1 //===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileProber transformation.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Transforms/IPO/SampleProfileProbe.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/BlockFrequencyInfo.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/IR/BasicBlock.h"
18 #include "llvm/IR/CFG.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/GlobalValue.h"
23 #include "llvm/IR/GlobalVariable.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instruction.h"
26 #include "llvm/IR/MDBuilder.h"
27 #include "llvm/ProfileData/SampleProf.h"
28 #include "llvm/Support/CRC.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Transforms/Instrumentation.h"
31 #include "llvm/Transforms/Utils/ModuleUtils.h"
32 #include <unordered_set>
33 #include <vector>
34
35 using namespace llvm;
36 #define DEBUG_TYPE "sample-profile-probe"
37
38 STATISTIC(ArtificialDbgLine,
39 "Number of probes that have an artificial debug line");
40
41 static cl::opt<bool>
42 VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden,
43 cl::desc("Do pseudo probe verification"));
44
45 static cl::list<std::string> VerifyPseudoProbeFuncList(
46 "verify-pseudo-probe-funcs", cl::Hidden,
47 cl::desc("The option to specify the name of the functions to verify."));
48
49 static cl::opt<bool>
50 UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden,
51 cl::desc("Update pseudo probe distribution factor"));
52
getCallStackHash(const DILocation * DIL)53 static uint64_t getCallStackHash(const DILocation *DIL) {
54 uint64_t Hash = 0;
55 const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr;
56 while (InlinedAt) {
57 Hash ^= MD5Hash(std::to_string(InlinedAt->getLine()));
58 Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn()));
59 const DISubprogram *SP = InlinedAt->getScope()->getSubprogram();
60 // Use linkage name for C++ if possible.
61 auto Name = SP->getLinkageName();
62 if (Name.empty())
63 Name = SP->getName();
64 Hash ^= MD5Hash(Name);
65 InlinedAt = InlinedAt->getInlinedAt();
66 }
67 return Hash;
68 }
69
computeCallStackHash(const Instruction & Inst)70 static uint64_t computeCallStackHash(const Instruction &Inst) {
71 return getCallStackHash(Inst.getDebugLoc());
72 }
73
shouldVerifyFunction(const Function * F)74 bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) {
75 // Skip function declaration.
76 if (F->isDeclaration())
77 return false;
78 // Skip function that will not be emitted into object file. The prevailing
79 // defintion will be verified instead.
80 if (F->hasAvailableExternallyLinkage())
81 return false;
82 // Do a name matching.
83 static std::unordered_set<std::string> VerifyFuncNames(
84 VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end());
85 return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str());
86 }
87
registerCallbacks(PassInstrumentationCallbacks & PIC)88 void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) {
89 if (VerifyPseudoProbe) {
90 PIC.registerAfterPassCallback(
91 [this](StringRef P, Any IR, const PreservedAnalyses &) {
92 this->runAfterPass(P, IR);
93 });
94 }
95 }
96
97 // Callback to run after each transformation for the new pass manager.
runAfterPass(StringRef PassID,Any IR)98 void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) {
99 std::string Banner =
100 "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n";
101 dbgs() << Banner;
102 if (any_isa<const Module *>(IR))
103 runAfterPass(any_cast<const Module *>(IR));
104 else if (any_isa<const Function *>(IR))
105 runAfterPass(any_cast<const Function *>(IR));
106 else if (any_isa<const LazyCallGraph::SCC *>(IR))
107 runAfterPass(any_cast<const LazyCallGraph::SCC *>(IR));
108 else if (any_isa<const Loop *>(IR))
109 runAfterPass(any_cast<const Loop *>(IR));
110 else
111 llvm_unreachable("Unknown IR unit");
112 }
113
runAfterPass(const Module * M)114 void PseudoProbeVerifier::runAfterPass(const Module *M) {
115 for (const Function &F : *M)
116 runAfterPass(&F);
117 }
118
runAfterPass(const LazyCallGraph::SCC * C)119 void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) {
120 for (const LazyCallGraph::Node &N : *C)
121 runAfterPass(&N.getFunction());
122 }
123
runAfterPass(const Function * F)124 void PseudoProbeVerifier::runAfterPass(const Function *F) {
125 if (!shouldVerifyFunction(F))
126 return;
127 ProbeFactorMap ProbeFactors;
128 for (const auto &BB : *F)
129 collectProbeFactors(&BB, ProbeFactors);
