1 /* Control flow functions for trees.
2 Copyright (C) 2001-2022 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "tree-ssa-dce.h"
58 #include "omp-general.h"
59 #include "omp-expand.h"
60 #include "tree-cfgcleanup.h"
61 #include "gimplify.h"
62 #include "attribs.h"
63 #include "selftest.h"
64 #include "opts.h"
65 #include "asan.h"
66 #include "profile.h"
67 #include "sreal.h"
68
69 /* This file contains functions for building the Control Flow Graph (CFG)
70 for a function tree. */
71
72 /* Local declarations. */
73
74 /* Initial capacity for the basic block array. */
75 static const int initial_cfg_capacity = 20;
76
77 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
78 which use a particular edge. The CASE_LABEL_EXPRs are chained together
79 via their CASE_CHAIN field, which we clear after we're done with the
80 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
81
82 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
83 update the case vector in response to edge redirections.
84
85 Right now this table is set up and torn down at key points in the
86 compilation process. It would be nice if we could make the table
87 more persistent. The key is getting notification of changes to
88 the CFG (particularly edge removal, creation and redirection). */
89
90 static hash_map<edge, tree> *edge_to_cases;
91
92 /* If we record edge_to_cases, this bitmap will hold indexes
93 of basic blocks that end in a GIMPLE_SWITCH which we touched
94 due to edge manipulations. */
95
96 static bitmap touched_switch_bbs;
97
98 /* OpenMP region idxs for blocks during cfg pass. */
99 static vec<int> bb_to_omp_idx;
100
101 /* CFG statistics. */
102 struct cfg_stats_d
103 {
104 long num_merged_labels;
105 };
106
107 static struct cfg_stats_d cfg_stats;
108
109 /* Data to pass to replace_block_vars_by_duplicates_1. */
110 struct replace_decls_d
111 {
112 hash_map<tree, tree> *vars_map;
113 tree to_context;
114 };
115
116 /* Hash table to store last discriminator assigned for each locus. */
117 struct locus_discrim_map
118 {
119 int location_line;
120 int discriminator;
121 };
122
123 /* Hashtable helpers. */
124
125 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
126 {
127 static inline hashval_t hash (const locus_discrim_map *);
128 static inline bool equal (const locus_discrim_map *,
129 const locus_discrim_map *);
130 };
131
132 /* Trivial hash function for a location_t. ITEM is a pointer to
133 a hash table entry that maps a location_t to a discriminator. */
134
135 inline hashval_t
hash(const locus_discrim_map * item)136 locus_discrim_hasher::hash (const locus_discrim_map *item)
137 {
138 return item->location_line;
139 }
140
141 /* Equality function for the locus-to-discriminator map. A and B
142 point to the two hash table entries to compare. */
143
144 inline bool
equal(const locus_discrim_map * a,const locus_discrim_map * b)145 locus_discrim_hasher::equal (const locus_discrim_map *a,
146 const locus_discrim_map *b)
147 {
148 return a->location_line == b->location_line;
149 }
150
151 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
152
153 /* Basic blocks and flowgraphs. */
154 static void make_blocks (gimple_seq);
155
156 /* Edges. */
157 static void make_edges (void);
158 static void assign_discriminators (void);
159 static void make_cond_expr_edges (basic_block);
160 static void make_gimple_switch_edges (gswitch *, basic_block);
161 static bool make_goto_expr_edges (basic_block);
162 static void make_gimple_asm_edges (basic_block);
163 static edge gimple_redirect_edge_and_branch (edge, basic_block);
164 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
165
166 /* Various helpers. */
167 static inline bool stmt_starts_bb_p (gimple *, gimple *);
168 static int gimple_verify_flow_info (void);
169 static void gimple_make_forwarder_block (edge);
170 static gimple *first_non_label_stmt (basic_block);
171 static bool verify_gimple_transaction (gtransaction *);
172 static bool call_can_make_abnormal_goto (gimple *);
173
174 /* Flowgraph optimization and cleanup. */
175 static void gimple_merge_blocks (basic_block, basic_block);
176 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
177 static void remove_bb (basic_block);
178 static edge find_taken_edge_computed_goto (basic_block, tree);
179 static edge find_taken_edge_cond_expr (const gcond *, tree);
180
181 void
init_empty_tree_cfg_for_function(struct function * fn)182 init_empty_tree_cfg_for_function (struct function *fn)
183 {
184 /* Initialize the basic block array. */
185 init_flow (fn);
186 profile_status_for_fn (fn) = PROFILE_ABSENT;
187 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
188 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
189 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
190 initial_cfg_capacity, true);
191
192 /* Build a mapping of labels to their associated blocks. */
193 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
194 initial_cfg_capacity, true);
195
196 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
197 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
198
199 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
200 = EXIT_BLOCK_PTR_FOR_FN (fn);
201 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
202 = ENTRY_BLOCK_PTR_FOR_FN (fn);
203 }
204
205 void
init_empty_tree_cfg(void)206 init_empty_tree_cfg (void)
207 {
208 init_empty_tree_cfg_for_function (cfun);
209 }
210
211 /*---------------------------------------------------------------------------
212 Create basic blocks
213 ---------------------------------------------------------------------------*/
214
215 /* Entry point to the CFG builder for trees. SEQ is the sequence of
216 statements to be added to the flowgraph. */
217
218 static void
build_gimple_cfg(gimple_seq seq)219 build_gimple_cfg (gimple_seq seq)
220 {
221 /* Register specific gimple functions. */
222 gimple_register_cfg_hooks ();
223
224 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
225
226 init_empty_tree_cfg ();
227
228 make_blocks (seq);
229
230 /* Make sure there is always at least one block, even if it's empty. */
231 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
232 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233
234 /* Adjust the size of the array. */
235 if (basic_block_info_for_fn (cfun)->length ()
236 < (size_t) n_basic_blocks_for_fn (cfun))
237 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
238 n_basic_blocks_for_fn (cfun));
239
240 /* To speed up statement iterator walks, we first purge dead labels. */
241 cleanup_dead_labels ();
242
243 /* Group case nodes to reduce the number of edges.
244 We do this after cleaning up dead labels because otherwise we miss
245 a lot of obvious case merging opportunities. */
246 group_case_labels ();
247
248 /* Create the edges of the flowgraph. */
249 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
250 make_edges ();
251 assign_discriminators ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus;
254 discriminator_per_locus = NULL;
255 }
256
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
260
261 static void
replace_loop_annotate_in_block(basic_block bb,class loop * loop)262 replace_loop_annotate_in_block (basic_block bb, class loop *loop)
263 {
264 gimple_stmt_iterator gsi = gsi_last_bb (bb);
265 gimple *stmt = gsi_stmt (gsi);
266
267 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
268 return;
269
270 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
271 {
272 stmt = gsi_stmt (gsi);
273 if (gimple_code (stmt) != GIMPLE_CALL)
274 break;
275 if (!gimple_call_internal_p (stmt)
276 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
277 break;
278
279 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
280 {
281 case annot_expr_ivdep_kind:
282 loop->safelen = INT_MAX;
283 break;
284 case annot_expr_unroll_kind:
285 loop->unroll
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
287 cfun->has_unroll = true;
288 break;
289 case annot_expr_no_vector_kind:
290 loop->dont_vectorize = true;
291 break;
292 case annot_expr_vector_kind:
293 loop->force_vectorize = true;
294 cfun->has_force_vectorize_loops = true;
295 break;
296 case annot_expr_parallel_kind:
297 loop->can_be_parallel = true;
298 loop->safelen = INT_MAX;
299 break;
300 default:
301 gcc_unreachable ();
302 }
303
304 stmt = gimple_build_assign (gimple_call_lhs (stmt),
305 gimple_call_arg (stmt, 0));
306 gsi_replace (&gsi, stmt, true);
307 }
308 }
309
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
313
314 static void
replace_loop_annotate(void)315 replace_loop_annotate (void)
316 {
317 basic_block bb;
318 gimple_stmt_iterator gsi;
319 gimple *stmt;
320
321 for (auto loop : loops_list (cfun, 0))
322 {
323 /* First look into the header. */
324 replace_loop_annotate_in_block (loop->header, loop);
325
326 /* Then look into the latch, if any. */
327 if (loop->latch)
328 replace_loop_annotate_in_block (loop->latch, loop);
329
330 /* Push the global flag_finite_loops state down to individual loops. */
331 loop->finite_p = flag_finite_loops;
332 }
333
334 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
335 FOR_EACH_BB_FN (bb, cfun)
336 {
337 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
338 {
339 stmt = gsi_stmt (gsi);
340 if (gimple_code (stmt) != GIMPLE_CALL)
341 continue;
342 if (!gimple_call_internal_p (stmt)
343 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
344 continue;
345
346 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
347 {
348 case annot_expr_ivdep_kind:
349 case annot_expr_unroll_kind:
350 case annot_expr_no_vector_kind:
351 case annot_expr_vector_kind:
352 case annot_expr_parallel_kind:
353 break;
354 default:
355 gcc_unreachable ();
356 }
357
358 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
359 stmt = gimple_build_assign (gimple_call_lhs (stmt),
360 gimple_call_arg (stmt, 0));
361 gsi_replace (&gsi, stmt, true);
362 }
363 }
364 }
365
366 static unsigned int
execute_build_cfg(void)367 execute_build_cfg (void)
368 {
369 gimple_seq body = gimple_body (current_function_decl);
370
371 build_gimple_cfg (body);
372 gimple_set_body (current_function_decl, NULL);
373 if (dump_file && (dump_flags & TDF_DETAILS))
374 {
375 fprintf (dump_file, "Scope blocks:\n");
376 dump_scope_blocks (dump_file, dump_flags);
377 }
378 cleanup_tree_cfg ();
379
380 bb_to_omp_idx.release ();
381
382 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
383 replace_loop_annotate ();
384 return 0;
385 }
386
387 namespace {
388
389 const pass_data pass_data_build_cfg =
390 {
391 GIMPLE_PASS, /* type */
392 "cfg", /* name */
393 OPTGROUP_NONE, /* optinfo_flags */
394 TV_TREE_CFG, /* tv_id */
395 PROP_gimple_leh, /* properties_required */
396 ( PROP_cfg | PROP_loops ), /* properties_provided */
397 0, /* properties_destroyed */
398 0, /* todo_flags_start */
399 0, /* todo_flags_finish */
400 };
401
402 class pass_build_cfg : public gimple_opt_pass
403 {
404 public:
pass_build_cfg(gcc::context * ctxt)405 pass_build_cfg (gcc::context *ctxt)
406 : gimple_opt_pass (pass_data_build_cfg, ctxt)
407 {}
408
409 /* opt_pass methods: */
execute(function *)410 virtual unsigned int execute (function *) { return execute_build_cfg (); }
411
412 }; // class pass_build_cfg
413
414 } // anon namespace
415
416 gimple_opt_pass *
make_pass_build_cfg(gcc::context * ctxt)417 make_pass_build_cfg (gcc::context *ctxt)
418 {
419 return new pass_build_cfg (ctxt);
420 }
421
422
423 /* Return true if T is a computed goto. */
424
425 bool
computed_goto_p(gimple * t)426 computed_goto_p (gimple *t)
427 {
428 return (gimple_code (t) == GIMPLE_GOTO
429 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
430 }
431
432 /* Returns true if the sequence of statements STMTS only contains
433 a call to __builtin_unreachable (). */
434
435 bool
gimple_seq_unreachable_p(gimple_seq stmts)436 gimple_seq_unreachable_p (gimple_seq stmts)
437 {
438 if (stmts == NULL
439 /* Return false if -fsanitize=unreachable, we don't want to
440 optimize away those calls, but rather turn them into
441 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
442 later. */
443 || sanitize_flags_p (SANITIZE_UNREACHABLE))
444 return false;
445
446 gimple_stmt_iterator gsi = gsi_last (stmts);
447
448 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
449 return false;
450
451 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
452 {
453 gimple *stmt = gsi_stmt (gsi);
454 if (gimple_code (stmt) != GIMPLE_LABEL
455 && !is_gimple_debug (stmt)
456 && !gimple_clobber_p (stmt))
457 return false;
458 }
459 return true;
460 }
461
462 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
463 the other edge points to a bb with just __builtin_unreachable ().
464 I.e. return true for C->M edge in:
465 <bb C>:
466 ...
467 if (something)
468 goto <bb N>;
469 else
470 goto <bb M>;
471 <bb N>:
472 __builtin_unreachable ();
473 <bb M>: */
474
475 bool
assert_unreachable_fallthru_edge_p(edge e)476 assert_unreachable_fallthru_edge_p (edge e)
477 {
478 basic_block pred_bb = e->src;
479 gimple *last = last_stmt (pred_bb);
480 if (last && gimple_code (last) == GIMPLE_COND)
481 {
482 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
483 if (other_bb == e->dest)
484 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
485 if (EDGE_COUNT (other_bb->succs) == 0)
486 return gimple_seq_unreachable_p (bb_seq (other_bb));
487 }
488 return false;
489 }
490
491
492 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
493 could alter control flow except via eh. We initialize the flag at
494 CFG build time and only ever clear it later. */
495
496 static void
gimple_call_initialize_ctrl_altering(gimple * stmt)497 gimple_call_initialize_ctrl_altering (gimple *stmt)
498 {
499 int flags = gimple_call_flags (stmt);
500
501 /* A call alters control flow if it can make an abnormal goto. */
502 if (call_can_make_abnormal_goto (stmt)
503 /* A call also alters control flow if it does not return. */
504 || flags & ECF_NORETURN
505 /* TM ending statements have backedges out of the transaction.
506 Return true so we split the basic block containing them.
507 Note that the TM_BUILTIN test is merely an optimization. */
508 || ((flags & ECF_TM_BUILTIN)
509 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
510 /* BUILT_IN_RETURN call is same as return statement. */
511 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
512 /* IFN_UNIQUE should be the last insn, to make checking for it
513 as cheap as possible. */
514 || (gimple_call_internal_p (stmt)
515 && gimple_call_internal_unique_p (stmt)))
516 gimple_call_set_ctrl_altering (stmt, true);
517 else
518 gimple_call_set_ctrl_altering (stmt, false);
519 }
520
521
522 /* Insert SEQ after BB and build a flowgraph. */
523
524 static basic_block
make_blocks_1(gimple_seq seq,basic_block bb)525 make_blocks_1 (gimple_seq seq, basic_block bb)
526 {
527 gimple_stmt_iterator i = gsi_start (seq);
528 gimple *stmt = NULL;
529 gimple *prev_stmt = NULL;
530 bool start_new_block = true;
531 bool first_stmt_of_seq = true;
532
533 while (!gsi_end_p (i))
534 {
535 /* PREV_STMT should only be set to a debug stmt if the debug
536 stmt is before nondebug stmts. Once stmt reaches a nondebug
537 nonlabel, prev_stmt will be set to it, so that
538 stmt_starts_bb_p will know to start a new block if a label is
539 found. However, if stmt was a label after debug stmts only,
540 keep the label in prev_stmt even if we find further debug
541 stmts, for there may be other labels after them, and they
542 should land in the same block. */
543 if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
544 prev_stmt = stmt;
545 stmt = gsi_stmt (i);
546
547 if (stmt && is_gimple_call (stmt))
548 gimple_call_initialize_ctrl_altering (stmt);
549
550 /* If the statement starts a new basic block or if we have determined
551 in a previous pass that we need to create a new block for STMT, do
552 so now. */
553 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
554 {
555 if (!first_stmt_of_seq)
556 gsi_split_seq_before (&i, &seq);
557 bb = create_basic_block (seq, bb);
558 start_new_block = false;
559 prev_stmt = NULL;
560 }
561
562 /* Now add STMT to BB and create the subgraphs for special statement
563 codes. */
564 gimple_set_bb (stmt, bb);
565
566 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
567 next iteration. */
568 if (stmt_ends_bb_p (stmt))
569 {
570 /* If the stmt can make abnormal goto use a new temporary
571 for the assignment to the LHS. This makes sure the old value
572 of the LHS is available on the abnormal edge. Otherwise
573 we will end up with overlapping life-ranges for abnormal
574 SSA names. */
575 if (gimple_has_lhs (stmt)
576 && stmt_can_make_abnormal_goto (stmt)
577 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
578 {
579 tree lhs = gimple_get_lhs (stmt);
580 tree tmp = create_tmp_var (TREE_TYPE (lhs));
581 gimple *s = gimple_build_assign (lhs, tmp);
582 gimple_set_location (s, gimple_location (stmt));
583 gimple_set_block (s, gimple_block (stmt));
584 gimple_set_lhs (stmt, tmp);
585 gsi_insert_after (&i, s, GSI_SAME_STMT);
586 }
587 start_new_block = true;
588 }
589
590 gsi_next (&i);
591 first_stmt_of_seq = false;
592 }
593 return bb;
594 }
595
596 /* Build a flowgraph for the sequence of stmts SEQ. */
597
598 static void
make_blocks(gimple_seq seq)599 make_blocks (gimple_seq seq)
600 {
601 /* Look for debug markers right before labels, and move the debug
602 stmts after the labels. Accepting labels among debug markers
603 adds no value, just complexity; if we wanted to annotate labels
604 with view numbers (so sequencing among markers would matter) or
605 somesuch, we're probably better off still moving the labels, but
606 adding other debug annotations in their original positions or
607 emitting nonbind or bind markers associated with the labels in
608 the original position of the labels.
609
610 Moving labels would probably be simpler, but we can't do that:
611 moving labels assigns label ids to them, and doing so because of
612 debug markers makes for -fcompare-debug and possibly even codegen
613 differences. So, we have to move the debug stmts instead. To
614 that end, we scan SEQ backwards, marking the position of the
615 latest (earliest we find) label, and moving debug stmts that are
616 not separated from it by nondebug nonlabel stmts after the
617 label. */
618 if (MAY_HAVE_DEBUG_MARKER_STMTS)
619 {
620 gimple_stmt_iterator label = gsi_none ();
621
622 for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i))
623 {
624 gimple *stmt = gsi_stmt (i);
625
626 /* If this is the first label we encounter (latest in SEQ)
627 before nondebug stmts, record its position. */
628 if (is_a <glabel *> (stmt))
629 {
630 if (gsi_end_p (label))
631 label = i;
632 continue;
633 }
634
635 /* Without a recorded label position to move debug stmts to,
636 there's nothing to do. */
637 if (gsi_end_p (label))
638 continue;
639
640 /* Move the debug stmt at I after LABEL. */
641 if (is_gimple_debug (stmt))
642 {
643 gcc_assert (gimple_debug_nonbind_marker_p (stmt));
644 /* As STMT is removed, I advances to the stmt after
645 STMT, so the gsi_prev in the for "increment"
646 expression gets us to the stmt we're to visit after
647 STMT. LABEL, however, would advance to the moved
648 stmt if we passed it to gsi_move_after, so pass it a
649 copy instead, so as to keep LABEL pointing to the
650 LABEL. */
651 gimple_stmt_iterator copy = label;
652 gsi_move_after (&i, ©);
653 continue;
654 }
655
656 /* There aren't any (more?) debug stmts before label, so
657 there isn't anything else to move after it. */
658 label = gsi_none ();
659 }
660 }
661
662 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
663 }
664
665 /* Create and return a new empty basic block after bb AFTER. */
666
667 static basic_block
create_bb(void * h,void * e,basic_block after)668 create_bb (void *h, void *e, basic_block after)
669 {
670 basic_block bb;
671
672 gcc_assert (!e);
673
674 /* Create and initialize a new basic block. Since alloc_block uses
675 GC allocation that clears memory to allocate a basic block, we do
676 not have to clear the newly allocated basic block here. */
677 bb = alloc_block ();
678
679 bb->index = last_basic_block_for_fn (cfun);
680 bb->flags = BB_NEW;
681 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
682
683 /* Add the new block to the linked list of blocks. */
684 link_block (bb, after);
685
686 /* Grow the basic block array if needed. */
687 if ((size_t) last_basic_block_for_fn (cfun)
688 == basic_block_info_for_fn (cfun)->length ())
689 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
690 last_basic_block_for_fn (cfun) + 1);
691
692 /* Add the newly created block to the array. */
693 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
694
695 n_basic_blocks_for_fn (cfun)++;
696 last_basic_block_for_fn (cfun)++;
697
698 return bb;
699 }
700
701
702 /*---------------------------------------------------------------------------
703 Edge creation
704 ---------------------------------------------------------------------------*/
705
706 /* If basic block BB has an abnormal edge to a basic block
707 containing IFN_ABNORMAL_DISPATCHER internal call, return
708 that the dispatcher's basic block, otherwise return NULL. */
709
710 basic_block
get_abnormal_succ_dispatcher(basic_block bb)711 get_abnormal_succ_dispatcher (basic_block bb)
712 {
713 edge e;
714 edge_iterator ei;
715
716 FOR_EACH_EDGE (e, ei, bb->succs)
717 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
718 {
719 gimple_stmt_iterator gsi
720 = gsi_start_nondebug_after_labels_bb (e->dest);
721 gimple *g = gsi_stmt (gsi);
722 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
723 return e->dest;
724 }
725 return NULL;
726 }
727
728 /* Helper function for make_edges. Create a basic block with
729 with ABNORMAL_DISPATCHER internal call in it if needed, and
730 create abnormal edges from BBS to it and from it to FOR_BB
731 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
732
733 static void
handle_abnormal_edges(basic_block * dispatcher_bbs,basic_block for_bb,auto_vec<basic_block> * bbs,bool computed_goto)734 handle_abnormal_edges (basic_block *dispatcher_bbs, basic_block for_bb,
735 auto_vec<basic_block> *bbs, bool computed_goto)
736 {
737 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
738 unsigned int idx = 0;
739 basic_block bb;
740 bool inner = false;
741
742 if (!bb_to_omp_idx.is_empty ())
743 {
744 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
745 if (bb_to_omp_idx[for_bb->index] != 0)
746 inner = true;
747 }
748
749 /* If the dispatcher has been created already, then there are basic
750 blocks with abnormal edges to it, so just make a new edge to
751 for_bb. */
752 if (*dispatcher == NULL)
753 {
754 /* Check if there are any basic blocks that need to have
755 abnormal edges to this dispatcher. If there are none, return
756 early. */
757 if (bb_to_omp_idx.is_empty ())
758 {
759 if (bbs->is_empty ())
760 return;
761 }
762 else
763 {
764 FOR_EACH_VEC_ELT (*bbs, idx, bb)
765 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
766 break;
767 if (bb == NULL)
768 return;
769 }
770
771 /* Create the dispatcher bb. */
772 *dispatcher = create_basic_block (NULL, for_bb);
773 if (computed_goto)
774 {
775 /* Factor computed gotos into a common computed goto site. Also
776 record the location of that site so that we can un-factor the
777 gotos after we have converted back to normal form. */
778 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
779
780 /* Create the destination of the factored goto. Each original
781 computed goto will put its desired destination into this
782 variable and jump to the label we create immediately below. */
783 tree var = create_tmp_var (ptr_type_node, "gotovar");
784
785 /* Build a label for the new block which will contain the
786 factored computed goto. */
787 tree factored_label_decl
788 = create_artificial_label (UNKNOWN_LOCATION);
789 gimple *factored_computed_goto_label
790 = gimple_build_label (factored_label_decl);
791 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
792
793 /* Build our new computed goto. */
794 gimple *factored_computed_goto = gimple_build_goto (var);
795 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
796
797 FOR_EACH_VEC_ELT (*bbs, idx, bb)
798 {
799 if (!bb_to_omp_idx.is_empty ()
800 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
801 continue;
802
803 gsi = gsi_last_bb (bb);
804 gimple *last = gsi_stmt (gsi);
805
806 gcc_assert (computed_goto_p (last));
807
808 /* Copy the original computed goto's destination into VAR. */
809 gimple *assignment
810 = gimple_build_assign (var, gimple_goto_dest (last));
811 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
812
813 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
814 e->goto_locus = gimple_location (last);
815 gsi_remove (&gsi, true);
816 }
817 }
818 else
819 {
820 tree arg = inner ? boolean_true_node : boolean_false_node;
821 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
822 1, arg);
823 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
824 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
825
826 /* Create predecessor edges of the dispatcher. */
827 FOR_EACH_VEC_ELT (*bbs, idx, bb)
828 {
829 if (!bb_to_omp_idx.is_empty ()
830 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
831 continue;
832 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
833 }
834 }
835 }
836
837 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
838 }
839
840 /* Creates outgoing edges for BB. Returns 1 when it ends with an
841 computed goto, returns 2 when it ends with a statement that
842 might return to this function via an nonlocal goto, otherwise
843 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
844
845 static int
make_edges_bb(basic_block bb,struct omp_region ** pcur_region,int * pomp_index)846 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
847 {
848 gimple *last = last_stmt (bb);
849 bool fallthru = false;
850 int ret = 0;
851
852 if (!last)
853 return ret;
854
855 switch (gimple_code (last))
856 {
857 case GIMPLE_GOTO:
858 if (make_goto_expr_edges (bb))
859 ret = 1;
860 fallthru = false;
861 break;
862 case GIMPLE_RETURN:
863 {
864 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
865 e->goto_locus = gimple_location (last);
866 fallthru = false;
867 }
868 break;
869 case GIMPLE_COND:
870 make_cond_expr_edges (bb);
871 fallthru = false;
872 break;
873 case GIMPLE_SWITCH:
874 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
875 fallthru = false;
876 break;
877 case GIMPLE_RESX:
878 make_eh_edges (last);
879 fallthru = false;
880 break;
881 case GIMPLE_EH_DISPATCH:
882 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
883 break;
884
885 case GIMPLE_CALL:
886 /* If this function receives a nonlocal goto, then we need to
887 make edges from this call site to all the nonlocal goto
888 handlers. */
889 if (stmt_can_make_abnormal_goto (last))
890 ret = 2;
891
892 /* If this statement has reachable exception handlers, then
893 create abnormal edges to them. */
894 make_eh_edges (last);
895
896 /* BUILTIN_RETURN is really a return statement. */
897 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
898 {
899 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
900 fallthru = false;
901 }
902 /* Some calls are known not to return. */
903 else
904 fallthru = !gimple_call_noreturn_p (last);
905 break;
906
907 case GIMPLE_ASSIGN:
908 /* A GIMPLE_ASSIGN may throw internally and thus be considered
909 control-altering. */
910 if (is_ctrl_altering_stmt (last))
911 make_eh_edges (last);
912 fallthru = true;
913 break;
914
915 case GIMPLE_ASM:
916 make_gimple_asm_edges (bb);
917 fallthru = true;
918 break;
919
920 CASE_GIMPLE_OMP:
921 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
922 break;
923
924 case GIMPLE_TRANSACTION:
925 {
926 gtransaction *txn = as_a <gtransaction *> (last);
927 tree label1 = gimple_transaction_label_norm (txn);
928 tree label2 = gimple_transaction_label_uninst (txn);
929
930 if (label1)
931 make_edge (bb, label_to_block (cfun, label1), EDGE_FALLTHRU);
932 if (label2)
933 make_edge (bb, label_to_block (cfun, label2),
934 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
935
936 tree label3 = gimple_transaction_label_over (txn);
937 if (gimple_transaction_subcode (txn)
938 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
939 make_edge (bb, label_to_block (cfun, label3), EDGE_TM_ABORT);
940
941 fallthru = false;
942 }
943 break;
944
945 default:
946 gcc_assert (!stmt_ends_bb_p (last));
947 fallthru = true;
948 break;
949 }
950
951 if (fallthru)
952 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
953
954 return ret;
955 }
956
957 /* Join all the blocks in the flowgraph. */
958
959 static void
make_edges(void)960 make_edges (void)
961 {
962 basic_block bb;
963 struct omp_region *cur_region = NULL;
964 auto_vec<basic_block> ab_edge_goto;
965 auto_vec<basic_block> ab_edge_call;
966 int cur_omp_region_idx = 0;
967
968 /* Create an edge from entry to the first block with executable
969 statements in it. */
970 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
971 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
972 EDGE_FALLTHRU);
973
974 /* Traverse the basic block array placing edges. */
975 FOR_EACH_BB_FN (bb, cfun)
976 {
977 int mer;
978
979 if (!bb_to_omp_idx.is_empty ())
980 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
981
982 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
983 if (mer == 1)
984 ab_edge_goto.safe_push (bb);
985 else if (mer == 2)
986 ab_edge_call.safe_push (bb);
987
988 if (cur_region && bb_to_omp_idx.is_empty ())
989 bb_to_omp_idx.safe_grow_cleared (n_basic_blocks_for_fn (cfun), true);
990 }
991
992 /* Computed gotos are hell to deal with, especially if there are
993 lots of them with a large number of destinations. So we factor
994 them to a common computed goto location before we build the
995 edge list. After we convert back to normal form, we will un-factor
996 the computed gotos since factoring introduces an unwanted jump.
997 For non-local gotos and abnormal edges from calls to calls that return
998 twice or forced labels, factor the abnormal edges too, by having all
999 abnormal edges from the calls go to a common artificial basic block
1000 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1001 basic block to all forced labels and calls returning twice.
1002 We do this per-OpenMP structured block, because those regions
1003 are guaranteed to be single entry single exit by the standard,
1004 so it is not allowed to enter or exit such regions abnormally this way,
1005 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1006 must not transfer control across SESE region boundaries. */
1007 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
1008 {
1009 gimple_stmt_iterator gsi;
1010 basic_block dispatcher_bb_array[2] = { NULL, NULL };
1011 basic_block *dispatcher_bbs = dispatcher_bb_array;
1012 int count = n_basic_blocks_for_fn (cfun);
1013
1014 if (!bb_to_omp_idx.is_empty ())
1015 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1016
1017 FOR_EACH_BB_FN (bb, cfun)
1018 {
1019 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1020 {
1021 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1022 tree target;
1023
1024 if (!label_stmt)
1025 break;
1026
1027 target = gimple_label_label (label_stmt);
1028
1029 /* Make an edge to every label block that has been marked as a
1030 potential target for a computed goto or a non-local goto. */
1031 if (FORCED_LABEL (target))
1032 handle_abnormal_edges (dispatcher_bbs, bb, &ab_edge_goto,
1033 true);
1034 if (DECL_NONLOCAL (target))
1035 {
1036 handle_abnormal_edges (dispatcher_bbs, bb, &ab_edge_call,
1037 false);
1038 break;
1039 }
1040 }
1041
1042 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1043 gsi_next_nondebug (&gsi);
1044 if (!gsi_end_p (gsi))
1045 {
1046 /* Make an edge to every setjmp-like call. */
1047 gimple *call_stmt = gsi_stmt (gsi);
1048 if (is_gimple_call (call_stmt)
1049 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1050 || gimple_call_builtin_p (call_stmt,
1051 BUILT_IN_SETJMP_RECEIVER)))
1052 handle_abnormal_edges (dispatcher_bbs, bb, &ab_edge_call,
1053 false);
1054 }
1055 }
1056
1057 if (!bb_to_omp_idx.is_empty ())
1058 XDELETE (dispatcher_bbs);
1059 }
1060
1061 omp_free_regions ();
1062 }
1063
1064 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1065 needed. Returns true if new bbs were created.
1066 Note: This is transitional code, and should not be used for new code. We
1067 should be able to get rid of this by rewriting all target va-arg
1068 gimplification hooks to use an interface gimple_build_cond_value as described
1069 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1070
1071 bool
gimple_find_sub_bbs(gimple_seq seq,gimple_stmt_iterator * gsi)1072 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1073 {
1074 gimple *stmt = gsi_stmt (*gsi);
1075 basic_block bb = gimple_bb (stmt);
1076 basic_block lastbb, afterbb;
1077 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1078 edge e;
1079 lastbb = make_blocks_1 (seq, bb);
1080 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1081 return false;
1082 e = split_block (bb, stmt);
1083 /* Move e->dest to come after the new basic blocks. */
1084 afterbb = e->dest;
1085 unlink_block (afterbb);
1086 link_block (afterbb, lastbb);
1087 redirect_edge_succ (e, bb->next_bb);
1088 bb = bb->next_bb;
1089 while (bb != afterbb)
1090 {
1091 struct omp_region *cur_region = NULL;
1092 profile_count cnt = profile_count::zero ();
1093 bool all = true;
1094
1095 int cur_omp_region_idx = 0;
1096 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1097 gcc_assert (!mer && !cur_region);
1098 add_bb_to_loop (bb, afterbb->loop_father);
1099
1100 edge e;
1101 edge_iterator ei;
1102 FOR_EACH_EDGE (e, ei, bb->preds)
1103 {
1104 if (e->count ().initialized_p ())
1105 cnt += e->count ();
1106 else
1107 all = false;
1108 }
1109 tree_guess_outgoing_edge_probabilities (bb);
1110 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1111 bb->count = cnt;
1112
1113 bb = bb->next_bb;
1114 }
1115 return true;
1116 }
1117
1118 /* Find the next available discriminator value for LOCUS. The
1119 discriminator distinguishes among several basic blocks that
1120 share a common locus, allowing for more accurate sample-based
1121 profiling. */
1122
1123 static int
next_discriminator_for_locus(int line)1124 next_discriminator_for_locus (int line)
1125 {
1126 struct locus_discrim_map item;
1127 struct locus_discrim_map **slot;
1128
1129 item.location_line = line;
1130 item.discriminator = 0;
1131 slot = discriminator_per_locus->find_slot_with_hash (&item, line, INSERT);
1132 gcc_assert (slot);
1133 if (*slot == HTAB_EMPTY_ENTRY)
1134 {
1135 *slot = XNEW (struct locus_discrim_map);
1136 gcc_assert (*slot);
1137 (*slot)->location_line = line;
1138 (*slot)->discriminator = 0;
1139 }
1140 (*slot)->discriminator++;
1141 return (*slot)->discriminator;
1142 }
1143
1144 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1145
1146 static bool
same_line_p(location_t locus1,expanded_location * from,location_t locus2)1147 same_line_p (location_t locus1, expanded_location *from, location_t locus2)
1148 {
1149 expanded_location to;
1150
1151 if (locus1 == locus2)
1152 return true;
1153
1154 to = expand_location (locus2);
1155
1156 if (from->line != to.line)
1157 return false;
1158 if (from->file == to.file)
1159 return true;
1160 return (from->file != NULL
1161 && to.file != NULL
1162 && filename_cmp (from->file, to.file) == 0);
1163 }
1164
1165 /* Assign discriminators to each basic block. */
1166
1167 static void
assign_discriminators(void)1168 assign_discriminators (void)
1169 {
1170 basic_block bb;
1171
1172 FOR_EACH_BB_FN (bb, cfun)
1173 {
1174 edge e;
1175 edge_iterator ei;
1176 gimple *last = last_stmt (bb);
1177 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1178
1179 if (locus == UNKNOWN_LOCATION)
1180 continue;
1181
1182 expanded_location locus_e = expand_location (locus);
1183
1184 FOR_EACH_EDGE (e, ei, bb->succs)
1185 {
1186 gimple *first = first_non_label_stmt (e->dest);
1187 gimple *last = last_stmt (e->dest);
1188 if ((first && same_line_p (locus, &locus_e,
1189 gimple_location (first)))
1190 || (last && same_line_p (locus, &locus_e,
1191 gimple_location (last))))
1192 {
1193 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1194 bb->discriminator
1195 = next_discriminator_for_locus (locus_e.line);
1196 else
1197 e->dest->discriminator
1198 = next_discriminator_for_locus (locus_e.line);
1199 }
1200 }
1201 }
1202 }
1203
1204 /* Create the edges for a GIMPLE_COND starting at block BB. */
1205
1206 static void
make_cond_expr_edges(basic_block bb)1207 make_cond_expr_edges (basic_block bb)
1208 {
1209 gcond *entry = as_a <gcond *> (last_stmt (bb));
1210 gimple *then_stmt, *else_stmt;
1211 basic_block then_bb, else_bb;
1212 tree then_label, else_label;
1213 edge e;
1214
1215 gcc_assert (entry);
1216 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1217
1218 /* Entry basic blocks for each component. */
1219 then_label = gimple_cond_true_label (entry);
1220 else_label = gimple_cond_false_label (entry);
1221 then_bb = label_to_block (cfun, then_label);
1222 else_bb = label_to_block (cfun, else_label);
1223 then_stmt = first_stmt (then_bb);
1224 else_stmt = first_stmt (else_bb);
1225
1226 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1227 e->goto_locus = gimple_location (then_stmt);
1228 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1229 if (e)
1230 e->goto_locus = gimple_location (else_stmt);
1231
1232 /* We do not need the labels anymore. */
1233 gimple_cond_set_true_label (entry, NULL_TREE);
1234 gimple_cond_set_false_label (entry, NULL_TREE);
1235 }
1236
1237
1238 /* Called for each element in the hash table (P) as we delete the
1239 edge to cases hash table.
1240
1241 Clear all the CASE_CHAINs to prevent problems with copying of
1242 SWITCH_EXPRs and structure sharing rules, then free the hash table
1243 element. */
1244
1245 bool
edge_to_cases_cleanup(edge const &,tree const & value,void *)1246 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1247 {
1248 tree t, next;
1249
1250 for (t = value; t; t = next)
1251 {
1252 next = CASE_CHAIN (t);
1253 CASE_CHAIN (t) = NULL;
1254 }
1255
1256 return true;
1257 }
1258
1259 /* Start recording information mapping edges to case labels. */
1260
1261 void
start_recording_case_labels(void)1262 start_recording_case_labels (void)
1263 {
1264 gcc_assert (edge_to_cases == NULL);
1265 edge_to_cases = new hash_map<edge, tree>;
1266 touched_switch_bbs = BITMAP_ALLOC (NULL);
1267 }
1268
1269 /* Return nonzero if we are recording information for case labels. */
1270
1271 static bool
recording_case_labels_p(void)1272 recording_case_labels_p (void)
1273 {
1274 return (edge_to_cases != NULL);
1275 }
1276
1277 /* Stop recording information mapping edges to case labels and
1278 remove any information we have recorded. */
1279 void
end_recording_case_labels(void)1280 end_recording_case_labels (void)
1281 {
1282 bitmap_iterator bi;
1283 unsigned i;
1284 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1285 delete edge_to_cases;
1286 edge_to_cases = NULL;
1287 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1288 {
1289 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1290 if (bb)
1291 {
1292 gimple *stmt = last_stmt (bb);
1293 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1294 group_case_labels_stmt (as_a <gswitch *> (stmt));
1295 }
1296 }
1297 BITMAP_FREE (touched_switch_bbs);
1298 }
1299
1300 /* If we are inside a {start,end}_recording_cases block, then return
1301 a chain of CASE_LABEL_EXPRs from T which reference E.
