xref: /llvm-project/llvm/include/llvm/Transforms/Instrumentation/CFGMST.h (revision ff281f7d37ead15bdbdbfccb4b82ea93013b1a00)
1 //===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a Union-find algorithm to compute Minimum Spanning Tree
10 // for a given CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TRANSFORMS_INSTRUMENTATION_CFGMST_H
15 #define LLVM_TRANSFORMS_INSTRUMENTATION_CFGMST_H
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/Support/BranchProbability.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
29 #include <utility>
30 #include <vector>
31 
32 #define DEBUG_TYPE "cfgmst"
33 
34 namespace llvm {
35 
36 /// An union-find based Minimum Spanning Tree for CFG
37 ///
38 /// Implements a Union-find algorithm to compute Minimum Spanning Tree
39 /// for a given CFG.
40 template <class Edge, class BBInfo> class CFGMST {
41   Function &F;
42 
43   // Store all the edges in CFG. It may contain some stale edges
44   // when Removed is set.
45   std::vector<std::unique_ptr<Edge>> AllEdges;
46 
47   // This map records the auxiliary information for each BB.
48   DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos;
49 
50   // Whehter the function has an exit block with no successors.
51   // (For function with an infinite loop, this block may be absent)
52   bool ExitBlockFound = false;
53 
54   BranchProbabilityInfo *const BPI;
55   BlockFrequencyInfo *const BFI;
56   LoopInfo *const LI;
57 
58   // If function entry will be always instrumented.
59   const bool InstrumentFuncEntry;
60 
61   // If true loop entries will be always instrumented.
62   const bool InstrumentLoopEntries;
63 
64   // Find the root group of the G and compress the path from G to the root.
65   BBInfo *findAndCompressGroup(BBInfo *G) {
66     if (G->Group != G)
67       G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group));
68     return static_cast<BBInfo *>(G->Group);
69   }
70 
71   // Union BB1 and BB2 into the same group and return true.
72   // Returns false if BB1 and BB2 are already in the same group.
73   bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) {
74     BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1));
75     BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2));
76 
77     if (BB1G == BB2G)
78       return false;
79 
80     // Make the smaller rank tree a direct child or the root of high rank tree.
81     if (BB1G->Rank < BB2G->Rank)
82       BB1G->Group = BB2G;
83     else {
84       BB2G->Group = BB1G;
85       // If the ranks are the same, increment root of one tree by one.
86       if (BB1G->Rank == BB2G->Rank)
87         BB1G->Rank++;
88     }
89     return true;
90   }
91 
92   void handleCoroSuspendEdge(Edge *E) {
93     // We must not add instrumentation to the BB representing the
94     // "suspend" path, else CoroSplit won't be able to lower
95     // llvm.coro.suspend to a tail call. We do want profiling info for
96     // the other branches (resume/destroy). So we do 2 things:
97     // 1. we prefer instrumenting those other edges by setting the weight
98     //    of the "suspend" edge to max, and
99     // 2. we mark the edge as "Removed" to guarantee it is not considered
100     //    for instrumentation. That could technically happen:
101     //    (from test/Transforms/Coroutines/coro-split-musttail.ll)
102     //
103     // %suspend = call i8 @llvm.coro.suspend(token %save, i1 false)
104     // switch i8 %suspend, label %exit [
105     //   i8 0, label %await.ready
106     //   i8 1, label %exit
107     // ]
108     if (!E->DestBB)
109       return;
110     assert(E->SrcBB);
111     if (llvm::isPresplitCoroSuspendExitEdge(*E->SrcBB, *E->DestBB))
112       E->Removed = true;
113   }
114 
115   // Traverse the CFG using a stack. Find all the edges and assign the weight.
116   // Edges with large weight will be put into MST first so they are less likely
117   // to be instrumented.
118   void buildEdges() {
119     LLVM_DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n");
120 
121     BasicBlock *Entry = &(F.getEntryBlock());
122     uint64_t EntryWeight =
123         (BFI != nullptr ? BFI->getEntryFreq().getFrequency() : 2);
124     // If we want to instrument the entry count, lower the weight to 0.
125     if (InstrumentFuncEntry)
126       EntryWeight = 0;
127     Edge *EntryIncoming = nullptr, *EntryOutgoing = nullptr,
128          *ExitOutgoing = nullptr, *ExitIncoming = nullptr;
129     uint64_t MaxEntryOutWeight = 0, MaxExitOutWeight = 0, MaxExitInWeight = 0;
130 
131     // Add a fake edge to the entry.
132     EntryIncoming = &addEdge(nullptr, Entry, EntryWeight);
133     LLVM_DEBUG(dbgs() << "  Edge: from fake node to " << Entry->getName()
134                       << " w = " << EntryWeight << "\n");
135 
136     // Special handling for single BB functions.
