaration needs to be the first in class to gracefully destroy all isl
1657   /// objects before the context.
1658   std::shared_ptr<isl_ctx> IslCtx;
1659 
1660   ScalarEvolution *SE;
1661   DominatorTree *DT;
1662 
1663   /// The underlying Region.
1664   Region &R;
1665 
1666   /// The name of the SCoP (identical to the regions name)
1667   std::optional<std::string> name;
1668 
1669   // Access functions of the SCoP.
1670   //
1671   // This owns all the MemoryAccess objects of the Scop created in this pass.
1672   AccFuncVector AccessFunctions;
1673 
1674   /// Flag to indicate that the scheduler actually optimized the SCoP.
1675   bool IsOptimized = false;
1676 
1677   /// True if the underlying region has a single exiting block.
1678   bool HasSingleExitEdge;
1679 
1680   /// Flag to remember if the SCoP contained an error block or not.
1681   bool HasErrorBlock = false;
1682 
1683   /// Max loop depth.
1684   unsigned MaxLoopDepth = 0;
1685 
1686   /// Number of copy statements.
1687   unsigned CopyStmtsNum = 0;
1688 
1689   using StmtSet = std::list<ScopStmt>;
1690 
1691   /// The statements in this Scop.
1692   StmtSet Stmts;
1693 
1694   /// Parameters of this Scop
1695   ParameterSetTy Parameters;
1696 
1697   /// Mapping from parameters to their ids.
1698   DenseMap<const SCEV *, isl::id> ParameterIds;
1699 
1700   /// The context of the SCoP created during SCoP detection.
1701   ScopDetection::DetectionContext &DC;
1702 
1703   /// OptimizationRemarkEmitter object for displaying diagnostic remarks
1704   OptimizationRemarkEmitter &ORE;
1705 
1706   /// A map from basic blocks to vector of SCoP statements. Currently this
1707   /// vector comprises only of a single statement.
1708   DenseMap<BasicBlock *, std::vector<ScopStmt *>> StmtMap;
1709 
1710   /// A map from instructions to SCoP statements.
1711   DenseMap<Instruction *, ScopStmt *> InstStmtMap;
1712 
1713   /// A map from basic blocks to their domains.
1714   DenseMap<BasicBlock *, isl::set> DomainMap;
1715 
1716   /// Constraints on parameters.
1717   isl::set Context;
1718 
1719   /// The affinator used to translate SCEVs to isl expressions.
1720   SCEVAffinator Affinator;
1721 
1722   using ArrayInfoMapTy =
1723       std::map<std::pair<AssertingVH<const Value>, MemoryKind>,
1724                std::unique_ptr<ScopArrayInfo>>;
1725 
1726   using ArrayNameMapTy = StringMap<std::unique_ptr<ScopArrayInfo>>;
1727 
1728   using ArrayInfoSetTy = SetVector<ScopArrayInfo *>;
1729 
1730   /// A map to remember ScopArrayInfo objects for all base pointers.
1731   ///
1732   /// As PHI nodes may have two array info objects associated, we add a flag
1733   /// that distinguishes between the PHI node specific ArrayInfo object
1734   /// and the normal one.
1735   ArrayInfoMapTy ScopArrayInfoMap;
1736 
1737   /// A map to remember ScopArrayInfo objects for all names of memory
1738   ///        references.
1739   ArrayNameMapTy ScopArrayNameMap;
1740 
1741   /// A set to remember ScopArrayInfo objects.
1742   /// @see Scop::ScopArrayInfoMap
1743   ArrayInfoSetTy ScopArrayInfoSet;
1744 
1745   /// The assumptions under which this scop was built.
1746   ///
1747   /// When constructing a scop sometimes the exact representation of a statement
1748   /// or condition would be very complex, but there is a common case which is a
1749   /// lot simpler, but which is only valid under certain assumptions. The
1750   /// assumed context records the assumptions taken during the construction of
1751   /// this scop and that need to be code generated as a run-time test.
1752   isl::set AssumedContext;
1753 
1754   /// The restrictions under which this SCoP was built.
1755   ///
1756   /// The invalid context is similar to the assumed context as it contains
1757   /// constraints over the parameters. However, while we need the constraints
1758   /// in the assumed context to be "true" the constraints in the invalid context
1759   /// need to be "false". Otherwise they behave the same.
1760   isl::set InvalidContext;
1761 
1762   /// The context under which the SCoP must have defined behavior. Optimizer and
1763   /// code generator can assume that the SCoP will only be executed with
1764   /// parameter values within this context. This might be either because we can
1765   /// prove that other values are impossible or explicitly have undefined
1766   /// behavior, such as due to no-wrap flags. If this becomes too complex, can
1767   /// also be nullptr.
1768   ///
1769   /// In contrast to Scop::AssumedContext and Scop::InvalidContext, these do not
1770   /// need to be checked at runtime.
1771   ///
1772   /// Scop::Context on the other side is an overapproximation and does not
1773   /// include all requirements, but is always defined. However, there is still
1774   /// no guarantee that there is no undefined behavior in
1775   /// DefinedBehaviorContext.
1776   isl::set DefinedBehaviorContext;
1777 
1778   /// The schedule of the SCoP
1779   ///
1780   /// The schedule of the SCoP describes the execution order of the statements
1781   /// in the scop by assigning each statement instance a possibly
1782   /// multi-dimensional execution time. The schedule is stored as a tree of
1783   /// schedule nodes.
1784   ///
1785   /// The most common nodes in a schedule tree are so-called band nodes. Band
1786   /// nodes map statement instances into a multi dimensional schedule space.
1787   /// This space can be seen as a multi-dimensional clock.
1788   ///
1789   /// Example:
1790   ///
1791   /// <S,(5,4)>  may be mapped to (5,4) by this schedule:
1792   ///
1793   /// s0 = i (Year of execution)
1794   /// s1 = j (Day of execution)
1795   ///
1796   /// or to (9, 20) by this schedule:
1797   ///
1798   /// s0 = i + j (Year of execution)
1799   /// s1 = 20 (Day of execution)
1800   ///
1801   /// The order statement instances are executed is defined by the
1802   /// schedule vectors they are mapped to. A statement instance
1803   /// <A, (i, j, ..)> is executed before a statement instance <B, (i', ..)>, if
1804   /// the schedule vector of A is lexicographic smaller than the schedule
1805   /// vector of B.
