xref: /llvm-project/llvm/lib/Target/Hexagon/HexagonBlockRanges.cpp (revision 7e8bc5cf77bdda9e32b984b3fa91953361f24abb)
1 //===- HexagonBlockRanges.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "HexagonBlockRanges.h"
10 #include "HexagonInstrInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/ADT/BitVector.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/TargetRegisterInfo.h"
20 #include "llvm/MC/MCRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include <cassert>
24 #include <cstdint>
25 #include <iterator>
26 #include <map>
27 #include <utility>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "hbr"
32 
33 bool HexagonBlockRanges::IndexRange::overlaps(const IndexRange &A) const {
34   // If A contains start(), or "this" contains A.start(), then overlap.
35   IndexType S = start(), E = end(), AS = A.start(), AE = A.end();
36   if (AS == S)
37     return true;
38   bool SbAE = (S < AE) || (S == AE && A.TiedEnd);  // S-before-AE.
39   bool ASbE = (AS < E) || (AS == E && TiedEnd);    // AS-before-E.
40   if ((AS < S && SbAE) || (S < AS && ASbE))
41     return true;
42   // Otherwise no overlap.
43   return false;
44 }
45 
46 bool HexagonBlockRanges::IndexRange::contains(const IndexRange &A) const {
47   if (start() <= A.start()) {
48     // Treat "None" in the range end as equal to the range start.
49     IndexType E = (end() != IndexType::None) ? end() : start();
50     IndexType AE = (A.end() != IndexType::None) ? A.end() : A.start();
51     if (AE <= E)
52       return true;
53   }
54   return false;
55 }
56 
57 void HexagonBlockRanges::IndexRange::merge(const IndexRange &A) {
58   // Allow merging adjacent ranges.
59   assert(end() == A.start() || overlaps(A));
60   IndexType AS = A.start(), AE = A.end();
61   if (AS < start() || start() == IndexType::None)
62     setStart(AS);
63   if (end() < AE || end() == IndexType::None) {
64     setEnd(AE);
65     TiedEnd = A.TiedEnd;
66   } else {
67     if (end() == AE)
68       TiedEnd |= A.TiedEnd;
69   }
70   if (A.Fixed)
71     Fixed = true;
72 }
73 
74 void HexagonBlockRanges::RangeList::include(const RangeList &RL) {
75   for (const auto &R : RL)
76     if (!is_contained(*this, R))
77       push_back(R);
78 }
79 
80 // Merge all overlapping ranges in the list, so that all that remains
81 // is a list of disjoint ranges.
82 void HexagonBlockRanges::RangeList::unionize(bool MergeAdjacent) {
83   if (empty())
84     return;
85 
86   llvm::sort(*this);
87   iterator Iter = begin();
88 
89   while (Iter != end()-1) {
90     iterator Next = std::next(Iter);
91     // If MergeAdjacent is true, merge ranges A and B, where A.end == B.start.
92     // This allows merging dead ranges, but is not valid for live ranges.
93     bool Merge = MergeAdjacent && (Iter->end() == Next->start());
94     if (Merge || Iter->overlaps(*Next)) {
95       Iter->merge(*Next);
96       erase(Next);
97       continue;
98     }
99     ++Iter;
100   }
101 }
102 
103 // Compute a range A-B and add it to the list.
104 void HexagonBlockRanges::RangeList::addsub(const IndexRange &A,
105       const IndexRange &B) {
106   // Exclusion of non-overlapping ranges makes some checks simpler
107   // later in this function.
108   if (!A.overlaps(B)) {
109     // A - B = A.
110     add(A);
111     return;
112   }
113 
114   IndexType AS = A.start(), AE = A.end();
115   IndexType BS = B.start(), BE = B.end();
116 
117   // If AE is None, then A is included in B, since A and B overlap.
118   // The result of subtraction if empty, so just return.
119   if (AE == IndexType::None)
120     return;
121 
122   if (AS < BS) {
123     // A starts before B.
124     // AE cannot be None since A and B overlap.