1302
1303 Otherwise return NULL. */
1304
1305 static tree
get_cases_for_edge(edge e,gswitch * t)1306 get_cases_for_edge (edge e, gswitch *t)
1307 {
1308 tree *slot;
1309 size_t i, n;
1310
1311 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1312 chains available. Return NULL so the caller can detect this case. */
1313 if (!recording_case_labels_p ())
1314 return NULL;
1315
1316 slot = edge_to_cases->get (e);
1317 if (slot)
1318 return *slot;
1319
1320 /* If we did not find E in the hash table, then this must be the first
1321 time we have been queried for information about E & T. Add all the
1322 elements from T to the hash table then perform the query again. */
1323
1324 n = gimple_switch_num_labels (t);
1325 for (i = 0; i < n; i++)
1326 {
1327 tree elt = gimple_switch_label (t, i);
1328 tree lab = CASE_LABEL (elt);
1329 basic_block label_bb = label_to_block (cfun, lab);
1330 edge this_edge = find_edge (e->src, label_bb);
1331
1332 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1333 a new chain. */
1334 tree &s = edge_to_cases->get_or_insert (this_edge);
1335 CASE_CHAIN (elt) = s;
1336 s = elt;
1337 }
1338
1339 return *edge_to_cases->get (e);
1340 }
1341
1342 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1343
1344 static void
make_gimple_switch_edges(gswitch * entry,basic_block bb)1345 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1346 {
1347 size_t i, n;
1348
1349 n = gimple_switch_num_labels (entry);
1350
1351 for (i = 0; i < n; ++i)
1352 {
1353 basic_block label_bb = gimple_switch_label_bb (cfun, entry, i);
1354 make_edge (bb, label_bb, 0);
1355 }
1356 }
1357
1358
1359 /* Return the basic block holding label DEST. */
1360
1361 basic_block
label_to_block(struct function * ifun,tree dest)1362 label_to_block (struct function *ifun, tree dest)
1363 {
1364 int uid = LABEL_DECL_UID (dest);
1365
1366 /* We would die hard when faced by an undefined label. Emit a label to
1367 the very first basic block. This will hopefully make even the dataflow
1368 and undefined variable warnings quite right. */
1369 if (seen_error () && uid < 0)
1370 {
1371 gimple_stmt_iterator gsi =
1372 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1373 gimple *stmt;
1374
1375 stmt = gimple_build_label (dest);
1376 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1377 uid = LABEL_DECL_UID (dest);
1378 }
1379 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1380 return NULL;
1381 return (*ifun->cfg->x_label_to_block_map)[uid];
1382 }
1383
1384 /* Create edges for a goto statement at block BB. Returns true
1385 if abnormal edges should be created. */
1386
1387 static bool
make_goto_expr_edges(basic_block bb)1388 make_goto_expr_edges (basic_block bb)
1389 {
1390 gimple_stmt_iterator last = gsi_last_bb (bb);
1391 gimple *goto_t = gsi_stmt (last);
1392
1393 /* A simple GOTO creates normal edges. */
1394 if (simple_goto_p (goto_t))
1395 {
1396 tree dest = gimple_goto_dest (goto_t);
1397 basic_block label_bb = label_to_block (cfun, dest);
1398 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1399 e->goto_locus = gimple_location (goto_t);
1400 gsi_remove (&last, true);
1401 return false;
1402 }
1403
1404 /* A computed GOTO creates abnormal edges. */
1405 return true;
1406 }
1407
1408 /* Create edges for an asm statement with labels at block BB. */
1409
1410 static void
make_gimple_asm_edges(basic_block bb)1411 make_gimple_asm_edges (basic_block bb)
1412 {
1413 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1414 int i, n = gimple_asm_nlabels (stmt);
1415
1416 for (i = 0; i < n; ++i)
1417 {
1418 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1419 basic_block label_bb = label_to_block (cfun, label);
1420 make_edge (bb, label_bb, 0);
1421 }
1422 }
1423
1424 /*---------------------------------------------------------------------------
1425 Flowgraph analysis
1426 ---------------------------------------------------------------------------*/
1427
1428 /* Cleanup useless labels in basic blocks. This is something we wish
1429 to do early because it allows us to group case labels before creating
1430 the edges for the CFG, and it speeds up block statement iterators in
1431 all passes later on.
1432 We rerun this pass after CFG is created, to get rid of the labels that
1433 are no longer referenced. After then we do not run it any more, since
1434 (almost) no new labels should be created. */
1435
1436 /* A map from basic block index to the leading label of that block. */
1437 struct label_record
1438 {
1439 /* The label. */
1440 tree label;
1441
1442 /* True if the label is referenced from somewhere. */
1443 bool used;
1444 };
1445
1446 /* Given LABEL return the first label in the same basic block. */
1447
1448 static tree
main_block_label(tree label,label_record * label_for_bb)1449 main_block_label (tree label, label_record *label_for_bb)
1450 {
1451 basic_block bb = label_to_block (cfun, label);
1452 tree main_label = label_for_bb[bb->index].label;
1453
1454 /* label_to_block possibly inserted undefined label into the chain. */
1455 if (!main_label)
1456 {
1457 label_for_bb[bb->index].label = label;
1458 main_label = label;
1459 }
1460
1461 label_for_bb[bb->index].used = true;
1462 return main_label;
1463 }
1464
1465 /* Clean up redundant labels within the exception tree. */
1466
1467 static void
cleanup_dead_labels_eh(label_record * label_for_bb)1468 cleanup_dead_labels_eh (label_record *label_for_bb)
1469 {
1470 eh_landing_pad lp;
1471 eh_region r;
1472 tree lab;
1473 int i;
1474
1475 if (cfun->eh == NULL)
1476 return;
1477
1478 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1479 if (lp && lp->post_landing_pad)
1480 {
1481 lab = main_block_label (lp->post_landing_pad, label_for_bb);
1482 if (lab != lp->post_landing_pad)
1483 {
1484 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1485 lp->post_landing_pad = lab;
1486 EH_LANDING_PAD_NR (lab) = lp->index;
1487 }
1488 }
1489
1490 FOR_ALL_EH_REGION (r)
1491 switch (r->type)
1492 {
1493 case ERT_CLEANUP:
1494 case ERT_MUST_NOT_THROW:
1495 break;
1496
1497 case ERT_TRY:
1498 {
1499 eh_catch c;
1500 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1501 {
1502 lab = c->label;
1503 if (lab)
1504 c->label = main_block_label (lab, label_for_bb);
1505 }
1506 }
1507 break;
1508
1509 case ERT_ALLOWED_EXCEPTIONS:
1510 lab = r->u.allowed.label;
1511 if (lab)
1512 r->u.allowed.label = main_block_label (lab, label_for_bb);
1513 break;
1514 }
1515 }
1516
1517
1518 /* Cleanup redundant labels. This is a three-step process:
1519 1) Find the leading label for each block.
1520 2) Redirect all references to labels to the leading labels.
1521 3) Cleanup all useless labels. */
1522
1523 void
cleanup_dead_labels(void)1524 cleanup_dead_labels (void)
1525 {
1526 basic_block bb;
1527 label_record *label_for_bb = XCNEWVEC (struct label_record,
1528 last_basic_block_for_fn (cfun));
1529
1530 /* Find a suitable label for each block. We use the first user-defined
1531 label if there is one, or otherwise just the first label we see. */
1532 FOR_EACH_BB_FN (bb, cfun)
1533 {
1534 gimple_stmt_iterator i;
1535
1536 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1537 {
1538 tree label;
1539 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1540
1541 if (!label_stmt)
1542 break;
1543
1544 label = gimple_label_label (label_stmt);
1545
1546 /* If we have not yet seen a label for the current block,
1547 remember this one and see if there are more labels. */
1548 if (!label_for_bb[bb->index].label)
1549 {
1550 label_for_bb[bb->index].label = label;
1551 continue;
1552 }
1553
1554 /* If we did see a label for the current block already, but it
1555 is an artificially created label, replace it if the current
1556 label is a user defined label. */
1557 if (!DECL_ARTIFICIAL (label)
1558 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1559 {
1560 label_for_bb[bb->index].label = label;
1561 break;
1562 }
1563 }
1564 }
1565
1566 /* Now redirect all jumps/branches to the selected label.
1567 First do so for each block ending in a control statement. */
1568 FOR_EACH_BB_FN (bb, cfun)
1569 {
1570 gimple *stmt = last_stmt (bb);
1571 tree label, new_label;
1572
1573 if (!stmt)
1574 continue;
1575
1576 switch (gimple_code (stmt))
1577 {
1578 case GIMPLE_COND:
1579 {
1580 gcond *cond_stmt = as_a <gcond *> (stmt);
1581 label = gimple_cond_true_label (cond_stmt);
1582 if (label)
1583 {
1584 new_label = main_block_label (label, label_for_bb);
1585 if (new_label != label)
1586 gimple_cond_set_true_label (cond_stmt, new_label);
1587 }
1588
1589 label = gimple_cond_false_label (cond_stmt);
1590 if (label)
1591 {
1592 new_label = main_block_label (label, label_for_bb);
1593 if (new_label != label)
1594 gimple_cond_set_false_label (cond_stmt, new_label);
1595 }
1596 }
1597 break;
1598
1599 case GIMPLE_SWITCH:
1600 {
1601 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1602 size_t i, n = gimple_switch_num_labels (switch_stmt);
1603
1604 /* Replace all destination labels. */
1605 for (i = 0; i < n; ++i)
1606 {
1607 tree case_label = gimple_switch_label (switch_stmt, i);
1608 label = CASE_LABEL (case_label);
1609 new_label = main_block_label (label, label_for_bb);
1610 if (new_label != label)
1611 CASE_LABEL (case_label) = new_label;
1612 }
1613 break;
1614 }
1615
1616 case GIMPLE_ASM:
1617 {
1618 gasm *asm_stmt = as_a <gasm *> (stmt);
1619 int i, n = gimple_asm_nlabels (asm_stmt);
1620
1621 for (i = 0; i < n; ++i)
1622 {
1623 tree cons = gimple_asm_label_op (asm_stmt, i);
1624 tree label = main_block_label (TREE_VALUE (cons), label_for_bb);
1625 TREE_VALUE (cons) = label;
1626 }
1627 break;
1628 }
1629
1630 /* We have to handle gotos until they're removed, and we don't
1631 remove them until after we've created the CFG edges. */
1632 case GIMPLE_GOTO:
1633 if (!computed_goto_p (stmt))
1634 {
1635 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1636 label = gimple_goto_dest (goto_stmt);
1637 new_label = main_block_label (label, label_for_bb);
1638 if (new_label != label)
1639 gimple_goto_set_dest (goto_stmt, new_label);
1640 }
1641 break;
1642
1643 case GIMPLE_TRANSACTION:
1644 {
1645 gtransaction *txn = as_a <gtransaction *> (stmt);
1646
1647 label = gimple_transaction_label_norm (txn);
1648 if (label)
1649 {
1650 new_label = main_block_label (label, label_for_bb);
1651 if (new_label != label)
1652 gimple_transaction_set_label_norm (txn, new_label);
1653 }
1654
1655 label = gimple_transaction_label_uninst (txn);
1656 if (label)
1657 {
1658 new_label = main_block_label (label, label_for_bb);
1659 if (new_label != label)
1660 gimple_transaction_set_label_uninst (txn, new_label);
1661 }
1662
1663 label = gimple_transaction_label_over (txn);
1664 if (label)
1665 {
1666 new_label = main_block_label (label, label_for_bb);
1667 if (new_label != label)
1668 gimple_transaction_set_label_over (txn, new_label);
1669 }
1670 }
1671 break;
1672
1673 default:
1674 break;
1675 }
1676 }
1677
1678 /* Do the same for the exception region tree labels. */
1679 cleanup_dead_labels_eh (label_for_bb);
1680
1681 /* Finally, purge dead labels. All user-defined labels and labels that
1682 can be the target of non-local gotos and labels which have their
1683 address taken are preserved. */
1684 FOR_EACH_BB_FN (bb, cfun)
1685 {
1686 gimple_stmt_iterator i;
1687 tree label_for_this_bb = label_for_bb[bb->index].label;
1688
1689 if (!label_for_this_bb)
1690 continue;
1691
1692 /* If the main label of the block is unused, we may still remove it. */
1693 if (!label_for_bb[bb->index].used)
1694 label_for_this_bb = NULL;
1695
1696 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1697 {
1698 tree label;
1699 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1700
1701 if (!label_stmt)
1702 break;
1703
1704 label = gimple_label_label (label_stmt);
1705
1706 if (label == label_for_this_bb
1707 || !DECL_ARTIFICIAL (label)
1708 || DECL_NONLOCAL (label)
1709 || FORCED_LABEL (label))
1710 gsi_next (&i);
1711 else
1712 {
1713 gcc_checking_assert (EH_LANDING_PAD_NR (label) == 0);
1714 gsi_remove (&i, true);
1715 }
1716 }
1717 }
1718
1719 free (label_for_bb);
1720 }
1721
1722 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1723 the ones jumping to the same label.
1724 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1725
1726 bool
group_case_labels_stmt(gswitch * stmt)1727 group_case_labels_stmt (gswitch *stmt)
1728 {
1729 int old_size = gimple_switch_num_labels (stmt);
1730 int i, next_index, new_size;
1731 basic_block default_bb = NULL;
1732 hash_set<tree> *removed_labels = NULL;
1733
1734 default_bb = gimple_switch_default_bb (cfun, stmt);
1735
1736 /* Look for possible opportunities to merge cases. */
1737 new_size = i = 1;
1738 while (i < old_size)
1739 {
1740 tree base_case, base_high;
1741 basic_block base_bb;
1742
1743 base_case = gimple_switch_label (stmt, i);
1744
1745 gcc_assert (base_case);
1746 base_bb = label_to_block (cfun, CASE_LABEL (base_case));
1747
1748 /* Discard cases that have the same destination as the default case or
1749 whose destination blocks have already been removed as unreachable. */
1750 if (base_bb == NULL
1751 || base_bb == default_bb
1752 || (removed_labels
1753 && removed_labels->contains (CASE_LABEL (base_case))))
1754 {
1755 i++;
1756 continue;
1757 }
1758
1759 base_high = CASE_HIGH (base_case)
1760 ? CASE_HIGH (base_case)
1761 : CASE_LOW (base_case);
1762 next_index = i + 1;
1763
1764 /* Try to merge case labels. Break out when we reach the end
1765 of the label vector or when we cannot merge the next case
1766 label with the current one. */
1767 while (next_index < old_size)
1768 {
1769 tree merge_case = gimple_switch_label (stmt, next_index);
1770 basic_block merge_bb = label_to_block (cfun, CASE_LABEL (merge_case));
1771 wide_int bhp1 = wi::to_wide (base_high) + 1;
1772
1773 /* Merge the cases if they jump to the same place,
1774 and their ranges are consecutive. */
1775 if (merge_bb == base_bb
1776 && (removed_labels == NULL
1777 || !removed_labels->contains (CASE_LABEL (merge_case)))
1778 && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1779 {
1780 base_high
1781 = (CASE_HIGH (merge_case)
1782 ? CASE_HIGH (merge_case) : CASE_LOW (merge_case));
1783 CASE_HIGH (base_case) = base_high;
1784 next_index++;
1785 }
1786 else
1787 break;
1788 }
1789
1790 /* Discard cases that have an unreachable destination block. */
1791 if (EDGE_COUNT (base_bb->succs) == 0
1792 && gimple_seq_unreachable_p (bb_seq (base_bb))
1793 /* Don't optimize this if __builtin_unreachable () is the
1794 implicitly added one by the C++ FE too early, before
1795 -Wreturn-type can be diagnosed. We'll optimize it later
1796 during switchconv pass or any other cfg cleanup. */
1797 && (gimple_in_ssa_p (cfun)
1798 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
1799 != BUILTINS_LOCATION)))
1800 {
1801 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1802 if (base_edge != NULL)
1803 {
1804 for (gimple_stmt_iterator gsi = gsi_start_bb (base_bb);
1805 !gsi_end_p (gsi); gsi_next (&gsi))
1806 if (glabel *stmt = dyn_cast <glabel *> (gsi_stmt (gsi)))
1807 {
1808 if (FORCED_LABEL (gimple_label_label (stmt))
1809 || DECL_NONLOCAL (gimple_label_label (stmt)))
1810 {
1811 /* Forced/non-local labels aren't going to be removed,
1812 but they will be moved to some neighbouring basic
1813 block. If some later case label refers to one of
1814 those labels, we should throw that case away rather
1815 than keeping it around and refering to some random
1816 other basic block without an edge to it. */
1817 if (removed_labels == NULL)
1818 removed_labels = new hash_set<tree>;
1819 removed_labels->add (gimple_label_label (stmt));
1820 }
1821 }
1822 else
1823 break;
1824 remove_edge_and_dominated_blocks (base_edge);
1825 }
1826 i = next_index;
1827 continue;
1828 }
1829
1830 if (new_size < i)
1831 gimple_switch_set_label (stmt, new_size,
1832 gimple_switch_label (stmt, i));
1833 i = next_index;
1834 new_size++;
1835 }
1836
1837 gcc_assert (new_size <= old_size);
1838
1839 if (new_size < old_size)
1840 gimple_switch_set_num_labels (stmt, new_size);
1841
1842 delete removed_labels;
1843 return new_size < old_size;
1844 }
1845
1846 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1847 and scan the sorted vector of cases. Combine the ones jumping to the
1848 same label. */
1849
1850 bool
group_case_labels(void)1851 group_case_labels (void)
1852 {
1853 basic_block bb;
1854 bool changed = false;
1855
1856 FOR_EACH_BB_FN (bb, cfun)
1857 {
1858 gimple *stmt = last_stmt (bb);
1859 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1860 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1861 }
1862
1863 return changed;
1864 }
1865
1866 /* Checks whether we can merge block B into block A. */
1867
1868 static bool
gimple_can_merge_blocks_p(basic_block a,basic_block b)1869 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1870 {
1871 gimple *stmt;
1872
1873 if (!single_succ_p (a))
1874 return false;
1875
1876 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1877 return false;
1878
1879 if (single_succ (a) != b)
1880 return false;
1881
1882 if (!single_pred_p (b))
1883 return false;
1884
1885 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1886 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1887 return false;
1888
1889 /* If A ends by a statement causing exceptions or something similar, we
1890 cannot merge the blocks. */
1891 stmt = last_stmt (a);
1892 if (stmt && stmt_ends_bb_p (stmt))
1893 return false;
1894
1895 /* Do not allow a block with only a non-local label to be merged. */
1896 if (stmt)
1897 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1898 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1899 return false;
1900
1901 /* Examine the labels at the beginning of B. */
1902 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1903 gsi_next (&gsi))
1904 {
1905 tree lab;
1906 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1907 if (!label_stmt)
1908 break;
1909 lab = gimple_label_label (label_stmt);
1910
1911 /* Do not remove user forced labels or for -O0 any user labels. */
1912 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1913 return false;
1914 }
1915
1916 /* Protect simple loop latches. We only want to avoid merging
1917 the latch with the loop header or with a block in another
1918 loop in this case. */
1919 if (current_loops
1920 && b->loop_father->latch == b
1921 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1922 && (b->loop_father->header == a
1923 || b->loop_father != a->loop_father))
1924 return false;
1925
1926 /* It must be possible to eliminate all phi nodes in B. If ssa form
1927 is not up-to-date and a name-mapping is registered, we cannot eliminate
1928 any phis. Symbols marked for renaming are never a problem though. */
1929 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1930 gsi_next (&gsi))
1931 {
1932 gphi *phi = gsi.phi ();
1933 /* Technically only new names matter. */
1934 if (name_registered_for_update_p (PHI_RESULT (phi)))
1935 return false;
1936 }
1937
1938 /* When not optimizing, don't merge if we'd lose goto_locus. */
1939 if (!optimize
1940 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1941 {
1942 location_t goto_locus = single_succ_edge (a)->goto_locus;
1943 gimple_stmt_iterator prev, next;
1944 prev = gsi_last_nondebug_bb (a);
1945 next = gsi_after_labels (b);
1946 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1947 gsi_next_nondebug (&next);
1948 if ((gsi_end_p (prev)
1949 || gimple_location (gsi_stmt (prev)) != goto_locus)
1950 && (gsi_end_p (next)
1951 || gimple_location (gsi_stmt (next)) != goto_locus))
1952 return false;
1953 }
1954
1955 return true;
1956 }
1957
1958 /* Replaces all uses of NAME by VAL. */
1959
1960 void
replace_uses_by(tree name,tree val)1961 replace_uses_by (tree name, tree val)
1962 {
1963 imm_use_iterator imm_iter;
1964 use_operand_p use;
1965 gimple *stmt;
1966 edge e;
1967
1968 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1969 {
1970 /* Mark the block if we change the last stmt in it. */
1971 if (cfgcleanup_altered_bbs
1972 && stmt_ends_bb_p (stmt))
1973 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1974
1975 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1976 {
1977 replace_exp (use, val);
1978
1979 if (gimple_code (stmt) == GIMPLE_PHI)
1980 {
1981 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1982 PHI_ARG_INDEX_FROM_USE (use));
1983 if (e->flags & EDGE_ABNORMAL
1984 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1985 {
1986 /* This can only occur for virtual operands, since
1987 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1988 would prevent replacement. */
1989 gcc_checking_assert (virtual_operand_p (name));
1990 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1991 }
1992 }
1993 }
1994
1995 if (gimple_code (stmt) != GIMPLE_PHI)
1996 {
1997 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1998 gimple *orig_stmt = stmt;
1999 size_t i;
2000
2001 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2002 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2003 only change sth from non-invariant to invariant, and only
2004 when propagating constants. */
2005 if (is_gimple_min_invariant (val))
2006 for (i = 0; i < gimple_num_ops (stmt); i++)
2007 {
2008 tree op = gimple_op (stmt, i);
2009 /* Operands may be empty here. For example, the labels
2010 of a GIMPLE_COND are nulled out following the creation
2011 of the corresponding CFG edges. */
2012 if (op && TREE_CODE (op) == ADDR_EXPR)
2013 recompute_tree_invariant_for_addr_expr (op);
2014 }
2015
2016 if (fold_stmt (&gsi))
2017 stmt = gsi_stmt (gsi);
2018
2019 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
2020 gimple_purge_dead_eh_edges (gimple_bb (stmt));
2021
2022 update_stmt (stmt);
2023 }
2024 }
2025
2026 gcc_checking_assert (has_zero_uses (name));
2027
2028 /* Also update the trees stored in loop structures. */
2029 if (current_loops)
2030 {
2031 for (auto loop : loops_list (cfun, 0))
2032 substitute_in_loop_info (loop, name, val);
2033 }
2034 }
2035
2036 /* Merge block B into block A. */
2037
2038 static void
gimple_merge_blocks(basic_block a,basic_block b)2039 gimple_merge_blocks (basic_block a, basic_block b)
2040 {
2041 gimple_stmt_iterator last, gsi;
2042 gphi_iterator psi;
2043
2044 if (dump_file)
2045 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2046
2047 /* Remove all single-valued PHI nodes from block B of the form
2048 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2049 gsi = gsi_last_bb (a);
2050 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2051 {
2052 gimple *phi = gsi_stmt (psi);
2053 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2054 gimple *copy;
2055 bool may_replace_uses = (virtual_operand_p (def)
2056 || may_propagate_copy (def, use));
2057
2058 /* In case we maintain loop closed ssa form, do not propagate arguments
2059 of loop exit phi nodes. */
2060 if (current_loops
2061 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2062 && !virtual_operand_p (def)
2063 && TREE_CODE (use) == SSA_NAME
2064 && a->loop_father != b->loop_father)
2065 may_replace_uses = false;
2066
2067 if (!may_replace_uses)
2068 {
2069 gcc_assert (!virtual_operand_p (def));
2070
2071 /* Note that just emitting the copies is fine -- there is no problem
2072 with ordering of phi nodes. This is because A is the single
2073 predecessor of B, therefore results of the phi nodes cannot
2074 appear as arguments of the phi nodes. */
2075 copy = gimple_build_assign (def, use);
2076 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2077 remove_phi_node (&psi, false);
2078 }
2079 else
2080 {
2081 /* If we deal with a PHI for virtual operands, we can simply
2082 propagate these without fussing with folding or updating
2083 the stmt. */
2084 if (virtual_operand_p (def))
2085 {
2086 imm_use_iterator iter;
2087 use_operand_p use_p;
2088 gimple *stmt;
2089
2090 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2091 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2092 SET_USE (use_p, use);
2093
2094 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2095 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2096 }
2097 else
2098 replace_uses_by (def, use);
2099
2100 remove_phi_node (&psi, true);
2101 }
2102 }
2103
2104 /* Ensure that B follows A. */
2105 move_block_after (b, a);
2106
2107 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2108 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2109
2110 /* Remove labels from B and set gimple_bb to A for other statements. */
2111 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2112 {
2113 gimple *stmt = gsi_stmt (gsi);
2114 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2115 {
2116 tree label = gimple_label_label (label_stmt);
2117 int lp_nr;
2118
2119 gsi_remove (&gsi, false);
2120
2121 /* Now that we can thread computed gotos, we might have
2122 a situation where we have a forced label in block B
2123 However, the label at the start of block B might still be
2124 used in other ways (think about the runtime checking for
2125 Fortran assigned gotos). So we cannot just delete the
2126 label. Instead we move the label to the start of block A. */
2127 if (FORCED_LABEL (label))
2128 {
2129 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2130 tree first_label = NULL_TREE;
2131 if (!gsi_end_p (dest_gsi))
2132 if (glabel *first_label_stmt
2133 = dyn_cast <glabel *> (gsi_stmt (dest_gsi)))
2134 first_label = gimple_label_label (first_label_stmt);
2135 if (first_label
2136 && (DECL_NONLOCAL (first_label)
2137 || EH_LANDING_PAD_NR (first_label) != 0))
2138 gsi_insert_after (&dest_gsi, stmt, GSI_NEW_STMT);
2139 else
2140 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2141 }
2142 /* Other user labels keep around in a form of a debug stmt. */
2143 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2144 {
2145 gimple *dbg = gimple_build_debug_bind (label,
2146 integer_zero_node,
2147 stmt);
2148 gimple_debug_bind_reset_value (dbg);
2149 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2150 }
2151
2152 lp_nr = EH_LANDING_PAD_NR (label);
2153 if (lp_nr)
2154 {
2155 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2156 lp->post_landing_pad = NULL;
2157 }
2158 }
2159 else
2160 {
2161 gimple_set_bb (stmt, a);
2162 gsi_next (&gsi);
2163 }
2164 }
2165
2166 /* When merging two BBs, if their counts are different, the larger count
2167 is selected as the new bb count. This is to handle inconsistent
2168 profiles. */
2169 if (a->loop_father == b->loop_father)
2170 {
2171 a->count = a->count.merge (b->count);
2172 }
2173
2174 /* Merge the sequences. */
2175 last = gsi_last_bb (a);
2176 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2177 set_bb_seq (b, NULL);
2178
2179 if (cfgcleanup_altered_bbs)
2180 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2181 }
2182
2183
2184 /* Return the one of two successors of BB that is not reachable by a
2185 complex edge, if there is one. Else, return BB. We use
2186 this in optimizations that use post-dominators for their heuristics,
2187 to catch the cases in C++ where function calls are involved. */
2188
2189 basic_block
single_noncomplex_succ(basic_block bb)2190 single_noncomplex_succ (basic_block bb)
2191 {
2192 edge e0, e1;
2193 if (EDGE_COUNT (bb->succs) != 2)
2194 return bb;
2195
2196 e0 = EDGE_SUCC (bb, 0);
2197 e1 = EDGE_SUCC (bb, 1);
2198 if (e0->flags & EDGE_COMPLEX)
2199 return e1->dest;
2200 if (e1->flags & EDGE_COMPLEX)
2201 return e0->dest;
2202
2203 return bb;
2204 }
2205
2206 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2207
2208 void
notice_special_calls(gcall * call)2209 notice_special_calls (gcall *call)
2210 {
2211 int flags = gimple_call_flags (call);
2212
2213 if (flags & ECF_MAY_BE_ALLOCA)
2214 cfun->calls_alloca = true;
2215 if (flags & ECF_RETURNS_TWICE)
2216 cfun->calls_setjmp = true;
2217 }
2218
2219
2220 /* Clear flags set by notice_special_calls. Used by dead code removal
2221 to update the flags. */
2222
2223 void
clear_special_calls(void)2224 clear_special_calls (void)
2225 {
2226 cfun->calls_alloca = false;
2227 cfun->calls_setjmp = false;
2228 }
2229
2230 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2231
2232 static void
remove_phi_nodes_and_edges_for_unreachable_block(basic_block bb)2233 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2234 {
2235 /* Since this block is no longer reachable, we can just delete all
2236 of its PHI nodes. */
2237 remove_phi_nodes (bb);
2238
2239 /* Remove edges to BB's successors. */
2240 while (EDGE_COUNT (bb->succs) > 0)
2241 remove_edge (EDGE_SUCC (bb, 0));
2242 }
2243
2244
2245 /* Remove statements of basic block BB. */
2246
2247 static void
remove_bb(basic_block bb)2248 remove_bb (basic_block bb)
2249 {
2250 gimple_stmt_iterator i;
2251
2252 if (dump_file)
2253 {
2254 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2255 if (dump_flags & TDF_DETAILS)
2256 {
2257 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2258 fprintf (dump_file, "\n");
2259 }
2260 }
2261
2262 if (current_loops)
2263 {
2264 class loop *loop = bb->loop_father;
2265
2266 /* If a loop gets removed, clean up the information associated
2267 with it. */
2268 if (loop->latch == bb
2269 || loop->header == bb)
2270 free_numbers_of_iterations_estimates (loop);
2271 }
2272
2273 /* Remove all the instructions in the block. */
2274 if (bb_seq (bb) != NULL)
2275 {
2276 /* Walk backwards so as to get a chance to substitute all
2277 released DEFs into debug stmts. See
2278 eliminate_unnecessary_stmts() in tree-ssa-dce.cc for more
2279 details. */
2280 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2281 {
2282 gimple *stmt = gsi_stmt (i);
2283 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2284 if (label_stmt
2285 && (FORCED_LABEL (gimple_label_label (label_stmt))
2286 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2287 {
2288 basic_block new_bb;
2289 gimple_stmt_iterator new_gsi;
2290
2291 /* A non-reachable non-local label may still be referenced.
2292 But it no longer needs to carry the extra semantics of
2293 non-locality. */
2294 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2295 {
2296 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2297 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2298 }
2299
2300 new_bb = bb->prev_bb;
2301 /* Don't move any labels into ENTRY block. */
2302 if (new_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2303 {
2304 new_bb = single_succ (new_bb);
2305 gcc_assert (new_bb != bb);
2306 }
2307 if ((unsigned) bb->index < bb_to_omp_idx.length ()
2308 && ((unsigned) new_bb->index >= bb_to_omp_idx.length ()
2309 || (bb_to_omp_idx[bb->index]
2310 != bb_to_omp_idx[new_bb->index])))
2311 {
2312 /* During cfg pass make sure to put orphaned labels
2313 into the right OMP region. */
2314 unsigned int i;
2315 int idx;
2316 new_bb = NULL;
2317 FOR_EACH_VEC_ELT (bb_to_omp_idx, i, idx)
2318 if (i >= NUM_FIXED_BLOCKS
2319 && idx == bb_to_omp_idx[bb->index]
2320 && i != (unsigned) bb->index)
2321 {
2322 new_bb = BASIC_BLOCK_FOR_FN (cfun, i);
2323 break;
2324 }
2325 if (new_bb == NULL)
2326 {
2327 new_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2328 gcc_assert (new_bb != bb);
2329 }
2330 }
2331 new_gsi = gsi_after_labels (new_bb);
2332 gsi_remove (&i, false);
2333 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2334 }
2335 else
2336 {
2337 /* Release SSA definitions. */
2338 release_defs (stmt);
2339 gsi_remove (&i, true);
2340 }
2341
2342 if (gsi_end_p (i))
2343 i = gsi_last_bb (bb);
2344 else
2345 gsi_prev (&i);
2346 }
2347 }
2348
2349 if ((unsigned) bb->index < bb_to_omp_idx.length ())
2350 bb_to_omp_idx[bb->index] = -1;
2351 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2352 bb->il.gimple.seq = NULL;
2353 bb->il.gimple.phi_nodes = NULL;
2354 }
2355
2356
2357 /* Given a basic block BB and a value VAL for use in the final statement
2358 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2359 the edge that will be taken out of the block.
2360 If VAL is NULL_TREE, then the current value of the final statement's
2361 predicate or index is used.
2362 If the value does not match a unique edge, NULL is returned. */
2363
2364 edge
find_taken_edge(basic_block bb,tree val)2365 find_taken_edge (basic_block bb, tree val)
2366 {
2367 gimple *stmt;
2368
2369 stmt = last_stmt (bb);
2370
2371 /* Handle ENTRY and EXIT. */
2372 if (!stmt)
2373 return NULL;
2374
2375 if (gimple_code (stmt) == GIMPLE_COND)
2376 return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
2377
2378 if (gimple_code (stmt) == GIMPLE_SWITCH)
2379 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
2380
2381 if (computed_goto_p (stmt))
2382 {
2383 /* Only optimize if the argument is a label, if the argument is
2384 not a label then we cannot construct a proper CFG.
2385
2386 It may be the case that we only need to allow the LABEL_REF to
2387 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2388 appear inside a LABEL_EXPR just to be safe. */
2389 if (val
2390 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2391 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2392 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2393 }
2394
2395 /* Otherwise we only know the taken successor edge if it's unique. */
2396 return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
2397 }
2398
2399 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2400 statement, determine which of the outgoing edges will be taken out of the
2401 block. Return NULL if either edge may be taken. */
2402
2403 static edge
find_taken_edge_computed_goto(basic_block bb,tree val)2404 find_taken_edge_computed_goto (basic_block bb, tree val)
2405 {
2406 basic_block dest;
2407 edge e = NULL;
2408
2409 dest = label_to_block (cfun, val);
2410 if (dest)
2411 e = find_edge (bb, dest);
2412
2413 /* It's possible for find_edge to return NULL here on invalid code
2414 that abuses the labels-as-values extension (e.g. code that attempts to
2415 jump *between* functions via stored labels-as-values; PR 84136).
2416 If so, then we simply return that NULL for the edge.
2417 We don't currently have a way of detecting such invalid code, so we
2418 can't assert that it was the case when a NULL edge occurs here. */
2419
2420 return e;
2421 }
2422
2423 /* Given COND_STMT and a constant value VAL for use as the predicate,
2424 determine which of the two edges will be taken out of
2425 the statement's block. Return NULL if either edge may be taken.
2426 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2427 is used. */
2428
2429 static edge
find_taken_edge_cond_expr(const gcond * cond_stmt,tree val)2430 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
2431 {
2432 edge true_edge, false_edge;
2433
2434 if (val == NULL_TREE)
2435 {
2436 /* Use the current value of the predicate. */
2437 if (gimple_cond_true_p (cond_stmt))
2438 val = integer_one_node;
2439 else if (gimple_cond_false_p (cond_stmt))
2440 val = integer_zero_node;
2441 else
2442 return NULL;
2443 }
2444 else if (TREE_CODE (val) != INTEGER_CST)
2445 return NULL;
2446
2447 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
2448 &true_edge, &false_edge);
2449
2450 return (integer_zerop (val) ? false_edge : true_edge);
2451 }
2452
2453 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2454 which edge will be taken out of the statement's block. Return NULL if any
2455 edge may be taken.
2456 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2457 is used. */
2458
2459 edge
find_taken_edge_switch_expr(const gswitch * switch_stmt,tree val)2460 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
2461 {
2462 basic_block dest_bb;
2463 edge e;
2464 tree taken_case;
2465
2466 if (gimple_switch_num_labels (switch_stmt) == 1)
2467 taken_case = gimple_switch_default_label (switch_stmt);
2468 else
2469 {
2470 if (val == NULL_TREE)
2471 val = gimple_switch_index (switch_stmt);
2472 if (TREE_CODE (val) != INTEGER_CST)
2473 return NULL;
2474 else
2475 taken_case = find_case_label_for_value (switch_stmt, val);
2476 }
2477 dest_bb = label_to_block (cfun, CASE_LABEL (taken_case));
2478
2479 e = find_edge (gimple_bb (switch_stmt), dest_bb);
2480 gcc_assert (e);
2481 return e;
2482 }
2483
2484
2485 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2486 We can make optimal use here of the fact that the case labels are
2487 sorted: We can do a binary search for a case matching VAL. */
2488
2489 tree
find_case_label_for_value(const gswitch * switch_stmt,tree val)2490 find_case_label_for_value (const gswitch *switch_stmt, tree val)
2491 {
2492 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2493 tree default_case = gimple_switch_default_label (switch_stmt);
2494
2495 for (low = 0, high = n; high - low > 1; )
2496 {
2497 size_t i = (high + low) / 2;
2498 tree t = gimple_switch_label (switch_stmt, i);
2499 int cmp;
2500
2501 /* Cache the result of comparing CASE_LOW and val. */
2502 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2503
2504 if (cmp > 0)
2505 high = i;
2506 else
2507 low = i;
2508
2509 if (CASE_HIGH (t) == NULL)
2510 {
2511 /* A singe-valued case label. */
2512 if (cmp == 0)
2513 return t;
2514 }
2515 else
2516 {
2517 /* A case range. We can only handle integer ranges. */
2518 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2519 return t;
2520 }
2521 }
2522
2523 return default_case;
2524 }
2525
2526
2527 /* Dump a basic block on stderr. */
2528
2529 void
gimple_debug_bb(basic_block bb)2530 gimple_debug_bb (basic_block bb)
2531 {
2532 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2533 }
2534
2535
2536 /* Dump basic block with index N on stderr. */
2537
2538 basic_block
gimple_debug_bb_n(int n)2539 gimple_debug_bb_n (int n)
2540 {
2541 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2542 return BASIC_BLOCK_FOR_FN (cfun, n);
2543 }
2544
2545
2546 /* Dump the CFG on stderr.
2547
2548 FLAGS are the same used by the tree dumping functions
2549 (see TDF_* in dumpfile.h). */
2550
2551 void
gimple_debug_cfg(dump_flags_t flags)2552 gimple_debug_cfg (dump_flags_t flags)
2553 {
2554 gimple_dump_cfg (stderr, flags);
2555 }
2556
2557
2558 /* Dump the program showing basic block boundaries on the given FILE.
2559
2560 FLAGS are the same used by the tree dumping functions (see TDF_* in
2561 tree.h). */
2562
2563 void
gimple_dump_cfg(FILE * file,dump_flags_t flags)2564 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2565 {
2566 if (flags & TDF_DETAILS)
2567 {
2568 dump_function_header (file, current_function_decl, flags);
2569 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2570 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2571 last_basic_block_for_fn (cfun));
2572
2573 brief_dump_cfg (file, flags);
2574 fprintf (file, "\n");
2575 }
2576
2577 if (flags & TDF_STATS)
2578 dump_cfg_stats (file);
2579
2580 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2581 }
2582
2583
2584 /* Dump CFG statistics on FILE. */
2585
2586 void
dump_cfg_stats(FILE * file)2587 dump_cfg_stats (FILE *file)
2588 {
2589 static long max_num_merged_labels = 0;
2590 unsigned long size, total = 0;
2591 long num_edges;
2592 basic_block bb;
2593 const char * const fmt_str = "%-30s%-13s%12s\n";
2594 const char * const fmt_str_1 = "%-30s%13d" PRsa (11) "\n";
2595 const char * const fmt_str_2 = "%-30s%13ld" PRsa (11) "\n";
2596 const char * const fmt_str_3 = "%-43s" PRsa (11) "\n";
2597 const char *funcname = current_function_name ();
2598
2599 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2600
2601 fprintf (file, "---------------------------------------------------------\n");
2602 fprintf (file, fmt_str, "", " Number of ", "Memory");
2603 fprintf (file, fmt_str, "", " instances ", "used ");
2604 fprintf (file, "---------------------------------------------------------\n");
2605
2606 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2607 total += size;
2608 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2609 SIZE_AMOUNT (size));
2610
2611 num_edges = 0;
2612 FOR_EACH_BB_FN (bb, cfun)
2613 num_edges += EDGE_COUNT (bb->succs);
2614 size = num_edges * sizeof (class edge_def);
2615 total += size;
2616 fprintf (file, fmt_str_2, "Edges", num_edges, SIZE_AMOUNT (size));
2617
2618 fprintf (file, "---------------------------------------------------------\n");
2619 fprintf (file, fmt_str_3, "Total memory used by CFG data",
2620 SIZE_AMOUNT (total));
2621 fprintf (file, "---------------------------------------------------------\n");
2622 fprintf (file, "\n");
2623
2624 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2625 max_num_merged_labels = cfg_stats.num_merged_labels;
2626
2627 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2628 cfg_stats.num_merged_labels, max_num_merged_labels);
2629
2630 fprintf (file, "\n");
2631 }
2632
2633
2634 /* Dump CFG statistics on stderr. Keep extern so that it's always
2635 linked in the final executable. */
2636
2637 DEBUG_FUNCTION void
debug_cfg_stats(void)2638 debug_cfg_stats (void)
2639 {
2640 dump_cfg_stats (stderr);
2641 }
2642
2643 /*---------------------------------------------------------------------------
2644 Miscellaneous helpers
2645 ---------------------------------------------------------------------------*/
2646
2647 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2648 flow. Transfers of control flow associated with EH are excluded. */
2649
2650 static bool
call_can_make_abnormal_goto(gimple * t)2651 call_can_make_abnormal_goto (gimple *t)
2652 {
2653 /* If the function has no non-local labels, then a call cannot make an
2654 abnormal transfer of control. */
2655 if (!cfun->has_nonlocal_label
2656 && !cfun->calls_setjmp)
2657 return false;
2658
2659 /* Likewise if the call has no side effects. */
2660 if (!gimple_has_side_effects (t))
2661 return false;
2662
2663 /* Likewise if the called function is leaf. */
2664 if (gimple_call_flags (t) & ECF_LEAF)
2665 return false;
2666
2667 return true;
2668 }
2669
2670
2671 /* Return true if T can make an abnormal transfer of control flow.
