1 /* Loop distribution.
2 Copyright (C) 2006-2022 Free Software Foundation, Inc.
3 Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
4 and Sebastian Pop <sebastian.pop@amd.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This pass performs loop distribution: for example, the loop
23
24 |DO I = 2, N
25 | A(I) = B(I) + C
26 | D(I) = A(I-1)*E
27 |ENDDO
28
29 is transformed to
30
31 |DOALL I = 2, N
32 | A(I) = B(I) + C
33 |ENDDO
34 |
35 |DOALL I = 2, N
36 | D(I) = A(I-1)*E
37 |ENDDO
38
39 Loop distribution is the dual of loop fusion. It separates statements
40 of a loop (or loop nest) into multiple loops (or loop nests) with the
41 same loop header. The major goal is to separate statements which may
42 be vectorized from those that can't. This pass implements distribution
43 in the following steps:
44
45 1) Seed partitions with specific type statements. For now we support
46 two types seed statements: statement defining variable used outside
47 of loop; statement storing to memory.
48 2) Build reduced dependence graph (RDG) for loop to be distributed.
49 The vertices (RDG:V) model all statements in the loop and the edges
50 (RDG:E) model flow and control dependencies between statements.
51 3) Apart from RDG, compute data dependencies between memory references.
52 4) Starting from seed statement, build up partition by adding depended
53 statements according to RDG's dependence information. Partition is
54 classified as parallel type if it can be executed paralleled; or as
55 sequential type if it can't. Parallel type partition is further
56 classified as different builtin kinds if it can be implemented as
57 builtin function calls.
58 5) Build partition dependence graph (PG) based on data dependencies.
59 The vertices (PG:V) model all partitions and the edges (PG:E) model
60 all data dependencies between every partitions pair. In general,
61 data dependence is either compilation time known or unknown. In C
62 family languages, there exists quite amount compilation time unknown
63 dependencies because of possible alias relation of data references.
64 We categorize PG's edge to two types: "true" edge that represents
65 compilation time known data dependencies; "alias" edge for all other
66 data dependencies.
67 6) Traverse subgraph of PG as if all "alias" edges don't exist. Merge
68 partitions in each strong connected component (SCC) correspondingly.
69 Build new PG for merged partitions.
70 7) Traverse PG again and this time with both "true" and "alias" edges
71 included. We try to break SCCs by removing some edges. Because
72 SCCs by "true" edges are all fused in step 6), we can break SCCs
73 by removing some "alias" edges. It's NP-hard to choose optimal
74 edge set, fortunately simple approximation is good enough for us
75 given the small problem scale.
76 8) Collect all data dependencies of the removed "alias" edges. Create
77 runtime alias checks for collected data dependencies.
78 9) Version loop under the condition of runtime alias checks. Given
79 loop distribution generally introduces additional overhead, it is
80 only useful if vectorization is achieved in distributed loop. We
81 version loop with internal function call IFN_LOOP_DIST_ALIAS. If
82 no distributed loop can be vectorized, we simply remove distributed
83 loops and recover to the original one.
84
85 TODO:
86 1) We only distribute innermost two-level loop nest now. We should
87 extend it for arbitrary loop nests in the future.
88 2) We only fuse partitions in SCC now. A better fusion algorithm is
89 desired to minimize loop overhead, maximize parallelism and maximize
90 data reuse. */
91
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "backend.h"
96 #include "tree.h"
97 #include "gimple.h"
98 #include "cfghooks.h"
99 #include "tree-pass.h"
100 #include "ssa.h"
101 #include "gimple-pretty-print.h"
102 #include "fold-const.h"
103 #include "cfganal.h"
104 #include "gimple-iterator.h"
105 #include "gimplify-me.h"
106 #include "stor-layout.h"
107 #include "tree-cfg.h"
108 #include "tree-ssa-loop-manip.h"
109 #include "tree-ssa-loop-ivopts.h"
110 #include "tree-ssa-loop.h"
111 #include "tree-into-ssa.h"
112 #include "tree-ssa.h"
113 #include "cfgloop.h"
114 #include "tree-scalar-evolution.h"
115 #include "tree-vectorizer.h"
116 #include "tree-eh.h"
117 #include "gimple-fold.h"
118 #include "tree-affine.h"
119 #include "intl.h"
120 #include "rtl.h"
121 #include "memmodel.h"
122 #include "optabs.h"
123
124
125 #define MAX_DATAREFS_NUM \
126 ((unsigned) param_loop_max_datarefs_for_datadeps)
127
128 /* Threshold controlling number of distributed partitions. Given it may
129 be unnecessary if a memory stream cost model is invented in the future,
130 we define it as a temporary macro, rather than a parameter. */
131 #define NUM_PARTITION_THRESHOLD (4)
132
133 /* Hashtable helpers. */
134
135 struct ddr_hasher : nofree_ptr_hash <struct data_dependence_relation>
136 {
137 static inline hashval_t hash (const data_dependence_relation *);
138 static inline bool equal (const data_dependence_relation *,
139 const data_dependence_relation *);
140 };
141
142 /* Hash function for data dependence. */
143
144 inline hashval_t
hash(const data_dependence_relation * ddr)145 ddr_hasher::hash (const data_dependence_relation *ddr)
146 {
147 inchash::hash h;
148 h.add_ptr (DDR_A (ddr));
149 h.add_ptr (DDR_B (ddr));
150 return h.end ();
151 }
152
153 /* Hash table equality function for data dependence. */
154
155 inline bool
equal(const data_dependence_relation * ddr1,const data_dependence_relation * ddr2)156 ddr_hasher::equal (const data_dependence_relation *ddr1,
157 const data_dependence_relation *ddr2)
158 {
159 return (DDR_A (ddr1) == DDR_A (ddr2) && DDR_B (ddr1) == DDR_B (ddr2));
160 }
161
162
163
164 #define DR_INDEX(dr) ((uintptr_t) (dr)->aux)
165
166 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
167 struct rdg_vertex
168 {
169 /* The statement represented by this vertex. */
170 gimple *stmt;
171
172 /* Vector of data-references in this statement. */
173 vec<data_reference_p> datarefs;
174
175 /* True when the statement contains a write to memory. */
176 bool has_mem_write;
177
178 /* True when the statement contains a read from memory. */
179 bool has_mem_reads;
180 };
181
182 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
183 #define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
184 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
185 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
186 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
187 #define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
188 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
189 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
190
191 /* Data dependence type. */
192
193 enum rdg_dep_type
194 {
195 /* Read After Write (RAW). */
196 flow_dd = 'f',
197
198 /* Control dependence (execute conditional on). */
199 control_dd = 'c'
200 };
201
202 /* Dependence information attached to an edge of the RDG. */
203
204 struct rdg_edge
205 {
206 /* Type of the dependence. */
207 enum rdg_dep_type type;
208 };
209
210 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
211
212 /* Kind of distributed loop. */
213 enum partition_kind {
214 PKIND_NORMAL,
215 /* Partial memset stands for a paritition can be distributed into a loop
216 of memset calls, rather than a single memset call. It's handled just
217 like a normal parition, i.e, distributed as separate loop, no memset
218 call is generated.
219
220 Note: This is a hacking fix trying to distribute ZERO-ing stmt in a
221 loop nest as deep as possible. As a result, parloop achieves better
222 parallelization by parallelizing deeper loop nest. This hack should
223 be unnecessary and removed once distributed memset can be understood
224 and analyzed in data reference analysis. See PR82604 for more. */
225 PKIND_PARTIAL_MEMSET,
226 PKIND_MEMSET, PKIND_MEMCPY, PKIND_MEMMOVE
227 };
228
229 /* Type of distributed loop. */
230 enum partition_type {
231 /* The distributed loop can be executed parallelly. */
232 PTYPE_PARALLEL = 0,
233 /* The distributed loop has to be executed sequentially. */
234 PTYPE_SEQUENTIAL
235 };
236
237 /* Builtin info for loop distribution. */
238 struct builtin_info
239 {
240 /* data-references a kind != PKIND_NORMAL partition is about. */
241 data_reference_p dst_dr;
242 data_reference_p src_dr;
243 /* Base address and size of memory objects operated by the builtin. Note
244 both dest and source memory objects must have the same size. */
245 tree dst_base;
246 tree src_base;
247 tree size;
248 /* Base and offset part of dst_base after stripping constant offset. This
249 is only used in memset builtin distribution for now. */
250 tree dst_base_base;
251 unsigned HOST_WIDE_INT dst_base_offset;
252 };
253
254 /* Partition for loop distribution. */
255 struct partition
256 {
257 /* Statements of the partition. */
258 bitmap stmts;
259 /* True if the partition defines variable which is used outside of loop. */
260 bool reduction_p;
261 location_t loc;
262 enum partition_kind kind;
263 enum partition_type type;
264 /* Data references in the partition. */
265 bitmap datarefs;
266 /* Information of builtin parition. */
267 struct builtin_info *builtin;
268 };
269
270 /* Partitions are fused because of different reasons. */
271 enum fuse_type
272 {
273 FUSE_NON_BUILTIN = 0,
274 FUSE_REDUCTION = 1,
275 FUSE_SHARE_REF = 2,
276 FUSE_SAME_SCC = 3,
277 FUSE_FINALIZE = 4
278 };
279
280 /* Description on different fusing reason. */
281 static const char *fuse_message[] = {
282 "they are non-builtins",
283 "they have reductions",
284 "they have shared memory refs",
285 "they are in the same dependence scc",
286 "there is no point to distribute loop"};
287
288
289 /* Dump vertex I in RDG to FILE. */
290
291 static void
dump_rdg_vertex(FILE * file,struct graph * rdg,int i)292 dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
293 {
294 struct vertex *v = &(rdg->vertices[i]);
295 struct graph_edge *e;
296
297 fprintf (file, "(vertex %d: (%s%s) (in:", i,
298 RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
299 RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
300
301 if (v->pred)
302 for (e = v->pred; e; e = e->pred_next)
303 fprintf (file, " %d", e->src);
304
305 fprintf (file, ") (out:");
306
307 if (v->succ)
308 for (e = v->succ; e; e = e->succ_next)
309 fprintf (file, " %d", e->dest);
310
311 fprintf (file, ")\n");
312 print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
313 fprintf (file, ")\n");
314 }
315
316 /* Call dump_rdg_vertex on stderr. */
317
318 DEBUG_FUNCTION void
debug_rdg_vertex(struct graph * rdg,int i)319 debug_rdg_vertex (struct graph *rdg, int i)
320 {
321 dump_rdg_vertex (stderr, rdg, i);
322 }
323
324 /* Dump the reduced dependence graph RDG to FILE. */
325
326 static void
dump_rdg(FILE * file,struct graph * rdg)327 dump_rdg (FILE *file, struct graph *rdg)
328 {
329 fprintf (file, "(rdg\n");
330 for (int i = 0; i < rdg->n_vertices; i++)
331 dump_rdg_vertex (file, rdg, i);
332 fprintf (file, ")\n");
333 }
334
335 /* Call dump_rdg on stderr. */
336
337 DEBUG_FUNCTION void
debug_rdg(struct graph * rdg)338 debug_rdg (struct graph *rdg)
339 {
340 dump_rdg (stderr, rdg);
341 }
342
343 static void
dot_rdg_1(FILE * file,struct graph * rdg)344 dot_rdg_1 (FILE *file, struct graph *rdg)
345 {
346 int i;
347 pretty_printer buffer;
348 pp_needs_newline (&buffer) = false;
349 buffer.buffer->stream = file;
350
351 fprintf (file, "digraph RDG {\n");
352
353 for (i = 0; i < rdg->n_vertices; i++)
354 {
355 struct vertex *v = &(rdg->vertices[i]);
356 struct graph_edge *e;
357
358 fprintf (file, "%d [label=\"[%d] ", i, i);
359 pp_gimple_stmt_1 (&buffer, RDGV_STMT (v), 0, TDF_SLIM);
360 pp_flush (&buffer);
361 fprintf (file, "\"]\n");
362
363 /* Highlight reads from memory. */
364 if (RDG_MEM_READS_STMT (rdg, i))
365 fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
366
367 /* Highlight stores to memory. */
368 if (RDG_MEM_WRITE_STMT (rdg, i))
369 fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
370
371 if (v->succ)
372 for (e = v->succ; e; e = e->succ_next)
373 switch (RDGE_TYPE (e))
374 {
375 case flow_dd:
376 /* These are the most common dependences: don't print these. */
377 fprintf (file, "%d -> %d \n", i, e->dest);
378 break;
379
380 case control_dd:
381 fprintf (file, "%d -> %d [label=control] \n", i, e->dest);
382 break;
383
384 default:
385 gcc_unreachable ();
386 }
387 }
388
389 fprintf (file, "}\n\n");
390 }
391
392 /* Display the Reduced Dependence Graph using dotty. */
393
394 DEBUG_FUNCTION void
dot_rdg(struct graph * rdg)395 dot_rdg (struct graph *rdg)
396 {
397 /* When debugging, you may want to enable the following code. */
398 #ifdef HAVE_POPEN
399 FILE *file = popen ("dot -Tx11", "w");
400 if (!file)
401 return;
402 dot_rdg_1 (file, rdg);
403 fflush (file);
404 close (fileno (file));
405 pclose (file);
406 #else
407 dot_rdg_1 (stderr, rdg);
408 #endif
409 }
410
411 /* Returns the index of STMT in RDG. */
412
413 static int
rdg_vertex_for_stmt(struct graph * rdg ATTRIBUTE_UNUSED,gimple * stmt)414 rdg_vertex_for_stmt (struct graph *rdg ATTRIBUTE_UNUSED, gimple *stmt)
415 {
416 int index = gimple_uid (stmt);
417 gcc_checking_assert (index == -1 || RDG_STMT (rdg, index) == stmt);
418 return index;
419 }
420
421 /* Creates dependence edges in RDG for all the uses of DEF. IDEF is
422 the index of DEF in RDG. */
423
424 static void
create_rdg_edges_for_scalar(struct graph * rdg,tree def,int idef)425 create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
426 {
427 use_operand_p imm_use_p;
428 imm_use_iterator iterator;
429
430 FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
431 {
432 struct graph_edge *e;
433 int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
434
435 if (use < 0)
436 continue;
437
438 e = add_edge (rdg, idef, use);
439 e->data = XNEW (struct rdg_edge);
440 RDGE_TYPE (e) = flow_dd;
441 }
442 }
443
444 /* Creates an edge for the control dependences of BB to the vertex V. */
445
446 static void
create_edge_for_control_dependence(struct graph * rdg,basic_block bb,int v,control_dependences * cd)447 create_edge_for_control_dependence (struct graph *rdg, basic_block bb,
448 int v, control_dependences *cd)
449 {
450 bitmap_iterator bi;
451 unsigned edge_n;
452 EXECUTE_IF_SET_IN_BITMAP (cd->get_edges_dependent_on (bb->index),
453 0, edge_n, bi)
454 {
455 basic_block cond_bb = cd->get_edge_src (edge_n);
456 gimple *stmt = last_stmt (cond_bb);
457 if (stmt && is_ctrl_stmt (stmt))
458 {
459 struct graph_edge *e;
460 int c = rdg_vertex_for_stmt (rdg, stmt);
461 if (c < 0)
462 continue;
463
464 e = add_edge (rdg, c, v);
465 e->data = XNEW (struct rdg_edge);
466 RDGE_TYPE (e) = control_dd;
467 }
468 }
469 }
470
471 /* Creates the edges of the reduced dependence graph RDG. */
472
473 static void
create_rdg_flow_edges(struct graph * rdg)474 create_rdg_flow_edges (struct graph *rdg)
475 {
476 int i;
477 def_operand_p def_p;
478 ssa_op_iter iter;
479
480 for (i = 0; i < rdg->n_vertices; i++)
481 FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
482 iter, SSA_OP_DEF)
483 create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
484 }
485
486 /* Creates the edges of the reduced dependence graph RDG. */
487
488 static void
create_rdg_cd_edges(struct graph * rdg,control_dependences * cd,loop_p loop)489 create_rdg_cd_edges (struct graph *rdg, control_dependences *cd, loop_p loop)
490 {
491 int i;
492
493 for (i = 0; i < rdg->n_vertices; i++)
494 {
495 gimple *stmt = RDG_STMT (rdg, i);
496 if (gimple_code (stmt) == GIMPLE_PHI)
497 {
498 edge_iterator ei;
499 edge e;
500 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
501 if (flow_bb_inside_loop_p (loop, e->src))
502 create_edge_for_control_dependence (rdg, e->src, i, cd);
503 }
504 else
505 create_edge_for_control_dependence (rdg, gimple_bb (stmt), i, cd);
506 }
507 }
508
509
510 class loop_distribution
511 {
512 private:
513 /* The loop (nest) to be distributed. */
514 vec<loop_p> loop_nest;
515
516 /* Vector of data references in the loop to be distributed. */
517 vec<data_reference_p> datarefs_vec;
518
519 /* If there is nonaddressable data reference in above vector. */
520 bool has_nonaddressable_dataref_p;
521
522 /* Store index of data reference in aux field. */
523
524 /* Hash table for data dependence relation in the loop to be distributed. */
525 hash_table<ddr_hasher> *ddrs_table;
526
527 /* Array mapping basic block's index to its topological order. */
528 int *bb_top_order_index;
529 /* And size of the array. */
530 int bb_top_order_index_size;
531
532 /* Build the vertices of the reduced dependence graph RDG. Return false
533 if that failed. */
534 bool create_rdg_vertices (struct graph *rdg, const vec<gimple *> &stmts,
535 loop_p loop);
536
537 /* Initialize STMTS with all the statements of LOOP. We use topological
538 order to discover all statements. The order is important because
539 generate_loops_for_partition is using the same traversal for identifying
540 statements in loop copies. */
541 void stmts_from_loop (class loop *loop, vec<gimple *> *stmts);
542
543
544 /* Build the Reduced Dependence Graph (RDG) with one vertex per statement of
545 LOOP, and one edge per flow dependence or control dependence from control
546 dependence CD. During visiting each statement, data references are also
547 collected and recorded in global data DATAREFS_VEC. */
548 struct graph * build_rdg (class loop *loop, control_dependences *cd);
549
550 /* Merge PARTITION into the partition DEST. RDG is the reduced dependence
551 graph and we update type for result partition if it is non-NULL. */
552 void partition_merge_into (struct graph *rdg,
553 partition *dest, partition *partition,
554 enum fuse_type ft);
555
556
557 /* Return data dependence relation for data references A and B. The two
558 data references must be in lexicographic order wrto reduced dependence
559 graph RDG. We firstly try to find ddr from global ddr hash table. If
560 it doesn't exist, compute the ddr and cache it. */
561 data_dependence_relation * get_data_dependence (struct graph *rdg,
562 data_reference_p a,
563 data_reference_p b);
564
565
566 /* In reduced dependence graph RDG for loop distribution, return true if
567 dependence between references DR1 and DR2 leads to a dependence cycle
568 and such dependence cycle can't be resolved by runtime alias check. */
569 bool data_dep_in_cycle_p (struct graph *rdg, data_reference_p dr1,
570 data_reference_p dr2);
571
572
573 /* Given reduced dependence graph RDG, PARTITION1 and PARTITION2, update
574 PARTITION1's type after merging PARTITION2 into PARTITION1. */
575 void update_type_for_merge (struct graph *rdg,
576 partition *partition1, partition *partition2);
577
578
579 /* Returns a partition with all the statements needed for computing
580 the vertex V of the RDG, also including the loop exit conditions. */
581 partition *build_rdg_partition_for_vertex (struct graph *rdg, int v);
582
583 /* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
584 if it forms builtin memcpy or memmove call. */
585 void classify_builtin_ldst (loop_p loop, struct graph *rdg, partition *partition,
586 data_reference_p dst_dr, data_reference_p src_dr);
587
588 /* Classifies the builtin kind we can generate for PARTITION of RDG and LOOP.