125     assert(AE != IndexType::None);
126     // Add the part of A that extends on the "less" side of B.
127     add(AS, BS, A.Fixed, false);
128   }
129 
130   if (BE < AE) {
131     // BE cannot be Exit here.
132     if (BE == IndexType::None)
133       add(BS, AE, A.Fixed, false);
134     else
135       add(BE, AE, A.Fixed, false);
136   }
137 }
138 
139 // Subtract a given range from each element in the list.
140 void HexagonBlockRanges::RangeList::subtract(const IndexRange &Range) {
141   // Cannot assume that the list is unionized (i.e. contains only non-
142   // overlapping ranges.
143   RangeList T;
144   for (iterator Next, I = begin(); I != end(); I = Next) {
145     IndexRange &Rg = *I;
146     if (Rg.overlaps(Range)) {
147       T.addsub(Rg, Range);
148       Next = this->erase(I);
149     } else {
150       Next = std::next(I);
151     }
152   }
153   include(T);
154 }
155 
156 HexagonBlockRanges::InstrIndexMap::InstrIndexMap(MachineBasicBlock &B)
157     : Block(B) {
158   IndexType Idx = IndexType::First;
159   First = Idx;
160   for (auto &In : B) {
161     if (In.isDebugInstr())
162       continue;
163     assert(getIndex(&In) == IndexType::None && "Instruction already in map");
164     Map.insert(std::make_pair(Idx, &In));
165     ++Idx;
166   }
167   Last = B.empty() ? IndexType::None : unsigned(Idx)-1;
168 }
169 
170 MachineInstr *HexagonBlockRanges::InstrIndexMap::getInstr(IndexType Idx) const {
171   auto F = Map.find(Idx);
172   return (F != Map.end()) ? F->second : nullptr;
173 }
174 
175 HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getIndex(
176       MachineInstr *MI) const {
177   for (const auto &I : Map)
178     if (I.second == MI)
179       return I.first;
180   return IndexType::None;
181 }
182 
183 HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getPrevIndex(
184       IndexType Idx) const {
185   assert (Idx != IndexType::None);
186   if (Idx == IndexType::Entry)
187     return IndexType::None;
188   if (Idx == IndexType::Exit)
189     return Last;
190   if (Idx == First)
191     return IndexType::Entry;
192   return unsigned(Idx)-1;
193 }
194 
195 HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getNextIndex(
196       IndexType Idx) const {
197   assert (Idx != IndexType::None);
198   if (Idx == IndexType::Entry)
199     return IndexType::First;
200   if (Idx == IndexType::Exit || Idx == Last)
201     return IndexType::None;
202   return unsigned(Idx)+1;
203 }
204 
205 void HexagonBlockRanges::InstrIndexMap::replaceInstr(MachineInstr *OldMI,
206       MachineInstr *NewMI) {
207   for (auto &I : Map) {
208     if (I.second != OldMI)
209       continue;
210     if (NewMI != nullptr)
211       I.second = NewMI;
212     else
213       Map.erase(I.first);
214     break;
215   }
216 }
217 
218 HexagonBlockRanges::HexagonBlockRanges(MachineFunction &mf)
219   : MF(mf), HST(mf.getSubtarget<HexagonSubtarget>()),
220     TII(*HST.getInstrInfo()), TRI(*HST.getRegisterInfo()),
221     Reserved(TRI.getReservedRegs(mf)) {
222   // Consider all non-allocatable registers as reserved.
