xref: /llvm-project/llvm/lib/Transforms/IPO/SampleProfileProbe.cpp (revision 98ea1a81a28a6dd36941456c8ab4ce46f665f57a)
1 //===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileProber transformation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/IPO/SampleProfileProbe.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/BlockFrequencyInfo.h"
16 #include "llvm/Analysis/EHUtils.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PseudoProbe.h"
27 #include "llvm/ProfileData/SampleProf.h"
28 #include "llvm/Support/CRC.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Transforms/Utils/Instrumentation.h"
32 #include "llvm/Transforms/Utils/ModuleUtils.h"
33 #include <unordered_set>
34 #include <vector>
35 
36 using namespace llvm;
37 #define DEBUG_TYPE "pseudo-probe"
38 
39 STATISTIC(ArtificialDbgLine,
40           "Number of probes that have an artificial debug line");
41 
42 static cl::opt<bool>
43     VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden,
44                       cl::desc("Do pseudo probe verification"));
45 
46 static cl::list<std::string> VerifyPseudoProbeFuncList(
47     "verify-pseudo-probe-funcs", cl::Hidden,
48     cl::desc("The option to specify the name of the functions to verify."));
49 
50 static cl::opt<bool>
51     UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden,
52                       cl::desc("Update pseudo probe distribution factor"));
53 
54 static uint64_t getCallStackHash(const DILocation *DIL) {
55   uint64_t Hash = 0;
56   const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr;
57   while (InlinedAt) {
58     Hash ^= MD5Hash(std::to_string(InlinedAt->getLine()));
59     Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn()));
60     auto Name = InlinedAt->getSubprogramLinkageName();
61     Hash ^= MD5Hash(Name);
62     InlinedAt = InlinedAt->getInlinedAt();
63   }
64   return Hash;
65 }
66 
67 static uint64_t computeCallStackHash(const Instruction &Inst) {
68   return getCallStackHash(Inst.getDebugLoc());
69 }
70 
71 bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) {
72   // Skip function declaration.
73   if (F->isDeclaration())
74     return false;
75   // Skip function that will not be emitted into object file. The prevailing
76   // defintion will be verified instead.
77   if (F->hasAvailableExternallyLinkage())
78     return false;
79   // Do a name matching.
80   static std::unordered_set<std::string> VerifyFuncNames(
81       VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end());
82   return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str());
83 }
84 
85 void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) {
86   if (VerifyPseudoProbe) {
87     PIC.registerAfterPassCallback(
88         [this](StringRef P, Any IR, const PreservedAnalyses &) {
89           this->runAfterPass(P, IR);
90         });
91   }
92 }
93 
94 // Callback to run after each transformation for the new pass manager.
95 void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) {
96   std::string Banner =
97       "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n";
98   dbgs() << Banner;
99   if (const auto **M = llvm::any_cast<const Module *>(&IR))
100     runAfterPass(*M);
101   else if (const auto **F = llvm::any_cast<const Function *>(&IR))
102     runAfterPass(*F);
103   else if (const auto **C = llvm::any_cast<const LazyCallGraph::SCC *>(&IR))
104     runAfterPass(*C);
105   else if (const auto **L = llvm::any_cast<const Loop *>(&IR))
106     runAfterPass(*L);
107   else
108     llvm_unreachable("Unknown IR unit");
109 }
110 
111 void PseudoProbeVerifier::runAfterPass(const Module *M) {
112   for (const Function &F : *M)
113     runAfterPass(&F);
114 }
115 
116 void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) {
117   for (const LazyCallGraph::Node &N : *C)
118     runAfterPass(&N.getFunction());
119 }
120 
121 void PseudoProbeVerifier::runAfterPass(const Function *F) {
