1 //===-- InstrProfiling.cpp - Frontend instrumentation based profiling -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass lowers instrprof_* intrinsics emitted by a frontend for profiling.
10 // It also builds the data structures and initialization code needed for
11 // updating execution counts and emitting the profile at runtime.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Instrumentation/InstrProfiling.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Analysis/BlockFrequencyInfo.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DIBuilder.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/ProfileData/InstrProf.h"
45 #include "llvm/ProfileData/InstrProfCorrelator.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Error.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Transforms/Utils/ModuleUtils.h"
51 #include "llvm/Transforms/Utils/SSAUpdater.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstdint>
55 #include <string>
56
57 using namespace llvm;
58
59 #define DEBUG_TYPE "instrprof"
60
61 namespace llvm {
62 cl::opt<bool>
63 DebugInfoCorrelate("debug-info-correlate",
64 cl::desc("Use debug info to correlate profiles."),
65 cl::init(false));
66 } // namespace llvm
67
68 namespace {
69
70 cl::opt<bool> DoHashBasedCounterSplit(
71 "hash-based-counter-split",
72 cl::desc("Rename counter variable of a comdat function based on cfg hash"),
73 cl::init(true));
74
75 cl::opt<bool>
76 RuntimeCounterRelocation("runtime-counter-relocation",
77 cl::desc("Enable relocating counters at runtime."),
78 cl::init(false));
79
80 cl::opt<bool> ValueProfileStaticAlloc(
81 "vp-static-alloc",
82 cl::desc("Do static counter allocation for value profiler"),
83 cl::init(true));
84
85 cl::opt<double> NumCountersPerValueSite(
86 "vp-counters-per-site",
87 cl::desc("The average number of profile counters allocated "
88 "per value profiling site."),
89 // This is set to a very small value because in real programs, only
90 // a very small percentage of value sites have non-zero targets, e.g, 1/30.
91 // For those sites with non-zero profile, the average number of targets
92 // is usually smaller than 2.
93 cl::init(1.0));
94
95 cl::opt<bool> AtomicCounterUpdateAll(
96 "instrprof-atomic-counter-update-all",
97 cl::desc("Make all profile counter updates atomic (for testing only)"),
98 cl::init(false));
99
100 cl::opt<bool> AtomicCounterUpdatePromoted(
101 "atomic-counter-update-promoted",
102 cl::desc("Do counter update using atomic fetch add "
103 " for promoted counters only"),
104 cl::init(false));
105
106 cl::opt<bool> AtomicFirstCounter(
107 "atomic-first-counter",
108 cl::desc("Use atomic fetch add for first counter in a function (usually "
109 "the entry counter)"),
110 cl::init(false));
111
112 // If the option is not specified, the default behavior about whether
113 // counter promotion is done depends on how instrumentaiton lowering
114 // pipeline is setup, i.e., the default value of true of this option
115 // does not mean the promotion will be done by default. Explicitly
116 // setting this option can override the default behavior.
117 cl::opt<bool> DoCounterPromotion("do-counter-promotion",
118 cl::desc("Do counter register promotion"),
119 cl::init(false));
120 cl::opt<unsigned> MaxNumOfPromotionsPerLoop(
121 "max-counter-promotions-per-loop", cl::init(20),
122 cl::desc("Max number counter promotions per loop to avoid"
123 " increasing register pressure too much"));
124
125 // A debug option
126 cl::opt<int>
127 MaxNumOfPromotions("max-counter-promotions", cl::init(-1),
128 cl::desc("Max number of allowed counter promotions"));
129
130 cl::opt<unsigned> SpeculativeCounterPromotionMaxExiting(
131 "speculative-counter-promotion-max-exiting", cl::init(3),
132 cl::desc("The max number of exiting blocks of a loop to allow "
133 " speculative counter promotion"));
134
135 cl::opt<bool> SpeculativeCounterPromotionToLoop(
136 "speculative-counter-promotion-to-loop",
137 cl::desc("When the option is false, if the target block is in a loop, "
138 "the promotion will be disallowed unless the promoted counter "
139 " update can be further/iteratively promoted into an acyclic "
140 " region."));
141
142 cl::opt<bool> IterativeCounterPromotion(
143 "iterative-counter-promotion", cl::init(true),
144 cl::desc("Allow counter promotion across the whole loop nest."));
145
146 cl::opt<bool> SkipRetExitBlock(
147 "skip-ret-exit-block", cl::init(true),
148 cl::desc("Suppress counter promotion if exit blocks contain ret."));
149
150 ///
151 /// A helper class to promote one counter RMW operation in the loop
152 /// into register update.
153 ///
154 /// RWM update for the counter will be sinked out of the loop after
155 /// the transformation.
156 ///
157 class PGOCounterPromoterHelper : public LoadAndStorePromoter {
158 public:
PGOCounterPromoterHelper(Instruction * L,Instruction * S,SSAUpdater & SSA,Value * Init,BasicBlock * PH,ArrayRef<BasicBlock * > ExitBlocks,ArrayRef<Instruction * > InsertPts,DenseMap<Loop *,SmallVector<LoadStorePair,8>> & LoopToCands,LoopInfo & LI)159 PGOCounterPromoterHelper(
160 Instruction *L, Instruction *S, SSAUpdater &SSA, Value *Init,
161 BasicBlock *PH, ArrayRef<BasicBlock *> ExitBlocks,
162 ArrayRef<Instruction *> InsertPts,
163 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands,
164 LoopInfo &LI)
165 : LoadAndStorePromoter({L, S}, SSA), Store(S), ExitBlocks(ExitBlocks),
166 InsertPts(InsertPts), LoopToCandidates(LoopToCands), LI(LI) {
167 assert(isa<LoadInst>(L));
168 assert(isa<StoreInst>(S));
169 SSA.AddAvailableValue(PH, Init);
170 }
171
doExtraRewritesBeforeFinalDeletion()172 void doExtraRewritesBeforeFinalDeletion() override {
173 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
174 BasicBlock *ExitBlock = ExitBlocks[i];
175 Instruction *InsertPos = InsertPts[i];
176 // Get LiveIn value into the ExitBlock. If there are multiple
177 // predecessors, the value is defined by a PHI node in this
178 // block.
179 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
180 Value *Addr = cast<StoreInst>(Store)->getPointerOperand();
181 Type *Ty = LiveInValue->getType();
182 IRBuilder<> Builder(InsertPos);
183 if (auto *AddrInst = dyn_cast_or_null<IntToPtrInst>(Addr)) {
184 // If isRuntimeCounterRelocationEnabled() is true then the address of
185 // the store instruction is computed with two instructions in
186 // InstrProfiling::getCounterAddress(). We need to copy those
187 // instructions to this block to compute Addr correctly.
188 // %BiasAdd = add i64 ptrtoint <__profc_>, <__llvm_profile_counter_bias>
189 // %Addr = inttoptr i64 %BiasAdd to i64*
190 auto *OrigBiasInst = dyn_cast<BinaryOperator>(AddrInst->getOperand(0));
191 assert(OrigBiasInst->getOpcode() == Instruction::BinaryOps::Add);
192 Value *BiasInst = Builder.Insert(OrigBiasInst->clone());
193 Addr = Builder.CreateIntToPtr(BiasInst, Ty->getPointerTo());
194 }
195 if (AtomicCounterUpdatePromoted)
196 // automic update currently can only be promoted across the current
197 // loop, not the whole loop nest.