589 For the moment we detect memset, memcpy and memmove patterns. Bitmap
590 STMT_IN_ALL_PARTITIONS contains statements belonging to all partitions.
591 Returns true if there is a reduction in all partitions and we
592 possibly did not mark PARTITION as having one for this reason. */
593
594 bool
595 classify_partition (loop_p loop,
596 struct graph *rdg, partition *partition,
597 bitmap stmt_in_all_partitions);
598
599
600 /* Returns true when PARTITION1 and PARTITION2 access the same memory
601 object in RDG. */
602 bool share_memory_accesses (struct graph *rdg,
603 partition *partition1, partition *partition2);
604
605 /* For each seed statement in STARTING_STMTS, this function builds
606 partition for it by adding depended statements according to RDG.
607 All partitions are recorded in PARTITIONS. */
608 void rdg_build_partitions (struct graph *rdg,
609 vec<gimple *> starting_stmts,
610 vec<partition *> *partitions);
611
612 /* Compute partition dependence created by the data references in DRS1
613 and DRS2, modify and return DIR according to that. IF ALIAS_DDR is
614 not NULL, we record dependence introduced by possible alias between
615 two data references in ALIAS_DDRS; otherwise, we simply ignore such
616 dependence as if it doesn't exist at all. */
617 int pg_add_dependence_edges (struct graph *rdg, int dir, bitmap drs1,
618 bitmap drs2, vec<ddr_p> *alias_ddrs);
619
620
621 /* Build and return partition dependence graph for PARTITIONS. RDG is
622 reduced dependence graph for the loop to be distributed. If IGNORE_ALIAS_P
623 is true, data dependence caused by possible alias between references
624 is ignored, as if it doesn't exist at all; otherwise all depdendences
625 are considered. */
626 struct graph *build_partition_graph (struct graph *rdg,
627 vec<struct partition *> *partitions,
628 bool ignore_alias_p);
629
630 /* Given reduced dependence graph RDG merge strong connected components
631 of PARTITIONS. If IGNORE_ALIAS_P is true, data dependence caused by
632 possible alias between references is ignored, as if it doesn't exist
633 at all; otherwise all depdendences are considered. */
634 void merge_dep_scc_partitions (struct graph *rdg, vec<struct partition *>
635 *partitions, bool ignore_alias_p);
636
637 /* This is the main function breaking strong conected components in
638 PARTITIONS giving reduced depdendence graph RDG. Store data dependence
639 relations for runtime alias check in ALIAS_DDRS. */
640 void break_alias_scc_partitions (struct graph *rdg, vec<struct partition *>
641 *partitions, vec<ddr_p> *alias_ddrs);
642
643
644 /* Fuse PARTITIONS of LOOP if necessary before finalizing distribution.
645 ALIAS_DDRS contains ddrs which need runtime alias check. */
646 void finalize_partitions (class loop *loop, vec<struct partition *>
647 *partitions, vec<ddr_p> *alias_ddrs);
648
649 /* Distributes the code from LOOP in such a way that producer statements
650 are placed before consumer statements. Tries to separate only the
651 statements from STMTS into separate loops. Returns the number of
652 distributed loops. Set NB_CALLS to number of generated builtin calls.
653 Set *DESTROY_P to whether LOOP needs to be destroyed. */
654 int distribute_loop (class loop *loop, const vec<gimple *> &stmts,
655 control_dependences *cd, int *nb_calls, bool *destroy_p,
656 bool only_patterns_p);
657
658 /* Transform loops which mimic the effects of builtins rawmemchr or strlen and
659 replace them accordingly. */
660 bool transform_reduction_loop (loop_p loop);
661
662 /* Compute topological order for basic blocks. Topological order is
663 needed because data dependence is computed for data references in
664 lexicographical order. */
665 void bb_top_order_init (void);
666
667 void bb_top_order_destroy (void);
668
669 public:
670
671 /* Getter for bb_top_order. */
672
get_bb_top_order_index_size(void)673 inline int get_bb_top_order_index_size (void)
674 {
675 return bb_top_order_index_size;
676 }
677
get_bb_top_order_index(int i)678 inline int get_bb_top_order_index (int i)
679 {
680 return bb_top_order_index[i];
681 }
682
683 unsigned int execute (function *fun);
684 };
685
686
687 /* If X has a smaller topological sort number than Y, returns -1;
688 if greater, returns 1. */
689 static int
bb_top_order_cmp_r(const void * x,const void * y,void * loop)690 bb_top_order_cmp_r (const void *x, const void *y, void *loop)
691 {
692 loop_distribution *_loop =
693 (loop_distribution *) loop;
694
695 basic_block bb1 = *(const basic_block *) x;
696 basic_block bb2 = *(const basic_block *) y;
697
698 int bb_top_order_index_size = _loop->get_bb_top_order_index_size ();
699
700 gcc_assert (bb1->index < bb_top_order_index_size
701 && bb2->index < bb_top_order_index_size);
702 gcc_assert (bb1 == bb2
703 || _loop->get_bb_top_order_index(bb1->index)
704 != _loop->get_bb_top_order_index(bb2->index));
705
706 return (_loop->get_bb_top_order_index(bb1->index) -
707 _loop->get_bb_top_order_index(bb2->index));
708 }
709
710 bool
create_rdg_vertices(struct graph * rdg,const vec<gimple * > & stmts,loop_p loop)711 loop_distribution::create_rdg_vertices (struct graph *rdg,
712 const vec<gimple *> &stmts,
713 loop_p loop)
714 {
715 int i;
716 gimple *stmt;
717
718 FOR_EACH_VEC_ELT (stmts, i, stmt)
719 {
720 struct vertex *v = &(rdg->vertices[i]);
721
722 /* Record statement to vertex mapping. */
723 gimple_set_uid (stmt, i);
724
725 v->data = XNEW (struct rdg_vertex);
726 RDGV_STMT (v) = stmt;
727 RDGV_DATAREFS (v).create (0);
728 RDGV_HAS_MEM_WRITE (v) = false;
729 RDGV_HAS_MEM_READS (v) = false;
730 if (gimple_code (stmt) == GIMPLE_PHI)
731 continue;
732
733 unsigned drp = datarefs_vec.length ();
734 if (!find_data_references_in_stmt (loop, stmt, &datarefs_vec))
735 return false;
736 for (unsigned j = drp; j < datarefs_vec.length (); ++j)
737 {
738 data_reference_p dr = datarefs_vec[j];
739 if (DR_IS_READ (dr))
740 RDGV_HAS_MEM_READS (v) = true;
741 else
742 RDGV_HAS_MEM_WRITE (v) = true;
743 RDGV_DATAREFS (v).safe_push (dr);
744 has_nonaddressable_dataref_p |= may_be_nonaddressable_p (dr->ref);
745 }
746 }
747 return true;
748 }
749
750 void
stmts_from_loop(class loop * loop,vec<gimple * > * stmts)751 loop_distribution::stmts_from_loop (class loop *loop, vec<gimple *> *stmts)
752 {
753 unsigned int i;
754 basic_block *bbs = get_loop_body_in_custom_order (loop, this, bb_top_order_cmp_r);
755
756 for (i = 0; i < loop->num_nodes; i++)
757 {
758 basic_block bb = bbs[i];
759
760 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
761 gsi_next (&bsi))
762 if (!virtual_operand_p (gimple_phi_result (bsi.phi ())))
763 stmts->safe_push (bsi.phi ());
764
765 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
766 gsi_next (&bsi))
767 {
768 gimple *stmt = gsi_stmt (bsi);
769 if (gimple_code (stmt) != GIMPLE_LABEL && !is_gimple_debug (stmt))
770 stmts->safe_push (stmt);
771 }
772 }
773
774 free (bbs);
775 }
776
777 /* Free the reduced dependence graph RDG. */
778
779 static void
free_rdg(struct graph * rdg)780 free_rdg (struct graph *rdg)
781 {
782 int i;
783
784 for (i = 0; i < rdg->n_vertices; i++)
785 {
786 struct vertex *v = &(rdg->vertices[i]);
787 struct graph_edge *e;
788
789 for (e = v->succ; e; e = e->succ_next)
790 free (e->data);
791
792 if (v->data)
793 {
794 gimple_set_uid (RDGV_STMT (v), -1);
795 (RDGV_DATAREFS (v)).release ();
796 free (v->data);
797 }
798 }
799
800 free_graph (rdg);
801 }
802
803 struct graph *
build_rdg(class loop * loop,control_dependences * cd)804 loop_distribution::build_rdg (class loop *loop, control_dependences *cd)
805 {
806 struct graph *rdg;
807
808 /* Create the RDG vertices from the stmts of the loop nest. */
809 auto_vec<gimple *, 10> stmts;
810 stmts_from_loop (loop, &stmts);
811 rdg = new_graph (stmts.length ());
812 if (!create_rdg_vertices (rdg, stmts, loop))
813 {
814 free_rdg (rdg);
815 return NULL;
816 }
817 stmts.release ();
818
819 create_rdg_flow_edges (rdg);
820 if (cd)
821 create_rdg_cd_edges (rdg, cd, loop);
822
823 return rdg;
824 }
825
826
827 /* Allocate and initialize a partition from BITMAP. */
828
829 static partition *
partition_alloc(void)830 partition_alloc (void)
831 {
832 partition *partition = XCNEW (struct partition);
833 partition->stmts = BITMAP_ALLOC (NULL);
834 partition->reduction_p = false;
835 partition->loc = UNKNOWN_LOCATION;
836 partition->kind = PKIND_NORMAL;
837 partition->type = PTYPE_PARALLEL;
838 partition->datarefs = BITMAP_ALLOC (NULL);
839 return partition;
840 }
841
842 /* Free PARTITION. */
843
844 static void
partition_free(partition * partition)845 partition_free (partition *partition)
846 {
847 BITMAP_FREE (partition->stmts);
848 BITMAP_FREE (partition->datarefs);
849 if (partition->builtin)
850 free (partition->builtin);
851
852 free (partition);
853 }
854
855 /* Returns true if the partition can be generated as a builtin. */
856
857 static bool
partition_builtin_p(partition * partition)858 partition_builtin_p (partition *partition)
859 {
860 return partition->kind > PKIND_PARTIAL_MEMSET;
861 }
862
863 /* Returns true if the partition contains a reduction. */
864
865 static bool
partition_reduction_p(partition * partition)866 partition_reduction_p (partition *partition)
867 {
868 return partition->reduction_p;
869 }
870
871 void
partition_merge_into(struct graph * rdg,partition * dest,partition * partition,enum fuse_type ft)872 loop_distribution::partition_merge_into (struct graph *rdg,
873 partition *dest, partition *partition, enum fuse_type ft)
874 {
875 if (dump_file && (dump_flags & TDF_DETAILS))
876 {
877 fprintf (dump_file, "Fuse partitions because %s:\n", fuse_message[ft]);
878 fprintf (dump_file, " Part 1: ");
879 dump_bitmap (dump_file, dest->stmts);
880 fprintf (dump_file, " Part 2: ");
881 dump_bitmap (dump_file, partition->stmts);
882 }
883
884 dest->kind = PKIND_NORMAL;
885 if (dest->type == PTYPE_PARALLEL)
886 dest->type = partition->type;
887
888 bitmap_ior_into (dest->stmts, partition->stmts);
889 if (partition_reduction_p (partition))
890 dest->reduction_p = true;
891
892 /* Further check if any data dependence prevents us from executing the
893 new partition parallelly. */
894 if (dest->type == PTYPE_PARALLEL && rdg != NULL)
895 update_type_for_merge (rdg, dest, partition);
896
897 bitmap_ior_into (dest->datarefs, partition->datarefs);
898 }
899
900
901 /* Returns true when DEF is an SSA_NAME defined in LOOP and used after
902 the LOOP. */
903
904 static bool
ssa_name_has_uses_outside_loop_p(tree def,loop_p loop)905 ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
906 {
907 imm_use_iterator imm_iter;
908 use_operand_p use_p;
909
910 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
911 {
912 if (is_gimple_debug (USE_STMT (use_p)))
913 continue;
914
915 basic_block use_bb = gimple_bb (USE_STMT (use_p));
916 if (!flow_bb_inside_loop_p (loop, use_bb))
917 return true;
918 }
919
920 return false;
921 }
922
923 /* Returns true when STMT defines a scalar variable used after the
924 loop LOOP. */
925
926 static bool
stmt_has_scalar_dependences_outside_loop(loop_p loop,gimple * stmt)927 stmt_has_scalar_dependences_outside_loop (loop_p loop, gimple *stmt)
928 {
929 def_operand_p def_p;
930 ssa_op_iter op_iter;
931
932 if (gimple_code (stmt) == GIMPLE_PHI)
933 return ssa_name_has_uses_outside_loop_p (gimple_phi_result (stmt), loop);
934
935 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
936 if (ssa_name_has_uses_outside_loop_p (DEF_FROM_PTR (def_p), loop))
937 return true;
938
939 return false;
940 }
941
942 /* Return a copy of LOOP placed before LOOP. */
943
944 static class loop *
copy_loop_before(class loop * loop)945 copy_loop_before (class loop *loop)
946 {
947 class loop *res;
948 edge preheader = loop_preheader_edge (loop);
949
950 initialize_original_copy_tables ();
951 res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, NULL, preheader);
952 gcc_assert (res != NULL);
953 free_original_copy_tables ();
954 delete_update_ssa ();
955
956 return res;
957 }
958
959 /* Creates an empty basic block after LOOP. */
960
961 static void
create_bb_after_loop(class loop * loop)962 create_bb_after_loop (class loop *loop)
963 {
964 edge exit = single_exit (loop);
965
966 if (!exit)
967 return;
968
969 split_edge (exit);
970 }
971
972 /* Generate code for PARTITION from the code in LOOP. The loop is
973 copied when COPY_P is true. All the statements not flagged in the
974 PARTITION bitmap are removed from the loop or from its copy. The
975 statements are indexed in sequence inside a basic block, and the
976 basic blocks of a loop are taken in dom order. */
977
978 static void
generate_loops_for_partition(class loop * loop,partition * partition,bool copy_p)979 generate_loops_for_partition (class loop *loop, partition *partition,
980 bool copy_p)
981 {
982 unsigned i;
983 basic_block *bbs;
984
985 if (copy_p)
986 {
987 int orig_loop_num = loop->orig_loop_num;
988 loop = copy_loop_before (loop);
989 gcc_assert (loop != NULL);
990 loop->orig_loop_num = orig_loop_num;
991 create_preheader (loop, CP_SIMPLE_PREHEADERS);
992 create_bb_after_loop (loop);
993 }
994 else
995 {
996 /* Origin number is set to the new versioned loop's num. */
997 gcc_assert (loop->orig_loop_num != loop->num);
998 }
999
1000 /* Remove stmts not in the PARTITION bitmap. */
1001 bbs = get_loop_body_in_dom_order (loop);
1002
1003 if (MAY_HAVE_DEBUG_BIND_STMTS)
1004 for (i = 0; i < loop->num_nodes; i++)
1005 {
1006 basic_block bb = bbs[i];
1007
1008 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
1009 gsi_next (&bsi))
1010 {
1011 gphi *phi = bsi.phi ();
1012 if (!virtual_operand_p (gimple_phi_result (phi))
1013 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
1014 reset_debug_uses (phi);
1015 }
1016
1017 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1018 {
1019 gimple *stmt = gsi_stmt (bsi);
1020 if (gimple_code (stmt) != GIMPLE_LABEL
1021 && !is_gimple_debug (stmt)
1022 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
1023 reset_debug_uses (stmt);
1024 }
1025 }
1026
1027 for (i = 0; i < loop->num_nodes; i++)
1028 {
1029 basic_block bb = bbs[i];
1030 edge inner_exit = NULL;
1031
1032 if (loop != bb->loop_father)
1033 inner_exit = single_exit (bb->loop_father);
1034
1035 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
1036 {
1037 gphi *phi = bsi.phi ();
1038 if (!virtual_operand_p (gimple_phi_result (phi))
1039 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
1040 remove_phi_node (&bsi, true);
1041 else
1042 gsi_next (&bsi);
1043 }
1044
1045 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
1046 {
1047 gimple *stmt = gsi_stmt (bsi);
1048 if (gimple_code (stmt) != GIMPLE_LABEL
1049 && !is_gimple_debug (stmt)
1050 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
1051 {
1052 /* In distribution of loop nest, if bb is inner loop's exit_bb,
1053 we choose its exit edge/path in order to avoid generating
1054 infinite loop. For all other cases, we choose an arbitrary
1055 path through the empty CFG part that this unnecessary
1056 control stmt controls. */
1057 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
1058 {
1059 if (inner_exit && inner_exit->flags & EDGE_TRUE_VALUE)
1060 gimple_cond_make_true (cond_stmt);
1061 else
1062 gimple_cond_make_false (cond_stmt);
1063 update_stmt (stmt);
1064 }
1065 else if (gimple_code (stmt) == GIMPLE_SWITCH)
1066 {
1067 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1068 gimple_switch_set_index
1069 (switch_stmt, CASE_LOW (gimple_switch_label (switch_stmt, 1)));
1070 update_stmt (stmt);
1071 }
1072 else
1073 {
1074 unlink_stmt_vdef (stmt);
1075 gsi_remove (&bsi, true);
1076 release_defs (stmt);
1077 continue;
1078 }
1079 }
1080 gsi_next (&bsi);
1081 }
1082 }
1083
1084 free (bbs);
1085 }
1086
1087 /* If VAL memory representation contains the same value in all bytes,
1088 return that value, otherwise return -1.
