1 //=-- ProfilesummaryBuilder.cpp - Profile summary computation ---------------=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for computing profile summary data.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/IR/Attributes.h"
14 #include "llvm/IR/Function.h"
15 #include "llvm/IR/Metadata.h"
16 #include "llvm/IR/Type.h"
17 #include "llvm/ProfileData/InstrProf.h"
18 #include "llvm/ProfileData/ProfileCommon.h"
19 #include "llvm/ProfileData/SampleProf.h"
20 #include "llvm/Support/Casting.h"
21 #include "llvm/Support/CommandLine.h"
22
23 using namespace llvm;
24
25 cl::opt<bool> UseContextLessSummary(
26 "profile-summary-contextless", cl::Hidden, cl::init(false), cl::ZeroOrMore,
27 cl::desc("Merge context profiles before calculating thresholds."));
28
29 // The following two parameters determine the threshold for a count to be
30 // considered hot/cold. These two parameters are percentile values (multiplied
31 // by 10000). If the counts are sorted in descending order, the minimum count to
32 // reach ProfileSummaryCutoffHot gives the threshold to determine a hot count.
33 // Similarly, the minimum count to reach ProfileSummaryCutoffCold gives the
34 // threshold for determining cold count (everything <= this threshold is
35 // considered cold).
36 cl::opt<int> ProfileSummaryCutoffHot(
37 "profile-summary-cutoff-hot", cl::Hidden, cl::init(990000), cl::ZeroOrMore,
38 cl::desc("A count is hot if it exceeds the minimum count to"
39 " reach this percentile of total counts."));
40
41 cl::opt<int> ProfileSummaryCutoffCold(
42 "profile-summary-cutoff-cold", cl::Hidden, cl::init(999999), cl::ZeroOrMore,
43 cl::desc("A count is cold if it is below the minimum count"
44 " to reach this percentile of total counts."));
45
46 cl::opt<unsigned> ProfileSummaryHugeWorkingSetSizeThreshold(
47 "profile-summary-huge-working-set-size-threshold", cl::Hidden,
48 cl::init(15000), cl::ZeroOrMore,
49 cl::desc("The code working set size is considered huge if the number of"
50 " blocks required to reach the -profile-summary-cutoff-hot"
51 " percentile exceeds this count."));
52
53 cl::opt<unsigned> ProfileSummaryLargeWorkingSetSizeThreshold(
54 "profile-summary-large-working-set-size-threshold", cl::Hidden,
55 cl::init(12500), cl::ZeroOrMore,
56 cl::desc("The code working set size is considered large if the number of"
57 " blocks required to reach the -profile-summary-cutoff-hot"
58 " percentile exceeds this count."));
59
60 // The next two options override the counts derived from summary computation and
61 // are useful for debugging purposes.
62 cl::opt<int> ProfileSummaryHotCount(
63 "profile-summary-hot-count", cl::ReallyHidden, cl::ZeroOrMore,
64 cl::desc("A fixed hot count that overrides the count derived from"
65 " profile-summary-cutoff-hot"));
66
67 cl::opt<int> ProfileSummaryColdCount(
68 "profile-summary-cold-count", cl::ReallyHidden, cl::ZeroOrMore,
69 cl::desc("A fixed cold count that overrides the count derived from"
70 " profile-summary-cutoff-cold"));
71
72 // A set of cutoff values. Each value, when divided by ProfileSummary::Scale
73 // (which is 1000000) is a desired percentile of total counts.
