1 //===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileProber transformation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/IPO/SampleProfileProbe.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/BlockFrequencyInfo.h" 16 #include "llvm/Analysis/EHUtils.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DiagnosticInfo.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/PseudoProbe.h" 27 #include "llvm/ProfileData/SampleProf.h" 28 #include "llvm/Support/CRC.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Transforms/Utils/Instrumentation.h" 32 #include "llvm/Transforms/Utils/ModuleUtils.h" 33 #include <unordered_set> 34 #include <vector> 35 36 using namespace llvm; 37 #define DEBUG_TYPE "pseudo-probe" 38 39 STATISTIC(ArtificialDbgLine, 40 "Number of probes that have an artificial debug line"); 41 42 static cl::opt<bool> 43 VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden, 44 cl::desc("Do pseudo probe verification")); 45 46 static cl::list<std::string> VerifyPseudoProbeFuncList( 47 "verify-pseudo-probe-funcs", cl::Hidden, 48 cl::desc("The option to specify the name of the functions to verify.")); 49 50 static cl::opt<bool> 51 UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden, 52 cl::desc("Update pseudo probe distribution factor")); 53 54 static uint64_t getCallStackHash(const DILocation *DIL) { 55 uint64_t Hash = 0; 56 const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr; 57 while (InlinedAt) { 58 Hash ^= MD5Hash(std::to_string(InlinedAt->getLine())); 59 Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn())); 60 auto Name = InlinedAt->getSubprogramLinkageName(); 61 Hash ^= MD5Hash(Name); 62 InlinedAt = InlinedAt->getInlinedAt(); 63 } 64 return Hash; 65 } 66 67 static uint64_t computeCallStackHash(const Instruction &Inst) { 68 return getCallStackHash(Inst.getDebugLoc()); 69 } 70 71 bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) { 72 // Skip function declaration. 73 if (F->isDeclaration()) 74 return false; 75 // Skip function that will not be emitted into object file. The prevailing 76 // defintion will be verified instead. 77 if (F->hasAvailableExternallyLinkage()) 78 return false; 79 // Do a name matching. 80 static std::unordered_set<std::string> VerifyFuncNames( 81 VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end()); 82 return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str()); 83 } 84 85 void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) { 86 if (VerifyPseudoProbe) { 87 PIC.registerAfterPassCallback( 88 [this](StringRef P, Any IR, const PreservedAnalyses &) { 89 this->runAfterPass(P, IR); 90 }); 91 } 92 } 93 94 // Callback to run after each transformation for the new pass manager. 95 void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) { 96 std::string Banner = 97 "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n"; 98 dbgs() << Banner; 99 if (const auto **M = llvm::any_cast<const Module *>(&IR)) 100 runAfterPass(*M); 101 else if (const auto **F = llvm::any_cast<const Function *>(&IR)) 102 runAfterPass(*F); 103 else if (const auto **C = llvm::any_cast<const LazyCallGraph::SCC *>(&IR)) 104 runAfterPass(*C); 105 else if (const auto **L = llvm::any_cast<const Loop *>(&IR)) 106 runAfterPass(*L); 107 else 108 llvm_unreachable("Unknown IR unit"); 109 } 110 111 void PseudoProbeVerifier::runAfterPass(const Module *M) { 112 for (const Function &F : *M) 113 runAfterPass(&F); 114 } 115 116 void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) { 117 for (const LazyCallGraph::Node &N : *C) 118 runAfterPass(&N.getFunction()); 119 } 120 121 void PseudoProbeVerifier::runAfterPass(const Function *F) { 122 if (!shouldVerifyFunction(F)) 123 return; 124 ProbeFactorMap ProbeFactors; 125 for (const auto &BB : *F) 126 collectProbeFactors(&BB, ProbeFactors); 127 verifyProbeFactors(F, ProbeFactors); 128 } 129 130 void PseudoProbeVerifier::runAfterPass(const Loop *L) { 131 const Function *F = L->getHeader()->getParent(); 132 runAfterPass(F); 133 } 134 135 void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block, 136 ProbeFactorMap &ProbeFactors) { 137 for (const auto &I : *Block) { 138 if (std::optional<PseudoProbe> Probe = extractProbe(I)) { 139 uint64_t Hash = computeCallStackHash(I); 140 ProbeFactors[{Probe->Id, Hash}] += Probe->Factor; 141 } 142 } 143 } 144 145 void PseudoProbeVerifier::verifyProbeFactors( 146 const Function *F, const ProbeFactorMap &ProbeFactors) { 147 bool BannerPrinted = false; 148 auto &PrevProbeFactors = FunctionProbeFactors[F->getName()]; 149 for (const auto &I : ProbeFactors) { 150 float CurProbeFactor = I.second; 151 if (PrevProbeFactors.count(I.first)) { 152 float PrevProbeFactor = PrevProbeFactors[I.first]; 153 if (std::abs(CurProbeFactor - PrevProbeFactor) > 154 DistributionFactorVariance) { 155 if (!BannerPrinted) { 156 dbgs() << "Function " << F->getName() << ":\n"; 157 BannerPrinted = true; 158 } 159 dbgs() << "Probe " << I.first.first << "\tprevious factor " 160 << format("%0.2f", PrevProbeFactor) << "\tcurrent factor " 161 << format("%0.2f", CurProbeFactor) << "\n"; 162 } 163 } 164 165 // Update 166 PrevProbeFactors[I.first] = I.second; 167 } 168 } 169 170 SampleProfileProber::SampleProfileProber(Function &Func, 171 const std::string &CurModuleUniqueId) 172 : F(&Func), CurModuleUniqueId(CurModuleUniqueId) { 173 BlockProbeIds.clear(); 174 CallProbeIds.clear(); 175 LastProbeId = (uint32_t)PseudoProbeReservedId::Last; 176 177 DenseSet<BasicBlock *> BlocksToIgnore; 178 DenseSet<BasicBlock *> BlocksAndCallsToIgnore; 179 computeBlocksToIgnore(BlocksToIgnore, BlocksAndCallsToIgnore); 180 181 computeProbeId(BlocksToIgnore, BlocksAndCallsToIgnore); 182 computeCFGHash(BlocksToIgnore); 183 } 184 185 // Two purposes to compute the blocks to ignore: 186 // 1. Reduce the IR size. 187 // 2. Make the instrumentation(checksum) stable. e.g. the frondend may 188 // generate unstable IR while optimizing nounwind attribute, some versions are 189 // optimized with the call-to-invoke conversion, while other versions do not. 190 // This discrepancy in probe ID could cause profile mismatching issues. 191 // Note that those ignored blocks are either cold blocks or new split blocks 192 // whose original blocks are instrumented, so it shouldn't degrade the profile 193 // quality. 194 void SampleProfileProber::computeBlocksToIgnore( 195 DenseSet<BasicBlock *> &BlocksToIgnore, 196 DenseSet<BasicBlock *> &BlocksAndCallsToIgnore) { 197 // Ignore the cold EH and unreachable blocks and calls. 198 computeEHOnlyBlocks(*F, BlocksAndCallsToIgnore); 199 findUnreachableBlocks(BlocksAndCallsToIgnore); 200 201 BlocksToIgnore.insert(BlocksAndCallsToIgnore.begin(), 202 BlocksAndCallsToIgnore.end()); 203 204 // Handle the call-to-invoke conversion case: make sure that the probe id and 205 // callsite id are consistent before and after the block split. For block 206 // probe, we only keep the head block probe id and ignore the block ids of the 207 // normal dests. For callsite probe, it's different to block probe, there is 208 // no additional callsite in the normal dests, so we don't ignore the 209 // callsites. 