1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/ASTContext.h" 10 #include "clang/AST/ASTDiagnostic.h" 11 #include "clang/AST/Attr.h" 12 #include "clang/AST/CXXInheritance.h" 13 #include "clang/AST/Decl.h" 14 #include "clang/AST/DeclCXX.h" 15 #include "clang/AST/DeclObjC.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/RecordLayout.h" 18 #include "clang/AST/VTableBuilder.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "llvm/Support/Format.h" 21 #include "llvm/Support/MathExtras.h" 22 23 using namespace clang; 24 25 namespace { 26 27 /// BaseSubobjectInfo - Represents a single base subobject in a complete class. 28 /// For a class hierarchy like 29 /// 30 /// class A { }; 31 /// class B : A { }; 32 /// class C : A, B { }; 33 /// 34 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo 35 /// instances, one for B and two for A. 36 /// 37 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated. 38 struct BaseSubobjectInfo { 39 /// Class - The class for this base info. 40 const CXXRecordDecl *Class; 41 42 /// IsVirtual - Whether the BaseInfo represents a virtual base or not. 43 bool IsVirtual; 44 45 /// Bases - Information about the base subobjects. 46 SmallVector<BaseSubobjectInfo*, 4> Bases; 47 48 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base 49 /// of this base info (if one exists). 50 BaseSubobjectInfo *PrimaryVirtualBaseInfo; 51 52 // FIXME: Document. 53 const BaseSubobjectInfo *Derived; 54 }; 55 56 /// Externally provided layout. Typically used when the AST source, such 57 /// as DWARF, lacks all the information that was available at compile time, such 58 /// as alignment attributes on fields and pragmas in effect. 59 struct ExternalLayout { 60 ExternalLayout() = default; 61 62 /// Overall record size in bits. 63 uint64_t Size = 0; 64 65 /// Overall record alignment in bits. 66 uint64_t Align = 0; 67 68 /// Record field offsets in bits. 69 llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets; 70 71 /// Direct, non-virtual base offsets. 72 llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets; 73 74 /// Virtual base offsets. 75 llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets; 76 77 /// Get the offset of the given field. The external source must provide 78 /// entries for all fields in the record. 79 uint64_t getExternalFieldOffset(const FieldDecl *FD) { 80 assert(FieldOffsets.count(FD) && 81 "Field does not have an external offset"); 82 return FieldOffsets[FD]; 83 } 84 85 bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { 86 auto Known = BaseOffsets.find(RD); 87 if (Known == BaseOffsets.end()) 88 return false; 89 BaseOffset = Known->second; 90 return true; 91 } 92 93 bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { 94 auto Known = VirtualBaseOffsets.find(RD); 95 if (Known == VirtualBaseOffsets.end()) 96 return false; 97 BaseOffset = Known->second; 98 return true; 99 } 100 }; 101 102 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different 103 /// offsets while laying out a C++ class. 104 class EmptySubobjectMap { 105 const ASTContext &Context; 106 uint64_t CharWidth; 107 108 /// Class - The class whose empty entries we're keeping track of. 109 const CXXRecordDecl *Class; 110 111 /// EmptyClassOffsets - A map from offsets to empty record decls. 112 typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy; 113 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy; 114 EmptyClassOffsetsMapTy EmptyClassOffsets; 115 116 /// MaxEmptyClassOffset - The highest offset known to contain an empty 117 /// base subobject. 118 CharUnits MaxEmptyClassOffset; 119 120 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or 121 /// member subobject that is empty. 122 void ComputeEmptySubobjectSizes(); 123 124 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset); 125 126 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, 127 CharUnits Offset, bool PlacingEmptyBase); 128 129 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, 130 const CXXRecordDecl *Class, CharUnits Offset, 131 bool PlacingOverlappingField); 132 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset, 133 bool PlacingOverlappingField); 134 135 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty 136 /// subobjects beyond the given offset. 137 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const { 138 return Offset <= MaxEmptyClassOffset; 139 } 140 141 CharUnits getFieldOffset(const ASTRecordLayout &Layout, 142 const FieldDecl *Field) const { 143 uint64_t FieldOffset = Layout.getFieldOffset(Field->getFieldIndex()); 144 assert(FieldOffset % CharWidth == 0 && 145 "Field offset not at char boundary!"); 146 147 return Context.toCharUnitsFromBits(FieldOffset); 148 } 149 150 protected: 151 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, 152 CharUnits Offset) const; 153 154 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, 155 CharUnits Offset); 156 157 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, 158 const CXXRecordDecl *Class, 159 CharUnits Offset) const; 160 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, 161 CharUnits Offset) const; 162 163 public: 164 /// This holds the size of the largest empty subobject (either a base 165 /// or a member). Will be zero if the record being built doesn't contain 166 /// any empty classes. 167 CharUnits SizeOfLargestEmptySubobject; 168 169 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class) 170 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) { 171 ComputeEmptySubobjectSizes(); 172 } 173 174 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed 175 /// at the given offset. 176 /// Returns false if placing the record will result in two components 177 /// (direct or indirect) of the same type having the same offset. 178 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, 179 CharUnits Offset); 180 181 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given 182 /// offset. 183 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset); 184 }; 185 186 void EmptySubobjectMap::ComputeEmptySubobjectSizes() { 187 // Check the bases. 188 for (const CXXBaseSpecifier &Base : Class->bases()) { 189 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 190 191 CharUnits EmptySize; 192 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); 193 if (BaseDecl->isEmpty()) { 194 // If the class decl is empty, get its size. 195 EmptySize = Layout.getSize(); 196 } else { 197 // Otherwise, we get the largest empty subobject for the decl. 198 EmptySize = Layout.getSizeOfLargestEmptySubobject(); 199 } 200 201 if (EmptySize > SizeOfLargestEmptySubobject) 202 SizeOfLargestEmptySubobject = EmptySize; 203 } 204 205 // Check the fields. 206 for (const FieldDecl *FD : Class->fields()) { 207 const RecordType *RT = 208 Context.getBaseElementType(FD->getType())->getAs<RecordType>(); 209 210 // We only care about record types. 211 if (!RT) 212 continue; 213 214 CharUnits EmptySize; 215 const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl(); 216 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl); 217 if (MemberDecl->isEmpty()) { 218 // If the class decl is empty, get its size. 219 EmptySize = Layout.getSize(); 220 } else { 221 // Otherwise, we get the largest empty subobject for the decl. 222 EmptySize = Layout.getSizeOfLargestEmptySubobject(); 223 } 224 225 if (EmptySize > SizeOfLargestEmptySubobject) 226 SizeOfLargestEmptySubobject = EmptySize; 227 } 228 } 229 230 bool 231 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, 232 CharUnits Offset) const { 233 // We only need to check empty bases. 234 if (!RD->isEmpty()) 235 return true; 236 237 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset); 238 if (I == EmptyClassOffsets.end()) 239 return true; 240 241 const ClassVectorTy &Classes = I->second; 242 if (!llvm::is_contained(Classes, RD)) 243 return true; 244 245 // There is already an empty class of the same type at this offset. 246 return false; 247 } 248 249 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, 250 CharUnits Offset) { 251 // We only care about empty bases. 252 if (!RD->isEmpty()) 253 return; 254 255 // If we have empty structures inside a union, we can assign both 256 // the same offset. Just avoid pushing them twice in the list. 257 ClassVectorTy &Classes = EmptyClassOffsets[Offset]; 258 if (llvm::is_contained(Classes, RD)) 259 return; 260 261 Classes.push_back(RD); 262 263 // Update the empty class offset. 264 if (Offset > MaxEmptyClassOffset) 265 MaxEmptyClassOffset = Offset; 266 } 267 268 bool 269 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, 270 CharUnits Offset) { 271 // We don't have to keep looking past the maximum offset that's known to 272 // contain an empty class. 273 if (!AnyEmptySubobjectsBeyondOffset(Offset)) 274 return true; 275 276 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset)) 277 return false; 278 279 // Traverse all non-virtual bases. 280 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); 281 for (const BaseSubobjectInfo *Base : Info->Bases) { 282 if (Base->IsVirtual) 283 continue; 284 285 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); 286 287 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset)) 288 return false; 289 } 290 291 if (Info->PrimaryVirtualBaseInfo) { 292 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; 293 294 if (Info == PrimaryVirtualBaseInfo->Derived) { 295 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset)) 296 return false; 297 } 298 } 299 300 // Traverse all member variables. 301 for (const FieldDecl *Field : Info->Class->fields()) { 302 if (Field->isBitField()) 303 continue; 304 305 CharUnits FieldOffset = Offset + getFieldOffset(Layout, Field); 306 if (!CanPlaceFieldSubobjectAtOffset(Field, FieldOffset)) 307 return false; 308 } 309 310 return true; 311 } 312 313 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, 314 CharUnits Offset, 315 bool PlacingEmptyBase) { 316 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) { 317 // We know that the only empty subobjects that can conflict with empty 318 // subobject of non-empty bases, are empty bases that can be placed at 319 // offset zero. Because of this, we only need to keep track of empty base 320 // subobjects with offsets less than the size of the largest empty 321 // subobject for our class. 322 return; 323 } 324 325 AddSubobjectAtOffset(Info->Class, Offset); 326 327 // Traverse all non-virtual bases. 328 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); 329 for (const BaseSubobjectInfo *Base : Info->Bases) { 330 if (Base->IsVirtual) 331 continue; 332 333 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); 334 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase); 335 } 336 337 if (Info->PrimaryVirtualBaseInfo) { 338 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; 339 340 if (Info == PrimaryVirtualBaseInfo->Derived) 341 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset, 342 PlacingEmptyBase); 343 } 344 345 // Traverse all member variables. 346 for (const FieldDecl *Field : Info->Class->fields()) { 347 if (Field->isBitField()) 348 continue; 349 350 CharUnits FieldOffset = Offset + getFieldOffset(Layout, Field); 351 UpdateEmptyFieldSubobjects(Field, FieldOffset, PlacingEmptyBase); 352 } 353 } 354 355 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, 356 CharUnits Offset) { 357 // If we know this class doesn't have any empty subobjects we don't need to 358 // bother checking. 359 if (SizeOfLargestEmptySubobject.isZero()) 360 return true; 361 362 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset)) 363 return false; 364 365 // We are able to place the base at this offset. Make sure to update the 366 // empty base subobject map. 367 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty()); 368 return true; 369 } 370 371 bool 372 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, 373 const CXXRecordDecl *Class, 374 CharUnits Offset) const { 375 // We don't have to keep looking past the maximum offset that's known to 376 // contain an empty class. 377 if (!AnyEmptySubobjectsBeyondOffset(Offset)) 378 return true; 379 380 if (!CanPlaceSubobjectAtOffset(RD, Offset)) 381 return false; 382 383 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 384 385 // Traverse all non-virtual bases. 386 for (const CXXBaseSpecifier &Base : RD->bases()) { 387 if (Base.isVirtual()) 388 continue; 389 390 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 391 392 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); 393 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset)) 394 return false; 395 } 396 397 if (RD == Class) { 398 // This is the most derived class, traverse virtual bases as well. 399 for (const CXXBaseSpecifier &Base : RD->vbases()) { 400 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); 401 402 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); 403 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset)) 404 return false; 405 } 406 } 407 408 // Traverse all member variables. 409 for (const FieldDecl *Field : RD->fields()) { 410 if (Field->isBitField()) 411 continue; 412 413 CharUnits FieldOffset = Offset + getFieldOffset(Layout, Field); 414 if (!CanPlaceFieldSubobjectAtOffset(Field, FieldOffset)) 415 return false; 416 } 417 418 return true; 419 } 420 421 bool 422 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, 423 CharUnits Offset) const { 424 // We don't have to keep looking past the maximum offset that's known to 425 // contain an empty class. 426 if (!AnyEmptySubobjectsBeyondOffset(Offset)) 427 return true; 428 429 QualType T = FD->getType(); 430 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 431 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset); 432 433 // If we have an array type we need to look at every element. 434 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { 435 QualType ElemTy = Context.getBaseElementType(AT); 436 const RecordType *RT = ElemTy->getAs<RecordType>(); 437 if (!RT) 438 return true; 439 440 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); 441 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 442 443 uint64_t NumElements = Context.getConstantArrayElementCount(AT); 444 CharUnits ElementOffset = Offset; 445 for (uint64_t I = 0; I != NumElements; ++I) { 446 // We don't have to keep looking past the maximum offset that's known to 447 // contain an empty class. 448 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset)) 449 return true; 450 451 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset)) 452 return false; 453 454 ElementOffset += Layout.getSize(); 455 } 456 } 457 458 return true; 459 } 460 461 bool EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, 462 CharUnits Offset) { 463 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset)) 464 return false; 465 466 // We are able to place the member variable at this offset. 467 // Make sure to update the empty field subobject map. 468 UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>()); 469 return true; 470 } 471 472 void EmptySubobjectMap::UpdateEmptyFieldSubobjects( 473 const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset, 474 bool PlacingOverlappingField) { 475 // We know that the only empty subobjects that can conflict with empty 476 // field subobjects are subobjects of empty bases and potentially-overlapping 477 // fields that can be placed at offset zero. Because of this, we only need to 478 // keep track of empty field subobjects with offsets less than the size of 479 // the largest empty subobject for our class. 