1806   ///
1807   /// Besides band nodes, schedule trees contain additional nodes that specify
1808   /// a textual ordering between two subtrees or filter nodes that filter the
1809   /// set of statement instances that will be scheduled in a subtree. There
1810   /// are also several other nodes. A full description of the different nodes
1811   /// in a schedule tree is given in the isl manual.
1812   isl::schedule Schedule;
1813 
1814   /// Is this Scop marked as not to be transformed by an optimization heuristic?
1815   bool HasDisableHeuristicsHint = false;
1816 
1817   /// Whether the schedule has been modified after derived from the CFG by
1818   /// ScopBuilder.
1819   bool ScheduleModified = false;
1820 
1821   /// The set of minimal/maximal accesses for each alias group.
1822   ///
1823   /// When building runtime alias checks we look at all memory instructions and
1824   /// build so called alias groups. Each group contains a set of accesses to
1825   /// different base arrays which might alias with each other. However, between
1826   /// alias groups there is no aliasing possible.
1827   ///
1828   /// In a program with int and float pointers annotated with tbaa information
1829   /// we would probably generate two alias groups, one for the int pointers and
1830   /// one for the float pointers.
1831   ///
1832   /// During code generation we will create a runtime alias check for each alias
1833   /// group to ensure the SCoP is executed in an alias free environment.
1834   MinMaxVectorPairVectorTy MinMaxAliasGroups;
1835 
1836   /// Mapping from invariant loads to the representing invariant load of
1837   ///        their equivalence class.
1838   ValueToValueMap InvEquivClassVMap;
1839 
1840   /// List of invariant accesses.
1841   InvariantEquivClassesTy InvariantEquivClasses;
1842 
1843   /// The smallest array index not yet assigned.
1844   long ArrayIdx = 0;
1845 
1846   /// The smallest statement index not yet assigned.
1847   long StmtIdx = 0;
1848 
1849   /// A number that uniquely represents a Scop within its function
1850   const int ID;
1851 
1852   /// Map of values to the MemoryAccess that writes its definition.
1853   ///
1854   /// There must be at most one definition per llvm::Instruction in a SCoP.
1855   DenseMap<Value *, MemoryAccess *> ValueDefAccs;
1856 
1857   /// Map of values to the MemoryAccess that reads a PHI.
1858   DenseMap<PHINode *, MemoryAccess *> PHIReadAccs;
1859 
1860   /// List of all uses (i.e. read MemoryAccesses) for a MemoryKind::Value
1861   /// scalar.
1862   DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>> ValueUseAccs;
1863 
1864   /// List of all incoming values (write MemoryAccess) of a MemoryKind::PHI or
1865   /// MemoryKind::ExitPHI scalar.
1866   DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>>
1867       PHIIncomingAccs;
1868 
1869   /// Scop constructor; invoked from ScopBuilder::buildScop.
1870   Scop(Region &R, ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT,
1871        ScopDetection::DetectionContext &DC, OptimizationRemarkEmitter &ORE,
1872        int ID);
1873 
1874   //@}
1875 
1876   /// Return the access for the base ptr of @p MA if any.
1877   MemoryAccess *lookupBasePtrAccess(MemoryAccess *MA);
1878 
1879   /// Create an id for @p Param and store it in the ParameterIds map.
1880   void createParameterId(const SCEV *Param);
1881 
1882   /// Build the Context of the Scop.
1883   void buildContext();
1884 
1885   /// Add the bounds of the parameters to the context.
1886   void addParameterBounds();
1887 
1888   /// Simplify the assumed and invalid context.
1889   void simplifyContexts();
1890 
1891   /// Create a new SCoP statement for @p BB.
1892   ///
1893   /// A new statement for @p BB will be created and added to the statement
1894   /// vector
1895   /// and map.
1896   ///
1897   /// @param BB              The basic block we build the statement for.
1898   /// @param Name            The name of the new statement.
1899   /// @param SurroundingLoop The loop the created statement is contained in.
1900   /// @param Instructions    The instructions in the statement.
1901   void addScopStmt(BasicBlock *BB, StringRef Name, Loop *SurroundingLoop,
1902                    std::vector<Instruction *> Instructions);
1903 
1904   /// Create a new SCoP statement for @p R.
1905   ///
1906   /// A new statement for @p R will be created and added to the statement vector
1907   /// and map.
1908   ///
1909   /// @param R                      The region we build the statement for.
1910   /// @param Name                   The name of the new statement.
1911   /// @param SurroundingLoop        The loop the created statement is contained
1912   ///                               in.
1913   /// @param EntryBlockInstructions The (interesting) instructions in the
1914   ///                               entry block of the region statement.
1915   void addScopStmt(Region *R, StringRef Name, Loop *SurroundingLoop,
1916                    std::vector<Instruction *> EntryBlockInstructions);
1917 
1918   /// Removes @p Stmt from the StmtMap.
1919   void removeFromStmtMap(ScopStmt &Stmt);
1920 
1921   /// Removes all statements where the entry block of the statement does not
1922   /// have a corresponding domain in the domain map (or it is empty).
1923   void removeStmtNotInDomainMap();
1924 
1925   /// Collect all memory access relations of a given type.
1926   ///
1927   /// @param Predicate A predicate function that returns true if an access is
1928   ///                  of a given type.
1929   ///
1930   /// @returns The set of memory accesses in the scop that match the predicate.
1931   isl::union_map
1932   getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate);
1933 
1934   /// @name Helper functions for printing the Scop.
1935   ///
1936   //@{
1937   void printContext(raw_ostream &OS) const;
1938   void printArrayInfo(raw_ostream &OS) const;
1939   void printStatements(raw_ostream &OS, bool PrintInstructions) const;
1940   void printAliasAssumptions(raw_ostream &OS) const;
1941   //@}
1942 
1943 public:
1944   Scop(const Scop &) = delete;
1945   Scop &operator=(const Scop &) = delete;
1946   ~Scop();
1947 
1948   /// Increment actual number of aliasing assumptions taken
1949   ///
1950   /// @param Step    Number of new aliasing assumptions which should be added to
1951   /// the number of already taken assumptions.
1952   static void incrementNumberOfAliasingAssumptions(unsigned Step);
1953 
1954   /// Get the count of copy statements added to this Scop.
1955   ///
1956   /// @return The count of copy statements added to this Scop.
1957   unsigned getCopyStmtsNum() { return CopyStmtsNum; }
1958 
1959   /// Create a new copy statement.
1960   ///
1961   /// A new statement will be created and added to the statement vector.