1089 E.g. for 0x24242424 return 0x24, for IEEE double
1090 747708026454360457216.0 return 0x44, etc. */
1091
1092 static int
const_with_all_bytes_same(tree val)1093 const_with_all_bytes_same (tree val)
1094 {
1095 unsigned char buf[64];
1096 int i, len;
1097
1098 if (integer_zerop (val)
1099 || (TREE_CODE (val) == CONSTRUCTOR
1100 && !TREE_CLOBBER_P (val)
1101 && CONSTRUCTOR_NELTS (val) == 0))
1102 return 0;
1103
1104 if (real_zerop (val))
1105 {
1106 /* Only return 0 for +0.0, not for -0.0, which doesn't have
1107 an all bytes same memory representation. Don't transform
1108 -0.0 stores into +0.0 even for !HONOR_SIGNED_ZEROS. */
1109 switch (TREE_CODE (val))
1110 {
1111 case REAL_CST:
1112 if (!real_isneg (TREE_REAL_CST_PTR (val)))
1113 return 0;
1114 break;
1115 case COMPLEX_CST:
1116 if (!const_with_all_bytes_same (TREE_REALPART (val))
1117 && !const_with_all_bytes_same (TREE_IMAGPART (val)))
1118 return 0;
1119 break;
1120 case VECTOR_CST:
1121 {
1122 unsigned int count = vector_cst_encoded_nelts (val);
1123 unsigned int j;
1124 for (j = 0; j < count; ++j)
1125 if (const_with_all_bytes_same (VECTOR_CST_ENCODED_ELT (val, j)))
1126 break;
1127 if (j == count)
1128 return 0;
1129 break;
1130 }
1131 default:
1132 break;
1133 }
1134 }
1135
1136 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
1137 return -1;
1138
1139 len = native_encode_expr (val, buf, sizeof (buf));
1140 if (len == 0)
1141 return -1;
1142 for (i = 1; i < len; i++)
1143 if (buf[i] != buf[0])
1144 return -1;
1145 return buf[0];
1146 }
1147
1148 /* Generate a call to memset for PARTITION in LOOP. */
1149
1150 static void
generate_memset_builtin(class loop * loop,partition * partition)1151 generate_memset_builtin (class loop *loop, partition *partition)
1152 {
1153 gimple_stmt_iterator gsi;
1154 tree mem, fn, nb_bytes;
1155 tree val;
1156 struct builtin_info *builtin = partition->builtin;
1157 gimple *fn_call;
1158
1159 /* The new statements will be placed before LOOP. */
1160 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1161
1162 nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
1163 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1164 false, GSI_CONTINUE_LINKING);
1165 mem = rewrite_to_non_trapping_overflow (builtin->dst_base);
1166 mem = force_gimple_operand_gsi (&gsi, mem, true, NULL_TREE,
1167 false, GSI_CONTINUE_LINKING);
1168
1169 /* This exactly matches the pattern recognition in classify_partition. */
1170 val = gimple_assign_rhs1 (DR_STMT (builtin->dst_dr));
1171 /* Handle constants like 0x15151515 and similarly
1172 floating point constants etc. where all bytes are the same. */
1173 int bytev = const_with_all_bytes_same (val);
1174 if (bytev != -1)
1175 val = build_int_cst (integer_type_node, bytev);
1176 else if (TREE_CODE (val) == INTEGER_CST)
1177 val = fold_convert (integer_type_node, val);
1178 else if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (val)))
1179 {
1180 tree tem = make_ssa_name (integer_type_node);
1181 gimple *cstmt = gimple_build_assign (tem, NOP_EXPR, val);
1182 gsi_insert_after (&gsi, cstmt, GSI_CONTINUE_LINKING);
1183 val = tem;
1184 }
1185
1186 fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_MEMSET));
1187 fn_call = gimple_build_call (fn, 3, mem, val, nb_bytes);
1188 gimple_set_location (fn_call, partition->loc);
1189 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1190 fold_stmt (&gsi);
1191
1192 if (dump_file && (dump_flags & TDF_DETAILS))
1193 {
1194 fprintf (dump_file, "generated memset");
1195 if (bytev == 0)
1196 fprintf (dump_file, " zero\n");
1197 else
1198 fprintf (dump_file, "\n");
1199 }
1200 }
1201
1202 /* Generate a call to memcpy for PARTITION in LOOP. */
1203
1204 static void
generate_memcpy_builtin(class loop * loop,partition * partition)1205 generate_memcpy_builtin (class loop *loop, partition *partition)
1206 {
1207 gimple_stmt_iterator gsi;
1208 gimple *fn_call;
1209 tree dest, src, fn, nb_bytes;
1210 enum built_in_function kind;
1211 struct builtin_info *builtin = partition->builtin;
1212
1213 /* The new statements will be placed before LOOP. */
1214 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1215
1216 nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
1217 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1218 false, GSI_CONTINUE_LINKING);
1219 dest = rewrite_to_non_trapping_overflow (builtin->dst_base);
1220 src = rewrite_to_non_trapping_overflow (builtin->src_base);
1221 if (partition->kind == PKIND_MEMCPY
1222 || ! ptr_derefs_may_alias_p (dest, src))
1223 kind = BUILT_IN_MEMCPY;
1224 else
1225 kind = BUILT_IN_MEMMOVE;
1226 /* Try harder if we're copying a constant size. */
1227 if (kind == BUILT_IN_MEMMOVE && poly_int_tree_p (nb_bytes))
1228 {
1229 aff_tree asrc, adest;
1230 tree_to_aff_combination (src, ptr_type_node, &asrc);
1231 tree_to_aff_combination (dest, ptr_type_node, &adest);
1232 aff_combination_scale (&adest, -1);
1233 aff_combination_add (&asrc, &adest);
1234 if (aff_comb_cannot_overlap_p (&asrc, wi::to_poly_widest (nb_bytes),
1235 wi::to_poly_widest (nb_bytes)))
1236 kind = BUILT_IN_MEMCPY;
1237 }
1238
1239 dest = force_gimple_operand_gsi (&gsi, dest, true, NULL_TREE,
1240 false, GSI_CONTINUE_LINKING);
1241 src = force_gimple_operand_gsi (&gsi, src, true, NULL_TREE,
1242 false, GSI_CONTINUE_LINKING);
1243 fn = build_fold_addr_expr (builtin_decl_implicit (kind));
1244 fn_call = gimple_build_call (fn, 3, dest, src, nb_bytes);
1245 gimple_set_location (fn_call, partition->loc);
1246 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1247 fold_stmt (&gsi);
1248
1249 if (dump_file && (dump_flags & TDF_DETAILS))
1250 {
1251 if (kind == BUILT_IN_MEMCPY)
1252 fprintf (dump_file, "generated memcpy\n");
1253 else
1254 fprintf (dump_file, "generated memmove\n");
1255 }
1256 }
1257
1258 /* Remove and destroy the loop LOOP. */
1259
1260 static void
destroy_loop(class loop * loop)1261 destroy_loop (class loop *loop)
1262 {
1263 unsigned nbbs = loop->num_nodes;
1264 edge exit = single_exit (loop);
1265 basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
1266 basic_block *bbs;
1267 unsigned i;
1268
1269 bbs = get_loop_body_in_dom_order (loop);
1270
1271 gimple_stmt_iterator dst_gsi = gsi_after_labels (exit->dest);
1272 bool safe_p = single_pred_p (exit->dest);
1273 for (unsigned i = 0; i < nbbs; ++i)
1274 {
1275 /* We have made sure to not leave any dangling uses of SSA
1276 names defined in the loop. With the exception of virtuals.
1277 Make sure we replace all uses of virtual defs that will remain
1278 outside of the loop with the bare symbol as delete_basic_block
1279 will release them. */
1280 for (gphi_iterator gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi);
1281 gsi_next (&gsi))
1282 {
1283 gphi *phi = gsi.phi ();
1284 if (virtual_operand_p (gimple_phi_result (phi)))
1285 mark_virtual_phi_result_for_renaming (phi);
1286 }
1287 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi);)
1288 {
1289 gimple *stmt = gsi_stmt (gsi);
1290 tree vdef = gimple_vdef (stmt);
1291 if (vdef && TREE_CODE (vdef) == SSA_NAME)
1292 mark_virtual_operand_for_renaming (vdef);
1293 /* Also move and eventually reset debug stmts. We can leave
1294 constant values in place in case the stmt dominates the exit.
1295 ??? Non-constant values from the last iteration can be
1296 replaced with final values if we can compute them. */
1297 if (gimple_debug_bind_p (stmt))
1298 {
1299 tree val = gimple_debug_bind_get_value (stmt);
1300 gsi_move_before (&gsi, &dst_gsi);
1301 if (val
1302 && (!safe_p
1303 || !is_gimple_min_invariant (val)
1304 || !dominated_by_p (CDI_DOMINATORS, exit->src, bbs[i])))
1305 {
1306 gimple_debug_bind_reset_value (stmt);
1307 update_stmt (stmt);
1308 }
1309 }
1310 else
1311 gsi_next (&gsi);
1312 }
1313 }
1314
1315 redirect_edge_pred (exit, src);
1316 exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
1317 exit->flags |= EDGE_FALLTHRU;
1318 cancel_loop_tree (loop);
1319 rescan_loop_exit (exit, false, true);
1320
1321 i = nbbs;
1322 do
1323 {
1324 --i;
1325 delete_basic_block (bbs[i]);
1326 }
1327 while (i != 0);
1328
1329 free (bbs);
1330
1331 set_immediate_dominator (CDI_DOMINATORS, dest,
1332 recompute_dominator (CDI_DOMINATORS, dest));
1333 }
1334
1335 /* Generates code for PARTITION. Return whether LOOP needs to be destroyed. */
1336
1337 static bool
generate_code_for_partition(class loop * loop,partition * partition,bool copy_p)1338 generate_code_for_partition (class loop *loop,
1339 partition *partition, bool copy_p)
1340 {
1341 switch (partition->kind)
1342 {
1343 case PKIND_NORMAL:
1344 case PKIND_PARTIAL_MEMSET:
1345 /* Reductions all have to be in the last partition. */
1346 gcc_assert (!partition_reduction_p (partition)
1347 || !copy_p);
1348 generate_loops_for_partition (loop, partition, copy_p);
1349 return false;
1350
1351 case PKIND_MEMSET:
1352 generate_memset_builtin (loop, partition);
1353 break;
1354
1355 case PKIND_MEMCPY:
1356 case PKIND_MEMMOVE:
1357 generate_memcpy_builtin (loop, partition);
1358 break;
1359
1360 default:
1361 gcc_unreachable ();
1362 }
1363
1364 /* Common tail for partitions we turn into a call. If this was the last
1365 partition for which we generate code, we have to destroy the loop. */
1366 if (!copy_p)
1367 return true;
1368 return false;
1369 }
1370
1371 data_dependence_relation *
get_data_dependence(struct graph * rdg,data_reference_p a,data_reference_p b)1372 loop_distribution::get_data_dependence (struct graph *rdg, data_reference_p a,
1373 data_reference_p b)
1374 {
1375 struct data_dependence_relation ent, **slot;
1376 struct data_dependence_relation *ddr;
1377
1378 gcc_assert (DR_IS_WRITE (a) || DR_IS_WRITE (b));
1379 gcc_assert (rdg_vertex_for_stmt (rdg, DR_STMT (a))
1380 <= rdg_vertex_for_stmt (rdg, DR_STMT (b)));
1381 ent.a = a;
1382 ent.b = b;
1383 slot = ddrs_table->find_slot (&ent, INSERT);
1384 if (*slot == NULL)
1385 {
1386 ddr = initialize_data_dependence_relation (a, b, loop_nest);
1387 compute_affine_dependence (ddr, loop_nest[0]);
1388 *slot = ddr;
1389 }
1390
1391 return *slot;
1392 }
1393
1394 bool
data_dep_in_cycle_p(struct graph * rdg,data_reference_p dr1,data_reference_p dr2)1395 loop_distribution::data_dep_in_cycle_p (struct graph *rdg,
1396 data_reference_p dr1,
1397 data_reference_p dr2)
1398 {
1399 struct data_dependence_relation *ddr;
1400
1401 /* Re-shuffle data-refs to be in topological order. */
1402 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
1403 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
1404 std::swap (dr1, dr2);
1405
1406 ddr = get_data_dependence (rdg, dr1, dr2);
1407
1408 /* In case of no data dependence. */
1409 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1410 return false;
1411 /* For unknown data dependence or known data dependence which can't be
1412 expressed in classic distance vector, we check if it can be resolved
1413 by runtime alias check. If yes, we still consider data dependence
1414 as won't introduce data dependence cycle. */
1415 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1416 || DDR_NUM_DIST_VECTS (ddr) == 0)
1417 return !runtime_alias_check_p (ddr, NULL, true);
1418 else if (DDR_NUM_DIST_VECTS (ddr) > 1)
1419 return true;
1420 else if (DDR_REVERSED_P (ddr)
1421 || lambda_vector_zerop (DDR_DIST_VECT (ddr, 0), 1))
1422 return false;
1423
1424 return true;
1425 }
1426
1427 void
update_type_for_merge(struct graph * rdg,partition * partition1,partition * partition2)1428 loop_distribution::update_type_for_merge (struct graph *rdg,
1429 partition *partition1,
1430 partition *partition2)
1431 {
1432 unsigned i, j;
1433 bitmap_iterator bi, bj;
1434 data_reference_p dr1, dr2;
1435
1436 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1437 {
1438 unsigned start = (partition1 == partition2) ? i + 1 : 0;
1439
1440 dr1 = datarefs_vec[i];
1441 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, start, j, bj)
1442 {
1443 dr2 = datarefs_vec[j];
1444 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
1445 continue;
1446
1447 /* Partition can only be executed sequentially if there is any
1448 data dependence cycle. */
1449 if (data_dep_in_cycle_p (rdg, dr1, dr2))
1450 {
1451 partition1->type = PTYPE_SEQUENTIAL;
1452 return;
1453 }
1454 }
1455 }
1456 }
1457
1458 partition *
build_rdg_partition_for_vertex(struct graph * rdg,int v)1459 loop_distribution::build_rdg_partition_for_vertex (struct graph *rdg, int v)
1460 {
1461 partition *partition = partition_alloc ();
1462 auto_vec<int, 3> nodes;
1463 unsigned i, j;
1464 int x;
1465 data_reference_p dr;
1466
1467 graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
1468
1469 FOR_EACH_VEC_ELT (nodes, i, x)
1470 {
1471 bitmap_set_bit (partition->stmts, x);
1472
1473 for (j = 0; RDG_DATAREFS (rdg, x).iterate (j, &dr); ++j)
1474 {
1475 unsigned idx = (unsigned) DR_INDEX (dr);
1476 gcc_assert (idx < datarefs_vec.length ());
1477
1478 /* Partition can only be executed sequentially if there is any
1479 unknown data reference. */
1480 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr)
1481 || !DR_INIT (dr) || !DR_STEP (dr))
1482 partition->type = PTYPE_SEQUENTIAL;
1483
1484 bitmap_set_bit (partition->datarefs, idx);
1485 }
1486 }
1487
1488 if (partition->type == PTYPE_SEQUENTIAL)
1489 return partition;
1490
1491 /* Further check if any data dependence prevents us from executing the
1492 partition parallelly. */
1493 update_type_for_merge (rdg, partition, partition);
1494
1495 return partition;
1496 }
1497
1498 /* Given PARTITION of LOOP and RDG, record single load/store data references
1499 for builtin partition in SRC_DR/DST_DR, return false if there is no such
1500 data references. */
1501
1502 static bool
find_single_drs(class loop * loop,struct graph * rdg,const bitmap & partition_stmts,data_reference_p * dst_dr,data_reference_p * src_dr)1503 find_single_drs (class loop *loop, struct graph *rdg, const bitmap &partition_stmts,
1504 data_reference_p *dst_dr, data_reference_p *src_dr)
1505 {
1506 unsigned i;
1507 data_reference_p single_ld = NULL, single_st = NULL;
1508 bitmap_iterator bi;
1509
1510 EXECUTE_IF_SET_IN_BITMAP (partition_stmts, 0, i, bi)
1511 {
1512 gimple *stmt = RDG_STMT (rdg, i);
1513 data_reference_p dr;
1514
1515 if (gimple_code (stmt) == GIMPLE_PHI)
1516 continue;
1517
1518 /* Any scalar stmts are ok. */
1519 if (!gimple_vuse (stmt))
1520 continue;
1521
1522 /* Otherwise just regular loads/stores. */
1523 if (!gimple_assign_single_p (stmt))
1524 return false;
1525
1526 /* But exactly one store and/or load. */
1527 for (unsigned j = 0; RDG_DATAREFS (rdg, i).iterate (j, &dr); ++j)
1528 {
1529 tree type = TREE_TYPE (DR_REF (dr));
1530
1531 /* The memset, memcpy and memmove library calls are only
1532 able to deal with generic address space. */
1533 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (type)))
1534 return false;
1535
1536 if (DR_IS_READ (dr))
1537 {
1538 if (single_ld != NULL)
1539 return false;
1540 single_ld = dr;
1541 }
1542 else
1543 {
1544 if (single_st != NULL)
1545 return false;
1546 single_st = dr;
1547 }
1548 }
1549 }
1550
1551 if (!single_ld && !single_st)
1552 return false;
1553
1554 basic_block bb_ld = NULL;
1555 basic_block bb_st = NULL;
1556
1557 if (single_ld)
1558 {
1559 /* Bail out if this is a bitfield memory reference. */
1560 if (TREE_CODE (DR_REF (single_ld)) == COMPONENT_REF
1561 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_ld), 1)))
1562 return false;
1563
1564 /* Data reference must be executed exactly once per iteration of each
1565 loop in the loop nest. We only need to check dominance information
1566 against the outermost one in a perfect loop nest because a bb can't
1567 dominate outermost loop's latch without dominating inner loop's. */
1568 bb_ld = gimple_bb (DR_STMT (single_ld));
1569 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_ld))
1570 return false;
1571 }
1572
1573 if (single_st)
1574 {
1575 /* Bail out if this is a bitfield memory reference. */
1576 if (TREE_CODE (DR_REF (single_st)) == COMPONENT_REF
1577 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_st), 1)))
1578 return false;
1579
1580 /* Data reference must be executed exactly once per iteration.
1581 Same as single_ld, we only need to check against the outermost
1582 loop. */
1583 bb_st = gimple_bb (DR_STMT (single_st));
1584 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_st))
1585 return false;
1586 }
1587
1588 if (single_ld && single_st)
1589 {
1590 /* Load and store must be in the same loop nest. */
1591 if (bb_st->loop_father != bb_ld->loop_father)
1592 return false;
1593
1594 edge e = single_exit (bb_st->loop_father);
1595 bool dom_ld = dominated_by_p (CDI_DOMINATORS, e->src, bb_ld);
1596 bool dom_st = dominated_by_p (CDI_DOMINATORS, e->src, bb_st);
1597 if (dom_ld != dom_st)
1598 return false;
1599 }
1600
1601 *src_dr = single_ld;
1602 *dst_dr = single_st;
1603 return true;
1604 }
1605
1606 /* Given data reference DR in LOOP_NEST, this function checks the enclosing
1607 loops from inner to outer to see if loop's step equals to access size at
1608 each level of loop. Return 2 if we can prove this at all level loops;
1609 record access base and size in BASE and SIZE; save loop's step at each
1610 level of loop in STEPS if it is not null. For example:
1611
1612 int arr[100][100][100];
1613 for (i = 0; i < 100; i++) ;steps[2] = 40000
1614 for (j = 100; j > 0; j--) ;steps[1] = -400
1615 for (k = 0; k < 100; k++) ;steps[0] = 4
1616 arr[i][j - 1][k] = 0; ;base = &arr, size = 4000000
1617
1618 Return 1 if we can prove the equality at the innermost loop, but not all
1619 level loops. In this case, no information is recorded.