210 findInvokeNormalDests(BlocksToIgnore); 211 } 212 213 // Unreachable blocks and calls are always cold, ignore them. 214 void SampleProfileProber::findUnreachableBlocks( 215 DenseSet<BasicBlock *> &BlocksToIgnore) { 216 for (auto &BB : *F) { 217 if (&BB != &F->getEntryBlock() && pred_size(&BB) == 0) 218 BlocksToIgnore.insert(&BB); 219 } 220 } 221 222 // In call-to-invoke conversion, basic block can be split into multiple blocks, 223 // only instrument probe in the head block, ignore the normal dests. 224 void SampleProfileProber::findInvokeNormalDests( 225 DenseSet<BasicBlock *> &InvokeNormalDests) { 226 for (auto &BB : *F) { 227 auto *TI = BB.getTerminator(); 228 if (auto *II = dyn_cast<InvokeInst>(TI)) { 229 auto *ND = II->getNormalDest(); 230 InvokeNormalDests.insert(ND); 231 232 // The normal dest and the try/catch block are connected by an 233 // unconditional branch. 234 while (pred_size(ND) == 1) { 235 auto *Pred = *pred_begin(ND); 236 if (succ_size(Pred) == 1) { 237 InvokeNormalDests.insert(Pred); 238 ND = Pred; 239 } else 240 break; 241 } 242 } 243 } 244 } 245 246 // The call-to-invoke conversion splits the original block into a list of block, 247 // we need to compute the hash using the original block's successors to keep the 248 // CFG Hash consistent. For a given head block, we keep searching the 249 // succesor(normal dest or unconditional branch dest) to find the tail block, 250 // the tail block's successors are the original block's successors. 251 const Instruction *SampleProfileProber::getOriginalTerminator( 252 const BasicBlock *Head, const DenseSet<BasicBlock *> &BlocksToIgnore) { 253 auto *TI = Head->getTerminator(); 254 if (auto *II = dyn_cast<InvokeInst>(TI)) { 255 return getOriginalTerminator(II->getNormalDest(), BlocksToIgnore); 256 } else if (succ_size(Head) == 1 && 257 BlocksToIgnore.contains(*succ_begin(Head))) { 258 // Go to the unconditional branch dest. 259 return getOriginalTerminator(*succ_begin(Head), BlocksToIgnore); 260 } 261 return TI; 262 } 263 264 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index 265 // value of each BB in the CFG. The higher 32 bits record the number of edges 266 // preceded by the number of indirect calls. 267 // This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash(). 268 void SampleProfileProber::computeCFGHash( 269 const DenseSet<BasicBlock *> &BlocksToIgnore) { 270 std::vector<uint8_t> Indexes; 271 JamCRC JC; 272 for (auto &BB : *F) { 273 if (BlocksToIgnore.contains(&BB)) 274 continue; 275 276 auto *TI = getOriginalTerminator(&BB, BlocksToIgnore); 277 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { 278 auto *Succ = TI->getSuccessor(I); 279 auto Index = getBlockId(Succ); 280 // Ingore ignored-block(zero ID) to avoid unstable checksum. 281 if (Index == 0) 282 continue; 283 for (int J = 0; J < 4; J++) 284 Indexes.push_back((uint8_t)(Index >> (J * 8))); 285 } 286 } 287 288 JC.update(Indexes); 289 290 FunctionHash = (uint64_t)CallProbeIds.size() << 48 | 291 (uint64_t)Indexes.size() << 32 | JC.getCRC(); 292 // Reserve bit 60-63 for other information purpose. 293 FunctionHash &= 0x0FFFFFFFFFFFFFFF; 294 assert(FunctionHash && "Function checksum should not be zero"); 295 LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName() 296 << ":\n" 297 << " CRC = " << JC.getCRC() << ", Edges = " 298 << Indexes.size() << ", ICSites = " << CallProbeIds.size() 299 << ", Hash = " << FunctionHash << "\n"); 300 } 301 302 void SampleProfileProber::computeProbeId( 303 const DenseSet<BasicBlock *> &BlocksToIgnore, 304 const DenseSet<BasicBlock *> &BlocksAndCallsToIgnore) { 305 LLVMContext &Ctx = F->getContext(); 306 Module *M = F->getParent(); 307 308 for (auto &BB : *F) { 309 if (!BlocksToIgnore.contains(&BB)) 310 BlockProbeIds[&BB] = ++LastProbeId; 311 312 if (BlocksAndCallsToIgnore.contains(&BB)) 313 continue; 314 for (auto &I : BB) { 315 if (!isa<CallBase>(I) || isa<IntrinsicInst>(&I)) 316 continue; 317 318 // The current implementation uses the lower 16 bits of the discriminator 319 // so anything larger than 0xFFFF will be ignored. 