198 Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, LiveInValue,
199 MaybeAlign(),
200 AtomicOrdering::SequentiallyConsistent);
201 else {
202 LoadInst *OldVal = Builder.CreateLoad(Ty, Addr, "pgocount.promoted");
203 auto *NewVal = Builder.CreateAdd(OldVal, LiveInValue);
204 auto *NewStore = Builder.CreateStore(NewVal, Addr);
205
206 // Now update the parent loop's candidate list:
207 if (IterativeCounterPromotion) {
208 auto *TargetLoop = LI.getLoopFor(ExitBlock);
209 if (TargetLoop)
210 LoopToCandidates[TargetLoop].emplace_back(OldVal, NewStore);
211 }
212 }
213 }
214 }
215
216 private:
217 Instruction *Store;
218 ArrayRef<BasicBlock *> ExitBlocks;
219 ArrayRef<Instruction *> InsertPts;
220 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates;
221 LoopInfo &LI;
222 };
223
224 /// A helper class to do register promotion for all profile counter
225 /// updates in a loop.
226 ///
227 class PGOCounterPromoter {
228 public:
PGOCounterPromoter(DenseMap<Loop *,SmallVector<LoadStorePair,8>> & LoopToCands,Loop & CurLoop,LoopInfo & LI,BlockFrequencyInfo * BFI)229 PGOCounterPromoter(
230 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands,
231 Loop &CurLoop, LoopInfo &LI, BlockFrequencyInfo *BFI)
232 : LoopToCandidates(LoopToCands), L(CurLoop), LI(LI), BFI(BFI) {
233
234 // Skip collection of ExitBlocks and InsertPts for loops that will not be
235 // able to have counters promoted.
236 SmallVector<BasicBlock *, 8> LoopExitBlocks;
237 SmallPtrSet<BasicBlock *, 8> BlockSet;
238
239 L.getExitBlocks(LoopExitBlocks);
240 if (!isPromotionPossible(&L, LoopExitBlocks))
241 return;
242
243 for (BasicBlock *ExitBlock : LoopExitBlocks) {
244 if (BlockSet.insert(ExitBlock).second) {
245 ExitBlocks.push_back(ExitBlock);
246 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
247 }
248 }
249 }
250
run(int64_t * NumPromoted)251 bool run(int64_t *NumPromoted) {
252 // Skip 'infinite' loops:
253 if (ExitBlocks.size() == 0)
254 return false;
255
256 // Skip if any of the ExitBlocks contains a ret instruction.
257 // This is to prevent dumping of incomplete profile -- if the
258 // the loop is a long running loop and dump is called in the middle
259 // of the loop, the result profile is incomplete.
260 // FIXME: add other heuristics to detect long running loops.
261 if (SkipRetExitBlock) {
262 for (auto *BB : ExitBlocks)
263 if (isa<ReturnInst>(BB->getTerminator()))
264 return false;
265 }
266
267 unsigned MaxProm = getMaxNumOfPromotionsInLoop(&L);
268 if (MaxProm == 0)
269 return false;
270
271 unsigned Promoted = 0;
272 for (auto &Cand : LoopToCandidates[&L]) {
273
274 SmallVector<PHINode *, 4> NewPHIs;
275 SSAUpdater SSA(&NewPHIs);
276 Value *InitVal = ConstantInt::get(Cand.first->getType(), 0);
277
278 // If BFI is set, we will use it to guide the promotions.
279 if (BFI) {
280 auto *BB = Cand.first->getParent();
281 auto InstrCount = BFI->getBlockProfileCount(BB);
282 if (!InstrCount)
283 continue;
284 auto PreheaderCount = BFI->getBlockProfileCount(L.getLoopPreheader());
285 // If the average loop trip count is not greater than 1.5, we skip
286 // promotion.
287 if (PreheaderCount && (*PreheaderCount * 3) >= (*InstrCount * 2))
288 continue;
289 }
290
291 PGOCounterPromoterHelper Promoter(Cand.first, Cand.second, SSA, InitVal,
292 L.getLoopPreheader(), ExitBlocks,
293 InsertPts, LoopToCandidates, LI);
294 Promoter.run(SmallVector<Instruction *, 2>({Cand.first, Cand.second}));
295 Promoted++;
296 if (Promoted >= MaxProm)
297 break;
298
299 (*NumPromoted)++;
300 if (MaxNumOfPromotions != -1 && *NumPromoted >= MaxNumOfPromotions)
301 break;
302 }
303
304 LLVM_DEBUG(dbgs() << Promoted << " counters promoted for loop (depth="
305 << L.getLoopDepth() << ")\n");
306 return Promoted != 0;
307 }
308
309 private:
allowSpeculativeCounterPromotion(Loop * LP)310 bool allowSpeculativeCounterPromotion(Loop *LP) {
311 SmallVector<BasicBlock *, 8> ExitingBlocks;
312 L.getExitingBlocks(ExitingBlocks);
313 // Not considierered speculative.
314 if (ExitingBlocks.size() == 1)
315 return true;
316 if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting)
317 return false;
318 return true;
319 }
320
321 // Check whether the loop satisfies the basic conditions needed to perform
322 // Counter Promotions.
323 bool
isPromotionPossible(Loop * LP,const SmallVectorImpl<BasicBlock * > & LoopExitBlocks)324 isPromotionPossible(Loop *LP,
325 const SmallVectorImpl<BasicBlock *> &LoopExitBlocks) {
326 // We can't insert into a catchswitch.
327 if (llvm::any_of(LoopExitBlocks, [](BasicBlock *Exit) {
328 return isa<CatchSwitchInst>(Exit->getTerminator());
329 }))
330 return false;
331
332 if (!LP->hasDedicatedExits())
333 return false;
334
335 BasicBlock *PH = LP->getLoopPreheader();
336 if (!PH)
337 return false;
338
339 return true;
340 }
341
342 // Returns the max number of Counter Promotions for LP.
getMaxNumOfPromotionsInLoop(Loop * LP)343 unsigned getMaxNumOfPromotionsInLoop(Loop *LP) {
344 SmallVector<BasicBlock *, 8> LoopExitBlocks;
345 LP->getExitBlocks(LoopExitBlocks);
346 if (!isPromotionPossible(LP, LoopExitBlocks))
347 return 0;
348
349 SmallVector<BasicBlock *, 8> ExitingBlocks;
350 LP->getExitingBlocks(ExitingBlocks);
351
352 // If BFI is set, we do more aggressive promotions based on BFI.
353 if (BFI)
354 return (unsigned)-1;
355
356 // Not considierered speculative.
357 if (ExitingBlocks.size() == 1)
358 return MaxNumOfPromotionsPerLoop;
359
360 if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting)
361 return 0;
362
363 // Whether the target block is in a loop does not matter:
364 if (SpeculativeCounterPromotionToLoop)
365 return MaxNumOfPromotionsPerLoop;
366
367 // Now check the target block:
368 unsigned MaxProm = MaxNumOfPromotionsPerLoop;
369 for (auto *TargetBlock : LoopExitBlocks) {
370 auto *TargetLoop = LI.getLoopFor(TargetBlock);
371 if (!TargetLoop)
372 continue;
373 unsigned MaxPromForTarget = getMaxNumOfPromotionsInLoop(TargetLoop);
374 unsigned PendingCandsInTarget = LoopToCandidates[TargetLoop].size();
375 MaxProm =
376 std::min(MaxProm, std::max(MaxPromForTarget, PendingCandsInTarget) -
377 PendingCandsInTarget);
378 }
379 return MaxProm;
380 }
381
382 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates;
383 SmallVector<BasicBlock *, 8> ExitBlocks;
384 SmallVector<Instruction *, 8> InsertPts;
385 Loop &L;
386 LoopInfo &LI;
387 BlockFrequencyInfo *BFI;
388 };
389
390 enum class ValueProfilingCallType {
391 // Individual values are tracked. Currently used for indiret call target
392 // profiling.