130 verifyProbeFactors(F, ProbeFactors);
131 }
132
runAfterPass(const Loop * L)133 void PseudoProbeVerifier::runAfterPass(const Loop *L) {
134 const Function *F = L->getHeader()->getParent();
135 runAfterPass(F);
136 }
137
collectProbeFactors(const BasicBlock * Block,ProbeFactorMap & ProbeFactors)138 void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block,
139 ProbeFactorMap &ProbeFactors) {
140 for (const auto &I : *Block) {
141 if (Optional<PseudoProbe> Probe = extractProbe(I)) {
142 uint64_t Hash = computeCallStackHash(I);
143 ProbeFactors[{Probe->Id, Hash}] += Probe->Factor;
144 }
145 }
146 }
147
verifyProbeFactors(const Function * F,const ProbeFactorMap & ProbeFactors)148 void PseudoProbeVerifier::verifyProbeFactors(
149 const Function *F, const ProbeFactorMap &ProbeFactors) {
150 bool BannerPrinted = false;
151 auto &PrevProbeFactors = FunctionProbeFactors[F->getName()];
152 for (const auto &I : ProbeFactors) {
153 float CurProbeFactor = I.second;
154 if (PrevProbeFactors.count(I.first)) {
155 float PrevProbeFactor = PrevProbeFactors[I.first];
156 if (std::abs(CurProbeFactor - PrevProbeFactor) >
157 DistributionFactorVariance) {
158 if (!BannerPrinted) {
159 dbgs() << "Function " << F->getName() << ":\n";
160 BannerPrinted = true;
161 }
162 dbgs() << "Probe " << I.first.first << "\tprevious factor "
163 << format("%0.2f", PrevProbeFactor) << "\tcurrent factor "
164 << format("%0.2f", CurProbeFactor) << "\n";
165 }
166 }
167
168 // Update
169 PrevProbeFactors[I.first] = I.second;
170 }
171 }
172
PseudoProbeManager(const Module & M)173 PseudoProbeManager::PseudoProbeManager(const Module &M) {
174 if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) {
175 for (const auto *Operand : FuncInfo->operands()) {
176 const auto *MD = cast<MDNode>(Operand);
177 auto GUID =
178 mdconst::dyn_extract<ConstantInt>(MD->getOperand(0))->getZExtValue();
179 auto Hash =
180 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
181 GUIDToProbeDescMap.try_emplace(GUID, PseudoProbeDescriptor(GUID, Hash));
182 }
183 }
184 }
185
186 const PseudoProbeDescriptor *
getDesc(const Function & F) const187 PseudoProbeManager::getDesc(const Function &F) const {
188 auto I = GUIDToProbeDescMap.find(
189 Function::getGUID(FunctionSamples::getCanonicalFnName(F)));
190 return I == GUIDToProbeDescMap.end() ? nullptr : &I->second;
191 }
192
moduleIsProbed(const Module & M) const193 bool PseudoProbeManager::moduleIsProbed(const Module &M) const {
194 return M.getNamedMetadata(PseudoProbeDescMetadataName);
195 }
196
profileIsValid(const Function & F,const FunctionSamples & Samples) const197 bool PseudoProbeManager::profileIsValid(const Function &F,
198 const FunctionSamples &Samples) const {
199 const auto *Desc = getDesc(F);
200 if (!Desc) {
201 LLVM_DEBUG(dbgs() << "Probe descriptor missing for Function " << F.getName()
202 << "\n");
203 return false;
204 } else {
205 if (Desc->getFunctionHash() != Samples.getFunctionHash()) {
206 LLVM_DEBUG(dbgs() << "Hash mismatch for Function " << F.getName()
207 << "\n");
208 return false;
209 }
210 }
211 return true;
212 }
213
SampleProfileProber(Function & Func,const std::string & CurModuleUniqueId)214 SampleProfileProber::SampleProfileProber(Function &Func,
215 const std::string &CurModuleUniqueId)
216 : F(&Func), CurModuleUniqueId(CurModuleUniqueId) {
217 BlockProbeIds.clear();
218 CallProbeIds.clear();
219 LastProbeId = (uint32_t)PseudoProbeReservedId::Last;
220 computeProbeIdForBlocks();
221 computeProbeIdForCallsites();
222 computeCFGHash();
223 }
224
225 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
226 // value of each BB in the CFG. The higher 32 bits record the number of edges
227 // preceded by the number of indirect calls.
228 // This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash().
computeCFGHash()229 void SampleProfileProber::computeCFGHash() {
230 std::vector<uint8_t> Indexes;
231 JamCRC JC;
232 for (auto &BB : *F) {
233 auto *TI = BB.getTerminator();
234 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
235 auto *Succ = TI->getSuccessor(I);
236 auto Index = getBlockId(Succ);
237 for (int J = 0; J < 4; J++)
238 Indexes.push_back((uint8_t)(Index >> (J * 8)));
239 }
240 }
241
242 JC.update(Indexes);
243
244 FunctionHash = (uint64_t)CallProbeIds.size() << 48 |
245 (uint64_t)Indexes.size() << 32 | JC.getCRC();
246 // Reserve bit 60-63 for other information purpose.