74 static const uint32_t DefaultCutoffsData[] = {
75 10000, /* 1% */
76 100000, /* 10% */
77 200000, 300000, 400000, 500000, 600000, 700000, 800000,
78 900000, 950000, 990000, 999000, 999900, 999990, 999999};
79 const ArrayRef<uint32_t> ProfileSummaryBuilder::DefaultCutoffs =
80 DefaultCutoffsData;
81
82 const ProfileSummaryEntry &
getEntryForPercentile(SummaryEntryVector & DS,uint64_t Percentile)83 ProfileSummaryBuilder::getEntryForPercentile(SummaryEntryVector &DS,
84 uint64_t Percentile) {
85 auto It = partition_point(DS, [=](const ProfileSummaryEntry &Entry) {
86 return Entry.Cutoff < Percentile;
87 });
88 // The required percentile has to be <= one of the percentiles in the
89 // detailed summary.
90 if (It == DS.end())
91 report_fatal_error("Desired percentile exceeds the maximum cutoff");
92 return *It;
93 }
94
addRecord(const InstrProfRecord & R)95 void InstrProfSummaryBuilder::addRecord(const InstrProfRecord &R) {
96 // The first counter is not necessarily an entry count for IR
97 // instrumentation profiles.
98 // Eventually MaxFunctionCount will become obsolete and this can be
99 // removed.
100 addEntryCount(R.Counts[0]);
101 for (size_t I = 1, E = R.Counts.size(); I < E; ++I)
102 addInternalCount(R.Counts[I]);
103 }
104
105 // To compute the detailed summary, we consider each line containing samples as
106 // equivalent to a block with a count in the instrumented profile.
addRecord(const sampleprof::FunctionSamples & FS,bool isCallsiteSample)107 void SampleProfileSummaryBuilder::addRecord(
108 const sampleprof::FunctionSamples &FS, bool isCallsiteSample) {
109 if (!isCallsiteSample) {
110 NumFunctions++;
111 if (FS.getHeadSamples() > MaxFunctionCount)
112 MaxFunctionCount = FS.getHeadSamples();
113 }
114 for (const auto &I : FS.getBodySamples()) {
115 uint64_t Count = I.second.getSamples();
116 if (!sampleprof::FunctionSamples::ProfileIsProbeBased ||
117 (Count != sampleprof::FunctionSamples::InvalidProbeCount))
118 addCount(Count);
119 }
120 for (const auto &I : FS.getCallsiteSamples())
121 for (const auto &CS : I.second)
122 addRecord(CS.second, true);
123 }
124
125 // The argument to this method is a vector of cutoff percentages and the return
126 // value is a vector of (Cutoff, MinCount, NumCounts) triplets.
computeDetailedSummary()127 void ProfileSummaryBuilder::computeDetailedSummary() {
128 if (DetailedSummaryCutoffs.empty())
129 return;
130 llvm::sort(DetailedSummaryCutoffs);
131 auto Iter = CountFrequencies.begin();
132 const auto End = CountFrequencies.end();
133
134 uint32_t CountsSeen = 0;
135 uint64_t CurrSum = 0, Count = 0;
136
137 for (const uint32_t Cutoff : DetailedSummaryCutoffs) {
138 assert(Cutoff <= 999999);
139 APInt Temp(128, TotalCount);
140 APInt N(128, Cutoff);
141 APInt D(128, ProfileSummary::Scale);
142 Temp *= N;
143 Temp = Temp.sdiv(D);
144 uint64_t DesiredCount = Temp.getZExtValue();
145 assert(DesiredCount <= TotalCount);
146 while (CurrSum < DesiredCount && Iter != End) {
147 Count = Iter->first;
148 uint32_t Freq = Iter->second;
149 CurrSum += (Count * Freq);
150 CountsSeen += Freq;
151 Iter++;
152 }
153 assert(CurrSum >= DesiredCount);
154 ProfileSummaryEntry PSE = {Cutoff, Count, CountsSeen};
155 DetailedSummary.push_back(PSE);
156 }
157 }
158
getHotCountThreshold(SummaryEntryVector & DS)159 uint64_t ProfileSummaryBuilder::getHotCountThreshold(SummaryEntryVector &DS) {