137     if (succ_empty(Entry)) {
138       addEdge(Entry, nullptr, EntryWeight);
139       return;
140     }
141 
142     static const uint32_t CriticalEdgeMultiplier = 1000;
143 
144     for (BasicBlock &BB : F) {
145       Instruction *TI = BB.getTerminator();
146       uint64_t BBWeight =
147           (BFI != nullptr ? BFI->getBlockFreq(&BB).getFrequency() : 2);
148       uint64_t Weight = 2;
149       if (int successors = TI->getNumSuccessors()) {
150         for (int i = 0; i != successors; ++i) {
151           BasicBlock *TargetBB = TI->getSuccessor(i);
152           bool Critical = isCriticalEdge(TI, i);
153           uint64_t scaleFactor = BBWeight;
154           if (Critical) {
155             if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier)
156               scaleFactor *= CriticalEdgeMultiplier;
157             else
158               scaleFactor = UINT64_MAX;
159           }
160           if (BPI != nullptr)
161             Weight = BPI->getEdgeProbability(&BB, TargetBB).scale(scaleFactor);
162           // If InstrumentLoopEntries is on and the current edge leads to a loop
163           // (i.e., TargetBB is a loop head and BB is outside its loop), set
164           // Weight to be minimal, so that the edge won't be chosen for the MST
165           // and will be instrumented.
166           if (InstrumentLoopEntries && LI->isLoopHeader(TargetBB)) {
167             Loop *TargetLoop = LI->getLoopFor(TargetBB);
168             assert(TargetLoop);
169             if (!TargetLoop->contains(&BB))
170               Weight = 0;
171           }
172           if (Weight == 0)
173             Weight++;
174           auto *E = &addEdge(&BB, TargetBB, Weight);
175           E->IsCritical = Critical;
176           handleCoroSuspendEdge(E);
177           LLVM_DEBUG(dbgs() << "  Edge: from " << BB.getName() << " to "
178                             << TargetBB->getName() << "  w=" << Weight << "\n");
179 
180           // Keep track of entry/exit edges:
181           if (&BB == Entry) {
182             if (Weight > MaxEntryOutWeight) {
183               MaxEntryOutWeight = Weight;
184               EntryOutgoing = E;
185             }
186           }
187 
188           auto *TargetTI = TargetBB->getTerminator();
189           if (TargetTI && !TargetTI->getNumSuccessors()) {
190             if (Weight > MaxExitInWeight) {
191               MaxExitInWeight = Weight;
192               ExitIncoming = E;
193             }
194           }
195         }
196       } else {
197         ExitBlockFound = true;
198         Edge *ExitO = &addEdge(&BB, nullptr, BBWeight);
199         if (BBWeight > MaxExitOutWeight) {
200           MaxExitOutWeight = BBWeight;
201           ExitOutgoing = ExitO;
202         }
203         LLVM_DEBUG(dbgs() << "  Edge: from " << BB.getName() << " to fake exit"
204                           << " w = " << BBWeight << "\n");
205       }
206     }
207 
208     // Entry/exit edge adjustment heurisitic:
209     // prefer instrumenting entry edge over exit edge
210     // if possible. Those exit edges may never have a chance to be
211     // executed (for instance the program is an event handling loop)
212     // before the profile is asynchronously dumped.
213     //
214     // If EntryIncoming and ExitOutgoing has similar weight, make sure
215     // ExitOutging is selected as the min-edge. Similarly, if EntryOutgoing
216     // and ExitIncoming has similar weight, make sure ExitIncoming becomes
217     // the min-edge.
218     uint64_t EntryInWeight = EntryWeight;
219 
220     if (EntryInWeight >= MaxExitOutWeight &&
221         EntryInWeight * 2 < MaxExitOutWeight * 3) {
222       EntryIncoming->Weight = MaxExitOutWeight;
223       ExitOutgoing->Weight = EntryInWeight + 1;
224     }
225 
226     if (MaxEntryOutWeight >= MaxExitInWeight &&
227         MaxEntryOutWeight * 2 < MaxExitInWeight * 3) {
228       EntryOutgoing->Weight = MaxExitInWeight;
229       ExitIncoming->Weight = MaxEntryOutWeight + 1;
230     }
231   }
232 
233   // Sort CFG edges based on its weight.
234   void sortEdgesByWeight() {
235     llvm::stable_sort(AllEdges, [](const std::unique_ptr<Edge> &Edge1,
236                                    const std::unique_ptr<Edge> &Edge2) {
237       return Edge1->Weight > Edge2->Weight;
238     });
239   }
240 
241   // Traverse all the edges and compute the Minimum Weight Spanning Tree
242   // using union-find algorithm.
243   void computeMinimumSpanningTree() {
244     // First, put all the critical edge with landing-pad as the Dest to MST.
245     // This works around the insufficient support of critical edges split
246     // when destination BB is a landing pad.