2672 Transfers of control flow associated with EH are excluded. */
2673
2674 bool
stmt_can_make_abnormal_goto(gimple * t)2675 stmt_can_make_abnormal_goto (gimple *t)
2676 {
2677 if (computed_goto_p (t))
2678 return true;
2679 if (is_gimple_call (t))
2680 return call_can_make_abnormal_goto (t);
2681 return false;
2682 }
2683
2684
2685 /* Return true if T represents a stmt that always transfers control. */
2686
2687 bool
is_ctrl_stmt(gimple * t)2688 is_ctrl_stmt (gimple *t)
2689 {
2690 switch (gimple_code (t))
2691 {
2692 case GIMPLE_COND:
2693 case GIMPLE_SWITCH:
2694 case GIMPLE_GOTO:
2695 case GIMPLE_RETURN:
2696 case GIMPLE_RESX:
2697 return true;
2698 default:
2699 return false;
2700 }
2701 }
2702
2703
2704 /* Return true if T is a statement that may alter the flow of control
2705 (e.g., a call to a non-returning function). */
2706
2707 bool
is_ctrl_altering_stmt(gimple * t)2708 is_ctrl_altering_stmt (gimple *t)
2709 {
2710 gcc_assert (t);
2711
2712 switch (gimple_code (t))
2713 {
2714 case GIMPLE_CALL:
2715 /* Per stmt call flag indicates whether the call could alter
2716 controlflow. */
2717 if (gimple_call_ctrl_altering_p (t))
2718 return true;
2719 break;
2720
2721 case GIMPLE_EH_DISPATCH:
2722 /* EH_DISPATCH branches to the individual catch handlers at
2723 this level of a try or allowed-exceptions region. It can
2724 fallthru to the next statement as well. */
2725 return true;
2726
2727 case GIMPLE_ASM:
2728 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2729 return true;
2730 break;
2731
2732 CASE_GIMPLE_OMP:
2733 /* OpenMP directives alter control flow. */
2734 return true;
2735
2736 case GIMPLE_TRANSACTION:
2737 /* A transaction start alters control flow. */
2738 return true;
2739
2740 default:
2741 break;
2742 }
2743
2744 /* If a statement can throw, it alters control flow. */
2745 return stmt_can_throw_internal (cfun, t);
2746 }
2747
2748
2749 /* Return true if T is a simple local goto. */
2750
2751 bool
simple_goto_p(gimple * t)2752 simple_goto_p (gimple *t)
2753 {
2754 return (gimple_code (t) == GIMPLE_GOTO
2755 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2756 }
2757
2758
2759 /* Return true if STMT should start a new basic block. PREV_STMT is
2760 the statement preceding STMT. It is used when STMT is a label or a
2761 case label. Labels should only start a new basic block if their
2762 previous statement wasn't a label. Otherwise, sequence of labels
2763 would generate unnecessary basic blocks that only contain a single
2764 label. */
2765
2766 static inline bool
stmt_starts_bb_p(gimple * stmt,gimple * prev_stmt)2767 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2768 {
2769 if (stmt == NULL)
2770 return false;
2771
2772 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2773 any nondebug stmts in the block. We don't want to start another
2774 block in this case: the debug stmt will already have started the
2775 one STMT would start if we weren't outputting debug stmts. */
2776 if (prev_stmt && is_gimple_debug (prev_stmt))
2777 return false;
2778
2779 /* Labels start a new basic block only if the preceding statement
2780 wasn't a label of the same type. This prevents the creation of
2781 consecutive blocks that have nothing but a single label. */
2782 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2783 {
2784 /* Nonlocal and computed GOTO targets always start a new block. */
2785 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2786 || FORCED_LABEL (gimple_label_label (label_stmt)))
2787 return true;
2788
2789 if (glabel *plabel = safe_dyn_cast <glabel *> (prev_stmt))
2790 {
2791 if (DECL_NONLOCAL (gimple_label_label (plabel))
2792 || !DECL_ARTIFICIAL (gimple_label_label (plabel)))
2793 return true;
2794
2795 cfg_stats.num_merged_labels++;
2796 return false;
2797 }
2798 else
2799 return true;
2800 }
2801 else if (gimple_code (stmt) == GIMPLE_CALL)
2802 {
2803 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2804 /* setjmp acts similar to a nonlocal GOTO target and thus should
2805 start a new block. */
2806 return true;
2807 if (gimple_call_internal_p (stmt, IFN_PHI)
2808 && prev_stmt
2809 && gimple_code (prev_stmt) != GIMPLE_LABEL
2810 && (gimple_code (prev_stmt) != GIMPLE_CALL
2811 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2812 /* PHI nodes start a new block unless preceeded by a label
2813 or another PHI. */
2814 return true;
2815 }
2816
2817 return false;
2818 }
2819
2820
2821 /* Return true if T should end a basic block. */
2822
2823 bool
stmt_ends_bb_p(gimple * t)2824 stmt_ends_bb_p (gimple *t)
2825 {
2826 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2827 }
2828
2829 /* Remove block annotations and other data structures. */
2830
2831 void
delete_tree_cfg_annotations(struct function * fn)2832 delete_tree_cfg_annotations (struct function *fn)
2833 {
2834 vec_free (label_to_block_map_for_fn (fn));
2835 }
2836
2837 /* Return the virtual phi in BB. */
2838
2839 gphi *
get_virtual_phi(basic_block bb)2840 get_virtual_phi (basic_block bb)
2841 {
2842 for (gphi_iterator gsi = gsi_start_phis (bb);
2843 !gsi_end_p (gsi);
2844 gsi_next (&gsi))
2845 {
2846 gphi *phi = gsi.phi ();
2847
2848 if (virtual_operand_p (PHI_RESULT (phi)))
2849 return phi;
2850 }
2851
2852 return NULL;
2853 }
2854
2855 /* Return the first statement in basic block BB. */
2856
2857 gimple *
first_stmt(basic_block bb)2858 first_stmt (basic_block bb)
2859 {
2860 gimple_stmt_iterator i = gsi_start_bb (bb);
2861 gimple *stmt = NULL;
2862
2863 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2864 {
2865 gsi_next (&i);
2866 stmt = NULL;
2867 }
2868 return stmt;
2869 }
2870
2871 /* Return the first non-label statement in basic block BB. */
2872
2873 static gimple *
first_non_label_stmt(basic_block bb)2874 first_non_label_stmt (basic_block bb)
2875 {
2876 gimple_stmt_iterator i = gsi_start_bb (bb);
2877 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2878 gsi_next (&i);
2879 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2880 }
2881
2882 /* Return the last statement in basic block BB. */
2883
2884 gimple *
last_stmt(basic_block bb)2885 last_stmt (basic_block bb)
2886 {
2887 gimple_stmt_iterator i = gsi_last_bb (bb);
2888 gimple *stmt = NULL;
2889
2890 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2891 {
2892 gsi_prev (&i);
2893 stmt = NULL;
2894 }
2895 return stmt;
2896 }
2897
2898 /* Return the last statement of an otherwise empty block. Return NULL
2899 if the block is totally empty, or if it contains more than one
2900 statement. */
2901
2902 gimple *
last_and_only_stmt(basic_block bb)2903 last_and_only_stmt (basic_block bb)
2904 {
2905 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2906 gimple *last, *prev;
2907
2908 if (gsi_end_p (i))
2909 return NULL;
2910
2911 last = gsi_stmt (i);
2912 gsi_prev_nondebug (&i);
2913 if (gsi_end_p (i))
2914 return last;
2915
2916 /* Empty statements should no longer appear in the instruction stream.
2917 Everything that might have appeared before should be deleted by
2918 remove_useless_stmts, and the optimizers should just gsi_remove
2919 instead of smashing with build_empty_stmt.
2920
2921 Thus the only thing that should appear here in a block containing
2922 one executable statement is a label. */
2923 prev = gsi_stmt (i);
2924 if (gimple_code (prev) == GIMPLE_LABEL)
2925 return last;
2926 else
2927 return NULL;
2928 }
2929
2930 /* Returns the basic block after which the new basic block created
2931 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2932 near its "logical" location. This is of most help to humans looking
2933 at debugging dumps. */
2934
2935 basic_block
split_edge_bb_loc(edge edge_in)2936 split_edge_bb_loc (edge edge_in)
2937 {
2938 basic_block dest = edge_in->dest;
2939 basic_block dest_prev = dest->prev_bb;
2940
2941 if (dest_prev)
2942 {
2943 edge e = find_edge (dest_prev, dest);
2944 if (e && !(e->flags & EDGE_COMPLEX))
2945 return edge_in->src;
2946 }
2947 return dest_prev;
2948 }
2949
2950 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2951 Abort on abnormal edges. */
2952
2953 static basic_block
gimple_split_edge(edge edge_in)2954 gimple_split_edge (edge edge_in)
2955 {
2956 basic_block new_bb, after_bb, dest;
2957 edge new_edge, e;
2958
2959 /* Abnormal edges cannot be split. */
2960 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2961
2962 dest = edge_in->dest;
2963
2964 after_bb = split_edge_bb_loc (edge_in);
2965
2966 new_bb = create_empty_bb (after_bb);
2967 new_bb->count = edge_in->count ();
2968
2969 /* We want to avoid re-allocating PHIs when we first
2970 add the fallthru edge from new_bb to dest but we also
2971 want to avoid changing PHI argument order when
2972 first redirecting edge_in away from dest. The former
2973 avoids changing PHI argument order by adding them
2974 last and then the redirection swapping it back into
2975 place by means of unordered remove.
2976 So hack around things by temporarily removing all PHIs
2977 from the destination during the edge redirection and then
2978 making sure the edges stay in order. */
2979 gimple_seq saved_phis = phi_nodes (dest);
2980 unsigned old_dest_idx = edge_in->dest_idx;
2981 set_phi_nodes (dest, NULL);
2982 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2983 e = redirect_edge_and_branch (edge_in, new_bb);
2984 gcc_assert (e == edge_in && new_edge->dest_idx == old_dest_idx);
2985 /* set_phi_nodes sets the BB of the PHI nodes, so do it manually here. */
2986 dest->il.gimple.phi_nodes = saved_phis;
2987
2988 return new_bb;
2989 }
2990
2991
2992 /* Verify properties of the address expression T whose base should be
2993 TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */
2994
2995 static bool
verify_address(tree t,bool verify_addressable)2996 verify_address (tree t, bool verify_addressable)
2997 {
2998 bool old_constant;
2999 bool old_side_effects;
3000 bool new_constant;
3001 bool new_side_effects;
3002
3003 old_constant = TREE_CONSTANT (t);
3004 old_side_effects = TREE_SIDE_EFFECTS (t);
3005
3006 recompute_tree_invariant_for_addr_expr (t);
3007 new_side_effects = TREE_SIDE_EFFECTS (t);
3008 new_constant = TREE_CONSTANT (t);
3009
3010 if (old_constant != new_constant)
3011 {
3012 error ("constant not recomputed when %<ADDR_EXPR%> changed");
3013 return true;
3014 }
3015 if (old_side_effects != new_side_effects)
3016 {
3017 error ("side effects not recomputed when %<ADDR_EXPR%> changed");
3018 return true;
3019 }
3020
3021 tree base = TREE_OPERAND (t, 0);
3022 while (handled_component_p (base))
3023 base = TREE_OPERAND (base, 0);
3024
3025 if (!(VAR_P (base)
3026 || TREE_CODE (base) == PARM_DECL
3027 || TREE_CODE (base) == RESULT_DECL))
3028 return false;
3029
3030 if (verify_addressable && !TREE_ADDRESSABLE (base))
3031 {
3032 error ("address taken but %<TREE_ADDRESSABLE%> bit not set");
3033 return true;
3034 }
3035
3036 return false;
3037 }
3038
3039
3040 /* Verify if EXPR is a valid GIMPLE reference expression. If
3041 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3042 if there is an error, otherwise false. */
3043
3044 static bool
verify_types_in_gimple_reference(tree expr,bool require_lvalue)3045 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3046 {
3047 const char *code_name = get_tree_code_name (TREE_CODE (expr));
3048
3049 if (TREE_CODE (expr) == REALPART_EXPR
3050 || TREE_CODE (expr) == IMAGPART_EXPR
3051 || TREE_CODE (expr) == BIT_FIELD_REF)
3052 {
3053 tree op = TREE_OPERAND (expr, 0);
3054 if (!is_gimple_reg_type (TREE_TYPE (expr)))
3055 {
3056 error ("non-scalar %qs", code_name);
3057 return true;
3058 }
3059
3060 if (TREE_CODE (expr) == BIT_FIELD_REF)
3061 {
3062 tree t1 = TREE_OPERAND (expr, 1);
3063 tree t2 = TREE_OPERAND (expr, 2);
3064 poly_uint64 size, bitpos;
3065 if (!poly_int_tree_p (t1, &size)
3066 || !poly_int_tree_p (t2, &bitpos)
3067 || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3068 || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3069 {
3070 error ("invalid position or size operand to %qs", code_name);
3071 return true;
3072 }
3073 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
3074 && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr)), size))
3075 {
3076 error ("integral result type precision does not match "
3077 "field size of %qs", code_name);
3078 return true;
3079 }
3080 else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
3081 && TYPE_MODE (TREE_TYPE (expr)) != BLKmode
3082 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr))),
3083 size))
3084 {
3085 error ("mode size of non-integral result does not "
3086 "match field size of %qs",
3087 code_name);
3088 return true;
3089 }
3090 if (INTEGRAL_TYPE_P (TREE_TYPE (op))
3091 && !type_has_mode_precision_p (TREE_TYPE (op)))
3092 {
3093 error ("%qs of non-mode-precision operand", code_name);
3094 return true;
3095 }
3096 if (!AGGREGATE_TYPE_P (TREE_TYPE (op))
3097 && maybe_gt (size + bitpos,
3098 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op)))))
3099 {
3100 error ("position plus size exceeds size of referenced object in "
3101 "%qs", code_name);
3102 return true;
3103 }
3104 }
3105
3106 if ((TREE_CODE (expr) == REALPART_EXPR
3107 || TREE_CODE (expr) == IMAGPART_EXPR)
3108 && !useless_type_conversion_p (TREE_TYPE (expr),
3109 TREE_TYPE (TREE_TYPE (op))))
3110 {
3111 error ("type mismatch in %qs reference", code_name);
3112 debug_generic_stmt (TREE_TYPE (expr));
3113 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3114 return true;
3115 }
3116 expr = op;
3117 }
3118
3119 while (handled_component_p (expr))
3120 {
3121 code_name = get_tree_code_name (TREE_CODE (expr));
3122
3123 if (TREE_CODE (expr) == REALPART_EXPR
3124 || TREE_CODE (expr) == IMAGPART_EXPR
3125 || TREE_CODE (expr) == BIT_FIELD_REF)
3126 {
3127 error ("non-top-level %qs", code_name);
3128 return true;
3129 }
3130
3131 tree op = TREE_OPERAND (expr, 0);
3132
3133 if (TREE_CODE (expr) == ARRAY_REF
3134 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3135 {
3136 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3137 || (TREE_OPERAND (expr, 2)
3138 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3139 || (TREE_OPERAND (expr, 3)
3140 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3141 {
3142 error ("invalid operands to %qs", code_name);
3143 debug_generic_stmt (expr);
3144 return true;
3145 }
3146 }
3147
3148 /* Verify if the reference array element types are compatible. */
3149 if (TREE_CODE (expr) == ARRAY_REF
3150 && !useless_type_conversion_p (TREE_TYPE (expr),
3151 TREE_TYPE (TREE_TYPE (op))))
3152 {
3153 error ("type mismatch in %qs", code_name);
3154 debug_generic_stmt (TREE_TYPE (expr));
3155 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3156 return true;
3157 }
3158 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3159 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3160 TREE_TYPE (TREE_TYPE (op))))
3161 {
3162 error ("type mismatch in %qs", code_name);
3163 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3164 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3165 return true;
3166 }
3167
3168 if (TREE_CODE (expr) == COMPONENT_REF)
3169 {
3170 if (TREE_OPERAND (expr, 2)
3171 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3172 {
3173 error ("invalid %qs offset operator", code_name);
3174 return true;
3175 }
3176 if (!useless_type_conversion_p (TREE_TYPE (expr),
3177 TREE_TYPE (TREE_OPERAND (expr, 1))))
3178 {
3179 error ("type mismatch in %qs", code_name);
3180 debug_generic_stmt (TREE_TYPE (expr));
3181 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3182 return true;
3183 }
3184 }
3185
3186 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3187 {
3188 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3189 that their operand is not an SSA name or an invariant when
3190 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3191 bug). Otherwise there is nothing to verify, gross mismatches at
3192 most invoke undefined behavior. */
3193 if (require_lvalue
3194 && (TREE_CODE (op) == SSA_NAME
3195 || is_gimple_min_invariant (op)))
3196 {
3197 error ("conversion of %qs on the left hand side of %qs",
3198 get_tree_code_name (TREE_CODE (op)), code_name);
3199 debug_generic_stmt (expr);
3200 return true;
3201 }
3202 else if (TREE_CODE (op) == SSA_NAME
3203 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3204 {
3205 error ("conversion of register to a different size in %qs",
3206 code_name);
3207 debug_generic_stmt (expr);
3208 return true;
3209 }
3210 else if (!handled_component_p (op))
3211 return false;
3212 }
3213
3214 expr = op;
3215 }
3216
3217 code_name = get_tree_code_name (TREE_CODE (expr));
3218
3219 if (TREE_CODE (expr) == MEM_REF)
3220 {
3221 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0))
3222 || (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
3223 && verify_address (TREE_OPERAND (expr, 0), false)))
3224 {
3225 error ("invalid address operand in %qs", code_name);
3226 debug_generic_stmt (expr);
3227 return true;
3228 }
3229 if (!poly_int_tree_p (TREE_OPERAND (expr, 1))
3230 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3231 {
3232 error ("invalid offset operand in %qs", code_name);
3233 debug_generic_stmt (expr);
3234 return true;
3235 }
3236 if (MR_DEPENDENCE_CLIQUE (expr) != 0
3237 && MR_DEPENDENCE_CLIQUE (expr) > cfun->last_clique)
3238 {
3239 error ("invalid clique in %qs", code_name);
3240 debug_generic_stmt (expr);
3241 return true;
3242 }
3243 }
3244 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3245 {
3246 if (!TMR_BASE (expr)
3247 || !is_gimple_mem_ref_addr (TMR_BASE (expr))
3248 || (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
3249 && verify_address (TMR_BASE (expr), false)))
3250 {
3251 error ("invalid address operand in %qs", code_name);
3252 return true;
3253 }
3254 if (!TMR_OFFSET (expr)
3255 || !poly_int_tree_p (TMR_OFFSET (expr))
3256 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3257 {
3258 error ("invalid offset operand in %qs", code_name);
3259 debug_generic_stmt (expr);
3260 return true;
3261 }
3262 if (MR_DEPENDENCE_CLIQUE (expr) != 0
3263 && MR_DEPENDENCE_CLIQUE (expr) > cfun->last_clique)
3264 {
3265 error ("invalid clique in %qs", code_name);
3266 debug_generic_stmt (expr);
3267 return true;
3268 }
3269 }
3270 else if (TREE_CODE (expr) == INDIRECT_REF)
3271 {
3272 error ("%qs in gimple IL", code_name);
3273 debug_generic_stmt (expr);
3274 return true;
3275 }
3276
3277 if (!require_lvalue
3278 && (TREE_CODE (expr) == SSA_NAME || is_gimple_min_invariant (expr)))
3279 return false;
3280
3281 if (TREE_CODE (expr) != SSA_NAME && is_gimple_id (expr))
3282 return false;
3283
3284 if (TREE_CODE (expr) != TARGET_MEM_REF
3285 && TREE_CODE (expr) != MEM_REF)
3286 {
3287 error ("invalid expression for min lvalue");
3288 return true;
3289 }
3290
3291 return false;
3292 }
3293
3294 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3295 list of pointer-to types that is trivially convertible to DEST. */
3296
3297 static bool
one_pointer_to_useless_type_conversion_p(tree dest,tree src_obj)3298 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3299 {
3300 tree src;
3301
3302 if (!TYPE_POINTER_TO (src_obj))
3303 return true;
3304
3305 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3306 if (useless_type_conversion_p (dest, src))
3307 return true;
3308
3309 return false;
3310 }
3311
3312 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3313 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3314
3315 static bool
valid_fixed_convert_types_p(tree type1,tree type2)3316 valid_fixed_convert_types_p (tree type1, tree type2)
3317 {
3318 return (FIXED_POINT_TYPE_P (type1)
3319 && (INTEGRAL_TYPE_P (type2)
3320 || SCALAR_FLOAT_TYPE_P (type2)
3321 || FIXED_POINT_TYPE_P (type2)));
3322 }
3323
3324 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3325 is a problem, otherwise false. */
3326
3327 static bool
verify_gimple_call(gcall * stmt)3328 verify_gimple_call (gcall *stmt)
3329 {
3330 tree fn = gimple_call_fn (stmt);
3331 tree fntype, fndecl;
3332 unsigned i;
3333
3334 if (gimple_call_internal_p (stmt))
3335 {
3336 if (fn)
3337 {
3338 error ("gimple call has two targets");
3339 debug_generic_stmt (fn);
3340 return true;
3341 }
3342 }
3343 else
3344 {
3345 if (!fn)
3346 {
3347 error ("gimple call has no target");
3348 return true;
3349 }
3350 }
3351
3352 if (fn && !is_gimple_call_addr (fn))
3353 {
3354 error ("invalid function in gimple call");
3355 debug_generic_stmt (fn);
3356 return true;
3357 }
3358
3359 if (fn
3360 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3361 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3362 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3363 {
3364 error ("non-function in gimple call");
3365 return true;
3366 }
3367
3368 fndecl = gimple_call_fndecl (stmt);
3369 if (fndecl
3370 && TREE_CODE (fndecl) == FUNCTION_DECL
3371 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3372 && !DECL_PURE_P (fndecl)
3373 && !TREE_READONLY (fndecl))
3374 {
3375 error ("invalid pure const state for function");
3376 return true;
3377 }
3378
3379 tree lhs = gimple_call_lhs (stmt);
3380 if (lhs
3381 && (!is_gimple_reg (lhs)
3382 && (!is_gimple_lvalue (lhs)
3383 || verify_types_in_gimple_reference
3384 (TREE_CODE (lhs) == WITH_SIZE_EXPR
3385 ? TREE_OPERAND (lhs, 0) : lhs, true))))
3386 {
3387 error ("invalid LHS in gimple call");
3388 return true;
3389 }
3390
3391 if (gimple_call_ctrl_altering_p (stmt)
3392 && gimple_call_noreturn_p (stmt)
3393 && should_remove_lhs_p (lhs))
3394 {
3395 error ("LHS in %<noreturn%> call");
3396 return true;
3397 }
3398
3399 fntype = gimple_call_fntype (stmt);
3400 if (fntype
3401 && lhs
3402 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3403 /* ??? At least C++ misses conversions at assignments from
3404 void * call results.
3405 For now simply allow arbitrary pointer type conversions. */
3406 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3407 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3408 {
3409 error ("invalid conversion in gimple call");
3410 debug_generic_stmt (TREE_TYPE (lhs));
3411 debug_generic_stmt (TREE_TYPE (fntype));
3412 return true;
3413 }
3414
3415 if (gimple_call_chain (stmt)
3416 && !is_gimple_val (gimple_call_chain (stmt)))
3417 {
3418 error ("invalid static chain in gimple call");
3419 debug_generic_stmt (gimple_call_chain (stmt));
3420 return true;
3421 }
3422
3423 /* If there is a static chain argument, the call should either be
3424 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3425 if (gimple_call_chain (stmt)
3426 && fndecl
3427 && !DECL_STATIC_CHAIN (fndecl))
3428 {
3429 error ("static chain with function that doesn%'t use one");
3430 return true;
3431 }
3432
3433 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
3434 {
3435 switch (DECL_FUNCTION_CODE (fndecl))
3436 {
3437 case BUILT_IN_UNREACHABLE:
3438 case BUILT_IN_TRAP:
3439 if (gimple_call_num_args (stmt) > 0)
3440 {
3441 /* Built-in unreachable with parameters might not be caught by
3442 undefined behavior sanitizer. Front-ends do check users do not
3443 call them that way but we also produce calls to
3444 __builtin_unreachable internally, for example when IPA figures
3445 out a call cannot happen in a legal program. In such cases,
3446 we must make sure arguments are stripped off. */
3447 error ("%<__builtin_unreachable%> or %<__builtin_trap%> call "
3448 "with arguments");
3449 return true;
3450 }
3451 break;
3452 default:
3453 break;
3454 }
3455 }
3456
3457 /* For a call to .DEFERRED_INIT,
3458 LHS = DEFERRED_INIT (SIZE of the DECL, INIT_TYPE, NAME of the DECL)
3459 we should guarantee that when the 1st argument is a constant, it should
3460 be the same as the size of the LHS. */
3461
3462 if (gimple_call_internal_p (stmt, IFN_DEFERRED_INIT))
3463 {
3464 tree size_of_arg0 = gimple_call_arg (stmt, 0);
3465 tree size_of_lhs = TYPE_SIZE_UNIT (TREE_TYPE (lhs));
3466
3467 if (TREE_CODE (lhs) == SSA_NAME)
3468 lhs = SSA_NAME_VAR (lhs);
3469
3470 poly_uint64 size_from_arg0, size_from_lhs;
3471 bool is_constant_size_arg0 = poly_int_tree_p (size_of_arg0,
3472 &size_from_arg0);
3473 bool is_constant_size_lhs = poly_int_tree_p (size_of_lhs,
3474 &size_from_lhs);
3475 if (is_constant_size_arg0 && is_constant_size_lhs)
3476 if (maybe_ne (size_from_arg0, size_from_lhs))
3477 {
3478 error ("%<DEFERRED_INIT%> calls should have same "
3479 "constant size for the first argument and LHS");
3480 return true;
3481 }
3482 }
3483
3484 /* ??? The C frontend passes unpromoted arguments in case it
3485 didn't see a function declaration before the call. So for now
3486 leave the call arguments mostly unverified. Once we gimplify
3487 unit-at-a-time we have a chance to fix this. */
3488 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3489 {
3490 tree arg = gimple_call_arg (stmt, i);
3491 if ((is_gimple_reg_type (TREE_TYPE (arg))
3492 && !is_gimple_val (arg))
3493 || (!is_gimple_reg_type (TREE_TYPE (arg))
3494 && !is_gimple_lvalue (arg)))
3495 {
3496 error ("invalid argument to gimple call");
3497 debug_generic_expr (arg);
3498 return true;
3499 }
3500 if (!is_gimple_reg (arg))
3501 {
3502 if (TREE_CODE (arg) == WITH_SIZE_EXPR)
3503 arg = TREE_OPERAND (arg, 0);
3504 if (verify_types_in_gimple_reference (arg, false))
3505 return true;
3506 }
3507 }
3508
3509 return false;
3510 }
3511
3512 /* Verifies the gimple comparison with the result type TYPE and
3513 the operands OP0 and OP1, comparison code is CODE. */
3514
3515 static bool
verify_gimple_comparison(tree type,tree op0,tree op1,enum tree_code code)3516 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3517 {
3518 tree op0_type = TREE_TYPE (op0);
3519 tree op1_type = TREE_TYPE (op1);
3520
3521 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3522 {
3523 error ("invalid operands in gimple comparison");
3524 return true;
3525 }
3526
3527 /* For comparisons we do not have the operations type as the
3528 effective type the comparison is carried out in. Instead
3529 we require that either the first operand is trivially
3530 convertible into the second, or the other way around. */
3531 if (!useless_type_conversion_p (op0_type, op1_type)
3532 && !useless_type_conversion_p (op1_type, op0_type))
3533 {
3534 error ("mismatching comparison operand types");
3535 debug_generic_expr (op0_type);
3536 debug_generic_expr (op1_type);
3537 return true;
3538 }
3539
3540 /* The resulting type of a comparison may be an effective boolean type. */
3541 if (INTEGRAL_TYPE_P (type)
3542 && (TREE_CODE (type) == BOOLEAN_TYPE
3543 || TYPE_PRECISION (type) == 1))
3544 {
3545 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3546 || TREE_CODE (op1_type) == VECTOR_TYPE)
3547 && code != EQ_EXPR && code != NE_EXPR
3548 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3549 && !VECTOR_INTEGER_TYPE_P (op0_type))
3550 {
3551 error ("unsupported operation or type for vector comparison"
3552 " returning a boolean");
3553 debug_generic_expr (op0_type);
3554 debug_generic_expr (op1_type);
3555 return true;
3556 }
3557 }
3558 /* Or a boolean vector type with the same element count
3559 as the comparison operand types. */
3560 else if (TREE_CODE (type) == VECTOR_TYPE
3561 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3562 {
3563 if (TREE_CODE (op0_type) != VECTOR_TYPE
3564 || TREE_CODE (op1_type) != VECTOR_TYPE)
3565 {
3566 error ("non-vector operands in vector comparison");
3567 debug_generic_expr (op0_type);
3568 debug_generic_expr (op1_type);
3569 return true;
3570 }
3571
3572 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type),
3573 TYPE_VECTOR_SUBPARTS (op0_type)))
3574 {
3575 error ("invalid vector comparison resulting type");
3576 debug_generic_expr (type);
3577 return true;
3578 }
3579 }
3580 else
3581 {
3582 error ("bogus comparison result type");
3583 debug_generic_expr (type);
3584 return true;
3585 }
3586
3587 return false;
3588 }
3589
3590 /* Verify a gimple assignment statement STMT with an unary rhs.
3591 Returns true if anything is wrong. */
3592
3593 static bool
verify_gimple_assign_unary(gassign * stmt)3594 verify_gimple_assign_unary (gassign *stmt)
3595 {
3596 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3597 tree lhs = gimple_assign_lhs (stmt);
3598 tree lhs_type = TREE_TYPE (lhs);
3599 tree rhs1 = gimple_assign_rhs1 (stmt);
3600 tree rhs1_type = TREE_TYPE (rhs1);
3601
3602 if (!is_gimple_reg (lhs))
3603 {
3604 error ("non-register as LHS of unary operation");
3605 return true;
3606 }
3607
3608 if (!is_gimple_val (rhs1))
3609 {
3610 error ("invalid operand in unary operation");
3611 return true;
3612 }
3613
3614 const char* const code_name = get_tree_code_name (rhs_code);
3615
3616 /* First handle conversions. */
3617 switch (rhs_code)
3618 {
3619 CASE_CONVERT:
3620 {
3621 /* Allow conversions between vectors with the same number of elements,
3622 provided that the conversion is OK for the element types too. */
3623 if (VECTOR_TYPE_P (lhs_type)
3624 && VECTOR_TYPE_P (rhs1_type)
3625 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
3626 TYPE_VECTOR_SUBPARTS (rhs1_type)))
3627 {
3628 lhs_type = TREE_TYPE (lhs_type);
3629 rhs1_type = TREE_TYPE (rhs1_type);
3630 }
3631 else if (VECTOR_TYPE_P (lhs_type) || VECTOR_TYPE_P (rhs1_type))
3632 {
3633 error ("invalid vector types in nop conversion");
3634 debug_generic_expr (lhs_type);
3635 debug_generic_expr (rhs1_type);
3636 return true;
3637 }
3638
3639 /* Allow conversions from pointer type to integral type only if
3640 there is no sign or zero extension involved.
3641 For targets were the precision of ptrofftype doesn't match that
3642 of pointers we allow conversions to types where
3643 POINTERS_EXTEND_UNSIGNED specifies how that works. */
3644 if ((POINTER_TYPE_P (lhs_type)
3645 && INTEGRAL_TYPE_P (rhs1_type))
3646 || (POINTER_TYPE_P (rhs1_type)
3647 && INTEGRAL_TYPE_P (lhs_type)
3648 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3649 #if defined(POINTERS_EXTEND_UNSIGNED)
3650 || (TYPE_MODE (rhs1_type) == ptr_mode
3651 && (TYPE_PRECISION (lhs_type)
3652 == BITS_PER_WORD /* word_mode */
3653 || (TYPE_PRECISION (lhs_type)
3654 == GET_MODE_PRECISION (Pmode))))
3655 #endif
3656 )))
3657 return false;
3658
3659 /* Allow conversion from integral to offset type and vice versa. */
3660 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3661 && INTEGRAL_TYPE_P (rhs1_type))
3662 || (INTEGRAL_TYPE_P (lhs_type)
3663 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3664 return false;
3665
3666 /* Otherwise assert we are converting between types of the
3667 same kind. */
3668 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3669 {
3670 error ("invalid types in nop conversion");
3671 debug_generic_expr (lhs_type);
3672 debug_generic_expr (rhs1_type);
3673 return true;
3674 }
3675
3676 return false;
3677 }
3678
3679 case ADDR_SPACE_CONVERT_EXPR:
3680 {
3681 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3682 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3683 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3684 {
3685 error ("invalid types in address space conversion");
3686 debug_generic_expr (lhs_type);
3687 debug_generic_expr (rhs1_type);
3688 return true;
3689 }
3690
3691 return false;
3692 }
3693
3694 case FIXED_CONVERT_EXPR:
3695 {
3696 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3697 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3698 {
3699 error ("invalid types in fixed-point conversion");
3700 debug_generic_expr (lhs_type);
3701 debug_generic_expr (rhs1_type);
3702 return true;
3703 }
3704
3705 return false;
3706 }
3707
3708 case FLOAT_EXPR:
3709 {
3710 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3711 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3712 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3713 {
3714 error ("invalid types in conversion to floating-point");
3715 debug_generic_expr (lhs_type);
3716 debug_generic_expr (rhs1_type);
3717 return true;
3718 }
3719
3720 return false;
3721 }
3722
3723 case FIX_TRUNC_EXPR:
3724 {
3725 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3726 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3727 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3728 {
3729 error ("invalid types in conversion to integer");
3730 debug_generic_expr (lhs_type);
3731 debug_generic_expr (rhs1_type);
3732 return true;
3733 }
3734
3735 return false;
3736 }
3737
3738 case VEC_UNPACK_HI_EXPR:
3739 case VEC_UNPACK_LO_EXPR:
3740 case VEC_UNPACK_FLOAT_HI_EXPR:
3741 case VEC_UNPACK_FLOAT_LO_EXPR:
3742 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
3743 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
3744 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3745 || TREE_CODE (lhs_type) != VECTOR_TYPE
3746 || (!INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3747 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type)))
3748 || (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3749 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3750 || ((rhs_code == VEC_UNPACK_HI_EXPR
3751 || rhs_code == VEC_UNPACK_LO_EXPR)
3752 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3753 != INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3754 || ((rhs_code == VEC_UNPACK_FLOAT_HI_EXPR
3755 || rhs_code == VEC_UNPACK_FLOAT_LO_EXPR)
3756 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3757 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))))
3758 || ((rhs_code == VEC_UNPACK_FIX_TRUNC_HI_EXPR
3759 || rhs_code == VEC_UNPACK_FIX_TRUNC_LO_EXPR)
3760 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3761 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))))
3762 || (maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
3763 2 * GET_MODE_SIZE (element_mode (rhs1_type)))
3764 && (!VECTOR_BOOLEAN_TYPE_P (lhs_type)
3765 || !VECTOR_BOOLEAN_TYPE_P (rhs1_type)))
3766 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (lhs_type),
3767 TYPE_VECTOR_SUBPARTS (rhs1_type)))
3768 {
3769 error ("type mismatch in %qs expression", code_name);
3770 debug_generic_expr (lhs_type);
3771 debug_generic_expr (rhs1_type);
3772 return true;
3773 }
3774
3775 return false;
3776
3777 case NEGATE_EXPR:
3778 case ABS_EXPR:
3779 case BIT_NOT_EXPR:
3780 case PAREN_EXPR:
3781 case CONJ_EXPR:
3782 /* Disallow pointer and offset types for many of the unary gimple. */
3783 if (POINTER_TYPE_P (lhs_type)
3784 || TREE_CODE (lhs_type) == OFFSET_TYPE)
3785 {
3786 error ("invalid types for %qs", code_name);
3787 debug_generic_expr (lhs_type);
3788 debug_generic_expr (rhs1_type);
3789 return true;
3790 }
3791 break;
3792
3793 case ABSU_EXPR:
3794 if (!ANY_INTEGRAL_TYPE_P (lhs_type)
3795 || !TYPE_UNSIGNED (lhs_type)
3796 || !ANY_INTEGRAL_TYPE_P (rhs1_type)
3797 || TYPE_UNSIGNED (rhs1_type)
3798 || element_precision (lhs_type) != element_precision (rhs1_type))
3799 {
3800 error ("invalid types for %qs", code_name);
3801 debug_generic_expr (lhs_type);
3802 debug_generic_expr (rhs1_type);
3803 return true;
3804 }
3805 return false;
3806
3807 case VEC_DUPLICATE_EXPR:
3808 if (TREE_CODE (lhs_type) != VECTOR_TYPE
3809 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
3810 {
3811 error ("%qs should be from a scalar to a like vector", code_name);
3812 debug_generic_expr (lhs_type);
3813 debug_generic_expr (rhs1_type);
3814 return true;
3815 }
3816 return false;
3817
3818 default:
3819 gcc_unreachable ();
3820 }
3821
3822 /* For the remaining codes assert there is no conversion involved. */
3823 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3824 {
3825 error ("non-trivial conversion in unary operation");
3826 debug_generic_expr (lhs_type);
3827 debug_generic_expr (rhs1_type);
3828 return true;
3829 }
3830
3831 return false;
3832 }
3833
3834 /* Verify a gimple assignment statement STMT with a binary rhs.