320 if (LastProbeId >= 0xFFFF) { 321 std::string Msg = "Pseudo instrumentation incomplete for " + 322 std::string(F->getName()) + " because it's too large"; 323 Ctx.diagnose( 324 DiagnosticInfoSampleProfile(M->getName().data(), Msg, DS_Warning)); 325 return; 326 } 327 328 CallProbeIds[&I] = ++LastProbeId; 329 } 330 } 331 } 332 333 uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const { 334 auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB)); 335 return I == BlockProbeIds.end() ? 0 : I->second; 336 } 337 338 uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const { 339 auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call)); 340 return Iter == CallProbeIds.end() ? 0 : Iter->second; 341 } 342 343 void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) { 344 Module *M = F.getParent(); 345 MDBuilder MDB(F.getContext()); 346 // Since the GUID from probe desc and inline stack are computed separately, we 347 // need to make sure their names are consistent, so here also use the name 348 // from debug info. 349 StringRef FName = F.getName(); 350 if (auto *SP = F.getSubprogram()) { 351 FName = SP->getLinkageName(); 352 if (FName.empty()) 353 FName = SP->getName(); 354 } 355 uint64_t Guid = Function::getGUID(FName); 356 357 // Assign an artificial debug line to a probe that doesn't come with a real 358 // line. A probe not having a debug line will get an incomplete inline 359 // context. This will cause samples collected on the probe to be counted 360 // into the base profile instead of a context profile. The line number 361 // itself is not important though. 362 auto AssignDebugLoc = [&](Instruction *I) { 363 assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) && 364 "Expecting pseudo probe or call instructions"); 365 if (!I->getDebugLoc()) { 366 if (auto *SP = F.getSubprogram()) { 367 auto DIL = DILocation::get(SP->getContext(), 0, 0, SP); 368 I->setDebugLoc(DIL); 369 ArtificialDbgLine++; 370 LLVM_DEBUG({ 371 dbgs() << "\nIn Function " << F.getName() 372 << " Probe gets an artificial debug line\n"; 373 I->dump(); 374 }); 375 } 376 } 377 }; 378 379 // Probe basic blocks. 380 for (auto &I : BlockProbeIds) { 381 BasicBlock *BB = I.first; 382 uint32_t Index = I.second; 383 // Insert a probe before an instruction with a valid debug line number which 384 // will be assigned to the probe. The line number will be used later to 385 // model the inline context when the probe is inlined into other functions. 386 // Debug instructions, phi nodes and lifetime markers do not have an valid 387 // line number. Real instructions generated by optimizations may not come 388 // with a line number either. 389 auto HasValidDbgLine = [](Instruction *J) { 390 return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) && 391 !J->isLifetimeStartOrEnd() && J->getDebugLoc(); 392 }; 393 394 Instruction *J = &*BB->getFirstInsertionPt(); 395 while (J != BB->getTerminator() && !HasValidDbgLine(J)) { 396 J = J->getNextNode(); 397 } 398 399 IRBuilder<> Builder(J); 400 assert(Builder.GetInsertPoint() != BB->end() && 401 "Cannot get the probing point"); 402 Function *ProbeFn = 403 llvm::Intrinsic::getOrInsertDeclaration(M, Intrinsic::pseudoprobe); 404 Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index), 405 Builder.getInt32(0), 406 Builder.getInt64(PseudoProbeFullDistributionFactor)}; 407 auto *Probe = Builder.CreateCall(ProbeFn, Args); 408 AssignDebugLoc(Probe); 409 // Reset the dwarf discriminator if the debug location comes with any. The 410 // discriminator field may be used by FS-AFDO later in the pipeline. 