1620
1621 Return 0 if no equality can be proven at any level loops. */
1622
1623 static int
compute_access_range(loop_p loop_nest,data_reference_p dr,tree * base,tree * size,vec<tree> * steps=NULL)1624 compute_access_range (loop_p loop_nest, data_reference_p dr, tree *base,
1625 tree *size, vec<tree> *steps = NULL)
1626 {
1627 location_t loc = gimple_location (DR_STMT (dr));
1628 basic_block bb = gimple_bb (DR_STMT (dr));
1629 class loop *loop = bb->loop_father;
1630 tree ref = DR_REF (dr);
1631 tree access_base = build_fold_addr_expr (ref);
1632 tree access_size = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1633 int res = 0;
1634
1635 do {
1636 tree scev_fn = analyze_scalar_evolution (loop, access_base);
1637 if (TREE_CODE (scev_fn) != POLYNOMIAL_CHREC)
1638 return res;
1639
1640 access_base = CHREC_LEFT (scev_fn);
1641 if (tree_contains_chrecs (access_base, NULL))
1642 return res;
1643
1644 tree scev_step = CHREC_RIGHT (scev_fn);
1645 /* Only support constant steps. */
1646 if (TREE_CODE (scev_step) != INTEGER_CST)
1647 return res;
1648
1649 enum ev_direction access_dir = scev_direction (scev_fn);
1650 if (access_dir == EV_DIR_UNKNOWN)
1651 return res;
1652
1653 if (steps != NULL)
1654 steps->safe_push (scev_step);
1655
1656 scev_step = fold_convert_loc (loc, sizetype, scev_step);
1657 /* Compute absolute value of scev step. */
1658 if (access_dir == EV_DIR_DECREASES)
1659 scev_step = fold_build1_loc (loc, NEGATE_EXPR, sizetype, scev_step);
1660
1661 /* At each level of loop, scev step must equal to access size. In other
1662 words, DR must access consecutive memory between loop iterations. */
1663 if (!operand_equal_p (scev_step, access_size, 0))
1664 return res;
1665
1666 /* Access stride can be computed for data reference at least for the
1667 innermost loop. */
1668 res = 1;
1669
1670 /* Compute DR's execution times in loop. */
1671 tree niters = number_of_latch_executions (loop);
1672 niters = fold_convert_loc (loc, sizetype, niters);
1673 if (dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src, bb))
1674 niters = size_binop_loc (loc, PLUS_EXPR, niters, size_one_node);
1675
1676 /* Compute DR's overall access size in loop. */
1677 access_size = fold_build2_loc (loc, MULT_EXPR, sizetype,
1678 niters, scev_step);
1679 /* Adjust base address in case of negative step. */
1680 if (access_dir == EV_DIR_DECREASES)
1681 {
1682 tree adj = fold_build2_loc (loc, MINUS_EXPR, sizetype,
1683 scev_step, access_size);
1684 access_base = fold_build_pointer_plus_loc (loc, access_base, adj);
1685 }
1686 } while (loop != loop_nest && (loop = loop_outer (loop)) != NULL);
1687
1688 *base = access_base;
1689 *size = access_size;
1690 /* Access stride can be computed for data reference at each level loop. */
1691 return 2;
1692 }
1693
1694 /* Allocate and return builtin struct. Record information like DST_DR,
1695 SRC_DR, DST_BASE, SRC_BASE and SIZE in the allocated struct. */
1696
1697 static struct builtin_info *
alloc_builtin(data_reference_p dst_dr,data_reference_p src_dr,tree dst_base,tree src_base,tree size)1698 alloc_builtin (data_reference_p dst_dr, data_reference_p src_dr,
1699 tree dst_base, tree src_base, tree size)
1700 {
1701 struct builtin_info *builtin = XNEW (struct builtin_info);
1702 builtin->dst_dr = dst_dr;
1703 builtin->src_dr = src_dr;
1704 builtin->dst_base = dst_base;
1705 builtin->src_base = src_base;
1706 builtin->size = size;
1707 return builtin;
1708 }
1709
1710 /* Given data reference DR in loop nest LOOP, classify if it forms builtin
1711 memset call. */
1712
1713 static void
classify_builtin_st(loop_p loop,partition * partition,data_reference_p dr)1714 classify_builtin_st (loop_p loop, partition *partition, data_reference_p dr)
1715 {
1716 gimple *stmt = DR_STMT (dr);
1717 tree base, size, rhs = gimple_assign_rhs1 (stmt);
1718
1719 if (const_with_all_bytes_same (rhs) == -1
1720 && (!INTEGRAL_TYPE_P (TREE_TYPE (rhs))
1721 || (TYPE_MODE (TREE_TYPE (rhs))
1722 != TYPE_MODE (unsigned_char_type_node))))
1723 return;
1724
1725 if (TREE_CODE (rhs) == SSA_NAME
1726 && !SSA_NAME_IS_DEFAULT_DEF (rhs)
1727 && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (rhs))))
1728 return;
1729
1730 int res = compute_access_range (loop, dr, &base, &size);
1731 if (res == 0)
1732 return;
1733 if (res == 1)
1734 {
1735 partition->kind = PKIND_PARTIAL_MEMSET;
1736 return;
1737 }
1738
1739 poly_uint64 base_offset;
1740 unsigned HOST_WIDE_INT const_base_offset;
1741 tree base_base = strip_offset (base, &base_offset);
1742 if (!base_offset.is_constant (&const_base_offset))
1743 return;
1744
1745 struct builtin_info *builtin;
1746 builtin = alloc_builtin (dr, NULL, base, NULL_TREE, size);
1747 builtin->dst_base_base = base_base;
1748 builtin->dst_base_offset = const_base_offset;
1749 partition->builtin = builtin;
1750 partition->kind = PKIND_MEMSET;
1751 }
1752
1753 /* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
1754 if it forms builtin memcpy or memmove call. */
1755
1756 void
classify_builtin_ldst(loop_p loop,struct graph * rdg,partition * partition,data_reference_p dst_dr,data_reference_p src_dr)1757 loop_distribution::classify_builtin_ldst (loop_p loop, struct graph *rdg,
1758 partition *partition,
1759 data_reference_p dst_dr,
1760 data_reference_p src_dr)
1761 {
1762 tree base, size, src_base, src_size;
1763 auto_vec<tree> dst_steps, src_steps;
1764
1765 /* Compute access range of both load and store. */
1766 int res = compute_access_range (loop, dst_dr, &base, &size, &dst_steps);
1767 if (res != 2)
1768 return;
1769 res = compute_access_range (loop, src_dr, &src_base, &src_size, &src_steps);
1770 if (res != 2)
1771 return;
1772
1773 /* They must have the same access size. */
1774 if (!operand_equal_p (size, src_size, 0))
1775 return;
1776
1777 /* They must have the same storage order. */
1778 if (reverse_storage_order_for_component_p (DR_REF (dst_dr))
1779 != reverse_storage_order_for_component_p (DR_REF (src_dr)))
1780 return;
1781
1782 /* Load and store in loop nest must access memory in the same way, i.e,
1783 their must have the same steps in each loop of the nest. */
1784 if (dst_steps.length () != src_steps.length ())
1785 return;
1786 for (unsigned i = 0; i < dst_steps.length (); ++i)
1787 if (!operand_equal_p (dst_steps[i], src_steps[i], 0))
1788 return;
1789
1790 /* Now check that if there is a dependence. */
1791 ddr_p ddr = get_data_dependence (rdg, src_dr, dst_dr);
1792
1793 /* Classify as memmove if no dependence between load and store. */
1794 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1795 {
1796 partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1797 partition->kind = PKIND_MEMMOVE;
1798 return;
1799 }
1800
1801 /* Can't do memmove in case of unknown dependence or dependence without
1802 classical distance vector. */
1803 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1804 || DDR_NUM_DIST_VECTS (ddr) == 0)
1805 return;
1806
1807 unsigned i;
1808 lambda_vector dist_v;
1809 int num_lev = (DDR_LOOP_NEST (ddr)).length ();
1810 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1811 {
1812 unsigned dep_lev = dependence_level (dist_v, num_lev);
1813 /* Can't do memmove if load depends on store. */
1814 if (dep_lev > 0 && dist_v[dep_lev - 1] > 0 && !DDR_REVERSED_P (ddr))
1815 return;
1816 }
1817
1818 partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1819 partition->kind = PKIND_MEMMOVE;
1820 return;
1821 }
1822
1823 bool
classify_partition(loop_p loop,struct graph * rdg,partition * partition,bitmap stmt_in_all_partitions)1824 loop_distribution::classify_partition (loop_p loop,
1825 struct graph *rdg, partition *partition,
1826 bitmap stmt_in_all_partitions)
1827 {
1828 bitmap_iterator bi;
1829 unsigned i;
1830 data_reference_p single_ld = NULL, single_st = NULL;
1831 bool volatiles_p = false, has_reduction = false;
1832
1833 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1834 {
1835 gimple *stmt = RDG_STMT (rdg, i);
1836
1837 if (gimple_has_volatile_ops (stmt))
1838 volatiles_p = true;
1839
1840 /* If the stmt is not included by all partitions and there is uses
1841 outside of the loop, then mark the partition as reduction. */
1842 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
1843 {
1844 /* Due to limitation in the transform phase we have to fuse all
1845 reduction partitions. As a result, this could cancel valid
1846 loop distribution especially for loop that induction variable
1847 is used outside of loop. To workaround this issue, we skip
1848 marking partition as reudction if the reduction stmt belongs
1849 to all partitions. In such case, reduction will be computed
1850 correctly no matter how partitions are fused/distributed. */
1851 if (!bitmap_bit_p (stmt_in_all_partitions, i))
1852 partition->reduction_p = true;
1853 else
1854 has_reduction = true;
1855 }
1856 }
1857
1858 /* Simple workaround to prevent classifying the partition as builtin
1859 if it contains any use outside of loop. For the case where all
1860 partitions have the reduction this simple workaround is delayed
1861 to only affect the last partition. */
1862 if (partition->reduction_p)
1863 return has_reduction;
1864
1865 /* Perform general partition disqualification for builtins. */
1866 if (volatiles_p
1867 || !flag_tree_loop_distribute_patterns)
1868 return has_reduction;
1869
1870 /* Find single load/store data references for builtin partition. */
1871 if (!find_single_drs (loop, rdg, partition->stmts, &single_st, &single_ld)
1872 || !single_st)
1873 return has_reduction;
1874
1875 if (single_ld && single_st)
1876 {
1877 gimple *store = DR_STMT (single_st), *load = DR_STMT (single_ld);
1878 /* Direct aggregate copy or via an SSA name temporary. */
1879 if (load != store
1880 && gimple_assign_lhs (load) != gimple_assign_rhs1 (store))
1881 return has_reduction;
1882 }
1883
1884 partition->loc = gimple_location (DR_STMT (single_st));
1885
1886 /* Classify the builtin kind. */
1887 if (single_ld == NULL)
1888 classify_builtin_st (loop, partition, single_st);
1889 else
1890 classify_builtin_ldst (loop, rdg, partition, single_st, single_ld);
1891 return has_reduction;
1892 }
1893
1894 bool
share_memory_accesses(struct graph * rdg,partition * partition1,partition * partition2)1895 loop_distribution::share_memory_accesses (struct graph *rdg,
1896 partition *partition1, partition *partition2)
1897 {
1898 unsigned i, j;
1899 bitmap_iterator bi, bj;
1900 data_reference_p dr1, dr2;
1901
1902 /* First check whether in the intersection of the two partitions are
1903 any loads or stores. Common loads are the situation that happens
1904 most often. */
1905 EXECUTE_IF_AND_IN_BITMAP (partition1->stmts, partition2->stmts, 0, i, bi)
1906 if (RDG_MEM_WRITE_STMT (rdg, i)
1907 || RDG_MEM_READS_STMT (rdg, i))
1908 return true;
1909
1910 /* Then check whether the two partitions access the same memory object. */
1911 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1912 {
1913 dr1 = datarefs_vec[i];
1914
1915 if (!DR_BASE_ADDRESS (dr1)
1916 || !DR_OFFSET (dr1) || !DR_INIT (dr1) || !DR_STEP (dr1))
1917 continue;
1918
1919 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, 0, j, bj)
1920 {
1921 dr2 = datarefs_vec[j];
1922
1923 if (!DR_BASE_ADDRESS (dr2)
1924 || !DR_OFFSET (dr2) || !DR_INIT (dr2) || !DR_STEP (dr2))
1925 continue;
1926
1927 if (operand_equal_p (DR_BASE_ADDRESS (dr1), DR_BASE_ADDRESS (dr2), 0)
1928 && operand_equal_p (DR_OFFSET (dr1), DR_OFFSET (dr2), 0)
1929 && operand_equal_p (DR_INIT (dr1), DR_INIT (dr2), 0)
1930 && operand_equal_p (DR_STEP (dr1), DR_STEP (dr2), 0))
1931 return true;
1932 }
1933 }
1934
1935 return false;
1936 }
1937
1938 /* For each seed statement in STARTING_STMTS, this function builds
1939 partition for it by adding depended statements according to RDG.
1940 All partitions are recorded in PARTITIONS. */
1941
1942 void
rdg_build_partitions(struct graph * rdg,vec<gimple * > starting_stmts,vec<partition * > * partitions)1943 loop_distribution::rdg_build_partitions (struct graph *rdg,
1944 vec<gimple *> starting_stmts,
1945 vec<partition *> *partitions)
1946 {
1947 auto_bitmap processed;
1948 int i;
1949 gimple *stmt;
1950
1951 FOR_EACH_VEC_ELT (starting_stmts, i, stmt)
1952 {
1953 int v = rdg_vertex_for_stmt (rdg, stmt);
1954
1955 if (dump_file && (dump_flags & TDF_DETAILS))
1956 fprintf (dump_file,
1957 "ldist asked to generate code for vertex %d\n", v);
1958
1959 /* If the vertex is already contained in another partition so
1960 is the partition rooted at it. */
1961 if (bitmap_bit_p (processed, v))
1962 continue;
1963
1964 partition *partition = build_rdg_partition_for_vertex (rdg, v);
1965 bitmap_ior_into (processed, partition->stmts);
1966
1967 if (dump_file && (dump_flags & TDF_DETAILS))
1968 {
1969 fprintf (dump_file, "ldist creates useful %s partition:\n",
1970 partition->type == PTYPE_PARALLEL ? "parallel" : "sequent");
1971 bitmap_print (dump_file, partition->stmts, " ", "\n");
1972 }
1973
1974 partitions->safe_push (partition);
1975 }
1976
1977 /* All vertices should have been assigned to at least one partition now,
1978 other than vertices belonging to dead code. */
1979 }
1980
1981 /* Dump to FILE the PARTITIONS. */
1982
1983 static void
dump_rdg_partitions(FILE * file,const vec<partition * > & partitions)1984 dump_rdg_partitions (FILE *file, const vec<partition *> &partitions)
1985 {
1986 int i;
1987 partition *partition;
1988
1989 FOR_EACH_VEC_ELT (partitions, i, partition)
1990 debug_bitmap_file (file, partition->stmts);
1991 }
1992
1993 /* Debug PARTITIONS. */
1994 extern void debug_rdg_partitions (const vec<partition *> &);
1995
1996 DEBUG_FUNCTION void
debug_rdg_partitions(const vec<partition * > & partitions)1997 debug_rdg_partitions (const vec<partition *> &partitions)
1998 {
1999 dump_rdg_partitions (stderr, partitions);
2000 }
2001
2002 /* Returns the number of read and write operations in the RDG. */
2003
2004 static int
number_of_rw_in_rdg(struct graph * rdg)2005 number_of_rw_in_rdg (struct graph *rdg)
2006 {
2007 int i, res = 0;
2008
2009 for (i = 0; i < rdg->n_vertices; i++)
2010 {
2011 if (RDG_MEM_WRITE_STMT (rdg, i))
2012 ++res;
2013
2014 if (RDG_MEM_READS_STMT (rdg, i))
2015 ++res;
2016 }
2017
2018 return res;
2019 }
2020
2021 /* Returns the number of read and write operations in a PARTITION of
2022 the RDG. */
2023
2024 static int
number_of_rw_in_partition(struct graph * rdg,partition * partition)2025 number_of_rw_in_partition (struct graph *rdg, partition *partition)
2026 {
2027 int res = 0;
2028 unsigned i;
2029 bitmap_iterator ii;
2030
2031 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, ii)
2032 {
2033 if (RDG_MEM_WRITE_STMT (rdg, i))
2034 ++res;
2035
2036 if (RDG_MEM_READS_STMT (rdg, i))
2037 ++res;
2038 }
2039
2040 return res;
2041 }
2042
2043 /* Returns true when one of the PARTITIONS contains all the read or
2044 write operations of RDG. */
2045
2046 static bool
partition_contains_all_rw(struct graph * rdg,const vec<partition * > & partitions)2047 partition_contains_all_rw (struct graph *rdg,
2048 const vec<partition *> &partitions)
2049 {
2050 int i;
2051 partition *partition;
2052 int nrw = number_of_rw_in_rdg (rdg);
2053
2054 FOR_EACH_VEC_ELT (partitions, i, partition)
2055 if (nrw == number_of_rw_in_partition (rdg, partition))
2056 return true;
2057
2058 return false;
2059 }
2060
2061 int
pg_add_dependence_edges(struct graph * rdg,int dir,bitmap drs1,bitmap drs2,vec<ddr_p> * alias_ddrs)2062 loop_distribution::pg_add_dependence_edges (struct graph *rdg, int dir,
2063 bitmap drs1, bitmap drs2, vec<ddr_p> *alias_ddrs)
2064 {
2065 unsigned i, j;
2066 bitmap_iterator bi, bj;
2067 data_reference_p dr1, dr2, saved_dr1;
2068
2069 /* dependence direction - 0 is no dependence, -1 is back,
2070 1 is forth, 2 is both (we can stop then, merging will occur). */
2071 EXECUTE_IF_SET_IN_BITMAP (drs1, 0, i, bi)
2072 {
2073 dr1 = datarefs_vec[i];
2074
2075 EXECUTE_IF_SET_IN_BITMAP (drs2, 0, j, bj)
2076 {
2077 int res, this_dir = 1;
2078 ddr_p ddr;
2079
2080 dr2 = datarefs_vec[j];
2081
2082 /* Skip all <read, read> data dependence. */
2083 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
2084 continue;
2085
2086 saved_dr1 = dr1;
2087 /* Re-shuffle data-refs to be in topological order. */
2088 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
2089 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
2090 {
2091 std::swap (dr1, dr2);
2092 this_dir = -this_dir;
2093 }
2094 ddr = get_data_dependence (rdg, dr1, dr2);
2095 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2096 {
2097 this_dir = 0;
2098 res = data_ref_compare_tree (DR_BASE_ADDRESS (dr1),
2099 DR_BASE_ADDRESS (dr2));
2100 /* Be conservative. If data references are not well analyzed,
2101 or the two data references have the same base address and
2102 offset, add dependence and consider it alias to each other.