480 // 481 // (Proof: we will only consider placing a subobject at offset zero or at 482 // >= the current dsize. The only cases where the earlier subobject can be 483 // placed beyond the end of dsize is if it's an empty base or a 484 // potentially-overlapping field.) 485 if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject) 486 return; 487 488 AddSubobjectAtOffset(RD, Offset); 489 490 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 491 492 // Traverse all non-virtual bases. 493 for (const CXXBaseSpecifier &Base : RD->bases()) { 494 if (Base.isVirtual()) 495 continue; 496 497 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 498 499 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); 500 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset, 501 PlacingOverlappingField); 502 } 503 504 if (RD == Class) { 505 // This is the most derived class, traverse virtual bases as well. 506 for (const CXXBaseSpecifier &Base : RD->vbases()) { 507 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); 508 509 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); 510 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset, 511 PlacingOverlappingField); 512 } 513 } 514 515 // Traverse all member variables. 516 for (const FieldDecl *Field : RD->fields()) { 517 if (Field->isBitField()) 518 continue; 519 520 CharUnits FieldOffset = Offset + getFieldOffset(Layout, Field); 521 UpdateEmptyFieldSubobjects(Field, FieldOffset, PlacingOverlappingField); 522 } 523 } 524 525 void EmptySubobjectMap::UpdateEmptyFieldSubobjects( 526 const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) { 527 QualType T = FD->getType(); 528 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 529 UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField); 530 return; 531 } 532 533 // If we have an array type we need to update every element. 534 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { 535 QualType ElemTy = Context.getBaseElementType(AT); 536 const RecordType *RT = ElemTy->getAs<RecordType>(); 537 if (!RT) 538 return; 539 540 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); 541 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 542 543 uint64_t NumElements = Context.getConstantArrayElementCount(AT); 544 CharUnits ElementOffset = Offset; 545 546 for (uint64_t I = 0; I != NumElements; ++I) { 547 // We know that the only empty subobjects that can conflict with empty 548 // field subobjects are subobjects of empty bases that can be placed at 549 // offset zero. Because of this, we only need to keep track of empty field 550 // subobjects with offsets less than the size of the largest empty 551 // subobject for our class. 552 if (!PlacingOverlappingField && 553 ElementOffset >= SizeOfLargestEmptySubobject) 554 return; 555 556 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset, 557 PlacingOverlappingField); 558 ElementOffset += Layout.getSize(); 559 } 560 } 561 } 562 563 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy; 564 565 class ItaniumRecordLayoutBuilder { 566 protected: 567 // FIXME: Remove this and make the appropriate fields public. 568 friend class clang::ASTContext; 569 570 const ASTContext &Context; 571 572 EmptySubobjectMap *EmptySubobjects; 573 574 /// Size - The current size of the record layout. 575 uint64_t Size; 576 577 /// Alignment - The current alignment of the record layout. 578 CharUnits Alignment; 579 580 /// PreferredAlignment - The preferred alignment of the record layout. 581 CharUnits PreferredAlignment; 582 583 /// The alignment if attribute packed is not used. 584 CharUnits UnpackedAlignment; 585 586 /// \brief The maximum of the alignments of top-level members. 587 CharUnits UnadjustedAlignment; 588 589 SmallVector<uint64_t, 16> FieldOffsets; 590 591 /// Whether the external AST source has provided a layout for this 592 /// record. 593 LLVM_PREFERRED_TYPE(bool) 594 unsigned UseExternalLayout : 1; 595 596 /// Whether we need to infer alignment, even when we have an 597 /// externally-provided layout. 598 LLVM_PREFERRED_TYPE(bool) 599 unsigned InferAlignment : 1; 600 601 /// Packed - Whether the record is packed or not. 602 LLVM_PREFERRED_TYPE(bool) 603 unsigned Packed : 1; 604 605 LLVM_PREFERRED_TYPE(bool) 606 unsigned IsUnion : 1; 607 608 LLVM_PREFERRED_TYPE(bool) 609 unsigned IsMac68kAlign : 1; 610 611 LLVM_PREFERRED_TYPE(bool) 612 unsigned IsNaturalAlign : 1; 613 614 LLVM_PREFERRED_TYPE(bool) 615 unsigned IsMsStruct : 1; 616 617 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield, 618 /// this contains the number of bits in the last unit that can be used for 619 /// an adjacent bitfield if necessary. The unit in question is usually 620 /// a byte, but larger units are used if IsMsStruct. 621 unsigned char UnfilledBitsInLastUnit; 622 623 /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the 624 /// storage unit of the previous field if it was a bitfield. 625 unsigned char LastBitfieldStorageUnitSize; 626 627 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by 628 /// #pragma pack. 629 CharUnits MaxFieldAlignment; 630 631 /// DataSize - The data size of the record being laid out. 632 uint64_t DataSize; 633 634 CharUnits NonVirtualSize; 635 CharUnits NonVirtualAlignment; 636 CharUnits PreferredNVAlignment; 637 638 /// If we've laid out a field but not included its tail padding in Size yet, 639 /// this is the size up to the end of that field. 640 CharUnits PaddedFieldSize; 641 642 /// PrimaryBase - the primary base class (if one exists) of the class 643 /// we're laying out. 644 const CXXRecordDecl *PrimaryBase; 645 646 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying 647 /// out is virtual. 648 bool PrimaryBaseIsVirtual; 649 650 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl 651 /// pointer, as opposed to inheriting one from a primary base class. 652 bool HasOwnVFPtr; 653 654 /// the flag of field offset changing due to packed attribute. 655 bool HasPackedField; 656 657 /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX. 658 /// When there are OverlappingEmptyFields existing in the aggregate, the 659 /// flag shows if the following first non-empty or empty-but-non-overlapping 660 /// field has been handled, if any. 661 bool HandledFirstNonOverlappingEmptyField; 662 663 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; 664 665 /// Bases - base classes and their offsets in the record. 666 BaseOffsetsMapTy Bases; 667 668 // VBases - virtual base classes and their offsets in the record. 669 ASTRecordLayout::VBaseOffsetsMapTy VBases; 670 671 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are 672 /// primary base classes for some other direct or indirect base class. 673 CXXIndirectPrimaryBaseSet IndirectPrimaryBases; 674 675 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in 676 /// inheritance graph order. Used for determining the primary base class. 677 const CXXRecordDecl *FirstNearlyEmptyVBase; 678 679 /// VisitedVirtualBases - A set of all the visited virtual bases, used to 680 /// avoid visiting virtual bases more than once. 681 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; 682 683 /// Valid if UseExternalLayout is true. 684 ExternalLayout External; 685 686 ItaniumRecordLayoutBuilder(const ASTContext &Context, 687 EmptySubobjectMap *EmptySubobjects) 688 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), 689 Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()), 690 UnpackedAlignment(CharUnits::One()), 691 UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false), 692 InferAlignment(false), Packed(false), IsUnion(false), 693 IsMac68kAlign(false), 694 IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()), 695 IsMsStruct(false), UnfilledBitsInLastUnit(0), 696 LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()), 697 DataSize(0), NonVirtualSize(CharUnits::Zero()), 698 NonVirtualAlignment(CharUnits::One()), 699 PreferredNVAlignment(CharUnits::One()), 700 PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr), 701 PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false), 702 HandledFirstNonOverlappingEmptyField(false), 703 FirstNearlyEmptyVBase(nullptr) {} 704 705 void Layout(const RecordDecl *D); 706 void Layout(const CXXRecordDecl *D); 707 void Layout(const ObjCInterfaceDecl *D); 708 709 void LayoutFields(const RecordDecl *D); 710 void LayoutField(const FieldDecl *D, bool InsertExtraPadding); 711 void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize, 712 bool FieldPacked, const FieldDecl *D); 713 void LayoutBitField(const FieldDecl *D); 714 715 TargetCXXABI getCXXABI() const { 716 return Context.getTargetInfo().getCXXABI(); 717 } 718 719 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects. 720 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator; 721 722 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *> 723 BaseSubobjectInfoMapTy; 724 725 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases 726 /// of the class we're laying out to their base subobject info. 727 BaseSubobjectInfoMapTy VirtualBaseInfo; 728 729 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the 730 /// class we're laying out to their base subobject info. 731 BaseSubobjectInfoMapTy NonVirtualBaseInfo; 732 733 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the 734 /// bases of the given class. 735 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD); 736 737 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a 738 /// single class and all of its base classes. 739 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, 740 bool IsVirtual, 741 BaseSubobjectInfo *Derived); 742 743 /// DeterminePrimaryBase - Determine the primary base of the given class. 744 void DeterminePrimaryBase(const CXXRecordDecl *RD); 745 746 void SelectPrimaryVBase(const CXXRecordDecl *RD); 747 748 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign); 749 750 /// LayoutNonVirtualBases - Determines the primary base class (if any) and 751 /// lays it out. Will then proceed to lay out all non-virtual base clasess. 752 void LayoutNonVirtualBases(const CXXRecordDecl *RD); 753 754 /// LayoutNonVirtualBase - Lays out a single non-virtual base. 755 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base); 756 757 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, 758 CharUnits Offset); 759 760 /// LayoutVirtualBases - Lays out all the virtual bases. 761 void LayoutVirtualBases(const CXXRecordDecl *RD, 762 const CXXRecordDecl *MostDerivedClass); 763 764 /// LayoutVirtualBase - Lays out a single virtual base. 765 void LayoutVirtualBase(const BaseSubobjectInfo *Base); 766 767 /// LayoutBase - Will lay out a base and return the offset where it was 768 /// placed, in chars. 769 CharUnits LayoutBase(const BaseSubobjectInfo *Base); 770 771 /// InitializeLayout - Initialize record layout for the given record decl. 772 void InitializeLayout(const Decl *D); 773 774 /// FinishLayout - Finalize record layout. Adjust record size based on the 775 /// alignment. 776 void FinishLayout(const NamedDecl *D); 777 778 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment, 779 CharUnits PreferredAlignment); 780 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) { 781 UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment); 782 } 783 void UpdateAlignment(CharUnits NewAlignment) { 784 UpdateAlignment(NewAlignment, NewAlignment, NewAlignment); 785 } 786 787 /// Retrieve the externally-supplied field offset for the given 788 /// field. 789 /// 790 /// \param Field The field whose offset is being queried. 791 /// \param ComputedOffset The offset that we've computed for this field. 792 uint64_t updateExternalFieldOffset(const FieldDecl *Field, 793 uint64_t ComputedOffset); 794 795 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset, 796 uint64_t UnpackedOffset, unsigned UnpackedAlign, 797 bool isPacked, const FieldDecl *D); 798 799 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID); 800 801 CharUnits getSize() const { 802 assert(Size % Context.getCharWidth() == 0); 803 return Context.toCharUnitsFromBits(Size); 804 } 805 uint64_t getSizeInBits() const { return Size; } 806 807 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); } 808 void setSize(uint64_t NewSize) { Size = NewSize; } 809 810 CharUnits getAlignment() const { return Alignment; } 811 812 CharUnits getDataSize() const { 813 assert(DataSize % Context.getCharWidth() == 0); 814 return Context.toCharUnitsFromBits(DataSize); 815 } 816 uint64_t getDataSizeInBits() const { return DataSize; } 817 818 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); } 819 void setDataSize(uint64_t NewSize) { DataSize = NewSize; } 820 821 ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete; 822 void operator=(const ItaniumRecordLayoutBuilder &) = delete; 823 }; 824 } // end anonymous namespace 825 826 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) { 827 for (const auto &I : RD->bases()) { 828 assert(!I.getType()->isDependentType() && 829 "Cannot layout class with dependent bases."); 830 831 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 832 833 // Check if this is a nearly empty virtual base. 834 if (I.isVirtual() && Context.isNearlyEmpty(Base)) { 835 // If it's not an indirect primary base, then we've found our primary 836 // base. 837 if (!IndirectPrimaryBases.count(Base)) { 838 PrimaryBase = Base; 839 PrimaryBaseIsVirtual = true; 840 return; 841 } 842 843 // Is this the first nearly empty virtual base? 844 if (!FirstNearlyEmptyVBase) 845 FirstNearlyEmptyVBase = Base; 846 } 847 848 SelectPrimaryVBase(Base); 849 if (PrimaryBase) 850 return; 851 } 852 } 853 854 /// DeterminePrimaryBase - Determine the primary base of the given class. 855 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) { 856 // If the class isn't dynamic, it won't have a primary base. 857 if (!RD->isDynamicClass()) 858 return; 859 860 // Compute all the primary virtual bases for all of our direct and 861 // indirect bases, and record all their primary virtual base classes. 862 RD->getIndirectPrimaryBases(IndirectPrimaryBases); 863 864 // If the record has a dynamic base class, attempt to choose a primary base 865 // class. It is the first (in direct base class order) non-virtual dynamic 866 // base class, if one exists. 867 for (const auto &I : RD->bases()) { 868 // Ignore virtual bases. 869 if (I.isVirtual()) 870 continue; 871 872 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 873 874 if (Base->isDynamicClass()) { 875 // We found it. 876 PrimaryBase = Base; 877 PrimaryBaseIsVirtual = false; 878 return; 879 } 880 } 881 882 // Under the Itanium ABI, if there is no non-virtual primary base class, 883 // try to compute the primary virtual base. The primary virtual base is 884 // the first nearly empty virtual base that is not an indirect primary 885 // virtual base class, if one exists. 886 if (RD->getNumVBases() != 0) { 887 SelectPrimaryVBase(RD); 888 if (PrimaryBase) 889 return; 890 } 891 892 // Otherwise, it is the first indirect primary base class, if one exists. 