1962   ///
1963   /// @param SourceRel  The source location.
1964   /// @param TargetRel  The target location.
1965   /// @param Domain     The original domain under which the copy statement would
1966   ///                   be executed.
1967   ScopStmt *addScopStmt(isl::map SourceRel, isl::map TargetRel,
1968                         isl::set Domain);
1969 
1970   /// Add the access function to all MemoryAccess objects of the Scop
1971   ///        created in this pass.
1972   void addAccessFunction(MemoryAccess *Access) {
1973     AccessFunctions.emplace_back(Access);
1974 
1975     // Register value definitions.
1976     if (Access->isWrite() && Access->isOriginalValueKind()) {
1977       assert(!ValueDefAccs.count(Access->getAccessValue()) &&
1978              "there can be just one definition per value");
1979       ValueDefAccs[Access->getAccessValue()] = Access;
1980     } else if (Access->isRead() && Access->isOriginalPHIKind()) {
1981       PHINode *PHI = cast<PHINode>(Access->getAccessInstruction());
1982       assert(!PHIReadAccs.count(PHI) &&
1983              "there can be just one PHI read per PHINode");
1984       PHIReadAccs[PHI] = Access;
1985     }
1986   }
1987 
1988   /// Add metadata for @p Access.
1989   void addAccessData(MemoryAccess *Access);
1990 
1991   /// Add new invariant access equivalence class
1992   void
1993   addInvariantEquivClass(const InvariantEquivClassTy &InvariantEquivClass) {
1994     InvariantEquivClasses.emplace_back(InvariantEquivClass);
1995   }
1996 
1997   /// Add mapping from invariant loads to the representing invariant load of
1998   ///        their equivalence class.
1999   void addInvariantLoadMapping(const Value *LoadInst, Value *ClassRep) {
2000     InvEquivClassVMap[LoadInst] = ClassRep;
2001   }
2002 
2003   /// Remove the metadata stored for @p Access.
2004   void removeAccessData(MemoryAccess *Access);
2005 
2006   /// Return the scalar evolution.
2007   ScalarEvolution *getSE() const;
2008 
2009   /// Return the dominator tree.
2010   DominatorTree *getDT() const { return DT; }
2011 
2012   /// Return the LoopInfo used for this Scop.
2013   LoopInfo *getLI() const { return Affinator.getLI(); }
2014 
2015   /// Get the count of parameters used in this Scop.
2016   ///
2017   /// @return The count of parameters used in this Scop.
2018   size_t getNumParams() const { return Parameters.size(); }
2019 
2020   /// Return whether given SCEV is used as the parameter in this Scop.
2021   bool isParam(const SCEV *Param) const { return Parameters.count(Param); }
2022 
2023   /// Take a list of parameters and add the new ones to the scop.
2024   void addParams(const ParameterSetTy &NewParameters);
2025 
2026   /// Return an iterator range containing the scop parameters.
2027   iterator_range<ParameterSetTy::iterator> parameters() const {
2028     return make_range(Parameters.begin(), Parameters.end());
2029   }
2030 
2031   /// Return an iterator range containing invariant accesses.
2032   iterator_range<InvariantEquivClassesTy::iterator> invariantEquivClasses() {
2033     return make_range(InvariantEquivClasses.begin(),
2034                       InvariantEquivClasses.end());
2035   }
2036 
2037   /// Return an iterator range containing all the MemoryAccess objects of the
2038   /// Scop.
2039   iterator_range<AccFuncVector::iterator> access_functions() {
2040     return make_range(AccessFunctions.begin(), AccessFunctions.end());
2041   }
2042 
2043   /// Return whether this scop is empty, i.e. contains no statements that
2044   /// could be executed.
2045   bool isEmpty() const { return Stmts.empty(); }
2046 
2047   StringRef getName() {
2048     if (!name)
2049       name = R.getNameStr();
2050     return *name;
2051   }
2052 
2053   using array_iterator = ArrayInfoSetTy::iterator;
2054   using const_array_iterator = ArrayInfoSetTy::const_iterator;
2055   using array_range = iterator_range<ArrayInfoSetTy::iterator>;
2056   using const_array_range = iterator_range<ArrayInfoSetTy::const_iterator>;
2057 
2058   inline array_iterator array_begin() { return ScopArrayInfoSet.begin(); }
2059 
2060   inline array_iterator array_end() { return ScopArrayInfoSet.end(); }
2061 
2062   inline const_array_iterator array_begin() const {
2063     return ScopArrayInfoSet.begin();
2064   }
2065 
2066   inline const_array_iterator array_end() const {
2067     return ScopArrayInfoSet.end();
2068   }
2069 
2070   inline array_range arrays() {
2071     return array_range(array_begin(), array_end());
2072   }
2073 
2074   inline const_array_range arrays() const {
2075     return const_array_range(array_begin(), array_end());
2076   }
2077 
2078   /// Return the isl_id that represents a certain parameter.
2079   ///
2080   /// @param Parameter A SCEV that was recognized as a Parameter.
2081   ///
2082   /// @return The corresponding isl_id or NULL otherwise.
2083   isl::id getIdForParam(const SCEV *Parameter) const;
2084 
2085   /// Get the maximum region of this static control part.
2086   ///
2087   /// @return The maximum region of this static control part.
2088   inline const Region &getRegion() const { return R; }
2089   inline Region &getRegion() { return R; }
2090 
2091   /// Return the function this SCoP is in.
2092   Function &getFunction() const { return *R.getEntry()->getParent(); }
2093 
2094   /// Check if @p L is contained in the SCoP.
2095   bool contains(const Loop *L) const { return R.contains(L); }
2096 
2097   /// Check if @p BB is contained in the SCoP.
2098   bool contains(const BasicBlock *BB) const { return R.contains(BB); }
2099 
2100   /// Check if @p I is contained in the SCoP.
2101   bool contains(const Instruction *I) const { return R.contains(I); }
2102 
2103   /// Return the unique exit block of the SCoP.
2104   BasicBlock *getExit() const { return R.getExit(); }
2105 
2106   /// Return the unique exiting block of the SCoP if any.
2107   BasicBlock *getExitingBlock() const { return R.getExitingBlock(); }
2108 
2109   /// Return the unique entry block of the SCoP.
2110   BasicBlock *getEntry() const { return R.getEntry(); }
2111 
2112   /// Return the unique entering block of the SCoP if any.