393 Default,
394
395 // MemOp: the memop size value profiling.
396 MemOp
397 };
398
399 } // end anonymous namespace
400
run(Module & M,ModuleAnalysisManager & AM)401 PreservedAnalyses InstrProfiling::run(Module &M, ModuleAnalysisManager &AM) {
402 FunctionAnalysisManager &FAM =
403 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
404 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
405 return FAM.getResult<TargetLibraryAnalysis>(F);
406 };
407 if (!run(M, GetTLI))
408 return PreservedAnalyses::all();
409
410 return PreservedAnalyses::none();
411 }
412
lowerIntrinsics(Function * F)413 bool InstrProfiling::lowerIntrinsics(Function *F) {
414 bool MadeChange = false;
415 PromotionCandidates.clear();
416 for (BasicBlock &BB : *F) {
417 for (Instruction &Instr : llvm::make_early_inc_range(BB)) {
418 if (auto *IPIS = dyn_cast<InstrProfIncrementInstStep>(&Instr)) {
419 lowerIncrement(IPIS);
420 MadeChange = true;
421 } else if (auto *IPI = dyn_cast<InstrProfIncrementInst>(&Instr)) {
422 lowerIncrement(IPI);
423 MadeChange = true;
424 } else if (auto *IPC = dyn_cast<InstrProfCoverInst>(&Instr)) {
425 lowerCover(IPC);
426 MadeChange = true;
427 } else if (auto *IPVP = dyn_cast<InstrProfValueProfileInst>(&Instr)) {
428 lowerValueProfileInst(IPVP);
429 MadeChange = true;
430 }
431 }
432 }
433
434 if (!MadeChange)
435 return false;
436
437 promoteCounterLoadStores(F);
438 return true;
439 }
440
isRuntimeCounterRelocationEnabled() const441 bool InstrProfiling::isRuntimeCounterRelocationEnabled() const {
442 // Mach-O don't support weak external references.
443 if (TT.isOSBinFormatMachO())
444 return false;
445
446 if (RuntimeCounterRelocation.getNumOccurrences() > 0)
447 return RuntimeCounterRelocation;
448
449 // Fuchsia uses runtime counter relocation by default.
450 return TT.isOSFuchsia();
451 }
452
isCounterPromotionEnabled() const453 bool InstrProfiling::isCounterPromotionEnabled() const {
454 if (DoCounterPromotion.getNumOccurrences() > 0)
455 return DoCounterPromotion;
456
457 return Options.DoCounterPromotion;
458 }
459
promoteCounterLoadStores(Function * F)460 void InstrProfiling::promoteCounterLoadStores(Function *F) {
461 if (!isCounterPromotionEnabled())
462 return;
463
464 DominatorTree DT(*F);
465 LoopInfo LI(DT);
466 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> LoopPromotionCandidates;
467
468 std::unique_ptr<BlockFrequencyInfo> BFI;
469 if (Options.UseBFIInPromotion) {
470 std::unique_ptr<BranchProbabilityInfo> BPI;
471 BPI.reset(new BranchProbabilityInfo(*F, LI, &GetTLI(*F)));
472 BFI.reset(new BlockFrequencyInfo(*F, *BPI, LI));
473 }
474
475 for (const auto &LoadStore : PromotionCandidates) {
476 auto *CounterLoad = LoadStore.first;
477 auto *CounterStore = LoadStore.second;
478 BasicBlock *BB = CounterLoad->getParent();
479 Loop *ParentLoop = LI.getLoopFor(BB);
480 if (!ParentLoop)
481 continue;
482 LoopPromotionCandidates[ParentLoop].emplace_back(CounterLoad, CounterStore);
483 }
484
485 SmallVector<Loop *, 4> Loops = LI.getLoopsInPreorder();
486
487 // Do a post-order traversal of the loops so that counter updates can be
488 // iteratively hoisted outside the loop nest.
489 for (auto *Loop : llvm::reverse(Loops)) {
490 PGOCounterPromoter Promoter(LoopPromotionCandidates, *Loop, LI, BFI.get());
491 Promoter.run(&TotalCountersPromoted);
492 }
493 }
494
needsRuntimeHookUnconditionally(const Triple & TT)495 static bool needsRuntimeHookUnconditionally(const Triple &TT) {
496 // On Fuchsia, we only need runtime hook if any counters are present.
497 if (TT.isOSFuchsia())
498 return false;
499
500 return true;
501 }
502
503 /// Check if the module contains uses of any profiling intrinsics.
containsProfilingIntrinsics(Module & M)504 static bool containsProfilingIntrinsics(Module &M) {
505 auto containsIntrinsic = [&](int ID) {
506 if (auto *F = M.getFunction(Intrinsic::getName(ID)))
507 return !F->use_empty();
508 return false;
509 };
510 return containsIntrinsic(llvm::Intrinsic::instrprof_cover) ||
511 containsIntrinsic(llvm::Intrinsic::instrprof_increment) ||
512 containsIntrinsic(llvm::Intrinsic::instrprof_increment_step) ||
513 containsIntrinsic(llvm::Intrinsic::instrprof_value_profile);
514 }
515
run(Module & M,std::function<const TargetLibraryInfo & (Function & F)> GetTLI)516 bool InstrProfiling::run(
517 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI) {
518 this->M = &M;
519 this->GetTLI = std::move(GetTLI);
520 NamesVar = nullptr;
521 NamesSize = 0;
522 ProfileDataMap.clear();
523 CompilerUsedVars.clear();
524 UsedVars.clear();
525 TT = Triple(M.getTargetTriple());
526
527 bool MadeChange = false;
528 bool NeedsRuntimeHook = needsRuntimeHookUnconditionally(TT);
529 if (NeedsRuntimeHook)
530 MadeChange = emitRuntimeHook();
531
532 bool ContainsProfiling = containsProfilingIntrinsics(M);
533 GlobalVariable *CoverageNamesVar =
534 M.getNamedGlobal(getCoverageUnusedNamesVarName());
535 // Improve compile time by avoiding linear scans when there is no work.
536 if (!ContainsProfiling && !CoverageNamesVar)
537 return MadeChange;
538
539 // We did not know how many value sites there would be inside
540 // the instrumented function. This is counting the number of instrumented
541 // target value sites to enter it as field in the profile data variable.
542 for (Function &F : M) {
543 InstrProfIncrementInst *FirstProfIncInst = nullptr;
544 for (BasicBlock &BB : F)
545 for (auto I = BB.begin(), E = BB.end(); I != E; I++)
546 if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(I))
547 computeNumValueSiteCounts(Ind);
548 else if (FirstProfIncInst == nullptr)
549 FirstProfIncInst = dyn_cast<InstrProfIncrementInst>(I);
550
551 // Value profiling intrinsic lowering requires per-function profile data
552 // variable to be created first.