893 if (FirstNearlyEmptyVBase) { 894 PrimaryBase = FirstNearlyEmptyVBase; 895 PrimaryBaseIsVirtual = true; 896 return; 897 } 898 899 assert(!PrimaryBase && "Should not get here with a primary base!"); 900 } 901 902 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( 903 const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) { 904 BaseSubobjectInfo *Info; 905 906 if (IsVirtual) { 907 // Check if we already have info about this virtual base. 908 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD]; 909 if (InfoSlot) { 910 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!"); 911 return InfoSlot; 912 } 913 914 // We don't, create it. 915 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; 916 Info = InfoSlot; 917 } else { 918 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; 919 } 920 921 Info->Class = RD; 922 Info->IsVirtual = IsVirtual; 923 Info->Derived = nullptr; 924 Info->PrimaryVirtualBaseInfo = nullptr; 925 926 const CXXRecordDecl *PrimaryVirtualBase = nullptr; 927 BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr; 928 929 // Check if this base has a primary virtual base. 930 if (RD->getNumVBases()) { 931 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 932 if (Layout.isPrimaryBaseVirtual()) { 933 // This base does have a primary virtual base. 934 PrimaryVirtualBase = Layout.getPrimaryBase(); 935 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!"); 936 937 // Now check if we have base subobject info about this primary base. 938 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); 939 940 if (PrimaryVirtualBaseInfo) { 941 if (PrimaryVirtualBaseInfo->Derived) { 942 // We did have info about this primary base, and it turns out that it 943 // has already been claimed as a primary virtual base for another 944 // base. 945 PrimaryVirtualBase = nullptr; 946 } else { 947 // We can claim this base as our primary base. 948 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; 949 PrimaryVirtualBaseInfo->Derived = Info; 950 } 951 } 952 } 953 } 954 955 // Now go through all direct bases. 956 for (const auto &I : RD->bases()) { 957 bool IsVirtual = I.isVirtual(); 958 959 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); 960 961 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info)); 962 } 963 964 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) { 965 // Traversing the bases must have created the base info for our primary 966 // virtual base. 967 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); 968 assert(PrimaryVirtualBaseInfo && 969 "Did not create a primary virtual base!"); 970 971 // Claim the primary virtual base as our primary virtual base. 972 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; 973 PrimaryVirtualBaseInfo->Derived = Info; 974 } 975 976 return Info; 977 } 978 979 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( 980 const CXXRecordDecl *RD) { 981 for (const auto &I : RD->bases()) { 982 bool IsVirtual = I.isVirtual(); 983 984 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); 985 986 // Compute the base subobject info for this base. 987 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 988 nullptr); 989 990 if (IsVirtual) { 991 // ComputeBaseInfo has already added this base for us. 992 assert(VirtualBaseInfo.count(BaseDecl) && 993 "Did not add virtual base!"); 994 } else { 995 // Add the base info to the map of non-virtual bases. 996 assert(!NonVirtualBaseInfo.count(BaseDecl) && 997 "Non-virtual base already exists!"); 998 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info)); 999 } 1000 } 1001 } 1002 1003 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment( 1004 CharUnits UnpackedBaseAlign) { 1005 CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign; 1006 1007 // The maximum field alignment overrides base align. 1008 if (!MaxFieldAlignment.isZero()) { 1009 BaseAlign = std::min(BaseAlign, MaxFieldAlignment); 1010 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment); 1011 } 1012 1013 // Round up the current record size to pointer alignment. 1014 setSize(getSize().alignTo(BaseAlign)); 1015 1016 // Update the alignment. 1017 UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign); 1018 } 1019 1020 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases( 1021 const CXXRecordDecl *RD) { 1022 // Then, determine the primary base class. 1023 DeterminePrimaryBase(RD); 1024 1025 // Compute base subobject info. 1026 ComputeBaseSubobjectInfo(RD); 1027 1028 // If we have a primary base class, lay it out. 1029 if (PrimaryBase) { 1030 if (PrimaryBaseIsVirtual) { 1031 // If the primary virtual base was a primary virtual base of some other 1032 // base class we'll have to steal it. 1033 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase); 1034 PrimaryBaseInfo->Derived = nullptr; 1035 1036 // We have a virtual primary base, insert it as an indirect primary base. 1037 IndirectPrimaryBases.insert(PrimaryBase); 1038 1039 assert(!VisitedVirtualBases.count(PrimaryBase) && 1040 "vbase already visited!"); 1041 VisitedVirtualBases.insert(PrimaryBase); 1042 1043 LayoutVirtualBase(PrimaryBaseInfo); 1044 } else { 1045 BaseSubobjectInfo *PrimaryBaseInfo = 1046 NonVirtualBaseInfo.lookup(PrimaryBase); 1047 assert(PrimaryBaseInfo && 1048 "Did not find base info for non-virtual primary base!"); 1049 1050 LayoutNonVirtualBase(PrimaryBaseInfo); 1051 } 1052 1053 // If this class needs a vtable/vf-table and didn't get one from a 1054 // primary base, add it in now. 1055 } else if (RD->isDynamicClass()) { 1056 assert(DataSize == 0 && "Vtable pointer must be at offset zero!"); 1057 CharUnits PtrWidth = Context.toCharUnitsFromBits( 1058 Context.getTargetInfo().getPointerWidth(LangAS::Default)); 1059 CharUnits PtrAlign = Context.toCharUnitsFromBits( 1060 Context.getTargetInfo().getPointerAlign(LangAS::Default)); 1061 EnsureVTablePointerAlignment(PtrAlign); 1062 HasOwnVFPtr = true; 1063 1064 assert(!IsUnion && "Unions cannot be dynamic classes."); 1065 HandledFirstNonOverlappingEmptyField = true; 1066 1067 setSize(getSize() + PtrWidth); 1068 setDataSize(getSize()); 1069 } 1070 1071 // Now lay out the non-virtual bases. 1072 for (const auto &I : RD->bases()) { 1073 1074 // Ignore virtual bases. 1075 if (I.isVirtual()) 1076 continue; 1077 1078 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); 1079 1080 // Skip the primary base, because we've already laid it out. The 1081 // !PrimaryBaseIsVirtual check is required because we might have a 1082 // non-virtual base of the same type as a primary virtual base. 1083 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual) 1084 continue; 1085 1086 // Lay out the base. 1087 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl); 1088 assert(BaseInfo && "Did not find base info for non-virtual base!"); 1089 1090 LayoutNonVirtualBase(BaseInfo); 1091 } 1092 } 1093 1094 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase( 1095 const BaseSubobjectInfo *Base) { 1096 // Layout the base. 1097 CharUnits Offset = LayoutBase(Base); 1098 1099 // Add its base class offset. 1100 assert(!Bases.count(Base->Class) && "base offset already exists!"); 1101 Bases.insert(std::make_pair(Base->Class, Offset)); 1102 1103 AddPrimaryVirtualBaseOffsets(Base, Offset); 1104 } 1105 1106 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets( 1107 const BaseSubobjectInfo *Info, CharUnits Offset) { 1108 // This base isn't interesting, it has no virtual bases. 1109 if (!Info->Class->getNumVBases()) 1110 return; 1111 1112 // First, check if we have a virtual primary base to add offsets for. 1113 if (Info->PrimaryVirtualBaseInfo) { 1114 assert(Info->PrimaryVirtualBaseInfo->IsVirtual && 1115 "Primary virtual base is not virtual!"); 1116 if (Info->PrimaryVirtualBaseInfo->Derived == Info) { 1117 // Add the offset. 1118 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && 1119 "primary vbase offset already exists!"); 1120 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class, 1121 ASTRecordLayout::VBaseInfo(Offset, false))); 1122 1123 // Traverse the primary virtual base. 1124 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset); 1125 } 1126 } 1127 1128 // Now go through all direct non-virtual bases. 1129 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); 1130 for (const BaseSubobjectInfo *Base : Info->Bases) { 1131 if (Base->IsVirtual) 1132 continue; 1133 1134 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); 1135 AddPrimaryVirtualBaseOffsets(Base, BaseOffset); 1136 } 1137 } 1138 1139 void ItaniumRecordLayoutBuilder::LayoutVirtualBases( 1140 const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) { 1141 const CXXRecordDecl *PrimaryBase; 1142 bool PrimaryBaseIsVirtual; 1143 1144 if (MostDerivedClass == RD) { 1145 PrimaryBase = this->PrimaryBase; 1146 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual; 1147 } else { 1148 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1149 PrimaryBase = Layout.getPrimaryBase(); 1150 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); 1151 } 1152 1153 for (const CXXBaseSpecifier &Base : RD->bases()) { 1154 assert(!Base.getType()->isDependentType() && 1155 "Cannot layout class with dependent bases."); 1156 1157 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 1158 1159 if (Base.isVirtual()) { 1160 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) { 1161 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl); 1162 1163 // Only lay out the virtual base if it's not an indirect primary base. 1164 if (!IndirectPrimaryBase) { 1165 // Only visit virtual bases once. 1166 if (!VisitedVirtualBases.insert(BaseDecl).second) 1167 continue; 1168 1169 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl); 1170 assert(BaseInfo && "Did not find virtual base info!"); 1171 LayoutVirtualBase(BaseInfo); 1172 } 1173 } 1174 } 1175 1176 if (!BaseDecl->getNumVBases()) { 1177 // This base isn't interesting since it doesn't have any virtual bases. 1178 continue; 1179 } 1180 1181 LayoutVirtualBases(BaseDecl, MostDerivedClass); 1182 } 1183 } 1184 1185 void ItaniumRecordLayoutBuilder::LayoutVirtualBase( 1186 const BaseSubobjectInfo *Base) { 1187 assert(!Base->Derived && "Trying to lay out a primary virtual base!"); 1188 1189 // Layout the base. 1190 CharUnits Offset = LayoutBase(Base); 1191 1192 // Add its base class offset. 1193 assert(!VBases.count(Base->Class) && "vbase offset already exists!"); 1194 VBases.insert(std::make_pair(Base->Class, 1195 ASTRecordLayout::VBaseInfo(Offset, false))); 1196 1197 AddPrimaryVirtualBaseOffsets(Base, Offset); 1198 } 1199 1200 CharUnits 1201 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) { 1202 assert(!IsUnion && "Unions cannot have base classes."); 1203 1204 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class); 1205 CharUnits Offset; 1206 1207 // Query the external layout to see if it provides an offset. 1208 bool HasExternalLayout = false; 1209 if (UseExternalLayout) { 1210 if (Base->IsVirtual) 1211 HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset); 1212 else 1213 HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset); 1214 } 1215 1216 auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) { 1217 // Clang <= 6 incorrectly applied the 'packed' attribute to base classes. 1218 // Per GCC's documentation, it only applies to non-static data members. 1219 return (Packed && ((Context.getLangOpts().getClangABICompat() <= 1220 LangOptions::ClangABI::Ver6) || 1221 Context.getTargetInfo().getTriple().isPS() || 1222 Context.getTargetInfo().getTriple().isOSAIX())) 1223 ? CharUnits::One() 1224 : UnpackedAlign; 1225 }; 1226 1227 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment(); 1228 CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment(); 1229 CharUnits BaseAlign = 1230 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign); 1231 CharUnits PreferredBaseAlign = 1232 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign); 1233 1234 const bool DefaultsToAIXPowerAlignment = 1235 Context.getTargetInfo().defaultsToAIXPowerAlignment(); 1236 if (DefaultsToAIXPowerAlignment) { 1237 // AIX `power` alignment does not apply the preferred alignment for 1238 // non-union classes if the source of the alignment (the current base in 1239 // this context) follows introduction of the first subobject with 1240 // exclusively allocated space or zero-extent array. 1241 if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) { 1242 // By handling a base class that is not empty, we're handling the 1243 // "first (inherited) member". 1244 HandledFirstNonOverlappingEmptyField = true; 1245 } else if (!IsNaturalAlign) { 1246 UnpackedPreferredBaseAlign = UnpackedBaseAlign; 1247 PreferredBaseAlign = BaseAlign; 1248 } 1249 } 1250 1251 CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment 1252 ? UnpackedBaseAlign 1253 : UnpackedPreferredBaseAlign; 1254 // If we have an empty base class, try to place it at offset 0. 1255 if (Base->Class->isEmpty() && 1256 (!HasExternalLayout || Offset == CharUnits::Zero()) && 1257 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) { 1258 setSize(std::max(getSize(), Layout.getSize())); 1259 // On PS4/PS5, don't update the alignment, to preserve compatibility. 1260 if (!Context.getTargetInfo().getTriple().isPS()) 1261 UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign); 1262 1263 return CharUnits::Zero(); 1264 } 1265 1266 // The maximum field alignment overrides the base align/(AIX-only) preferred 1267 // base align. 1268 if (!MaxFieldAlignment.isZero()) { 1269 BaseAlign = std::min(BaseAlign, MaxFieldAlignment); 1270 PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment); 1271 UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment); 1272 } 1273 1274 CharUnits AlignTo = 1275 !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign; 1276 if (!HasExternalLayout) { 1277 // Round up the current record size to the base's alignment boundary. 1278 Offset = getDataSize().alignTo(AlignTo); 1279 1280 // Try to place the base. 1281 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset)) 1282 Offset += AlignTo; 1283 } else { 1284 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset); 1285 (void)Allowed; 1286 assert(Allowed && "Base subobject externally placed at overlapping offset"); 1287 1288 if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) { 1289 // The externally-supplied base offset is before the base offset we 1290 // computed. Assume that the structure is packed. 1291 Alignment = CharUnits::One(); 1292 InferAlignment = false; 1293 } 1294 } 1295 1296 if (!Base->Class->isEmpty()) { 1297 // Update the data size. 1298 setDataSize(Offset + Layout.getNonVirtualSize()); 1299 1300 setSize(std::max(getSize(), getDataSize())); 1301 } else 1302 setSize(std::max(getSize(), Offset + Layout.getSize())); 1303 1304 // Remember max struct/class alignment. 1305 UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign); 1306 1307 return Offset; 1308 } 1309 1310 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) { 1311 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { 1312 IsUnion = RD->isUnion(); 1313 IsMsStruct = RD->isMsStruct(Context); 1314 } 1315 1316 Packed = D->hasAttr<PackedAttr>(); 1317 1318 // Honor the default struct packing maximum alignment flag. 1319 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) { 1320 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); 1321 } 1322 1323 // mac68k alignment supersedes maximum field alignment and attribute aligned, 1324 // and forces all structures to have 2-byte alignment. The IBM docs on it 1325 // allude to additional (more complicated) semantics, especially with regard 1326 // to bit-fields, but gcc appears not to follow that. 1327 if (D->hasAttr<AlignMac68kAttr>()) { 1328 assert( 1329 !D->hasAttr<AlignNaturalAttr>() && 1330 "Having both mac68k and natural alignment on a decl is not allowed."); 1331 IsMac68kAlign = true; 1332 MaxFieldAlignment = CharUnits::fromQuantity(2); 1333 Alignment = CharUnits::fromQuantity(2); 1334 PreferredAlignment = CharUnits::fromQuantity(2); 1335 } else { 1336 if (D->hasAttr<AlignNaturalAttr>()) 1337 IsNaturalAlign = true; 1338 1339 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>()) 1340 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment()); 1341 1342 if (unsigned MaxAlign = D->getMaxAlignment()) 1343 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign)); 1344 } 1345 1346 HandledFirstNonOverlappingEmptyField = 1347 !