3835 Returns true if anything is wrong. */
3836
3837 static bool
verify_gimple_assign_binary(gassign * stmt)3838 verify_gimple_assign_binary (gassign *stmt)
3839 {
3840 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3841 tree lhs = gimple_assign_lhs (stmt);
3842 tree lhs_type = TREE_TYPE (lhs);
3843 tree rhs1 = gimple_assign_rhs1 (stmt);
3844 tree rhs1_type = TREE_TYPE (rhs1);
3845 tree rhs2 = gimple_assign_rhs2 (stmt);
3846 tree rhs2_type = TREE_TYPE (rhs2);
3847
3848 if (!is_gimple_reg (lhs))
3849 {
3850 error ("non-register as LHS of binary operation");
3851 return true;
3852 }
3853
3854 if (!is_gimple_val (rhs1)
3855 || !is_gimple_val (rhs2))
3856 {
3857 error ("invalid operands in binary operation");
3858 return true;
3859 }
3860
3861 const char* const code_name = get_tree_code_name (rhs_code);
3862
3863 /* First handle operations that involve different types. */
3864 switch (rhs_code)
3865 {
3866 case COMPLEX_EXPR:
3867 {
3868 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3869 || !(INTEGRAL_TYPE_P (rhs1_type)
3870 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3871 || !(INTEGRAL_TYPE_P (rhs2_type)
3872 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3873 {
3874 error ("type mismatch in %qs", code_name);
3875 debug_generic_expr (lhs_type);
3876 debug_generic_expr (rhs1_type);
3877 debug_generic_expr (rhs2_type);
3878 return true;
3879 }
3880
3881 return false;
3882 }
3883
3884 case LSHIFT_EXPR:
3885 case RSHIFT_EXPR:
3886 case LROTATE_EXPR:
3887 case RROTATE_EXPR:
3888 {
3889 /* Shifts and rotates are ok on integral types, fixed point
3890 types and integer vector types. */
3891 if ((!INTEGRAL_TYPE_P (rhs1_type)
3892 && !FIXED_POINT_TYPE_P (rhs1_type)
3893 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3894 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3895 || (!INTEGRAL_TYPE_P (rhs2_type)
3896 /* Vector shifts of vectors are also ok. */
3897 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3898 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3899 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3900 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3901 || !useless_type_conversion_p (lhs_type, rhs1_type))
3902 {
3903 error ("type mismatch in %qs", code_name);
3904 debug_generic_expr (lhs_type);
3905 debug_generic_expr (rhs1_type);
3906 debug_generic_expr (rhs2_type);
3907 return true;
3908 }
3909
3910 return false;
3911 }
3912
3913 case WIDEN_LSHIFT_EXPR:
3914 {
3915 if (!INTEGRAL_TYPE_P (lhs_type)
3916 || !INTEGRAL_TYPE_P (rhs1_type)
3917 || TREE_CODE (rhs2) != INTEGER_CST
3918 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3919 {
3920 error ("type mismatch in %qs", code_name);
3921 debug_generic_expr (lhs_type);
3922 debug_generic_expr (rhs1_type);
3923 debug_generic_expr (rhs2_type);
3924 return true;
3925 }
3926
3927 return false;
3928 }
3929
3930 case VEC_WIDEN_LSHIFT_HI_EXPR:
3931 case VEC_WIDEN_LSHIFT_LO_EXPR:
3932 {
3933 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3934 || TREE_CODE (lhs_type) != VECTOR_TYPE
3935 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3936 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3937 || TREE_CODE (rhs2) != INTEGER_CST
3938 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3939 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3940 {
3941 error ("type mismatch in %qs", code_name);
3942 debug_generic_expr (lhs_type);
3943 debug_generic_expr (rhs1_type);
3944 debug_generic_expr (rhs2_type);
3945 return true;
3946 }
3947
3948 return false;
3949 }
3950
3951 case WIDEN_PLUS_EXPR:
3952 case WIDEN_MINUS_EXPR:
3953 case PLUS_EXPR:
3954 case MINUS_EXPR:
3955 {
3956 tree lhs_etype = lhs_type;
3957 tree rhs1_etype = rhs1_type;
3958 tree rhs2_etype = rhs2_type;
3959 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3960 {
3961 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3962 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3963 {
3964 error ("invalid non-vector operands to %qs", code_name);
3965 return true;
3966 }
3967 lhs_etype = TREE_TYPE (lhs_type);
3968 rhs1_etype = TREE_TYPE (rhs1_type);
3969 rhs2_etype = TREE_TYPE (rhs2_type);
3970 }
3971 if (POINTER_TYPE_P (lhs_etype)
3972 || POINTER_TYPE_P (rhs1_etype)
3973 || POINTER_TYPE_P (rhs2_etype))
3974 {
3975 error ("invalid (pointer) operands %qs", code_name);
3976 return true;
3977 }
3978
3979 /* Continue with generic binary expression handling. */
3980 break;
3981 }
3982
3983 case POINTER_PLUS_EXPR:
3984 {
3985 if (!POINTER_TYPE_P (rhs1_type)
3986 || !useless_type_conversion_p (lhs_type, rhs1_type)
3987 || !ptrofftype_p (rhs2_type))
3988 {
3989 error ("type mismatch in %qs", code_name);
3990 debug_generic_stmt (lhs_type);
3991 debug_generic_stmt (rhs1_type);
3992 debug_generic_stmt (rhs2_type);
3993 return true;
3994 }
3995
3996 return false;
3997 }
3998
3999 case POINTER_DIFF_EXPR:
4000 {
4001 if (!POINTER_TYPE_P (rhs1_type)
4002 || !POINTER_TYPE_P (rhs2_type)
4003 /* Because we special-case pointers to void we allow difference
4004 of arbitrary pointers with the same mode. */
4005 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
4006 || !INTEGRAL_TYPE_P (lhs_type)
4007 || TYPE_UNSIGNED (lhs_type)
4008 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
4009 {
4010 error ("type mismatch in %qs", code_name);
4011 debug_generic_stmt (lhs_type);
4012 debug_generic_stmt (rhs1_type);
4013 debug_generic_stmt (rhs2_type);
4014 return true;
4015 }
4016
4017 return false;
4018 }
4019
4020 case TRUTH_ANDIF_EXPR:
4021 case TRUTH_ORIF_EXPR:
4022 case TRUTH_AND_EXPR:
4023 case TRUTH_OR_EXPR:
4024 case TRUTH_XOR_EXPR:
4025
4026 gcc_unreachable ();
4027
4028 case LT_EXPR:
4029 case LE_EXPR:
4030 case GT_EXPR:
4031 case GE_EXPR:
4032 case EQ_EXPR:
4033 case NE_EXPR:
4034 case UNORDERED_EXPR:
4035 case ORDERED_EXPR:
4036 case UNLT_EXPR:
4037 case UNLE_EXPR:
4038 case UNGT_EXPR:
4039 case UNGE_EXPR:
4040 case UNEQ_EXPR:
4041 case LTGT_EXPR:
4042 /* Comparisons are also binary, but the result type is not
4043 connected to the operand types. */
4044 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
4045
4046 case WIDEN_MULT_EXPR:
4047 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
4048 return true;
4049 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
4050 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
4051
4052 case WIDEN_SUM_EXPR:
4053 {
4054 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4055 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4056 && ((!INTEGRAL_TYPE_P (rhs1_type)
4057 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4058 || (!INTEGRAL_TYPE_P (lhs_type)
4059 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4060 || !useless_type_conversion_p (lhs_type, rhs2_type)
4061 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)),
4062 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4063 {
4064 error ("type mismatch in %qs", code_name);
4065 debug_generic_expr (lhs_type);
4066 debug_generic_expr (rhs1_type);
4067 debug_generic_expr (rhs2_type);
4068 return true;
4069 }
4070 return false;
4071 }
4072
4073 case VEC_WIDEN_MINUS_HI_EXPR:
4074 case VEC_WIDEN_MINUS_LO_EXPR:
4075 case VEC_WIDEN_PLUS_HI_EXPR:
4076 case VEC_WIDEN_PLUS_LO_EXPR:
4077 case VEC_WIDEN_MULT_HI_EXPR:
4078 case VEC_WIDEN_MULT_LO_EXPR:
4079 case VEC_WIDEN_MULT_EVEN_EXPR:
4080 case VEC_WIDEN_MULT_ODD_EXPR:
4081 {
4082 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4083 || TREE_CODE (lhs_type) != VECTOR_TYPE
4084 || !types_compatible_p (rhs1_type, rhs2_type)
4085 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
4086 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4087 {
4088 error ("type mismatch in %qs", code_name);
4089 debug_generic_expr (lhs_type);
4090 debug_generic_expr (rhs1_type);
4091 debug_generic_expr (rhs2_type);
4092 return true;
4093 }
4094 return false;
4095 }
4096
4097 case VEC_PACK_TRUNC_EXPR:
4098 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4099 vector boolean types. */
4100 if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
4101 && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4102 && types_compatible_p (rhs1_type, rhs2_type)
4103 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
4104 2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
4105 return false;
4106
4107 /* Fallthru. */
4108 case VEC_PACK_SAT_EXPR:
4109 case VEC_PACK_FIX_TRUNC_EXPR:
4110 {
4111 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4112 || TREE_CODE (lhs_type) != VECTOR_TYPE
4113 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
4114 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
4115 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
4116 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4117 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
4118 || !types_compatible_p (rhs1_type, rhs2_type)
4119 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4120 2 * GET_MODE_SIZE (element_mode (lhs_type)))
4121 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type),
4122 TYPE_VECTOR_SUBPARTS (lhs_type)))
4123 {
4124 error ("type mismatch in %qs", code_name);
4125 debug_generic_expr (lhs_type);
4126 debug_generic_expr (rhs1_type);
4127 debug_generic_expr (rhs2_type);
4128 return true;
4129 }
4130
4131 return false;
4132 }
4133
4134 case VEC_PACK_FLOAT_EXPR:
4135 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4136 || TREE_CODE (lhs_type) != VECTOR_TYPE
4137 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4138 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))
4139 || !types_compatible_p (rhs1_type, rhs2_type)
4140 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4141 2 * GET_MODE_SIZE (element_mode (lhs_type)))
4142 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type),
4143 TYPE_VECTOR_SUBPARTS (lhs_type)))
4144 {
4145 error ("type mismatch in %qs", code_name);
4146 debug_generic_expr (lhs_type);
4147 debug_generic_expr (rhs1_type);
4148 debug_generic_expr (rhs2_type);
4149 return true;
4150 }
4151
4152 return false;
4153
4154 case MULT_EXPR:
4155 case MULT_HIGHPART_EXPR:
4156 case TRUNC_DIV_EXPR:
4157 case CEIL_DIV_EXPR:
4158 case FLOOR_DIV_EXPR:
4159 case ROUND_DIV_EXPR:
4160 case TRUNC_MOD_EXPR:
4161 case CEIL_MOD_EXPR:
4162 case FLOOR_MOD_EXPR:
4163 case ROUND_MOD_EXPR:
4164 case RDIV_EXPR:
4165 case EXACT_DIV_EXPR:
4166 /* Disallow pointer and offset types for many of the binary gimple. */
4167 if (POINTER_TYPE_P (lhs_type)
4168 || TREE_CODE (lhs_type) == OFFSET_TYPE)
4169 {
4170 error ("invalid types for %qs", code_name);
4171 debug_generic_expr (lhs_type);
4172 debug_generic_expr (rhs1_type);
4173 debug_generic_expr (rhs2_type);
4174 return true;
4175 }
4176 /* Continue with generic binary expression handling. */
4177 break;
4178
4179 case MIN_EXPR:
4180 case MAX_EXPR:
4181 case BIT_IOR_EXPR:
4182 case BIT_XOR_EXPR:
4183 case BIT_AND_EXPR:
4184 /* Continue with generic binary expression handling. */
4185 break;
4186
4187 case VEC_SERIES_EXPR:
4188 if (!useless_type_conversion_p (rhs1_type, rhs2_type))
4189 {
4190 error ("type mismatch in %qs", code_name);
4191 debug_generic_expr (rhs1_type);
4192 debug_generic_expr (rhs2_type);
4193 return true;
4194 }
4195 if (TREE_CODE (lhs_type) != VECTOR_TYPE
4196 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
4197 {
4198 error ("vector type expected in %qs", code_name);
4199 debug_generic_expr (lhs_type);
4200 return true;
4201 }
4202 return false;
4203
4204 default:
4205 gcc_unreachable ();
4206 }
4207
4208 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4209 || !useless_type_conversion_p (lhs_type, rhs2_type))
4210 {
4211 error ("type mismatch in binary expression");
4212 debug_generic_stmt (lhs_type);
4213 debug_generic_stmt (rhs1_type);
4214 debug_generic_stmt (rhs2_type);
4215 return true;
4216 }
4217
4218 return false;
4219 }
4220
4221 /* Verify a gimple assignment statement STMT with a ternary rhs.
4222 Returns true if anything is wrong. */
4223
4224 static bool
verify_gimple_assign_ternary(gassign * stmt)4225 verify_gimple_assign_ternary (gassign *stmt)
4226 {
4227 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4228 tree lhs = gimple_assign_lhs (stmt);
4229 tree lhs_type = TREE_TYPE (lhs);
4230 tree rhs1 = gimple_assign_rhs1 (stmt);
4231 tree rhs1_type = TREE_TYPE (rhs1);
4232 tree rhs2 = gimple_assign_rhs2 (stmt);
4233 tree rhs2_type = TREE_TYPE (rhs2);
4234 tree rhs3 = gimple_assign_rhs3 (stmt);
4235 tree rhs3_type = TREE_TYPE (rhs3);
4236
4237 if (!is_gimple_reg (lhs))
4238 {
4239 error ("non-register as LHS of ternary operation");
4240 return true;
4241 }
4242
4243 if ((rhs_code == COND_EXPR
4244 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4245 || !is_gimple_val (rhs2)
4246 || !is_gimple_val (rhs3))
4247 {
4248 error ("invalid operands in ternary operation");
4249 return true;
4250 }
4251
4252 const char* const code_name = get_tree_code_name (rhs_code);
4253
4254 /* First handle operations that involve different types. */
4255 switch (rhs_code)
4256 {
4257 case WIDEN_MULT_PLUS_EXPR:
4258 case WIDEN_MULT_MINUS_EXPR:
4259 if ((!INTEGRAL_TYPE_P (rhs1_type)
4260 && !FIXED_POINT_TYPE_P (rhs1_type))
4261 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4262 || !useless_type_conversion_p (lhs_type, rhs3_type)
4263 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4264 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4265 {
4266 error ("type mismatch in %qs", code_name);
4267 debug_generic_expr (lhs_type);
4268 debug_generic_expr (rhs1_type);
4269 debug_generic_expr (rhs2_type);
4270 debug_generic_expr (rhs3_type);
4271 return true;
4272 }
4273 break;
4274
4275 case VEC_COND_EXPR:
4276 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4277 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4278 TYPE_VECTOR_SUBPARTS (lhs_type)))
4279 {
4280 error ("the first argument of a %qs must be of a "
4281 "boolean vector type of the same number of elements "
4282 "as the result", code_name);
4283 debug_generic_expr (lhs_type);
4284 debug_generic_expr (rhs1_type);
4285 return true;
4286 }
4287 if (!is_gimple_val (rhs1))
4288 return true;
4289 /* Fallthrough. */
4290 case COND_EXPR:
4291 if (!is_gimple_val (rhs1)
4292 && (!is_gimple_condexpr (rhs1)
4293 || verify_gimple_comparison (TREE_TYPE (rhs1),
4294 TREE_OPERAND (rhs1, 0),
4295 TREE_OPERAND (rhs1, 1),
4296 TREE_CODE (rhs1))))
4297 return true;
4298 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4299 || !useless_type_conversion_p (lhs_type, rhs3_type))
4300 {
4301 error ("type mismatch in %qs", code_name);
4302 debug_generic_expr (lhs_type);
4303 debug_generic_expr (rhs2_type);
4304 debug_generic_expr (rhs3_type);
4305 return true;
4306 }
4307 break;
4308
4309 case VEC_PERM_EXPR:
4310 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4311 || !useless_type_conversion_p (lhs_type, rhs2_type))
4312 {
4313 error ("type mismatch in %qs", code_name);
4314 debug_generic_expr (lhs_type);
4315 debug_generic_expr (rhs1_type);
4316 debug_generic_expr (rhs2_type);
4317 debug_generic_expr (rhs3_type);
4318 return true;
4319 }
4320
4321 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4322 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4323 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4324 {
4325 error ("vector types expected in %qs", code_name);
4326 debug_generic_expr (lhs_type);
4327 debug_generic_expr (rhs1_type);
4328 debug_generic_expr (rhs2_type);
4329 debug_generic_expr (rhs3_type);
4330 return true;
4331 }
4332
4333 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4334 TYPE_VECTOR_SUBPARTS (rhs2_type))
4335 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type),
4336 TYPE_VECTOR_SUBPARTS (rhs3_type))
4337 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type),
4338 TYPE_VECTOR_SUBPARTS (lhs_type)))
4339 {
4340 error ("vectors with different element number found in %qs",
4341 code_name);
4342 debug_generic_expr (lhs_type);
4343 debug_generic_expr (rhs1_type);
4344 debug_generic_expr (rhs2_type);
4345 debug_generic_expr (rhs3_type);
4346 return true;
4347 }
4348
4349 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4350 || (TREE_CODE (rhs3) != VECTOR_CST
4351 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4352 (TREE_TYPE (rhs3_type)))
4353 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4354 (TREE_TYPE (rhs1_type))))))
4355 {
4356 error ("invalid mask type in %qs", code_name);
4357 debug_generic_expr (lhs_type);
4358 debug_generic_expr (rhs1_type);
4359 debug_generic_expr (rhs2_type);
4360 debug_generic_expr (rhs3_type);
4361 return true;
4362 }
4363
4364 return false;
4365
4366 case SAD_EXPR:
4367 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4368 || !useless_type_conversion_p (lhs_type, rhs3_type)
4369 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4370 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4371 {
4372 error ("type mismatch in %qs", code_name);
4373 debug_generic_expr (lhs_type);
4374 debug_generic_expr (rhs1_type);
4375 debug_generic_expr (rhs2_type);
4376 debug_generic_expr (rhs3_type);
4377 return true;
4378 }
4379
4380 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4381 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4382 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4383 {
4384 error ("vector types expected in %qs", code_name);
4385 debug_generic_expr (lhs_type);
4386 debug_generic_expr (rhs1_type);
4387 debug_generic_expr (rhs2_type);
4388 debug_generic_expr (rhs3_type);
4389 return true;
4390 }
4391
4392 return false;
4393
4394 case BIT_INSERT_EXPR:
4395 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4396 {
4397 error ("type mismatch in %qs", code_name);
4398 debug_generic_expr (lhs_type);
4399 debug_generic_expr (rhs1_type);
4400 return true;
4401 }
4402 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4403 && INTEGRAL_TYPE_P (rhs2_type))
4404 /* Vector element insert. */
4405 || (VECTOR_TYPE_P (rhs1_type)
4406 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))
4407 /* Aligned sub-vector insert. */
4408 || (VECTOR_TYPE_P (rhs1_type)
4409 && VECTOR_TYPE_P (rhs2_type)
4410 && types_compatible_p (TREE_TYPE (rhs1_type),
4411 TREE_TYPE (rhs2_type))
4412 && multiple_p (TYPE_VECTOR_SUBPARTS (rhs1_type),
4413 TYPE_VECTOR_SUBPARTS (rhs2_type))
4414 && multiple_p (wi::to_poly_offset (rhs3),
4415 wi::to_poly_offset (TYPE_SIZE (rhs2_type))))))
4416 {
4417 error ("not allowed type combination in %qs", code_name);
4418 debug_generic_expr (rhs1_type);
4419 debug_generic_expr (rhs2_type);
4420 return true;
4421 }
4422 if (! tree_fits_uhwi_p (rhs3)
4423 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4424 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4425 {
4426 error ("invalid position or size in %qs", code_name);
4427 return true;
4428 }
4429 if (INTEGRAL_TYPE_P (rhs1_type)
4430 && !type_has_mode_precision_p (rhs1_type))
4431 {
4432 error ("%qs into non-mode-precision operand", code_name);
4433 return true;
4434 }
4435 if (INTEGRAL_TYPE_P (rhs1_type))
4436 {
4437 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4438 if (bitpos >= TYPE_PRECISION (rhs1_type)
4439 || (bitpos + TYPE_PRECISION (rhs2_type)
4440 > TYPE_PRECISION (rhs1_type)))
4441 {
4442 error ("insertion out of range in %qs", code_name);
4443 return true;
4444 }
4445 }
4446 else if (VECTOR_TYPE_P (rhs1_type))
4447 {
4448 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4449 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4450 if (bitpos % bitsize != 0)
4451 {
4452 error ("%qs not at element boundary", code_name);
4453 return true;
4454 }
4455 }
4456 return false;
4457
4458 case DOT_PROD_EXPR:
4459 {
4460 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4461 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4462 && ((!INTEGRAL_TYPE_P (rhs1_type)
4463 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4464 || (!INTEGRAL_TYPE_P (lhs_type)
4465 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4466 /* rhs1_type and rhs2_type may differ in sign. */
4467 || !tree_nop_conversion_p (rhs1_type, rhs2_type)
4468 || !useless_type_conversion_p (lhs_type, rhs3_type)
4469 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)),
4470 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4471 {
4472 error ("type mismatch in %qs", code_name);
4473 debug_generic_expr (lhs_type);
4474 debug_generic_expr (rhs1_type);
4475 debug_generic_expr (rhs2_type);
4476 return true;
4477 }
4478 return false;
4479 }
4480
4481 case REALIGN_LOAD_EXPR:
4482 /* FIXME. */
4483 return false;
4484
4485 default:
4486 gcc_unreachable ();
4487 }
4488 return false;
4489 }
4490
4491 /* Verify a gimple assignment statement STMT with a single rhs.
4492 Returns true if anything is wrong. */
4493
4494 static bool
verify_gimple_assign_single(gassign * stmt)4495 verify_gimple_assign_single (gassign *stmt)
4496 {
4497 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4498 tree lhs = gimple_assign_lhs (stmt);
4499 tree lhs_type = TREE_TYPE (lhs);
4500 tree rhs1 = gimple_assign_rhs1 (stmt);
4501 tree rhs1_type = TREE_TYPE (rhs1);
4502 bool res = false;
4503
4504 const char* const code_name = get_tree_code_name (rhs_code);
4505
4506 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4507 {
4508 error ("non-trivial conversion in %qs", code_name);
4509 debug_generic_expr (lhs_type);
4510 debug_generic_expr (rhs1_type);
4511 return true;
4512 }
4513
4514 if (gimple_clobber_p (stmt)
4515 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4516 {
4517 error ("%qs LHS in clobber statement",
4518 get_tree_code_name (TREE_CODE (lhs)));
4519 debug_generic_expr (lhs);
4520 return true;
4521 }
4522
4523 if (TREE_CODE (lhs) == WITH_SIZE_EXPR)
4524 {
4525 error ("%qs LHS in assignment statement",
4526 get_tree_code_name (TREE_CODE (lhs)));
4527 debug_generic_expr (lhs);
4528 return true;
4529 }
4530
4531 if (handled_component_p (lhs)
4532 || TREE_CODE (lhs) == MEM_REF
4533 || TREE_CODE (lhs) == TARGET_MEM_REF)
4534 res |= verify_types_in_gimple_reference (lhs, true);
4535
4536 /* Special codes we cannot handle via their class. */
4537 switch (rhs_code)
4538 {
4539 case ADDR_EXPR:
4540 {
4541 tree op = TREE_OPERAND (rhs1, 0);
4542 if (!is_gimple_addressable (op))
4543 {
4544 error ("invalid operand in %qs", code_name);
4545 return true;
4546 }
4547
4548 /* Technically there is no longer a need for matching types, but
4549 gimple hygiene asks for this check. In LTO we can end up
4550 combining incompatible units and thus end up with addresses
4551 of globals that change their type to a common one. */
4552 if (!in_lto_p
4553 && !types_compatible_p (TREE_TYPE (op),
4554 TREE_TYPE (TREE_TYPE (rhs1)))
4555 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4556 TREE_TYPE (op)))
4557 {
4558 error ("type mismatch in %qs", code_name);
4559 debug_generic_stmt (TREE_TYPE (rhs1));
4560 debug_generic_stmt (TREE_TYPE (op));
4561 return true;
4562 }
4563
4564 return (verify_address (rhs1, true)
4565 || verify_types_in_gimple_reference (op, true));
4566 }
4567
4568 /* tcc_reference */
4569 case INDIRECT_REF:
4570 error ("%qs in gimple IL", code_name);
4571 return true;
4572
4573 case COMPONENT_REF:
4574 case BIT_FIELD_REF:
4575 case ARRAY_REF:
4576 case ARRAY_RANGE_REF:
4577 case VIEW_CONVERT_EXPR:
4578 case REALPART_EXPR:
4579 case IMAGPART_EXPR:
4580 case TARGET_MEM_REF:
4581 case MEM_REF:
4582 if (!is_gimple_reg (lhs)
4583 && is_gimple_reg_type (TREE_TYPE (lhs)))
4584 {
4585 error ("invalid RHS for gimple memory store: %qs", code_name);
4586 debug_generic_stmt (lhs);
4587 debug_generic_stmt (rhs1);
4588 return true;
4589 }
4590 return res || verify_types_in_gimple_reference (rhs1, false);
4591
4592 /* tcc_constant */
4593 case SSA_NAME:
4594 case INTEGER_CST:
4595 case REAL_CST:
4596 case FIXED_CST:
4597 case COMPLEX_CST:
4598 case VECTOR_CST:
4599 case STRING_CST:
4600 return res;
4601
4602 /* tcc_declaration */
4603 case CONST_DECL:
4604 return res;
4605 case VAR_DECL:
4606 case PARM_DECL:
4607 if (!is_gimple_reg (lhs)
4608 && !is_gimple_reg (rhs1)
4609 && is_gimple_reg_type (TREE_TYPE (lhs)))
4610 {
4611 error ("invalid RHS for gimple memory store: %qs", code_name);
4612 debug_generic_stmt (lhs);
4613 debug_generic_stmt (rhs1);
4614 return true;
4615 }
4616 return res;
4617
4618 case CONSTRUCTOR:
4619 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4620 {
4621 unsigned int i;
4622 tree elt_i, elt_v, elt_t = NULL_TREE;
4623
4624 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4625 return res;
4626 /* For vector CONSTRUCTORs we require that either it is empty
4627 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4628 (then the element count must be correct to cover the whole
4629 outer vector and index must be NULL on all elements, or it is
4630 a CONSTRUCTOR of scalar elements, where we as an exception allow
4631 smaller number of elements (assuming zero filling) and
4632 consecutive indexes as compared to NULL indexes (such
4633 CONSTRUCTORs can appear in the IL from FEs). */
4634 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4635 {
4636 if (elt_t == NULL_TREE)
4637 {
4638 elt_t = TREE_TYPE (elt_v);
4639 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4640 {
4641 tree elt_t = TREE_TYPE (elt_v);
4642 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4643 TREE_TYPE (elt_t)))
4644 {
4645 error ("incorrect type of vector %qs elements",
4646 code_name);
4647 debug_generic_stmt (rhs1);
4648 return true;
4649 }
4650 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1)
4651 * TYPE_VECTOR_SUBPARTS (elt_t),
4652 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4653 {
4654 error ("incorrect number of vector %qs elements",
4655 code_name);
4656 debug_generic_stmt (rhs1);
4657 return true;
4658 }
4659 }
4660 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4661 elt_t))
4662 {
4663 error ("incorrect type of vector %qs elements",
4664 code_name);
4665 debug_generic_stmt (rhs1);
4666 return true;
4667 }
4668 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1),
4669 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4670 {
4671 error ("incorrect number of vector %qs elements",
4672 code_name);
4673 debug_generic_stmt (rhs1);
4674 return true;
4675 }
4676 }
4677 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4678 {
4679 error ("incorrect type of vector CONSTRUCTOR elements");
4680 debug_generic_stmt (rhs1);
4681 return true;
4682 }
4683 if (elt_i != NULL_TREE
4684 && (TREE_CODE (elt_t) == VECTOR_TYPE
4685 || TREE_CODE (elt_i) != INTEGER_CST
4686 || compare_tree_int (elt_i, i) != 0))
4687 {
4688 error ("vector %qs with non-NULL element index",
4689 code_name);
4690 debug_generic_stmt (rhs1);
4691 return true;
4692 }
4693 if (!is_gimple_val (elt_v))
4694 {
4695 error ("vector %qs element is not a GIMPLE value",
4696 code_name);
4697 debug_generic_stmt (rhs1);
4698 return true;
4699 }
4700 }
4701 }
4702 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4703 {
4704 error ("non-vector %qs with elements", code_name);
4705 debug_generic_stmt (rhs1);
4706 return true;
4707 }
4708 return res;
4709
4710 case ASSERT_EXPR:
4711 /* FIXME. */
4712 rhs1 = fold (ASSERT_EXPR_COND (rhs1));
4713 if (rhs1 == boolean_false_node)
4714 {
4715 error ("%qs with an always-false condition", code_name);
4716 debug_generic_stmt (rhs1);
4717 return true;
4718 }
4719 break;
4720
4721 case WITH_SIZE_EXPR:
4722 error ("%qs RHS in assignment statement",
4723 get_tree_code_name (rhs_code));
4724 debug_generic_expr (rhs1);
4725 return true;
4726
4727 case OBJ_TYPE_REF:
4728 /* FIXME. */
4729 return res;
4730
4731 default:;
4732 }
4733
4734 return res;
4735 }
4736
4737 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4738 is a problem, otherwise false. */
4739
4740 static bool
verify_gimple_assign(gassign * stmt)4741 verify_gimple_assign (gassign *stmt)
4742 {
4743 switch (gimple_assign_rhs_class (stmt))
4744 {
4745 case GIMPLE_SINGLE_RHS:
4746 return verify_gimple_assign_single (stmt);
4747
4748 case GIMPLE_UNARY_RHS:
4749 return verify_gimple_assign_unary (stmt);
4750
4751 case GIMPLE_BINARY_RHS:
4752 return verify_gimple_assign_binary (stmt);
4753
4754 case GIMPLE_TERNARY_RHS:
4755 return verify_gimple_assign_ternary (stmt);
4756
4757 default:
4758 gcc_unreachable ();
4759 }
4760 }
4761
4762 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4763 is a problem, otherwise false. */
4764
4765 static bool
verify_gimple_return(greturn * stmt)4766 verify_gimple_return (greturn *stmt)
4767 {
4768 tree op = gimple_return_retval (stmt);
4769 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4770
4771 /* We cannot test for present return values as we do not fix up missing
4772 return values from the original source. */
4773 if (op == NULL)
4774 return false;
4775
4776 if (!is_gimple_val (op)
4777 && TREE_CODE (op) != RESULT_DECL)
4778 {
4779 error ("invalid operand in return statement");
4780 debug_generic_stmt (op);
4781 return true;
4782 }
4783
4784 if ((TREE_CODE (op) == RESULT_DECL
4785 && DECL_BY_REFERENCE (op))
4786 || (TREE_CODE (op) == SSA_NAME
4787 && SSA_NAME_VAR (op)
4788 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4789 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4790 op = TREE_TYPE (op);
4791
4792 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4793 {
4794 error ("invalid conversion in return statement");
4795 debug_generic_stmt (restype);
4796 debug_generic_stmt (TREE_TYPE (op));
4797 return true;
4798 }
4799
4800 return false;
4801 }
4802
4803
4804 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4805 is a problem, otherwise false. */
4806
4807 static bool
verify_gimple_goto(ggoto * stmt)4808 verify_gimple_goto (ggoto *stmt)
4809 {
4810 tree dest = gimple_goto_dest (stmt);
4811
4812 /* ??? We have two canonical forms of direct goto destinations, a
4813 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4814 if (TREE_CODE (dest) != LABEL_DECL
4815 && (!is_gimple_val (dest)
4816 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4817 {
4818 error ("goto destination is neither a label nor a pointer");
4819 return true;
4820 }
4821
4822 return false;
4823 }
4824
4825 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4826 is a problem, otherwise false. */
4827
4828 static bool
verify_gimple_switch(gswitch * stmt)4829 verify_gimple_switch (gswitch *stmt)
4830 {
4831 unsigned int i, n;
4832 tree elt, prev_upper_bound = NULL_TREE;
4833 tree index_type, elt_type = NULL_TREE;
4834
4835 if (!is_gimple_val (gimple_switch_index (stmt)))
4836 {
4837 error ("invalid operand to switch statement");
4838 debug_generic_stmt (gimple_switch_index (stmt));
4839 return true;
4840 }
4841
4842 index_type = TREE_TYPE (gimple_switch_index (stmt));
4843 if (! INTEGRAL_TYPE_P (index_type))
4844 {
4845 error ("non-integral type switch statement");
4846 debug_generic_expr (index_type);
4847 return true;
4848 }
4849
4850 elt = gimple_switch_label (stmt, 0);
4851 if (CASE_LOW (elt) != NULL_TREE
4852 || CASE_HIGH (elt) != NULL_TREE
4853 || CASE_CHAIN (elt) != NULL_TREE)
4854 {
4855 error ("invalid default case label in switch statement");
4856 debug_generic_expr (elt);
4857 return true;
4858 }
4859
4860 n = gimple_switch_num_labels (stmt);
4861 for (i = 1; i < n; i++)
4862 {
4863 elt = gimple_switch_label (stmt, i);
4864
4865 if (CASE_CHAIN (elt))
4866 {
4867 error ("invalid %<CASE_CHAIN%>");
4868 debug_generic_expr (elt);
4869 return true;
4870 }
4871 if (! CASE_LOW (elt))
4872 {
4873 error ("invalid case label in switch statement");
4874 debug_generic_expr (elt);
4875 return true;
4876 }
4877 if (CASE_HIGH (elt)
4878 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4879 {
4880 error ("invalid case range in switch statement");
4881 debug_generic_expr (elt);
4882 return true;
4883 }
4884
4885 if (! elt_type)
4886 {
4887 elt_type = TREE_TYPE (CASE_LOW (elt));
4888 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4889 {
4890 error ("type precision mismatch in switch statement");
4891 return true;
4892 }
4893 }
4894 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4895 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4896 {
4897 error ("type mismatch for case label in switch statement");
4898 debug_generic_expr (elt);
4899 return true;
4900 }
4901
4902 if (prev_upper_bound)
4903 {
4904 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4905 {
4906 error ("case labels not sorted in switch statement");
4907 return true;
4908 }
4909 }
4910
4911 prev_upper_bound = CASE_HIGH (elt);
4912 if (! prev_upper_bound)
4913 prev_upper_bound = CASE_LOW (elt);
4914 }
4915
4916 return false;
4917 }
4918
4919 /* Verify a gimple debug statement STMT.
4920 Returns true if anything is wrong. */
4921
4922 static bool
verify_gimple_debug(gimple * stmt ATTRIBUTE_UNUSED)4923 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4924 {
4925 /* There isn't much that could be wrong in a gimple debug stmt. A
4926 gimple debug bind stmt, for example, maps a tree, that's usually
4927 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4928 component or member of an aggregate type, to another tree, that
4929 can be an arbitrary expression. These stmts expand into debug
4930 insns, and are converted to debug notes by var-tracking.cc. */
4931 return false;
4932 }
4933
4934 /* Verify a gimple label statement STMT.
4935 Returns true if anything is wrong. */
4936
4937 static bool
verify_gimple_label(glabel * stmt)4938 verify_gimple_label (glabel *stmt)
4939 {
4940 tree decl = gimple_label_label (stmt);
4941 int uid;
4942 bool err = false;
4943
4944 if (TREE_CODE (decl) != LABEL_DECL)
4945 return true;
4946 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4947 && DECL_CONTEXT (decl) != current_function_decl)
4948 {
4949 error ("label context is not the current function declaration");
4950 err |= true;
4951 }
4952
4953 uid = LABEL_DECL_UID (decl);
4954 if (cfun->cfg
4955 && (uid == -1
4956 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4957 {
4958 error ("incorrect entry in %<label_to_block_map%>");
4959 err |= true;
4960 }
4961
4962 uid = EH_LANDING_PAD_NR (decl);
4963 if (uid)
4964 {
4965 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4966 if (decl != lp->post_landing_pad)
4967 {
4968 error ("incorrect setting of landing pad number");
4969 err |= true;
4970 }
4971 }
4972
4973 return err;
4974 }
4975
4976 /* Verify a gimple cond statement STMT.