247 FunctionHash &= 0x0FFFFFFFFFFFFFFF;
248 assert(FunctionHash && "Function checksum should not be zero");
249 LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName()
250 << ":\n"
251 << " CRC = " << JC.getCRC() << ", Edges = "
252 << Indexes.size() << ", ICSites = " << CallProbeIds.size()
253 << ", Hash = " << FunctionHash << "\n");
254 }
255
computeProbeIdForBlocks()256 void SampleProfileProber::computeProbeIdForBlocks() {
257 for (auto &BB : *F) {
258 BlockProbeIds[&BB] = ++LastProbeId;
259 }
260 }
261
computeProbeIdForCallsites()262 void SampleProfileProber::computeProbeIdForCallsites() {
263 for (auto &BB : *F) {
264 for (auto &I : BB) {
265 if (!isa<CallBase>(I))
266 continue;
267 if (isa<IntrinsicInst>(&I))
268 continue;
269 CallProbeIds[&I] = ++LastProbeId;
270 }
271 }
272 }
273
getBlockId(const BasicBlock * BB) const274 uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const {
275 auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB));
276 return I == BlockProbeIds.end() ? 0 : I->second;
277 }
278
getCallsiteId(const Instruction * Call) const279 uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const {
280 auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call));
281 return Iter == CallProbeIds.end() ? 0 : Iter->second;
282 }
283
instrumentOneFunc(Function & F,TargetMachine * TM)284 void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) {
285 Module *M = F.getParent();
286 MDBuilder MDB(F.getContext());
287 // Compute a GUID without considering the function's linkage type. This is
288 // fine since function name is the only key in the profile database.
289 uint64_t Guid = Function::getGUID(F.getName());
290
291 // Assign an artificial debug line to a probe that doesn't come with a real
292 // line. A probe not having a debug line will get an incomplete inline
293 // context. This will cause samples collected on the probe to be counted
294 // into the base profile instead of a context profile. The line number
295 // itself is not important though.
296 auto AssignDebugLoc = [&](Instruction *I) {
297 assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) &&
298 "Expecting pseudo probe or call instructions");
299 if (!I->getDebugLoc()) {
300 if (auto *SP = F.getSubprogram()) {
301 auto DIL = DILocation::get(SP->getContext(), 0, 0, SP);
302 I->setDebugLoc(DIL);
303 ArtificialDbgLine++;
304 LLVM_DEBUG({
305 dbgs() << "\nIn Function " << F.getName()
306 << " Probe gets an artificial debug line\n";
307 I->dump();
308 });
309 }
310 }
311 };
312
313 // Probe basic blocks.
314 for (auto &I : BlockProbeIds) {
315 BasicBlock *BB = I.first;
316 uint32_t Index = I.second;
317 // Insert a probe before an instruction with a valid debug line number which
318 // will be assigned to the probe. The line number will be used later to
319 // model the inline context when the probe is inlined into other functions.
320 // Debug instructions, phi nodes and lifetime markers do not have an valid
321 // line number. Real instructions generated by optimizations may not come
322 // with a line number either.
323 auto HasValidDbgLine = [](Instruction *J) {
324 return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) &&
325 !J->isLifetimeStartOrEnd() && J->getDebugLoc();
326 };
327
328 Instruction *J = &*BB->getFirstInsertionPt();
329 while (J != BB->getTerminator() && !HasValidDbgLine(J)) {
330 J = J->getNextNode();
331 }
332
333 IRBuilder<> Builder(J);
334 assert(Builder.GetInsertPoint() != BB->end() &&
335 "Cannot get the probing point");
336 Function *ProbeFn =
337 llvm::Intrinsic::getDeclaration(M, Intrinsic::pseudoprobe);
338 Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index),
339 Builder.getInt32(0),
340 Builder.getInt64(PseudoProbeFullDistributionFactor)};
341 auto *Probe = Builder.CreateCall(ProbeFn, Args);
342 AssignDebugLoc(Probe);
343 }
344
345 // Probe both direct calls and indirect calls. Direct calls are probed so that
346 // their probe ID can be used as an call site identifier to represent a
347 // calling context.
348 for (auto &I : CallProbeIds) {
349 auto *Call = I.first;
350 uint32_t Index = I.second;
351 uint32_t Type = cast<CallBase>(Call)->getCalledFunction()
352 ? (uint32_t)PseudoProbeType::DirectCall
353 : (uint32_t)PseudoProbeType::IndirectCall;
354 AssignDebugLoc(Call);
355 // Levarge the 32-bit discriminator field of debug data to store the ID and
356 // type of a callsite probe. This gets rid of the dependency on plumbing a
357 // customized metadata through the codegen pipeline.