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign; 1348 1349 // If there is an external AST source, ask it for the various offsets. 1350 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) 1351 if (ExternalASTSource *Source = Context.getExternalSource()) { 1352 UseExternalLayout = Source->layoutRecordType( 1353 RD, External.Size, External.Align, External.FieldOffsets, 1354 External.BaseOffsets, External.VirtualBaseOffsets); 1355 1356 // Update based on external alignment. 1357 if (UseExternalLayout) { 1358 if (External.Align > 0) { 1359 Alignment = Context.toCharUnitsFromBits(External.Align); 1360 PreferredAlignment = Context.toCharUnitsFromBits(External.Align); 1361 } else { 1362 // The external source didn't have alignment information; infer it. 1363 InferAlignment = true; 1364 } 1365 } 1366 } 1367 } 1368 1369 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) { 1370 InitializeLayout(D); 1371 LayoutFields(D); 1372 1373 // Finally, round the size of the total struct up to the alignment of the 1374 // struct itself. 1375 FinishLayout(D); 1376 } 1377 1378 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) { 1379 InitializeLayout(RD); 1380 1381 // Lay out the vtable and the non-virtual bases. 1382 LayoutNonVirtualBases(RD); 1383 1384 LayoutFields(RD); 1385 1386 NonVirtualSize = Context.toCharUnitsFromBits( 1387 llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign())); 1388 NonVirtualAlignment = Alignment; 1389 PreferredNVAlignment = PreferredAlignment; 1390 1391 // Lay out the virtual bases and add the primary virtual base offsets. 1392 LayoutVirtualBases(RD, RD); 1393 1394 // Finally, round the size of the total struct up to the alignment 1395 // of the struct itself. 1396 FinishLayout(RD); 1397 1398 #ifndef NDEBUG 1399 // Check that we have base offsets for all bases. 1400 for (const CXXBaseSpecifier &Base : RD->bases()) { 1401 if (Base.isVirtual()) 1402 continue; 1403 1404 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 1405 1406 assert(Bases.count(BaseDecl) && "Did not find base offset!"); 1407 } 1408 1409 // And all virtual bases. 1410 for (const CXXBaseSpecifier &Base : RD->vbases()) { 1411 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 1412 1413 assert(VBases.count(BaseDecl) && "Did not find base offset!"); 1414 } 1415 #endif 1416 } 1417 1418 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) { 1419 if (ObjCInterfaceDecl *SD = D->getSuperClass()) { 1420 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD); 1421 1422 UpdateAlignment(SL.getAlignment()); 1423 1424 // We start laying out ivars not at the end of the superclass 1425 // structure, but at the next byte following the last field. 1426 setDataSize(SL.getDataSize()); 1427 setSize(getDataSize()); 1428 } 1429 1430 InitializeLayout(D); 1431 // Layout each ivar sequentially. 1432 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD; 1433 IVD = IVD->getNextIvar()) 1434 LayoutField(IVD, false); 1435 1436 // Finally, round the size of the total struct up to the alignment of the 1437 // struct itself. 1438 FinishLayout(D); 1439 } 1440 1441 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) { 1442 // Layout each field, for now, just sequentially, respecting alignment. In 1443 // the future, this will need to be tweakable by targets. 1444 bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true); 1445 bool HasFlexibleArrayMember = D->hasFlexibleArrayMember(); 1446 for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) { 1447 LayoutField(*I, InsertExtraPadding && 1448 (std::next(I) != End || !HasFlexibleArrayMember)); 1449 } 1450 } 1451 1452 // Rounds the specified size to have it a multiple of the char size. 1453 static uint64_t 1454 roundUpSizeToCharAlignment(uint64_t Size, 1455 const ASTContext &Context) { 1456 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); 1457 return llvm::alignTo(Size, CharAlignment); 1458 } 1459 1460 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize, 1461 uint64_t StorageUnitSize, 1462 bool FieldPacked, 1463 const FieldDecl *D) { 1464 assert(Context.getLangOpts().CPlusPlus && 1465 "Can only have wide bit-fields in C++!"); 1466 1467 // Itanium C++ ABI 2.4: 1468 // If sizeof(T)*8 < n, let T' be the largest integral POD type with 1469 // sizeof(T')*8 <= n. 1470 1471 QualType IntegralPODTypes[] = { 1472 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy, 1473 Context.UnsignedLongTy, Context.UnsignedLongLongTy 1474 }; 1475 1476 QualType Type; 1477 for (const QualType &QT : IntegralPODTypes) { 1478 uint64_t Size = Context.getTypeSize(QT); 1479 1480 if (Size > FieldSize) 1481 break; 1482 1483 Type = QT; 1484 } 1485 assert(!Type.isNull() && "Did not find a type!"); 1486 1487 CharUnits TypeAlign = Context.getTypeAlignInChars(Type); 1488 1489 // We're not going to use any of the unfilled bits in the last byte. 1490 UnfilledBitsInLastUnit = 0; 1491 LastBitfieldStorageUnitSize = 0; 1492 1493 uint64_t FieldOffset; 1494 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; 1495 1496 if (IsUnion) { 1497 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, 1498 Context); 1499 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); 1500 FieldOffset = 0; 1501 } else { 1502 // The bitfield is allocated starting at the next offset aligned 1503 // appropriately for T', with length n bits. 1504 FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign)); 1505 1506 uint64_t NewSizeInBits = FieldOffset + FieldSize; 1507 1508 setDataSize( 1509 llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign())); 1510 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; 1511 } 1512 1513 // Place this field at the current location. 1514 FieldOffsets.push_back(FieldOffset); 1515 1516 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset, 1517 Context.toBits(TypeAlign), FieldPacked, D); 1518 1519 // Update the size. 1520 setSize(std::max(getSizeInBits(), getDataSizeInBits())); 1521 1522 // Remember max struct/class alignment. 1523 UpdateAlignment(TypeAlign); 1524 } 1525 1526 static bool isAIXLayout(const ASTContext &Context) { 1527 return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX; 1528 } 1529 1530 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) { 1531 bool FieldPacked = Packed || D->hasAttr<PackedAttr>(); 1532 uint64_t FieldSize = D->getBitWidthValue(); 1533 TypeInfo FieldInfo = Context.getTypeInfo(D->getType()); 1534 uint64_t StorageUnitSize = FieldInfo.Width; 1535 unsigned FieldAlign = FieldInfo.Align; 1536 bool AlignIsRequired = FieldInfo.isAlignRequired(); 1537 1538 // UnfilledBitsInLastUnit is the difference between the end of the 1539 // last allocated bitfield (i.e. the first bit offset available for 1540 // bitfields) and the end of the current data size in bits (i.e. the 1541 // first bit offset available for non-bitfields). The current data 1542 // size in bits is always a multiple of the char size; additionally, 1543 // for ms_struct records it's also a multiple of the 1544 // LastBitfieldStorageUnitSize (if set). 1545 1546 // The struct-layout algorithm is dictated by the platform ABI, 1547 // which in principle could use almost any rules it likes. In 1548 // practice, UNIXy targets tend to inherit the algorithm described 1549 // in the System V generic ABI. The basic bitfield layout rule in 1550 // System V is to place bitfields at the next available bit offset 1551 // where the entire bitfield would fit in an aligned storage unit of 1552 // the declared type; it's okay if an earlier or later non-bitfield 1553 // is allocated in the same storage unit. However, some targets 1554 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't 1555 // require this storage unit to be aligned, and therefore always put 1556 // the bitfield at the next available bit offset. 1557 1558 // ms_struct basically requests a complete replacement of the 1559 // platform ABI's struct-layout algorithm, with the high-level goal 1560 // of duplicating MSVC's layout. For non-bitfields, this follows 1561 // the standard algorithm. The basic bitfield layout rule is to 1562 // allocate an entire unit of the bitfield's declared type 1563 // (e.g. 'unsigned long'), then parcel it up among successive 1564 // bitfields whose declared types have the same size, making a new 1565 // unit as soon as the last can no longer store the whole value. 1566 // Since it completely replaces the platform ABI's algorithm, 1567 // settings like !useBitFieldTypeAlignment() do not apply. 1568 1569 // A zero-width bitfield forces the use of a new storage unit for 1570 // later bitfields. In general, this occurs by rounding up the 1571 // current size of the struct as if the algorithm were about to 1572 // place a non-bitfield of the field's formal type. Usually this 1573 // does not change the alignment of the struct itself, but it does 1574 // on some targets (those that useZeroLengthBitfieldAlignment(), 1575 // e.g. ARM). In ms_struct layout, zero-width bitfields are 1576 // ignored unless they follow a non-zero-width bitfield. 1577 1578 // A field alignment restriction (e.g. from #pragma pack) or 1579 // specification (e.g. from __attribute__((aligned))) changes the 1580 // formal alignment of the field. For System V, this alters the 1581 // required alignment of the notional storage unit that must contain 1582 // the bitfield. For ms_struct, this only affects the placement of 1583 // new storage units. In both cases, the effect of #pragma pack is 1584 // ignored on zero-width bitfields. 1585 1586 // On System V, a packed field (e.g. from #pragma pack or 1587 // __attribute__((packed))) always uses the next available bit 1588 // offset. 1589 1590 // In an ms_struct struct, the alignment of a fundamental type is 1591 // always equal to its size. This is necessary in order to mimic 1592 // the i386 alignment rules on targets which might not fully align 1593 // all types (e.g. Darwin PPC32, where alignof(long long) == 4). 1594 1595 // First, some simple bookkeeping to perform for ms_struct structs. 1596 if (IsMsStruct) { 1597 // The field alignment for integer types is always the size. 1598 FieldAlign = StorageUnitSize; 1599 1600 // If the previous field was not a bitfield, or was a bitfield 1601 // with a different storage unit size, or if this field doesn't fit into 1602 // the current storage unit, we're done with that storage unit. 1603 if (LastBitfieldStorageUnitSize != StorageUnitSize || 1604 UnfilledBitsInLastUnit < FieldSize) { 1605 // Also, ignore zero-length bitfields after non-bitfields. 1606 if (!LastBitfieldStorageUnitSize && !FieldSize) 1607 FieldAlign = 1; 1608 1609 UnfilledBitsInLastUnit = 0; 1610 LastBitfieldStorageUnitSize = 0; 1611 } 1612 } 1613 1614 if (isAIXLayout(Context)) { 1615 if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) { 1616 // On AIX, [bool, char, short] bitfields have the same alignment 1617 // as [unsigned]. 1618 StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy); 1619 } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) && 1620 Context.getTargetInfo().getTriple().isArch32Bit() && 1621 FieldSize <= 32) { 1622 // Under 32-bit compile mode, the bitcontainer is 32 bits if a single 1623 // long long bitfield has length no greater than 32 bits. 1624 StorageUnitSize = 32; 1625 1626 if (!AlignIsRequired) 1627 FieldAlign = 32; 1628 } 1629 1630 if (FieldAlign < StorageUnitSize) { 1631 // The bitfield alignment should always be greater than or equal to 1632 // bitcontainer size. 1633 FieldAlign = StorageUnitSize; 1634 } 1635 } 1636 1637 // If the field is wider than its declared type, it follows 1638 // different rules in all cases, except on AIX. 1639 // On AIX, wide bitfield follows the same rules as normal bitfield. 1640 if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) { 1641 LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D); 1642 return; 1643 } 1644 1645 // Compute the next available bit offset. 1646 uint64_t FieldOffset = 1647 IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit); 1648 1649 // Handle targets that don't honor bitfield type alignment. 1650 if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) { 1651 // Some such targets do honor it on zero-width bitfields. 1652 if (FieldSize == 0 && 1653 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) { 1654 // Some targets don't honor leading zero-width bitfield. 1655 if (!IsUnion && FieldOffset == 0 && 1656 !Context.getTargetInfo().useLeadingZeroLengthBitfield()) 1657 FieldAlign = 1; 1658 else { 1659 // The alignment to round up to is the max of the field's natural 1660 // alignment and a target-specific fixed value (sometimes zero). 1661 unsigned ZeroLengthBitfieldBoundary = 1662 Context.getTargetInfo().getZeroLengthBitfieldBoundary(); 1663 FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary); 1664 } 1665 // If that doesn't apply, just ignore the field alignment. 1666 } else { 1667 FieldAlign = 1; 1668 } 1669 } 1670 1671 // Remember the alignment we would have used if the field were not packed. 1672 unsigned UnpackedFieldAlign = FieldAlign; 1673 1674 // Ignore the field alignment if the field is packed unless it has zero-size. 1675 if (!IsMsStruct && FieldPacked && FieldSize != 0) 1676 FieldAlign = 1; 1677 1678 // But, if there's an 'aligned' attribute on the field, honor that. 1679 unsigned ExplicitFieldAlign = D->getMaxAlignment(); 1680 if (ExplicitFieldAlign) { 1681 FieldAlign = std::max(FieldAlign, ExplicitFieldAlign); 1682 UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign); 1683 } 1684 1685 // But, if there's a #pragma pack in play, that takes precedent over 1686 // even the 'aligned' attribute, for non-zero-width bitfields. 1687 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment); 1688 if (!MaxFieldAlignment.isZero() && FieldSize) { 1689 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits); 1690 if (FieldPacked) 1691 FieldAlign = UnpackedFieldAlign; 1692 else 1693 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); 1694 } 1695 1696 // But, ms_struct just ignores all of that in unions, even explicit 1697 // alignment attributes. 1698 if (IsMsStruct && IsUnion) { 1699 FieldAlign = UnpackedFieldAlign = 1; 1700 } 1701 1702 // For purposes of diagnostics, we're going to simultaneously 1703 // compute the field offsets that we would have used if we weren't 1704 // adding any alignment padding or if the field weren't packed. 1705 uint64_t UnpaddedFieldOffset = FieldOffset; 1706 uint64_t UnpackedFieldOffset = FieldOffset; 1707 1708 // Check if we need to add padding to fit the bitfield within an 1709 // allocation unit with the right size and alignment. The rules are 1710 // somewhat different here for ms_struct structs. 1711 if (IsMsStruct) { 1712 // If it's not a zero-width bitfield, and we can fit the bitfield 1713 // into the active storage unit (and we haven't already decided to 1714 // start a new storage unit), just do so, regardless of any other 1715 // other consideration. Otherwise, round up to the right alignment. 1716 if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) { 1717 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); 1718 UnpackedFieldOffset = 1719 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); 1720 UnfilledBitsInLastUnit = 0; 1721 } 1722 1723 } else { 1724 // #pragma pack, with any value, suppresses the insertion of padding. 1725 bool AllowPadding = MaxFieldAlignment.isZero(); 1726 1727 // Compute the real offset. 