223   for (const TargetRegisterClass *RC : TRI.regclasses()) {
224     if (RC->isAllocatable())
225       continue;
226     for (unsigned R : *RC)
227       Reserved[R] = true;
228   }
229 }
230 
231 HexagonBlockRanges::RegisterSet HexagonBlockRanges::getLiveIns(
232       const MachineBasicBlock &B, const MachineRegisterInfo &MRI,
233       const TargetRegisterInfo &TRI) {
234   RegisterSet LiveIns;
235   RegisterSet Tmp;
236 
237   for (auto I : B.liveins()) {
238     MCSubRegIndexIterator S(I.PhysReg, &TRI);
239     if (I.LaneMask.all() || (I.LaneMask.any() && !S.isValid())) {
240       Tmp.insert({I.PhysReg, 0});
241       continue;
242     }
243     for (; S.isValid(); ++S) {
244       unsigned SI = S.getSubRegIndex();
245       if ((I.LaneMask & TRI.getSubRegIndexLaneMask(SI)).any())
246         Tmp.insert({S.getSubReg(), 0});
247     }
248   }
249 
250   for (auto R : Tmp) {
251     if (!Reserved[R.Reg])
252       LiveIns.insert(R);
253     for (auto S : expandToSubRegs(R, MRI, TRI))
254       if (!Reserved[S.Reg])
255         LiveIns.insert(S);
256   }
257   return LiveIns;
258 }
259 
260 HexagonBlockRanges::RegisterSet HexagonBlockRanges::expandToSubRegs(
261       RegisterRef R, const MachineRegisterInfo &MRI,
262       const TargetRegisterInfo &TRI) {
263   RegisterSet SRs;
264 
265   if (R.Sub != 0) {
266     SRs.insert(R);
267     return SRs;
268   }
269 
270   if (R.Reg.isPhysical()) {
271     if (TRI.subregs(R.Reg).empty())
272       SRs.insert({R.Reg, 0});
273     for (MCPhysReg I : TRI.subregs(R.Reg))
274       SRs.insert({I, 0});
275   } else {
276     assert(R.Reg.isVirtual());
277     auto &RC = *MRI.getRegClass(R.Reg);
278     unsigned PReg = *RC.begin();
279     MCSubRegIndexIterator I(PReg, &TRI);
280     if (!I.isValid())
281       SRs.insert({R.Reg, 0});
282     for (; I.isValid(); ++I)
283       SRs.insert({R.Reg, I.getSubRegIndex()});
284   }
285   return SRs;
286 }
287 
288 void HexagonBlockRanges::computeInitialLiveRanges(InstrIndexMap &IndexMap,
289       RegToRangeMap &LiveMap) {
290   std::map<RegisterRef,IndexType> LastDef, LastUse;
291   RegisterSet LiveOnEntry;
292   MachineBasicBlock &B = IndexMap.getBlock();
293   MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
294 
295   for (auto R : getLiveIns(B, MRI, TRI))
296     LiveOnEntry.insert(R);
297 
298   for (auto R : LiveOnEntry)
299     LastDef[R] = IndexType::Entry;
300 
301   auto closeRange = [&LastUse,&LastDef,&LiveMap] (RegisterRef R) -> void {
302     auto LD = LastDef[R], LU = LastUse[R];
303     if (LD == IndexType::None)
304       LD = IndexType::Entry;
305     if (LU == IndexType::None)
306       LU = IndexType::Exit;
307     LiveMap[R].add(LD, LU, false, false);
308     LastUse[R] = LastDef[R] = IndexType::None;
309   };
310 
311   RegisterSet Defs, Clobbers;
312 
313   for (auto &In : B) {
314     if (In.isDebugInstr())
315       continue;
316     IndexType Index = IndexMap.getIndex(&In);
317     // Process uses first.
318     for (auto &Op : In.operands()) {
319       if (!Op.isReg() || !Op.isUse() || Op.isUndef())
320         continue;
321       RegisterRef R = { Op.getReg(), Op.getSubReg() };
322       if (R.Reg.isPhysical() && Reserved[R.Reg])
323         continue;
324       bool IsKill = Op.isKill();
325       for (auto S : expandToSubRegs(R, MRI, TRI)) {
326         LastUse[S] = Index;
327         if (IsKill)
328           closeRange(S);
329       }
330     }
331     // Process defs and clobbers.