2113   BasicBlock *getEnteringBlock() const { return R.getEnteringBlock(); }
2114 
2115   /// Return true if @p BB is the exit block of the SCoP.
2116   bool isExit(BasicBlock *BB) const { return getExit() == BB; }
2117 
2118   /// Return a range of all basic blocks in the SCoP.
2119   Region::block_range blocks() const { return R.blocks(); }
2120 
2121   /// Return true if and only if @p BB dominates the SCoP.
2122   bool isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const;
2123 
2124   /// Get the maximum depth of the loop.
2125   ///
2126   /// @return The maximum depth of the loop.
2127   inline unsigned getMaxLoopDepth() const { return MaxLoopDepth; }
2128 
2129   /// Return the invariant equivalence class for @p Val if any.
2130   InvariantEquivClassTy *lookupInvariantEquivClass(Value *Val);
2131 
2132   /// Return the set of invariant accesses.
2133   InvariantEquivClassesTy &getInvariantAccesses() {
2134     return InvariantEquivClasses;
2135   }
2136 
2137   /// Check if the scop has any invariant access.
2138   bool hasInvariantAccesses() { return !InvariantEquivClasses.empty(); }
2139 
2140   /// Mark the SCoP as optimized by the scheduler.
2141   void markAsOptimized() { IsOptimized = true; }
2142 
2143   /// Check if the SCoP has been optimized by the scheduler.
2144   bool isOptimized() const { return IsOptimized; }
2145 
2146   /// Return the ID of the Scop
2147   int getID() const { return ID; }
2148 
2149   /// Get the name of the entry and exit blocks of this Scop.
2150   ///
2151   /// These along with the function name can uniquely identify a Scop.
2152   ///
2153   /// @return std::pair whose first element is the entry name & second element
2154   ///         is the exit name.
2155   std::pair<std::string, std::string> getEntryExitStr() const;
2156 
2157   /// Get the name of this Scop.
2158   std::string getNameStr() const;
2159 
2160   /// Get the constraint on parameter of this Scop.
2161   ///
2162   /// @return The constraint on parameter of this Scop.
2163   isl::set getContext() const;
2164 
2165   /// Return the context where execution behavior is defined. Might return
2166   /// nullptr.
2167   isl::set getDefinedBehaviorContext() const { return DefinedBehaviorContext; }
2168 
2169   /// Return the define behavior context, or if not available, its approximation
2170   /// from all other contexts.
2171   isl::set getBestKnownDefinedBehaviorContext() const {
2172     if (!DefinedBehaviorContext.is_null())
2173       return DefinedBehaviorContext;
2174 
2175     return Context.intersect_params(AssumedContext).subtract(InvalidContext);
2176   }
2177 
2178   /// Return space of isl context parameters.
2179   ///
2180   /// Returns the set of context parameters that are currently constrained. In
2181   /// case the full set of parameters is needed, see @getFullParamSpace.
2182   isl::space getParamSpace() const;
2183 
2184   /// Return the full space of parameters.
2185   ///
2186   /// getParamSpace will only return the parameters of the context that are
2187   /// actually constrained, whereas getFullParamSpace will return all
2188   //  parameters. This is useful in cases, where we need to ensure all
2189   //  parameters are available, as certain isl functions will abort if this is
2190   //  not the case.
2191   isl::space getFullParamSpace() const;
2192 
2193   /// Get the assumed context for this Scop.
2194   ///
2195   /// @return The assumed context of this Scop.
2196   isl::set getAssumedContext() const;
2197 
2198   /// Return true if the optimized SCoP can be executed.
2199   ///
2200   /// In addition to the runtime check context this will also utilize the domain
2201   /// constraints to decide it the optimized version can actually be executed.
2202   ///
2203   /// @returns True if the optimized SCoP can be executed.
2204   bool hasFeasibleRuntimeContext() const;
2205 
2206   /// Check if the assumption in @p Set is trivial or not.
2207   ///
2208   /// @param Set  The relations between parameters that are assumed to hold.
2209   /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2210   ///             (needed/assumptions) or negative (invalid/restrictions).
2211   ///
2212   /// @returns True if the assumption @p Set is not trivial.
2213   bool isEffectiveAssumption(isl::set Set, AssumptionSign Sign);
2214 
2215   /// Track and report an assumption.
2216   ///
2217   /// Use 'clang -Rpass-analysis=polly-scops' or 'opt
2218   /// -pass-remarks-analysis=polly-scops' to output the assumptions.
2219   ///
2220   /// @param Kind The assumption kind describing the underlying cause.
2221   /// @param Set  The relations between parameters that are assumed to hold.
2222   /// @param Loc  The location in the source that caused this assumption.
2223   /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2224   ///             (needed/assumptions) or negative (invalid/restrictions).
2225   /// @param BB   The block in which this assumption was taken. Used to
2226   ///             calculate hotness when emitting remark.
2227   ///
2228   /// @returns True if the assumption is not trivial.
2229   bool trackAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
2230                        AssumptionSign Sign, BasicBlock *BB);
2231 
2232   /// Add the conditions from @p Set (or subtract them if @p Sign is
2233   /// AS_RESTRICTION) to the defined behaviour context.
2234   void intersectDefinedBehavior(isl::set Set, AssumptionSign Sign);
2235 
2236   /// Add assumptions to assumed context.
2237   ///
2238   /// The assumptions added will be assumed to hold during the execution of the
2239   /// scop. However, as they are generally not statically provable, at code
2240   /// generation time run-time checks will be generated that ensure the
2241   /// assumptions hold.
2242   ///
2243   /// WARNING: We currently exploit in simplifyAssumedContext the knowledge
2244   ///          that assumptions do not change the set of statement instances
2245   ///          executed.
2246   ///
2247   /// @param Kind The assumption kind describing the underlying cause.
2248   /// @param Set  The relations between parameters that are assumed to hold.
2249   /// @param Loc  The location in the source that caused this assumption.
2250   /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2251   ///             (needed/assumptions) or negative (invalid/restrictions).
2252   /// @param BB   The block in which this assumption was taken. Used to
2253   ///             calculate hotness when emitting remark.
2254   /// @param RTC  Does the assumption require a runtime check?
2255   void addAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
2256                      AssumptionSign Sign, BasicBlock *BB, bool RTC = true);
2257 
2258   /// Mark the scop as invalid.
2259   ///
2260   /// This method adds an assumption to the scop that is always invalid. As a
2261   /// result, the scop will not be optimized later on. This function is commonly
2262   /// called when a condition makes it impossible (or too compile time
2263   /// expensive) to process this scop any further.