1728 if (FieldSize == 0 || 1729 (AllowPadding && 1730 (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) { 1731 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); 1732 } else if (ExplicitFieldAlign && 1733 (MaxFieldAlignmentInBits == 0 || 1734 ExplicitFieldAlign <= MaxFieldAlignmentInBits) && 1735 Context.getTargetInfo().useExplicitBitFieldAlignment()) { 1736 // TODO: figure it out what needs to be done on targets that don't honor 1737 // bit-field type alignment like ARM APCS ABI. 1738 FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign); 1739 } 1740 1741 // Repeat the computation for diagnostic purposes. 1742 if (FieldSize == 0 || 1743 (AllowPadding && 1744 (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize > 1745 StorageUnitSize)) 1746 UnpackedFieldOffset = 1747 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); 1748 else if (ExplicitFieldAlign && 1749 (MaxFieldAlignmentInBits == 0 || 1750 ExplicitFieldAlign <= MaxFieldAlignmentInBits) && 1751 Context.getTargetInfo().useExplicitBitFieldAlignment()) 1752 UnpackedFieldOffset = 1753 llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign); 1754 } 1755 1756 // If we're using external layout, give the external layout a chance 1757 // to override this information. 1758 if (UseExternalLayout) 1759 FieldOffset = updateExternalFieldOffset(D, FieldOffset); 1760 1761 // Okay, place the bitfield at the calculated offset. 1762 FieldOffsets.push_back(FieldOffset); 1763 1764 // Bookkeeping: 1765 1766 // Anonymous members don't affect the overall record alignment, 1767 // except on targets where they do. 1768 if (!IsMsStruct && 1769 !Context.getTargetInfo().useZeroLengthBitfieldAlignment() && 1770 !D->getIdentifier()) 1771 FieldAlign = UnpackedFieldAlign = 1; 1772 1773 // On AIX, zero-width bitfields pad out to the natural alignment boundary, 1774 // but do not increase the alignment greater than the MaxFieldAlignment, or 1 1775 // if packed. 1776 if (isAIXLayout(Context) && !FieldSize) { 1777 if (FieldPacked) 1778 FieldAlign = 1; 1779 if (!MaxFieldAlignment.isZero()) { 1780 UnpackedFieldAlign = 1781 std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits); 1782 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); 1783 } 1784 } 1785 1786 // Diagnose differences in layout due to padding or packing. 1787 if (!UseExternalLayout) 1788 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset, 1789 UnpackedFieldAlign, FieldPacked, D); 1790 1791 // Update DataSize to include the last byte containing (part of) the bitfield. 1792 1793 // For unions, this is just a max operation, as usual. 1794 if (IsUnion) { 1795 // For ms_struct, allocate the entire storage unit --- unless this 1796 // is a zero-width bitfield, in which case just use a size of 1. 1797 uint64_t RoundedFieldSize; 1798 if (IsMsStruct) { 1799 RoundedFieldSize = (FieldSize ? StorageUnitSize 1800 : Context.getTargetInfo().getCharWidth()); 1801 1802 // Otherwise, allocate just the number of bytes required to store 1803 // the bitfield. 1804 } else { 1805 RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context); 1806 } 1807 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); 1808 1809 // For non-zero-width bitfields in ms_struct structs, allocate a new 1810 // storage unit if necessary. 1811 } else if (IsMsStruct && FieldSize) { 1812 // We should have cleared UnfilledBitsInLastUnit in every case 1813 // where we changed storage units. 1814 if (!UnfilledBitsInLastUnit) { 1815 setDataSize(FieldOffset + StorageUnitSize); 1816 UnfilledBitsInLastUnit = StorageUnitSize; 1817 } 1818 UnfilledBitsInLastUnit -= FieldSize; 1819 LastBitfieldStorageUnitSize = StorageUnitSize; 1820 1821 // Otherwise, bump the data size up to include the bitfield, 1822 // including padding up to char alignment, and then remember how 1823 // bits we didn't use. 1824 } else { 1825 uint64_t NewSizeInBits = FieldOffset + FieldSize; 1826 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); 1827 setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment)); 1828 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; 1829 1830 // The only time we can get here for an ms_struct is if this is a 1831 // zero-width bitfield, which doesn't count as anything for the 1832 // purposes of unfilled bits. 1833 LastBitfieldStorageUnitSize = 0; 1834 } 1835 1836 // Update the size. 1837 setSize(std::max(getSizeInBits(), getDataSizeInBits())); 1838 1839 // Remember max struct/class alignment. 1840 UnadjustedAlignment = 1841 std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign)); 1842 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign), 1843 Context.toCharUnitsFromBits(UnpackedFieldAlign)); 1844 } 1845 1846 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D, 1847 bool InsertExtraPadding) { 1848 auto *FieldClass = D->getType()->getAsCXXRecordDecl(); 1849 bool IsOverlappingEmptyField = 1850 D->isPotentiallyOverlapping() && FieldClass->isEmpty(); 1851 1852 CharUnits FieldOffset = 1853 (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize(); 1854 1855 const bool DefaultsToAIXPowerAlignment = 1856 Context.getTargetInfo().defaultsToAIXPowerAlignment(); 1857 bool FoundFirstNonOverlappingEmptyFieldForAIX = false; 1858 if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) { 1859 assert(FieldOffset == CharUnits::Zero() && 1860 "The first non-overlapping empty field should have been handled."); 1861 1862 if (!IsOverlappingEmptyField) { 1863 FoundFirstNonOverlappingEmptyFieldForAIX = true; 1864 1865 // We're going to handle the "first member" based on 1866 // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current 1867 // invocation of this function; record it as handled for future 1868 // invocations (except for unions, because the current field does not 1869 // represent all "firsts"). 1870 HandledFirstNonOverlappingEmptyField = !IsUnion; 1871 } 1872 } 1873 1874 if (D->isBitField()) { 1875 LayoutBitField(D); 1876 return; 1877 } 1878 1879 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; 1880 // Reset the unfilled bits. 1881 UnfilledBitsInLastUnit = 0; 1882 LastBitfieldStorageUnitSize = 0; 1883 1884 llvm::Triple Target = Context.getTargetInfo().getTriple(); 1885 1886 AlignRequirementKind AlignRequirement = AlignRequirementKind::None; 1887 CharUnits FieldSize; 1888 CharUnits FieldAlign; 1889 // The amount of this class's dsize occupied by the field. 1890 // This is equal to FieldSize unless we're permitted to pack 1891 // into the field's tail padding. 1892 CharUnits EffectiveFieldSize; 1893 1894 auto setDeclInfo = [&](bool IsIncompleteArrayType) { 1895 auto TI = Context.getTypeInfoInChars(D->getType()); 1896 FieldAlign = TI.Align; 1897 // Flexible array members don't have any size, but they have to be 1898 // aligned appropriately for their element type. 1899 EffectiveFieldSize = FieldSize = 1900 IsIncompleteArrayType ? CharUnits::Zero() : TI.Width; 1901 AlignRequirement = TI.AlignRequirement; 1902 }; 1903 1904 if (D->getType()->isIncompleteArrayType()) { 1905 setDeclInfo(true /* IsIncompleteArrayType */); 1906 } else { 1907 setDeclInfo(false /* IsIncompleteArrayType */); 1908 1909 // A potentially-overlapping field occupies its dsize or nvsize, whichever 1910 // is larger. 1911 if (D->isPotentiallyOverlapping()) { 1912 const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass); 1913 EffectiveFieldSize = 1914 std::max(Layout.getNonVirtualSize(), Layout.getDataSize()); 1915 } 1916 1917 if (IsMsStruct) { 1918 // If MS bitfield layout is required, figure out what type is being 1919 // laid out and align the field to the width of that type. 1920 1921 // Resolve all typedefs down to their base type and round up the field 1922 // alignment if necessary. 1923 QualType T = Context.getBaseElementType(D->getType()); 1924 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) { 1925 CharUnits TypeSize = Context.getTypeSizeInChars(BTy); 1926 1927 if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) { 1928 assert( 1929 !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && 1930 "Non PowerOf2 size in MSVC mode"); 1931 // Base types with sizes that aren't a power of two don't work 1932 // with the layout rules for MS structs. This isn't an issue in 1933 // MSVC itself since there are no such base data types there. 1934 // On e.g. x86_32 mingw and linux, long double is 12 bytes though. 1935 // Any structs involving that data type obviously can't be ABI 1936 // compatible with MSVC regardless of how it is laid out. 1937 1938 // Since ms_struct can be mass enabled (via a pragma or via the 1939 // -mms-bitfields command line parameter), this can trigger for 1940 // structs that don't actually need MSVC compatibility, so we 1941 // need to be able to sidestep the ms_struct layout for these types. 1942 1943 // Since the combination of -mms-bitfields together with structs 1944 // like max_align_t (which contains a long double) for mingw is 1945 // quite common (and GCC handles it silently), just handle it 1946 // silently there. For other targets that have ms_struct enabled 1947 // (most probably via a pragma or attribute), trigger a diagnostic 1948 // that defaults to an error. 1949 if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 1950 Diag(D->getLocation(), diag::warn_npot_ms_struct); 1951 } 1952 if (TypeSize > FieldAlign && 1953 llvm::isPowerOf2_64(TypeSize.getQuantity())) 1954 FieldAlign = TypeSize; 1955 } 1956 } 1957 } 1958 1959 bool FieldPacked = (Packed && (!FieldClass || FieldClass->isPOD() || 1960 FieldClass->hasAttr<PackedAttr>() || 1961 Context.getLangOpts().getClangABICompat() <= 1962 LangOptions::ClangABI::Ver15 || 1963 Target.isPS() || Target.isOSDarwin() || 1964 Target.isOSAIX())) || 1965 D->hasAttr<PackedAttr>(); 1966 1967 // When used as part of a typedef, or together with a 'packed' attribute, the 1968 // 'aligned' attribute can be used to decrease alignment. In that case, it 1969 // overrides any computed alignment we have, and there is no need to upgrade 1970 // the alignment. 1971 auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] { 1972 // Enum alignment sources can be safely ignored here, because this only 1973 // helps decide whether we need the AIX alignment upgrade, which only 1974 // applies to floating-point types. 1975 return AlignRequirement == AlignRequirementKind::RequiredByTypedef || 1976 (AlignRequirement == AlignRequirementKind::RequiredByRecord && 1977 FieldPacked); 1978 }; 1979 1980 // The AIX `power` alignment rules apply the natural alignment of the 1981 // "first member" if it is of a floating-point data type (or is an aggregate 1982 // whose recursively "first" member or element is such a type). The alignment 1983 // associated with these types for subsequent members use an alignment value 1984 // where the floating-point data type is considered to have 4-byte alignment. 1985 // 1986 // For the purposes of the foregoing: vtable pointers, non-empty base classes, 1987 // and zero-width bit-fields count as prior members; members of empty class 1988 // types marked `no_unique_address` are not considered to be prior members. 1989 CharUnits PreferredAlign = FieldAlign; 1990 if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() && 1991 (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) { 1992 auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) { 1993 if (BTy->getKind() == BuiltinType::Double || 1994 BTy->getKind() == BuiltinType::LongDouble) { 1995 assert(PreferredAlign == CharUnits::fromQuantity(4) && 1996 "No need to upgrade the alignment value."); 1997 PreferredAlign = CharUnits::fromQuantity(8); 1998 } 1999 }; 2000 2001 const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe(); 2002 if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) { 2003 performBuiltinTypeAlignmentUpgrade( 2004 CTy->getElementType()->castAs<BuiltinType>()); 2005 } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) { 2006 performBuiltinTypeAlignmentUpgrade(BTy); 2007 } else if (const RecordType *RT = BaseTy->getAs<RecordType>()) { 2008 const RecordDecl *RD = RT->getDecl(); 2009 assert(RD && "Expected non-null RecordDecl."); 2010 const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD); 2011 PreferredAlign = FieldRecord.getPreferredAlignment(); 2012 } 2013 } 2014 2015 // The align if the field is not packed. This is to check if the attribute 2016 // was unnecessary (-Wpacked). 2017 CharUnits UnpackedFieldAlign = FieldAlign; 2018 CharUnits PackedFieldAlign = CharUnits::One(); 2019 CharUnits UnpackedFieldOffset = FieldOffset; 2020 CharUnits OriginalFieldAlign = UnpackedFieldAlign; 2021 2022 CharUnits MaxAlignmentInChars = 2023 Context.toCharUnitsFromBits(D->getMaxAlignment()); 2024 PackedFieldAlign = std::max(PackedFieldAlign, MaxAlignmentInChars); 2025 PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars); 2026 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars); 2027 2028 // The maximum field alignment overrides the aligned attribute. 2029 if (!MaxFieldAlignment.isZero()) { 2030 PackedFieldAlign = std::min(PackedFieldAlign, MaxFieldAlignment); 2031 PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment); 2032 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment); 2033 } 2034 2035 2036 if (!FieldPacked) 2037 FieldAlign = UnpackedFieldAlign; 2038 if (DefaultsToAIXPowerAlignment) 2039 UnpackedFieldAlign = PreferredAlign; 2040 if (FieldPacked) { 2041 PreferredAlign = PackedFieldAlign; 2042 FieldAlign = PackedFieldAlign; 2043 } 2044 2045 CharUnits AlignTo = 2046 !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign; 2047 // Round up the current record size to the field's alignment boundary. 2048 FieldOffset = FieldOffset.alignTo(AlignTo); 2049 UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign); 2050 2051 if (UseExternalLayout) { 2052 FieldOffset = Context.toCharUnitsFromBits( 2053 updateExternalFieldOffset(D, Context.toBits(FieldOffset))); 2054 2055 if (!IsUnion && EmptySubobjects) { 2056 // Record the fact that we're placing a field at this offset. 2057 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset); 2058 (void)Allowed; 2059 assert(Allowed && "Externally-placed field cannot be placed here"); 2060 } 2061 } else { 2062 if (!IsUnion && EmptySubobjects) { 2063 // Check if we can place the field at this offset. 2064 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) { 2065 // We couldn't place the field at the offset. Try again at a new offset. 2066 // We try offset 0 (for an empty field) and then dsize(C) onwards. 2067 if (FieldOffset == CharUnits::Zero() && 2068 getDataSize() != CharUnits::Zero()) 2069 FieldOffset = getDataSize().alignTo(AlignTo); 2070 else 2071 FieldOffset += AlignTo; 2072 } 2073 } 2074 } 2075 2076 // Place this field at the current location. 2077 FieldOffsets.push_back(Context.toBits(FieldOffset)); 2078 2079 if (!UseExternalLayout) 2080 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset, 2081 Context.toBits(UnpackedFieldOffset), 2082 Context.toBits(UnpackedFieldAlign), FieldPacked, D); 2083 2084 if (InsertExtraPadding) { 2085 CharUnits ASanAlignment = CharUnits::fromQuantity(8); 2086 CharUnits ExtraSizeForAsan = ASanAlignment; 2087 if (FieldSize % ASanAlignment) 2088 ExtraSizeForAsan += 2089 ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment); 2090 EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan; 2091 } 2092 2093 // Reserve space for this field. 2094 if (!IsOverlappingEmptyField) { 2095 uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize); 2096 if (IsUnion) 2097 setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits)); 2098 else 2099 setDataSize(FieldOffset + EffectiveFieldSize); 2100 2101 PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize); 2102 setSize(std::max(getSizeInBits(), getDataSizeInBits())); 2103 } else { 2104 setSize(std::max(getSizeInBits(), 2105 (uint64_t)Context.toBits(FieldOffset + FieldSize))); 2106 } 2107 2108 // Remember max struct/class ABI-specified alignment. 