332     Defs.clear();
333     Clobbers.clear();
334     for (auto &Op : In.operands()) {
335       if (!Op.isReg() || !Op.isDef() || Op.isUndef())
336         continue;
337       RegisterRef R = { Op.getReg(), Op.getSubReg() };
338       for (auto S : expandToSubRegs(R, MRI, TRI)) {
339         if (S.Reg.isPhysical() && Reserved[S.Reg])
340           continue;
341         if (Op.isDead())
342           Clobbers.insert(S);
343         else
344           Defs.insert(S);
345       }
346     }
347 
348     for (auto &Op : In.operands()) {
349       if (!Op.isRegMask())
350         continue;
351       const uint32_t *BM = Op.getRegMask();
352       for (unsigned PR = 1, N = TRI.getNumRegs(); PR != N; ++PR) {
353         // Skip registers that have subregisters. A register is preserved
354         // iff its bit is set in the regmask, so if R1:0 was preserved, both
355         // R1 and R0 would also be present.
356         if (!TRI.subregs(PR).empty())
357           continue;
358         if (Reserved[PR])
359           continue;
360         if (BM[PR/32] & (1u << (PR%32)))
361           continue;
362         RegisterRef R = { PR, 0 };
363         if (!Defs.count(R))
364           Clobbers.insert(R);
365       }
366     }
367     // Defs and clobbers can overlap, e.g.
368     // dead %d0 = COPY %5, implicit-def %r0, implicit-def %r1
369     for (RegisterRef R : Defs)
370       Clobbers.erase(R);
371 
372     // Update maps for defs.
373     for (RegisterRef S : Defs) {
374       // Defs should already be expanded into subregs.
375       assert(!S.Reg.isPhysical() || TRI.subregs(S.Reg).empty());
376       if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None)
377         closeRange(S);
378       LastDef[S] = Index;
379     }
380     // Update maps for clobbers.
381     for (RegisterRef S : Clobbers) {
382       // Clobbers should already be expanded into subregs.
383       assert(!S.Reg.isPhysical() || TRI.subregs(S.Reg).empty());
384       if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None)
385         closeRange(S);
386       // Create a single-instruction range.
387       LastDef[S] = LastUse[S] = Index;
388       closeRange(S);
389     }
390   }
391 
392   // Collect live-on-exit.
393   RegisterSet LiveOnExit;
394   for (auto *SB : B.successors())
395     for (auto R : getLiveIns(*SB, MRI, TRI))
396       LiveOnExit.insert(R);
397 
398   for (auto R : LiveOnExit)
399     LastUse[R] = IndexType::Exit;
400 
401   // Process remaining registers.
402   RegisterSet Left;
403   for (auto &I : LastUse)
404     if (I.second != IndexType::None)
405       Left.insert(I.first);
406   for (auto &I : LastDef)
407     if (I.second != IndexType::None)
408       Left.insert(I.first);
409   for (auto R : Left)
410     closeRange(R);
411 
412   // Finalize the live ranges.
413   for (auto &P : LiveMap)
414     P.second.unionize();
415 }
416 
417 HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeLiveMap(
418       InstrIndexMap &IndexMap) {
419   RegToRangeMap LiveMap;
420   LLVM_DEBUG(dbgs() << __func__ << ": index map\n" << IndexMap << '\n');
421   computeInitialLiveRanges(IndexMap, LiveMap);
422   LLVM_DEBUG(dbgs() << __func__ << ": live map\n"
423                     << PrintRangeMap(LiveMap, TRI) << '\n');
424   return LiveMap;
425 }
426 
427 HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeDeadMap(
428       InstrIndexMap &IndexMap, RegToRangeMap &LiveMap) {
429   RegToRangeMap DeadMap;
430 
431   auto addDeadRanges = [&IndexMap,&LiveMap,&DeadMap] (RegisterRef R) -> void {
432     auto F = LiveMap.find(R);
433     if (F == LiveMap.end() || F->second.empty()) {
434       DeadMap[R].add(IndexType::Entry, IndexType::Exit, false, false);
435       return;
436     }
437 
438     RangeList &RL = F->second;
439     RangeList::iterator A = RL.begin(), Z = RL.end()-1;
440 
441     // Try to create the initial range.