122   if (!shouldVerifyFunction(F))
123     return;
124   ProbeFactorMap ProbeFactors;
125   for (const auto &BB : *F)
126     collectProbeFactors(&BB, ProbeFactors);
127   verifyProbeFactors(F, ProbeFactors);
128 }
129 
130 void PseudoProbeVerifier::runAfterPass(const Loop *L) {
131   const Function *F = L->getHeader()->getParent();
132   runAfterPass(F);
133 }
134 
135 void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block,
136                                               ProbeFactorMap &ProbeFactors) {
137   for (const auto &I : *Block) {
138     if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
139       uint64_t Hash = computeCallStackHash(I);
140       ProbeFactors[{Probe->Id, Hash}] += Probe->Factor;
141     }
142   }
143 }
144 
145 void PseudoProbeVerifier::verifyProbeFactors(
146     const Function *F, const ProbeFactorMap &ProbeFactors) {
147   bool BannerPrinted = false;
148   auto &PrevProbeFactors = FunctionProbeFactors[F->getName()];
149   for (const auto &I : ProbeFactors) {
150     float CurProbeFactor = I.second;
151     if (PrevProbeFactors.count(I.first)) {
152       float PrevProbeFactor = PrevProbeFactors[I.first];
153       if (std::abs(CurProbeFactor - PrevProbeFactor) >
154           DistributionFactorVariance) {
155         if (!BannerPrinted) {
156           dbgs() << "Function " << F->getName() << ":\n";
157           BannerPrinted = true;
158         }
159         dbgs() << "Probe " << I.first.first << "\tprevious factor "
160                << format("%0.2f", PrevProbeFactor) << "\tcurrent factor "
161                << format("%0.2f", CurProbeFactor) << "\n";
162       }
163     }
164 
165     // Update
166     PrevProbeFactors[I.first] = I.second;
167   }
168 }
169 
170 SampleProfileProber::SampleProfileProber(Function &Func,
171                                          const std::string &CurModuleUniqueId)
172     : F(&Func), CurModuleUniqueId(CurModuleUniqueId) {
173   BlockProbeIds.clear();
174   CallProbeIds.clear();
175   LastProbeId = (uint32_t)PseudoProbeReservedId::Last;
176 
177   DenseSet<BasicBlock *> BlocksToIgnore;
178   DenseSet<BasicBlock *> BlocksAndCallsToIgnore;
179   computeBlocksToIgnore(BlocksToIgnore, BlocksAndCallsToIgnore);
180 
181   computeProbeId(BlocksToIgnore, BlocksAndCallsToIgnore);
182   computeCFGHash(BlocksToIgnore);
183 }
184 
185 // Two purposes to compute the blocks to ignore:
186 // 1. Reduce the IR size.
187 // 2. Make the instrumentation(checksum) stable. e.g. the frondend may
188 // generate unstable IR while optimizing nounwind attribute, some versions are
189 // optimized with the call-to-invoke conversion, while other versions do not.
190 // This discrepancy in probe ID could cause profile mismatching issues.
191 // Note that those ignored blocks are either cold blocks or new split blocks
192 // whose original blocks are instrumented, so it shouldn't degrade the profile
193 // quality.
194 void SampleProfileProber::computeBlocksToIgnore(
195     DenseSet<BasicBlock *> &BlocksToIgnore,
196     DenseSet<BasicBlock *> &BlocksAndCallsToIgnore) {
197   // Ignore the cold EH and unreachable blocks and calls.
198   computeEHOnlyBlocks(*F, BlocksAndCallsToIgnore);
199   findUnreachableBlocks(BlocksAndCallsToIgnore);
200 
201   BlocksToIgnore.insert(BlocksAndCallsToIgnore.begin(),
202                         BlocksAndCallsToIgnore.end());
203 
204   // Handle the call-to-invoke conversion case: make sure that the probe id and
205   // callsite id are consistent before and after the block split. For block
206   // probe, we only keep the head block probe id and ignore the block ids of the
207   // normal dests. For callsite probe, it's different to block probe, there is
208   // no additional callsite in the normal dests, so we don't ignore the
209   // callsites.
210   findInvokeNormalDests(BlocksToIgnore);
211 }
212 
213 // Unreachable blocks and calls are always cold, ignore them.