2109 UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign); 2110 UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign); 2111 2112 // For checking the alignment of inner fields against 2113 // the alignment of its parent record. 2114 if (const RecordDecl *RD = D->getParent()) { 2115 // Check if packed attribute or pragma pack is present. 2116 if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero()) 2117 if (FieldAlign < OriginalFieldAlign) 2118 if (D->getType()->isRecordType()) { 2119 // If the offset is a multiple of the alignment of 2120 // the type, raise the warning. 2121 // TODO: Takes no account the alignment of the outer struct 2122 if (FieldOffset % OriginalFieldAlign != 0) 2123 Diag(D->getLocation(), diag::warn_unaligned_access) 2124 << Context.getTypeDeclType(RD) << D->getName() << D->getType(); 2125 } 2126 } 2127 2128 if (Packed && !FieldPacked && PackedFieldAlign < FieldAlign) 2129 Diag(D->getLocation(), diag::warn_unpacked_field) << D; 2130 } 2131 2132 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) { 2133 // In C++, records cannot be of size 0. 2134 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) { 2135 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 2136 // Compatibility with gcc requires a class (pod or non-pod) 2137 // which is not empty but of size 0; such as having fields of 2138 // array of zero-length, remains of Size 0 2139 if (RD->isEmpty()) 2140 setSize(CharUnits::One()); 2141 } 2142 else 2143 setSize(CharUnits::One()); 2144 } 2145 2146 // If we have any remaining field tail padding, include that in the overall 2147 // size. 2148 setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize))); 2149 2150 // Finally, round the size of the record up to the alignment of the 2151 // record itself. 2152 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit; 2153 uint64_t UnpackedSizeInBits = 2154 llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment)); 2155 2156 uint64_t RoundedSize = llvm::alignTo( 2157 getSizeInBits(), 2158 Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment() 2159 ? Alignment 2160 : PreferredAlignment)); 2161 2162 if (UseExternalLayout) { 2163 // If we're inferring alignment, and the external size is smaller than 2164 // our size after we've rounded up to alignment, conservatively set the 2165 // alignment to 1. 2166 if (InferAlignment && External.Size < RoundedSize) { 2167 Alignment = CharUnits::One(); 2168 PreferredAlignment = CharUnits::One(); 2169 InferAlignment = false; 2170 } 2171 setSize(External.Size); 2172 return; 2173 } 2174 2175 // Set the size to the final size. 2176 setSize(RoundedSize); 2177 2178 unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); 2179 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { 2180 // Warn if padding was introduced to the struct/class/union. 2181 if (getSizeInBits() > UnpaddedSize) { 2182 unsigned PadSize = getSizeInBits() - UnpaddedSize; 2183 bool InBits = true; 2184 if (PadSize % CharBitNum == 0) { 2185 PadSize = PadSize / CharBitNum; 2186 InBits = false; 2187 } 2188 Diag(RD->getLocation(), diag::warn_padded_struct_size) 2189 << Context.getTypeDeclType(RD) 2190 << PadSize 2191 << (InBits ? 1 : 0); // (byte|bit) 2192 } 2193 2194 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 2195 2196 // Warn if we packed it unnecessarily, when the unpacked alignment is not 2197 // greater than the one after packing, the size in bits doesn't change and 2198 // the offset of each field is identical. 2199 // Unless the type is non-POD (for Clang ABI > 15), where the packed 2200 // attribute on such a type does allow the type to be packed into other 2201 // structures that use the packed attribute. 2202 if (Packed && UnpackedAlignment <= Alignment && 2203 UnpackedSizeInBits == getSizeInBits() && !HasPackedField && 2204 (!CXXRD || CXXRD->isPOD() || 2205 Context.getLangOpts().getClangABICompat() <= 2206 LangOptions::ClangABI::Ver15)) 2207 Diag(D->getLocation(), diag::warn_unnecessary_packed) 2208 << Context.getTypeDeclType(RD); 2209 } 2210 } 2211 2212 void ItaniumRecordLayoutBuilder::UpdateAlignment( 2213 CharUnits NewAlignment, CharUnits UnpackedNewAlignment, 2214 CharUnits PreferredNewAlignment) { 2215 // The alignment is not modified when using 'mac68k' alignment or when 2216 // we have an externally-supplied layout that also provides overall alignment. 2217 if (IsMac68kAlign || (UseExternalLayout && !InferAlignment)) 2218 return; 2219 2220 if (NewAlignment > Alignment) { 2221 assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) && 2222 "Alignment not a power of 2"); 2223 Alignment = NewAlignment; 2224 } 2225 2226 if (UnpackedNewAlignment > UnpackedAlignment) { 2227 assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) && 2228 "Alignment not a power of 2"); 2229 UnpackedAlignment = UnpackedNewAlignment; 2230 } 2231 2232 if (PreferredNewAlignment > PreferredAlignment) { 2233 assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) && 2234 "Alignment not a power of 2"); 2235 PreferredAlignment = PreferredNewAlignment; 2236 } 2237 } 2238 2239 uint64_t 2240 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field, 2241 uint64_t ComputedOffset) { 2242 uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field); 2243 2244 if (InferAlignment && ExternalFieldOffset < ComputedOffset) { 2245 // The externally-supplied field offset is before the field offset we 2246 // computed. Assume that the structure is packed. 2247 Alignment = CharUnits::One(); 2248 PreferredAlignment = CharUnits::One(); 2249 InferAlignment = false; 2250 } 2251 2252 // Use the externally-supplied field offset. 2253 return ExternalFieldOffset; 2254 } 2255 2256 /// Get diagnostic %select index for tag kind for 2257 /// field padding diagnostic message. 2258 /// WARNING: Indexes apply to particular diagnostics only! 2259 /// 2260 /// \returns diagnostic %select index. 2261 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) { 2262 switch (Tag) { 2263 case TagTypeKind::Struct: 2264 return 0; 2265 case TagTypeKind::Interface: 2266 return 1; 2267 case TagTypeKind::Class: 2268 return 2; 2269 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!"); 2270 } 2271 } 2272 2273 void ItaniumRecordLayoutBuilder::CheckFieldPadding( 2274 uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset, 2275 unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) { 2276 // We let objc ivars without warning, objc interfaces generally are not used 2277 // for padding tricks. 2278 if (isa<ObjCIvarDecl>(D)) 2279 return; 2280 2281 // Don't warn about structs created without a SourceLocation. This can 2282 // be done by clients of the AST, such as codegen. 2283 if (D->getLocation().isInvalid()) 2284 return; 2285 2286 unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); 2287 2288 // Warn if padding was introduced to the struct/class. 2289 if (!IsUnion && Offset > UnpaddedOffset) { 2290 unsigned PadSize = Offset - UnpaddedOffset; 2291 bool InBits = true; 2292 if (PadSize % CharBitNum == 0) { 2293 PadSize = PadSize / CharBitNum; 2294 InBits = false; 2295 } 2296 if (D->getIdentifier()) { 2297 auto Diagnostic = D->isBitField() ? diag::warn_padded_struct_bitfield 2298 : diag::warn_padded_struct_field; 2299 Diag(D->getLocation(), Diagnostic) 2300 << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) 2301 << Context.getTypeDeclType(D->getParent()) << PadSize 2302 << (InBits ? 1 : 0) // (byte|bit) 2303 << D->getIdentifier(); 2304 } else { 2305 auto Diagnostic = D->isBitField() ? diag::warn_padded_struct_anon_bitfield 2306 : diag::warn_padded_struct_anon_field; 2307 Diag(D->getLocation(), Diagnostic) 2308 << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) 2309 << Context.getTypeDeclType(D->getParent()) << PadSize 2310 << (InBits ? 1 : 0); // (byte|bit) 2311 } 2312 } 2313 if (isPacked && Offset != UnpackedOffset) { 2314 HasPackedField = true; 2315 } 2316 } 2317 2318 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context, 2319 const CXXRecordDecl *RD) { 2320 // If a class isn't polymorphic it doesn't have a key function. 2321 if (!RD->isPolymorphic()) 2322 return nullptr; 2323 2324 // A class that is not externally visible doesn't have a key function. (Or 2325 // at least, there's no point to assigning a key function to such a class; 2326 // this doesn't affect the ABI.) 2327 if (!RD->isExternallyVisible()) 2328 return nullptr; 2329 2330 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6. 2331 // Same behavior as GCC. 2332 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 2333 if (TSK == TSK_ImplicitInstantiation || 2334 TSK == TSK_ExplicitInstantiationDeclaration || 2335 TSK == TSK_ExplicitInstantiationDefinition) 2336 return nullptr; 2337 2338 bool allowInlineFunctions = 2339 Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline(); 2340 2341 for (const CXXMethodDecl *MD : RD->methods()) { 2342 if (!MD->isVirtual()) 2343 continue; 2344 2345 if (MD->isPureVirtual()) 2346 continue; 2347 2348 // Ignore implicit member functions, they are always marked as inline, but 2349 // they don't have a body until they're defined. 2350 if (MD->isImplicit()) 2351 continue; 2352 2353 if (MD->isInlineSpecified() || MD->isConstexpr()) 2354 continue; 2355 2356 if (MD->hasInlineBody()) 2357 continue; 2358 2359 // Ignore inline deleted or defaulted functions. 2360 if (!MD->isUserProvided()) 2361 continue; 2362 2363 // In certain ABIs, ignore functions with out-of-line inline definitions. 2364 if (!allowInlineFunctions) { 2365 const FunctionDecl *Def; 2366 if (MD->hasBody(Def) && Def->isInlineSpecified()) 2367 continue; 2368 } 2369 2370 if (Context.getLangOpts().CUDA) { 2371 // While compiler may see key method in this TU, during CUDA 2372 // compilation we should ignore methods that are not accessible 2373 // on this side of compilation. 2374 if (Context.getLangOpts().CUDAIsDevice) { 2375 // In device mode ignore methods without __device__ attribute. 2376 if (!MD->hasAttr<CUDADeviceAttr>()) 2377 continue; 2378 } else { 2379 // In host mode ignore __device__-only methods. 2380 if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>()) 2381 continue; 2382 } 2383 } 2384 2385 // If the key function is dllimport but the class isn't, then the class has 2386 // no key function. The DLL that exports the key function won't export the 2387 // vtable in this case. 2388 if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() && 2389 !Context.getTargetInfo().hasPS4DLLImportExport()) 2390 return nullptr; 2391 2392 // We found it. 2393 return MD; 2394 } 2395 2396 return nullptr; 2397 } 2398 2399 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc, 2400 unsigned DiagID) { 2401 return Context.getDiagnostics().Report(Loc, DiagID); 2402 } 2403 2404 /// Does the target C++ ABI require us to skip over the tail-padding 2405 /// of the given class (considering it as a base class) when allocating 2406 /// objects? 2407 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) { 2408 switch (ABI.getTailPaddingUseRules()) { 2409 case TargetCXXABI::AlwaysUseTailPadding: 2410 return false; 2411 2412 case TargetCXXABI::UseTailPaddingUnlessPOD03: 2413 // FIXME: To the extent that this is meant to cover the Itanium ABI 2414 // rules, we should implement the restrictions about over-sized 2415 // bitfields: 2416 // 2417 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD : 2418 // In general, a type is considered a POD for the purposes of 2419 // layout if it is a POD type (in the sense of ISO C++ 2420 // [basic.types]). However, a POD-struct or POD-union (in the 2421 // sense of ISO C++ [class]) with a bitfield member whose 2422 // declared width is wider than the declared type of the 2423 // bitfield is not a POD for the purpose of layout. Similarly, 2424 // an array type is not a POD for the purpose of layout if the 2425 // element type of the array is not a POD for the purpose of 2426 // layout. 2427 // 2428 // Where references to the ISO C++ are made in this paragraph, 2429 // the Technical Corrigendum 1 version of the standard is 2430 // intended. 2431 return RD->isPOD(); 2432 2433 case TargetCXXABI::UseTailPaddingUnlessPOD11: 2434 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(), 2435 // but with a lot of abstraction penalty stripped off. This does 2436 // assume that these properties are set correctly even in C++98 2437 // mode; fortunately, that is true because we want to assign 2438 // consistently semantics to the type-traits intrinsics (or at 2439 // least as many of them as possible). 2440 return RD->isTrivial() && RD->isCXX11StandardLayout(); 2441 } 2442 2443 llvm_unreachable("bad tail-padding use kind"); 2444 } 2445 2446 static bool isMsLayout(const ASTContext &Context) { 2447 // Check if it's CUDA device compilation; ensure layout consistency with host. 2448 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice && 2449 Context.getAuxTargetInfo()) 2450 return Context.getAuxTargetInfo()->getCXXABI().isMicrosoft(); 2451 2452 return Context.getTargetInfo().getCXXABI().isMicrosoft(); 2453 } 2454 2455 // This section contains an implementation of struct layout that is, up to the 2456 // included tests, compatible with cl.exe (2013). The layout produced is 2457 // significantly different than those produced by the Itanium ABI. Here we note 2458 // the most important differences. 2459 // 2460 // * The alignment of bitfields in unions is ignored when computing the 2461 // alignment of the union. 2462 // * The existence of zero-width bitfield that occurs after anything other than 2463 // a non-zero length bitfield is ignored. 2464 // * There is no explicit primary base for the purposes of layout. All bases 2465 // with vfptrs are laid out first, followed by all bases without vfptrs. 2466 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual 2467 // function pointer) and a vbptr (virtual base pointer). They can each be 2468 // shared with a, non-virtual bases. These bases need not be the same. vfptrs 2469 // always occur at offset 0. vbptrs can occur at an arbitrary offset and are 2470 // placed after the lexicographically last non-virtual base. This placement 2471 // is always before fields but can be in the middle of the non-virtual bases 2472 // due to the two-pass layout scheme for non-virtual-bases. 2473 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before 2474 // the virtual base and is used in conjunction with virtual overrides during 2475 // construction and destruction. This is always a 4 byte value and is used as 2476 // an alternative to constructor vtables. 2477 // * vtordisps are allocated in a block of memory with size and alignment equal 2478 // to the alignment of the completed structure (before applying __declspec( 2479 // align())). The vtordisp always occur at the end of the allocation block, 2480 // immediately prior to the virtual base. 2481 // * vfptrs are injected after all bases and fields have been laid out. In 2482 // order to guarantee proper alignment of all fields, the vfptr injection 2483 // pushes all bases and fields back by the alignment imposed by those bases 2484 // and fields. This can potentially add a significant amount of padding. 2485 // vfptrs are always injected at offset 0. 2486 // * vbptrs are injected after all bases and fields have been laid out. In 2487 // order to guarantee proper alignment of all fields, the vfptr injection 2488 // pushes all bases and fields back by the alignment imposed by those bases 2489 // and fields. This can potentially add a significant amount of padding. 