442     if (A->start() != IndexType::Entry) {
443       IndexType DE = IndexMap.getPrevIndex(A->start());
444       if (DE != IndexType::Entry)
445         DeadMap[R].add(IndexType::Entry, DE, false, false);
446     }
447 
448     while (A != Z) {
449       // Creating a dead range that follows A.  Pay attention to empty
450       // ranges (i.e. those ending with "None").
451       IndexType AE = (A->end() == IndexType::None) ? A->start() : A->end();
452       IndexType DS = IndexMap.getNextIndex(AE);
453       ++A;
454       IndexType DE = IndexMap.getPrevIndex(A->start());
455       if (DS < DE)
456         DeadMap[R].add(DS, DE, false, false);
457     }
458 
459     // Try to create the final range.
460     if (Z->end() != IndexType::Exit) {
461       IndexType ZE = (Z->end() == IndexType::None) ? Z->start() : Z->end();
462       IndexType DS = IndexMap.getNextIndex(ZE);
463       if (DS < IndexType::Exit)
464         DeadMap[R].add(DS, IndexType::Exit, false, false);
465     }
466   };
467 
468   MachineFunction &MF = *IndexMap.getBlock().getParent();
469   auto &MRI = MF.getRegInfo();
470   unsigned NumRegs = TRI.getNumRegs();
471   BitVector Visited(NumRegs);
472   for (unsigned R = 1; R < NumRegs; ++R) {
473     for (auto S : expandToSubRegs({R,0}, MRI, TRI)) {
474       if (Reserved[S.Reg] || Visited[S.Reg])
475         continue;
476       addDeadRanges(S);
477       Visited[S.Reg] = true;
478     }
479   }
480   for (auto &P : LiveMap)
481     if (P.first.Reg.isVirtual())
482       addDeadRanges(P.first);
483 
484   LLVM_DEBUG(dbgs() << __func__ << ": dead map\n"
485                     << PrintRangeMap(DeadMap, TRI) << '\n');
486   return DeadMap;
487 }
488 
489 raw_ostream &llvm::operator<<(raw_ostream &OS,
490                               HexagonBlockRanges::IndexType Idx) {
491   if (Idx == HexagonBlockRanges::IndexType::None)
492     return OS << '-';
493   if (Idx == HexagonBlockRanges::IndexType::Entry)
494     return OS << 'n';
495   if (Idx == HexagonBlockRanges::IndexType::Exit)
496     return OS << 'x';
497   return OS << unsigned(Idx)-HexagonBlockRanges::IndexType::First+1;
498 }
499 
500 // A mapping to translate between instructions and their indices.
501 raw_ostream &llvm::operator<<(raw_ostream &OS,
502                               const HexagonBlockRanges::IndexRange &IR) {
503   OS << '[' << IR.start() << ':' << IR.end() << (IR.TiedEnd ? '}' : ']');
504   if (IR.Fixed)
505     OS << '!';
506   return OS;
507 }
508 
509 raw_ostream &llvm::operator<<(raw_ostream &OS,
510                               const HexagonBlockRanges::RangeList &RL) {
511   for (const auto &R : RL)
512     OS << R << " ";
513   return OS;
514 }
515 
516 raw_ostream &llvm::operator<<(raw_ostream &OS,
517                               const HexagonBlockRanges::InstrIndexMap &M) {
518   for (auto &In : M.Block) {
519     HexagonBlockRanges::IndexType Idx = M.getIndex(&In);
520     OS << Idx << (Idx == M.Last ? ". " : "  ") << In;
521   }
522   return OS;
523 }
524 
525 raw_ostream &llvm::operator<<(raw_ostream &OS,
526                               const HexagonBlockRanges::PrintRangeMap &P) {
527   for (const auto &I : P.Map) {
528     const HexagonBlockRanges::RangeList &RL = I.second;
529     OS << printReg(I.first.Reg, &P.TRI, I.first.Sub) << " -> " << RL << "\n";
530   }
531   return OS;
532 }
533