214 void SampleProfileProber::findUnreachableBlocks(
215     DenseSet<BasicBlock *> &BlocksToIgnore) {
216   for (auto &BB : *F) {
217     if (&BB != &F->getEntryBlock() && pred_size(&BB) == 0)
218       BlocksToIgnore.insert(&BB);
219   }
220 }
221 
222 // In call-to-invoke conversion, basic block can be split into multiple blocks,
223 // only instrument probe in the head block, ignore the normal dests.
224 void SampleProfileProber::findInvokeNormalDests(
225     DenseSet<BasicBlock *> &InvokeNormalDests) {
226   for (auto &BB : *F) {
227     auto *TI = BB.getTerminator();
228     if (auto *II = dyn_cast<InvokeInst>(TI)) {
229       auto *ND = II->getNormalDest();
230       InvokeNormalDests.insert(ND);
231 
232       // The normal dest and the try/catch block are connected by an
233       // unconditional branch.
234       while (pred_size(ND) == 1) {
235         auto *Pred = *pred_begin(ND);
236         if (succ_size(Pred) == 1) {
237           InvokeNormalDests.insert(Pred);
238           ND = Pred;
239         } else
240           break;
241       }
242     }
243   }
244 }
245 
246 // The call-to-invoke conversion splits the original block into a list of block,
247 // we need to compute the hash using the original block's successors to keep the
248 // CFG Hash consistent. For a given head block, we keep searching the
249 // succesor(normal dest or unconditional branch dest) to find the tail block,
250 // the tail block's successors are the original block's successors.
251 const Instruction *SampleProfileProber::getOriginalTerminator(
252     const BasicBlock *Head, const DenseSet<BasicBlock *> &BlocksToIgnore) {
253   auto *TI = Head->getTerminator();
254   if (auto *II = dyn_cast<InvokeInst>(TI)) {
255     return getOriginalTerminator(II->getNormalDest(), BlocksToIgnore);
256   } else if (succ_size(Head) == 1 &&
257              BlocksToIgnore.contains(*succ_begin(Head))) {
258     // Go to the unconditional branch dest.
259     return getOriginalTerminator(*succ_begin(Head), BlocksToIgnore);
260   }
261   return TI;
262 }
263 
264 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
265 // value of each BB in the CFG. The higher 32 bits record the number of edges
266 // preceded by the number of indirect calls.
267 // This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash().
268 void SampleProfileProber::computeCFGHash(
269     const DenseSet<BasicBlock *> &BlocksToIgnore) {
270   std::vector<uint8_t> Indexes;
271   JamCRC JC;
272   for (auto &BB : *F) {
273     if (BlocksToIgnore.contains(&BB))
274       continue;
275 
276     auto *TI = getOriginalTerminator(&BB, BlocksToIgnore);
277     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
278       auto *Succ = TI->getSuccessor(I);
279       auto Index = getBlockId(Succ);
280       // Ingore ignored-block(zero ID) to avoid unstable checksum.
281       if (Index == 0)
282         continue;
283       for (int J = 0; J < 4; J++)
284         Indexes.push_back((uint8_t)(Index >> (J * 8)));
285     }
286   }
287 
288   JC.update(Indexes);
289 
290   FunctionHash = (uint64_t)CallProbeIds.size() << 48 |
291                  (uint64_t)Indexes.size() << 32 | JC.getCRC();
292   // Reserve bit 60-63 for other information purpose.
293   FunctionHash &= 0x0FFFFFFFFFFFFFFF;
294   assert(FunctionHash && "Function checksum should not be zero");
295   LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName()
296                     << ":\n"
297                     << " CRC = " << JC.getCRC() << ", Edges = "
298                     << Indexes.size() << ", ICSites = " << CallProbeIds.size()
299                     << ", Hash = " << FunctionHash << "\n");
300 }
301 
302 void SampleProfileProber::computeProbeId(
303     const DenseSet<BasicBlock *> &BlocksToIgnore,
304     const DenseSet<BasicBlock *> &BlocksAndCallsToIgnore) {
305   LLVMContext &Ctx = F->getContext();
306   Module *M = F->getParent();
307 
308   for (auto &BB : *F) {
309     if (!BlocksToIgnore.contains(&BB))
310       BlockProbeIds[&BB] = ++LastProbeId;
311 
312     if (BlocksAndCallsToIgnore.contains(&BB))
313       continue;
314     for (auto &I : BB) {
315       if (!isa<CallBase>(I) || isa<IntrinsicInst>(&I))
316         continue;
317 
318       // The current implementation uses the lower 16 bits of the discriminator
319       // so anything larger than 0xFFFF will be ignored.