2490 // vbptrs are injected immediately after the last non-virtual base as 2491 // lexicographically ordered in the code. If this site isn't pointer aligned 2492 // the vbptr is placed at the next properly aligned location. Enough padding 2493 // is added to guarantee a fit. 2494 // * The last zero sized non-virtual base can be placed at the end of the 2495 // struct (potentially aliasing another object), or may alias with the first 2496 // field, even if they are of the same type. 2497 // * The last zero size virtual base may be placed at the end of the struct 2498 // potentially aliasing another object. 2499 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding 2500 // between bases or vbases with specific properties. The criteria for 2501 // additional padding between two bases is that the first base is zero sized 2502 // or ends with a zero sized subobject and the second base is zero sized or 2503 // trails with a zero sized base or field (sharing of vfptrs can reorder the 2504 // layout of the so the leading base is not always the first one declared). 2505 // This rule does take into account fields that are not records, so padding 2506 // will occur even if the last field is, e.g. an int. The padding added for 2507 // bases is 1 byte. The padding added between vbases depends on the alignment 2508 // of the object but is at least 4 bytes (in both 32 and 64 bit modes). 2509 // * There is no concept of non-virtual alignment, non-virtual alignment and 2510 // alignment are always identical. 2511 // * There is a distinction between alignment and required alignment. 2512 // __declspec(align) changes the required alignment of a struct. This 2513 // alignment is _always_ obeyed, even in the presence of #pragma pack. A 2514 // record inherits required alignment from all of its fields and bases. 2515 // * __declspec(align) on bitfields has the effect of changing the bitfield's 2516 // alignment instead of its required alignment. This is the only known way 2517 // to make the alignment of a struct bigger than 8. Interestingly enough 2518 // this alignment is also immune to the effects of #pragma pack and can be 2519 // used to create structures with large alignment under #pragma pack. 2520 // However, because it does not impact required alignment, such a structure, 2521 // when used as a field or base, will not be aligned if #pragma pack is 2522 // still active at the time of use. 2523 // 2524 // Known incompatibilities: 2525 // * all: #pragma pack between fields in a record 2526 // * 2010 and back: If the last field in a record is a bitfield, every object 2527 // laid out after the record will have extra padding inserted before it. The 2528 // extra padding will have size equal to the size of the storage class of the 2529 // bitfield. 0 sized bitfields don't exhibit this behavior and the extra 2530 // padding can be avoided by adding a 0 sized bitfield after the non-zero- 2531 // sized bitfield. 2532 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or 2533 // greater due to __declspec(align()) then a second layout phase occurs after 2534 // The locations of the vf and vb pointers are known. This layout phase 2535 // suffers from the "last field is a bitfield" bug in 2010 and results in 2536 // _every_ field getting padding put in front of it, potentially including the 2537 // vfptr, leaving the vfprt at a non-zero location which results in a fault if 2538 // anything tries to read the vftbl. The second layout phase also treats 2539 // bitfields as separate entities and gives them each storage rather than 2540 // packing them. Additionally, because this phase appears to perform a 2541 // (an unstable) sort on the members before laying them out and because merged 2542 // bitfields have the same address, the bitfields end up in whatever order 2543 // the sort left them in, a behavior we could never hope to replicate. 2544 2545 namespace { 2546 struct MicrosoftRecordLayoutBuilder { 2547 struct ElementInfo { 2548 CharUnits Size; 2549 CharUnits Alignment; 2550 }; 2551 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; 2552 MicrosoftRecordLayoutBuilder(const ASTContext &Context, 2553 EmptySubobjectMap *EmptySubobjects) 2554 : Context(Context), EmptySubobjects(EmptySubobjects) {} 2555 2556 private: 2557 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete; 2558 void operator=(const MicrosoftRecordLayoutBuilder &) = delete; 2559 public: 2560 void layout(const RecordDecl *RD); 2561 void cxxLayout(const CXXRecordDecl *RD); 2562 /// Initializes size and alignment and honors some flags. 2563 void initializeLayout(const RecordDecl *RD); 2564 /// Initialized C++ layout, compute alignment and virtual alignment and 2565 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is 2566 /// laid out. 2567 void initializeCXXLayout(const CXXRecordDecl *RD); 2568 void layoutNonVirtualBases(const CXXRecordDecl *RD); 2569 void layoutNonVirtualBase(const CXXRecordDecl *RD, 2570 const CXXRecordDecl *BaseDecl, 2571 const ASTRecordLayout &BaseLayout, 2572 const ASTRecordLayout *&PreviousBaseLayout); 2573 void injectVFPtr(const CXXRecordDecl *RD); 2574 void injectVBPtr(const CXXRecordDecl *RD); 2575 /// Lays out the fields of the record. Also rounds size up to 2576 /// alignment. 2577 void layoutFields(const RecordDecl *RD); 2578 void layoutField(const FieldDecl *FD); 2579 void layoutBitField(const FieldDecl *FD); 2580 /// Lays out a single zero-width bit-field in the record and handles 2581 /// special cases associated with zero-width bit-fields. 2582 void layoutZeroWidthBitField(const FieldDecl *FD); 2583 void layoutVirtualBases(const CXXRecordDecl *RD); 2584 void finalizeLayout(const RecordDecl *RD); 2585 /// Gets the size and alignment of a base taking pragma pack and 2586 /// __declspec(align) into account. 2587 ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout); 2588 /// Gets the size and alignment of a field taking pragma pack and 2589 /// __declspec(align) into account. It also updates RequiredAlignment as a 2590 /// side effect because it is most convenient to do so here. 2591 ElementInfo getAdjustedElementInfo(const FieldDecl *FD); 2592 /// Places a field at an offset in CharUnits. 2593 void placeFieldAtOffset(CharUnits FieldOffset) { 2594 FieldOffsets.push_back(Context.toBits(FieldOffset)); 2595 } 2596 /// Places a bitfield at a bit offset. 2597 void placeFieldAtBitOffset(uint64_t FieldOffset) { 2598 FieldOffsets.push_back(FieldOffset); 2599 } 2600 /// Compute the set of virtual bases for which vtordisps are required. 2601 void computeVtorDispSet( 2602 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet, 2603 const CXXRecordDecl *RD) const; 2604 const ASTContext &Context; 2605 EmptySubobjectMap *EmptySubobjects; 2606 2607 /// The size of the record being laid out. 2608 CharUnits Size; 2609 /// The non-virtual size of the record layout. 2610 CharUnits NonVirtualSize; 2611 /// The data size of the record layout. 2612 CharUnits DataSize; 2613 /// The current alignment of the record layout. 2614 CharUnits Alignment; 2615 /// The maximum allowed field alignment. This is set by #pragma pack. 2616 CharUnits MaxFieldAlignment; 2617 /// The alignment that this record must obey. This is imposed by 2618 /// __declspec(align()) on the record itself or one of its fields or bases. 2619 CharUnits RequiredAlignment; 2620 /// The size of the allocation of the currently active bitfield. 2621 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield 2622 /// is true. 2623 CharUnits CurrentBitfieldSize; 2624 /// Offset to the virtual base table pointer (if one exists). 2625 CharUnits VBPtrOffset; 2626 /// Minimum record size possible. 2627 CharUnits MinEmptyStructSize; 2628 /// The size and alignment info of a pointer. 2629 ElementInfo PointerInfo; 2630 /// The primary base class (if one exists). 2631 const CXXRecordDecl *PrimaryBase; 2632 /// The class we share our vb-pointer with. 2633 const CXXRecordDecl *SharedVBPtrBase; 2634 /// The collection of field offsets. 2635 SmallVector<uint64_t, 16> FieldOffsets; 2636 /// Base classes and their offsets in the record. 2637 BaseOffsetsMapTy Bases; 2638 /// virtual base classes and their offsets in the record. 2639 ASTRecordLayout::VBaseOffsetsMapTy VBases; 2640 /// The number of remaining bits in our last bitfield allocation. 2641 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is 2642 /// true. 2643 unsigned RemainingBitsInField; 2644 bool IsUnion : 1; 2645 /// True if the last field laid out was a bitfield and was not 0 2646 /// width. 2647 bool LastFieldIsNonZeroWidthBitfield : 1; 2648 /// True if the class has its own vftable pointer. 2649 bool HasOwnVFPtr : 1; 2650 /// True if the class has a vbtable pointer. 2651 bool HasVBPtr : 1; 2652 /// True if the last sub-object within the type is zero sized or the 2653 /// object itself is zero sized. This *does not* count members that are not 2654 /// records. Only used for MS-ABI. 2655 bool EndsWithZeroSizedObject : 1; 2656 /// True if this class is zero sized or first base is zero sized or 2657 /// has this property. Only used for MS-ABI. 2658 bool LeadsWithZeroSizedBase : 1; 2659 2660 /// True if the external AST source provided a layout for this record. 2661 bool UseExternalLayout : 1; 2662 2663 /// The layout provided by the external AST source. Only active if 2664 /// UseExternalLayout is true. 2665 ExternalLayout External; 2666 }; 2667 } // namespace 2668 2669 MicrosoftRecordLayoutBuilder::ElementInfo 2670 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( 2671 const ASTRecordLayout &Layout) { 2672 ElementInfo Info; 2673 Info.Alignment = Layout.getAlignment(); 2674 // Respect pragma pack. 2675 if (!MaxFieldAlignment.isZero()) 2676 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); 2677 // Track zero-sized subobjects here where it's already available. 2678 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); 2679 // Respect required alignment, this is necessary because we may have adjusted 2680 // the alignment in the case of pragma pack. Note that the required alignment 2681 // doesn't actually apply to the struct alignment at this point. 2682 Alignment = std::max(Alignment, Info.Alignment); 2683 RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment()); 2684 Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment()); 2685 Info.Size = Layout.getNonVirtualSize(); 2686 return Info; 2687 } 2688 2689 MicrosoftRecordLayoutBuilder::ElementInfo 2690 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( 2691 const FieldDecl *FD) { 2692 // Get the alignment of the field type's natural alignment, ignore any 2693 // alignment attributes. 2694 auto TInfo = 2695 Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType()); 2696 ElementInfo Info{TInfo.Width, TInfo.Align}; 2697 // Respect align attributes on the field. 2698 CharUnits FieldRequiredAlignment = 2699 Context.toCharUnitsFromBits(FD->getMaxAlignment()); 2700 // Respect align attributes on the type. 2701 if (Context.isAlignmentRequired(FD->getType())) 2702 FieldRequiredAlignment = std::max( 2703 Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment); 2704 // Respect attributes applied to subobjects of the field. 2705 if (FD->isBitField()) 2706 // For some reason __declspec align impacts alignment rather than required 2707 // alignment when it is applied to bitfields. 2708 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); 2709 else { 2710 if (auto RT = 2711 FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 2712 auto const &Layout = Context.getASTRecordLayout(RT->getDecl()); 2713 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); 2714 FieldRequiredAlignment = std::max(FieldRequiredAlignment, 2715 Layout.getRequiredAlignment()); 2716 } 2717 // Capture required alignment as a side-effect. 2718 RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment); 2719 } 2720 // Respect pragma pack, attribute pack and declspec align 2721 if (!MaxFieldAlignment.isZero()) 2722 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); 2723 if (FD->hasAttr<PackedAttr>()) 2724 Info.Alignment = CharUnits::One(); 2725 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); 2726 return Info; 2727 } 2728 2729 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) { 2730 // For C record layout, zero-sized records always have size 4. 2731 MinEmptyStructSize = CharUnits::fromQuantity(4); 2732 initializeLayout(RD); 2733 layoutFields(RD); 2734 DataSize = Size = Size.alignTo(Alignment); 2735 RequiredAlignment = std::max( 2736 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); 2737 finalizeLayout(RD); 2738 } 2739 2740 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) { 2741 // The C++ standard says that empty structs have size 1. 2742 MinEmptyStructSize = CharUnits::One(); 2743 initializeLayout(RD); 2744 initializeCXXLayout(RD); 2745 layoutNonVirtualBases(RD); 2746 layoutFields(RD); 2747 injectVBPtr(RD); 2748 injectVFPtr(RD); 2749 if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase)) 2750 Alignment = std::max(Alignment, PointerInfo.Alignment); 2751 auto RoundingAlignment = Alignment; 2752 if (!MaxFieldAlignment.isZero()) 2753 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); 2754 if (!UseExternalLayout) 2755 Size = Size.alignTo(RoundingAlignment); 2756 NonVirtualSize = Size; 2757 RequiredAlignment = std::max( 2758 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); 2759 layoutVirtualBases(RD); 2760 finalizeLayout(RD); 2761 } 2762 2763 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) { 2764 IsUnion = RD->isUnion(); 2765 Size = CharUnits::Zero(); 2766 Alignment = CharUnits::One(); 2767 // In 64-bit mode we always perform an alignment step after laying out vbases. 2768 // In 32-bit mode we do not. The check to see if we need to perform alignment 2769 // checks the RequiredAlignment field and performs alignment if it isn't 0. 2770 RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit() 2771 ? CharUnits::One() 2772 : CharUnits::Zero(); 2773 // Compute the maximum field alignment. 2774 MaxFieldAlignment = CharUnits::Zero(); 2775 // Honor the default struct packing maximum alignment flag. 2776 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) 2777 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); 2778 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger 2779 // than the pointer size. 2780 if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){ 2781 unsigned PackedAlignment = MFAA->getAlignment(); 2782 if (PackedAlignment <= 2783 Context.getTargetInfo().getPointerWidth(LangAS::Default)) 2784 MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment); 2785 } 2786 // Packed attribute forces max field alignment to be 1. 2787 if (RD->hasAttr<PackedAttr>()) 2788 MaxFieldAlignment = CharUnits::One(); 2789 2790 // Try to respect the external layout if present. 2791 UseExternalLayout = false; 2792 if (ExternalASTSource *Source = Context.getExternalSource()) 2793 UseExternalLayout = Source->layoutRecordType( 2794 RD, External.Size, External.Align, External.FieldOffsets, 2795 External.BaseOffsets, External.VirtualBaseOffsets); 2796 } 2797 2798 void 2799 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) { 2800 EndsWithZeroSizedObject = false; 2801 LeadsWithZeroSizedBase = false; 2802 HasOwnVFPtr = false; 2803 HasVBPtr = false; 2804 PrimaryBase = nullptr; 2805 SharedVBPtrBase = nullptr; 2806 // Calculate pointer size and alignment. These are used for vfptr and vbprt 2807 // injection. 