553 if (FirstProfIncInst != nullptr)
554 static_cast<void>(getOrCreateRegionCounters(FirstProfIncInst));
555 }
556
557 for (Function &F : M)
558 MadeChange |= lowerIntrinsics(&F);
559
560 if (CoverageNamesVar) {
561 lowerCoverageData(CoverageNamesVar);
562 MadeChange = true;
563 }
564
565 if (!MadeChange)
566 return false;
567
568 emitVNodes();
569 emitNameData();
570
571 // Emit runtime hook for the cases where the target does not unconditionally
572 // require pulling in profile runtime, and coverage is enabled on code that is
573 // not eliminated by the front-end, e.g. unused functions with internal
574 // linkage.
575 if (!NeedsRuntimeHook && ContainsProfiling)
576 emitRuntimeHook();
577
578 emitRegistration();
579 emitUses();
580 emitInitialization();
581 return true;
582 }
583
getOrInsertValueProfilingCall(Module & M,const TargetLibraryInfo & TLI,ValueProfilingCallType CallType=ValueProfilingCallType::Default)584 static FunctionCallee getOrInsertValueProfilingCall(
585 Module &M, const TargetLibraryInfo &TLI,
586 ValueProfilingCallType CallType = ValueProfilingCallType::Default) {
587 LLVMContext &Ctx = M.getContext();
588 auto *ReturnTy = Type::getVoidTy(M.getContext());
589
590 AttributeList AL;
591 if (auto AK = TLI.getExtAttrForI32Param(false))
592 AL = AL.addParamAttribute(M.getContext(), 2, AK);
593
594 assert((CallType == ValueProfilingCallType::Default ||
595 CallType == ValueProfilingCallType::MemOp) &&
596 "Must be Default or MemOp");
597 Type *ParamTypes[] = {
598 #define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType
599 #include "llvm/ProfileData/InstrProfData.inc"
600 };
601 auto *ValueProfilingCallTy =
602 FunctionType::get(ReturnTy, ArrayRef(ParamTypes), false);
603 StringRef FuncName = CallType == ValueProfilingCallType::Default
604 ? getInstrProfValueProfFuncName()
605 : getInstrProfValueProfMemOpFuncName();
606 return M.getOrInsertFunction(FuncName, ValueProfilingCallTy, AL);
607 }
608
computeNumValueSiteCounts(InstrProfValueProfileInst * Ind)609 void InstrProfiling::computeNumValueSiteCounts(InstrProfValueProfileInst *Ind) {
610 GlobalVariable *Name = Ind->getName();
611 uint64_t ValueKind = Ind->getValueKind()->getZExtValue();
612 uint64_t Index = Ind->getIndex()->getZExtValue();
613 auto &PD = ProfileDataMap[Name];
614 PD.NumValueSites[ValueKind] =
615 std::max(PD.NumValueSites[ValueKind], (uint32_t)(Index + 1));
616 }
617
lowerValueProfileInst(InstrProfValueProfileInst * Ind)618 void InstrProfiling::lowerValueProfileInst(InstrProfValueProfileInst *Ind) {
619 // TODO: Value profiling heavily depends on the data section which is omitted
620 // in lightweight mode. We need to move the value profile pointer to the
621 // Counter struct to get this working.
622 assert(
623 !DebugInfoCorrelate &&
624 "Value profiling is not yet supported with lightweight instrumentation");
625 GlobalVariable *Name = Ind->getName();
626 auto It = ProfileDataMap.find(Name);
627 assert(It != ProfileDataMap.end() && It->second.DataVar &&
628 "value profiling detected in function with no counter incerement");
629
630 GlobalVariable *DataVar = It->second.DataVar;
631 uint64_t ValueKind = Ind->getValueKind()->getZExtValue();
632 uint64_t Index = Ind->getIndex()->getZExtValue();
633 for (uint32_t Kind = IPVK_First; Kind < ValueKind; ++Kind)
634 Index += It->second.NumValueSites[Kind];
635
636 IRBuilder<> Builder(Ind);
637 bool IsMemOpSize = (Ind->getValueKind()->getZExtValue() ==
638 llvm::InstrProfValueKind::IPVK_MemOPSize);
639 CallInst *Call = nullptr;
640 auto *TLI = &GetTLI(*Ind->getFunction());
641
642 // To support value profiling calls within Windows exception handlers, funclet
643 // information contained within operand bundles needs to be copied over to
644 // the library call. This is required for the IR to be processed by the
645 // WinEHPrepare pass.
646 SmallVector<OperandBundleDef, 1> OpBundles;
647 Ind->getOperandBundlesAsDefs(OpBundles);
648 if (!IsMemOpSize) {
649 Value *Args[3] = {Ind->getTargetValue(),
650 Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()),
651 Builder.getInt32(Index)};
652 Call = Builder.CreateCall(getOrInsertValueProfilingCall(*M, *TLI), Args,
653 OpBundles);
654 } else {
655 Value *Args[3] = {Ind->getTargetValue(),
656 Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()),
657 Builder.getInt32(Index)};
658 Call = Builder.CreateCall(
659 getOrInsertValueProfilingCall(*M, *TLI, ValueProfilingCallType::MemOp),
660 Args, OpBundles);
661 }
662 if (auto AK = TLI->getExtAttrForI32Param(false))
663 Call->addParamAttr(2, AK);
664 Ind->replaceAllUsesWith(Call);
665 Ind->eraseFromParent();
666 }
667
getCounterAddress(InstrProfInstBase * I)668 Value *InstrProfiling::getCounterAddress(InstrProfInstBase *I) {
669 auto *Counters = getOrCreateRegionCounters(I);
670 IRBuilder<> Builder(I);
671
672 auto *Addr = Builder.CreateConstInBoundsGEP2_32(
673 Counters->getValueType(), Counters, 0, I->getIndex()->getZExtValue());
674
675 if (!isRuntimeCounterRelocationEnabled())
676 return Addr;
677
678 Type *Int64Ty = Type::getInt64Ty(M->getContext());
679 Function *Fn = I->getParent()->getParent();
680 LoadInst *&BiasLI = FunctionToProfileBiasMap[Fn];
681 if (!BiasLI) {
682 IRBuilder<> EntryBuilder(&Fn->getEntryBlock().front());
683 auto *Bias = M->getGlobalVariable(getInstrProfCounterBiasVarName());
684 if (!Bias) {
685 // Compiler must define this variable when runtime counter relocation
686 // is being used. Runtime has a weak external reference that is used
687 // to check whether that's the case or not.
688 Bias = new GlobalVariable(
689 *M, Int64Ty, false, GlobalValue::LinkOnceODRLinkage,
690 Constant::getNullValue(Int64Ty), getInstrProfCounterBiasVarName());
691 Bias->setVisibility(GlobalVariable::HiddenVisibility);
692 // A definition that's weak (linkonce_odr) without being in a COMDAT
693 // section wouldn't lead to link errors, but it would lead to a dead
694 // data word from every TU but one. Putting it in COMDAT ensures there
695 // will be exactly one data slot in the link.
696 if (TT.supportsCOMDAT())
697 Bias->setComdat(M->getOrInsertComdat(Bias->getName()));
698 }
699 BiasLI = EntryBuilder.CreateLoad(Int64Ty, Bias);
700 }
701 auto *Add = Builder.CreateAdd(Builder.CreatePtrToInt(Addr, Int64Ty), BiasLI);
702 return Builder.CreateIntToPtr(Add, Addr->getType());
703 }
704
lowerCover(InstrProfCoverInst * CoverInstruction)705 void InstrProfiling::lowerCover(InstrProfCoverInst *CoverInstruction) {
706 auto *Addr = getCounterAddress(CoverInstruction);
707 IRBuilder<> Builder(CoverInstruction);
708 // We store zero to represent that this block is covered.