2264   ///
2265   /// @param Kind The assumption kind describing the underlying cause.
2266   /// @param Loc  The location in the source that triggered .
2267   /// @param BB   The BasicBlock where it was triggered.
2268   void invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB = nullptr);
2269 
2270   /// Get the invalid context for this Scop.
2271   ///
2272   /// @return The invalid context of this Scop.
2273   isl::set getInvalidContext() const;
2274 
2275   /// Return true if and only if the InvalidContext is trivial (=empty).
2276   bool hasTrivialInvalidContext() const { return InvalidContext.is_empty(); }
2277 
2278   /// Return all alias groups for this SCoP.
2279   const MinMaxVectorPairVectorTy &getAliasGroups() const {
2280     return MinMaxAliasGroups;
2281   }
2282 
2283   void addAliasGroup(MinMaxVectorTy &MinMaxAccessesReadWrite,
2284                      MinMaxVectorTy &MinMaxAccessesReadOnly) {
2285     MinMaxAliasGroups.emplace_back();
2286     MinMaxAliasGroups.back().first = MinMaxAccessesReadWrite;
2287     MinMaxAliasGroups.back().second = MinMaxAccessesReadOnly;
2288   }
2289 
2290   /// Remove statements from the list of scop statements.
2291   ///
2292   /// @param ShouldDelete  A function that returns true if the statement passed
2293   ///                      to it should be deleted.
2294   /// @param AfterHoisting If true, also remove from data access lists.
2295   ///                      These lists are filled during
2296   ///                      ScopBuilder::buildAccessRelations. Therefore, if this
2297   ///                      method is called before buildAccessRelations, false
2298   ///                      must be passed.
2299   void removeStmts(function_ref<bool(ScopStmt &)> ShouldDelete,
2300                    bool AfterHoisting = true);
2301 
2302   /// Get an isl string representing the context.
2303   std::string getContextStr() const;
2304 
2305   /// Get an isl string representing the assumed context.
2306   std::string getAssumedContextStr() const;
2307 
2308   /// Get an isl string representing the invalid context.
2309   std::string getInvalidContextStr() const;
2310 
2311   /// Return the list of ScopStmts that represent the given @p BB.
2312   ArrayRef<ScopStmt *> getStmtListFor(BasicBlock *BB) const;
2313 
2314   /// Get the statement to put a PHI WRITE into.
2315   ///
2316   /// @param U The operand of a PHINode.
2317   ScopStmt *getIncomingStmtFor(const Use &U) const;
2318 
2319   /// Return the last statement representing @p BB.
2320   ///
2321   /// Of the sequence of statements that represent a @p BB, this is the last one
2322   /// to be executed. It is typically used to determine which instruction to add
2323   /// a MemoryKind::PHI WRITE to. For this purpose, it is not strictly required
2324   /// to be executed last, only that the incoming value is available in it.
2325   ScopStmt *getLastStmtFor(BasicBlock *BB) const;
2326 
2327   /// Return the ScopStmts that represents the Region @p R, or nullptr if
2328   ///        it is not represented by any statement in this Scop.
2329   ArrayRef<ScopStmt *> getStmtListFor(Region *R) const;
2330 
2331   /// Return the ScopStmts that represents @p RN; can return nullptr if
2332   ///        the RegionNode is not within the SCoP or has been removed due to
2333   ///        simplifications.
2334   ArrayRef<ScopStmt *> getStmtListFor(RegionNode *RN) const;
2335 
2336   /// Return the ScopStmt an instruction belongs to, or nullptr if it
2337   ///        does not belong to any statement in this Scop.
2338   ScopStmt *getStmtFor(Instruction *Inst) const {
2339     return InstStmtMap.lookup(Inst);
2340   }
2341 
2342   /// Return the number of statements in the SCoP.
2343   size_t getSize() const { return Stmts.size(); }
2344 
2345   /// @name Statements Iterators
2346   ///
2347   /// These iterators iterate over all statements of this Scop.
2348   //@{
2349   using iterator = StmtSet::iterator;
2350   using const_iterator = StmtSet::const_iterator;
2351 
2352   iterator begin() { return Stmts.begin(); }
2353   iterator end() { return Stmts.end(); }
2354   const_iterator begin() const { return Stmts.begin(); }
2355   const_iterator end() const { return Stmts.end(); }
2356 
2357   using reverse_iterator = StmtSet::reverse_iterator;
2358   using const_reverse_iterator = StmtSet::const_reverse_iterator;
2359 
2360   reverse_iterator rbegin() { return Stmts.rbegin(); }
2361   reverse_iterator rend() { return Stmts.rend(); }
2362   const_reverse_iterator rbegin() const { return Stmts.rbegin(); }
2363   const_reverse_iterator rend() const { return Stmts.rend(); }
2364   //@}
2365 
2366   /// Return the set of required invariant loads.
2367   const InvariantLoadsSetTy &getRequiredInvariantLoads() const {
2368     return DC.RequiredILS;
2369   }
2370 
2371   /// Add @p LI to the set of required invariant loads.
2372   void addRequiredInvariantLoad(LoadInst *LI) { DC.RequiredILS.insert(LI); }
2373 
2374   /// Return the set of boxed (thus overapproximated) loops.
2375   const BoxedLoopsSetTy &getBoxedLoops() const { return DC.BoxedLoopsSet; }
2376 
2377   /// Return true if and only if @p R is a non-affine subregion.
2378   bool isNonAffineSubRegion(const Region *R) {
2379     return DC.NonAffineSubRegionSet.count(R);
2380   }
2381 
2382   const MapInsnToMemAcc &getInsnToMemAccMap() const { return DC.InsnToMemAcc; }
2383 
2384   /// Return the (possibly new) ScopArrayInfo object for @p Access.
2385   ///
2386   /// @param ElementType The type of the elements stored in this array.
2387   /// @param Kind        The kind of the array info object.
2388   /// @param BaseName    The optional name of this memory reference.
2389   ScopArrayInfo *getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType,
2390                                           ArrayRef<const SCEV *> Sizes,
2391                                           MemoryKind Kind,
2392                                           const char *BaseName = nullptr);
2393 
2394   /// Create an array and return the corresponding ScopArrayInfo object.
2395   ///
2396   /// @param ElementType The type of the elements stored in this array.
2397   /// @param BaseName    The name of this memory reference.
2398   /// @param Sizes       The sizes of dimensions.