4977 Returns true if anything is wrong. */
4978
4979 static bool
verify_gimple_cond(gcond * stmt)4980 verify_gimple_cond (gcond *stmt)
4981 {
4982 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4983 {
4984 error ("invalid comparison code in gimple cond");
4985 return true;
4986 }
4987 if (!(!gimple_cond_true_label (stmt)
4988 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4989 || !(!gimple_cond_false_label (stmt)
4990 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4991 {
4992 error ("invalid labels in gimple cond");
4993 return true;
4994 }
4995
4996 return verify_gimple_comparison (boolean_type_node,
4997 gimple_cond_lhs (stmt),
4998 gimple_cond_rhs (stmt),
4999 gimple_cond_code (stmt));
5000 }
5001
5002 /* Verify the GIMPLE statement STMT. Returns true if there is an
5003 error, otherwise false. */
5004
5005 static bool
verify_gimple_stmt(gimple * stmt)5006 verify_gimple_stmt (gimple *stmt)
5007 {
5008 switch (gimple_code (stmt))
5009 {
5010 case GIMPLE_ASSIGN:
5011 return verify_gimple_assign (as_a <gassign *> (stmt));
5012
5013 case GIMPLE_LABEL:
5014 return verify_gimple_label (as_a <glabel *> (stmt));
5015
5016 case GIMPLE_CALL:
5017 return verify_gimple_call (as_a <gcall *> (stmt));
5018
5019 case GIMPLE_COND:
5020 return verify_gimple_cond (as_a <gcond *> (stmt));
5021
5022 case GIMPLE_GOTO:
5023 return verify_gimple_goto (as_a <ggoto *> (stmt));
5024
5025 case GIMPLE_SWITCH:
5026 return verify_gimple_switch (as_a <gswitch *> (stmt));
5027
5028 case GIMPLE_RETURN:
5029 return verify_gimple_return (as_a <greturn *> (stmt));
5030
5031 case GIMPLE_ASM:
5032 return false;
5033
5034 case GIMPLE_TRANSACTION:
5035 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
5036
5037 /* Tuples that do not have tree operands. */
5038 case GIMPLE_NOP:
5039 case GIMPLE_PREDICT:
5040 case GIMPLE_RESX:
5041 case GIMPLE_EH_DISPATCH:
5042 case GIMPLE_EH_MUST_NOT_THROW:
5043 return false;
5044
5045 CASE_GIMPLE_OMP:
5046 /* OpenMP directives are validated by the FE and never operated
5047 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
5048 non-gimple expressions when the main index variable has had
5049 its address taken. This does not affect the loop itself
5050 because the header of an GIMPLE_OMP_FOR is merely used to determine
5051 how to setup the parallel iteration. */
5052 return false;
5053
5054 case GIMPLE_DEBUG:
5055 return verify_gimple_debug (stmt);
5056
5057 default:
5058 gcc_unreachable ();
5059 }
5060 }
5061
5062 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
5063 and false otherwise. */
5064
5065 static bool
verify_gimple_phi(gphi * phi)5066 verify_gimple_phi (gphi *phi)
5067 {
5068 bool err = false;
5069 unsigned i;
5070 tree phi_result = gimple_phi_result (phi);
5071 bool virtual_p;
5072
5073 if (!phi_result)
5074 {
5075 error ("invalid %<PHI%> result");
5076 return true;
5077 }
5078
5079 virtual_p = virtual_operand_p (phi_result);
5080 if (TREE_CODE (phi_result) != SSA_NAME
5081 || (virtual_p
5082 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
5083 {
5084 error ("invalid %<PHI%> result");
5085 err = true;
5086 }
5087
5088 for (i = 0; i < gimple_phi_num_args (phi); i++)
5089 {
5090 tree t = gimple_phi_arg_def (phi, i);
5091
5092 if (!t)
5093 {
5094 error ("missing %<PHI%> def");
5095 err |= true;
5096 continue;
5097 }
5098 /* Addressable variables do have SSA_NAMEs but they
5099 are not considered gimple values. */
5100 else if ((TREE_CODE (t) == SSA_NAME
5101 && virtual_p != virtual_operand_p (t))
5102 || (virtual_p
5103 && (TREE_CODE (t) != SSA_NAME
5104 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
5105 || (!virtual_p
5106 && !is_gimple_val (t)))
5107 {
5108 error ("invalid %<PHI%> argument");
5109 debug_generic_expr (t);
5110 err |= true;
5111 }
5112 #ifdef ENABLE_TYPES_CHECKING
5113 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
5114 {
5115 error ("incompatible types in %<PHI%> argument %u", i);
5116 debug_generic_stmt (TREE_TYPE (phi_result));
5117 debug_generic_stmt (TREE_TYPE (t));
5118 err |= true;
5119 }
5120 #endif
5121 }
5122
5123 return err;
5124 }
5125
5126 /* Verify the GIMPLE statements inside the sequence STMTS. */
5127
5128 static bool
verify_gimple_in_seq_2(gimple_seq stmts)5129 verify_gimple_in_seq_2 (gimple_seq stmts)
5130 {
5131 gimple_stmt_iterator ittr;
5132 bool err = false;
5133
5134 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
5135 {
5136 gimple *stmt = gsi_stmt (ittr);
5137
5138 switch (gimple_code (stmt))
5139 {
5140 case GIMPLE_BIND:
5141 err |= verify_gimple_in_seq_2 (
5142 gimple_bind_body (as_a <gbind *> (stmt)));
5143 break;
5144
5145 case GIMPLE_TRY:
5146 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
5147 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
5148 break;
5149
5150 case GIMPLE_EH_FILTER:
5151 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
5152 break;
5153
5154 case GIMPLE_EH_ELSE:
5155 {
5156 geh_else *eh_else = as_a <geh_else *> (stmt);
5157 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
5158 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
5159 }
5160 break;
5161
5162 case GIMPLE_CATCH:
5163 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
5164 as_a <gcatch *> (stmt)));
5165 break;
5166
5167 case GIMPLE_TRANSACTION:
5168 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
5169 break;
5170
5171 default:
5172 {
5173 bool err2 = verify_gimple_stmt (stmt);
5174 if (err2)
5175 debug_gimple_stmt (stmt);
5176 err |= err2;
5177 }
5178 }
5179 }
5180
5181 return err;
5182 }
5183
5184 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5185 is a problem, otherwise false. */
5186
5187 static bool
verify_gimple_transaction(gtransaction * stmt)5188 verify_gimple_transaction (gtransaction *stmt)
5189 {
5190 tree lab;
5191
5192 lab = gimple_transaction_label_norm (stmt);
5193 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5194 return true;
5195 lab = gimple_transaction_label_uninst (stmt);
5196 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5197 return true;
5198 lab = gimple_transaction_label_over (stmt);
5199 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5200 return true;
5201
5202 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5203 }
5204
5205
5206 /* Verify the GIMPLE statements inside the statement list STMTS. */
5207
5208 DEBUG_FUNCTION void
verify_gimple_in_seq(gimple_seq stmts)5209 verify_gimple_in_seq (gimple_seq stmts)
5210 {
5211 timevar_push (TV_TREE_STMT_VERIFY);
5212 if (verify_gimple_in_seq_2 (stmts))
5213 internal_error ("%<verify_gimple%> failed");
5214 timevar_pop (TV_TREE_STMT_VERIFY);
5215 }
5216
5217 /* Return true when the T can be shared. */
5218
5219 static bool
tree_node_can_be_shared(tree t)5220 tree_node_can_be_shared (tree t)
5221 {
5222 if (IS_TYPE_OR_DECL_P (t)
5223 || TREE_CODE (t) == SSA_NAME
5224 || TREE_CODE (t) == IDENTIFIER_NODE
5225 || TREE_CODE (t) == CASE_LABEL_EXPR
5226 || is_gimple_min_invariant (t))
5227 return true;
5228
5229 if (t == error_mark_node)
5230 return true;
5231
5232 return false;
5233 }
5234
5235 /* Called via walk_tree. Verify tree sharing. */
5236
5237 static tree
verify_node_sharing_1(tree * tp,int * walk_subtrees,void * data)5238 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5239 {
5240 hash_set<void *> *visited = (hash_set<void *> *) data;
5241
5242 if (tree_node_can_be_shared (*tp))
5243 {
5244 *walk_subtrees = false;
5245 return NULL;
5246 }
5247
5248 if (visited->add (*tp))
5249 return *tp;
5250
5251 return NULL;
5252 }
5253
5254 /* Called via walk_gimple_stmt. Verify tree sharing. */
5255
5256 static tree
verify_node_sharing(tree * tp,int * walk_subtrees,void * data)5257 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5258 {
5259 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5260 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5261 }
5262
5263 static bool eh_error_found;
5264 bool
verify_eh_throw_stmt_node(gimple * const & stmt,const int &,hash_set<gimple * > * visited)5265 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5266 hash_set<gimple *> *visited)
5267 {
5268 if (!visited->contains (stmt))
5269 {
5270 error ("dead statement in EH table");
5271 debug_gimple_stmt (stmt);
5272 eh_error_found = true;
5273 }
5274 return true;
5275 }
5276
5277 /* Verify if the location LOCs block is in BLOCKS. */
5278
5279 static bool
verify_location(hash_set<tree> * blocks,location_t loc)5280 verify_location (hash_set<tree> *blocks, location_t loc)
5281 {
5282 tree block = LOCATION_BLOCK (loc);
5283 if (block != NULL_TREE
5284 && !blocks->contains (block))
5285 {
5286 error ("location references block not in block tree");
5287 return true;
5288 }
5289 if (block != NULL_TREE)
5290 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5291 return false;
5292 }
5293
5294 /* Called via walk_tree. Verify that expressions have no blocks. */
5295
5296 static tree
verify_expr_no_block(tree * tp,int * walk_subtrees,void *)5297 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5298 {
5299 if (!EXPR_P (*tp))
5300 {
5301 *walk_subtrees = false;
5302 return NULL;
5303 }
5304
5305 location_t loc = EXPR_LOCATION (*tp);
5306 if (LOCATION_BLOCK (loc) != NULL)
5307 return *tp;
5308
5309 return NULL;
5310 }
5311
5312 /* Called via walk_tree. Verify locations of expressions. */
5313
5314 static tree
verify_expr_location_1(tree * tp,int * walk_subtrees,void * data)5315 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5316 {
5317 hash_set<tree> *blocks = (hash_set<tree> *) data;
5318 tree t = *tp;
5319
5320 /* ??? This doesn't really belong here but there's no good place to
5321 stick this remainder of old verify_expr. */
5322 /* ??? This barfs on debug stmts which contain binds to vars with
5323 different function context. */
5324 #if 0
5325 if (VAR_P (t)
5326 || TREE_CODE (t) == PARM_DECL
5327 || TREE_CODE (t) == RESULT_DECL)
5328 {
5329 tree context = decl_function_context (t);
5330 if (context != cfun->decl
5331 && !SCOPE_FILE_SCOPE_P (context)
5332 && !TREE_STATIC (t)
5333 && !DECL_EXTERNAL (t))
5334 {
5335 error ("local declaration from a different function");
5336 return t;
5337 }
5338 }
5339 #endif
5340
5341 if (VAR_P (t) && DECL_HAS_DEBUG_EXPR_P (t))
5342 {
5343 tree x = DECL_DEBUG_EXPR (t);
5344 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5345 if (addr)
5346 return addr;
5347 }
5348 if ((VAR_P (t)
5349 || TREE_CODE (t) == PARM_DECL
5350 || TREE_CODE (t) == RESULT_DECL)
5351 && DECL_HAS_VALUE_EXPR_P (t))
5352 {
5353 tree x = DECL_VALUE_EXPR (t);
5354 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5355 if (addr)
5356 return addr;
5357 }
5358
5359 if (!EXPR_P (t))
5360 {
5361 *walk_subtrees = false;
5362 return NULL;
5363 }
5364
5365 location_t loc = EXPR_LOCATION (t);
5366 if (verify_location (blocks, loc))
5367 return t;
5368
5369 return NULL;
5370 }
5371
5372 /* Called via walk_gimple_op. Verify locations of expressions. */
5373
5374 static tree
verify_expr_location(tree * tp,int * walk_subtrees,void * data)5375 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5376 {
5377 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5378 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5379 }
5380
5381 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5382
5383 static void
collect_subblocks(hash_set<tree> * blocks,tree block)5384 collect_subblocks (hash_set<tree> *blocks, tree block)
5385 {
5386 tree t;
5387 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5388 {
5389 blocks->add (t);
5390 collect_subblocks (blocks, t);
5391 }
5392 }
5393
5394 /* Disable warnings about missing quoting in GCC diagnostics for
5395 the verification errors. Their format strings don't follow
5396 GCC diagnostic conventions and trigger an ICE in the end. */
5397 #if __GNUC__ >= 10
5398 # pragma GCC diagnostic push
5399 # pragma GCC diagnostic ignored "-Wformat-diag"
5400 #endif
5401
5402 /* Verify the GIMPLE statements in the CFG of FN. */
5403
5404 DEBUG_FUNCTION void
verify_gimple_in_cfg(struct function * fn,bool verify_nothrow)5405 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5406 {
5407 basic_block bb;
5408 bool err = false;
5409
5410 timevar_push (TV_TREE_STMT_VERIFY);
5411 hash_set<void *> visited;
5412 hash_set<gimple *> visited_throwing_stmts;
5413
5414 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5415 hash_set<tree> blocks;
5416 if (DECL_INITIAL (fn->decl))
5417 {
5418 blocks.add (DECL_INITIAL (fn->decl));
5419 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5420 }
5421
5422 FOR_EACH_BB_FN (bb, fn)
5423 {
5424 gimple_stmt_iterator gsi;
5425 edge_iterator ei;
5426 edge e;
5427
5428 for (gphi_iterator gpi = gsi_start_phis (bb);
5429 !gsi_end_p (gpi);
5430 gsi_next (&gpi))
5431 {
5432 gphi *phi = gpi.phi ();
5433 bool err2 = false;
5434 unsigned i;
5435
5436 if (gimple_bb (phi) != bb)
5437 {
5438 error ("gimple_bb (phi) is set to a wrong basic block");
5439 err2 = true;
5440 }
5441
5442 err2 |= verify_gimple_phi (phi);
5443
5444 /* Only PHI arguments have locations. */
5445 if (gimple_location (phi) != UNKNOWN_LOCATION)
5446 {
5447 error ("PHI node with location");
5448 err2 = true;
5449 }
5450
5451 for (i = 0; i < gimple_phi_num_args (phi); i++)
5452 {
5453 tree arg = gimple_phi_arg_def (phi, i);
5454 tree addr = walk_tree (&arg, verify_node_sharing_1,
5455 &visited, NULL);
5456 if (addr)
5457 {
5458 error ("incorrect sharing of tree nodes");
5459 debug_generic_expr (addr);
5460 err2 |= true;
5461 }
5462 location_t loc = gimple_phi_arg_location (phi, i);
5463 if (virtual_operand_p (gimple_phi_result (phi))
5464 && loc != UNKNOWN_LOCATION)
5465 {
5466 error ("virtual PHI with argument locations");
5467 err2 = true;
5468 }
5469 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5470 if (addr)
5471 {
5472 debug_generic_expr (addr);
5473 err2 = true;
5474 }
5475 err2 |= verify_location (&blocks, loc);
5476 }
5477
5478 if (err2)
5479 debug_gimple_stmt (phi);
5480 err |= err2;
5481 }
5482
5483 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5484 {
5485 gimple *stmt = gsi_stmt (gsi);
5486 bool err2 = false;
5487 struct walk_stmt_info wi;
5488 tree addr;
5489 int lp_nr;
5490
5491 if (gimple_bb (stmt) != bb)
5492 {
5493 error ("gimple_bb (stmt) is set to a wrong basic block");
5494 err2 = true;
5495 }
5496
5497 err2 |= verify_gimple_stmt (stmt);
5498 err2 |= verify_location (&blocks, gimple_location (stmt));
5499
5500 memset (&wi, 0, sizeof (wi));
5501 wi.info = (void *) &visited;
5502 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5503 if (addr)
5504 {
5505 error ("incorrect sharing of tree nodes");
5506 debug_generic_expr (addr);
5507 err2 |= true;
5508 }
5509
5510 memset (&wi, 0, sizeof (wi));
5511 wi.info = (void *) &blocks;
5512 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5513 if (addr)
5514 {
5515 debug_generic_expr (addr);
5516 err2 |= true;
5517 }
5518
5519 /* If the statement is marked as part of an EH region, then it is
5520 expected that the statement could throw. Verify that when we
5521 have optimizations that simplify statements such that we prove
5522 that they cannot throw, that we update other data structures
5523 to match. */
5524 lp_nr = lookup_stmt_eh_lp (stmt);
5525 if (lp_nr != 0)
5526 visited_throwing_stmts.add (stmt);
5527 if (lp_nr > 0)
5528 {
5529 if (!stmt_could_throw_p (cfun, stmt))
5530 {
5531 if (verify_nothrow)
5532 {
5533 error ("statement marked for throw, but doesn%'t");
5534 err2 |= true;
5535 }
5536 }
5537 else if (!gsi_one_before_end_p (gsi))
5538 {
5539 error ("statement marked for throw in middle of block");
5540 err2 |= true;
5541 }
5542 }
5543
5544 if (err2)
5545 debug_gimple_stmt (stmt);
5546 err |= err2;
5547 }
5548
5549 FOR_EACH_EDGE (e, ei, bb->succs)
5550 if (e->goto_locus != UNKNOWN_LOCATION)
5551 err |= verify_location (&blocks, e->goto_locus);
5552 }
5553
5554 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5555 eh_error_found = false;
5556 if (eh_table)
5557 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5558 (&visited_throwing_stmts);
5559
5560 if (err || eh_error_found)
5561 internal_error ("verify_gimple failed");
5562
5563 verify_histograms ();
5564 timevar_pop (TV_TREE_STMT_VERIFY);
5565 }
5566
5567
5568 /* Verifies that the flow information is OK. */
5569
5570 static int
gimple_verify_flow_info(void)5571 gimple_verify_flow_info (void)
5572 {
5573 int err = 0;
5574 basic_block bb;
5575 gimple_stmt_iterator gsi;
5576 gimple *stmt;
5577 edge e;
5578 edge_iterator ei;
5579
5580 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5581 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5582 {
5583 error ("ENTRY_BLOCK has IL associated with it");
5584 err = 1;
5585 }
5586
5587 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5588 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5589 {
5590 error ("EXIT_BLOCK has IL associated with it");
5591 err = 1;
5592 }
5593
5594 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5595 if (e->flags & EDGE_FALLTHRU)
5596 {
5597 error ("fallthru to exit from bb %d", e->src->index);
5598 err = 1;
5599 }
5600
5601 FOR_EACH_BB_FN (bb, cfun)
5602 {
5603 bool found_ctrl_stmt = false;
5604
5605 stmt = NULL;
5606
5607 /* Skip labels on the start of basic block. */
5608 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5609 {
5610 tree label;
5611 gimple *prev_stmt = stmt;
5612
5613 stmt = gsi_stmt (gsi);
5614
5615 if (gimple_code (stmt) != GIMPLE_LABEL)
5616 break;
5617
5618 label = gimple_label_label (as_a <glabel *> (stmt));
5619 if (prev_stmt && DECL_NONLOCAL (label))
5620 {
5621 error ("nonlocal label %qD is not first in a sequence "
5622 "of labels in bb %d", label, bb->index);
5623 err = 1;
5624 }
5625
5626 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5627 {
5628 error ("EH landing pad label %qD is not first in a sequence "
5629 "of labels in bb %d", label, bb->index);
5630 err = 1;
5631 }
5632
5633 if (label_to_block (cfun, label) != bb)
5634 {
5635 error ("label %qD to block does not match in bb %d",
5636 label, bb->index);
5637 err = 1;
5638 }
5639
5640 if (decl_function_context (label) != current_function_decl)
5641 {
5642 error ("label %qD has incorrect context in bb %d",
5643 label, bb->index);
5644 err = 1;
5645 }
5646 }
5647
5648 /* Verify that body of basic block BB is free of control flow. */
5649 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5650 {
5651 gimple *stmt = gsi_stmt (gsi);
5652
5653 if (found_ctrl_stmt)
5654 {
5655 error ("control flow in the middle of basic block %d",
5656 bb->index);
5657 err = 1;
5658 }
5659
5660 if (stmt_ends_bb_p (stmt))
5661 found_ctrl_stmt = true;
5662
5663 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5664 {
5665 error ("label %qD in the middle of basic block %d",
5666 gimple_label_label (label_stmt), bb->index);
5667 err = 1;
5668 }
5669 }
5670
5671 gsi = gsi_last_nondebug_bb (bb);
5672 if (gsi_end_p (gsi))
5673 continue;
5674
5675 stmt = gsi_stmt (gsi);
5676
5677 if (gimple_code (stmt) == GIMPLE_LABEL)
5678 continue;
5679
5680 err |= verify_eh_edges (stmt);
5681
5682 if (is_ctrl_stmt (stmt))
5683 {
5684 FOR_EACH_EDGE (e, ei, bb->succs)
5685 if (e->flags & EDGE_FALLTHRU)
5686 {
5687 error ("fallthru edge after a control statement in bb %d",
5688 bb->index);
5689 err = 1;
5690 }
5691 }
5692
5693 if (gimple_code (stmt) != GIMPLE_COND)
5694 {
5695 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5696 after anything else but if statement. */
5697 FOR_EACH_EDGE (e, ei, bb->succs)
5698 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5699 {
5700 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5701 bb->index);
5702 err = 1;
5703 }
5704 }
5705
5706 switch (gimple_code (stmt))
5707 {
5708 case GIMPLE_COND:
5709 {
5710 edge true_edge;
5711 edge false_edge;
5712
5713 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5714
5715 if (!true_edge
5716 || !false_edge
5717 || !(true_edge->flags & EDGE_TRUE_VALUE)
5718 || !(false_edge->flags & EDGE_FALSE_VALUE)
5719 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5720 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5721 || EDGE_COUNT (bb->succs) >= 3)
5722 {
5723 error ("wrong outgoing edge flags at end of bb %d",
5724 bb->index);
5725 err = 1;
5726 }
5727 }
5728 break;
5729
5730 case GIMPLE_GOTO:
5731 if (simple_goto_p (stmt))
5732 {
5733 error ("explicit goto at end of bb %d", bb->index);
5734 err = 1;
5735 }
5736 else
5737 {
5738 /* FIXME. We should double check that the labels in the
5739 destination blocks have their address taken. */
5740 FOR_EACH_EDGE (e, ei, bb->succs)
5741 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5742 | EDGE_FALSE_VALUE))
5743 || !(e->flags & EDGE_ABNORMAL))
5744 {
5745 error ("wrong outgoing edge flags at end of bb %d",
5746 bb->index);
5747 err = 1;
5748 }
5749 }
5750 break;
5751
5752 case GIMPLE_CALL:
5753 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5754 break;
5755 /* fallthru */
5756 case GIMPLE_RETURN:
5757 if (!single_succ_p (bb)
5758 || (single_succ_edge (bb)->flags
5759 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5760 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5761 {
5762 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5763 err = 1;
5764 }
5765 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5766 {
5767 error ("return edge does not point to exit in bb %d",
5768 bb->index);
5769 err = 1;
5770 }
5771 break;
5772
5773 case GIMPLE_SWITCH:
5774 {
5775 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5776 tree prev;
5777 edge e;
5778 size_t i, n;
5779
5780 n = gimple_switch_num_labels (switch_stmt);
5781
5782 /* Mark all the destination basic blocks. */
5783 for (i = 0; i < n; ++i)
5784 {
5785 basic_block label_bb = gimple_switch_label_bb (cfun, switch_stmt, i);
5786 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5787 label_bb->aux = (void *)1;
5788 }
5789
5790 /* Verify that the case labels are sorted. */
5791 prev = gimple_switch_label (switch_stmt, 0);
5792 for (i = 1; i < n; ++i)
5793 {
5794 tree c = gimple_switch_label (switch_stmt, i);
5795 if (!CASE_LOW (c))
5796 {
5797 error ("found default case not at the start of "
5798 "case vector");
5799 err = 1;
5800 continue;
5801 }
5802 if (CASE_LOW (prev)
5803 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5804 {
5805 error ("case labels not sorted: ");
5806 print_generic_expr (stderr, prev);
5807 fprintf (stderr," is greater than ");
5808 print_generic_expr (stderr, c);
5809 fprintf (stderr," but comes before it.\n");
5810 err = 1;
5811 }
5812 prev = c;
5813 }
5814 /* VRP will remove the default case if it can prove it will
5815 never be executed. So do not verify there always exists
5816 a default case here. */
5817
5818 FOR_EACH_EDGE (e, ei, bb->succs)
5819 {
5820 if (!e->dest->aux)
5821 {
5822 error ("extra outgoing edge %d->%d",
5823 bb->index, e->dest->index);
5824 err = 1;
5825 }
5826
5827 e->dest->aux = (void *)2;
5828 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5829 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5830 {
5831 error ("wrong outgoing edge flags at end of bb %d",
5832 bb->index);
5833 err = 1;
5834 }
5835 }
5836
5837 /* Check that we have all of them. */
5838 for (i = 0; i < n; ++i)
5839 {
5840 basic_block label_bb = gimple_switch_label_bb (cfun,
5841 switch_stmt, i);
5842
5843 if (label_bb->aux != (void *)2)
5844 {
5845 error ("missing edge %i->%i", bb->index, label_bb->index);
5846 err = 1;
5847 }
5848 }
5849
5850 FOR_EACH_EDGE (e, ei, bb->succs)
5851 e->dest->aux = (void *)0;
5852 }
5853 break;
5854
5855 case GIMPLE_EH_DISPATCH:
5856 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5857 break;
5858
5859 default:
5860 break;
5861 }
5862 }
5863
5864 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5865 verify_dominators (CDI_DOMINATORS);
5866
5867 return err;
5868 }
5869
5870 #if __GNUC__ >= 10
5871 # pragma GCC diagnostic pop
5872 #endif
5873
5874 /* Updates phi nodes after creating a forwarder block joined
5875 by edge FALLTHRU. */
5876
5877 static void
gimple_make_forwarder_block(edge fallthru)5878 gimple_make_forwarder_block (edge fallthru)
5879 {
5880 edge e;
5881 edge_iterator ei;
5882 basic_block dummy, bb;
5883 tree var;
5884 gphi_iterator gsi;
5885 bool forward_location_p;
5886
5887 dummy = fallthru->src;
5888 bb = fallthru->dest;
5889
5890 if (single_pred_p (bb))
5891 return;
5892
5893 /* We can forward location info if we have only one predecessor. */
5894 forward_location_p = single_pred_p (dummy);
5895
5896 /* If we redirected a branch we must create new PHI nodes at the
5897 start of BB. */
5898 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5899 {
5900 gphi *phi, *new_phi;
5901
5902 phi = gsi.phi ();
5903 var = gimple_phi_result (phi);
5904 new_phi = create_phi_node (var, bb);
5905 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5906 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5907 forward_location_p
5908 ? gimple_phi_arg_location (phi, 0) : UNKNOWN_LOCATION);
5909 }
5910
5911 /* Add the arguments we have stored on edges. */
5912 FOR_EACH_EDGE (e, ei, bb->preds)
5913 {
5914 if (e == fallthru)
5915 continue;
5916
5917 flush_pending_stmts (e);
5918 }
5919 }
5920
5921
5922 /* Return a non-special label in the head of basic block BLOCK.
5923 Create one if it doesn't exist. */
5924
5925 tree
gimple_block_label(basic_block bb)5926 gimple_block_label (basic_block bb)
5927 {
5928 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5929 bool first = true;
5930 tree label;
5931 glabel *stmt;
5932
5933 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5934 {
5935 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5936 if (!stmt)
5937 break;
5938 label = gimple_label_label (stmt);
5939 if (!DECL_NONLOCAL (label))
5940 {
5941 if (!first)
5942 gsi_move_before (&i, &s);
5943 return label;
5944 }
5945 }
5946
5947 label = create_artificial_label (UNKNOWN_LOCATION);
5948 stmt = gimple_build_label (label);
5949 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5950 return label;
5951 }
5952
5953
5954 /* Attempt to perform edge redirection by replacing a possibly complex
5955 jump instruction by a goto or by removing the jump completely.
5956 This can apply only if all edges now point to the same block. The
5957 parameters and return values are equivalent to
5958 redirect_edge_and_branch. */
5959
5960 static edge
gimple_try_redirect_by_replacing_jump(edge e,basic_block target)5961 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5962 {
5963 basic_block src = e->src;
5964 gimple_stmt_iterator i;
5965 gimple *stmt;
5966
5967 /* We can replace or remove a complex jump only when we have exactly
5968 two edges. */
5969 if (EDGE_COUNT (src->succs) != 2
5970 /* Verify that all targets will be TARGET. Specifically, the
5971 edge that is not E must also go to TARGET. */
5972 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5973 return NULL;
5974
5975 i = gsi_last_bb (src);
5976 if (gsi_end_p (i))
5977 return NULL;
5978
5979 stmt = gsi_stmt (i);
5980
5981 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5982 {
5983 gsi_remove (&i, true);
5984 e = ssa_redirect_edge (e, target);
5985 e->flags = EDGE_FALLTHRU;
5986 return e;
5987 }
5988
5989 return NULL;
5990 }
5991
5992
5993 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5994 edge representing the redirected branch. */
5995
5996 static edge
gimple_redirect_edge_and_branch(edge e,basic_block dest)5997 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5998 {
5999 basic_block bb = e->src;
6000 gimple_stmt_iterator gsi;
6001 edge ret;
6002 gimple *stmt;
6003
6004 if (e->flags & EDGE_ABNORMAL)
6005 return NULL;
6006
6007 if (e->dest == dest)
6008 return NULL;
6009
6010 if (e->flags & EDGE_EH)
6011 return redirect_eh_edge (e, dest);
6012
6013 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
6014 {
6015 ret = gimple_try_redirect_by_replacing_jump (e, dest);
6016 if (ret)
6017 return ret;
6018 }
6019
6020 gsi = gsi_last_nondebug_bb (bb);
6021 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
6022
6023 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
6024 {
6025 case GIMPLE_COND:
6026 /* For COND_EXPR, we only need to redirect the edge. */
6027 break;
6028
6029 case GIMPLE_GOTO:
6030 /* No non-abnormal edges should lead from a non-simple goto, and
6031 simple ones should be represented implicitly. */
6032 gcc_unreachable ();
6033
6034 case GIMPLE_SWITCH:
6035 {
6036 gswitch *switch_stmt = as_a <gswitch *> (stmt);
6037 tree label = gimple_block_label (dest);
6038 tree cases = get_cases_for_edge (e, switch_stmt);
6039
6040 /* If we have a list of cases associated with E, then use it
6041 as it's a lot faster than walking the entire case vector. */
6042 if (cases)
6043 {
6044 edge e2 = find_edge (e->src, dest);
6045 tree last, first;
6046
6047 first = cases;
6048 while (cases)
6049 {
6050 last = cases;
6051 CASE_LABEL (cases) = label;
6052 cases = CASE_CHAIN (cases);
6053 }
6054
6055 /* If there was already an edge in the CFG, then we need
6056 to move all the cases associated with E to E2. */
6057 if (e2)
6058 {
6059 tree cases2 = get_cases_for_edge (e2, switch_stmt);
6060
6061 CASE_CHAIN (last) = CASE_CHAIN (cases2);
6062 CASE_CHAIN (cases2) = first;
6063 }
6064 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
6065 }
6066 else
6067 {
6068 size_t i, n = gimple_switch_num_labels (switch_stmt);
6069
6070 for (i = 0; i < n; i++)
6071 {
6072 tree elt = gimple_switch_label (switch_stmt, i);
6073 if (label_to_block (cfun, CASE_LABEL (elt)) == e->dest)
6074 CASE_LABEL (elt) = label;
6075 }
6076 }
6077 }
6078 break;
6079
6080 case GIMPLE_ASM:
6081 {
6082 gasm *asm_stmt = as_a <gasm *> (stmt);
6083 int i, n = gimple_asm_nlabels (asm_stmt);
6084 tree label = NULL;
6085
6086 for (i = 0; i < n; ++i)
6087 {
6088 tree cons = gimple_asm_label_op (asm_stmt, i);
6089 if (label_to_block (cfun, TREE_VALUE (cons)) == e->dest)
6090 {
6091 if (!label)
6092 label = gimple_block_label (dest);
6093 TREE_VALUE (cons) = label;
6094 }
6095 }
6096
6097 /* If we didn't find any label matching the former edge in the
6098 asm labels, we must be redirecting the fallthrough
6099 edge. */
6100 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
6101 }
6102 break;
6103
6104 case GIMPLE_RETURN:
6105 gsi_remove (&gsi, true);
6106 e->flags |= EDGE_FALLTHRU;
6107 break;
6108
6109 case GIMPLE_OMP_RETURN:
6110 case GIMPLE_OMP_CONTINUE:
6111 case GIMPLE_OMP_SECTIONS_SWITCH:
6112 case GIMPLE_OMP_FOR:
6113 /* The edges from OMP constructs can be simply redirected. */
6114 break;
6115
6116 case GIMPLE_EH_DISPATCH:
6117 if (!(e->flags & EDGE_FALLTHRU))
6118 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
6119 break;
6120
6121 case GIMPLE_TRANSACTION:
6122 if (e->flags & EDGE_TM_ABORT)
6123 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
6124 gimple_block_label (dest));
6125 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
6126 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
6127 gimple_block_label (dest));
6128 else
6129 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
6130 gimple_block_label (dest));
6131 break;
6132
6133 default:
6134 /* Otherwise it must be a fallthru edge, and we don't need to
6135 do anything besides redirecting it. */
6136 gcc_assert (e->flags & EDGE_FALLTHRU);
6137 break;
6138 }
6139
6140 /* Update/insert PHI nodes as necessary. */
6141
6142 /* Now update the edges in the CFG. */
6143 e = ssa_redirect_edge (e, dest);
6144
6145 return e;
6146 }
6147
6148 /* Returns true if it is possible to remove edge E by redirecting
6149 it to the destination of the other edge from E->src. */
6150
6151 static bool
gimple_can_remove_branch_p(const_edge e)6152 gimple_can_remove_branch_p (const_edge e)
6153 {
6154 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
6155 return false;
6156
6157 return true;
6158 }
6159
6160 /* Simple wrapper, as we can always redirect fallthru edges. */
6161
6162 static basic_block
gimple_redirect_edge_and_branch_force(edge e,basic_block dest)6163 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6164 {
6165 e = gimple_redirect_edge_and_branch (e, dest);
6166 gcc_assert (e);
6167
6168 return NULL;
6169 }
6170
6171
6172 /* Splits basic block BB after statement STMT (but at least after the
6173 labels). If STMT is NULL, BB is split just after the labels. */
6174
6175 static basic_block
gimple_split_block(basic_block bb,void * stmt)6176 gimple_split_block (basic_block bb, void *stmt)
6177 {
6178 gimple_stmt_iterator gsi;
6179 gimple_stmt_iterator gsi_tgt;
6180 gimple_seq list;
6181 basic_block new_bb;
6182 edge e;
6183 edge_iterator ei;
6184
6185 new_bb = create_empty_bb (bb);
6186
6187 /* Redirect the outgoing edges. */
6188 new_bb->succs = bb->succs;
6189 bb->succs = NULL;
6190 FOR_EACH_EDGE (e, ei, new_bb->succs)
6191 e->src = new_bb;
6192
6193 /* Get a stmt iterator pointing to the first stmt to move. */
6194 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
6195 gsi = gsi_after_labels (bb);
6196 else
6197 {
6198 gsi = gsi_for_stmt ((gimple *) stmt);
6199 gsi_next (&gsi);
6200 }
6201
6202 /* Move everything from GSI to the new basic block. */
6203 if (gsi_end_p (gsi))
6204 return new_bb;
6205
6206 /* Split the statement list - avoid re-creating new containers as this
6207 brings ugly quadratic memory consumption in the inliner.
6208 (We are still quadratic since we need to update stmt BB pointers,
6209 sadly.) */
6210 gsi_split_seq_before (&gsi, &list);
6211 set_bb_seq (new_bb, list);
6212 for (gsi_tgt = gsi_start (list);
6213 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6214 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6215
6216 return new_bb;
6217 }
6218
6219
6220 /* Moves basic block BB after block AFTER. */
6221
6222 static bool
gimple_move_block_after(basic_block bb,basic_block after)6223 gimple_move_block_after (basic_block bb, basic_block after)
6224 {
6225 if (bb->prev_bb == after)
6226 return true;
6227
6228 unlink_block (bb);
6229 link_block (bb, after);
6230
6231 return true;
6232 }
6233
6234
6235 /* Return TRUE if block BB has no executable statements, otherwise return
6236 FALSE. */
6237
6238 static bool
gimple_empty_block_p(basic_block bb)6239 gimple_empty_block_p (basic_block bb)
6240 {
6241 /* BB must have no executable statements. */
6242 gimple_stmt_iterator gsi = gsi_after_labels (bb);
6243 if (phi_nodes (bb))
6244 return false;
6245 while (!gsi_end_p (gsi))
6246 {
6247 gimple *stmt = gsi_stmt (gsi);
6248 if (is_gimple_debug (stmt))
6249 ;
6250 else if (gimple_code (stmt) == GIMPLE_NOP
6251 || gimple_code (stmt) == GIMPLE_PREDICT)
6252 ;
6253 else
6254 return false;
6255 gsi_next (&gsi);
6256 }
6257 return true;
6258 }
6259
6260
6261 /* Split a basic block if it ends with a conditional branch and if the
6262 other part of the block is not empty. */
6263
6264 static basic_block
gimple_split_block_before_cond_jump(basic_block bb)6265 gimple_split_block_before_cond_jump (basic_block bb)
6266 {
6267 gimple *last, *split_point;
6268 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6269 if (gsi_end_p (gsi))
6270 return NULL;
6271 last = gsi_stmt (gsi);
6272 if (gimple_code (last) != GIMPLE_COND
6273 && gimple_code (last) != GIMPLE_SWITCH)
6274 return NULL;
6275 gsi_prev (&gsi);
6276 split_point = gsi_stmt (gsi);
6277 return split_block (bb, split_point)->dest;
6278 }
6279
6280
6281 /* Return true if basic_block can be duplicated. */
6282
6283 static bool
gimple_can_duplicate_bb_p(const_basic_block bb)6284 gimple_can_duplicate_bb_p (const_basic_block bb)
6285 {
6286 gimple *last = last_stmt (CONST_CAST_BB (bb));
6287
6288 /* Do checks that can only fail for the last stmt, to minimize the work in the
6289 stmt loop. */
6290 if (last) {
6291 /* A transaction is a single entry multiple exit region. It
6292 must be duplicated in its entirety or not at all. */
6293 if (gimple_code (last) == GIMPLE_TRANSACTION)
6294 return false;
6295
6296 /* An IFN_UNIQUE call must be duplicated as part of its group,
6297 or not at all. */
6298 if (is_gimple_call (last)
6299 && gimple_call_internal_p (last)
6300 && gimple_call_internal_unique_p (last))
6301 return false;
6302 }
6303
6304 for (gimple_stmt_iterator gsi = gsi_start_bb (CONST_CAST_BB (bb));
6305 !gsi_end_p (gsi); gsi_next (&gsi))
6306 {
6307 gimple *g = gsi_stmt (gsi);
6308
6309 /* An IFN_GOMP_SIMT_ENTER_ALLOC/IFN_GOMP_SIMT_EXIT call must be
6310 duplicated as part of its group, or not at all.
6311 The IFN_GOMP_SIMT_VOTE_ANY and IFN_GOMP_SIMT_XCHG_* are part of such a
6312 group, so the same holds there. */
6313 if (is_gimple_call (g)
6314 && (gimple_call_internal_p (g, IFN_GOMP_SIMT_ENTER_ALLOC)
6315 || gimple_call_internal_p (g, IFN_GOMP_SIMT_EXIT)
6316 || gimple_call_internal_p (g, IFN_GOMP_SIMT_VOTE_ANY)
6317 || gimple_call_internal_p (g, IFN_GOMP_SIMT_XCHG_BFLY)
6318 || gimple_call_internal_p (g, IFN_GOMP_SIMT_XCHG_IDX)))
6319 return false;
6320 }
6321
6322 return true;
6323 }
6324
6325 /* Create a duplicate of the basic block BB. NOTE: This does not
6326 preserve SSA form. */
6327
6328 static basic_block
gimple_duplicate_bb(basic_block bb,copy_bb_data * id)6329 gimple_duplicate_bb (basic_block bb, copy_bb_data *id)
6330 {
6331 basic_block new_bb;
6332 gimple_stmt_iterator gsi_tgt;
6333
6334 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6335
6336 /* Copy the PHI nodes. We ignore PHI node arguments here because
6337 the incoming edges have not been setup yet. */
6338 for (gphi_iterator gpi = gsi_start_phis (bb);
6339 !gsi_end_p (gpi);
6340 gsi_next (&gpi))
6341 {
6342 gphi *phi, *copy;
6343 phi = gpi.phi ();
6344 copy = create_phi_node (NULL_TREE, new_bb);
6345 create_new_def_for (gimple_phi_result (phi), copy,
6346 gimple_phi_result_ptr (copy));
6347 gimple_set_uid (copy, gimple_uid (phi));
6348 }
6349
6350 gsi_tgt = gsi_start_bb (new_bb);
6351 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6352 !gsi_end_p (gsi);
6353 gsi_next (&gsi))
6354 {
6355 def_operand_p def_p;
6356 ssa_op_iter op_iter;
6357 tree lhs;
6358 gimple *stmt, *copy;
6359
6360 stmt = gsi_stmt (gsi);
6361 if (gimple_code (stmt) == GIMPLE_LABEL)
6362 continue;
6363
6364 /* Don't duplicate label debug stmts. */
6365 if (gimple_debug_bind_p (stmt)
6366 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6367 == LABEL_DECL)
6368 continue;
6369
6370 /* Create a new copy of STMT and duplicate STMT's virtual
6371 operands. */
6372 copy = gimple_copy (stmt);
6373 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6374
6375 maybe_duplicate_eh_stmt (copy, stmt);
6376 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6377
6378 /* When copying around a stmt writing into a local non-user
6379 aggregate, make sure it won't share stack slot with other
6380 vars. */
6381 lhs = gimple_get_lhs (stmt);
6382 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6383 {
6384 tree base = get_base_address (lhs);
6385 if (base
6386 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6387 && DECL_IGNORED_P (base)
6388 && !TREE_STATIC (base)
6389 && !DECL_EXTERNAL (base)
6390 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6391 DECL_NONSHAREABLE (base) = 1;
6392 }
6393
6394 /* If requested remap dependence info of cliques brought in
6395 via inlining. */
6396 if (id)
6397 for (unsigned i = 0; i < gimple_num_ops (copy); ++i)
6398 {
6399 tree op = gimple_op (copy, i);
6400 if (!op)
6401 continue;
6402 if (TREE_CODE (op) == ADDR_EXPR
6403 || TREE_CODE (op) == WITH_SIZE_EXPR)
6404 op = TREE_OPERAND (op, 0);
6405 while (handled_component_p (op))
6406 op = TREE_OPERAND (op, 0);
6407 if ((TREE_CODE (op) == MEM_REF
6408 || TREE_CODE (op) == TARGET_MEM_REF)
6409 && MR_DEPENDENCE_CLIQUE (op) > 1
6410 && MR_DEPENDENCE_CLIQUE (op) != bb->loop_father->owned_clique)
6411 {
6412 if (!id->dependence_map)
6413 id->dependence_map = new hash_map<dependence_hash,
6414 unsigned short>;
6415 bool existed;
6416 unsigned short &newc = id->dependence_map->get_or_insert
6417 (MR_DEPENDENCE_CLIQUE (op), &existed);
6418 if (!existed)
6419 {
6420 gcc_assert (MR_DEPENDENCE_CLIQUE (op) <= cfun->last_clique);
6421 newc = ++cfun->last_clique;
6422 }
6423 MR_DEPENDENCE_CLIQUE (op) = newc;
6424 }
6425 }
6426
6427 /* Create new names for all the definitions created by COPY and
6428 add replacement mappings for each new name. */
6429 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6430 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6431 }
6432
6433 return new_bb;
6434 }
6435
6436 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6437
6438 static void
add_phi_args_after_copy_edge(edge e_copy)6439 add_phi_args_after_copy_edge (edge e_copy)
6440 {
6441 basic_block bb, bb_copy = e_copy->src, dest;
6442 edge e;
6443 edge_iterator ei;
6444 gphi *phi, *phi_copy;
6445 tree def;
6446 gphi_iterator psi, psi_copy;
6447
6448 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6449 return;
6450
6451 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6452
6453 if (e_copy->dest->flags & BB_DUPLICATED)
6454 dest = get_bb_original (e_copy->dest);
6455 else
6456 dest = e_copy->dest;
6457
6458 e = find_edge (bb, dest);
6459 if (!e)
6460 {
6461 /* During loop unrolling the target of the latch edge is copied.