709 Builder.CreateStore(Builder.getInt8(0), Addr);
710 CoverInstruction->eraseFromParent();
711 }
712
lowerIncrement(InstrProfIncrementInst * Inc)713 void InstrProfiling::lowerIncrement(InstrProfIncrementInst *Inc) {
714 auto *Addr = getCounterAddress(Inc);
715
716 IRBuilder<> Builder(Inc);
717 if (Options.Atomic || AtomicCounterUpdateAll ||
718 (Inc->getIndex()->isZeroValue() && AtomicFirstCounter)) {
719 Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, Inc->getStep(),
720 MaybeAlign(), AtomicOrdering::Monotonic);
721 } else {
722 Value *IncStep = Inc->getStep();
723 Value *Load = Builder.CreateLoad(IncStep->getType(), Addr, "pgocount");
724 auto *Count = Builder.CreateAdd(Load, Inc->getStep());
725 auto *Store = Builder.CreateStore(Count, Addr);
726 if (isCounterPromotionEnabled())
727 PromotionCandidates.emplace_back(cast<Instruction>(Load), Store);
728 }
729 Inc->eraseFromParent();
730 }
731
lowerCoverageData(GlobalVariable * CoverageNamesVar)732 void InstrProfiling::lowerCoverageData(GlobalVariable *CoverageNamesVar) {
733 ConstantArray *Names =
734 cast<ConstantArray>(CoverageNamesVar->getInitializer());
735 for (unsigned I = 0, E = Names->getNumOperands(); I < E; ++I) {
736 Constant *NC = Names->getOperand(I);
737 Value *V = NC->stripPointerCasts();
738 assert(isa<GlobalVariable>(V) && "Missing reference to function name");
739 GlobalVariable *Name = cast<GlobalVariable>(V);
740
741 Name->setLinkage(GlobalValue::PrivateLinkage);
742 ReferencedNames.push_back(Name);
743 if (isa<ConstantExpr>(NC))
744 NC->dropAllReferences();
745 }
746 CoverageNamesVar->eraseFromParent();
747 }
748
749 /// Get the name of a profiling variable for a particular function.
getVarName(InstrProfInstBase * Inc,StringRef Prefix,bool & Renamed)750 static std::string getVarName(InstrProfInstBase *Inc, StringRef Prefix,
751 bool &Renamed) {
752 StringRef NamePrefix = getInstrProfNameVarPrefix();
753 StringRef Name = Inc->getName()->getName().substr(NamePrefix.size());
754 Function *F = Inc->getParent()->getParent();
755 Module *M = F->getParent();
756 if (!DoHashBasedCounterSplit || !isIRPGOFlagSet(M) ||
757 !canRenameComdatFunc(*F)) {
758 Renamed = false;
759 return (Prefix + Name).str();
760 }
761 Renamed = true;
762 uint64_t FuncHash = Inc->getHash()->getZExtValue();
763 SmallVector<char, 24> HashPostfix;
764 if (Name.endswith((Twine(".") + Twine(FuncHash)).toStringRef(HashPostfix)))
765 return (Prefix + Name).str();
766 return (Prefix + Name + "." + Twine(FuncHash)).str();
767 }
768
getIntModuleFlagOrZero(const Module & M,StringRef Flag)769 static uint64_t getIntModuleFlagOrZero(const Module &M, StringRef Flag) {
770 auto *MD = dyn_cast_or_null<ConstantAsMetadata>(M.getModuleFlag(Flag));
771 if (!MD)
772 return 0;
773
774 // If the flag is a ConstantAsMetadata, it should be an integer representable
775 // in 64-bits.
776 return cast<ConstantInt>(MD->getValue())->getZExtValue();
777 }
778
enablesValueProfiling(const Module & M)779 static bool enablesValueProfiling(const Module &M) {
780 return isIRPGOFlagSet(&M) ||
781 getIntModuleFlagOrZero(M, "EnableValueProfiling") != 0;
782 }
783
784 // Conservatively returns true if data variables may be referenced by code.
profDataReferencedByCode(const Module & M)785 static bool profDataReferencedByCode(const Module &M) {
786 return enablesValueProfiling(M);
787 }
788
shouldRecordFunctionAddr(Function * F)789 static inline bool shouldRecordFunctionAddr(Function *F) {
790 // Only record function addresses if IR PGO is enabled or if clang value
791 // profiling is enabled. Recording function addresses greatly increases object
792 // file size, because it prevents the inliner from deleting functions that
793 // have been inlined everywhere.
794 if (!profDataReferencedByCode(*F->getParent()))
795 return false;
796
797 // Check the linkage
798 bool HasAvailableExternallyLinkage = F->hasAvailableExternallyLinkage();
799 if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() &&
800 !HasAvailableExternallyLinkage)
801 return true;
802
803 // A function marked 'alwaysinline' with available_externally linkage can't
804 // have its address taken. Doing so would create an undefined external ref to
805 // the function, which would fail to link.
806 if (HasAvailableExternallyLinkage &&
807 F->hasFnAttribute(Attribute::AlwaysInline))
808 return false;
809
810 // Prohibit function address recording if the function is both internal and
811 // COMDAT. This avoids the profile data variable referencing internal symbols
812 // in COMDAT.
813 if (F->hasLocalLinkage() && F->hasComdat())
814 return false;
815
816 // Check uses of this function for other than direct calls or invokes to it.
817 // Inline virtual functions have linkeOnceODR linkage. When a key method
818 // exists, the vtable will only be emitted in the TU where the key method
819 // is defined. In a TU where vtable is not available, the function won't
820 // be 'addresstaken'. If its address is not recorded here, the profile data
821 // with missing address may be picked by the linker leading to missing
822 // indirect call target info.
823 return F->hasAddressTaken() || F->hasLinkOnceLinkage();
824 }
825
needsRuntimeRegistrationOfSectionRange(const Triple & TT)826 static bool needsRuntimeRegistrationOfSectionRange(const Triple &TT) {
827 // Don't do this for Darwin. compiler-rt uses linker magic.
828 if (TT.isOSDarwin())
829 return false;
830 // Use linker script magic to get data/cnts/name start/end.
831 if (TT.isOSAIX() || TT.isOSLinux() || TT.isOSFreeBSD() || TT.isOSNetBSD() ||
832 TT.isOSSolaris() || TT.isOSFuchsia() || TT.isPS() || TT.isOSWindows())
833 return false;
834
835 return true;
836 }
837
838 GlobalVariable *
createRegionCounters(InstrProfInstBase * Inc,StringRef Name,GlobalValue::LinkageTypes Linkage)839 InstrProfiling::createRegionCounters(InstrProfInstBase *Inc, StringRef Name,
840 GlobalValue::LinkageTypes Linkage) {
841 uint64_t NumCounters = Inc->getNumCounters()->getZExtValue();
842 auto &Ctx = M->getContext();
843 GlobalVariable *GV;
844 if (isa<InstrProfCoverInst>(Inc)) {
845 auto *CounterTy = Type::getInt8Ty(Ctx);
846 auto *CounterArrTy = ArrayType::get(CounterTy, NumCounters);
847 // TODO: `Constant::getAllOnesValue()` does not yet accept an array type.