320       if (LastProbeId >= 0xFFFF) {
321         std::string Msg = "Pseudo instrumentation incomplete for " +
322                           std::string(F->getName()) + " because it's too large";
323         Ctx.diagnose(
324             DiagnosticInfoSampleProfile(M->getName().data(), Msg, DS_Warning));
325         return;
326       }
327 
328       CallProbeIds[&I] = ++LastProbeId;
329     }
330   }
331 }
332 
333 uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const {
334   auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB));
335   return I == BlockProbeIds.end() ? 0 : I->second;
336 }
337 
338 uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const {
339   auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call));
340   return Iter == CallProbeIds.end() ? 0 : Iter->second;
341 }
342 
343 void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) {
344   Module *M = F.getParent();
345   MDBuilder MDB(F.getContext());
346   // Since the GUID from probe desc and inline stack are computed separately, we
347   // need to make sure their names are consistent, so here also use the name
348   // from debug info.
349   StringRef FName = F.getName();
350   if (auto *SP = F.getSubprogram()) {
351     FName = SP->getLinkageName();
352     if (FName.empty())
353       FName = SP->getName();
354   }
355   uint64_t Guid = Function::getGUID(FName);
356 
357   // Assign an artificial debug line to a probe that doesn't come with a real
358   // line. A probe not having a debug line will get an incomplete inline
359   // context. This will cause samples collected on the probe to be counted
360   // into the base profile instead of a context profile. The line number
361   // itself is not important though.
362   auto AssignDebugLoc = [&](Instruction *I) {
363     assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) &&
364            "Expecting pseudo probe or call instructions");
365     if (!I->getDebugLoc()) {
366       if (auto *SP = F.getSubprogram()) {
367         auto DIL = DILocation::get(SP->getContext(), 0, 0, SP);
368         I->setDebugLoc(DIL);
369         ArtificialDbgLine++;
370         LLVM_DEBUG({
371           dbgs() << "\nIn Function " << F.getName()
372                  << " Probe gets an artificial debug line\n";
373           I->dump();
374         });
375       }
376     }
377   };
378 
379   // Probe basic blocks.
380   for (auto &I : BlockProbeIds) {
381     BasicBlock *BB = I.first;
382     uint32_t Index = I.second;
383     // Insert a probe before an instruction with a valid debug line number which
384     // will be assigned to the probe. The line number will be used later to
385     // model the inline context when the probe is inlined into other functions.
386     // Debug instructions, phi nodes and lifetime markers do not have an valid
387     // line number. Real instructions generated by optimizations may not come
388     // with a line number either.
389     auto HasValidDbgLine = [](Instruction *J) {
390       return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) &&
391              !J->isLifetimeStartOrEnd() && J->getDebugLoc();
392     };
393 
394     Instruction *J = &*BB->getFirstInsertionPt();
395     while (J != BB->getTerminator() && !HasValidDbgLine(J)) {
396       J = J->getNextNode();
397     }
398 
399     IRBuilder<> Builder(J);
400     assert(Builder.GetInsertPoint() != BB->end() &&
401            "Cannot get the probing point");
402     Function *ProbeFn =
403         llvm::Intrinsic::getOrInsertDeclaration(M, Intrinsic::pseudoprobe);
404     Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index),
405                      Builder.getInt32(0),
406                      Builder.getInt64(PseudoProbeFullDistributionFactor)};
407     auto *Probe = Builder.CreateCall(ProbeFn, Args);
408     AssignDebugLoc(Probe);
409     // Reset the dwarf discriminator if the debug location comes with any. The
410     // discriminator field may be used by FS-AFDO later in the pipeline.