6462 In this case we are not looking for edge to dest, but to
6463 duplicated block whose original was dest. */
6464 FOR_EACH_EDGE (e, ei, bb->succs)
6465 {
6466 if ((e->dest->flags & BB_DUPLICATED)
6467 && get_bb_original (e->dest) == dest)
6468 break;
6469 }
6470
6471 gcc_assert (e != NULL);
6472 }
6473
6474 for (psi = gsi_start_phis (e->dest),
6475 psi_copy = gsi_start_phis (e_copy->dest);
6476 !gsi_end_p (psi);
6477 gsi_next (&psi), gsi_next (&psi_copy))
6478 {
6479 phi = psi.phi ();
6480 phi_copy = psi_copy.phi ();
6481 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6482 add_phi_arg (phi_copy, def, e_copy,
6483 gimple_phi_arg_location_from_edge (phi, e));
6484 }
6485 }
6486
6487
6488 /* Basic block BB_COPY was created by code duplication. Add phi node
6489 arguments for edges going out of BB_COPY. The blocks that were
6490 duplicated have BB_DUPLICATED set. */
6491
6492 void
add_phi_args_after_copy_bb(basic_block bb_copy)6493 add_phi_args_after_copy_bb (basic_block bb_copy)
6494 {
6495 edge e_copy;
6496 edge_iterator ei;
6497
6498 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6499 {
6500 add_phi_args_after_copy_edge (e_copy);
6501 }
6502 }
6503
6504 /* Blocks in REGION_COPY array of length N_REGION were created by
6505 duplication of basic blocks. Add phi node arguments for edges
6506 going from these blocks. If E_COPY is not NULL, also add
6507 phi node arguments for its destination.*/
6508
6509 void
add_phi_args_after_copy(basic_block * region_copy,unsigned n_region,edge e_copy)6510 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6511 edge e_copy)
6512 {
6513 unsigned i;
6514
6515 for (i = 0; i < n_region; i++)
6516 region_copy[i]->flags |= BB_DUPLICATED;
6517
6518 for (i = 0; i < n_region; i++)
6519 add_phi_args_after_copy_bb (region_copy[i]);
6520 if (e_copy)
6521 add_phi_args_after_copy_edge (e_copy);
6522
6523 for (i = 0; i < n_region; i++)
6524 region_copy[i]->flags &= ~BB_DUPLICATED;
6525 }
6526
6527 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6528 important exit edge EXIT. By important we mean that no SSA name defined
6529 inside region is live over the other exit edges of the region. All entry
6530 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6531 to the duplicate of the region. Dominance and loop information is
6532 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6533 UPDATE_DOMINANCE is false then we assume that the caller will update the
6534 dominance information after calling this function. The new basic
6535 blocks are stored to REGION_COPY in the same order as they had in REGION,
6536 provided that REGION_COPY is not NULL.
6537 The function returns false if it is unable to copy the region,
6538 true otherwise. */
6539
6540 bool
gimple_duplicate_sese_region(edge entry,edge exit,basic_block * region,unsigned n_region,basic_block * region_copy,bool update_dominance)6541 gimple_duplicate_sese_region (edge entry, edge exit,
6542 basic_block *region, unsigned n_region,
6543 basic_block *region_copy,
6544 bool update_dominance)
6545 {
6546 unsigned i;
6547 bool free_region_copy = false, copying_header = false;
6548 class loop *loop = entry->dest->loop_father;
6549 edge exit_copy;
6550 edge redirected;
6551 profile_count total_count = profile_count::uninitialized ();
6552 profile_count entry_count = profile_count::uninitialized ();
6553
6554 if (!can_copy_bbs_p (region, n_region))
6555 return false;
6556
6557 /* Some sanity checking. Note that we do not check for all possible
6558 missuses of the functions. I.e. if you ask to copy something weird,
6559 it will work, but the state of structures probably will not be
6560 correct. */
6561 for (i = 0; i < n_region; i++)
6562 {
6563 /* We do not handle subloops, i.e. all the blocks must belong to the
6564 same loop. */
6565 if (region[i]->loop_father != loop)
6566 return false;
6567
6568 if (region[i] != entry->dest
6569 && region[i] == loop->header)
6570 return false;
6571 }
6572
6573 /* In case the function is used for loop header copying (which is the primary
6574 use), ensure that EXIT and its copy will be new latch and entry edges. */
6575 if (loop->header == entry->dest)
6576 {
6577 copying_header = true;
6578
6579 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6580 return false;
6581
6582 for (i = 0; i < n_region; i++)
6583 if (region[i] != exit->src
6584 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6585 return false;
6586 }
6587
6588 initialize_original_copy_tables ();
6589
6590 if (copying_header)
6591 set_loop_copy (loop, loop_outer (loop));
6592 else
6593 set_loop_copy (loop, loop);
6594
6595 if (!region_copy)
6596 {
6597 region_copy = XNEWVEC (basic_block, n_region);
6598 free_region_copy = true;
6599 }
6600
6601 /* Record blocks outside the region that are dominated by something
6602 inside. */
6603 auto_vec<basic_block> doms;
6604 if (update_dominance)
6605 {
6606 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6607 }
6608
6609 if (entry->dest->count.initialized_p ())
6610 {
6611 total_count = entry->dest->count;
6612 entry_count = entry->count ();
6613 /* Fix up corner cases, to avoid division by zero or creation of negative
6614 frequencies. */
6615 if (entry_count > total_count)
6616 entry_count = total_count;
6617 }
6618
6619 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6620 split_edge_bb_loc (entry), update_dominance);
6621 if (total_count.initialized_p () && entry_count.initialized_p ())
6622 {
6623 scale_bbs_frequencies_profile_count (region, n_region,
6624 total_count - entry_count,
6625 total_count);
6626 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6627 total_count);
6628 }
6629
6630 if (copying_header)
6631 {
6632 loop->header = exit->dest;
6633 loop->latch = exit->src;
6634 }
6635
6636 /* Redirect the entry and add the phi node arguments. */
6637 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6638 gcc_assert (redirected != NULL);
6639 flush_pending_stmts (entry);
6640
6641 /* Concerning updating of dominators: We must recount dominators
6642 for entry block and its copy. Anything that is outside of the
6643 region, but was dominated by something inside needs recounting as
6644 well. */
6645 if (update_dominance)
6646 {
6647 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6648 doms.safe_push (get_bb_original (entry->dest));
6649 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6650 }
6651
6652 /* Add the other PHI node arguments. */
6653 add_phi_args_after_copy (region_copy, n_region, NULL);
6654
6655 if (free_region_copy)
6656 free (region_copy);
6657
6658 free_original_copy_tables ();
6659 return true;
6660 }
6661
6662 /* Checks if BB is part of the region defined by N_REGION BBS. */
6663 static bool
bb_part_of_region_p(basic_block bb,basic_block * bbs,unsigned n_region)6664 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6665 {
6666 unsigned int n;
6667
6668 for (n = 0; n < n_region; n++)
6669 {
6670 if (bb == bbs[n])
6671 return true;
6672 }
6673 return false;
6674 }
6675
6676 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6677 are stored to REGION_COPY in the same order in that they appear
6678 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6679 the region, EXIT an exit from it. The condition guarding EXIT
6680 is moved to ENTRY. Returns true if duplication succeeds, false
6681 otherwise.
6682
6683 For example,
6684
6685 some_code;
6686 if (cond)
6687 A;
6688 else
6689 B;
6690
6691 is transformed to
6692
6693 if (cond)
6694 {
6695 some_code;
6696 A;
6697 }
6698 else
6699 {
6700 some_code;
6701 B;
6702 }
6703 */
6704
6705 bool
gimple_duplicate_sese_tail(edge entry,edge exit,basic_block * region,unsigned n_region,basic_block * region_copy)6706 gimple_duplicate_sese_tail (edge entry, edge exit,
6707 basic_block *region, unsigned n_region,
6708 basic_block *region_copy)
6709 {
6710 unsigned i;
6711 bool free_region_copy = false;
6712 class loop *loop = exit->dest->loop_father;
6713 class loop *orig_loop = entry->dest->loop_father;
6714 basic_block switch_bb, entry_bb, nentry_bb;
6715 profile_count total_count = profile_count::uninitialized (),
6716 exit_count = profile_count::uninitialized ();
6717 edge exits[2], nexits[2], e;
6718 gimple_stmt_iterator gsi;
6719 gimple *cond_stmt;
6720 edge sorig, snew;
6721 basic_block exit_bb;
6722 gphi_iterator psi;
6723 gphi *phi;
6724 tree def;
6725 class loop *target, *aloop, *cloop;
6726
6727 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6728 exits[0] = exit;
6729 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6730
6731 if (!can_copy_bbs_p (region, n_region))
6732 return false;
6733
6734 initialize_original_copy_tables ();
6735 set_loop_copy (orig_loop, loop);
6736
6737 target= loop;
6738 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6739 {
6740 if (bb_part_of_region_p (aloop->header, region, n_region))
6741 {
6742 cloop = duplicate_loop (aloop, target);
6743 duplicate_subloops (aloop, cloop);
6744 }
6745 }
6746
6747 if (!region_copy)
6748 {
6749 region_copy = XNEWVEC (basic_block, n_region);
6750 free_region_copy = true;
6751 }
6752
6753 gcc_assert (!need_ssa_update_p (cfun));
6754
6755 /* Record blocks outside the region that are dominated by something
6756 inside. */
6757 auto_vec<basic_block> doms = get_dominated_by_region (CDI_DOMINATORS, region,
6758 n_region);
6759
6760 total_count = exit->src->count;
6761 exit_count = exit->count ();
6762 /* Fix up corner cases, to avoid division by zero or creation of negative
6763 frequencies. */
6764 if (exit_count > total_count)
6765 exit_count = total_count;
6766
6767 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6768 split_edge_bb_loc (exit), true);
6769 if (total_count.initialized_p () && exit_count.initialized_p ())
6770 {
6771 scale_bbs_frequencies_profile_count (region, n_region,
6772 total_count - exit_count,
6773 total_count);
6774 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6775 total_count);
6776 }
6777
6778 /* Create the switch block, and put the exit condition to it. */
6779 entry_bb = entry->dest;
6780 nentry_bb = get_bb_copy (entry_bb);
6781 if (!last_stmt (entry->src)
6782 || !stmt_ends_bb_p (last_stmt (entry->src)))
6783 switch_bb = entry->src;
6784 else
6785 switch_bb = split_edge (entry);
6786 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6787
6788 gsi = gsi_last_bb (switch_bb);
6789 cond_stmt = last_stmt (exit->src);
6790 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6791 cond_stmt = gimple_copy (cond_stmt);
6792
6793 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6794
6795 sorig = single_succ_edge (switch_bb);
6796 sorig->flags = exits[1]->flags;
6797 sorig->probability = exits[1]->probability;
6798 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6799 snew->probability = exits[0]->probability;
6800
6801
6802 /* Register the new edge from SWITCH_BB in loop exit lists. */
6803 rescan_loop_exit (snew, true, false);
6804
6805 /* Add the PHI node arguments. */
6806 add_phi_args_after_copy (region_copy, n_region, snew);
6807
6808 /* Get rid of now superfluous conditions and associated edges (and phi node
6809 arguments). */
6810 exit_bb = exit->dest;
6811
6812 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6813 PENDING_STMT (e) = NULL;
6814
6815 /* The latch of ORIG_LOOP was copied, and so was the backedge
6816 to the original header. We redirect this backedge to EXIT_BB. */
6817 for (i = 0; i < n_region; i++)
6818 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6819 {
6820 gcc_assert (single_succ_edge (region_copy[i]));
6821 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6822 PENDING_STMT (e) = NULL;
6823 for (psi = gsi_start_phis (exit_bb);
6824 !gsi_end_p (psi);
6825 gsi_next (&psi))
6826 {
6827 phi = psi.phi ();
6828 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6829 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6830 }
6831 }
6832 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6833 PENDING_STMT (e) = NULL;
6834
6835 /* Anything that is outside of the region, but was dominated by something
6836 inside needs to update dominance info. */
6837 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6838 /* Update the SSA web. */
6839 update_ssa (TODO_update_ssa);
6840
6841 if (free_region_copy)
6842 free (region_copy);
6843
6844 free_original_copy_tables ();
6845 return true;
6846 }
6847
6848 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6849 adding blocks when the dominator traversal reaches EXIT. This
6850 function silently assumes that ENTRY strictly dominates EXIT. */
6851
6852 void
gather_blocks_in_sese_region(basic_block entry,basic_block exit,vec<basic_block> * bbs_p)6853 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6854 vec<basic_block> *bbs_p)
6855 {
6856 basic_block son;
6857
6858 for (son = first_dom_son (CDI_DOMINATORS, entry);
6859 son;
6860 son = next_dom_son (CDI_DOMINATORS, son))
6861 {
6862 bbs_p->safe_push (son);
6863 if (son != exit)
6864 gather_blocks_in_sese_region (son, exit, bbs_p);
6865 }
6866 }
6867
6868 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6869 The duplicates are recorded in VARS_MAP. */
6870
6871 static void
replace_by_duplicate_decl(tree * tp,hash_map<tree,tree> * vars_map,tree to_context)6872 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6873 tree to_context)
6874 {
6875 tree t = *tp, new_t;
6876 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6877
6878 if (DECL_CONTEXT (t) == to_context)
6879 return;
6880
6881 bool existed;
6882 tree &loc = vars_map->get_or_insert (t, &existed);
6883
6884 if (!existed)
6885 {
6886 if (SSA_VAR_P (t))
6887 {
6888 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6889 add_local_decl (f, new_t);
6890 }
6891 else
6892 {
6893 gcc_assert (TREE_CODE (t) == CONST_DECL);
6894 new_t = copy_node (t);
6895 }
6896 DECL_CONTEXT (new_t) = to_context;
6897
6898 loc = new_t;
6899 }
6900 else
6901 new_t = loc;
6902
6903 *tp = new_t;
6904 }
6905
6906
6907 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6908 VARS_MAP maps old ssa names and var_decls to the new ones. */
6909
6910 static tree
replace_ssa_name(tree name,hash_map<tree,tree> * vars_map,tree to_context)6911 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6912 tree to_context)
6913 {
6914 tree new_name;
6915
6916 gcc_assert (!virtual_operand_p (name));
6917
6918 tree *loc = vars_map->get (name);
6919
6920 if (!loc)
6921 {
6922 tree decl = SSA_NAME_VAR (name);
6923 if (decl)
6924 {
6925 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6926 replace_by_duplicate_decl (&decl, vars_map, to_context);
6927 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6928 decl, SSA_NAME_DEF_STMT (name));
6929 }
6930 else
6931 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6932 name, SSA_NAME_DEF_STMT (name));
6933
6934 /* Now that we've used the def stmt to define new_name, make sure it
6935 doesn't define name anymore. */
6936 SSA_NAME_DEF_STMT (name) = NULL;
6937
6938 vars_map->put (name, new_name);
6939 }
6940 else
6941 new_name = *loc;
6942
6943 return new_name;
6944 }
6945
6946 struct move_stmt_d
6947 {
6948 tree orig_block;
6949 tree new_block;
6950 tree from_context;
6951 tree to_context;
6952 hash_map<tree, tree> *vars_map;
6953 htab_t new_label_map;
6954 hash_map<void *, void *> *eh_map;
6955 bool remap_decls_p;
6956 };
6957
6958 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6959 contained in *TP if it has been ORIG_BLOCK previously and change the
6960 DECL_CONTEXT of every local variable referenced in *TP. */
6961
6962 static tree
move_stmt_op(tree * tp,int * walk_subtrees,void * data)6963 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6964 {
6965 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6966 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6967 tree t = *tp;
6968
6969 if (EXPR_P (t))
6970 {
6971 tree block = TREE_BLOCK (t);
6972 if (block == NULL_TREE)
6973 ;
6974 else if (block == p->orig_block
6975 || p->orig_block == NULL_TREE)
6976 {
6977 /* tree_node_can_be_shared says we can share invariant
6978 addresses but unshare_expr copies them anyways. Make sure
6979 to unshare before adjusting the block in place - we do not
6980 always see a copy here. */
6981 if (TREE_CODE (t) == ADDR_EXPR
6982 && is_gimple_min_invariant (t))
6983 *tp = t = unshare_expr (t);
6984 TREE_SET_BLOCK (t, p->new_block);
6985 }
6986 else if (flag_checking)
6987 {
6988 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6989 block = BLOCK_SUPERCONTEXT (block);
6990 gcc_assert (block == p->orig_block);
6991 }
6992 }
6993 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6994 {
6995 if (TREE_CODE (t) == SSA_NAME)
6996 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6997 else if (TREE_CODE (t) == PARM_DECL
6998 && gimple_in_ssa_p (cfun))
6999 *tp = *(p->vars_map->get (t));
7000 else if (TREE_CODE (t) == LABEL_DECL)
7001 {
7002 if (p->new_label_map)
7003 {
7004 struct tree_map in, *out;
7005 in.base.from = t;
7006 out = (struct tree_map *)
7007 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
7008 if (out)
7009 *tp = t = out->to;
7010 }
7011
7012 /* For FORCED_LABELs we can end up with references from other
7013 functions if some SESE regions are outlined. It is UB to
7014 jump in between them, but they could be used just for printing
7015 addresses etc. In that case, DECL_CONTEXT on the label should
7016 be the function containing the glabel stmt with that LABEL_DECL,
7017 rather than whatever function a reference to the label was seen
7018 last time. */
7019 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
7020 DECL_CONTEXT (t) = p->to_context;
7021 }
7022 else if (p->remap_decls_p)
7023 {
7024 /* Replace T with its duplicate. T should no longer appear in the
7025 parent function, so this looks wasteful; however, it may appear
7026 in referenced_vars, and more importantly, as virtual operands of
7027 statements, and in alias lists of other variables. It would be
7028 quite difficult to expunge it from all those places. ??? It might
7029 suffice to do this for addressable variables. */
7030 if ((VAR_P (t) && !is_global_var (t))
7031 || TREE_CODE (t) == CONST_DECL)
7032 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
7033 }
7034 *walk_subtrees = 0;
7035 }
7036 else if (TYPE_P (t))
7037 *walk_subtrees = 0;
7038
7039 return NULL_TREE;
7040 }
7041
7042 /* Helper for move_stmt_r. Given an EH region number for the source
7043 function, map that to the duplicate EH regio number in the dest. */
7044
7045 static int
move_stmt_eh_region_nr(int old_nr,struct move_stmt_d * p)7046 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
7047 {
7048 eh_region old_r, new_r;
7049
7050 old_r = get_eh_region_from_number (old_nr);
7051 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
7052
7053 return new_r->index;
7054 }
7055
7056 /* Similar, but operate on INTEGER_CSTs. */
7057
7058 static tree
move_stmt_eh_region_tree_nr(tree old_t_nr,struct move_stmt_d * p)7059 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
7060 {
7061 int old_nr, new_nr;
7062
7063 old_nr = tree_to_shwi (old_t_nr);
7064 new_nr = move_stmt_eh_region_nr (old_nr, p);
7065
7066 return build_int_cst (integer_type_node, new_nr);
7067 }
7068
7069 /* Like move_stmt_op, but for gimple statements.
7070
7071 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
7072 contained in the current statement in *GSI_P and change the
7073 DECL_CONTEXT of every local variable referenced in the current
7074 statement. */
7075
7076 static tree
move_stmt_r(gimple_stmt_iterator * gsi_p,bool * handled_ops_p,struct walk_stmt_info * wi)7077 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
7078 struct walk_stmt_info *wi)
7079 {
7080 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
7081 gimple *stmt = gsi_stmt (*gsi_p);
7082 tree block = gimple_block (stmt);
7083
7084 if (block == p->orig_block
7085 || (p->orig_block == NULL_TREE
7086 && block != NULL_TREE))
7087 gimple_set_block (stmt, p->new_block);
7088
7089 switch (gimple_code (stmt))
7090 {
7091 case GIMPLE_CALL:
7092 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
7093 {
7094 tree r, fndecl = gimple_call_fndecl (stmt);
7095 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
7096 switch (DECL_FUNCTION_CODE (fndecl))
7097 {
7098 case BUILT_IN_EH_COPY_VALUES:
7099 r = gimple_call_arg (stmt, 1);
7100 r = move_stmt_eh_region_tree_nr (r, p);
7101 gimple_call_set_arg (stmt, 1, r);
7102 /* FALLTHRU */
7103
7104 case BUILT_IN_EH_POINTER:
7105 case BUILT_IN_EH_FILTER:
7106 r = gimple_call_arg (stmt, 0);
7107 r = move_stmt_eh_region_tree_nr (r, p);
7108 gimple_call_set_arg (stmt, 0, r);
7109 break;
7110
7111 default:
7112 break;
7113 }
7114 }
7115 break;
7116
7117 case GIMPLE_RESX:
7118 {
7119 gresx *resx_stmt = as_a <gresx *> (stmt);
7120 int r = gimple_resx_region (resx_stmt);
7121 r = move_stmt_eh_region_nr (r, p);
7122 gimple_resx_set_region (resx_stmt, r);
7123 }
7124 break;
7125
7126 case GIMPLE_EH_DISPATCH:
7127 {
7128 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
7129 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
7130 r = move_stmt_eh_region_nr (r, p);
7131 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
7132 }
7133 break;
7134
7135 case GIMPLE_OMP_RETURN:
7136 case GIMPLE_OMP_CONTINUE:
7137 break;
7138
7139 case GIMPLE_LABEL:
7140 {
7141 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
7142 so that such labels can be referenced from other regions.
7143 Make sure to update it when seeing a GIMPLE_LABEL though,
7144 that is the owner of the label. */
7145 walk_gimple_op (stmt, move_stmt_op, wi);
7146 *handled_ops_p = true;
7147 tree label = gimple_label_label (as_a <glabel *> (stmt));
7148 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
7149 DECL_CONTEXT (label) = p->to_context;
7150 }
7151 break;
7152
7153 default:
7154 if (is_gimple_omp (stmt))
7155 {
7156 /* Do not remap variables inside OMP directives. Variables
7157 referenced in clauses and directive header belong to the
7158 parent function and should not be moved into the child
7159 function. */
7160 bool save_remap_decls_p = p->remap_decls_p;
7161 p->remap_decls_p = false;
7162 *handled_ops_p = true;
7163
7164 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
7165 move_stmt_op, wi);
7166
7167 p->remap_decls_p = save_remap_decls_p;
7168 }
7169 break;
7170 }
7171
7172 return NULL_TREE;
7173 }
7174
7175 /* Move basic block BB from function CFUN to function DEST_FN. The
7176 block is moved out of the original linked list and placed after
7177 block AFTER in the new list. Also, the block is removed from the
7178 original array of blocks and placed in DEST_FN's array of blocks.
7179 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
7180 updated to reflect the moved edges.
7181
7182 The local variables are remapped to new instances, VARS_MAP is used
7183 to record the mapping. */
7184
7185 static void
move_block_to_fn(struct function * dest_cfun,basic_block bb,basic_block after,bool update_edge_count_p,struct move_stmt_d * d)7186 move_block_to_fn (struct function *dest_cfun, basic_block bb,
7187 basic_block after, bool update_edge_count_p,
7188 struct move_stmt_d *d)
7189 {
7190 struct control_flow_graph *cfg;
7191 edge_iterator ei;
7192 edge e;
7193 gimple_stmt_iterator si;
7194 unsigned old_len;
7195
7196 /* Remove BB from dominance structures. */
7197 delete_from_dominance_info (CDI_DOMINATORS, bb);
7198
7199 /* Move BB from its current loop to the copy in the new function. */
7200 if (current_loops)
7201 {
7202 class loop *new_loop = (class loop *)bb->loop_father->aux;
7203 if (new_loop)
7204 bb->loop_father = new_loop;
7205 }
7206
7207 /* Link BB to the new linked list. */
7208 move_block_after (bb, after);
7209
7210 /* Update the edge count in the corresponding flowgraphs. */
7211 if (update_edge_count_p)
7212 FOR_EACH_EDGE (e, ei, bb->succs)
7213 {
7214 cfun->cfg->x_n_edges--;
7215 dest_cfun->cfg->x_n_edges++;
7216 }
7217
7218 /* Remove BB from the original basic block array. */
7219 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
7220 cfun->cfg->x_n_basic_blocks--;
7221
7222 /* Grow DEST_CFUN's basic block array if needed. */
7223 cfg = dest_cfun->cfg;
7224 cfg->x_n_basic_blocks++;
7225 if (bb->index >= cfg->x_last_basic_block)
7226 cfg->x_last_basic_block = bb->index + 1;
7227
7228 old_len = vec_safe_length (cfg->x_basic_block_info);
7229 if ((unsigned) cfg->x_last_basic_block >= old_len)
7230 vec_safe_grow_cleared (cfg->x_basic_block_info,
7231 cfg->x_last_basic_block + 1);
7232
7233 (*cfg->x_basic_block_info)[bb->index] = bb;
7234
7235 /* Remap the variables in phi nodes. */
7236 for (gphi_iterator psi = gsi_start_phis (bb);
7237 !gsi_end_p (psi); )
7238 {
7239 gphi *phi = psi.phi ();
7240 use_operand_p use;
7241 tree op = PHI_RESULT (phi);
7242 ssa_op_iter oi;
7243 unsigned i;
7244
7245 if (virtual_operand_p (op))
7246 {
7247 /* Remove the phi nodes for virtual operands (alias analysis will be
7248 run for the new function, anyway). But replace all uses that
7249 might be outside of the region we move. */
7250 use_operand_p use_p;
7251 imm_use_iterator iter;
7252 gimple *use_stmt;
7253 FOR_EACH_IMM_USE_STMT (use_stmt, iter, op)
7254 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7255 SET_USE (use_p, SSA_NAME_VAR (op));
7256 remove_phi_node (&psi, true);
7257 continue;
7258 }
7259
7260 SET_PHI_RESULT (phi,
7261 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7262 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
7263 {
7264 op = USE_FROM_PTR (use);
7265 if (TREE_CODE (op) == SSA_NAME)
7266 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7267 }
7268
7269 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
7270 {
7271 location_t locus = gimple_phi_arg_location (phi, i);
7272 tree block = LOCATION_BLOCK (locus);
7273
7274 if (locus == UNKNOWN_LOCATION)
7275 continue;
7276 if (d->orig_block == NULL_TREE || block == d->orig_block)
7277 {
7278 locus = set_block (locus, d->new_block);
7279 gimple_phi_arg_set_location (phi, i, locus);
7280 }
7281 }
7282
7283 gsi_next (&psi);
7284 }
7285
7286 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7287 {
7288 gimple *stmt = gsi_stmt (si);
7289 struct walk_stmt_info wi;
7290
7291 memset (&wi, 0, sizeof (wi));
7292 wi.info = d;
7293 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7294
7295 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7296 {
7297 tree label = gimple_label_label (label_stmt);
7298 int uid = LABEL_DECL_UID (label);
7299
7300 gcc_assert (uid > -1);
7301
7302 old_len = vec_safe_length (cfg->x_label_to_block_map);
7303 if (old_len <= (unsigned) uid)
7304 vec_safe_grow_cleared (cfg->x_label_to_block_map, uid + 1);
7305
7306 (*cfg->x_label_to_block_map)[uid] = bb;
7307 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7308
7309 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7310
7311 if (uid >= dest_cfun->cfg->last_label_uid)
7312 dest_cfun->cfg->last_label_uid = uid + 1;
7313 }
7314
7315 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7316 remove_stmt_from_eh_lp_fn (cfun, stmt);
7317
7318 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7319 gimple_remove_stmt_histograms (cfun, stmt);
7320
7321 /* We cannot leave any operands allocated from the operand caches of
7322 the current function. */
7323 free_stmt_operands (cfun, stmt);
7324 push_cfun (dest_cfun);
7325 update_stmt (stmt);
7326 if (is_gimple_call (stmt))
7327 notice_special_calls (as_a <gcall *> (stmt));
7328 pop_cfun ();
7329 }
7330
7331 FOR_EACH_EDGE (e, ei, bb->succs)
7332 if (e->goto_locus != UNKNOWN_LOCATION)
7333 {
7334 tree block = LOCATION_BLOCK (e->goto_locus);
7335 if (d->orig_block == NULL_TREE
7336 || block == d->orig_block)
7337 e->goto_locus = set_block (e->goto_locus, d->new_block);
7338 }
7339 }
7340
7341 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7342 the outermost EH region. Use REGION as the incoming base EH region.
7343 If there is no single outermost region, return NULL and set *ALL to
7344 true. */
7345
7346 static eh_region
find_outermost_region_in_block(struct function * src_cfun,basic_block bb,eh_region region,bool * all)7347 find_outermost_region_in_block (struct function *src_cfun,
7348 basic_block bb, eh_region region,
7349 bool *all)
7350 {
7351 gimple_stmt_iterator si;
7352
7353 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7354 {
7355 gimple *stmt = gsi_stmt (si);
7356 eh_region stmt_region;
7357 int lp_nr;
7358
7359 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7360 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7361 if (stmt_region)
7362 {
7363 if (region == NULL)
7364 region = stmt_region;
7365 else if (stmt_region != region)
7366 {
7367 region = eh_region_outermost (src_cfun, stmt_region, region);
7368 if (region == NULL)
7369 {
7370 *all = true;
7371 return NULL;
7372 }
7373 }
7374 }
7375 }
7376
7377 return region;
7378 }
7379
7380 static tree
new_label_mapper(tree decl,void * data)7381 new_label_mapper (tree decl, void *data)
7382 {
7383 htab_t hash = (htab_t) data;
7384 struct tree_map *m;
7385 void **slot;
7386
7387 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7388
7389 m = XNEW (struct tree_map);
7390 m->hash = DECL_UID (decl);
7391 m->base.from = decl;
7392 m->to = create_artificial_label (UNKNOWN_LOCATION);
7393 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7394 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7395 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7396
7397 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7398 gcc_assert (*slot == NULL);
7399
7400 *slot = m;
7401
7402 return m->to;
7403 }
7404
7405 /* Tree walker to replace the decls used inside value expressions by
7406 duplicates. */
7407
7408 static tree
replace_block_vars_by_duplicates_1(tree * tp,int * walk_subtrees,void * data)7409 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7410 {
7411 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7412
7413 switch (TREE_CODE (*tp))
7414 {
7415 case VAR_DECL:
7416 case PARM_DECL:
7417 case RESULT_DECL:
7418 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7419 break;
7420 default:
7421 break;
7422 }
7423
7424 if (IS_TYPE_OR_DECL_P (*tp))
7425 *walk_subtrees = false;
7426
7427 return NULL;
7428 }
7429
7430 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7431 subblocks. */
7432
7433 static void
replace_block_vars_by_duplicates(tree block,hash_map<tree,tree> * vars_map,tree to_context)7434 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7435 tree to_context)
7436 {
7437 tree *tp, t;
7438
7439 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7440 {
7441 t = *tp;
7442 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7443 continue;
7444 replace_by_duplicate_decl (&t, vars_map, to_context);
7445 if (t != *tp)
7446 {
7447 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7448 {
7449 tree x = DECL_VALUE_EXPR (*tp);
7450 struct replace_decls_d rd = { vars_map, to_context };
7451 unshare_expr (x);
7452 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7453 SET_DECL_VALUE_EXPR (t, x);
7454 DECL_HAS_VALUE_EXPR_P (t) = 1;
7455 }
7456 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7457 *tp = t;
7458 }
7459 }
7460
7461 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7462 replace_block_vars_by_duplicates (block, vars_map, to_context);
7463 }
7464
7465 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7466 from FN1 to FN2. */
7467
7468 static void
fixup_loop_arrays_after_move(struct function * fn1,struct function * fn2,class loop * loop)7469 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7470 class loop *loop)
7471 {
7472 /* Discard it from the old loop array. */
7473 (*get_loops (fn1))[loop->num] = NULL;
7474
7475 /* Place it in the new loop array, assigning it a new number. */
7476 loop->num = number_of_loops (fn2);
7477 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7478
7479 /* Recurse to children. */
7480 for (loop = loop->inner; loop; loop = loop->next)
7481 fixup_loop_arrays_after_move (fn1, fn2, loop);
7482 }
7483
7484 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7485 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7486
7487 DEBUG_FUNCTION void
verify_sese(basic_block entry,basic_block exit,vec<basic_block> * bbs_p)7488 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7489 {
7490 basic_block bb;
7491 edge_iterator ei;
7492 edge e;
7493 bitmap bbs = BITMAP_ALLOC (NULL);
7494 int i;
7495
7496 gcc_assert (entry != NULL);
7497 gcc_assert (entry != exit);
7498 gcc_assert (bbs_p != NULL);
7499
7500 gcc_assert (bbs_p->length () > 0);
7501
7502 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7503 bitmap_set_bit (bbs, bb->index);
7504
7505 gcc_assert (bitmap_bit_p (bbs, entry->index));
7506 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7507
7508 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7509 {
7510 if (bb == entry)
7511 {
7512 gcc_assert (single_pred_p (entry));
7513 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7514 }
7515 else
7516 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7517 {
7518 e = ei_edge (ei);
7519 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7520 }
7521
7522 if (bb == exit)
7523 {
7524 gcc_assert (single_succ_p (exit));
7525 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7526 }
7527 else
7528 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7529 {
7530 e = ei_edge (ei);
7531 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7532 }
7533 }
7534
7535 BITMAP_FREE (bbs);
7536 }
7537
7538 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7539
7540 bool
gather_ssa_name_hash_map_from(tree const & from,tree const &,void * data)7541 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7542 {
7543 bitmap release_names = (bitmap)data;
7544
7545 if (TREE_CODE (from) != SSA_NAME)
7546 return true;
7547
7548 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7549 return true;
7550 }
7551
7552 /* Return LOOP_DIST_ALIAS call if present in BB. */
7553
7554 static gimple *
find_loop_dist_alias(basic_block bb)7555 find_loop_dist_alias (basic_block bb)
7556 {
7557 gimple *g = last_stmt (bb);
7558 if (g == NULL || gimple_code (g) != GIMPLE_COND)
7559 return NULL;
7560
7561 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7562 gsi_prev (&gsi);
7563 if (gsi_end_p (gsi))
7564 return NULL;
7565
7566 g = gsi_stmt (gsi);
7567 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7568 return g;
7569 return NULL;
7570 }
7571
7572 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7573 to VALUE and update any immediate uses of it's LHS. */
7574
7575 void
fold_loop_internal_call(gimple * g,tree value)7576 fold_loop_internal_call (gimple *g, tree value)
7577 {
7578 tree lhs = gimple_call_lhs (g);
7579 use_operand_p use_p;
7580 imm_use_iterator iter;
7581 gimple *use_stmt;
7582 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7583
7584 replace_call_with_value (&gsi, value);
7585 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7586 {
7587 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7588 SET_USE (use_p, value);
7589 update_stmt (use_stmt);
7590 }
7591 }
7592
7593 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7594 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7595 single basic block in the original CFG and the new basic block is
7596 returned. DEST_CFUN must not have a CFG yet.
7597
7598 Note that the region need not be a pure SESE region. Blocks inside
7599 the region may contain calls to abort/exit. The only restriction
7600 is that ENTRY_BB should be the only entry point and it must
7601 dominate EXIT_BB.
7602
7603 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7604 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7605 to the new function.
7606
7607 All local variables referenced in the region are assumed to be in
7608 the corresponding BLOCK_VARS and unexpanded variable lists
7609 associated with DEST_CFUN.
7610
7611 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7612 reimplement move_sese_region_to_fn by duplicating the region rather than
7613 moving it. */
7614
7615 basic_block
move_sese_region_to_fn(struct function * dest_cfun,basic_block entry_bb,basic_block exit_bb,tree orig_block)7616 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7617 basic_block exit_bb, tree orig_block)
7618 {
7619 vec<basic_block> bbs;
7620 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7621 basic_block after, bb, *entry_pred, *exit_succ, abb;
7622 struct function *saved_cfun = cfun;
7623 int *entry_flag, *exit_flag;
7624 profile_probability *entry_prob, *exit_prob;
7625 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7626 edge e;
7627 edge_iterator ei;
7628 htab_t new_label_map;
7629 hash_map<void *, void *> *eh_map;
7630 class loop *loop = entry_bb->loop_father;
7631 class loop *loop0 = get_loop (saved_cfun, 0);
7632 struct move_stmt_d d;
7633
7634 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7635 region. */
7636 gcc_assert (entry_bb != exit_bb
7637 && (!exit_bb
7638 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7639
7640 /* Collect all the blocks in the region. Manually add ENTRY_BB
7641 because it won't be added by dfs_enumerate_from. */
7642 bbs.create (0);
7643 bbs.safe_push (entry_bb);
7644 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7645
7646 if (flag_checking)
7647 verify_sese (entry_bb, exit_bb, &bbs);
7648
7649 /* The blocks that used to be dominated by something in BBS will now be
7650 dominated by the new block. */
7651 auto_vec<basic_block> dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7652 bbs.address (),
7653 bbs.length ());
7654
7655 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7656 the predecessor edges to ENTRY_BB and the successor edges to
7657 EXIT_BB so that we can re-attach them to the new basic block that
7658 will replace the region. */
7659 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7660 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7661 entry_flag = XNEWVEC (int, num_entry_edges);
7662 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7663 i = 0;
7664 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7665 {
7666 entry_prob[i] = e->probability;
7667 entry_flag[i] = e->flags;
7668 entry_pred[i++] = e->src;
7669 remove_edge (e);
7670 }
7671
7672 if (exit_bb)
7673 {
7674 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7675 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7676 exit_flag = XNEWVEC (int, num_exit_edges);
7677 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7678 i = 0;
7679 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7680 {
7681 exit_prob[i] = e->probability;
7682 exit_flag[i] = e->flags;
7683 exit_succ[i++] = e->dest;
7684 remove_edge (e);
7685 }
7686 }
7687 else
7688 {
7689 num_exit_edges = 0;
7690 exit_succ = NULL;
7691 exit_flag = NULL;
7692 exit_prob = NULL;
7693 }
7694
7695 /* Switch context to the child function to initialize DEST_FN's CFG. */
7696 gcc_assert (dest_cfun->cfg == NULL);
7697 push_cfun (dest_cfun);
7698
7699 init_empty_tree_cfg ();
7700
7701 /* Initialize EH information for the new function. */
7702 eh_map = NULL;
7703 new_label_map = NULL;
7704 if (saved_cfun->eh)
7705 {
7706 eh_region region = NULL;
7707 bool all = false;
7708
7709 FOR_EACH_VEC_ELT (bbs, i, bb)
7710 {
7711 region = find_outermost_region_in_block (saved_cfun, bb, region, &all);
7712 if (all)
7713 break;
7714 }
7715
7716 init_eh_for_function ();
7717 if (region != NULL || all)
7718 {
7719 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7720 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7721 new_label_mapper, new_label_map);
7722 }
7723 }
7724
7725 /* Initialize an empty loop tree. */
7726 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7727 init_loops_structure (dest_cfun, loops, 1);
7728 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7729 set_loops_for_fn (dest_cfun, loops);
7730
7731 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7732
7733 /* Move the outlined loop tree part. */
7734 num_nodes = bbs.length ();
7735 FOR_EACH_VEC_ELT (bbs, i, bb)
7736 {
7737 if (bb->loop_father->header == bb)
7738 {
7739 class loop *this_loop = bb->loop_father;
7740 /* Avoid the need to remap SSA names used in nb_iterations. */
7741 free_numbers_of_iterations_estimates (this_loop);
7742 class loop *outer = loop_outer (this_loop);
7743 if (outer == loop
7744 /* If the SESE region contains some bbs ending with
7745 a noreturn call, those are considered to belong
7746 to the outermost loop in saved_cfun, rather than
7747 the entry_bb's loop_father. */
7748 || outer == loop0)
7749 {
7750 if (outer != loop)
7751 num_nodes -= this_loop->num_nodes;
7752 flow_loop_tree_node_remove (bb->loop_father);
7753 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7754 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7755 }
7756 }
7757 else if (bb->loop_father == loop0 && loop0 != loop)
7758 num_nodes--;
7759
7760 /* Remove loop exits from the outlined region. */
7761 if (loops_for_fn (saved_cfun)->exits)
7762 FOR_EACH_EDGE (e, ei, bb->succs)
7763 {
7764 struct loops *l = loops_for_fn (saved_cfun);
7765 loop_exit **slot
7766 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7767 NO_INSERT);
7768 if (slot)
7769 l->exits->clear_slot (slot);
7770 }
7771 }
7772
7773 /* Adjust the number of blocks in the tree root of the outlined part. */
7774 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7775
7776 /* Setup a mapping to be used by move_block_to_fn. */
7777 loop->aux = current_loops->tree_root;
7778 loop0->aux = current_loops->tree_root;
7779
7780 /* Fix up orig_loop_num. If the block referenced in it has been moved
7781 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7782 signed char *moved_orig_loop_num = NULL;
7783 for (auto dloop : loops_list (dest_cfun, 0))
7784 if (dloop->orig_loop_num)
7785 {
7786 if (moved_orig_loop_num == NULL)
7787 moved_orig_loop_num
7788 = XCNEWVEC (signed char, vec_safe_length (larray));
7789 if ((*larray)[dloop->orig_loop_num] != NULL
7790 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7791 {
7792 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7793 && moved_orig_loop_num[dloop->orig_loop_num] < 2)
7794 moved_orig_loop_num[dloop->orig_loop_num]++;
7795 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7796 }
7797 else
7798 {
7799 moved_orig_loop_num[dloop->orig_loop_num] = -1;
7800 dloop->orig_loop_num = 0;
7801 }
7802 }
7803 pop_cfun ();
7804
7805 if (moved_orig_loop_num)
7806 {
7807 FOR_EACH_VEC_ELT (bbs, i, bb)
7808 {
7809 gimple *g = find_loop_dist_alias (bb);
7810 if (g == NULL)
7811 continue;
7812
7813 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7814 gcc_assert (orig_loop_num
7815 && (unsigned) orig_loop_num < vec_safe_length (larray));
7816 if (moved_orig_loop_num[orig_loop_num] == 2)
7817 {
7818 /* If we have moved both loops with this orig_loop_num into
7819 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7820 too, update the first argument. */
7821 gcc_assert ((*larray)[orig_loop_num] != NULL
7822 && (get_loop (saved_cfun, orig_loop_num) == NULL));
7823 tree t = build_int_cst (integer_type_node,
7824 (*larray)[orig_loop_num]->num);
7825 gimple_call_set_arg (g, 0, t);
7826 update_stmt (g);
7827 /* Make sure the following loop will not update it. */
7828 moved_orig_loop_num[orig_loop_num] = 0;
7829 }
7830 else
7831 /* Otherwise at least one of the loops stayed in saved_cfun.