247     for (auto &Ei : AllEdges) {
248       if (Ei->Removed)
249         continue;
250       if (Ei->IsCritical) {
251         if (Ei->DestBB && Ei->DestBB->isLandingPad()) {
252           if (unionGroups(Ei->SrcBB, Ei->DestBB))
253             Ei->InMST = true;
254         }
255       }
256     }
257 
258     for (auto &Ei : AllEdges) {
259       if (Ei->Removed)
260         continue;
261       // If we detect infinite loops, force
262       // instrumenting the entry edge:
263       if (!ExitBlockFound && Ei->SrcBB == nullptr)
264         continue;
265       if (unionGroups(Ei->SrcBB, Ei->DestBB))
266         Ei->InMST = true;
267     }
268   }
269 
270   [[maybe_unused]] bool validateLoopEntryInstrumentation() {
271     if (!InstrumentLoopEntries)
272       return true;
273     for (auto &Ei : AllEdges) {
274       if (Ei->Removed)
275         continue;
276       if (Ei->DestBB && LI->isLoopHeader(Ei->DestBB) &&
277           !LI->getLoopFor(Ei->DestBB)->contains(Ei->SrcBB) && Ei->InMST)
278         return false;
279     }
280     return true;
281   }
282 
283 public:
284   // Dump the Debug information about the instrumentation.
285   void dumpEdges(raw_ostream &OS, const Twine &Message) const {
286     if (!Message.str().empty())
287       OS << Message << "\n";
288     OS << "  Number of Basic Blocks: " << BBInfos.size() << "\n";
289     for (auto &BI : BBInfos) {
290       const BasicBlock *BB = BI.first;
291       OS << "  BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << "  "
292          << BI.second->infoString() << "\n";
293     }
294 
295     OS << "  Number of Edges: " << AllEdges.size()
296        << " (*: Instrument, C: CriticalEdge, -: Removed)\n";
297     uint32_t Count = 0;
298     for (auto &EI : AllEdges)
299       OS << "  Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->"
300          << getBBInfo(EI->DestBB).Index << EI->infoString() << "\n";
301   }
302 
303   // Add an edge to AllEdges with weight W.
304   Edge &addEdge(BasicBlock *Src, BasicBlock *Dest, uint64_t W) {
305     uint32_t Index = BBInfos.size();
306     auto Iter = BBInfos.end();
307     bool Inserted;
308     std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr));
309     if (Inserted) {
310       // Newly inserted, update the real info.
311       Iter->second = std::make_unique<BBInfo>(Index);
312       Index++;
313     }
314     std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr));
315     if (Inserted)
316       // Newly inserted, update the real info.
317       Iter->second = std::make_unique<BBInfo>(Index);
318     AllEdges.emplace_back(new Edge(Src, Dest, W));
319     return *AllEdges.back();
320   }
321 
322   CFGMST(Function &Func, bool InstrumentFuncEntry, bool InstrumentLoopEntries,
323          BranchProbabilityInfo *BPI = nullptr,
324          BlockFrequencyInfo *BFI = nullptr, LoopInfo *LI = nullptr)
325       : F(Func), BPI(BPI), BFI(BFI), LI(LI),
326         InstrumentFuncEntry(InstrumentFuncEntry),
327         InstrumentLoopEntries(InstrumentLoopEntries) {
328     assert(!(InstrumentLoopEntries && !LI) &&
329            "expected a LoopInfo to instrumenting loop entries");
330     buildEdges();
331     sortEdgesByWeight();
332     computeMinimumSpanningTree();
333     assert(validateLoopEntryInstrumentation() &&
334            "Loop entries should not be in MST when "
335            "InstrumentLoopEntries is on");
336     if (AllEdges.size() > 1 && InstrumentFuncEntry)
337       std::iter_swap(std::move(AllEdges.begin()),
338                      std::move(AllEdges.begin() + AllEdges.size() - 1));
339   }
340 
341   const std::vector<std::unique_ptr<Edge>> &allEdges() const {
342     return AllEdges;
343   }
344 
345   std::vector<std::unique_ptr<Edge>> &allEdges() { return AllEdges; }
346 
347   size_t numEdges() const { return AllEdges.size(); }
348 
349   size_t bbInfoSize() const { return BBInfos.size(); }
350 
351   // Give BB, return the auxiliary information.
352   BBInfo &getBBInfo(const BasicBlock *BB) const {
353     auto It = BBInfos.find(BB);
354     assert(It->second.get() != nullptr);
355     return *It->second.get();
356   }
357 
358   // Give BB, return the auxiliary information if it's available.
359   BBInfo *findBBInfo(const BasicBlock *BB) const {
360     auto It = BBInfos.find(BB);
361     if (It == BBInfos.end())
362       return nullptr;
363     return It->second.get();
364   }
365 };
366 
367 } // end namespace llvm
368 
369 #undef DEBUG_TYPE // "cfgmst"
370 
371 #endif // LLVM_TRANSFORMS_INSTRUMENTATION_CFGMST_H
372