848 std::vector<Constant *> InitialValues(NumCounters,
849 Constant::getAllOnesValue(CounterTy));
850 GV = new GlobalVariable(*M, CounterArrTy, false, Linkage,
851 ConstantArray::get(CounterArrTy, InitialValues),
852 Name);
853 GV->setAlignment(Align(1));
854 } else {
855 auto *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters);
856 GV = new GlobalVariable(*M, CounterTy, false, Linkage,
857 Constant::getNullValue(CounterTy), Name);
858 GV->setAlignment(Align(8));
859 }
860 return GV;
861 }
862
863 GlobalVariable *
getOrCreateRegionCounters(InstrProfInstBase * Inc)864 InstrProfiling::getOrCreateRegionCounters(InstrProfInstBase *Inc) {
865 GlobalVariable *NamePtr = Inc->getName();
866 auto &PD = ProfileDataMap[NamePtr];
867 if (PD.RegionCounters)
868 return PD.RegionCounters;
869
870 // Match the linkage and visibility of the name global.
871 Function *Fn = Inc->getParent()->getParent();
872 GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage();
873 GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility();
874
875 // Use internal rather than private linkage so the counter variable shows up
876 // in the symbol table when using debug info for correlation.
877 if (DebugInfoCorrelate && TT.isOSBinFormatMachO() &&
878 Linkage == GlobalValue::PrivateLinkage)
879 Linkage = GlobalValue::InternalLinkage;
880
881 // Due to the limitation of binder as of 2021/09/28, the duplicate weak
882 // symbols in the same csect won't be discarded. When there are duplicate weak
883 // symbols, we can NOT guarantee that the relocations get resolved to the
884 // intended weak symbol, so we can not ensure the correctness of the relative
885 // CounterPtr, so we have to use private linkage for counter and data symbols.
886 if (TT.isOSBinFormatXCOFF()) {
887 Linkage = GlobalValue::PrivateLinkage;
888 Visibility = GlobalValue::DefaultVisibility;
889 }
890 // Move the name variable to the right section. Place them in a COMDAT group
891 // if the associated function is a COMDAT. This will make sure that only one
892 // copy of counters of the COMDAT function will be emitted after linking. Keep
893 // in mind that this pass may run before the inliner, so we need to create a
894 // new comdat group for the counters and profiling data. If we use the comdat
895 // of the parent function, that will result in relocations against discarded
896 // sections.
897 //
898 // If the data variable is referenced by code, counters and data have to be
899 // in different comdats for COFF because the Visual C++ linker will report
900 // duplicate symbol errors if there are multiple external symbols with the
901 // same name marked IMAGE_COMDAT_SELECT_ASSOCIATIVE.
902 //
903 // For ELF, when not using COMDAT, put counters, data and values into a
904 // nodeduplicate COMDAT which is lowered to a zero-flag section group. This
905 // allows -z start-stop-gc to discard the entire group when the function is
906 // discarded.
907 bool DataReferencedByCode = profDataReferencedByCode(*M);
908 bool NeedComdat = needsComdatForCounter(*Fn, *M);
909 bool Renamed;
910 std::string CntsVarName =
911 getVarName(Inc, getInstrProfCountersVarPrefix(), Renamed);
912 std::string DataVarName =
913 getVarName(Inc, getInstrProfDataVarPrefix(), Renamed);
914 auto MaybeSetComdat = [&](GlobalVariable *GV) {
915 bool UseComdat = (NeedComdat || TT.isOSBinFormatELF());
916 if (UseComdat) {
917 StringRef GroupName = TT.isOSBinFormatCOFF() && DataReferencedByCode
918 ? GV->getName()
919 : CntsVarName;
920 Comdat *C = M->getOrInsertComdat(GroupName);
921 if (!NeedComdat)
922 C->setSelectionKind(Comdat::NoDeduplicate);
923 GV->setComdat(C);
924 // COFF doesn't allow the comdat group leader to have private linkage, so
925 // upgrade private linkage to internal linkage to produce a symbol table
926 // entry.
927 if (TT.isOSBinFormatCOFF() && GV->hasPrivateLinkage())
928 GV->setLinkage(GlobalValue::InternalLinkage);
929 }
930 };
931
932 uint64_t NumCounters = Inc->getNumCounters()->getZExtValue();
933 LLVMContext &Ctx = M->getContext();
934
935 auto *CounterPtr = createRegionCounters(Inc, CntsVarName, Linkage);
936 CounterPtr->setVisibility(Visibility);
937 CounterPtr->setSection(
938 getInstrProfSectionName(IPSK_cnts, TT.getObjectFormat()));
939 CounterPtr->setLinkage(Linkage);
940 MaybeSetComdat(CounterPtr);
941 PD.RegionCounters = CounterPtr;
942 if (DebugInfoCorrelate) {
943 if (auto *SP = Fn->getSubprogram()) {
944 DIBuilder DB(*M, true, SP->getUnit());
945 Metadata *FunctionNameAnnotation[] = {
946 MDString::get(Ctx, InstrProfCorrelator::FunctionNameAttributeName),
947 MDString::get(Ctx, getPGOFuncNameVarInitializer(NamePtr)),
948 };
949 Metadata *CFGHashAnnotation[] = {
950 MDString::get(Ctx, InstrProfCorrelator::CFGHashAttributeName),
951 ConstantAsMetadata::get(Inc->getHash()),
952 };
953 Metadata *NumCountersAnnotation[] = {
954 MDString::get(Ctx, InstrProfCorrelator::NumCountersAttributeName),
955 ConstantAsMetadata::get(Inc->getNumCounters()),
956 };
957 auto Annotations = DB.getOrCreateArray({
958 MDNode::get(Ctx, FunctionNameAnnotation),
959 MDNode::get(Ctx, CFGHashAnnotation),
960 MDNode::get(Ctx, NumCountersAnnotation),
961 });
962 auto *DICounter = DB.createGlobalVariableExpression(
963 SP, CounterPtr->getName(), /*LinkageName=*/StringRef(), SP->getFile(),
964 /*LineNo=*/0, DB.createUnspecifiedType("Profile Data Type"),
965 CounterPtr->hasLocalLinkage(), /*IsDefined=*/true, /*Expr=*/nullptr,
966 /*Decl=*/nullptr, /*TemplateParams=*/nullptr, /*AlignInBits=*/0,
967 Annotations);
968 CounterPtr->addDebugInfo(DICounter);
969 DB.finalize();
970 } else {
971 std::string Msg = ("Missing debug info for function " + Fn->getName() +
972 "; required for profile correlation.")
973 .str();
974 Ctx.diagnose(
975 DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
976 }
977 }
978
979 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
980 // Allocate statically the array of pointers to value profile nodes for
981 // the current function.