2103 In other words, the dependence cannot be resolved by
2104 runtime alias check. */
2105 if (!DR_BASE_ADDRESS (dr1) || !DR_BASE_ADDRESS (dr2)
2106 || !DR_OFFSET (dr1) || !DR_OFFSET (dr2)
2107 || !DR_INIT (dr1) || !DR_INIT (dr2)
2108 || !DR_STEP (dr1) || !tree_fits_uhwi_p (DR_STEP (dr1))
2109 || !DR_STEP (dr2) || !tree_fits_uhwi_p (DR_STEP (dr2))
2110 || res == 0)
2111 this_dir = 2;
2112 /* Data dependence could be resolved by runtime alias check,
2113 record it in ALIAS_DDRS. */
2114 else if (alias_ddrs != NULL)
2115 alias_ddrs->safe_push (ddr);
2116 /* Or simply ignore it. */
2117 }
2118 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
2119 {
2120 /* Known dependences can still be unordered througout the
2121 iteration space, see gcc.dg/tree-ssa/ldist-16.c and
2122 gcc.dg/tree-ssa/pr94969.c. */
2123 if (DDR_NUM_DIST_VECTS (ddr) != 1)
2124 this_dir = 2;
2125 /* If the overlap is exact preserve stmt order. */
2126 else if (lambda_vector_zerop (DDR_DIST_VECT (ddr, 0),
2127 DDR_NB_LOOPS (ddr)))
2128 ;
2129 /* Else as the distance vector is lexicographic positive swap
2130 the dependence direction. */
2131 else
2132 {
2133 if (DDR_REVERSED_P (ddr))
2134 this_dir = -this_dir;
2135 this_dir = -this_dir;
2136
2137 /* When then dependence distance of the innermost common
2138 loop of the DRs is zero we have a conflict. */
2139 auto l1 = gimple_bb (DR_STMT (dr1))->loop_father;
2140 auto l2 = gimple_bb (DR_STMT (dr2))->loop_father;
2141 int idx = index_in_loop_nest (find_common_loop (l1, l2)->num,
2142 DDR_LOOP_NEST (ddr));
2143 if (DDR_DIST_VECT (ddr, 0)[idx] == 0)
2144 this_dir = 2;
2145 }
2146 }
2147 else
2148 this_dir = 0;
2149 if (this_dir == 2)
2150 return 2;
2151 else if (dir == 0)
2152 dir = this_dir;
2153 else if (this_dir != 0 && dir != this_dir)
2154 return 2;
2155 /* Shuffle "back" dr1. */
2156 dr1 = saved_dr1;
2157 }
2158 }
2159 return dir;
2160 }
2161
2162 /* Compare postorder number of the partition graph vertices V1 and V2. */
2163
2164 static int
pgcmp(const void * v1_,const void * v2_)2165 pgcmp (const void *v1_, const void *v2_)
2166 {
2167 const vertex *v1 = (const vertex *)v1_;
2168 const vertex *v2 = (const vertex *)v2_;
2169 return v2->post - v1->post;
2170 }
2171
2172 /* Data attached to vertices of partition dependence graph. */
2173 struct pg_vdata
2174 {
2175 /* ID of the corresponding partition. */
2176 int id;
2177 /* The partition. */
2178 struct partition *partition;
2179 };
2180
2181 /* Data attached to edges of partition dependence graph. */
2182 struct pg_edata
2183 {
2184 /* If the dependence edge can be resolved by runtime alias check,
2185 this vector contains data dependence relations for runtime alias
2186 check. On the other hand, if the dependence edge is introduced
2187 because of compilation time known data dependence, this vector
2188 contains nothing. */
2189 vec<ddr_p> alias_ddrs;
2190 };
2191
2192 /* Callback data for traversing edges in graph. */
2193 struct pg_edge_callback_data
2194 {
2195 /* Bitmap contains strong connected components should be merged. */
2196 bitmap sccs_to_merge;
2197 /* Array constains component information for all vertices. */
2198 int *vertices_component;
2199 /* Vector to record all data dependence relations which are needed
2200 to break strong connected components by runtime alias checks. */
2201 vec<ddr_p> *alias_ddrs;
2202 };
2203
2204 /* Initialize vertice's data for partition dependence graph PG with
2205 PARTITIONS. */
2206
2207 static void
init_partition_graph_vertices(struct graph * pg,vec<struct partition * > * partitions)2208 init_partition_graph_vertices (struct graph *pg,
2209 vec<struct partition *> *partitions)
2210 {
2211 int i;
2212 partition *partition;
2213 struct pg_vdata *data;
2214
2215 for (i = 0; partitions->iterate (i, &partition); ++i)
2216 {
2217 data = new pg_vdata;
2218 pg->vertices[i].data = data;
2219 data->id = i;
2220 data->partition = partition;
2221 }
2222 }
2223
2224 /* Add edge <I, J> to partition dependence graph PG. Attach vector of data
2225 dependence relations to the EDGE if DDRS isn't NULL. */
2226
2227 static void
add_partition_graph_edge(struct graph * pg,int i,int j,vec<ddr_p> * ddrs)2228 add_partition_graph_edge (struct graph *pg, int i, int j, vec<ddr_p> *ddrs)
2229 {
2230 struct graph_edge *e = add_edge (pg, i, j);
2231
2232 /* If the edge is attached with data dependence relations, it means this
2233 dependence edge can be resolved by runtime alias checks. */
2234 if (ddrs != NULL)
2235 {
2236 struct pg_edata *data = new pg_edata;
2237
2238 gcc_assert (ddrs->length () > 0);
2239 e->data = data;
2240 data->alias_ddrs = vNULL;
2241 data->alias_ddrs.safe_splice (*ddrs);
2242 }
2243 }
2244
2245 /* Callback function for graph travesal algorithm. It returns true
2246 if edge E should skipped when traversing the graph. */
2247
2248 static bool
pg_skip_alias_edge(struct graph_edge * e)2249 pg_skip_alias_edge (struct graph_edge *e)
2250 {
2251 struct pg_edata *data = (struct pg_edata *)e->data;
2252 return (data != NULL && data->alias_ddrs.length () > 0);
2253 }
2254
2255 /* Callback function freeing data attached to edge E of graph. */
2256
2257 static void
free_partition_graph_edata_cb(struct graph *,struct graph_edge * e,void *)2258 free_partition_graph_edata_cb (struct graph *, struct graph_edge *e, void *)
2259 {
2260 if (e->data != NULL)
2261 {
2262 struct pg_edata *data = (struct pg_edata *)e->data;
2263 data->alias_ddrs.release ();
2264 delete data;
2265 }
2266 }
2267
2268 /* Free data attached to vertice of partition dependence graph PG. */
2269
2270 static void
free_partition_graph_vdata(struct graph * pg)2271 free_partition_graph_vdata (struct graph *pg)
2272 {
2273 int i;
2274 struct pg_vdata *data;
2275
2276 for (i = 0; i < pg->n_vertices; ++i)
2277 {
2278 data = (struct pg_vdata *)pg->vertices[i].data;
2279 delete data;
2280 }
2281 }
2282
2283 /* Build and return partition dependence graph for PARTITIONS. RDG is
2284 reduced dependence graph for the loop to be distributed. If IGNORE_ALIAS_P
2285 is true, data dependence caused by possible alias between references
2286 is ignored, as if it doesn't exist at all; otherwise all depdendences
2287 are considered. */
2288
2289 struct graph *
build_partition_graph(struct graph * rdg,vec<struct partition * > * partitions,bool ignore_alias_p)2290 loop_distribution::build_partition_graph (struct graph *rdg,
2291 vec<struct partition *> *partitions,
2292 bool ignore_alias_p)
2293 {
2294 int i, j;
2295 struct partition *partition1, *partition2;
2296 graph *pg = new_graph (partitions->length ());
2297 auto_vec<ddr_p> alias_ddrs, *alias_ddrs_p;
2298
2299 alias_ddrs_p = ignore_alias_p ? NULL : &alias_ddrs;
2300
2301 init_partition_graph_vertices (pg, partitions);
2302
2303 for (i = 0; partitions->iterate (i, &partition1); ++i)
2304 {
2305 for (j = i + 1; partitions->iterate (j, &partition2); ++j)
2306 {
2307 /* dependence direction - 0 is no dependence, -1 is back,
2308 1 is forth, 2 is both (we can stop then, merging will occur). */
2309 int dir = 0;
2310
2311 /* If the first partition has reduction, add back edge; if the
2312 second partition has reduction, add forth edge. This makes
2313 sure that reduction partition will be sorted as the last one. */
2314 if (partition_reduction_p (partition1))
2315 dir = -1;
2316 else if (partition_reduction_p (partition2))
2317 dir = 1;
2318
2319 /* Cleanup the temporary vector. */
2320 alias_ddrs.truncate (0);
2321
2322 dir = pg_add_dependence_edges (rdg, dir, partition1->datarefs,
2323 partition2->datarefs, alias_ddrs_p);
2324
2325 /* Add edge to partition graph if there exists dependence. There
2326 are two types of edges. One type edge is caused by compilation
2327 time known dependence, this type cannot be resolved by runtime
2328 alias check. The other type can be resolved by runtime alias
2329 check. */
2330 if (dir == 1 || dir == 2
2331 || alias_ddrs.length () > 0)
2332 {
2333 /* Attach data dependence relations to edge that can be resolved
2334 by runtime alias check. */
2335 bool alias_edge_p = (dir != 1 && dir != 2);
2336 add_partition_graph_edge (pg, i, j,
2337 (alias_edge_p) ? &alias_ddrs : NULL);
2338 }
2339 if (dir == -1 || dir == 2
2340 || alias_ddrs.length () > 0)
2341 {
2342 /* Attach data dependence relations to edge that can be resolved
2343 by runtime alias check. */
2344 bool alias_edge_p = (dir != -1 && dir != 2);
2345 add_partition_graph_edge (pg, j, i,
2346 (alias_edge_p) ? &alias_ddrs : NULL);
2347 }
2348 }
2349 }
2350 return pg;
2351 }
2352
2353 /* Sort partitions in PG in descending post order and store them in
2354 PARTITIONS. */
2355
2356 static void
sort_partitions_by_post_order(struct graph * pg,vec<struct partition * > * partitions)2357 sort_partitions_by_post_order (struct graph *pg,
2358 vec<struct partition *> *partitions)
2359 {
2360 int i;
2361 struct pg_vdata *data;
2362
2363 /* Now order the remaining nodes in descending postorder. */
2364 qsort (pg->vertices, pg->n_vertices, sizeof (vertex), pgcmp);
2365 partitions->truncate (0);
2366 for (i = 0; i < pg->n_vertices; ++i)
2367 {
2368 data = (struct pg_vdata *)pg->vertices[i].data;
2369 if (data->partition)
2370 partitions->safe_push (data->partition);
2371 }
2372 }
2373
2374 void
merge_dep_scc_partitions(struct graph * rdg,vec<struct partition * > * partitions,bool ignore_alias_p)2375 loop_distribution::merge_dep_scc_partitions (struct graph *rdg,
2376 vec<struct partition *> *partitions,
2377 bool ignore_alias_p)
2378 {
2379 struct partition *partition1, *partition2;
2380 struct pg_vdata *data;
2381 graph *pg = build_partition_graph (rdg, partitions, ignore_alias_p);
2382 int i, j, num_sccs = graphds_scc (pg, NULL);
2383
2384 /* Strong connected compoenent means dependence cycle, we cannot distribute
2385 them. So fuse them together. */
2386 if ((unsigned) num_sccs < partitions->length ())
2387 {
2388 for (i = 0; i < num_sccs; ++i)
2389 {
2390 for (j = 0; partitions->iterate (j, &partition1); ++j)
2391 if (pg->vertices[j].component == i)
2392 break;
2393 for (j = j + 1; partitions->iterate (j, &partition2); ++j)
2394 if (pg->vertices[j].component == i)
2395 {
2396 partition_merge_into (NULL, partition1,
2397 partition2, FUSE_SAME_SCC);
2398 partition1->type = PTYPE_SEQUENTIAL;
2399 (*partitions)[j] = NULL;
2400 partition_free (partition2);
2401 data = (struct pg_vdata *)pg->vertices[j].data;
2402 data->partition = NULL;
2403 }
2404 }
2405 }
2406
2407 sort_partitions_by_post_order (pg, partitions);
2408 gcc_assert (partitions->length () == (unsigned)num_sccs);
2409 free_partition_graph_vdata (pg);
2410 for_each_edge (pg, free_partition_graph_edata_cb, NULL);
2411 free_graph (pg);
2412 }
2413
2414 /* Callback function for traversing edge E in graph G. DATA is private
2415 callback data. */
2416
2417 static void
pg_collect_alias_ddrs(struct graph * g,struct graph_edge * e,void * data)2418 pg_collect_alias_ddrs (struct graph *g, struct graph_edge *e, void *data)
2419 {
2420 int i, j, component;
2421 struct pg_edge_callback_data *cbdata;
2422 struct pg_edata *edata = (struct pg_edata *) e->data;
2423
2424 /* If the edge doesn't have attached data dependence, it represents
2425 compilation time known dependences. This type dependence cannot
2426 be resolved by runtime alias check. */
2427 if (edata == NULL || edata->alias_ddrs.length () == 0)
2428 return;
2429
2430 cbdata = (struct pg_edge_callback_data *) data;
2431 i = e->src;
2432 j = e->dest;
2433 component = cbdata->vertices_component[i];
2434 /* Vertices are topologically sorted according to compilation time
2435 known dependences, so we can break strong connected components
2436 by removing edges of the opposite direction, i.e, edges pointing
2437 from vertice with smaller post number to vertice with bigger post
2438 number. */
2439 if (g->vertices[i].post < g->vertices[j].post
2440 /* We only need to remove edges connecting vertices in the same
2441 strong connected component to break it. */
2442 && component == cbdata->vertices_component[j]
2443 /* Check if we want to break the strong connected component or not. */
2444 && !bitmap_bit_p (cbdata->sccs_to_merge, component))
2445 cbdata->alias_ddrs->safe_splice (edata->alias_ddrs);
2446 }
2447
2448 /* Callback function for traversing edge E. DATA is private
2449 callback data. */
2450
2451 static void
pg_unmark_merged_alias_ddrs(struct graph *,struct graph_edge * e,void * data)2452 pg_unmark_merged_alias_ddrs (struct graph *, struct graph_edge *e, void *data)
2453 {
2454 int i, j, component;
2455 struct pg_edge_callback_data *cbdata;
2456 struct pg_edata *edata = (struct pg_edata *) e->data;
2457
2458 if (edata == NULL || edata->alias_ddrs.length () == 0)
2459 return;
2460
2461 cbdata = (struct pg_edge_callback_data *) data;
2462 i = e->src;
2463 j = e->dest;
2464 component = cbdata->vertices_component[i];
2465 /* Make sure to not skip vertices inside SCCs we are going to merge. */
2466 if (component == cbdata->vertices_component[j]
2467 && bitmap_bit_p (cbdata->sccs_to_merge, component))
2468 {
2469 edata->alias_ddrs.release ();
2470 delete edata;
2471 e->data = NULL;
2472 }
2473 }
2474
2475 /* This is the main function breaking strong conected components in
2476 PARTITIONS giving reduced depdendence graph RDG. Store data dependence
2477 relations for runtime alias check in ALIAS_DDRS. */
2478 void
break_alias_scc_partitions(struct graph * rdg,vec<struct partition * > * partitions,vec<ddr_p> * alias_ddrs)2479 loop_distribution::break_alias_scc_partitions (struct graph *rdg,
2480 vec<struct partition *> *partitions,
2481 vec<ddr_p> *alias_ddrs)
2482 {
2483 int i, j, k, num_sccs, num_sccs_no_alias = 0;
2484 /* Build partition dependence graph. */
2485 graph *pg = build_partition_graph (rdg, partitions, false);
2486
2487 alias_ddrs->truncate (0);
2488 /* Find strong connected components in the graph, with all dependence edges
2489 considered. */
2490 num_sccs = graphds_scc (pg, NULL);
2491 /* All SCCs now can be broken by runtime alias checks because SCCs caused by
2492 compilation time known dependences are merged before this function. */
2493 if ((unsigned) num_sccs < partitions->length ())
2494 {
2495 struct pg_edge_callback_data cbdata;
2496 auto_bitmap sccs_to_merge;
2497 auto_vec<enum partition_type> scc_types;
2498 struct partition *partition, *first;
2499
2500 /* If all partitions in a SCC have the same type, we can simply merge the
2501 SCC. This loop finds out such SCCS and record them in bitmap. */
2502 bitmap_set_range (sccs_to_merge, 0, (unsigned) num_sccs);
2503 for (i = 0; i < num_sccs; ++i)
2504 {
2505 for (j = 0; partitions->iterate (j, &first); ++j)
2506 if (pg->vertices[j].component == i)
2507 break;
2508
2509 bool same_type = true, all_builtins = partition_builtin_p (first);
2510 for (++j; partitions->iterate (j, &partition); ++j)
2511 {
2512 if (pg->vertices[j].component != i)
2513 continue;
2514
2515 if (first->type != partition->type)
2516 {
2517 same_type = false;
2518 break;
2519 }
2520 all_builtins &= partition_builtin_p (partition);
2521 }
2522 /* Merge SCC if all partitions in SCC have the same type, though the
2523 result partition is sequential, because vectorizer can do better
2524 runtime alias check. One expecption is all partitions in SCC are
2525 builtins. */
2526 if (!same_type || all_builtins)
2527 bitmap_clear_bit (sccs_to_merge, i);
2528 }
2529
2530 /* Initialize callback data for traversing. */
2531 cbdata.sccs_to_merge = sccs_to_merge;
2532 cbdata.alias_ddrs = alias_ddrs;
2533 cbdata.vertices_component = XNEWVEC (int, pg->n_vertices);
2534 /* Record the component information which will be corrupted by next
2535 graph scc finding call. */
2536 for (i = 0; i < pg->n_vertices; ++i)
2537 cbdata.vertices_component[i] = pg->vertices[i].component;
2538
2539 /* Collect data dependences for runtime alias checks to break SCCs. */
2540 if (bitmap_count_bits (sccs_to_merge) != (unsigned) num_sccs)
2541 {
2542 /* For SCCs we want to merge clear all alias_ddrs for edges
2543 inside the component. */
2544 for_each_edge (pg, pg_unmark_merged_alias_ddrs, &cbdata);
2545
2546 /* Run SCC finding algorithm again, with alias dependence edges
2547 skipped. This is to topologically sort partitions according to
2548 compilation time known dependence. Note the topological order
2549 is stored in the form of pg's post order number. */
2550 num_sccs_no_alias = graphds_scc (pg, NULL, pg_skip_alias_edge);
2551 /* We cannot assert partitions->length () == num_sccs_no_alias
2552 since we are not ignoring alias edges in cycles we are
2553 going to merge. That's required to compute correct postorder. */
2554 /* With topological order, we can construct two subgraphs L and R.