358 uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData(
359 Index, Type, 0, PseudoProbeDwarfDiscriminator::FullDistributionFactor);
360 if (auto DIL = Call->getDebugLoc()) {
361 DIL = DIL->cloneWithDiscriminator(V);
362 Call->setDebugLoc(DIL);
363 }
364 }
365
366 // Create module-level metadata that contains function info necessary to
367 // synthesize probe-based sample counts, which are
368 // - FunctionGUID
369 // - FunctionHash.
370 // - FunctionName
371 auto Hash = getFunctionHash();
372 auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, &F);
373 auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName);
374 assert(NMD && "llvm.pseudo_probe_desc should be pre-created");
375 NMD->addOperand(MD);
376
377 // Preserve a comdat group to hold all probes materialized later. This
378 // allows that when the function is considered dead and removed, the
379 // materialized probes are disposed too.
380 // Imported functions are defined in another module. They do not need
381 // the following handling since same care will be taken for them in their
382 // original module. The pseudo probes inserted into an imported functions
383 // above will naturally not be emitted since the imported function is free
384 // from object emission. However they will be emitted together with the
385 // inliner functions that the imported function is inlined into. We are not
386 // creating a comdat group for an import function since it's useless anyway.
387 if (!F.isDeclarationForLinker()) {
388 if (TM) {
389 auto Triple = TM->getTargetTriple();
390 if (Triple.supportsCOMDAT() && TM->getFunctionSections())
391 getOrCreateFunctionComdat(F, Triple);
392 }
393 }
394 }
395
run(Module & M,ModuleAnalysisManager & AM)396 PreservedAnalyses SampleProfileProbePass::run(Module &M,
397 ModuleAnalysisManager &AM) {
398 auto ModuleId = getUniqueModuleId(&M);
399 // Create the pseudo probe desc metadata beforehand.
400 // Note that modules with only data but no functions will require this to
401 // be set up so that they will be known as probed later.
402 M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName);
403
404 for (auto &F : M) {
405 if (F.isDeclaration())
406 continue;
407 SampleProfileProber ProbeManager(F, ModuleId);
408 ProbeManager.instrumentOneFunc(F, TM);
409 }
410
411 return PreservedAnalyses::none();
412 }
413
runOnFunction(Function & F,FunctionAnalysisManager & FAM)414 void PseudoProbeUpdatePass::runOnFunction(Function &F,
415 FunctionAnalysisManager &FAM) {
416 BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
417 auto BBProfileCount = [&BFI](BasicBlock *BB) {
418 return BFI.getBlockProfileCount(BB)
419 ? BFI.getBlockProfileCount(BB).getValue()
420 : 0;
421 };
422
423 // Collect the sum of execution weight for each probe.
424 ProbeFactorMap ProbeFactors;
425 for (auto &Block : F) {
426 for (auto &I : Block) {
427 if (Optional<PseudoProbe> Probe = extractProbe(I)) {
428 // Do not count dangling probes since they are logically deleted and the
429 // current block that a dangling probe resides in doesn't reflect the
430 // execution count of the probe. The original samples of the probe will
431 // be distributed among the rest probes if there are any, this is
432 // less-than-deal but at least we don't lose any samples.
433 if (!Probe->isDangling()) {
434 uint64_t Hash = computeCallStackHash(I);
435 ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block);
436 }
437 }
438 }
439 }
440
441 // Fix up over-counted probes.
442 for (auto &Block : F) {
443 for (auto &I : Block) {
444 if (Optional<PseudoProbe> Probe = extractProbe(I)) {
445 // Ignore danling probes since they are logically deleted and should do
446 // not consume any profile samples in the subsequent profile annotation.
447 if (!Probe->isDangling()) {
448 uint64_t Hash = computeCallStackHash(I);
449 float Sum = ProbeFactors[{Probe->Id, Hash}];
450 if (Sum != 0)
451 setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum);
452 }
453 }
454 }
455 }
456 }
457
run(Module & M,ModuleAnalysisManager & AM)458 PreservedAnalyses PseudoProbeUpdatePass::run(Module &M,
459 ModuleAnalysisManager &AM) {
460 if (UpdatePseudoProbe) {
461 for (auto &F : M) {
462 if (F.isDeclaration())
463 continue;
464 FunctionAnalysisManager &FAM =
465 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
466 runOnFunction(F, FAM);
467 }
468 }
469 return PreservedAnalyses::none();
470 }
471