982 Constant *ValuesPtrExpr = ConstantPointerNull::get(Int8PtrTy);
983 uint64_t NS = 0;
984 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
985 NS += PD.NumValueSites[Kind];
986 if (NS > 0 && ValueProfileStaticAlloc &&
987 !needsRuntimeRegistrationOfSectionRange(TT)) {
988 ArrayType *ValuesTy = ArrayType::get(Type::getInt64Ty(Ctx), NS);
989 auto *ValuesVar = new GlobalVariable(
990 *M, ValuesTy, false, Linkage, Constant::getNullValue(ValuesTy),
991 getVarName(Inc, getInstrProfValuesVarPrefix(), Renamed));
992 ValuesVar->setVisibility(Visibility);
993 ValuesVar->setSection(
994 getInstrProfSectionName(IPSK_vals, TT.getObjectFormat()));
995 ValuesVar->setAlignment(Align(8));
996 MaybeSetComdat(ValuesVar);
997 ValuesPtrExpr =
998 ConstantExpr::getBitCast(ValuesVar, Type::getInt8PtrTy(Ctx));
999 }
1000
1001 if (DebugInfoCorrelate) {
1002 // Mark the counter variable as used so that it isn't optimized out.
1003 CompilerUsedVars.push_back(PD.RegionCounters);
1004 return PD.RegionCounters;
1005 }
1006
1007 // Create data variable.
1008 auto *IntPtrTy = M->getDataLayout().getIntPtrType(M->getContext());
1009 auto *Int16Ty = Type::getInt16Ty(Ctx);
1010 auto *Int16ArrayTy = ArrayType::get(Int16Ty, IPVK_Last + 1);
1011 Type *DataTypes[] = {
1012 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) LLVMType,
1013 #include "llvm/ProfileData/InstrProfData.inc"
1014 };
1015 auto *DataTy = StructType::get(Ctx, ArrayRef(DataTypes));
1016
1017 Constant *FunctionAddr = shouldRecordFunctionAddr(Fn)
1018 ? ConstantExpr::getBitCast(Fn, Int8PtrTy)
1019 : ConstantPointerNull::get(Int8PtrTy);
1020
1021 Constant *Int16ArrayVals[IPVK_Last + 1];
1022 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1023 Int16ArrayVals[Kind] = ConstantInt::get(Int16Ty, PD.NumValueSites[Kind]);
1024
1025 // If the data variable is not referenced by code (if we don't emit
1026 // @llvm.instrprof.value.profile, NS will be 0), and the counter keeps the
1027 // data variable live under linker GC, the data variable can be private. This
1028 // optimization applies to ELF.
1029 //
1030 // On COFF, a comdat leader cannot be local so we require DataReferencedByCode
1031 // to be false.
1032 //
1033 // If profd is in a deduplicate comdat, NS==0 with a hash suffix guarantees
1034 // that other copies must have the same CFG and cannot have value profiling.
1035 // If no hash suffix, other profd copies may be referenced by code.
1036 if (NS == 0 && !(DataReferencedByCode && NeedComdat && !Renamed) &&
1037 (TT.isOSBinFormatELF() ||
1038 (!DataReferencedByCode && TT.isOSBinFormatCOFF()))) {
1039 Linkage = GlobalValue::PrivateLinkage;
1040 Visibility = GlobalValue::DefaultVisibility;
1041 }
1042 auto *Data =
1043 new GlobalVariable(*M, DataTy, false, Linkage, nullptr, DataVarName);
1044 // Reference the counter variable with a label difference (link-time
1045 // constant).
1046 auto *RelativeCounterPtr =
1047 ConstantExpr::getSub(ConstantExpr::getPtrToInt(CounterPtr, IntPtrTy),
1048 ConstantExpr::getPtrToInt(Data, IntPtrTy));
1049
1050 Constant *DataVals[] = {
1051 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Init,
1052 #include "llvm/ProfileData/InstrProfData.inc"
1053 };
1054 Data->setInitializer(ConstantStruct::get(DataTy, DataVals));
1055
1056 Data->setVisibility(Visibility);
1057 Data->setSection(getInstrProfSectionName(IPSK_data, TT.getObjectFormat()));
1058 Data->setAlignment(Align(INSTR_PROF_DATA_ALIGNMENT));
1059 MaybeSetComdat(Data);
1060
1061 PD.DataVar = Data;
1062
1063 // Mark the data variable as used so that it isn't stripped out.
1064 CompilerUsedVars.push_back(Data);
1065 // Now that the linkage set by the FE has been passed to the data and counter
1066 // variables, reset Name variable's linkage and visibility to private so that
1067 // it can be removed later by the compiler.
1068 NamePtr->setLinkage(GlobalValue::PrivateLinkage);
1069 // Collect the referenced names to be used by emitNameData.
1070 ReferencedNames.push_back(NamePtr);
1071
1072 return PD.RegionCounters;
1073 }
1074
emitVNodes()1075 void InstrProfiling::emitVNodes() {
1076 if (!ValueProfileStaticAlloc)
1077 return;
1078
1079 // For now only support this on platforms that do
1080 // not require runtime registration to discover
1081 // named section start/end.
1082 if (needsRuntimeRegistrationOfSectionRange(TT))
1083 return;
1084
1085 size_t TotalNS = 0;
1086 for (auto &PD : ProfileDataMap) {
1087 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1088 TotalNS += PD.second.NumValueSites[Kind];
1089 }
1090
1091 if (!TotalNS)
1092 return;
1093
1094 uint64_t NumCounters = TotalNS * NumCountersPerValueSite;
1095 // Heuristic for small programs with very few total value sites.
1096 // The default value of vp-counters-per-site is chosen based on
1097 // the observation that large apps usually have a low percentage
1098 // of value sites that actually have any profile data, and thus
1099 // the average number of counters per site is low. For small
1100 // apps with very few sites, this may not be true. Bump up the
1101 // number of counters in this case.
1102 #define INSTR_PROF_MIN_VAL_COUNTS 10
1103 if (NumCounters < INSTR_PROF_MIN_VAL_COUNTS)
1104 NumCounters = std::max(INSTR_PROF_MIN_VAL_COUNTS, (int)NumCounters * 2);
1105
1106 auto &Ctx = M->getContext();
1107 Type *VNodeTypes[] = {
1108 #define INSTR_PROF_VALUE_NODE(Type, LLVMType, Name, Init) LLVMType,
1109 #include "llvm/ProfileData/InstrProfData.inc"
1110 };
1111 auto *VNodeTy = StructType::get(Ctx, ArrayRef(VNodeTypes));
1112
1113 ArrayType *VNodesTy = ArrayType::get(VNodeTy, NumCounters);
1114 auto *VNodesVar = new GlobalVariable(
1115 *M, VNodesTy, false, GlobalValue::PrivateLinkage,
1116 Constant::getNullValue(VNodesTy), getInstrProfVNodesVarName());
1117 VNodesVar->setSection(
1118 getInstrProfSectionName(IPSK_vnodes, TT.getObjectFormat()));
1119 // VNodesVar is used by runtime but not referenced via relocation by other
1120 // sections. Conservatively make it linker retained.
1121 UsedVars.push_back(VNodesVar);
1122 }
1123
emitNameData()1124 void InstrProfiling::emitNameData() {
1125 std::string UncompressedData;
1126
1127 if (ReferencedNames.empty())
1128 return;
1129
1130 std::string CompressedNameStr;
1131 if (Error E = collectPGOFuncNameStrings(ReferencedNames, CompressedNameStr,
1132 DoInstrProfNameCompression)) {
1133 report_fatal_error(Twine(toString(std::move(E))), false);
1134 }
1135
1136 auto &Ctx = M->getContext();
1137 auto *NamesVal =
1138 ConstantDataArray::getString(Ctx, StringRef(CompressedNameStr), false);
1139 NamesVar = new GlobalVariable(*M, NamesVal->getType(), true,
1140 GlobalValue::PrivateLinkage, NamesVal,
1141 getInstrProfNamesVarName());
1142 NamesSize = CompressedNameStr.size();
1143 NamesVar->setSection(
1144 getInstrProfSectionName(IPSK_name, TT.getObjectFormat()));
1145 // On COFF, it's important to reduce the alignment down to 1 to prevent the
1146 // linker from inserting padding before the start of the names section or
1147 // between names entries.