2555 L contains edge <x, y> where x < y in terms of post order, while
2556 R contains edge <x, y> where x > y. Edges for compilation time
2557 known dependence all fall in R, so we break SCCs by removing all
2558 (alias) edges of in subgraph L. */
2559 for_each_edge (pg, pg_collect_alias_ddrs, &cbdata);
2560 }
2561
2562 /* For SCC that doesn't need to be broken, merge it. */
2563 for (i = 0; i < num_sccs; ++i)
2564 {
2565 if (!bitmap_bit_p (sccs_to_merge, i))
2566 continue;
2567
2568 for (j = 0; partitions->iterate (j, &first); ++j)
2569 if (cbdata.vertices_component[j] == i)
2570 break;
2571 for (k = j + 1; partitions->iterate (k, &partition); ++k)
2572 {
2573 struct pg_vdata *data;
2574
2575 if (cbdata.vertices_component[k] != i)
2576 continue;
2577
2578 partition_merge_into (NULL, first, partition, FUSE_SAME_SCC);
2579 (*partitions)[k] = NULL;
2580 partition_free (partition);
2581 data = (struct pg_vdata *)pg->vertices[k].data;
2582 gcc_assert (data->id == k);
2583 data->partition = NULL;
2584 /* The result partition of merged SCC must be sequential. */
2585 first->type = PTYPE_SEQUENTIAL;
2586 }
2587 }
2588 /* If reduction partition's SCC is broken by runtime alias checks,
2589 we force a negative post order to it making sure it will be scheduled
2590 in the last. */
2591 if (num_sccs_no_alias > 0)
2592 {
2593 j = -1;
2594 for (i = 0; i < pg->n_vertices; ++i)
2595 {
2596 struct pg_vdata *data = (struct pg_vdata *)pg->vertices[i].data;
2597 if (data->partition && partition_reduction_p (data->partition))
2598 {
2599 gcc_assert (j == -1);
2600 j = i;
2601 }
2602 }
2603 if (j >= 0)
2604 pg->vertices[j].post = -1;
2605 }
2606
2607 free (cbdata.vertices_component);
2608 }
2609
2610 sort_partitions_by_post_order (pg, partitions);
2611 free_partition_graph_vdata (pg);
2612 for_each_edge (pg, free_partition_graph_edata_cb, NULL);
2613 free_graph (pg);
2614
2615 if (dump_file && (dump_flags & TDF_DETAILS))
2616 {
2617 fprintf (dump_file, "Possible alias data dependence to break:\n");
2618 dump_data_dependence_relations (dump_file, *alias_ddrs);
2619 }
2620 }
2621
2622 /* Compute and return an expression whose value is the segment length which
2623 will be accessed by DR in NITERS iterations. */
2624
2625 static tree
data_ref_segment_size(struct data_reference * dr,tree niters)2626 data_ref_segment_size (struct data_reference *dr, tree niters)
2627 {
2628 niters = size_binop (MINUS_EXPR,
2629 fold_convert (sizetype, niters),
2630 size_one_node);
2631 return size_binop (MULT_EXPR,
2632 fold_convert (sizetype, DR_STEP (dr)),
2633 fold_convert (sizetype, niters));
2634 }
2635
2636 /* Return true if LOOP's latch is dominated by statement for data reference
2637 DR. */
2638
2639 static inline bool
latch_dominated_by_data_ref(class loop * loop,data_reference * dr)2640 latch_dominated_by_data_ref (class loop *loop, data_reference *dr)
2641 {
2642 return dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src,
2643 gimple_bb (DR_STMT (dr)));
2644 }
2645
2646 /* Compute alias check pairs and store them in COMP_ALIAS_PAIRS for LOOP's
2647 data dependence relations ALIAS_DDRS. */
2648
2649 static void
compute_alias_check_pairs(class loop * loop,vec<ddr_p> * alias_ddrs,vec<dr_with_seg_len_pair_t> * comp_alias_pairs)2650 compute_alias_check_pairs (class loop *loop, vec<ddr_p> *alias_ddrs,
2651 vec<dr_with_seg_len_pair_t> *comp_alias_pairs)
2652 {
2653 unsigned int i;
2654 unsigned HOST_WIDE_INT factor = 1;
2655 tree niters_plus_one, niters = number_of_latch_executions (loop);
2656
2657 gcc_assert (niters != NULL_TREE && niters != chrec_dont_know);
2658 niters = fold_convert (sizetype, niters);
2659 niters_plus_one = size_binop (PLUS_EXPR, niters, size_one_node);
2660
2661 if (dump_file && (dump_flags & TDF_DETAILS))
2662 fprintf (dump_file, "Creating alias check pairs:\n");
2663
2664 /* Iterate all data dependence relations and compute alias check pairs. */
2665 for (i = 0; i < alias_ddrs->length (); i++)
2666 {
2667 ddr_p ddr = (*alias_ddrs)[i];
2668 struct data_reference *dr_a = DDR_A (ddr);
2669 struct data_reference *dr_b = DDR_B (ddr);
2670 tree seg_length_a, seg_length_b;
2671
2672 if (latch_dominated_by_data_ref (loop, dr_a))
2673 seg_length_a = data_ref_segment_size (dr_a, niters_plus_one);
2674 else
2675 seg_length_a = data_ref_segment_size (dr_a, niters);
2676
2677 if (latch_dominated_by_data_ref (loop, dr_b))
2678 seg_length_b = data_ref_segment_size (dr_b, niters_plus_one);
2679 else
2680 seg_length_b = data_ref_segment_size (dr_b, niters);
2681
2682 unsigned HOST_WIDE_INT access_size_a
2683 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a))));
2684 unsigned HOST_WIDE_INT access_size_b
2685 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b))));
2686 unsigned int align_a = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_a)));
2687 unsigned int align_b = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_b)));
2688
2689 dr_with_seg_len_pair_t dr_with_seg_len_pair
2690 (dr_with_seg_len (dr_a, seg_length_a, access_size_a, align_a),
2691 dr_with_seg_len (dr_b, seg_length_b, access_size_b, align_b),
2692 /* ??? Would WELL_ORDERED be safe? */
2693 dr_with_seg_len_pair_t::REORDERED);
2694
2695 comp_alias_pairs->safe_push (dr_with_seg_len_pair);
2696 }
2697
2698 if (tree_fits_uhwi_p (niters))
2699 factor = tree_to_uhwi (niters);
2700
2701 /* Prune alias check pairs. */
2702 prune_runtime_alias_test_list (comp_alias_pairs, factor);
2703 if (dump_file && (dump_flags & TDF_DETAILS))
2704 fprintf (dump_file,
2705 "Improved number of alias checks from %d to %d\n",
2706 alias_ddrs->length (), comp_alias_pairs->length ());
2707 }
2708
2709 /* Given data dependence relations in ALIAS_DDRS, generate runtime alias
2710 checks and version LOOP under condition of these runtime alias checks. */
2711
2712 static void
version_loop_by_alias_check(vec<struct partition * > * partitions,class loop * loop,vec<ddr_p> * alias_ddrs)2713 version_loop_by_alias_check (vec<struct partition *> *partitions,
2714 class loop *loop, vec<ddr_p> *alias_ddrs)
2715 {
2716 profile_probability prob;
2717 basic_block cond_bb;
2718 class loop *nloop;
2719 tree lhs, arg0, cond_expr = NULL_TREE;
2720 gimple_seq cond_stmts = NULL;
2721 gimple *call_stmt = NULL;
2722 auto_vec<dr_with_seg_len_pair_t> comp_alias_pairs;
2723
2724 /* Generate code for runtime alias checks if necessary. */
2725 gcc_assert (alias_ddrs->length () > 0);
2726
2727 if (dump_file && (dump_flags & TDF_DETAILS))
2728 fprintf (dump_file,
2729 "Version loop <%d> with runtime alias check\n", loop->num);
2730
2731 compute_alias_check_pairs (loop, alias_ddrs, &comp_alias_pairs);
2732 create_runtime_alias_checks (loop, &comp_alias_pairs, &cond_expr);
2733 cond_expr = force_gimple_operand_1 (cond_expr, &cond_stmts,
2734 is_gimple_val, NULL_TREE);
2735
2736 /* Depend on vectorizer to fold IFN_LOOP_DIST_ALIAS. */
2737 bool cancelable_p = flag_tree_loop_vectorize;
2738 if (cancelable_p)
2739 {
2740 unsigned i = 0;
2741 struct partition *partition;
2742 for (; partitions->iterate (i, &partition); ++i)
2743 if (!partition_builtin_p (partition))
2744 break;
2745
2746 /* If all partitions are builtins, distributing it would be profitable and
2747 we don't want to cancel the runtime alias checks. */
2748 if (i == partitions->length ())
2749 cancelable_p = false;
2750 }
2751
2752 /* Generate internal function call for loop distribution alias check if the
2753 runtime alias check should be cancelable. */
2754 if (cancelable_p)
2755 {
2756 call_stmt = gimple_build_call_internal (IFN_LOOP_DIST_ALIAS,
2757 2, NULL_TREE, cond_expr);
2758 lhs = make_ssa_name (boolean_type_node);
2759 gimple_call_set_lhs (call_stmt, lhs);
2760 }
2761 else
2762 lhs = cond_expr;
2763
2764 prob = profile_probability::guessed_always ().apply_scale (9, 10);
2765 initialize_original_copy_tables ();
2766 nloop = loop_version (loop, lhs, &cond_bb, prob, prob.invert (),
2767 prob, prob.invert (), true);
2768 free_original_copy_tables ();
2769 /* Record the original loop number in newly generated loops. In case of
2770 distribution, the original loop will be distributed and the new loop
2771 is kept. */
2772 loop->orig_loop_num = nloop->num;
2773 nloop->orig_loop_num = nloop->num;
2774 nloop->dont_vectorize = true;
2775 nloop->force_vectorize = false;
2776
2777 if (call_stmt)
2778 {
2779 /* Record new loop's num in IFN_LOOP_DIST_ALIAS because the original
2780 loop could be destroyed. */
2781 arg0 = build_int_cst (integer_type_node, loop->orig_loop_num);
2782 gimple_call_set_arg (call_stmt, 0, arg0);
2783 gimple_seq_add_stmt_without_update (&cond_stmts, call_stmt);
2784 }
2785
2786 if (cond_stmts)
2787 {
2788 gimple_stmt_iterator cond_gsi = gsi_last_bb (cond_bb);
2789 gsi_insert_seq_before (&cond_gsi, cond_stmts, GSI_SAME_STMT);
2790 }
2791 update_ssa (TODO_update_ssa);
2792 }
2793
2794 /* Return true if loop versioning is needed to distrubute PARTITIONS.
2795 ALIAS_DDRS are data dependence relations for runtime alias check. */
2796
2797 static inline bool
version_for_distribution_p(vec<struct partition * > * partitions,vec<ddr_p> * alias_ddrs)2798 version_for_distribution_p (vec<struct partition *> *partitions,
2799 vec<ddr_p> *alias_ddrs)
2800 {
2801 /* No need to version loop if we have only one partition. */
2802 if (partitions->length () == 1)
2803 return false;
2804
2805 /* Need to version loop if runtime alias check is necessary. */
2806 return (alias_ddrs->length () > 0);
2807 }
2808
2809 /* Compare base offset of builtin mem* partitions P1 and P2. */
2810
2811 static int
offset_cmp(const void * vp1,const void * vp2)2812 offset_cmp (const void *vp1, const void *vp2)
2813 {
2814 struct partition *p1 = *(struct partition *const *) vp1;
2815 struct partition *p2 = *(struct partition *const *) vp2;
2816 unsigned HOST_WIDE_INT o1 = p1->builtin->dst_base_offset;
2817 unsigned HOST_WIDE_INT o2 = p2->builtin->dst_base_offset;
2818 return (o2 < o1) - (o1 < o2);
2819 }
2820
2821 /* Fuse adjacent memset builtin PARTITIONS if possible. This is a special
2822 case optimization transforming below code:
2823
2824 __builtin_memset (&obj, 0, 100);
2825 _1 = &obj + 100;
2826 __builtin_memset (_1, 0, 200);
2827 _2 = &obj + 300;
2828 __builtin_memset (_2, 0, 100);
2829
2830 into:
2831
2832 __builtin_memset (&obj, 0, 400);
2833
2834 Note we don't have dependence information between different partitions
2835 at this point, as a result, we can't handle nonadjacent memset builtin
2836 partitions since dependence might be broken. */
2837
2838 static void
fuse_memset_builtins(vec<struct partition * > * partitions)2839 fuse_memset_builtins (vec<struct partition *> *partitions)
2840 {
2841 unsigned i, j;
2842 struct partition *part1, *part2;
2843 tree rhs1, rhs2;
2844
2845 for (i = 0; partitions->iterate (i, &part1);)
2846 {
2847 if (part1->kind != PKIND_MEMSET)
2848 {
2849 i++;
2850 continue;
2851 }
2852
2853 /* Find sub-array of memset builtins of the same base. Index range
2854 of the sub-array is [i, j) with "j > i". */
2855 for (j = i + 1; partitions->iterate (j, &part2); ++j)
2856 {
2857 if (part2->kind != PKIND_MEMSET
2858 || !operand_equal_p (part1->builtin->dst_base_base,
2859 part2->builtin->dst_base_base, 0))
2860 break;
2861
2862 /* Memset calls setting different values can't be merged. */
2863 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2864 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2865 if (!operand_equal_p (rhs1, rhs2, 0))
2866 break;
2867 }
2868
2869 /* Stable sort is required in order to avoid breaking dependence. */
2870 gcc_stablesort (&(*partitions)[i], j - i, sizeof (*partitions)[i],
2871 offset_cmp);
2872 /* Continue with next partition. */
2873 i = j;
2874 }
2875
2876 /* Merge all consecutive memset builtin partitions. */
2877 for (i = 0; i < partitions->length () - 1;)
2878 {
2879 part1 = (*partitions)[i];
2880 if (part1->kind != PKIND_MEMSET)
2881 {
2882 i++;
2883 continue;
2884 }
2885
2886 part2 = (*partitions)[i + 1];
2887 /* Only merge memset partitions of the same base and with constant
2888 access sizes. */
2889 if (part2->kind != PKIND_MEMSET
2890 || TREE_CODE (part1->builtin->size) != INTEGER_CST
2891 || TREE_CODE (part2->builtin->size) != INTEGER_CST
2892 || !operand_equal_p (part1->builtin->dst_base_base,
2893 part2->builtin->dst_base_base, 0))
2894 {
2895 i++;
2896 continue;
2897 }
2898 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2899 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2900 int bytev1 = const_with_all_bytes_same (rhs1);
2901 int bytev2 = const_with_all_bytes_same (rhs2);
2902 /* Only merge memset partitions of the same value. */
2903 if (bytev1 != bytev2 || bytev1 == -1)
2904 {
2905 i++;
2906 continue;
2907 }
2908 wide_int end1 = wi::add (part1->builtin->dst_base_offset,
2909 wi::to_wide (part1->builtin->size));
2910 /* Only merge adjacent memset partitions. */
2911 if (wi::ne_p (end1, part2->builtin->dst_base_offset))
2912 {
2913 i++;
2914 continue;
2915 }
2916 /* Merge partitions[i] and partitions[i+1]. */
2917 part1->builtin->size = fold_build2 (PLUS_EXPR, sizetype,
2918 part1->builtin->size,
2919 part2->builtin->size);
2920 partition_free (part2);
2921 partitions->ordered_remove (i + 1);
2922 }
2923 }
2924
2925 void
finalize_partitions(class loop * loop,vec<struct partition * > * partitions,vec<ddr_p> * alias_ddrs)2926 loop_distribution::finalize_partitions (class loop *loop,
2927 vec<struct partition *> *partitions,
2928 vec<ddr_p> *alias_ddrs)
2929 {
2930 unsigned i;
2931 struct partition *partition, *a;
2932
2933 if (partitions->length () == 1
2934 || alias_ddrs->length () > 0)
2935 return;
2936
2937 unsigned num_builtin = 0, num_normal = 0, num_partial_memset = 0;
2938 bool same_type_p = true;
2939 enum partition_type type = ((*partitions)[0])->type;
2940 for (i = 0; partitions->iterate (i, &partition); ++i)
2941 {
2942 same_type_p &= (type == partition->type);
2943 if (partition_builtin_p (partition))
2944 {
2945 num_builtin++;
2946 continue;
2947 }
2948 num_normal++;
2949 if (partition->kind == PKIND_PARTIAL_MEMSET)
2950 num_partial_memset++;
2951 }
2952
2953 /* Don't distribute current loop into too many loops given we don't have
2954 memory stream cost model. Be even more conservative in case of loop
2955 nest distribution. */
2956 if ((same_type_p && num_builtin == 0
2957 && (loop->inner == NULL || num_normal != 2 || num_partial_memset != 1))
2958 || (loop->inner != NULL
2959 && i >= NUM_PARTITION_THRESHOLD && num_normal > 1)
2960 || (loop->inner == NULL
2961 && i >= NUM_PARTITION_THRESHOLD && num_normal > num_builtin))
2962 {
2963 a = (*partitions)[0];
2964 for (i = 1; partitions->iterate (i, &partition); ++i)
2965 {
2966 partition_merge_into (NULL, a, partition, FUSE_FINALIZE);
2967 partition_free (partition);
2968 }
2969 partitions->truncate (1);
2970 }
2971
2972 /* Fuse memset builtins if possible. */
2973 if (partitions->length () > 1)
2974 fuse_memset_builtins (partitions);
2975 }
2976
2977 /* Distributes the code from LOOP in such a way that producer statements
2978 are placed before consumer statements. Tries to separate only the
2979 statements from STMTS into separate loops. Returns the number of
2980 distributed loops. Set NB_CALLS to number of generated builtin calls.