7832 Remove the LOOP_DIST_ALIAS call. */
7833 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7834 }
7835 FOR_EACH_BB_FN (bb, saved_cfun)
7836 {
7837 gimple *g = find_loop_dist_alias (bb);
7838 if (g == NULL)
7839 continue;
7840 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7841 gcc_assert (orig_loop_num
7842 && (unsigned) orig_loop_num < vec_safe_length (larray));
7843 if (moved_orig_loop_num[orig_loop_num])
7844 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7845 of the corresponding loops was moved, remove it. */
7846 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7847 }
7848 XDELETEVEC (moved_orig_loop_num);
7849 }
7850 ggc_free (larray);
7851
7852 /* Move blocks from BBS into DEST_CFUN. */
7853 gcc_assert (bbs.length () >= 2);
7854 after = dest_cfun->cfg->x_entry_block_ptr;
7855 hash_map<tree, tree> vars_map;
7856
7857 memset (&d, 0, sizeof (d));
7858 d.orig_block = orig_block;
7859 d.new_block = DECL_INITIAL (dest_cfun->decl);
7860 d.from_context = cfun->decl;
7861 d.to_context = dest_cfun->decl;
7862 d.vars_map = &vars_map;
7863 d.new_label_map = new_label_map;
7864 d.eh_map = eh_map;
7865 d.remap_decls_p = true;
7866
7867 if (gimple_in_ssa_p (cfun))
7868 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7869 {
7870 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7871 set_ssa_default_def (dest_cfun, arg, narg);
7872 vars_map.put (arg, narg);
7873 }
7874
7875 FOR_EACH_VEC_ELT (bbs, i, bb)
7876 {
7877 /* No need to update edge counts on the last block. It has
7878 already been updated earlier when we detached the region from
7879 the original CFG. */
7880 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7881 after = bb;
7882 }
7883
7884 /* Adjust the maximum clique used. */
7885 dest_cfun->last_clique = saved_cfun->last_clique;
7886
7887 loop->aux = NULL;
7888 loop0->aux = NULL;
7889 /* Loop sizes are no longer correct, fix them up. */
7890 loop->num_nodes -= num_nodes;
7891 for (class loop *outer = loop_outer (loop);
7892 outer; outer = loop_outer (outer))
7893 outer->num_nodes -= num_nodes;
7894 loop0->num_nodes -= bbs.length () - num_nodes;
7895
7896 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7897 {
7898 class loop *aloop;
7899 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7900 if (aloop != NULL)
7901 {
7902 if (aloop->simduid)
7903 {
7904 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7905 d.to_context);
7906 dest_cfun->has_simduid_loops = true;
7907 }
7908 if (aloop->force_vectorize)
7909 dest_cfun->has_force_vectorize_loops = true;
7910 }
7911 }
7912
7913 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7914 if (orig_block)
7915 {
7916 tree block;
7917 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7918 == NULL_TREE);
7919 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7920 = BLOCK_SUBBLOCKS (orig_block);
7921 for (block = BLOCK_SUBBLOCKS (orig_block);
7922 block; block = BLOCK_CHAIN (block))
7923 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7924 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7925 }
7926
7927 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7928 &vars_map, dest_cfun->decl);
7929
7930 if (new_label_map)
7931 htab_delete (new_label_map);
7932 if (eh_map)
7933 delete eh_map;
7934
7935 /* We need to release ssa-names in a defined order, so first find them,
7936 and then iterate in ascending version order. */
7937 bitmap release_names = BITMAP_ALLOC (NULL);
7938 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7939 bitmap_iterator bi;
7940 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7941 release_ssa_name (ssa_name (i));
7942 BITMAP_FREE (release_names);
7943
7944 /* Rewire the entry and exit blocks. The successor to the entry
7945 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7946 the child function. Similarly, the predecessor of DEST_FN's
7947 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7948 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7949 various CFG manipulation function get to the right CFG.
7950
7951 FIXME, this is silly. The CFG ought to become a parameter to
7952 these helpers. */
7953 push_cfun (dest_cfun);
7954 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
7955 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7956 if (exit_bb)
7957 {
7958 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7959 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
7960 }
7961 else
7962 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
7963 pop_cfun ();
7964
7965 /* Back in the original function, the SESE region has disappeared,
7966 create a new basic block in its place. */
7967 bb = create_empty_bb (entry_pred[0]);
7968 if (current_loops)
7969 add_bb_to_loop (bb, loop);
7970 for (i = 0; i < num_entry_edges; i++)
7971 {
7972 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7973 e->probability = entry_prob[i];
7974 }
7975
7976 for (i = 0; i < num_exit_edges; i++)
7977 {
7978 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7979 e->probability = exit_prob[i];
7980 }
7981
7982 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7983 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7984 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7985
7986 if (exit_bb)
7987 {
7988 free (exit_prob);
7989 free (exit_flag);
7990 free (exit_succ);
7991 }
7992 free (entry_prob);
7993 free (entry_flag);
7994 free (entry_pred);
7995 bbs.release ();
7996
7997 return bb;
7998 }
7999
8000 /* Dump default def DEF to file FILE using FLAGS and indentation
8001 SPC. */
8002
8003 static void
dump_default_def(FILE * file,tree def,int spc,dump_flags_t flags)8004 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
8005 {
8006 for (int i = 0; i < spc; ++i)
8007 fprintf (file, " ");
8008 dump_ssaname_info_to_file (file, def, spc);
8009
8010 print_generic_expr (file, TREE_TYPE (def), flags);
8011 fprintf (file, " ");
8012 print_generic_expr (file, def, flags);
8013 fprintf (file, " = ");
8014 print_generic_expr (file, SSA_NAME_VAR (def), flags);
8015 fprintf (file, ";\n");
8016 }
8017
8018 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
8019
8020 static void
print_no_sanitize_attr_value(FILE * file,tree value)8021 print_no_sanitize_attr_value (FILE *file, tree value)
8022 {
8023 unsigned int flags = tree_to_uhwi (value);
8024 bool first = true;
8025 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
8026 {
8027 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
8028 {
8029 if (!first)
8030 fprintf (file, " | ");
8031 fprintf (file, "%s", sanitizer_opts[i].name);
8032 first = false;
8033 }
8034 }
8035 }
8036
8037 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
8038 */
8039
8040 void
dump_function_to_file(tree fndecl,FILE * file,dump_flags_t flags)8041 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
8042 {
8043 tree arg, var, old_current_fndecl = current_function_decl;
8044 struct function *dsf;
8045 bool ignore_topmost_bind = false, any_var = false;
8046 basic_block bb;
8047 tree chain;
8048 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
8049 && decl_is_tm_clone (fndecl));
8050 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
8051
8052 tree fntype = TREE_TYPE (fndecl);
8053 tree attrs[] = { DECL_ATTRIBUTES (fndecl), TYPE_ATTRIBUTES (fntype) };
8054
8055 for (int i = 0; i != 2; ++i)
8056 {
8057 if (!attrs[i])
8058 continue;
8059
8060 fprintf (file, "__attribute__((");
8061
8062 bool first = true;
8063 tree chain;
8064 for (chain = attrs[i]; chain; first = false, chain = TREE_CHAIN (chain))
8065 {
8066 if (!first)
8067 fprintf (file, ", ");
8068
8069 tree name = get_attribute_name (chain);
8070 print_generic_expr (file, name, dump_flags);
8071 if (TREE_VALUE (chain) != NULL_TREE)
8072 {
8073 fprintf (file, " (");
8074
8075 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
8076 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
8077 else
8078 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
8079 fprintf (file, ")");
8080 }
8081 }
8082
8083 fprintf (file, "))\n");
8084 }
8085
8086 current_function_decl = fndecl;
8087 if (flags & TDF_GIMPLE)
8088 {
8089 static bool hotness_bb_param_printed = false;
8090 if (profile_info != NULL
8091 && !hotness_bb_param_printed)
8092 {
8093 hotness_bb_param_printed = true;
8094 fprintf (file,
8095 "/* --param=gimple-fe-computed-hot-bb-threshold=%" PRId64
8096 " */\n", get_hot_bb_threshold ());
8097 }
8098
8099 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
8100 dump_flags | TDF_SLIM);
8101 fprintf (file, " __GIMPLE (%s",
8102 (fun->curr_properties & PROP_ssa) ? "ssa"
8103 : (fun->curr_properties & PROP_cfg) ? "cfg"
8104 : "");
8105
8106 if (fun && fun->cfg)
8107 {
8108 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (fun);
8109 if (bb->count.initialized_p ())
8110 fprintf (file, ",%s(%" PRIu64 ")",
8111 profile_quality_as_string (bb->count.quality ()),
8112 bb->count.value ());
8113 if (dump_flags & TDF_UID)
8114 fprintf (file, ")\n%sD_%u (", function_name (fun),
8115 DECL_UID (fndecl));
8116 else
8117 fprintf (file, ")\n%s (", function_name (fun));
8118 }
8119 }
8120 else
8121 {
8122 print_generic_expr (file, TREE_TYPE (fntype), dump_flags);
8123 if (dump_flags & TDF_UID)
8124 fprintf (file, " %sD.%u %s(", function_name (fun), DECL_UID (fndecl),
8125 tmclone ? "[tm-clone] " : "");
8126 else
8127 fprintf (file, " %s %s(", function_name (fun),
8128 tmclone ? "[tm-clone] " : "");
8129 }
8130
8131 arg = DECL_ARGUMENTS (fndecl);
8132 while (arg)
8133 {
8134 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
8135 fprintf (file, " ");
8136 print_generic_expr (file, arg, dump_flags);
8137 if (DECL_CHAIN (arg))
8138 fprintf (file, ", ");
8139 arg = DECL_CHAIN (arg);
8140 }
8141 fprintf (file, ")\n");
8142
8143 dsf = DECL_STRUCT_FUNCTION (fndecl);
8144 if (dsf && (flags & TDF_EH))
8145 dump_eh_tree (file, dsf);
8146
8147 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
8148 {
8149 dump_node (fndecl, TDF_SLIM | flags, file);
8150 current_function_decl = old_current_fndecl;
8151 return;
8152 }
8153
8154 /* When GIMPLE is lowered, the variables are no longer available in
8155 BIND_EXPRs, so display them separately. */
8156 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
8157 {
8158 unsigned ix;
8159 ignore_topmost_bind = true;
8160
8161 fprintf (file, "{\n");
8162 if (gimple_in_ssa_p (fun)
8163 && (flags & TDF_ALIAS))
8164 {
8165 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
8166 arg = DECL_CHAIN (arg))
8167 {
8168 tree def = ssa_default_def (fun, arg);
8169 if (def)
8170 dump_default_def (file, def, 2, flags);
8171 }
8172
8173 tree res = DECL_RESULT (fun->decl);
8174 if (res != NULL_TREE
8175 && DECL_BY_REFERENCE (res))
8176 {
8177 tree def = ssa_default_def (fun, res);
8178 if (def)
8179 dump_default_def (file, def, 2, flags);
8180 }
8181
8182 tree static_chain = fun->static_chain_decl;
8183 if (static_chain != NULL_TREE)
8184 {
8185 tree def = ssa_default_def (fun, static_chain);
8186 if (def)
8187 dump_default_def (file, def, 2, flags);
8188 }
8189 }
8190
8191 if (!vec_safe_is_empty (fun->local_decls))
8192 FOR_EACH_LOCAL_DECL (fun, ix, var)
8193 {
8194 print_generic_decl (file, var, flags);
8195 fprintf (file, "\n");
8196
8197 any_var = true;
8198 }
8199
8200 tree name;
8201
8202 if (gimple_in_ssa_p (fun))
8203 FOR_EACH_SSA_NAME (ix, name, fun)
8204 {
8205 if (!SSA_NAME_VAR (name)
8206 /* SSA name with decls without a name still get
8207 dumped as _N, list those explicitely as well even
8208 though we've dumped the decl declaration as D.xxx
8209 above. */
8210 || !SSA_NAME_IDENTIFIER (name))
8211 {
8212 fprintf (file, " ");
8213 print_generic_expr (file, TREE_TYPE (name), flags);
8214 fprintf (file, " ");
8215 print_generic_expr (file, name, flags);
8216 fprintf (file, ";\n");
8217
8218 any_var = true;
8219 }
8220 }
8221 }
8222
8223 if (fun && fun->decl == fndecl
8224 && fun->cfg
8225 && basic_block_info_for_fn (fun))
8226 {
8227 /* If the CFG has been built, emit a CFG-based dump. */
8228 if (!ignore_topmost_bind)
8229 fprintf (file, "{\n");
8230
8231 if (any_var && n_basic_blocks_for_fn (fun))
8232 fprintf (file, "\n");
8233
8234 FOR_EACH_BB_FN (bb, fun)
8235 dump_bb (file, bb, 2, flags);
8236
8237 fprintf (file, "}\n");
8238 }
8239 else if (fun && (fun->curr_properties & PROP_gimple_any))
8240 {
8241 /* The function is now in GIMPLE form but the CFG has not been
8242 built yet. Emit the single sequence of GIMPLE statements
8243 that make up its body. */
8244 gimple_seq body = gimple_body (fndecl);
8245
8246 if (gimple_seq_first_stmt (body)
8247 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
8248 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
8249 print_gimple_seq (file, body, 0, flags);
8250 else
8251 {
8252 if (!ignore_topmost_bind)
8253 fprintf (file, "{\n");
8254
8255 if (any_var)
8256 fprintf (file, "\n");
8257
8258 print_gimple_seq (file, body, 2, flags);
8259 fprintf (file, "}\n");
8260 }
8261 }
8262 else
8263 {
8264 int indent;
8265
8266 /* Make a tree based dump. */
8267 chain = DECL_SAVED_TREE (fndecl);
8268 if (chain && TREE_CODE (chain) == BIND_EXPR)
8269 {
8270 if (ignore_topmost_bind)
8271 {
8272 chain = BIND_EXPR_BODY (chain);
8273 indent = 2;
8274 }
8275 else
8276 indent = 0;
8277 }
8278 else
8279 {
8280 if (!ignore_topmost_bind)
8281 {
8282 fprintf (file, "{\n");
8283 /* No topmost bind, pretend it's ignored for later. */
8284 ignore_topmost_bind = true;
8285 }
8286 indent = 2;
8287 }
8288
8289 if (any_var)
8290 fprintf (file, "\n");
8291
8292 print_generic_stmt_indented (file, chain, flags, indent);
8293 if (ignore_topmost_bind)
8294 fprintf (file, "}\n");
8295 }
8296
8297 if (flags & TDF_ENUMERATE_LOCALS)
8298 dump_enumerated_decls (file, flags);
8299 fprintf (file, "\n\n");
8300
8301 current_function_decl = old_current_fndecl;
8302 }
8303
8304 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8305
8306 DEBUG_FUNCTION void
debug_function(tree fn,dump_flags_t flags)8307 debug_function (tree fn, dump_flags_t flags)
8308 {
8309 dump_function_to_file (fn, stderr, flags);
8310 }
8311
8312
8313 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8314
8315 static void
print_pred_bbs(FILE * file,basic_block bb)8316 print_pred_bbs (FILE *file, basic_block bb)
8317 {
8318 edge e;
8319 edge_iterator ei;
8320
8321 FOR_EACH_EDGE (e, ei, bb->preds)
8322 fprintf (file, "bb_%d ", e->src->index);
8323 }
8324
8325
8326 /* Print on FILE the indexes for the successors of basic_block BB. */
8327
8328 static void
print_succ_bbs(FILE * file,basic_block bb)8329 print_succ_bbs (FILE *file, basic_block bb)
8330 {
8331 edge e;
8332 edge_iterator ei;
8333
8334 FOR_EACH_EDGE (e, ei, bb->succs)
8335 fprintf (file, "bb_%d ", e->dest->index);
8336 }
8337
8338 /* Print to FILE the basic block BB following the VERBOSITY level. */
8339
8340 void
print_loops_bb(FILE * file,basic_block bb,int indent,int verbosity)8341 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
8342 {
8343 char *s_indent = (char *) alloca ((size_t) indent + 1);
8344 memset ((void *) s_indent, ' ', (size_t) indent);
8345 s_indent[indent] = '\0';
8346
8347 /* Print basic_block's header. */
8348 if (verbosity >= 2)
8349 {
8350 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
8351 print_pred_bbs (file, bb);
8352 fprintf (file, "}, succs = {");
8353 print_succ_bbs (file, bb);
8354 fprintf (file, "})\n");
8355 }
8356
8357 /* Print basic_block's body. */
8358 if (verbosity >= 3)
8359 {
8360 fprintf (file, "%s {\n", s_indent);
8361 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8362 fprintf (file, "%s }\n", s_indent);
8363 }
8364 }
8365
8366 static void print_loop_and_siblings (FILE *, class loop *, int, int);
8367
8368 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8369 VERBOSITY level this outputs the contents of the loop, or just its
8370 structure. */
8371
8372 static void
print_loop(FILE * file,class loop * loop,int indent,int verbosity)8373 print_loop (FILE *file, class loop *loop, int indent, int verbosity)
8374 {
8375 char *s_indent;
8376 basic_block bb;
8377
8378 if (loop == NULL)
8379 return;
8380
8381 s_indent = (char *) alloca ((size_t) indent + 1);
8382 memset ((void *) s_indent, ' ', (size_t) indent);
8383 s_indent[indent] = '\0';
8384
8385 /* Print loop's header. */
8386 fprintf (file, "%sloop_%d (", s_indent, loop->num);
8387 if (loop->header)
8388 fprintf (file, "header = %d", loop->header->index);
8389 else
8390 {
8391 fprintf (file, "deleted)\n");
8392 return;
8393 }
8394 if (loop->latch)
8395 fprintf (file, ", latch = %d", loop->latch->index);
8396 else
8397 fprintf (file, ", multiple latches");
8398 fprintf (file, ", niter = ");
8399 print_generic_expr (file, loop->nb_iterations);
8400
8401 if (loop->any_upper_bound)
8402 {
8403 fprintf (file, ", upper_bound = ");
8404 print_decu (loop->nb_iterations_upper_bound, file);
8405 }
8406 if (loop->any_likely_upper_bound)
8407 {
8408 fprintf (file, ", likely_upper_bound = ");
8409 print_decu (loop->nb_iterations_likely_upper_bound, file);
8410 }
8411
8412 if (loop->any_estimate)
8413 {
8414 fprintf (file, ", estimate = ");
8415 print_decu (loop->nb_iterations_estimate, file);
8416 }
8417 if (loop->unroll)
8418 fprintf (file, ", unroll = %d", loop->unroll);
8419 fprintf (file, ")\n");
8420
8421 /* Print loop's body. */
8422 if (verbosity >= 1)
8423 {
8424 fprintf (file, "%s{\n", s_indent);
8425 FOR_EACH_BB_FN (bb, cfun)
8426 if (bb->loop_father == loop)
8427 print_loops_bb (file, bb, indent, verbosity);
8428
8429 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8430 fprintf (file, "%s}\n", s_indent);
8431 }
8432 }
8433
8434 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8435 spaces. Following VERBOSITY level this outputs the contents of the
8436 loop, or just its structure. */
8437
8438 static void
print_loop_and_siblings(FILE * file,class loop * loop,int indent,int verbosity)8439 print_loop_and_siblings (FILE *file, class loop *loop, int indent,
8440 int verbosity)
8441 {
8442 if (loop == NULL)
8443 return;
8444
8445 print_loop (file, loop, indent, verbosity);
8446 print_loop_and_siblings (file, loop->next, indent, verbosity);
8447 }
8448
8449 /* Follow a CFG edge from the entry point of the program, and on entry
8450 of a loop, pretty print the loop structure on FILE. */
8451
8452 void
print_loops(FILE * file,int verbosity)8453 print_loops (FILE *file, int verbosity)
8454 {
8455 basic_block bb;
8456
8457 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8458 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8459 if (bb && bb->loop_father)
8460 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8461 }
8462
8463 /* Dump a loop. */
8464
8465 DEBUG_FUNCTION void
debug(class loop & ref)8466 debug (class loop &ref)
8467 {
8468 print_loop (stderr, &ref, 0, /*verbosity*/0);
8469 }
8470
8471 DEBUG_FUNCTION void
debug(class loop * ptr)8472 debug (class loop *ptr)
8473 {
8474 if (ptr)
8475 debug (*ptr);
8476 else
8477 fprintf (stderr, "<nil>\n");
8478 }
8479
8480 /* Dump a loop verbosely. */
8481
8482 DEBUG_FUNCTION void
debug_verbose(class loop & ref)8483 debug_verbose (class loop &ref)
8484 {
8485 print_loop (stderr, &ref, 0, /*verbosity*/3);
8486 }
8487
8488 DEBUG_FUNCTION void
debug_verbose(class loop * ptr)8489 debug_verbose (class loop *ptr)
8490 {
8491 if (ptr)
8492 debug (*ptr);
8493 else
8494 fprintf (stderr, "<nil>\n");
8495 }
8496
8497
8498 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8499
8500 DEBUG_FUNCTION void
debug_loops(int verbosity)8501 debug_loops (int verbosity)
8502 {
8503 print_loops (stderr, verbosity);
8504 }
8505
8506 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8507
8508 DEBUG_FUNCTION void
debug_loop(class loop * loop,int verbosity)8509 debug_loop (class loop *loop, int verbosity)
8510 {
8511 print_loop (stderr, loop, 0, verbosity);
8512 }
8513
8514 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8515 level. */
8516
8517 DEBUG_FUNCTION void
debug_loop_num(unsigned num,int verbosity)8518 debug_loop_num (unsigned num, int verbosity)
8519 {
8520 debug_loop (get_loop (cfun, num), verbosity);
8521 }
8522
8523 /* Return true if BB ends with a call, possibly followed by some
8524 instructions that must stay with the call. Return false,
8525 otherwise. */
8526
8527 static bool
gimple_block_ends_with_call_p(basic_block bb)8528 gimple_block_ends_with_call_p (basic_block bb)
8529 {
8530 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8531 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8532 }
8533
8534
8535 /* Return true if BB ends with a conditional branch. Return false,
8536 otherwise. */
8537
8538 static bool
gimple_block_ends_with_condjump_p(const_basic_block bb)8539 gimple_block_ends_with_condjump_p (const_basic_block bb)
8540 {
8541 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8542 return (stmt && gimple_code (stmt) == GIMPLE_COND);
8543 }
8544
8545
8546 /* Return true if statement T may terminate execution of BB in ways not
8547 explicitly represtented in the CFG. */
8548
8549 bool
stmt_can_terminate_bb_p(gimple * t)8550 stmt_can_terminate_bb_p (gimple *t)
8551 {
8552 tree fndecl = NULL_TREE;
8553 int call_flags = 0;
8554
8555 /* Eh exception not handled internally terminates execution of the whole
8556 function. */
8557 if (stmt_can_throw_external (cfun, t))
8558 return true;
8559
8560 /* NORETURN and LONGJMP calls already have an edge to exit.
8561 CONST and PURE calls do not need one.
8562 We don't currently check for CONST and PURE here, although
8563 it would be a good idea, because those attributes are
8564 figured out from the RTL in mark_constant_function, and
8565 the counter incrementation code from -fprofile-arcs
8566 leads to different results from -fbranch-probabilities. */
8567 if (is_gimple_call (t))
8568 {
8569 fndecl = gimple_call_fndecl (t);
8570 call_flags = gimple_call_flags (t);
8571 }
8572
8573 if (is_gimple_call (t)
8574 && fndecl
8575 && fndecl_built_in_p (fndecl)
8576 && (call_flags & ECF_NOTHROW)
8577 && !(call_flags & ECF_RETURNS_TWICE)
8578 /* fork() doesn't really return twice, but the effect of
8579 wrapping it in __gcov_fork() which calls __gcov_dump() and
8580 __gcov_reset() and clears the counters before forking has the same
8581 effect as returning twice. Force a fake edge. */
8582 && !fndecl_built_in_p (fndecl, BUILT_IN_FORK))
8583 return false;
8584
8585 if (is_gimple_call (t))
8586 {
8587 edge_iterator ei;
8588 edge e;
8589 basic_block bb;
8590
8591 if (call_flags & (ECF_PURE | ECF_CONST)
8592 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8593 return false;
8594
8595 /* Function call may do longjmp, terminate program or do other things.
8596 Special case noreturn that have non-abnormal edges out as in this case
8597 the fact is sufficiently represented by lack of edges out of T. */
8598 if (!(call_flags & ECF_NORETURN))
8599 return true;
8600
8601 bb = gimple_bb (t);
8602 FOR_EACH_EDGE (e, ei, bb->succs)
8603 if ((e->flags & EDGE_FAKE) == 0)
8604 return true;
8605 }
8606
8607 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8608 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8609 return true;
8610
8611 return false;
8612 }
8613
8614
8615 /* Add fake edges to the function exit for any non constant and non
8616 noreturn calls (or noreturn calls with EH/abnormal edges),
8617 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8618 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8619 that were split.
8620
8621 The goal is to expose cases in which entering a basic block does
8622 not imply that all subsequent instructions must be executed. */
8623
8624 static int
gimple_flow_call_edges_add(sbitmap blocks)8625 gimple_flow_call_edges_add (sbitmap blocks)
8626 {
8627 int i;
8628 int blocks_split = 0;
8629 int last_bb = last_basic_block_for_fn (cfun);
8630 bool check_last_block = false;
8631
8632 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8633 return 0;
8634
8635 if (! blocks)
8636 check_last_block = true;
8637 else
8638 check_last_block = bitmap_bit_p (blocks,
8639 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8640
8641 /* In the last basic block, before epilogue generation, there will be
8642 a fallthru edge to EXIT. Special care is required if the last insn
8643 of the last basic block is a call because make_edge folds duplicate
8644 edges, which would result in the fallthru edge also being marked
8645 fake, which would result in the fallthru edge being removed by
8646 remove_fake_edges, which would result in an invalid CFG.
8647
8648 Moreover, we can't elide the outgoing fake edge, since the block
8649 profiler needs to take this into account in order to solve the minimal
8650 spanning tree in the case that the call doesn't return.
8651
8652 Handle this by adding a dummy instruction in a new last basic block. */
8653 if (check_last_block)
8654 {
8655 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8656 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8657 gimple *t = NULL;
8658
8659 if (!gsi_end_p (gsi))
8660 t = gsi_stmt (gsi);
8661
8662 if (t && stmt_can_terminate_bb_p (t))
8663 {
8664 edge e;
8665
8666 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8667 if (e)
8668 {
8669 gsi_insert_on_edge (e, gimple_build_nop ());
8670 gsi_commit_edge_inserts ();
8671 }
8672 }
8673 }
8674
8675 /* Now add fake edges to the function exit for any non constant
8676 calls since there is no way that we can determine if they will
8677 return or not... */
8678 for (i = 0; i < last_bb; i++)
8679 {
8680 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8681 gimple_stmt_iterator gsi;
8682 gimple *stmt, *last_stmt;
8683
8684 if (!bb)
8685 continue;
8686
8687 if (blocks && !bitmap_bit_p (blocks, i))
8688 continue;
8689
8690 gsi = gsi_last_nondebug_bb (bb);
8691 if (!gsi_end_p (gsi))
8692 {
8693 last_stmt = gsi_stmt (gsi);
8694 do
8695 {
8696 stmt = gsi_stmt (gsi);
8697 if (stmt_can_terminate_bb_p (stmt))
8698 {
8699 edge e;
8700
8701 /* The handling above of the final block before the
8702 epilogue should be enough to verify that there is
8703 no edge to the exit block in CFG already.
8704 Calling make_edge in such case would cause us to
8705 mark that edge as fake and remove it later. */
8706 if (flag_checking && stmt == last_stmt)
8707 {
8708 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8709 gcc_assert (e == NULL);
8710 }
8711
8712 /* Note that the following may create a new basic block
8713 and renumber the existing basic blocks. */
8714 if (stmt != last_stmt)
8715 {
8716 e = split_block (bb, stmt);
8717 if (e)
8718 blocks_split++;
8719 }
8720 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8721 e->probability = profile_probability::guessed_never ();
8722 }
8723 gsi_prev (&gsi);
8724 }
8725 while (!gsi_end_p (gsi));
8726 }
8727 }
8728
8729 if (blocks_split)
8730 checking_verify_flow_info ();
8731
8732 return blocks_split;
8733 }
8734
8735 /* Removes edge E and all the blocks dominated by it, and updates dominance
8736 information. The IL in E->src needs to be updated separately.
8737 If dominance info is not available, only the edge E is removed.*/
8738
8739 void
remove_edge_and_dominated_blocks(edge e)8740 remove_edge_and_dominated_blocks (edge e)
8741 {
8742 vec<basic_block> bbs_to_fix_dom = vNULL;
8743 edge f;
8744 edge_iterator ei;
8745 bool none_removed = false;
8746 unsigned i;
8747 basic_block bb, dbb;
8748 bitmap_iterator bi;
8749
8750 /* If we are removing a path inside a non-root loop that may change
8751 loop ownership of blocks or remove loops. Mark loops for fixup. */
8752 if (current_loops
8753 && loop_outer (e->src->loop_father) != NULL
8754 && e->src->loop_father == e->dest->loop_father)
8755 loops_state_set (LOOPS_NEED_FIXUP);
8756
8757 if (!dom_info_available_p (CDI_DOMINATORS))
8758 {
8759 remove_edge (e);
8760 return;
8761 }
8762
8763 /* No updating is needed for edges to exit. */
8764 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8765 {
8766 if (cfgcleanup_altered_bbs)
8767 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8768 remove_edge (e);
8769 return;
8770 }
8771
8772 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8773 that is not dominated by E->dest, then this set is empty. Otherwise,
8774 all the basic blocks dominated by E->dest are removed.
8775
8776 Also, to DF_IDOM we store the immediate dominators of the blocks in
8777 the dominance frontier of E (i.e., of the successors of the
8778 removed blocks, if there are any, and of E->dest otherwise). */
8779 FOR_EACH_EDGE (f, ei, e->dest->preds)
8780 {
8781 if (f == e)
8782 continue;
8783
8784 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8785 {
8786 none_removed = true;
8787 break;
8788 }
8789 }
8790
8791 auto_bitmap df, df_idom;
8792 auto_vec<basic_block> bbs_to_remove;
8793 if (none_removed)
8794 bitmap_set_bit (df_idom,
8795 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8796 else
8797 {
8798 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8799 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8800 {
8801 FOR_EACH_EDGE (f, ei, bb->succs)
8802 {
8803 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8804 bitmap_set_bit (df, f->dest->index);
8805 }
8806 }
8807 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8808 bitmap_clear_bit (df, bb->index);
8809
8810 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8811 {
8812 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8813 bitmap_set_bit (df_idom,
8814 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8815 }
8816 }
8817
8818 if (cfgcleanup_altered_bbs)
8819 {
8820 /* Record the set of the altered basic blocks. */
8821 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8822 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8823 }
8824
8825 /* Remove E and the cancelled blocks. */
8826 if (none_removed)
8827 remove_edge (e);
8828 else
8829 {
8830 /* Walk backwards so as to get a chance to substitute all
8831 released DEFs into debug stmts. See
8832 eliminate_unnecessary_stmts() in tree-ssa-dce.cc for more
8833 details. */
8834 for (i = bbs_to_remove.length (); i-- > 0; )
8835 delete_basic_block (bbs_to_remove[i]);
8836 }
8837
8838 /* Update the dominance information. The immediate dominator may change only
8839 for blocks whose immediate dominator belongs to DF_IDOM:
8840
8841 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8842 removal. Let Z the arbitrary block such that idom(Z) = Y and
8843 Z dominates X after the removal. Before removal, there exists a path P
8844 from Y to X that avoids Z. Let F be the last edge on P that is
8845 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8846 dominates W, and because of P, Z does not dominate W), and W belongs to
8847 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8848 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8849 {
8850 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8851 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8852 dbb;
8853 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8854 bbs_to_fix_dom.safe_push (dbb);
8855 }
8856
8857 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8858
8859 bbs_to_fix_dom.release ();
8860 }
8861
8862 /* Purge dead EH edges from basic block BB. */
8863
8864 bool
gimple_purge_dead_eh_edges(basic_block bb)8865 gimple_purge_dead_eh_edges (basic_block bb)
8866 {
8867 bool changed = false;
8868 edge e;
8869 edge_iterator ei;
8870 gimple *stmt = last_stmt (bb);
8871
8872 if (stmt && stmt_can_throw_internal (cfun, stmt))
8873 return false;
8874
8875 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8876 {
8877 if (e->flags & EDGE_EH)
8878 {
8879 remove_edge_and_dominated_blocks (e);
8880 changed = true;
8881 }
8882 else
8883 ei_next (&ei);
8884 }
8885
8886 return changed;
8887 }
8888
8889 /* Purge dead EH edges from basic block listed in BLOCKS. */
8890
8891 bool
gimple_purge_all_dead_eh_edges(const_bitmap blocks)8892 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8893 {
8894 bool changed = false;
8895 unsigned i;
8896 bitmap_iterator bi;
8897
8898 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8899 {
8900 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8901
8902 /* Earlier gimple_purge_dead_eh_edges could have removed
8903 this basic block already. */
8904 gcc_assert (bb || changed);
8905 if (bb != NULL)
8906 changed |= gimple_purge_dead_eh_edges (bb);
8907 }
8908
8909 return changed;
8910 }
8911
8912 /* Purge dead abnormal call edges from basic block BB. */
8913
8914 bool
gimple_purge_dead_abnormal_call_edges(basic_block bb)8915 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8916 {
8917 bool changed = false;
8918 edge e;
8919 edge_iterator ei;
8920 gimple *stmt = last_stmt (bb);
8921
8922 if (stmt && stmt_can_make_abnormal_goto (stmt))
8923 return false;
8924
8925 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8926 {
8927 if (e->flags & EDGE_ABNORMAL)
8928 {
8929 if (e->flags & EDGE_FALLTHRU)
8930 e->flags &= ~EDGE_ABNORMAL;
8931 else
8932 remove_edge_and_dominated_blocks (e);
8933 changed = true;
8934 }
8935 else
8936 ei_next (&ei);
8937 }
8938
8939 return changed;
8940 }
8941
8942 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8943
8944 bool
gimple_purge_all_dead_abnormal_call_edges(const_bitmap blocks)8945 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8946 {
8947 bool changed = false;
8948 unsigned i;
8949 bitmap_iterator bi;
8950
8951 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8952 {
8953 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8954
8955 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8956 this basic block already. */
8957 gcc_assert (bb || changed);
8958 if (bb != NULL)
8959 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8960 }
8961
8962 return changed;
8963 }
8964
8965 /* This function is called whenever a new edge is created or
8966 redirected. */
8967
8968 static void
gimple_execute_on_growing_pred(edge e)8969 gimple_execute_on_growing_pred (edge e)
8970 {
8971 basic_block bb = e->dest;
8972
8973 if (!gimple_seq_empty_p (phi_nodes (bb)))
8974 reserve_phi_args_for_new_edge (bb);
8975 }
8976
8977 /* This function is called immediately before edge E is removed from
8978 the edge vector E->dest->preds. */
8979
8980 static void
gimple_execute_on_shrinking_pred(edge e)8981 gimple_execute_on_shrinking_pred (edge e)
8982 {
8983 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8984 remove_phi_args (e);
8985 }
8986
8987 /*---------------------------------------------------------------------------
8988 Helper functions for Loop versioning
8989 ---------------------------------------------------------------------------*/
8990
8991 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8992 of 'first'. Both of them are dominated by 'new_head' basic block. When
8993 'new_head' was created by 'second's incoming edge it received phi arguments
8994 on the edge by split_edge(). Later, additional edge 'e' was created to
8995 connect 'new_head' and 'first'. Now this routine adds phi args on this
8996 additional edge 'e' that new_head to second edge received as part of edge
8997 splitting. */
8998
8999 static void
gimple_lv_adjust_loop_header_phi(basic_block first,basic_block second,basic_block new_head,edge e)9000 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
9001 basic_block new_head, edge e)
9002 {
9003 gphi *phi1, *phi2;
9004 gphi_iterator psi1, psi2;
9005 tree def;
9006 edge e2 = find_edge (new_head, second);
9007
9008 /* Because NEW_HEAD has been created by splitting SECOND's incoming
9009 edge, we should always have an edge from NEW_HEAD to SECOND. */
9010 gcc_assert (e2 != NULL);
9011
9012 /* Browse all 'second' basic block phi nodes and add phi args to
9013 edge 'e' for 'first' head. PHI args are always in correct order. */
9014
9015 for (psi2 = gsi_start_phis (second),
9016 psi1 = gsi_start_phis (first);
9017 !gsi_end_p (psi2) && !gsi_end_p (psi1);
9018 gsi_next (&psi2), gsi_next (&psi1))
9019 {
9020 phi1 = psi1.phi ();
9021 phi2 = psi2.phi ();
9022 def = PHI_ARG_DEF (phi2, e2->dest_idx);
9023 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
9024 }
9025 }
9026
9027
9028 /* Adds a if else statement to COND_BB with condition COND_EXPR.
9029 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
9030 the destination of the ELSE part. */
9031
9032 static void
gimple_lv_add_condition_to_bb(basic_block first_head ATTRIBUTE_UNUSED,basic_block second_head ATTRIBUTE_UNUSED,basic_block cond_bb,void * cond_e)9033 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
9034 basic_block second_head ATTRIBUTE_UNUSED,
9035 basic_block cond_bb, void *cond_e)
9036 {
9037 gimple_stmt_iterator gsi;
9038 gimple *new_cond_expr;
9039 tree cond_expr = (tree) cond_e;
9040 edge e0;
9041
9042 /* Build new conditional expr */
9043 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
9044 NULL_TREE, NULL_TREE);
9045
9046 /* Add new cond in cond_bb. */
9047 gsi = gsi_last_bb (cond_bb);
9048 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
9049
9050 /* Adjust edges appropriately to connect new head with first head
9051 as well as second head. */
9052 e0 = single_succ_edge (cond_bb);
9053 e0->flags &= ~EDGE_FALLTHRU;
9054 e0->flags |= EDGE_FALSE_VALUE;
9055 }
9056
9057
9058 /* Do book-keeping of basic block BB for the profile consistency checker.