411 if (auto DIL = Probe->getDebugLoc()) { 412 if (DIL->getDiscriminator()) { 413 DIL = DIL->cloneWithDiscriminator(0); 414 Probe->setDebugLoc(DIL); 415 } 416 } 417 } 418 419 // Probe both direct calls and indirect calls. Direct calls are probed so that 420 // their probe ID can be used as an call site identifier to represent a 421 // calling context. 422 for (auto &I : CallProbeIds) { 423 auto *Call = I.first; 424 uint32_t Index = I.second; 425 uint32_t Type = cast<CallBase>(Call)->getCalledFunction() 426 ? (uint32_t)PseudoProbeType::DirectCall 427 : (uint32_t)PseudoProbeType::IndirectCall; 428 AssignDebugLoc(Call); 429 if (auto DIL = Call->getDebugLoc()) { 430 // Levarge the 32-bit discriminator field of debug data to store the ID 431 // and type of a callsite probe. This gets rid of the dependency on 432 // plumbing a customized metadata through the codegen pipeline. 433 uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData( 434 Index, Type, 0, PseudoProbeDwarfDiscriminator::FullDistributionFactor, 435 DIL->getBaseDiscriminator()); 436 DIL = DIL->cloneWithDiscriminator(V); 437 Call->setDebugLoc(DIL); 438 } 439 } 440 441 // Create module-level metadata that contains function info necessary to 442 // synthesize probe-based sample counts, which are 443 // - FunctionGUID 444 // - FunctionHash. 445 // - FunctionName 446 auto Hash = getFunctionHash(); 447 auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, FName); 448 auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName); 449 assert(NMD && "llvm.pseudo_probe_desc should be pre-created"); 450 NMD->addOperand(MD); 451 } 452 453 PreservedAnalyses SampleProfileProbePass::run(Module &M, 454 ModuleAnalysisManager &AM) { 455 auto ModuleId = getUniqueModuleId(&M); 456 // Create the pseudo probe desc metadata beforehand. 457 // Note that modules with only data but no functions will require this to 458 // be set up so that they will be known as probed later. 459 M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName); 460 461 for (auto &F : M) { 462 if (F.isDeclaration()) 463 continue; 464 SampleProfileProber ProbeManager(F, ModuleId); 465 ProbeManager.instrumentOneFunc(F, TM); 466 } 467 468 return PreservedAnalyses::none(); 469 } 470 471 void PseudoProbeUpdatePass::runOnFunction(Function &F, 472 FunctionAnalysisManager &FAM) { 473 BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F); 474 auto BBProfileCount = [&BFI](BasicBlock *BB) { 475 return BFI.getBlockProfileCount(BB).value_or(0); 476 }; 477 478 // Collect the sum of execution weight for each probe. 479 ProbeFactorMap ProbeFactors; 480 for (auto &Block : F) { 481 for (auto &I : Block) { 482 if (std::optional<PseudoProbe> Probe = extractProbe(I)) { 483 uint64_t Hash = computeCallStackHash(I); 484 ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block); 485 } 486 } 487 } 488 489 // Fix up over-counted probes. 490 for (auto &Block : F) { 491 for (auto &I : Block) { 492 if (std::optional<PseudoProbe> Probe = extractProbe(I)) { 493 uint64_t Hash = computeCallStackHash(I); 494 float Sum = ProbeFactors[{Probe->Id, Hash}]; 495 if (Sum != 0) 496 setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum); 497 } 498 } 499 } 500 } 501 502 PreservedAnalyses PseudoProbeUpdatePass::run(Module &M, 503 ModuleAnalysisManager &AM) { 504 if (UpdatePseudoProbe) { 505 for (auto &F : M) { 506 if (F.isDeclaration()) 507 continue; 508 FunctionAnalysisManager &FAM = 509 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 510 runOnFunction(F, FAM); 511 } 512 } 513 return PreservedAnalyses::none(); 514 } 515