2981 Set *DESTROY_P to whether LOOP needs to be destroyed. */
2982
2983 int
distribute_loop(class loop * loop,const vec<gimple * > & stmts,control_dependences * cd,int * nb_calls,bool * destroy_p,bool only_patterns_p)2984 loop_distribution::distribute_loop (class loop *loop,
2985 const vec<gimple *> &stmts,
2986 control_dependences *cd, int *nb_calls, bool *destroy_p,
2987 bool only_patterns_p)
2988 {
2989 ddrs_table = new hash_table<ddr_hasher> (389);
2990 struct graph *rdg;
2991 partition *partition;
2992 int i, nbp;
2993
2994 *destroy_p = false;
2995 *nb_calls = 0;
2996 loop_nest.create (0);
2997 if (!find_loop_nest (loop, &loop_nest))
2998 {
2999 loop_nest.release ();
3000 delete ddrs_table;
3001 return 0;
3002 }
3003
3004 datarefs_vec.create (20);
3005 has_nonaddressable_dataref_p = false;
3006 rdg = build_rdg (loop, cd);
3007 if (!rdg)
3008 {
3009 if (dump_file && (dump_flags & TDF_DETAILS))
3010 fprintf (dump_file,
3011 "Loop %d not distributed: failed to build the RDG.\n",
3012 loop->num);
3013
3014 loop_nest.release ();
3015 free_data_refs (datarefs_vec);
3016 delete ddrs_table;
3017 return 0;
3018 }
3019
3020 if (datarefs_vec.length () > MAX_DATAREFS_NUM)
3021 {
3022 if (dump_file && (dump_flags & TDF_DETAILS))
3023 fprintf (dump_file,
3024 "Loop %d not distributed: too many memory references.\n",
3025 loop->num);
3026
3027 free_rdg (rdg);
3028 loop_nest.release ();
3029 free_data_refs (datarefs_vec);
3030 delete ddrs_table;
3031 return 0;
3032 }
3033
3034 data_reference_p dref;
3035 for (i = 0; datarefs_vec.iterate (i, &dref); ++i)
3036 dref->aux = (void *) (uintptr_t) i;
3037
3038 if (dump_file && (dump_flags & TDF_DETAILS))
3039 dump_rdg (dump_file, rdg);
3040
3041 auto_vec<struct partition *, 3> partitions;
3042 rdg_build_partitions (rdg, stmts, &partitions);
3043
3044 auto_vec<ddr_p> alias_ddrs;
3045
3046 auto_bitmap stmt_in_all_partitions;
3047 bitmap_copy (stmt_in_all_partitions, partitions[0]->stmts);
3048 for (i = 1; partitions.iterate (i, &partition); ++i)
3049 bitmap_and_into (stmt_in_all_partitions, partitions[i]->stmts);
3050
3051 bool any_builtin = false;
3052 bool reduction_in_all = false;
3053 FOR_EACH_VEC_ELT (partitions, i, partition)
3054 {
3055 reduction_in_all
3056 |= classify_partition (loop, rdg, partition, stmt_in_all_partitions);
3057 any_builtin |= partition_builtin_p (partition);
3058 }
3059
3060 /* If we are only distributing patterns but did not detect any,
3061 simply bail out. */
3062 if (only_patterns_p
3063 && !any_builtin)
3064 {
3065 nbp = 0;
3066 goto ldist_done;
3067 }
3068
3069 /* If we are only distributing patterns fuse all partitions that
3070 were not classified as builtins. This also avoids chopping
3071 a loop into pieces, separated by builtin calls. That is, we
3072 only want no or a single loop body remaining. */
3073 struct partition *into;
3074 if (only_patterns_p)
3075 {
3076 for (i = 0; partitions.iterate (i, &into); ++i)
3077 if (!partition_builtin_p (into))
3078 break;
3079 for (++i; partitions.iterate (i, &partition); ++i)
3080 if (!partition_builtin_p (partition))
3081 {
3082 partition_merge_into (NULL, into, partition, FUSE_NON_BUILTIN);
3083 partitions.unordered_remove (i);
3084 partition_free (partition);
3085 i--;
3086 }
3087 }
3088
3089 /* Due to limitations in the transform phase we have to fuse all
3090 reduction partitions into the last partition so the existing
3091 loop will contain all loop-closed PHI nodes. */
3092 for (i = 0; partitions.iterate (i, &into); ++i)
3093 if (partition_reduction_p (into))
3094 break;
3095 for (i = i + 1; partitions.iterate (i, &partition); ++i)
3096 if (partition_reduction_p (partition))
3097 {
3098 partition_merge_into (rdg, into, partition, FUSE_REDUCTION);
3099 partitions.unordered_remove (i);
3100 partition_free (partition);
3101 i--;
3102 }
3103
3104 /* Apply our simple cost model - fuse partitions with similar
3105 memory accesses. */
3106 for (i = 0; partitions.iterate (i, &into); ++i)
3107 {
3108 bool changed = false;
3109 if (partition_builtin_p (into) || into->kind == PKIND_PARTIAL_MEMSET)
3110 continue;
3111 for (int j = i + 1;
3112 partitions.iterate (j, &partition); ++j)
3113 {
3114 if (share_memory_accesses (rdg, into, partition))
3115 {
3116 partition_merge_into (rdg, into, partition, FUSE_SHARE_REF);
3117 partitions.unordered_remove (j);
3118 partition_free (partition);
3119 j--;
3120 changed = true;
3121 }
3122 }
3123 /* If we fused 0 1 2 in step 1 to 0,2 1 as 0 and 2 have similar
3124 accesses when 1 and 2 have similar accesses but not 0 and 1
3125 then in the next iteration we will fail to consider merging
3126 1 into 0,2. So try again if we did any merging into 0. */
3127 if (changed)
3128 i--;
3129 }
3130
3131 /* Put a non-builtin partition last if we need to preserve a reduction.
3132 ??? This is a workaround that makes sort_partitions_by_post_order do
3133 the correct thing while in reality it should sort each component
3134 separately and then put the component with a reduction or a non-builtin
3135 last. */
3136 if (reduction_in_all
3137 && partition_builtin_p (partitions.last()))
3138 FOR_EACH_VEC_ELT (partitions, i, partition)
3139 if (!partition_builtin_p (partition))
3140 {
3141 partitions.unordered_remove (i);
3142 partitions.quick_push (partition);
3143 break;
3144 }
3145
3146 /* Build the partition dependency graph and fuse partitions in strong
3147 connected component. */
3148 if (partitions.length () > 1)
3149 {
3150 /* Don't support loop nest distribution under runtime alias check
3151 since it's not likely to enable many vectorization opportunities.
3152 Also if loop has any data reference which may be not addressable
3153 since alias check needs to take, compare address of the object. */
3154 if (loop->inner || has_nonaddressable_dataref_p)
3155 merge_dep_scc_partitions (rdg, &partitions, false);
3156 else
3157 {
3158 merge_dep_scc_partitions (rdg, &partitions, true);
3159 if (partitions.length () > 1)
3160 break_alias_scc_partitions (rdg, &partitions, &alias_ddrs);
3161 }
3162 }
3163
3164 finalize_partitions (loop, &partitions, &alias_ddrs);
3165
3166 /* If there is a reduction in all partitions make sure the last one
3167 is not classified for builtin code generation. */
3168 if (reduction_in_all)
3169 {
3170 partition = partitions.last ();
3171 if (only_patterns_p
3172 && partition_builtin_p (partition)
3173 && !partition_builtin_p (partitions[0]))
3174 {
3175 nbp = 0;
3176 goto ldist_done;
3177 }
3178 partition->kind = PKIND_NORMAL;
3179 }
3180
3181 nbp = partitions.length ();
3182 if (nbp == 0
3183 || (nbp == 1 && !partition_builtin_p (partitions[0]))
3184 || (nbp > 1 && partition_contains_all_rw (rdg, partitions)))
3185 {
3186 nbp = 0;
3187 goto ldist_done;
3188 }
3189
3190 if (version_for_distribution_p (&partitions, &alias_ddrs))
3191 version_loop_by_alias_check (&partitions, loop, &alias_ddrs);
3192
3193 if (dump_file && (dump_flags & TDF_DETAILS))
3194 {
3195 fprintf (dump_file,
3196 "distribute loop <%d> into partitions:\n", loop->num);
3197 dump_rdg_partitions (dump_file, partitions);
3198 }
3199
3200 FOR_EACH_VEC_ELT (partitions, i, partition)
3201 {
3202 if (partition_builtin_p (partition))
3203 (*nb_calls)++;
3204 *destroy_p |= generate_code_for_partition (loop, partition, i < nbp - 1);
3205 }
3206
3207 ldist_done:
3208 loop_nest.release ();
3209 free_data_refs (datarefs_vec);
3210 for (hash_table<ddr_hasher>::iterator iter = ddrs_table->begin ();
3211 iter != ddrs_table->end (); ++iter)
3212 {
3213 free_dependence_relation (*iter);
3214 *iter = NULL;
3215 }
3216 delete ddrs_table;
3217
3218 FOR_EACH_VEC_ELT (partitions, i, partition)
3219 partition_free (partition);
3220
3221 free_rdg (rdg);
3222 return nbp - *nb_calls;
3223 }
3224
3225
bb_top_order_init(void)3226 void loop_distribution::bb_top_order_init (void)
3227 {
3228 int rpo_num;
3229 int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
3230 edge entry = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3231 bitmap exit_bbs = BITMAP_ALLOC (NULL);
3232
3233 bb_top_order_index = XNEWVEC (int, last_basic_block_for_fn (cfun));
3234 bb_top_order_index_size = last_basic_block_for_fn (cfun);
3235
3236 entry->flags &= ~EDGE_DFS_BACK;
3237 bitmap_set_bit (exit_bbs, EXIT_BLOCK);
3238 rpo_num = rev_post_order_and_mark_dfs_back_seme (cfun, entry, exit_bbs, true,
3239 rpo, NULL);
3240 BITMAP_FREE (exit_bbs);
3241
3242 for (int i = 0; i < rpo_num; i++)
3243 bb_top_order_index[rpo[i]] = i;
3244
3245 free (rpo);
3246 }
3247
bb_top_order_destroy()3248 void loop_distribution::bb_top_order_destroy ()
3249 {
3250 free (bb_top_order_index);
3251 bb_top_order_index = NULL;
3252 bb_top_order_index_size = 0;
3253 }
3254
3255
3256 /* Given LOOP, this function records seed statements for distribution in
3257 WORK_LIST. Return false if there is nothing for distribution. */
3258
3259 static bool
find_seed_stmts_for_distribution(class loop * loop,vec<gimple * > * work_list)3260 find_seed_stmts_for_distribution (class loop *loop, vec<gimple *> *work_list)
3261 {
3262 basic_block *bbs = get_loop_body_in_dom_order (loop);
3263
3264 /* Initialize the worklist with stmts we seed the partitions with. */
3265 for (unsigned i = 0; i < loop->num_nodes; ++i)
3266 {
3267 /* In irreducible sub-regions we don't know how to redirect
3268 conditions, so fail. See PR100492. */
3269 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
3270 {
3271 if (dump_file && (dump_flags & TDF_DETAILS))
3272 fprintf (dump_file, "loop %d contains an irreducible region.\n",
3273 loop->num);
3274 work_list->truncate (0);
3275 break;
3276 }
3277 for (gphi_iterator gsi = gsi_start_phis (bbs[i]);
3278 !gsi_end_p (gsi); gsi_next (&gsi))
3279 {
3280 gphi *phi = gsi.phi ();
3281 if (virtual_operand_p (gimple_phi_result (phi)))
3282 continue;
3283 /* Distribute stmts which have defs that are used outside of
3284 the loop. */
3285 if (!stmt_has_scalar_dependences_outside_loop (loop, phi))
3286 continue;
3287 work_list->safe_push (phi);
3288 }
3289 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
3290 !gsi_end_p (gsi); gsi_next (&gsi))
3291 {
3292 gimple *stmt = gsi_stmt (gsi);
3293
3294 /* Ignore clobbers, they do not have true side effects. */
3295 if (gimple_clobber_p (stmt))
3296 continue;
3297
3298 /* If there is a stmt with side-effects bail out - we
3299 cannot and should not distribute this loop. */
3300 if (gimple_has_side_effects (stmt))
3301 {
3302 free (bbs);
3303 return false;
3304 }
3305
3306 /* Distribute stmts which have defs that are used outside of
3307 the loop. */
3308 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
3309 ;
3310 /* Otherwise only distribute stores for now. */
3311 else if (!gimple_vdef (stmt))
3312 continue;
3313
3314 work_list->safe_push (stmt);
3315 }
3316 }
3317 bool res = work_list->length () > 0;
3318 if (res && !can_copy_bbs_p (bbs, loop->num_nodes))
3319 {
3320 if (dump_file && (dump_flags & TDF_DETAILS))
3321 fprintf (dump_file, "cannot copy loop %d.\n", loop->num);
3322 res = false;
3323 }
3324 free (bbs);
3325 return res;
3326 }
3327
3328 /* A helper function for generate_{rawmemchr,strlen}_builtin functions in order
3329 to place new statements SEQ before LOOP and replace the old reduction
3330 variable with the new one. */
3331
3332 static void
generate_reduction_builtin_1(loop_p loop,gimple_seq & seq,tree reduction_var_old,tree reduction_var_new,const char * info,machine_mode load_mode)3333 generate_reduction_builtin_1 (loop_p loop, gimple_seq &seq,
3334 tree reduction_var_old, tree reduction_var_new,
3335 const char *info, machine_mode load_mode)
3336 {
3337 gcc_assert (flag_tree_loop_distribute_patterns);
3338
3339 /* Place new statements before LOOP. */
3340 gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
3341 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3342
3343 /* Replace old reduction variable with new one. */
3344 imm_use_iterator iter;
3345 gimple *stmt;
3346 use_operand_p use_p;
3347 FOR_EACH_IMM_USE_STMT (stmt, iter, reduction_var_old)
3348 {
3349 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3350 SET_USE (use_p, reduction_var_new);
3351
3352 update_stmt (stmt);
3353 }
3354
3355 if (dump_file && (dump_flags & TDF_DETAILS))
3356 fprintf (dump_file, info, GET_MODE_NAME (load_mode));
3357 }
3358
3359 /* Generate a call to rawmemchr and place it before LOOP. REDUCTION_VAR is
3360 replaced with a fresh SSA name representing the result of the call. */
3361
3362 static void
generate_rawmemchr_builtin(loop_p loop,tree reduction_var,data_reference_p store_dr,tree base,tree pattern,location_t loc)3363 generate_rawmemchr_builtin (loop_p loop, tree reduction_var,
3364 data_reference_p store_dr, tree base, tree pattern,
3365 location_t loc)
3366 {
3367 gimple_seq seq = NULL;
3368
3369 tree mem = force_gimple_operand (base, &seq, true, NULL_TREE);
3370 gimple *fn_call = gimple_build_call_internal (IFN_RAWMEMCHR, 2, mem, pattern);
3371 tree reduction_var_new = copy_ssa_name (reduction_var);
3372 gimple_call_set_lhs (fn_call, reduction_var_new);
3373 gimple_set_location (fn_call, loc);
3374 gimple_seq_add_stmt (&seq, fn_call);
3375
3376 if (store_dr)
3377 {
3378 gassign *g = gimple_build_assign (DR_REF (store_dr), reduction_var_new);
3379 gimple_seq_add_stmt (&seq, g);
3380 }
3381
3382 generate_reduction_builtin_1 (loop, seq, reduction_var, reduction_var_new,
3383 "generated rawmemchr%s\n",
3384 TYPE_MODE (TREE_TYPE (TREE_TYPE (base))));
3385 }
3386
3387 /* Helper function for generate_strlen_builtin(,_using_rawmemchr) */
3388
3389 static void
generate_strlen_builtin_1(loop_p loop,gimple_seq & seq,tree reduction_var_old,tree reduction_var_new,machine_mode mode,tree start_len)3390 generate_strlen_builtin_1 (loop_p loop, gimple_seq &seq,
3391 tree reduction_var_old, tree reduction_var_new,
3392 machine_mode mode, tree start_len)
3393 {
3394 /* REDUCTION_VAR_NEW has either size type or ptrdiff type and must be
3395 converted if types of old and new reduction variable are not compatible. */
3396 reduction_var_new = gimple_convert (&seq, TREE_TYPE (reduction_var_old),
3397 reduction_var_new);
3398
3399 /* Loops of the form `for (i=42; s[i]; ++i);` have an additional start
3400 length. */
3401 if (!integer_zerop (start_len))
3402 {
3403 tree lhs = make_ssa_name (TREE_TYPE (reduction_var_new));
3404 gimple *g = gimple_build_assign (lhs, PLUS_EXPR, reduction_var_new,
3405 start_len);
3406 gimple_seq_add_stmt (&seq, g);
3407 reduction_var_new = lhs;
3408 }
3409
3410 generate_reduction_builtin_1 (loop, seq, reduction_var_old, reduction_var_new,
3411 "generated strlen%s\n", mode);
3412 }
3413
3414 /* Generate a call to strlen and place it before LOOP. REDUCTION_VAR is
3415 replaced with a fresh SSA name representing the result of the call. */
3416
3417 static void
generate_strlen_builtin(loop_p loop,tree reduction_var,tree base,tree start_len,location_t loc)3418 generate_strlen_builtin (loop_p loop, tree reduction_var, tree base,
3419 tree start_len, location_t loc)
3420 {
3421 gimple_seq seq = NULL;
3422
3423 tree reduction_var_new = make_ssa_name (size_type_node);
3424
3425 tree mem = force_gimple_operand (base, &seq, true, NULL_TREE);
3426 tree fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_STRLEN));
3427 gimple *fn_call = gimple_build_call (fn, 1, mem);
3428 gimple_call_set_lhs (fn_call, reduction_var_new);
3429 gimple_set_location (fn_call, loc);
3430 gimple_seq_add_stmt (&seq, fn_call);
3431
3432 generate_strlen_builtin_1 (loop, seq, reduction_var, reduction_var_new,
3433 QImode, start_len);
3434 }
3435
3436 /* Generate code in order to mimic the behaviour of strlen but this time over
3437 an array of elements with mode different than QI. REDUCTION_VAR is replaced
3438 with a fresh SSA name representing the result, i.e., the length. */
3439
3440 static void
generate_strlen_builtin_using_rawmemchr(loop_p loop,tree reduction_var,tree base,tree load_type,tree start_len,location_t loc)3441 generate_strlen_builtin_using_rawmemchr (loop_p loop, tree reduction_var,
3442 tree base, tree load_type,
3443 tree start_len, location_t loc)
3444 {
3445 gimple_seq seq = NULL;
3446
3447 tree start = force_gimple_operand (base, &seq, true, NULL_TREE);
3448 tree zero = build_zero_cst (load_type);
3449 gimple *fn_call = gimple_build_call_internal (IFN_RAWMEMCHR, 2, start, zero);
3450 tree end = make_ssa_name (TREE_TYPE (base));
3451 gimple_call_set_lhs (fn_call, end);
3452 gimple_set_location (fn_call, loc);
3453 gimple_seq_add_stmt (&seq, fn_call);
3454
3455 /* Determine the number of elements between START and END by
3456 evaluating (END - START) / sizeof (*START). */
3457 tree diff = make_ssa_name (ptrdiff_type_node);
3458 gimple *diff_stmt = gimple_build_assign (diff, POINTER_DIFF_EXPR, end, start);
3459 gimple_seq_add_stmt (&seq, diff_stmt);
3460 /* Let SIZE be the size of each character. */
3461 tree size = gimple_convert (&seq, ptrdiff_type_node,
3462 TYPE_SIZE_UNIT (load_type));
3463 tree count = make_ssa_name (ptrdiff_type_node);
3464 gimple *count_stmt = gimple_build_assign (count, TRUNC_DIV_EXPR, diff, size);
3465 gimple_seq_add_stmt (&seq, count_stmt);
3466
3467 generate_strlen_builtin_1 (loop, seq, reduction_var, count,
3468 TYPE_MODE (load_type),
3469 start_len);
3470 }
3471
3472 /* Return true if we can count at least as many characters by taking pointer
3473 difference as we can count via reduction_var without an overflow. Thus
3474 compute 2^n < (2^(m-1) / s) where n = TYPE_PRECISION (reduction_var_type),
3475 m = TYPE_PRECISION (ptrdiff_type_node), and s = size of each character. */
3476 static bool
reduction_var_overflows_first(tree reduction_var_type,tree load_type)3477 reduction_var_overflows_first (tree reduction_var_type, tree load_type)
3478 {
3479 widest_int n2 = wi::lshift (1, TYPE_PRECISION (reduction_var_type));;
3480 widest_int m2 = wi::lshift (1, TYPE_PRECISION (ptrdiff_type_node) - 1);
3481 widest_int s = wi::to_widest (TYPE_SIZE_UNIT (load_type));
3482 return wi::ltu_p (n2, wi::udiv_trunc (m2, s));
3483 }
3484
3485 static gimple *
determine_reduction_stmt_1(const loop_p loop,const basic_block * bbs)3486 determine_reduction_stmt_1 (const loop_p loop, const basic_block *bbs)
3487 {
3488 gimple *reduction_stmt = NULL;
3489
3490 for (unsigned i = 0, ninsns = 0; i < loop->num_nodes; ++i)
3491 {
3492 basic_block bb = bbs[i];
3493
3494 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
3495 gsi_next_nondebug (&bsi))
3496 {
3497 gphi *phi = bsi.phi ();
3498 if (virtual_operand_p (gimple_phi_result (phi)))
3499 continue;
3500 if (stmt_has_scalar_dependences_outside_loop (loop, phi))
3501 {
3502 if (reduction_stmt)
3503 return NULL;
3504 reduction_stmt = phi;
3505 }
3506 }
3507
3508 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
3509 gsi_next_nondebug (&bsi), ++ninsns)
3510 {
3511 /* Bail out early for loops which are unlikely to match. */
3512 if (ninsns > 16)
3513 return NULL;
3514 gimple *stmt = gsi_stmt (bsi);
3515 if (gimple_clobber_p (stmt))
3516 continue;
3517 if (gimple_code (stmt) == GIMPLE_LABEL)
3518 continue;
3519 if (gimple_has_volatile_ops (stmt))
3520 return NULL;
3521 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
3522 {
3523 if (reduction_stmt)
3524 return NULL;
3525 reduction_stmt = stmt;
3526 }
3527 }
3528 }
3529
3530 return reduction_stmt;
3531 }
3532
3533 /* If LOOP has a single non-volatile reduction statement, then return a pointer
3534 to it. Otherwise return NULL. */
3535 static gimple *
determine_reduction_stmt(const loop_p loop)3536 determine_reduction_stmt (const loop_p loop)
3537 {
3538 basic_block *bbs = get_loop_body (loop);
3539 gimple *reduction_stmt = determine_reduction_stmt_1 (loop, bbs);
3540 XDELETEVEC (bbs);
3541 return reduction_stmt;
3542 }
3543
3544 /* Transform loops which mimic the effects of builtins rawmemchr or strlen and
3545 replace them accordingly. For example, a loop of the form
3546
3547 for (; *p != 42; ++p);
3548
3549 is replaced by
3550
3551 p = rawmemchr<MODE> (p, 42);
3552
3553 under the assumption that rawmemchr is available for a particular MODE.