411     if (auto DIL = Probe->getDebugLoc()) {
412       if (DIL->getDiscriminator()) {
413         DIL = DIL->cloneWithDiscriminator(0);
414         Probe->setDebugLoc(DIL);
415       }
416     }
417   }
418 
419   // Probe both direct calls and indirect calls. Direct calls are probed so that
420   // their probe ID can be used as an call site identifier to represent a
421   // calling context.
422   for (auto &I : CallProbeIds) {
423     auto *Call = I.first;
424     uint32_t Index = I.second;
425     uint32_t Type = cast<CallBase>(Call)->getCalledFunction()
426                         ? (uint32_t)PseudoProbeType::DirectCall
427                         : (uint32_t)PseudoProbeType::IndirectCall;
428     AssignDebugLoc(Call);
429     if (auto DIL = Call->getDebugLoc()) {
430       // Levarge the 32-bit discriminator field of debug data to store the ID
431       // and type of a callsite probe. This gets rid of the dependency on
432       // plumbing a customized metadata through the codegen pipeline.
433       uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData(
434           Index, Type, 0, PseudoProbeDwarfDiscriminator::FullDistributionFactor,
435           DIL->getBaseDiscriminator());
436       DIL = DIL->cloneWithDiscriminator(V);
437       Call->setDebugLoc(DIL);
438     }
439   }
440 
441   // Create module-level metadata that contains function info necessary to
442   // synthesize probe-based sample counts,  which are
443   // - FunctionGUID
444   // - FunctionHash.
445   // - FunctionName
446   auto Hash = getFunctionHash();
447   auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, FName);
448   auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName);
449   assert(NMD && "llvm.pseudo_probe_desc should be pre-created");
450   NMD->addOperand(MD);
451 }
452 
453 PreservedAnalyses SampleProfileProbePass::run(Module &M,
454                                               ModuleAnalysisManager &AM) {
455   auto ModuleId = getUniqueModuleId(&M);
456   // Create the pseudo probe desc metadata beforehand.
457   // Note that modules with only data but no functions will require this to
458   // be set up so that they will be known as probed later.
459   M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName);
460 
461   for (auto &F : M) {
462     if (F.isDeclaration())
463       continue;
464     SampleProfileProber ProbeManager(F, ModuleId);
465     ProbeManager.instrumentOneFunc(F, TM);
466   }
467 
468   return PreservedAnalyses::none();
469 }
470 
471 void PseudoProbeUpdatePass::runOnFunction(Function &F,
472                                           FunctionAnalysisManager &FAM) {
473   BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
474   auto BBProfileCount = [&BFI](BasicBlock *BB) {
475     return BFI.getBlockProfileCount(BB).value_or(0);
476   };
477 
478   // Collect the sum of execution weight for each probe.
479   ProbeFactorMap ProbeFactors;
480   for (auto &Block : F) {
481     for (auto &I : Block) {
482       if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
483         uint64_t Hash = computeCallStackHash(I);
484         ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block);
485       }
486     }
487   }
488 
489   // Fix up over-counted probes.
490   for (auto &Block : F) {
491     for (auto &I : Block) {
492       if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
493         uint64_t Hash = computeCallStackHash(I);
494         float Sum = ProbeFactors[{Probe->Id, Hash}];
495         if (Sum != 0)
496           setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum);
497       }
498     }
499   }
500 }
501 
502 PreservedAnalyses PseudoProbeUpdatePass::run(Module &M,
503                                              ModuleAnalysisManager &AM) {
504   if (UpdatePseudoProbe) {
505     for (auto &F : M) {
506       if (F.isDeclaration())
507         continue;
508       FunctionAnalysisManager &FAM =
509           AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
510       runOnFunction(F, FAM);
511     }
512   }
513   return PreservedAnalyses::none();
514 }
515