2399   ScopArrayInfo *createScopArrayInfo(Type *ElementType,
2400                                      const std::string &BaseName,
2401                                      const std::vector<unsigned> &Sizes);
2402 
2403   /// Return the cached ScopArrayInfo object for @p BasePtr.
2404   ///
2405   /// @param BasePtr   The base pointer the object has been stored for.
2406   /// @param Kind      The kind of array info object.
2407   ///
2408   /// @returns The ScopArrayInfo pointer or NULL if no such pointer is
2409   ///          available.
2410   ScopArrayInfo *getScopArrayInfoOrNull(Value *BasePtr, MemoryKind Kind);
2411 
2412   /// Return the cached ScopArrayInfo object for @p BasePtr.
2413   ///
2414   /// @param BasePtr   The base pointer the object has been stored for.
2415   /// @param Kind      The kind of array info object.
2416   ///
2417   /// @returns The ScopArrayInfo pointer (may assert if no such pointer is
2418   ///          available).
2419   ScopArrayInfo *getScopArrayInfo(Value *BasePtr, MemoryKind Kind);
2420 
2421   /// Invalidate ScopArrayInfo object for base address.
2422   ///
2423   /// @param BasePtr The base pointer of the ScopArrayInfo object to invalidate.
2424   /// @param Kind    The Kind of the ScopArrayInfo object.
2425   void invalidateScopArrayInfo(Value *BasePtr, MemoryKind Kind) {
2426     auto It = ScopArrayInfoMap.find(std::make_pair(BasePtr, Kind));
2427     if (It == ScopArrayInfoMap.end())
2428       return;
2429     ScopArrayInfoSet.remove(It->second.get());
2430     ScopArrayInfoMap.erase(It);
2431   }
2432 
2433   /// Set new isl context.
2434   void setContext(isl::set NewContext);
2435 
2436   /// Update maximal loop depth. If @p Depth is smaller than current value,
2437   /// then maximal loop depth is not updated.
2438   void updateMaxLoopDepth(unsigned Depth) {
2439     MaxLoopDepth = std::max(MaxLoopDepth, Depth);
2440   }
2441 
2442   /// Align the parameters in the statement to the scop context
2443   void realignParams();
2444 
2445   /// Return true if this SCoP can be profitably optimized.
2446   ///
2447   /// @param ScalarsAreUnprofitable Never consider statements with scalar writes
2448   ///                               as profitably optimizable.
2449   ///
2450   /// @return Whether this SCoP can be profitably optimized.
2451   bool isProfitable(bool ScalarsAreUnprofitable) const;
2452 
2453   /// Return true if the SCoP contained at least one error block.
2454   bool hasErrorBlock() const { return HasErrorBlock; }
2455 
2456   /// Notify SCoP that it contains an error block
2457   void notifyErrorBlock() { HasErrorBlock = true; }
2458 
2459   /// Return true if the underlying region has a single exiting block.
2460   bool hasSingleExitEdge() const { return HasSingleExitEdge; }
2461 
2462   /// Print the static control part.
2463   ///
2464   /// @param OS The output stream the static control part is printed to.
2465   /// @param PrintInstructions Whether to print the statement's instructions as
2466   ///                          well.
2467   void print(raw_ostream &OS, bool PrintInstructions) const;
2468 
2469 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2470   /// Print the ScopStmt to stderr.
2471   void dump() const;
2472 #endif
2473 
2474   /// Get the isl context of this static control part.
2475   ///
2476   /// @return The isl context of this static control part.
2477   isl::ctx getIslCtx() const;
2478 
2479   /// Directly return the shared_ptr of the context.
2480   const std::shared_ptr<isl_ctx> &getSharedIslCtx() const { return IslCtx; }
2481 
2482   /// Compute the isl representation for the SCEV @p E
2483   ///
2484   /// @param E  The SCEV that should be translated.
2485   /// @param BB An (optional) basic block in which the isl_pw_aff is computed.
2486   ///           SCEVs known to not reference any loops in the SCoP can be
2487   ///           passed without a @p BB.
2488   /// @param NonNegative Flag to indicate the @p E has to be non-negative.
2489   ///
2490   /// Note that this function will always return a valid isl_pw_aff. However, if
2491   /// the translation of @p E was deemed to complex the SCoP is invalidated and
2492   /// a dummy value of appropriate dimension is returned. This allows to bail
2493   /// for complex cases without "error handling code" needed on the users side.
2494   PWACtx getPwAff(const SCEV *E, BasicBlock *BB = nullptr,
2495                   bool NonNegative = false,
2496                   RecordedAssumptionsTy *RecordedAssumptions = nullptr);
2497 
2498   /// Compute the isl representation for the SCEV @p E
2499   ///
2500   /// This function is like @see Scop::getPwAff() but strips away the invalid
2501   /// domain part associated with the piecewise affine function.
2502   isl::pw_aff
2503   getPwAffOnly(const SCEV *E, BasicBlock *BB = nullptr,
2504                RecordedAssumptionsTy *RecordedAssumptions = nullptr);
2505 
2506   /// Check if an <nsw> AddRec for the loop L is cached.
2507   bool hasNSWAddRecForLoop(Loop *L) { return Affinator.hasNSWAddRecForLoop(L); }
2508 
2509   /// Return the domain of @p Stmt.
2510   ///
2511   /// @param Stmt The statement for which the conditions should be returned.
2512   isl::set getDomainConditions(const ScopStmt *Stmt) const;
2513 
2514   /// Return the domain of @p BB.
2515   ///
2516   /// @param BB The block for which the conditions should be returned.
2517   isl::set getDomainConditions(BasicBlock *BB) const;
2518 
2519   /// Return the domain of @p BB. If it does not exist, create an empty one.
2520   isl::set &getOrInitEmptyDomain(BasicBlock *BB) { return DomainMap[BB]; }
2521 
2522   /// Check if domain is determined for @p BB.
2523   bool isDomainDefined(BasicBlock *BB) const { return DomainMap.count(BB) > 0; }
2524 
2525   /// Set domain for @p BB.
2526   void setDomain(BasicBlock *BB, isl::set &Domain) { DomainMap[BB] = Domain; }
2527 
2528   /// Get a union set containing the iteration domains of all statements.
2529   isl::union_set getDomains() const;
2530 
2531   /// Get a union map of all may-writes performed in the SCoP.
2532   isl::union_map getMayWrites();
2533 
2534   /// Get a union map of all must-writes performed in the SCoP.