3554 Another example is
3555
3556 int i;
3557 for (i = 42; s[i]; ++i);
3558
3559 which is replaced by
3560
3561 i = (int)strlen (&s[42]) + 42;
3562
3563 for some character array S. In case array S is not of type character array
3564 we end up with
3565
3566 i = (int)(rawmemchr<MODE> (&s[42], 0) - &s[42]) + 42;
3567
3568 assuming that rawmemchr is available for a particular MODE. */
3569
3570 bool
transform_reduction_loop(loop_p loop)3571 loop_distribution::transform_reduction_loop (loop_p loop)
3572 {
3573 gimple *reduction_stmt;
3574 data_reference_p load_dr = NULL, store_dr = NULL;
3575
3576 edge e = single_exit (loop);
3577 gcond *cond = safe_dyn_cast <gcond *> (last_stmt (e->src));
3578 if (!cond)
3579 return false;
3580 /* Ensure loop condition is an (in)equality test and loop is exited either if
3581 the inequality test fails or the equality test succeeds. */
3582 if (!(e->flags & EDGE_FALSE_VALUE && gimple_cond_code (cond) == NE_EXPR)
3583 && !(e->flags & EDGE_TRUE_VALUE && gimple_cond_code (cond) == EQ_EXPR))
3584 return false;
3585 /* A limitation of the current implementation is that we only support
3586 constant patterns in (in)equality tests. */
3587 tree pattern = gimple_cond_rhs (cond);
3588 if (TREE_CODE (pattern) != INTEGER_CST)
3589 return false;
3590
3591 reduction_stmt = determine_reduction_stmt (loop);
3592
3593 /* A limitation of the current implementation is that we require a reduction
3594 statement. Therefore, loops without a reduction statement as in the
3595 following are not recognized:
3596 int *p;
3597 void foo (void) { for (; *p; ++p); } */
3598 if (reduction_stmt == NULL)
3599 return false;
3600
3601 /* Reduction variables are guaranteed to be SSA names. */
3602 tree reduction_var;
3603 switch (gimple_code (reduction_stmt))
3604 {
3605 case GIMPLE_ASSIGN:
3606 case GIMPLE_PHI:
3607 reduction_var = gimple_get_lhs (reduction_stmt);
3608 break;
3609 default:
3610 /* Bail out e.g. for GIMPLE_CALL. */
3611 return false;
3612 }
3613
3614 struct graph *rdg = build_rdg (loop, NULL);
3615 if (rdg == NULL)
3616 {
3617 if (dump_file && (dump_flags & TDF_DETAILS))
3618 fprintf (dump_file,
3619 "Loop %d not transformed: failed to build the RDG.\n",
3620 loop->num);
3621
3622 return false;
3623 }
3624 auto_bitmap partition_stmts;
3625 bitmap_set_range (partition_stmts, 0, rdg->n_vertices);
3626 find_single_drs (loop, rdg, partition_stmts, &store_dr, &load_dr);
3627 free_rdg (rdg);
3628
3629 /* Bail out if there is no single load. */
3630 if (load_dr == NULL)
3631 return false;
3632
3633 /* Reaching this point we have a loop with a single reduction variable,
3634 a single load, and an optional single store. */
3635
3636 tree load_ref = DR_REF (load_dr);
3637 tree load_type = TREE_TYPE (load_ref);
3638 tree load_access_base = build_fold_addr_expr (load_ref);
3639 tree load_access_size = TYPE_SIZE_UNIT (load_type);
3640 affine_iv load_iv, reduction_iv;
3641
3642 if (!INTEGRAL_TYPE_P (load_type)
3643 || !type_has_mode_precision_p (load_type))
3644 return false;
3645
3646 /* We already ensured that the loop condition tests for (in)equality where the
3647 rhs is a constant pattern. Now ensure that the lhs is the result of the
3648 load. */
3649 if (gimple_cond_lhs (cond) != gimple_assign_lhs (DR_STMT (load_dr)))
3650 return false;
3651
3652 /* Bail out if no affine induction variable with constant step can be
3653 determined. */
3654 if (!simple_iv (loop, loop, load_access_base, &load_iv, false))
3655 return false;
3656
3657 /* Bail out if memory accesses are not consecutive or not growing. */
3658 if (!operand_equal_p (load_iv.step, load_access_size, 0))
3659 return false;
3660
3661 if (!simple_iv (loop, loop, reduction_var, &reduction_iv, false))
3662 return false;
3663
3664 /* Handle rawmemchr like loops. */
3665 if (operand_equal_p (load_iv.base, reduction_iv.base)
3666 && operand_equal_p (load_iv.step, reduction_iv.step))
3667 {
3668 if (store_dr)
3669 {
3670 /* Ensure that we store to X and load from X+I where I>0. */
3671 if (TREE_CODE (load_iv.base) != POINTER_PLUS_EXPR
3672 || !integer_onep (TREE_OPERAND (load_iv.base, 1)))
3673 return false;
3674 tree ptr_base = TREE_OPERAND (load_iv.base, 0);
3675 if (TREE_CODE (ptr_base) != SSA_NAME)
3676 return false;
3677 gimple *def = SSA_NAME_DEF_STMT (ptr_base);
3678 if (!gimple_assign_single_p (def)
3679 || gimple_assign_rhs1 (def) != DR_REF (store_dr))
3680 return false;
3681 /* Ensure that the reduction value is stored. */
3682 if (gimple_assign_rhs1 (DR_STMT (store_dr)) != reduction_var)
3683 return false;
3684 }
3685 /* Bail out if target does not provide rawmemchr for a certain mode. */
3686 machine_mode mode = TYPE_MODE (load_type);
3687 if (direct_optab_handler (rawmemchr_optab, mode) == CODE_FOR_nothing)
3688 return false;
3689 location_t loc = gimple_location (DR_STMT (load_dr));
3690 generate_rawmemchr_builtin (loop, reduction_var, store_dr, load_iv.base,
3691 pattern, loc);
3692 return true;
3693 }
3694
3695 /* Handle strlen like loops. */
3696 if (store_dr == NULL
3697 && integer_zerop (pattern)
3698 && INTEGRAL_TYPE_P (TREE_TYPE (reduction_var))
3699 && TREE_CODE (reduction_iv.base) == INTEGER_CST
3700 && TREE_CODE (reduction_iv.step) == INTEGER_CST
3701 && integer_onep (reduction_iv.step))
3702 {
3703 location_t loc = gimple_location (DR_STMT (load_dr));
3704 tree reduction_var_type = TREE_TYPE (reduction_var);
3705 /* While determining the length of a string an overflow might occur.
3706 If an overflow only occurs in the loop implementation and not in the
3707 strlen implementation, then either the overflow is undefined or the
3708 truncated result of strlen equals the one of the loop. Otherwise if
3709 an overflow may also occur in the strlen implementation, then
3710 replacing a loop by a call to strlen is sound whenever we ensure that
3711 if an overflow occurs in the strlen implementation, then also an
3712 overflow occurs in the loop implementation which is undefined. It
3713 seems reasonable to relax this and assume that the strlen
3714 implementation cannot overflow in case sizetype is big enough in the
3715 sense that an overflow can only happen for string objects which are
3716 bigger than half of the address space; at least for 32-bit targets and
3717 up.
3718
3719 For strlen which makes use of rawmemchr the maximal length of a string
3720 which can be determined without an overflow is PTRDIFF_MAX / S where
3721 each character has size S. Since an overflow for ptrdiff type is
3722 undefined we have to make sure that if an overflow occurs, then an
3723 overflow occurs in the loop implementation, too, and this is
3724 undefined, too. Similar as before we relax this and assume that no
3725 string object is larger than half of the address space; at least for
3726 32-bit targets and up. */
3727 if (TYPE_MODE (load_type) == TYPE_MODE (char_type_node)
3728 && TYPE_PRECISION (load_type) == TYPE_PRECISION (char_type_node)
3729 && ((TYPE_PRECISION (sizetype) >= TYPE_PRECISION (ptr_type_node) - 1
3730 && TYPE_PRECISION (ptr_type_node) >= 32)
3731 || (TYPE_OVERFLOW_UNDEFINED (reduction_var_type)
3732 && TYPE_PRECISION (reduction_var_type) <= TYPE_PRECISION (sizetype)))
3733 && builtin_decl_implicit (BUILT_IN_STRLEN))
3734 generate_strlen_builtin (loop, reduction_var, load_iv.base,
3735 reduction_iv.base, loc);
3736 else if (direct_optab_handler (rawmemchr_optab, TYPE_MODE (load_type))
3737 != CODE_FOR_nothing
3738 && ((TYPE_PRECISION (ptrdiff_type_node) == TYPE_PRECISION (ptr_type_node)
3739 && TYPE_PRECISION (ptrdiff_type_node) >= 32)
3740 || (TYPE_OVERFLOW_UNDEFINED (reduction_var_type)
3741 && reduction_var_overflows_first (reduction_var_type, load_type))))
3742 generate_strlen_builtin_using_rawmemchr (loop, reduction_var,
3743 load_iv.base,
3744 load_type,
3745 reduction_iv.base, loc);
3746 else
3747 return false;
3748 return true;
3749 }
3750
3751 return false;
3752 }
3753
3754 /* Given innermost LOOP, return the outermost enclosing loop that forms a
3755 perfect loop nest. */
3756
3757 static class loop *
prepare_perfect_loop_nest(class loop * loop)3758 prepare_perfect_loop_nest (class loop *loop)
3759 {
3760 class loop *outer = loop_outer (loop);
3761 tree niters = number_of_latch_executions (loop);
3762
3763 /* TODO: We only support the innermost 3-level loop nest distribution
3764 because of compilation time issue for now. This should be relaxed
3765 in the future. Note we only allow 3-level loop nest distribution
3766 when parallelizing loops. */
3767 while ((loop->inner == NULL
3768 || (loop->inner->inner == NULL && flag_tree_parallelize_loops > 1))
3769 && loop_outer (outer)
3770 && outer->inner == loop && loop->next == NULL
3771 && single_exit (outer)
3772 && !chrec_contains_symbols_defined_in_loop (niters, outer->num)
3773 && (niters = number_of_latch_executions (outer)) != NULL_TREE
3774 && niters != chrec_dont_know)
3775 {
3776 loop = outer;
3777 outer = loop_outer (loop);
3778 }
3779
3780 return loop;
3781 }
3782
3783
3784 unsigned int
execute(function * fun)3785 loop_distribution::execute (function *fun)
3786 {
3787 bool changed = false;
3788 basic_block bb;
3789 control_dependences *cd = NULL;
3790 auto_vec<loop_p> loops_to_be_destroyed;
3791
3792 if (number_of_loops (fun) <= 1)
3793 return 0;
3794
3795 bb_top_order_init ();
3796
3797 FOR_ALL_BB_FN (bb, fun)
3798 {
3799 gimple_stmt_iterator gsi;
3800 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3801 gimple_set_uid (gsi_stmt (gsi), -1);
3802 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3803 gimple_set_uid (gsi_stmt (gsi), -1);
3804 }
3805
3806 /* We can at the moment only distribute non-nested loops, thus restrict
3807 walking to innermost loops. */
3808 for (auto loop : loops_list (cfun, LI_ONLY_INNERMOST))
3809 {
3810 /* Don't distribute multiple exit edges loop, or cold loop when
3811 not doing pattern detection. */
3812 if (!single_exit (loop)
3813 || (!flag_tree_loop_distribute_patterns
3814 && !optimize_loop_for_speed_p (loop)))
3815 continue;
3816
3817 /* If niters is unknown don't distribute loop but rather try to transform
3818 it to a call to a builtin. */
3819 tree niters = number_of_latch_executions (loop);
3820 if (niters == NULL_TREE || niters == chrec_dont_know)
3821 {
3822 datarefs_vec.create (20);
3823 if (flag_tree_loop_distribute_patterns
3824 && transform_reduction_loop (loop))
3825 {
3826 changed = true;
3827 loops_to_be_destroyed.safe_push (loop);
3828 if (dump_enabled_p ())
3829 {
3830 dump_user_location_t loc = find_loop_location (loop);
3831 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
3832 loc, "Loop %d transformed into a builtin.\n",
3833 loop->num);
3834 }
3835 }
3836 free_data_refs (datarefs_vec);
3837 continue;
3838 }
3839
3840 /* Get the perfect loop nest for distribution. */
3841 loop = prepare_perfect_loop_nest (loop);
3842 for (; loop; loop = loop->inner)
3843 {
3844 auto_vec<gimple *> work_list;
3845 if (!find_seed_stmts_for_distribution (loop, &work_list))
3846 break;
3847
3848 const char *str = loop->inner ? " nest" : "";
3849 dump_user_location_t loc = find_loop_location (loop);
3850 if (!cd)
3851 {
3852 calculate_dominance_info (CDI_DOMINATORS);
3853 calculate_dominance_info (CDI_POST_DOMINATORS);
3854 cd = new control_dependences ();
3855 free_dominance_info (CDI_POST_DOMINATORS);
3856 }
3857
3858 bool destroy_p;
3859 int nb_generated_loops, nb_generated_calls;
3860 nb_generated_loops
3861 = distribute_loop (loop, work_list, cd, &nb_generated_calls,
3862 &destroy_p, (!optimize_loop_for_speed_p (loop)
3863 || !flag_tree_loop_distribution));
3864 if (destroy_p)
3865 loops_to_be_destroyed.safe_push (loop);
3866
3867 if (nb_generated_loops + nb_generated_calls > 0)
3868 {
3869 changed = true;
3870 if (dump_enabled_p ())
3871 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
3872 loc, "Loop%s %d distributed: split to %d loops "
3873 "and %d library calls.\n", str, loop->num,
3874 nb_generated_loops, nb_generated_calls);
3875
3876 break;
3877 }
3878
3879 if (dump_file && (dump_flags & TDF_DETAILS))
3880 fprintf (dump_file, "Loop%s %d not distributed.\n", str, loop->num);
3881 }
3882 }
3883
3884 if (cd)
3885 delete cd;
3886
3887 if (bb_top_order_index != NULL)
3888 bb_top_order_destroy ();
3889
3890 if (changed)
3891 {
3892 /* Destroy loop bodies that could not be reused. Do this late as we
3893 otherwise can end up refering to stale data in control dependences. */
3894 unsigned i;
3895 class loop *loop;
3896 FOR_EACH_VEC_ELT (loops_to_be_destroyed, i, loop)
3897 destroy_loop (loop);
3898
3899 /* Cached scalar evolutions now may refer to wrong or non-existing
3900 loops. */
3901 scev_reset ();
3902 mark_virtual_operands_for_renaming (fun);
3903 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3904 }
3905
3906 checking_verify_loop_structure ();
3907
3908 return changed ? TODO_cleanup_cfg : 0;
3909 }
3910
3911
3912 /* Distribute all loops in the current function. */
3913
3914 namespace {
3915
3916 const pass_data pass_data_loop_distribution =
3917 {
3918 GIMPLE_PASS, /* type */
3919 "ldist", /* name */
3920 OPTGROUP_LOOP, /* optinfo_flags */
3921 TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
3922 ( PROP_cfg | PROP_ssa ), /* properties_required */
3923 0, /* properties_provided */
3924 0, /* properties_destroyed */
3925 0, /* todo_flags_start */
3926 0, /* todo_flags_finish */
3927 };
3928
3929 class pass_loop_distribution : public gimple_opt_pass
3930 {
3931 public:
pass_loop_distribution(gcc::context * ctxt)3932 pass_loop_distribution (gcc::context *ctxt)
3933 : gimple_opt_pass (pass_data_loop_distribution, ctxt)
3934 {}
3935
3936 /* opt_pass methods: */
gate(function *)3937 virtual bool gate (function *)
3938 {
3939 return flag_tree_loop_distribution
3940 || flag_tree_loop_distribute_patterns;
3941 }
3942
3943 virtual unsigned int execute (function *);
3944
3945 }; // class pass_loop_distribution
3946
3947 unsigned int
execute(function * fun)3948 pass_loop_distribution::execute (function *fun)
3949 {
3950 return loop_distribution ().execute (fun);
3951 }
3952
3953 } // anon namespace
3954
3955 gimple_opt_pass *
make_pass_loop_distribution(gcc::context * ctxt)3956 make_pass_loop_distribution (gcc::context *ctxt)
3957 {
3958 return new pass_loop_distribution (ctxt);
3959 }
3960