1148 NamesVar->setAlignment(Align(1));
1149 // NamesVar is used by runtime but not referenced via relocation by other
1150 // sections. Conservatively make it linker retained.
1151 UsedVars.push_back(NamesVar);
1152
1153 for (auto *NamePtr : ReferencedNames)
1154 NamePtr->eraseFromParent();
1155 }
1156
emitRegistration()1157 void InstrProfiling::emitRegistration() {
1158 if (!needsRuntimeRegistrationOfSectionRange(TT))
1159 return;
1160
1161 // Construct the function.
1162 auto *VoidTy = Type::getVoidTy(M->getContext());
1163 auto *VoidPtrTy = Type::getInt8PtrTy(M->getContext());
1164 auto *Int64Ty = Type::getInt64Ty(M->getContext());
1165 auto *RegisterFTy = FunctionType::get(VoidTy, false);
1166 auto *RegisterF = Function::Create(RegisterFTy, GlobalValue::InternalLinkage,
1167 getInstrProfRegFuncsName(), M);
1168 RegisterF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1169 if (Options.NoRedZone)
1170 RegisterF->addFnAttr(Attribute::NoRedZone);
1171
1172 auto *RuntimeRegisterTy = FunctionType::get(VoidTy, VoidPtrTy, false);
1173 auto *RuntimeRegisterF =
1174 Function::Create(RuntimeRegisterTy, GlobalVariable::ExternalLinkage,
1175 getInstrProfRegFuncName(), M);
1176
1177 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", RegisterF));
1178 for (Value *Data : CompilerUsedVars)
1179 if (!isa<Function>(Data))
1180 IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy));
1181 for (Value *Data : UsedVars)
1182 if (Data != NamesVar && !isa<Function>(Data))
1183 IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy));
1184
1185 if (NamesVar) {
1186 Type *ParamTypes[] = {VoidPtrTy, Int64Ty};
1187 auto *NamesRegisterTy =
1188 FunctionType::get(VoidTy, ArrayRef(ParamTypes), false);
1189 auto *NamesRegisterF =
1190 Function::Create(NamesRegisterTy, GlobalVariable::ExternalLinkage,
1191 getInstrProfNamesRegFuncName(), M);
1192 IRB.CreateCall(NamesRegisterF, {IRB.CreateBitCast(NamesVar, VoidPtrTy),
1193 IRB.getInt64(NamesSize)});
1194 }
1195
1196 IRB.CreateRetVoid();
1197 }
1198
emitRuntimeHook()1199 bool InstrProfiling::emitRuntimeHook() {
1200 // We expect the linker to be invoked with -u<hook_var> flag for Linux
1201 // in which case there is no need to emit the external variable.
1202 if (TT.isOSLinux() || TT.isOSAIX())
1203 return false;
1204
1205 // If the module's provided its own runtime, we don't need to do anything.
1206 if (M->getGlobalVariable(getInstrProfRuntimeHookVarName()))
1207 return false;
1208
1209 // Declare an external variable that will pull in the runtime initialization.
1210 auto *Int32Ty = Type::getInt32Ty(M->getContext());
1211 auto *Var =
1212 new GlobalVariable(*M, Int32Ty, false, GlobalValue::ExternalLinkage,
1213 nullptr, getInstrProfRuntimeHookVarName());
1214 Var->setVisibility(GlobalValue::HiddenVisibility);
1215
1216 if (TT.isOSBinFormatELF() && !TT.isPS()) {
1217 // Mark the user variable as used so that it isn't stripped out.
1218 CompilerUsedVars.push_back(Var);
1219 } else {
1220 // Make a function that uses it.
1221 auto *User = Function::Create(FunctionType::get(Int32Ty, false),
1222 GlobalValue::LinkOnceODRLinkage,
1223 getInstrProfRuntimeHookVarUseFuncName(), M);
1224 User->addFnAttr(Attribute::NoInline);
1225 if (Options.NoRedZone)
1226 User->addFnAttr(Attribute::NoRedZone);
1227 User->setVisibility(GlobalValue::HiddenVisibility);
1228 if (TT.supportsCOMDAT())
1229 User->setComdat(M->getOrInsertComdat(User->getName()));
1230
1231 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", User));
1232 auto *Load = IRB.CreateLoad(Int32Ty, Var);
1233 IRB.CreateRet(Load);
1234
1235 // Mark the function as used so that it isn't stripped out.
1236 CompilerUsedVars.push_back(User);
1237 }
1238 return true;
1239 }
1240
emitUses()1241 void InstrProfiling::emitUses() {
1242 // The metadata sections are parallel arrays. Optimizers (e.g.
1243 // GlobalOpt/ConstantMerge) may not discard associated sections as a unit, so
1244 // we conservatively retain all unconditionally in the compiler.
1245 //
1246 // On ELF and Mach-O, the linker can guarantee the associated sections will be
1247 // retained or discarded as a unit, so llvm.compiler.used is sufficient.
1248 // Similarly on COFF, if prof data is not referenced by code we use one comdat
1249 // and ensure this GC property as well. Otherwise, we have to conservatively
1250 // make all of the sections retained by the linker.
1251 if (TT.isOSBinFormatELF() || TT.isOSBinFormatMachO() ||
1252 (TT.isOSBinFormatCOFF() && !profDataReferencedByCode(*M)))
1253 appendToCompilerUsed(*M, CompilerUsedVars);
1254 else
1255 appendToUsed(*M, CompilerUsedVars);
1256
1257 // We do not add proper references from used metadata sections to NamesVar and
1258 // VNodesVar, so we have to be conservative and place them in llvm.used
1259 // regardless of the target,
1260 appendToUsed(*M, UsedVars);
1261 }
1262
emitInitialization()1263 void InstrProfiling::emitInitialization() {
1264 // Create ProfileFileName variable. Don't don't this for the
1265 // context-sensitive instrumentation lowering: This lowering is after
1266 // LTO/ThinLTO linking. Pass PGOInstrumentationGenCreateVar should
1267 // have already create the variable before LTO/ThinLTO linking.
1268 if (!IsCS)
1269 createProfileFileNameVar(*M, Options.InstrProfileOutput);
1270 Function *RegisterF = M->getFunction(getInstrProfRegFuncsName());
1271 if (!RegisterF)
1272 return;
1273
1274 // Create the initialization function.
1275 auto *VoidTy = Type::getVoidTy(M->getContext());
1276 auto *F = Function::Create(FunctionType::get(VoidTy, false),
1277 GlobalValue::InternalLinkage,
1278 getInstrProfInitFuncName(), M);
1279 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1280 F->addFnAttr(Attribute::NoInline);
1281 if (Options.NoRedZone)
1282 F->addFnAttr(Attribute::NoRedZone);
1283
1284 // Add the basic block and the necessary calls.
1285 IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", F));
1286 IRB.CreateCall(RegisterF, {});
1287 IRB.CreateRetVoid();
1288
1289 appendToGlobalCtors(*M, F, 0);
1290 }
1291