2535   isl::union_map getMustWrites();
2536 
2537   /// Get a union map of all writes performed in the SCoP.
2538   isl::union_map getWrites();
2539 
2540   /// Get a union map of all reads performed in the SCoP.
2541   isl::union_map getReads();
2542 
2543   /// Get a union map of all memory accesses performed in the SCoP.
2544   isl::union_map getAccesses();
2545 
2546   /// Get a union map of all memory accesses performed in the SCoP.
2547   ///
2548   /// @param Array The array to which the accesses should belong.
2549   isl::union_map getAccesses(ScopArrayInfo *Array);
2550 
2551   /// Get the schedule of all the statements in the SCoP.
2552   ///
2553   /// @return The schedule of all the statements in the SCoP, if the schedule of
2554   /// the Scop does not contain extension nodes, and nullptr, otherwise.
2555   isl::union_map getSchedule() const;
2556 
2557   /// Get a schedule tree describing the schedule of all statements.
2558   isl::schedule getScheduleTree() const;
2559 
2560   /// Update the current schedule
2561   ///
2562   /// NewSchedule The new schedule (given as a flat union-map).
2563   void setSchedule(isl::union_map NewSchedule);
2564 
2565   /// Update the current schedule
2566   ///
2567   /// NewSchedule The new schedule (given as schedule tree).
2568   void setScheduleTree(isl::schedule NewSchedule);
2569 
2570   /// Whether the schedule is the original schedule as derived from the CFG by
2571   /// ScopBuilder.
2572   bool isOriginalSchedule() const { return !ScheduleModified; }
2573 
2574   /// Intersects the domains of all statements in the SCoP.
2575   ///
2576   /// @return true if a change was made
2577   bool restrictDomains(isl::union_set Domain);
2578 
2579   /// Get the depth of a loop relative to the outermost loop in the Scop.
2580   ///
2581   /// This will return
2582   ///    0 if @p L is an outermost loop in the SCoP
2583   ///   >0 for other loops in the SCoP
2584   ///   -1 if @p L is nullptr or there is no outermost loop in the SCoP
2585   int getRelativeLoopDepth(const Loop *L) const;
2586 
2587   /// Find the ScopArrayInfo associated with an isl Id
2588   ///        that has name @p Name.
2589   ScopArrayInfo *getArrayInfoByName(const std::string BaseName);
2590 
2591   /// Simplify the SCoP representation.
2592   ///
2593   /// @param AfterHoisting Whether it is called after invariant load hoisting.
2594   ///                      When true, also removes statements without
2595   ///                      side-effects.
2596   void simplifySCoP(bool AfterHoisting);
2597 
2598   /// Get the next free array index.
2599   ///
2600   /// This function returns a unique index which can be used to identify an
2601   /// array.
2602   long getNextArrayIdx() { return ArrayIdx++; }
2603 
2604   /// Get the next free statement index.
2605   ///
2606   /// This function returns a unique index which can be used to identify a
2607   /// statement.
2608   long getNextStmtIdx() { return StmtIdx++; }
2609 
2610   /// Get the representing SCEV for @p S if applicable, otherwise @p S.
2611   ///
2612   /// Invariant loads of the same location are put in an equivalence class and
2613   /// only one of them is chosen as a representing element that will be
2614   /// modeled as a parameter. The others have to be normalized, i.e.,
2615   /// replaced by the representing element of their equivalence class, in order
2616   /// to get the correct parameter value, e.g., in the SCEVAffinator.
2617   ///
2618   /// @param S The SCEV to normalize.
2619   ///
2620   /// @return The representing SCEV for invariant loads or @p S if none.
2621   const SCEV *getRepresentingInvariantLoadSCEV(const SCEV *S) const;
2622 
2623   /// Return the MemoryAccess that writes an llvm::Value, represented by a
2624   /// ScopArrayInfo.
2625   ///
2626   /// There can be at most one such MemoryAccess per llvm::Value in the SCoP.
2627   /// Zero is possible for read-only values.
2628   MemoryAccess *getValueDef(const ScopArrayInfo *SAI) const;
2629 
2630   /// Return all MemoryAccesses that us an llvm::Value, represented by a
2631   /// ScopArrayInfo.
2632   ArrayRef<MemoryAccess *> getValueUses(const ScopArrayInfo *SAI) const;
2633 
2634   /// Return the MemoryAccess that represents an llvm::PHINode.
2635   ///
2636   /// ExitPHIs's PHINode is not within the SCoPs. This function returns nullptr
2637   /// for them.
2638   MemoryAccess *getPHIRead(const ScopArrayInfo *SAI) const;
2639 
2640   /// Return all MemoryAccesses for all incoming statements of a PHINode,
2641   /// represented by a ScopArrayInfo.
2642   ArrayRef<MemoryAccess *> getPHIIncomings(const ScopArrayInfo *SAI) const;
2643 
2644   /// Return whether @p Inst has a use outside of this SCoP.
2645   bool isEscaping(Instruction *Inst);
2646 
2647   struct ScopStatistics {
2648     int NumAffineLoops = 0;
2649     int NumBoxedLoops = 0;
2650 
2651     int NumValueWrites = 0;
2652     int NumValueWritesInLoops = 0;
2653     int NumPHIWrites = 0;
2654     int NumPHIWritesInLoops = 0;
2655     int NumSingletonWrites = 0;
2656     int NumSingletonWritesInLoops = 0;
2657   };
2658 
2659   /// Collect statistic about this SCoP.
2660   ///
2661   /// These are most commonly used for LLVM's static counters (Statistic.h) in
2662   /// various places. If statistics are disabled, only zeros are returned to
2663   /// avoid the overhead.
2664   ScopStatistics getStatistics() const;
2665 
2666   /// Is this Scop marked as not to be transformed by an optimization heuristic?
2667   /// In this case, only user-directed transformations are allowed.
2668   bool hasDisableHeuristicsHint() const { return HasDisableHeuristicsHint; }
2669 
2670   /// Mark this Scop to not apply an optimization heuristic.
2671   void markDisableHeuristics() { HasDisableHeuristicsHint = true; }
2672 };
2673 
2674 /// Print Scop scop to raw_ostream OS.
2675 raw_ostream &operator<<(raw_ostream &OS, const Scop &scop);
2676 
2677 /// The legacy pass manager's analysis pass to compute scop information
2678 ///        for a region.