9059 Store the counting in RECORD. */
9060 static void
gimple_account_profile_record(basic_block bb,struct profile_record * record)9061 gimple_account_profile_record (basic_block bb,
9062 struct profile_record *record)
9063 {
9064 gimple_stmt_iterator i;
9065 for (i = gsi_start_nondebug_after_labels_bb (bb); !gsi_end_p (i);
9066 gsi_next_nondebug (&i))
9067 {
9068 record->size
9069 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
9070 if (profile_info)
9071 {
9072 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ().initialized_p ()
9073 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ().nonzero_p ()
9074 && bb->count.ipa ().initialized_p ())
9075 record->time
9076 += estimate_num_insns (gsi_stmt (i),
9077 &eni_time_weights)
9078 * bb->count.ipa ().to_gcov_type ();
9079 }
9080 else if (bb->count.initialized_p ()
9081 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.initialized_p ())
9082 record->time
9083 += estimate_num_insns
9084 (gsi_stmt (i),
9085 &eni_time_weights)
9086 * bb->count.to_sreal_scale
9087 (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count).to_double ();
9088 else
9089 record->time
9090 += estimate_num_insns (gsi_stmt (i), &eni_time_weights);
9091 }
9092 }
9093
9094 struct cfg_hooks gimple_cfg_hooks = {
9095 "gimple",
9096 gimple_verify_flow_info,
9097 gimple_dump_bb, /* dump_bb */
9098 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
9099 create_bb, /* create_basic_block */
9100 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
9101 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
9102 gimple_can_remove_branch_p, /* can_remove_branch_p */
9103 remove_bb, /* delete_basic_block */
9104 gimple_split_block, /* split_block */
9105 gimple_move_block_after, /* move_block_after */
9106 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
9107 gimple_merge_blocks, /* merge_blocks */
9108 gimple_predict_edge, /* predict_edge */
9109 gimple_predicted_by_p, /* predicted_by_p */
9110 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
9111 gimple_duplicate_bb, /* duplicate_block */
9112 gimple_split_edge, /* split_edge */
9113 gimple_make_forwarder_block, /* make_forward_block */
9114 NULL, /* tidy_fallthru_edge */
9115 NULL, /* force_nonfallthru */
9116 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
9117 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
9118 gimple_flow_call_edges_add, /* flow_call_edges_add */
9119 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
9120 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
9121 gimple_duplicate_loop_body_to_header_edge, /* duplicate loop for trees */
9122 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
9123 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
9124 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
9125 flush_pending_stmts, /* flush_pending_stmts */
9126 gimple_empty_block_p, /* block_empty_p */
9127 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
9128 gimple_account_profile_record,
9129 };
9130
9131
9132 /* Split all critical edges. Split some extra (not necessarily critical) edges
9133 if FOR_EDGE_INSERTION_P is true. */
9134
9135 unsigned int
split_critical_edges(bool for_edge_insertion_p)9136 split_critical_edges (bool for_edge_insertion_p /* = false */)
9137 {
9138 basic_block bb;
9139 edge e;
9140 edge_iterator ei;
9141
9142 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
9143 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
9144 mappings around the calls to split_edge. */
9145 start_recording_case_labels ();
9146 FOR_ALL_BB_FN (bb, cfun)
9147 {
9148 FOR_EACH_EDGE (e, ei, bb->succs)
9149 {
9150 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
9151 split_edge (e);
9152 /* PRE inserts statements to edges and expects that
9153 since split_critical_edges was done beforehand, committing edge
9154 insertions will not split more edges. In addition to critical
9155 edges we must split edges that have multiple successors and
9156 end by control flow statements, such as RESX.
9157 Go ahead and split them too. This matches the logic in
9158 gimple_find_edge_insert_loc. */
9159 else if (for_edge_insertion_p
9160 && (!single_pred_p (e->dest)
9161 || !gimple_seq_empty_p (phi_nodes (e->dest))
9162 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
9163 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
9164 && !(e->flags & EDGE_ABNORMAL))
9165 {
9166 gimple_stmt_iterator gsi;
9167
9168 gsi = gsi_last_bb (e->src);
9169 if (!gsi_end_p (gsi)
9170 && stmt_ends_bb_p (gsi_stmt (gsi))
9171 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
9172 && !gimple_call_builtin_p (gsi_stmt (gsi),
9173 BUILT_IN_RETURN)))
9174 split_edge (e);
9175 }
9176 }
9177 }
9178 end_recording_case_labels ();
9179 return 0;
9180 }
9181
9182 namespace {
9183
9184 const pass_data pass_data_split_crit_edges =
9185 {
9186 GIMPLE_PASS, /* type */
9187 "crited", /* name */
9188 OPTGROUP_NONE, /* optinfo_flags */
9189 TV_TREE_SPLIT_EDGES, /* tv_id */
9190 PROP_cfg, /* properties_required */
9191 PROP_no_crit_edges, /* properties_provided */
9192 0, /* properties_destroyed */
9193 0, /* todo_flags_start */
9194 0, /* todo_flags_finish */
9195 };
9196
9197 class pass_split_crit_edges : public gimple_opt_pass
9198 {
9199 public:
pass_split_crit_edges(gcc::context * ctxt)9200 pass_split_crit_edges (gcc::context *ctxt)
9201 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
9202 {}
9203
9204 /* opt_pass methods: */
execute(function *)9205 virtual unsigned int execute (function *) { return split_critical_edges (); }
9206
clone()9207 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
9208 }; // class pass_split_crit_edges
9209
9210 } // anon namespace
9211
9212 gimple_opt_pass *
make_pass_split_crit_edges(gcc::context * ctxt)9213 make_pass_split_crit_edges (gcc::context *ctxt)
9214 {
9215 return new pass_split_crit_edges (ctxt);
9216 }
9217
9218
9219 /* Insert COND expression which is GIMPLE_COND after STMT
9220 in basic block BB with appropriate basic block split
9221 and creation of a new conditionally executed basic block.
9222 Update profile so the new bb is visited with probability PROB.
9223 Return created basic block. */
9224 basic_block
insert_cond_bb(basic_block bb,gimple * stmt,gimple * cond,profile_probability prob)9225 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
9226 profile_probability prob)
9227 {
9228 edge fall = split_block (bb, stmt);
9229 gimple_stmt_iterator iter = gsi_last_bb (bb);
9230 basic_block new_bb;
9231
9232 /* Insert cond statement. */
9233 gcc_assert (gimple_code (cond) == GIMPLE_COND);
9234 if (gsi_end_p (iter))
9235 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
9236 else
9237 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
9238
9239 /* Create conditionally executed block. */
9240 new_bb = create_empty_bb (bb);
9241 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
9242 e->probability = prob;
9243 new_bb->count = e->count ();
9244 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
9245
9246 /* Fix edge for split bb. */
9247 fall->flags = EDGE_FALSE_VALUE;
9248 fall->probability -= e->probability;
9249
9250 /* Update dominance info. */
9251 if (dom_info_available_p (CDI_DOMINATORS))
9252 {
9253 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
9254 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
9255 }
9256
9257 /* Update loop info. */
9258 if (current_loops)
9259 add_bb_to_loop (new_bb, bb->loop_father);
9260
9261 return new_bb;
9262 }
9263
9264
9265
9266 /* Given a basic block B which ends with a conditional and has
9267 precisely two successors, determine which of the edges is taken if
9268 the conditional is true and which is taken if the conditional is
9269 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9270
9271 void
extract_true_false_edges_from_block(basic_block b,edge * true_edge,edge * false_edge)9272 extract_true_false_edges_from_block (basic_block b,
9273 edge *true_edge,
9274 edge *false_edge)
9275 {
9276 edge e = EDGE_SUCC (b, 0);
9277
9278 if (e->flags & EDGE_TRUE_VALUE)
9279 {
9280 *true_edge = e;
9281 *false_edge = EDGE_SUCC (b, 1);
9282 }
9283 else
9284 {
9285 *false_edge = e;
9286 *true_edge = EDGE_SUCC (b, 1);
9287 }
9288 }
9289
9290
9291 /* From a controlling predicate in the immediate dominator DOM of
9292 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9293 predicate evaluates to true and false and store them to
9294 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9295 they are non-NULL. Returns true if the edges can be determined,
9296 else return false. */
9297
9298 bool
extract_true_false_controlled_edges(basic_block dom,basic_block phiblock,edge * true_controlled_edge,edge * false_controlled_edge)9299 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
9300 edge *true_controlled_edge,
9301 edge *false_controlled_edge)
9302 {
9303 basic_block bb = phiblock;
9304 edge true_edge, false_edge, tem;
9305 edge e0 = NULL, e1 = NULL;
9306
9307 /* We have to verify that one edge into the PHI node is dominated
9308 by the true edge of the predicate block and the other edge
9309 dominated by the false edge. This ensures that the PHI argument
9310 we are going to take is completely determined by the path we
9311 take from the predicate block.
9312 We can only use BB dominance checks below if the destination of
9313 the true/false edges are dominated by their edge, thus only
9314 have a single predecessor. */
9315 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9316 tem = EDGE_PRED (bb, 0);
9317 if (tem == true_edge
9318 || (single_pred_p (true_edge->dest)
9319 && (tem->src == true_edge->dest
9320 || dominated_by_p (CDI_DOMINATORS,
9321 tem->src, true_edge->dest))))
9322 e0 = tem;
9323 else if (tem == false_edge
9324 || (single_pred_p (false_edge->dest)
9325 && (tem->src == false_edge->dest
9326 || dominated_by_p (CDI_DOMINATORS,
9327 tem->src, false_edge->dest))))
9328 e1 = tem;
9329 else
9330 return false;
9331 tem = EDGE_PRED (bb, 1);
9332 if (tem == true_edge
9333 || (single_pred_p (true_edge->dest)
9334 && (tem->src == true_edge->dest
9335 || dominated_by_p (CDI_DOMINATORS,
9336 tem->src, true_edge->dest))))
9337 e0 = tem;
9338 else if (tem == false_edge
9339 || (single_pred_p (false_edge->dest)
9340 && (tem->src == false_edge->dest
9341 || dominated_by_p (CDI_DOMINATORS,
9342 tem->src, false_edge->dest))))
9343 e1 = tem;
9344 else
9345 return false;
9346 if (!e0 || !e1)
9347 return false;
9348
9349 if (true_controlled_edge)
9350 *true_controlled_edge = e0;
9351 if (false_controlled_edge)
9352 *false_controlled_edge = e1;
9353
9354 return true;
9355 }
9356
9357 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9358 range [low, high]. Place associated stmts before *GSI. */
9359
9360 void
generate_range_test(basic_block bb,tree index,tree low,tree high,tree * lhs,tree * rhs)9361 generate_range_test (basic_block bb, tree index, tree low, tree high,
9362 tree *lhs, tree *rhs)
9363 {
9364 tree type = TREE_TYPE (index);
9365 tree utype = range_check_type (type);
9366
9367 low = fold_convert (utype, low);
9368 high = fold_convert (utype, high);
9369
9370 gimple_seq seq = NULL;
9371 index = gimple_convert (&seq, utype, index);
9372 *lhs = gimple_build (&seq, MINUS_EXPR, utype, index, low);
9373 *rhs = const_binop (MINUS_EXPR, utype, high, low);
9374
9375 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9376 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
9377 }
9378
9379 /* Return the basic block that belongs to label numbered INDEX
9380 of a switch statement. */
9381
9382 basic_block
gimple_switch_label_bb(function * ifun,gswitch * gs,unsigned index)9383 gimple_switch_label_bb (function *ifun, gswitch *gs, unsigned index)
9384 {
9385 return label_to_block (ifun, CASE_LABEL (gimple_switch_label (gs, index)));
9386 }
9387
9388 /* Return the default basic block of a switch statement. */
9389
9390 basic_block
gimple_switch_default_bb(function * ifun,gswitch * gs)9391 gimple_switch_default_bb (function *ifun, gswitch *gs)
9392 {
9393 return gimple_switch_label_bb (ifun, gs, 0);
9394 }
9395
9396 /* Return the edge that belongs to label numbered INDEX
9397 of a switch statement. */
9398
9399 edge
gimple_switch_edge(function * ifun,gswitch * gs,unsigned index)9400 gimple_switch_edge (function *ifun, gswitch *gs, unsigned index)
9401 {
9402 return find_edge (gimple_bb (gs), gimple_switch_label_bb (ifun, gs, index));
9403 }
9404
9405 /* Return the default edge of a switch statement. */
9406
9407 edge
gimple_switch_default_edge(function * ifun,gswitch * gs)9408 gimple_switch_default_edge (function *ifun, gswitch *gs)
9409 {
9410 return gimple_switch_edge (ifun, gs, 0);
9411 }
9412
9413 /* Return true if the only executable statement in BB is a GIMPLE_COND. */
9414
9415 bool
cond_only_block_p(basic_block bb)9416 cond_only_block_p (basic_block bb)
9417 {
9418 /* BB must have no executable statements. */
9419 gimple_stmt_iterator gsi = gsi_after_labels (bb);
9420 if (phi_nodes (bb))
9421 return false;
9422 while (!gsi_end_p (gsi))
9423 {
9424 gimple *stmt = gsi_stmt (gsi);
9425 if (is_gimple_debug (stmt))
9426 ;
9427 else if (gimple_code (stmt) == GIMPLE_NOP
9428 || gimple_code (stmt) == GIMPLE_PREDICT
9429 || gimple_code (stmt) == GIMPLE_COND)
9430 ;
9431 else
9432 return false;
9433 gsi_next (&gsi);
9434 }
9435 return true;
9436 }
9437
9438
9439 /* Emit return warnings. */
9440
9441 namespace {
9442
9443 const pass_data pass_data_warn_function_return =
9444 {
9445 GIMPLE_PASS, /* type */
9446 "*warn_function_return", /* name */
9447 OPTGROUP_NONE, /* optinfo_flags */
9448 TV_NONE, /* tv_id */
9449 PROP_cfg, /* properties_required */
9450 0, /* properties_provided */
9451 0, /* properties_destroyed */
9452 0, /* todo_flags_start */
9453 0, /* todo_flags_finish */
9454 };
9455
9456 class pass_warn_function_return : public gimple_opt_pass
9457 {
9458 public:
pass_warn_function_return(gcc::context * ctxt)9459 pass_warn_function_return (gcc::context *ctxt)
9460 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9461 {}
9462
9463 /* opt_pass methods: */
9464 virtual unsigned int execute (function *);
9465
9466 }; // class pass_warn_function_return
9467
9468 unsigned int
execute(function * fun)9469 pass_warn_function_return::execute (function *fun)
9470 {
9471 location_t location;
9472 gimple *last;
9473 edge e;
9474 edge_iterator ei;
9475
9476 if (!targetm.warn_func_return (fun->decl))
9477 return 0;
9478
9479 /* If we have a path to EXIT, then we do return. */
9480 if (TREE_THIS_VOLATILE (fun->decl)
9481 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9482 {
9483 location = UNKNOWN_LOCATION;
9484 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9485 (e = ei_safe_edge (ei)); )
9486 {
9487 last = last_stmt (e->src);
9488 if ((gimple_code (last) == GIMPLE_RETURN
9489 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9490 && location == UNKNOWN_LOCATION
9491 && ((location = LOCATION_LOCUS (gimple_location (last)))
9492 != UNKNOWN_LOCATION)
9493 && !optimize)
9494 break;
9495 /* When optimizing, replace return stmts in noreturn functions
9496 with __builtin_unreachable () call. */
9497 if (optimize && gimple_code (last) == GIMPLE_RETURN)
9498 {
9499 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9500 gimple *new_stmt = gimple_build_call (fndecl, 0);
9501 gimple_set_location (new_stmt, gimple_location (last));
9502 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9503 gsi_replace (&gsi, new_stmt, true);
9504 remove_edge (e);
9505 }
9506 else
9507 ei_next (&ei);
9508 }
9509 if (location == UNKNOWN_LOCATION)
9510 location = cfun->function_end_locus;
9511
9512 #ifdef notyet
9513 if (warn_missing_noreturn)
9514 warning_at (location, 0, "%<noreturn%> function does return");
9515 #endif
9516 }
9517
9518 /* If we see "return;" in some basic block, then we do reach the end
9519 without returning a value. */
9520 else if (warn_return_type > 0
9521 && !warning_suppressed_p (fun->decl, OPT_Wreturn_type)
9522 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9523 {
9524 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9525 {
9526 gimple *last = last_stmt (e->src);
9527 greturn *return_stmt = dyn_cast <greturn *> (last);
9528 if (return_stmt
9529 && gimple_return_retval (return_stmt) == NULL
9530 && !warning_suppressed_p (last, OPT_Wreturn_type))
9531 {
9532 location = gimple_location (last);
9533 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9534 location = fun->function_end_locus;
9535 if (warning_at (location, OPT_Wreturn_type,
9536 "control reaches end of non-void function"))
9537 suppress_warning (fun->decl, OPT_Wreturn_type);
9538 break;
9539 }
9540 }
9541 /* The C++ FE turns fallthrough from the end of non-void function
9542 into __builtin_unreachable () call with BUILTINS_LOCATION.
9543 Recognize those too. */
9544 basic_block bb;
9545 if (!warning_suppressed_p (fun->decl, OPT_Wreturn_type))
9546 FOR_EACH_BB_FN (bb, fun)
9547 if (EDGE_COUNT (bb->succs) == 0)
9548 {
9549 gimple *last = last_stmt (bb);
9550 const enum built_in_function ubsan_missing_ret
9551 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9552 if (last
9553 && ((LOCATION_LOCUS (gimple_location (last))
9554 == BUILTINS_LOCATION
9555 && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
9556 || gimple_call_builtin_p (last, ubsan_missing_ret)))
9557 {
9558 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9559 gsi_prev_nondebug (&gsi);
9560 gimple *prev = gsi_stmt (gsi);
9561 if (prev == NULL)
9562 location = UNKNOWN_LOCATION;
9563 else
9564 location = gimple_location (prev);
9565 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9566 location = fun->function_end_locus;
9567 if (warning_at (location, OPT_Wreturn_type,
9568 "control reaches end of non-void function"))
9569 suppress_warning (fun->decl, OPT_Wreturn_type);
9570 break;
9571 }
9572 }
9573 }
9574 return 0;
9575 }
9576
9577 } // anon namespace
9578
9579 gimple_opt_pass *
make_pass_warn_function_return(gcc::context * ctxt)9580 make_pass_warn_function_return (gcc::context *ctxt)
9581 {
9582 return new pass_warn_function_return (ctxt);
9583 }
9584
9585 /* Walk a gimplified function and warn for functions whose return value is
9586 ignored and attribute((warn_unused_result)) is set. This is done before
9587 inlining, so we don't have to worry about that. */
9588
9589 static void
do_warn_unused_result(gimple_seq seq)9590 do_warn_unused_result (gimple_seq seq)
9591 {
9592 tree fdecl, ftype;
9593 gimple_stmt_iterator i;
9594
9595 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9596 {
9597 gimple *g = gsi_stmt (i);
9598
9599 switch (gimple_code (g))
9600 {
9601 case GIMPLE_BIND:
9602 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9603 break;
9604 case GIMPLE_TRY:
9605 do_warn_unused_result (gimple_try_eval (g));
9606 do_warn_unused_result (gimple_try_cleanup (g));
9607 break;
9608 case GIMPLE_CATCH:
9609 do_warn_unused_result (gimple_catch_handler (
9610 as_a <gcatch *> (g)));
9611 break;
9612 case GIMPLE_EH_FILTER:
9613 do_warn_unused_result (gimple_eh_filter_failure (g));
9614 break;
9615
9616 case GIMPLE_CALL:
9617 if (gimple_call_lhs (g))
9618 break;
9619 if (gimple_call_internal_p (g))
9620 break;
9621
9622 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9623 LHS. All calls whose value is ignored should be
9624 represented like this. Look for the attribute. */
9625 fdecl = gimple_call_fndecl (g);
9626 ftype = gimple_call_fntype (g);
9627
9628 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9629 {
9630 location_t loc = gimple_location (g);
9631
9632 if (fdecl)
9633 warning_at (loc, OPT_Wunused_result,
9634 "ignoring return value of %qD "
9635 "declared with attribute %<warn_unused_result%>",
9636 fdecl);
9637 else
9638 warning_at (loc, OPT_Wunused_result,
9639 "ignoring return value of function "
9640 "declared with attribute %<warn_unused_result%>");
9641 }
9642 break;
9643
9644 default:
9645 /* Not a container, not a call, or a call whose value is used. */
9646 break;
9647 }
9648 }
9649 }
9650
9651 namespace {
9652
9653 const pass_data pass_data_warn_unused_result =
9654 {
9655 GIMPLE_PASS, /* type */
9656 "*warn_unused_result", /* name */
9657 OPTGROUP_NONE, /* optinfo_flags */
9658 TV_NONE, /* tv_id */
9659 PROP_gimple_any, /* properties_required */
9660 0, /* properties_provided */
9661 0, /* properties_destroyed */
9662 0, /* todo_flags_start */
9663 0, /* todo_flags_finish */
9664 };
9665
9666 class pass_warn_unused_result : public gimple_opt_pass
9667 {
9668 public:
pass_warn_unused_result(gcc::context * ctxt)9669 pass_warn_unused_result (gcc::context *ctxt)
9670 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9671 {}
9672
9673 /* opt_pass methods: */
gate(function *)9674 virtual bool gate (function *) { return flag_warn_unused_result; }
execute(function *)9675 virtual unsigned int execute (function *)
9676 {
9677 do_warn_unused_result (gimple_body (current_function_decl));
9678 return 0;
9679 }
9680
9681 }; // class pass_warn_unused_result
9682
9683 } // anon namespace
9684
9685 gimple_opt_pass *
make_pass_warn_unused_result(gcc::context * ctxt)9686 make_pass_warn_unused_result (gcc::context *ctxt)
9687 {
9688 return new pass_warn_unused_result (ctxt);
9689 }
9690
9691 /* Maybe Remove stores to variables we marked write-only.
9692 Return true if a store was removed. */
9693 static bool
maybe_remove_writeonly_store(gimple_stmt_iterator & gsi,gimple * stmt,bitmap dce_ssa_names)9694 maybe_remove_writeonly_store (gimple_stmt_iterator &gsi, gimple *stmt,
9695 bitmap dce_ssa_names)
9696 {
9697 /* Keep access when store has side effect, i.e. in case when source
9698 is volatile. */
9699 if (!gimple_store_p (stmt)
9700 || gimple_has_side_effects (stmt)
9701 || optimize_debug)
9702 return false;
9703
9704 tree lhs = get_base_address (gimple_get_lhs (stmt));
9705
9706 if (!VAR_P (lhs)
9707 || (!TREE_STATIC (lhs) && !DECL_EXTERNAL (lhs))
9708 || !varpool_node::get (lhs)->writeonly)
9709 return false;
9710
9711 if (dump_file && (dump_flags & TDF_DETAILS))
9712 {
9713 fprintf (dump_file, "Removing statement, writes"
9714 " to write only var:\n");
9715 print_gimple_stmt (dump_file, stmt, 0,
9716 TDF_VOPS|TDF_MEMSYMS);
9717 }
9718
9719 /* Mark ssa name defining to be checked for simple dce. */
9720 if (gimple_assign_single_p (stmt))
9721 {
9722 tree rhs = gimple_assign_rhs1 (stmt);
9723 if (TREE_CODE (rhs) == SSA_NAME
9724 && !SSA_NAME_IS_DEFAULT_DEF (rhs))
9725 bitmap_set_bit (dce_ssa_names, SSA_NAME_VERSION (rhs));
9726 }
9727 unlink_stmt_vdef (stmt);
9728 gsi_remove (&gsi, true);
9729 release_defs (stmt);
9730 return true;
9731 }
9732
9733 /* IPA passes, compilation of earlier functions or inlining
9734 might have changed some properties, such as marked functions nothrow,
9735 pure, const or noreturn.
9736 Remove redundant edges and basic blocks, and create new ones if necessary. */
9737
9738 unsigned int
execute_fixup_cfg(void)9739 execute_fixup_cfg (void)
9740 {
9741 basic_block bb;
9742 gimple_stmt_iterator gsi;
9743 int todo = 0;
9744 cgraph_node *node = cgraph_node::get (current_function_decl);
9745 /* Same scaling is also done by ipa_merge_profiles. */
9746 profile_count num = node->count;
9747 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9748 bool scale = num.initialized_p () && !(num == den);
9749 auto_bitmap dce_ssa_names;
9750
9751 if (scale)
9752 {
9753 profile_count::adjust_for_ipa_scaling (&num, &den);
9754 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9755 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9756 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9757 }
9758
9759 FOR_EACH_BB_FN (bb, cfun)
9760 {
9761 if (scale)
9762 bb->count = bb->count.apply_scale (num, den);
9763 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9764 {
9765 gimple *stmt = gsi_stmt (gsi);
9766 tree decl = is_gimple_call (stmt)
9767 ? gimple_call_fndecl (stmt)
9768 : NULL;
9769 if (decl)
9770 {
9771 int flags = gimple_call_flags (stmt);
9772 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9773 {
9774 if (gimple_purge_dead_abnormal_call_edges (bb))
9775 todo |= TODO_cleanup_cfg;
9776
9777 if (gimple_in_ssa_p (cfun))
9778 {
9779 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9780 update_stmt (stmt);
9781 }
9782 }
9783
9784 if (flags & ECF_NORETURN
9785 && fixup_noreturn_call (stmt))
9786 todo |= TODO_cleanup_cfg;
9787 }
9788
9789 /* Remove stores to variables we marked write-only. */
9790 if (maybe_remove_writeonly_store (gsi, stmt, dce_ssa_names))
9791 {
9792 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9793 continue;
9794 }
9795
9796 /* For calls we can simply remove LHS when it is known
9797 to be write-only. */
9798 if (is_gimple_call (stmt)
9799 && gimple_get_lhs (stmt))
9800 {
9801 tree lhs = get_base_address (gimple_get_lhs (stmt));
9802
9803 if (VAR_P (lhs)
9804 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9805 && varpool_node::get (lhs)->writeonly)
9806 {
9807 gimple_call_set_lhs (stmt, NULL);
9808 update_stmt (stmt);
9809 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9810 }
9811 }
9812
9813 if (maybe_clean_eh_stmt (stmt)
9814 && gimple_purge_dead_eh_edges (bb))
9815 todo |= TODO_cleanup_cfg;
9816 gsi_next (&gsi);
9817 }
9818
9819 /* If we have a basic block with no successors that does not
9820 end with a control statement or a noreturn call end it with
9821 a call to __builtin_unreachable. This situation can occur
9822 when inlining a noreturn call that does in fact return. */
9823 if (EDGE_COUNT (bb->succs) == 0)
9824 {
9825 gimple *stmt = last_stmt (bb);
9826 if (!stmt
9827 || (!is_ctrl_stmt (stmt)
9828 && (!is_gimple_call (stmt)
9829 || !gimple_call_noreturn_p (stmt))))
9830 {
9831 if (stmt && is_gimple_call (stmt))
9832 gimple_call_set_ctrl_altering (stmt, false);
9833 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9834 stmt = gimple_build_call (fndecl, 0);
9835 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9836 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9837 if (!cfun->after_inlining)
9838 {
9839 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9840 node->create_edge (cgraph_node::get_create (fndecl),
9841 call_stmt, bb->count);
9842 }
9843 }
9844 }
9845 }
9846 if (scale)
9847 {
9848 update_max_bb_count ();
9849 compute_function_frequency ();
9850 }
9851
9852 if (current_loops
9853 && (todo & TODO_cleanup_cfg))
9854 loops_state_set (LOOPS_NEED_FIXUP);
9855
9856 simple_dce_from_worklist (dce_ssa_names);
9857
9858 return todo;
9859 }
9860
9861 namespace {
9862
9863 const pass_data pass_data_fixup_cfg =
9864 {
9865 GIMPLE_PASS, /* type */
9866 "fixup_cfg", /* name */
9867 OPTGROUP_NONE, /* optinfo_flags */
9868 TV_NONE, /* tv_id */
9869 PROP_cfg, /* properties_required */
9870 0, /* properties_provided */
9871 0, /* properties_destroyed */
9872 0, /* todo_flags_start */
9873 0, /* todo_flags_finish */
9874 };
9875
9876 class pass_fixup_cfg : public gimple_opt_pass
9877 {
9878 public:
pass_fixup_cfg(gcc::context * ctxt)9879 pass_fixup_cfg (gcc::context *ctxt)
9880 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9881 {}
9882
9883 /* opt_pass methods: */
clone()9884 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
execute(function *)9885 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9886
9887 }; // class pass_fixup_cfg
9888
9889 } // anon namespace
9890
9891 gimple_opt_pass *
make_pass_fixup_cfg(gcc::context * ctxt)9892 make_pass_fixup_cfg (gcc::context *ctxt)
9893 {
9894 return new pass_fixup_cfg (ctxt);
9895 }
9896
9897 /* Garbage collection support for edge_def. */
9898
9899 extern void gt_ggc_mx (tree&);
9900 extern void gt_ggc_mx (gimple *&);
9901 extern void gt_ggc_mx (rtx&);
9902 extern void gt_ggc_mx (basic_block&);
9903
9904 static void
gt_ggc_mx(rtx_insn * & x)9905 gt_ggc_mx (rtx_insn *& x)
9906 {
9907 if (x)
9908 gt_ggc_mx_rtx_def ((void *) x);
9909 }
9910
9911 void
gt_ggc_mx(edge_def * e)9912 gt_ggc_mx (edge_def *e)
9913 {
9914 tree block = LOCATION_BLOCK (e->goto_locus);
9915 gt_ggc_mx (e->src);
9916 gt_ggc_mx (e->dest);
9917 if (current_ir_type () == IR_GIMPLE)
9918 gt_ggc_mx (e->insns.g);
9919 else
9920 gt_ggc_mx (e->insns.r);
9921 gt_ggc_mx (block);
9922 }
9923
9924 /* PCH support for edge_def. */
9925
9926 extern void gt_pch_nx (tree&);
9927 extern void gt_pch_nx (gimple *&);
9928 extern void gt_pch_nx (rtx&);
9929 extern void gt_pch_nx (basic_block&);
9930
9931 static void
gt_pch_nx(rtx_insn * & x)9932 gt_pch_nx (rtx_insn *& x)
9933 {
9934 if (x)
9935 gt_pch_nx_rtx_def ((void *) x);
9936 }
9937
9938 void
gt_pch_nx(edge_def * e)9939 gt_pch_nx (edge_def *e)
9940 {
9941 tree block = LOCATION_BLOCK (e->goto_locus);
9942 gt_pch_nx (e->src);
9943 gt_pch_nx (e->dest);
9944 if (current_ir_type () == IR_GIMPLE)
9945 gt_pch_nx (e->insns.g);
9946 else
9947 gt_pch_nx (e->insns.r);
9948 gt_pch_nx (block);
9949 }
9950
9951 void
gt_pch_nx(edge_def * e,gt_pointer_operator op,void * cookie)9952 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9953 {
9954 tree block = LOCATION_BLOCK (e->goto_locus);
9955 op (&(e->src), NULL, cookie);
9956 op (&(e->dest), NULL, cookie);
9957 if (current_ir_type () == IR_GIMPLE)
9958 op (&(e->insns.g), NULL, cookie);
9959 else
9960 op (&(e->insns.r), NULL, cookie);
9961 op (&(block), &(block), cookie);
9962 }
9963
9964 #if CHECKING_P
9965
9966 namespace selftest {
9967
9968 /* Helper function for CFG selftests: create a dummy function decl
9969 and push it as cfun. */
9970
9971 static tree
push_fndecl(const char * name)9972 push_fndecl (const char *name)
9973 {
9974 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9975 /* FIXME: this uses input_location: */
9976 tree fndecl = build_fn_decl (name, fn_type);
9977 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9978 NULL_TREE, integer_type_node);
9979 DECL_RESULT (fndecl) = retval;
9980 push_struct_function (fndecl);
9981 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9982 ASSERT_TRUE (fun != NULL);
9983 init_empty_tree_cfg_for_function (fun);
9984 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9985 ASSERT_EQ (0, n_edges_for_fn (fun));
9986 return fndecl;
9987 }
9988
9989 /* These tests directly create CFGs.
9990 Compare with the static fns within tree-cfg.cc:
9991 - build_gimple_cfg
9992 - make_blocks: calls create_basic_block (seq, bb);
9993 - make_edges. */
9994
9995 /* Verify a simple cfg of the form:
9996 ENTRY -> A -> B -> C -> EXIT. */
9997
9998 static void
test_linear_chain()9999 test_linear_chain ()
10000 {
10001 gimple_register_cfg_hooks ();
10002
10003 tree fndecl = push_fndecl ("cfg_test_linear_chain");
10004 function *fun = DECL_STRUCT_FUNCTION (fndecl);
10005
10006 /* Create some empty blocks. */
10007 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
10008 basic_block bb_b = create_empty_bb (bb_a);
10009 basic_block bb_c = create_empty_bb (bb_b);
10010
10011 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
10012 ASSERT_EQ (0, n_edges_for_fn (fun));
10013
10014 /* Create some edges: a simple linear chain of BBs. */
10015 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
10016 make_edge (bb_a, bb_b, 0);
10017 make_edge (bb_b, bb_c, 0);
10018 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
10019
10020 /* Verify the edges. */
10021 ASSERT_EQ (4, n_edges_for_fn (fun));
10022 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
10023 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
10024 ASSERT_EQ (1, bb_a->preds->length ());
10025 ASSERT_EQ (1, bb_a->succs->length ());
10026 ASSERT_EQ (1, bb_b->preds->length ());
10027 ASSERT_EQ (1, bb_b->succs->length ());
10028 ASSERT_EQ (1, bb_c->preds->length ());
10029 ASSERT_EQ (1, bb_c->succs->length ());
10030 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
10031 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
10032
10033 /* Verify the dominance information
10034 Each BB in our simple chain should be dominated by the one before
10035 it. */
10036 calculate_dominance_info (CDI_DOMINATORS);
10037 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
10038 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
10039 auto_vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
10040 ASSERT_EQ (1, dom_by_b.length ());
10041 ASSERT_EQ (bb_c, dom_by_b[0]);
10042 free_dominance_info (CDI_DOMINATORS);
10043
10044 /* Similarly for post-dominance: each BB in our chain is post-dominated
10045 by the one after it. */
10046 calculate_dominance_info (CDI_POST_DOMINATORS);
10047 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
10048 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
10049 auto_vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
10050 ASSERT_EQ (1, postdom_by_b.length ());
10051 ASSERT_EQ (bb_a, postdom_by_b[0]);
10052 free_dominance_info (CDI_POST_DOMINATORS);
10053
10054 pop_cfun ();
10055 }
10056
10057 /* Verify a simple CFG of the form:
10058 ENTRY
10059 |
10060 A
10061 / \
10062 /t \f
10063 B C
10064 \ /
10065 \ /
10066 D
10067 |
10068 EXIT. */
10069
10070 static void
test_diamond()10071 test_diamond ()
10072 {
10073 gimple_register_cfg_hooks ();
10074
10075 tree fndecl = push_fndecl ("cfg_test_diamond");
10076 function *fun = DECL_STRUCT_FUNCTION (fndecl);
10077
10078 /* Create some empty blocks. */
10079 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
10080 basic_block bb_b = create_empty_bb (bb_a);
10081 basic_block bb_c = create_empty_bb (bb_a);
10082 basic_block bb_d = create_empty_bb (bb_b);
10083
10084 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
10085 ASSERT_EQ (0, n_edges_for_fn (fun));
10086
10087 /* Create the edges. */
10088 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
10089 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
10090 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
10091 make_edge (bb_b, bb_d, 0);
10092 make_edge (bb_c, bb_d, 0);
10093 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
10094
10095 /* Verify the edges. */
10096 ASSERT_EQ (6, n_edges_for_fn (fun));
10097 ASSERT_EQ (1, bb_a->preds->length ());
10098 ASSERT_EQ (2, bb_a->succs->length ());
10099 ASSERT_EQ (1, bb_b->preds->length ());
10100 ASSERT_EQ (1, bb_b->succs->length ());
10101 ASSERT_EQ (1, bb_c->preds->length ());
10102 ASSERT_EQ (1, bb_c->succs->length ());
10103 ASSERT_EQ (2, bb_d->preds->length ());
10104 ASSERT_EQ (1, bb_d->succs->length ());
10105
10106 /* Verify the dominance information. */
10107 calculate_dominance_info (CDI_DOMINATORS);
10108 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
10109 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
10110 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
10111 auto_vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
10112 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
10113 dom_by_a.release ();
10114 auto_vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
10115 ASSERT_EQ (0, dom_by_b.length ());
10116 dom_by_b.release ();
10117 free_dominance_info (CDI_DOMINATORS);
10118
10119 /* Similarly for post-dominance. */
10120 calculate_dominance_info (CDI_POST_DOMINATORS);
10121 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
10122 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
10123 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
10124 auto_vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
10125 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
10126 postdom_by_d.release ();
10127 auto_vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
10128 ASSERT_EQ (0, postdom_by_b.length ());
10129 postdom_by_b.release ();
10130 free_dominance_info (CDI_POST_DOMINATORS);
10131
10132 pop_cfun ();
10133 }
10134
10135 /* Verify that we can handle a CFG containing a "complete" aka
10136 fully-connected subgraph (where A B C D below all have edges
10137 pointing to each other node, also to themselves).
10138 e.g.:
10139 ENTRY EXIT
10140 | ^
10141 | /
10142 | /
10143 | /
10144 V/
10145 A<--->B
10146 ^^ ^^
10147 | \ / |
10148 | X |
10149 | / \ |
10150 VV VV
10151 C<--->D
10152 */
10153
10154 static void
test_fully_connected()10155 test_fully_connected ()
10156 {
10157 gimple_register_cfg_hooks ();
10158
10159 tree fndecl = push_fndecl ("cfg_fully_connected");
10160 function *fun = DECL_STRUCT_FUNCTION (fndecl);
10161
10162 const int n = 4;
10163
10164 /* Create some empty blocks. */
10165 auto_vec <basic_block> subgraph_nodes;
10166 for (int i = 0; i < n; i++)
10167 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
10168
10169 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
10170 ASSERT_EQ (0, n_edges_for_fn (fun));
10171
10172 /* Create the edges. */
10173 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
10174 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
10175 for (int i = 0; i < n; i++)
10176 for (int j = 0; j < n; j++)
10177 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
10178
10179 /* Verify the edges. */
10180 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
10181 /* The first one is linked to ENTRY/EXIT as well as itself and
10182 everything else. */
10183 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
10184 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
10185 /* The other ones in the subgraph are linked to everything in
10186 the subgraph (including themselves). */
10187 for (int i = 1; i < n; i++)
10188 {
10189 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
10190 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
10191 }
10192
10193 /* Verify the dominance information. */
10194 calculate_dominance_info (CDI_DOMINATORS);
10195 /* The initial block in the subgraph should be dominated by ENTRY. */
10196 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
10197 get_immediate_dominator (CDI_DOMINATORS,
10198 subgraph_nodes[0]));
10199 /* Every other block in the subgraph should be dominated by the
10200 initial block. */
10201 for (int i = 1; i < n; i++)
10202 ASSERT_EQ (subgraph_nodes[0],
10203 get_immediate_dominator (CDI_DOMINATORS,
10204 subgraph_nodes[i]));
10205 free_dominance_info (CDI_DOMINATORS);
10206
10207 /* Similarly for post-dominance. */
10208 calculate_dominance_info (CDI_POST_DOMINATORS);
10209 /* The initial block in the subgraph should be postdominated by EXIT. */
10210 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
10211 get_immediate_dominator (CDI_POST_DOMINATORS,
10212 subgraph_nodes[0]));
10213 /* Every other block in the subgraph should be postdominated by the
10214 initial block, since that leads to EXIT. */
10215 for (int i = 1; i < n; i++)
10216 ASSERT_EQ (subgraph_nodes[0],
10217 get_immediate_dominator (CDI_POST_DOMINATORS,
10218 subgraph_nodes[i]));
10219 free_dominance_info (CDI_POST_DOMINATORS);
10220
10221 pop_cfun ();
10222 }
10223
10224 /* Run all of the selftests within this file. */
10225
10226 void
tree_cfg_cc_tests()10227 tree_cfg_cc_tests ()
10228 {
10229 test_linear_chain ();
10230 test_diamond ();
10231 test_fully_connected ();
10232 }
10233
10234 } // namespace selftest
10235
10236 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
10237 - loop
10238 - nested loops
10239 - switch statement (a block with many out-edges)
10240 - something that jumps to itself
10241 - etc */
10242
10243 #endif /* CHECKING_P */
10244