160 auto &HotEntry =
161 ProfileSummaryBuilder::getEntryForPercentile(DS, ProfileSummaryCutoffHot);
162 uint64_t HotCountThreshold = HotEntry.MinCount;
163 if (ProfileSummaryHotCount.getNumOccurrences() > 0)
164 HotCountThreshold = ProfileSummaryHotCount;
165 return HotCountThreshold;
166 }
167
getColdCountThreshold(SummaryEntryVector & DS)168 uint64_t ProfileSummaryBuilder::getColdCountThreshold(SummaryEntryVector &DS) {
169 auto &ColdEntry = ProfileSummaryBuilder::getEntryForPercentile(
170 DS, ProfileSummaryCutoffCold);
171 uint64_t ColdCountThreshold = ColdEntry.MinCount;
172 if (ProfileSummaryColdCount.getNumOccurrences() > 0)
173 ColdCountThreshold = ProfileSummaryColdCount;
174 return ColdCountThreshold;
175 }
176
getSummary()177 std::unique_ptr<ProfileSummary> SampleProfileSummaryBuilder::getSummary() {
178 computeDetailedSummary();
179 return std::make_unique<ProfileSummary>(
180 ProfileSummary::PSK_Sample, DetailedSummary, TotalCount, MaxCount, 0,
181 MaxFunctionCount, NumCounts, NumFunctions);
182 }
183
184 std::unique_ptr<ProfileSummary>
computeSummaryForProfiles(const StringMap<sampleprof::FunctionSamples> & Profiles)185 SampleProfileSummaryBuilder::computeSummaryForProfiles(
186 const StringMap<sampleprof::FunctionSamples> &Profiles) {
187 assert(NumFunctions == 0 &&
188 "This can only be called on an empty summary builder");
189 StringMap<sampleprof::FunctionSamples> ContextLessProfiles;
190 const StringMap<sampleprof::FunctionSamples> *ProfilesToUse = &Profiles;
191 // For CSSPGO, context-sensitive profile effectively split a function profile
192 // into many copies each representing the CFG profile of a particular calling
193 // context. That makes the count distribution looks more flat as we now have
194 // more function profiles each with lower counts, which in turn leads to lower
195 // hot thresholds. To compensate for that, by defauly we merge context
196 // profiles before coumputing profile summary.
197 if (UseContextLessSummary || (sampleprof::FunctionSamples::ProfileIsCS &&
198 !UseContextLessSummary.getNumOccurrences())) {
199 for (const auto &I : Profiles) {
200 ContextLessProfiles[I.second.getName()].merge(I.second);
201 }
202 ProfilesToUse = &ContextLessProfiles;
203 }
204
205 for (const auto &I : *ProfilesToUse) {
206 const sampleprof::FunctionSamples &Profile = I.second;
207 addRecord(Profile);
208 }
209
210 return getSummary();
211 }
212
getSummary()213 std::unique_ptr<ProfileSummary> InstrProfSummaryBuilder::getSummary() {
214 computeDetailedSummary();
215 return std::make_unique<ProfileSummary>(
216 ProfileSummary::PSK_Instr, DetailedSummary, TotalCount, MaxCount,
217 MaxInternalBlockCount, MaxFunctionCount, NumCounts, NumFunctions);
218 }
219
addEntryCount(uint64_t Count)220 void InstrProfSummaryBuilder::addEntryCount(uint64_t Count) {
221 NumFunctions++;
222
223 // Skip invalid count.
224 if (Count == (uint64_t)-1)
225 return;
226
227 addCount(Count);
228 if (Count > MaxFunctionCount)
229 MaxFunctionCount = Count;
230 }
231
addInternalCount(uint64_t Count)232 void InstrProfSummaryBuilder::addInternalCount(uint64_t Count) {
233 // Skip invalid count.
234 if (Count == (uint64_t)-1)
235 return;
236
237 addCount(Count);
238 if (Count > MaxInternalBlockCount)
239 MaxInternalBlockCount = Count;
240 }
241