2679 class ScopInfoRegionPass final : public RegionPass {
2680   /// The Scop pointer which is used to construct a Scop.
2681   std::unique_ptr<Scop> S;
2682 
2683 public:
2684   static char ID; // Pass identification, replacement for typeid
2685 
2686   ScopInfoRegionPass() : RegionPass(ID) {}
2687   ~ScopInfoRegionPass() override = default;
2688 
2689   /// Build Scop object, the Polly IR of static control
2690   ///        part for the current SESE-Region.
2691   ///
2692   /// @return If the current region is a valid for a static control part,
2693   ///         return the Polly IR representing this static control part,
2694   ///         return null otherwise.
2695   Scop *getScop() { return S.get(); }
2696   const Scop *getScop() const { return S.get(); }
2697 
2698   /// Calculate the polyhedral scop information for a given Region.
2699   bool runOnRegion(Region *R, RGPassManager &RGM) override;
2700 
2701   void releaseMemory() override { S.reset(); }
2702 
2703   void print(raw_ostream &O, const Module *M = nullptr) const override;
2704 
2705   void getAnalysisUsage(AnalysisUsage &AU) const override;
2706 };
2707 
2708 llvm::Pass *createScopInfoPrinterLegacyRegionPass(raw_ostream &OS);
2709 
2710 class ScopInfo {
2711 public:
2712   using RegionToScopMapTy = MapVector<Region *, std::unique_ptr<Scop>>;
2713   using reverse_iterator = RegionToScopMapTy::reverse_iterator;
2714   using const_reverse_iterator = RegionToScopMapTy::const_reverse_iterator;
2715   using iterator = RegionToScopMapTy::iterator;
2716   using const_iterator = RegionToScopMapTy::const_iterator;
2717 
2718 private:
2719   /// A map of Region to its Scop object containing
2720   ///        Polly IR of static control part.
2721   RegionToScopMapTy RegionToScopMap;
2722   const DataLayout &DL;
2723   ScopDetection &SD;
2724   ScalarEvolution &SE;
2725   LoopInfo &LI;
2726   AAResults &AA;
2727   DominatorTree &DT;
2728   AssumptionCache &AC;
2729   OptimizationRemarkEmitter &ORE;
2730 
2731 public:
2732   ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE,
2733            LoopInfo &LI, AAResults &AA, DominatorTree &DT, AssumptionCache &AC,
2734            OptimizationRemarkEmitter &ORE);
2735 
2736   /// Get the Scop object for the given Region.
2737   ///
2738   /// @return If the given region is the maximal region within a scop, return
2739   ///         the scop object. If the given region is a subregion, return a
2740   ///         nullptr. Top level region containing the entry block of a function
2741   ///         is not considered in the scop creation.
2742   Scop *getScop(Region *R) const {
2743     auto MapIt = RegionToScopMap.find(R);
2744     if (MapIt != RegionToScopMap.end())
2745       return MapIt->second.get();
2746     return nullptr;
2747   }
2748 
2749   /// Recompute the Scop-Information for a function.
2750   ///
2751   /// This invalidates any iterators.
2752   void recompute();
2753 
2754   /// Handle invalidation explicitly
2755   bool invalidate(Function &F, const PreservedAnalyses &PA,
2756                   FunctionAnalysisManager::Invalidator &Inv);
2757 
2758   iterator begin() { return RegionToScopMap.begin(); }
2759   iterator end() { return RegionToScopMap.end(); }
2760   const_iterator begin() const { return RegionToScopMap.begin(); }
2761   const_iterator end() const { return RegionToScopMap.end(); }
2762   reverse_iterator rbegin() { return RegionToScopMap.rbegin(); }
2763   reverse_iterator rend() { return RegionToScopMap.rend(); }
2764   const_reverse_iterator rbegin() const { return RegionToScopMap.rbegin(); }
2765   const_reverse_iterator rend() const { return RegionToScopMap.rend(); }
2766   bool empty() const { return RegionToScopMap.empty(); }
2767 };
2768 
2769 struct ScopInfoAnalysis : AnalysisInfoMixin<ScopInfoAnalysis> {
2770   static AnalysisKey Key;
2771 
2772   using Result = ScopInfo;
2773 
2774   Result run(Function &, FunctionAnalysisManager &);
2775 };
2776 
2777 struct ScopInfoPrinterPass final : PassInfoMixin<ScopInfoPrinterPass> {
2778   ScopInfoPrinterPass(raw_ostream &OS) : Stream(OS) {}
2779 
2780   PreservedAnalyses run(Function &, FunctionAnalysisManager &);
2781 
2782   raw_ostream &Stream;
2783 };
2784 
2785 //===----------------------------------------------------------------------===//
2786 /// The legacy pass manager's analysis pass to compute scop information
2787 ///        for the whole function.
2788 ///
2789 /// This pass will maintain a map of the maximal region within a scop to its
2790 /// scop object for all the feasible scops present in a function.
2791 /// This pass is an alternative to the ScopInfoRegionPass in order to avoid a
2792 /// region pass manager.
2793 class ScopInfoWrapperPass final : public FunctionPass {
2794   std::unique_ptr<ScopInfo> Result;
2795 
2796 public:
2797   ScopInfoWrapperPass() : FunctionPass(ID) {}
2798   ~ScopInfoWrapperPass() override = default;
2799 
2800   static char ID; // Pass identification, replacement for typeid
2801 
2802   ScopInfo *getSI() { return Result.get(); }
2803   const ScopInfo *getSI() const { return Result.get(); }
2804 
2805   /// Calculate all the polyhedral scops for a given function.
2806   bool runOnFunction(Function &F) override;
2807 
2808   void releaseMemory() override { Result.reset(); }
2809 
2810   void print(raw_ostream &O, const Module *M = nullptr) const override;
2811 
2812   void getAnalysisUsage(AnalysisUsage &AU) const override;
2813 };
2814 
2815 llvm::Pass *createScopInfoPrinterLegacyFunctionPass(llvm::raw_ostream &OS);
2816 } // end namespace polly
2817 
2818 namespace llvm {
2819 void initializeScopInfoRegionPassPass(PassRegistry &);
2820 void initializeScopInfoPrinterLegacyRegionPassPass(PassRegistry &);
2821 void initializeScopInfoWrapperPassPass(PassRegistry &);
2822 void initializeScopInfoPrinterLegacyFunctionPassPass(PassRegistry &);
2823 } // end namespace llvm
2824 
2825 #endif // POLLY_SCOPINFO_H
2826