2808 PointerInfo.Size = Context.toCharUnitsFromBits( 2809 Context.getTargetInfo().getPointerWidth(LangAS::Default)); 2810 PointerInfo.Alignment = Context.toCharUnitsFromBits( 2811 Context.getTargetInfo().getPointerAlign(LangAS::Default)); 2812 // Respect pragma pack. 2813 if (!MaxFieldAlignment.isZero()) 2814 PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment); 2815 } 2816 2817 void 2818 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) { 2819 // The MS-ABI lays out all bases that contain leading vfptrs before it lays 2820 // out any bases that do not contain vfptrs. We implement this as two passes 2821 // over the bases. This approach guarantees that the primary base is laid out 2822 // first. We use these passes to calculate some additional aggregated 2823 // information about the bases, such as required alignment and the presence of 2824 // zero sized members. 2825 const ASTRecordLayout *PreviousBaseLayout = nullptr; 2826 bool HasPolymorphicBaseClass = false; 2827 // Iterate through the bases and lay out the non-virtual ones. 2828 for (const CXXBaseSpecifier &Base : RD->bases()) { 2829 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 2830 HasPolymorphicBaseClass |= BaseDecl->isPolymorphic(); 2831 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 2832 // Mark and skip virtual bases. 2833 if (Base.isVirtual()) { 2834 HasVBPtr = true; 2835 continue; 2836 } 2837 // Check for a base to share a VBPtr with. 2838 if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) { 2839 SharedVBPtrBase = BaseDecl; 2840 HasVBPtr = true; 2841 } 2842 // Only lay out bases with extendable VFPtrs on the first pass. 2843 if (!BaseLayout.hasExtendableVFPtr()) 2844 continue; 2845 // If we don't have a primary base, this one qualifies. 2846 if (!PrimaryBase) { 2847 PrimaryBase = BaseDecl; 2848 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); 2849 } 2850 // Lay out the base. 2851 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); 2852 } 2853 // Figure out if we need a fresh VFPtr for this class. 2854 if (RD->isPolymorphic()) { 2855 if (!HasPolymorphicBaseClass) 2856 // This class introduces polymorphism, so we need a vftable to store the 2857 // RTTI information. 2858 HasOwnVFPtr = true; 2859 else if (!PrimaryBase) { 2860 // We have a polymorphic base class but can't extend its vftable. Add a 2861 // new vfptr if we would use any vftable slots. 2862 for (CXXMethodDecl *M : RD->methods()) { 2863 if (MicrosoftVTableContext::hasVtableSlot(M) && 2864 M->size_overridden_methods() == 0) { 2865 HasOwnVFPtr = true; 2866 break; 2867 } 2868 } 2869 } 2870 } 2871 // If we don't have a primary base then we have a leading object that could 2872 // itself lead with a zero-sized object, something we track. 2873 bool CheckLeadingLayout = !PrimaryBase; 2874 // Iterate through the bases and lay out the non-virtual ones. 2875 for (const CXXBaseSpecifier &Base : RD->bases()) { 2876 if (Base.isVirtual()) 2877 continue; 2878 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 2879 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 2880 // Only lay out bases without extendable VFPtrs on the second pass. 2881 if (BaseLayout.hasExtendableVFPtr()) { 2882 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); 2883 continue; 2884 } 2885 // If this is the first layout, check to see if it leads with a zero sized 2886 // object. If it does, so do we. 2887 if (CheckLeadingLayout) { 2888 CheckLeadingLayout = false; 2889 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); 2890 } 2891 // Lay out the base. 2892 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); 2893 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); 2894 } 2895 // Set our VBPtroffset if we know it at this point. 2896 if (!HasVBPtr) 2897 VBPtrOffset = CharUnits::fromQuantity(-1); 2898 else if (SharedVBPtrBase) { 2899 const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase); 2900 VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset(); 2901 } 2902 } 2903 2904 static bool recordUsesEBO(const RecordDecl *RD) { 2905 if (!isa<CXXRecordDecl>(RD)) 2906 return false; 2907 if (RD->hasAttr<EmptyBasesAttr>()) 2908 return true; 2909 if (auto *LVA = RD->getAttr<LayoutVersionAttr>()) 2910 // TODO: Double check with the next version of MSVC. 2911 if (LVA->getVersion() <= LangOptions::MSVC2015) 2912 return false; 2913 // TODO: Some later version of MSVC will change the default behavior of the 2914 // compiler to enable EBO by default. When this happens, we will need an 2915 // additional isCompatibleWithMSVC check. 2916 return false; 2917 } 2918 2919 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase( 2920 const CXXRecordDecl *RD, const CXXRecordDecl *BaseDecl, 2921 const ASTRecordLayout &BaseLayout, 2922 const ASTRecordLayout *&PreviousBaseLayout) { 2923 // Insert padding between two bases if the left first one is zero sized or 2924 // contains a zero sized subobject and the right is zero sized or one leads 2925 // with a zero sized base. 2926 bool MDCUsesEBO = recordUsesEBO(RD); 2927 if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && 2928 BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO) 2929 Size++; 2930 ElementInfo Info = getAdjustedElementInfo(BaseLayout); 2931 CharUnits BaseOffset; 2932 2933 // Respect the external AST source base offset, if present. 2934 bool FoundBase = false; 2935 if (UseExternalLayout) { 2936 FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset); 2937 if (BaseOffset > Size) { 2938 Size = BaseOffset; 2939 } 2940 } 2941 2942 if (!FoundBase) { 2943 if (MDCUsesEBO && BaseDecl->isEmpty() && 2944 (BaseLayout.getNonVirtualSize() == CharUnits::Zero())) { 2945 BaseOffset = CharUnits::Zero(); 2946 } else { 2947 // Otherwise, lay the base out at the end of the MDC. 2948 BaseOffset = Size = Size.alignTo(Info.Alignment); 2949 } 2950 } 2951 Bases.insert(std::make_pair(BaseDecl, BaseOffset)); 2952 Size += BaseLayout.getNonVirtualSize(); 2953 DataSize = Size; 2954 PreviousBaseLayout = &BaseLayout; 2955 } 2956 2957 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) { 2958 LastFieldIsNonZeroWidthBitfield = false; 2959 for (const FieldDecl *Field : RD->fields()) 2960 layoutField(Field); 2961 } 2962 2963 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) { 2964 if (FD->isBitField()) { 2965 layoutBitField(FD); 2966 return; 2967 } 2968 LastFieldIsNonZeroWidthBitfield = false; 2969 ElementInfo Info = getAdjustedElementInfo(FD); 2970 Alignment = std::max(Alignment, Info.Alignment); 2971 2972 const CXXRecordDecl *FieldClass = FD->getType()->getAsCXXRecordDecl(); 2973 bool IsOverlappingEmptyField = FD->isPotentiallyOverlapping() && 2974 FieldClass->isEmpty() && 2975 FieldClass->fields().empty(); 2976 CharUnits FieldOffset = CharUnits::Zero(); 2977 2978 if (UseExternalLayout) { 2979 FieldOffset = 2980 Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD)); 2981 } else if (IsUnion) { 2982 FieldOffset = CharUnits::Zero(); 2983 } else if (EmptySubobjects) { 2984 if (!IsOverlappingEmptyField) 2985 FieldOffset = DataSize.alignTo(Info.Alignment); 2986 2987 while (!EmptySubobjects->CanPlaceFieldAtOffset(FD, FieldOffset)) { 2988 const CXXRecordDecl *ParentClass = cast<CXXRecordDecl>(FD->getParent()); 2989 bool HasBases = ParentClass && (!ParentClass->bases().empty() || 2990 !ParentClass->vbases().empty()); 2991 if (FieldOffset == CharUnits::Zero() && DataSize != CharUnits::Zero() && 2992 HasBases) { 2993 // MSVC appears to only do this when there are base classes; 2994 // otherwise it overlaps no_unique_address fields in non-zero offsets. 2995 FieldOffset = DataSize.alignTo(Info.Alignment); 2996 } else { 2997 FieldOffset += Info.Alignment; 2998 } 2999 } 3000 } else { 3001 FieldOffset = Size.alignTo(Info.Alignment); 3002 } 3003 placeFieldAtOffset(FieldOffset); 3004 3005 if (!IsOverlappingEmptyField) 3006 DataSize = std::max(DataSize, FieldOffset + Info.Size); 3007 3008 Size = std::max(Size, FieldOffset + Info.Size); 3009 } 3010 3011 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) { 3012 unsigned Width = FD->getBitWidthValue(); 3013 if (Width == 0) { 3014 layoutZeroWidthBitField(FD); 3015 return; 3016 } 3017 ElementInfo Info = getAdjustedElementInfo(FD); 3018 // Clamp the bitfield to a containable size for the sake of being able 3019 // to lay them out. Sema will throw an error. 3020 if (Width > Context.toBits(Info.Size)) 3021 Width = Context.toBits(Info.Size); 3022 // Check to see if this bitfield fits into an existing allocation. Note: 3023 // MSVC refuses to pack bitfields of formal types with different sizes 3024 // into the same allocation. 3025 if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield && 3026 CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) { 3027 placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField); 3028 RemainingBitsInField -= Width; 3029 return; 3030 } 3031 LastFieldIsNonZeroWidthBitfield = true; 3032 CurrentBitfieldSize = Info.Size; 3033 if (UseExternalLayout) { 3034 auto FieldBitOffset = External.getExternalFieldOffset(FD); 3035 placeFieldAtBitOffset(FieldBitOffset); 3036 auto NewSize = Context.toCharUnitsFromBits( 3037 llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) + 3038 Context.toBits(Info.Size)); 3039 Size = std::max(Size, NewSize); 3040 Alignment = std::max(Alignment, Info.Alignment); 3041 } else if (IsUnion) { 3042 placeFieldAtOffset(CharUnits::Zero()); 3043 Size = std::max(Size, Info.Size); 3044 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. 3045 } else { 3046 // Allocate a new block of memory and place the bitfield in it. 3047 CharUnits FieldOffset = Size.alignTo(Info.Alignment); 3048 placeFieldAtOffset(FieldOffset); 3049 Size = FieldOffset + Info.Size; 3050 Alignment = std::max(Alignment, Info.Alignment); 3051 RemainingBitsInField = Context.toBits(Info.Size) - Width; 3052 } 3053 DataSize = Size; 3054 } 3055 3056 void 3057 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) { 3058 // Zero-width bitfields are ignored unless they follow a non-zero-width 3059 // bitfield. 3060 if (!LastFieldIsNonZeroWidthBitfield) { 3061 placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size); 3062 // TODO: Add a Sema warning that MS ignores alignment for zero 3063 // sized bitfields that occur after zero-size bitfields or non-bitfields. 3064 return; 3065 } 3066 LastFieldIsNonZeroWidthBitfield = false; 3067 ElementInfo Info = getAdjustedElementInfo(FD); 3068 if (IsUnion) { 3069 placeFieldAtOffset(CharUnits::Zero()); 3070 Size = std::max(Size, Info.Size); 3071 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. 3072 } else { 3073 // Round up the current record size to the field's alignment boundary. 3074 CharUnits FieldOffset = Size.alignTo(Info.Alignment); 3075 placeFieldAtOffset(FieldOffset); 3076 Size = FieldOffset; 3077 Alignment = std::max(Alignment, Info.Alignment); 3078 } 3079 DataSize = Size; 3080 } 3081 3082 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) { 3083 if (!HasVBPtr || SharedVBPtrBase) 3084 return; 3085 // Inject the VBPointer at the injection site. 3086 CharUnits InjectionSite = VBPtrOffset; 3087 // But before we do, make sure it's properly aligned. 3088 VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment); 3089 // Determine where the first field should be laid out after the vbptr. 3090 CharUnits FieldStart = VBPtrOffset + PointerInfo.Size; 3091 // Shift everything after the vbptr down, unless we're using an external 3092 // layout. 3093 if (UseExternalLayout) { 3094 // It is possible that there were no fields or bases located after vbptr, 3095 // so the size was not adjusted before. 3096 if (Size < FieldStart) 3097 Size = FieldStart; 3098 return; 3099 } 3100 // Make sure that the amount we push the fields back by is a multiple of the 3101 // alignment. 3102 CharUnits Offset = (FieldStart - InjectionSite) 3103 .alignTo(std::max(RequiredAlignment, Alignment)); 3104 Size += Offset; 3105 for (uint64_t &FieldOffset : FieldOffsets) 3106 FieldOffset += Context.toBits(Offset); 3107 for (BaseOffsetsMapTy::value_type &Base : Bases) 3108 if (Base.second >= InjectionSite) 3109 Base.second += Offset; 3110 } 3111 3112 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) { 3113 if (!HasOwnVFPtr) 3114 return; 3115 // Make sure that the amount we push the struct back by is a multiple of the 3116 // alignment. 3117 CharUnits Offset = 3118 PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment)); 3119 // Push back the vbptr, but increase the size of the object and push back 3120 // regular fields by the offset only if not using external record layout. 3121 if (HasVBPtr) 3122 VBPtrOffset += Offset; 3123 3124 if (UseExternalLayout) { 3125 // The class may have size 0 and a vfptr (e.g. it's an interface class). The 3126 // size was not correctly set before in this case. 3127 if (Size.isZero()) 3128 Size += Offset; 3129 return; 3130 } 3131 3132 Size += Offset; 3133 3134 // If we're using an external layout, the fields offsets have already 3135 // accounted for this adjustment. 3136 for (uint64_t &FieldOffset : FieldOffsets) 3137 FieldOffset += Context.toBits(Offset); 3138 for (BaseOffsetsMapTy::value_type &Base : Bases) 3139 Base.second += Offset; 3140 } 3141 3142 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) { 3143 if (!HasVBPtr) 3144 return; 3145 // Vtordisps are always 4 bytes (even in 64-bit mode) 3146 CharUnits VtorDispSize = CharUnits::fromQuantity(4); 3147 CharUnits VtorDispAlignment = VtorDispSize; 3148 // vtordisps respect pragma pack. 3149 if (!MaxFieldAlignment.isZero()) 3150 VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment); 3151 // The alignment of the vtordisp is at least the required alignment of the 3152 // entire record. This requirement may be present to support vtordisp 3153 // injection. 3154 for (const CXXBaseSpecifier &VBase : RD->vbases()) { 3155 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); 3156 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 3157 RequiredAlignment = 3158 std::max(RequiredAlignment, BaseLayout.getRequiredAlignment()); 3159 } 3160 VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment); 3161 // Compute the vtordisp set. 3162 llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet; 3163 computeVtorDispSet(HasVtorDispSet, RD); 3164 // Iterate through the virtual bases and lay them out. 3165 const ASTRecordLayout *PreviousBaseLayout = nullptr; 3166 for (const CXXBaseSpecifier &VBase : RD->vbases()) { 3167 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); 3168 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 3169 bool HasVtordisp = HasVtorDispSet.contains(BaseDecl); 3170 // Insert padding between two bases if the left first one is zero sized or 3171 // contains a zero sized subobject and the right is zero sized or one leads 3172 // with a zero sized base. The padding between virtual bases is 4 3173 // bytes (in both 32 and 64 bits modes) and always involves rounding up to 3174 // the required alignment, we don't know why. 3175 if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && 3176 BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) || 3177 HasVtordisp) { 3178 Size = Size.alignTo(VtorDispAlignment) + VtorDispSize; 3179 Alignment = std::max(VtorDispAlignment, Alignment); 3180 } 3181 // Insert the virtual base. 3182 ElementInfo Info = getAdjustedElementInfo(BaseLayout); 3183 CharUnits BaseOffset; 3184 3185 // Respect the external AST source base offset, if present. 3186 if (UseExternalLayout) { 3187 if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset)) 3188 BaseOffset = Size; 3189 } else 3190 BaseOffset = Size.alignTo(Info.Alignment); 3191 3192 assert(BaseOffset >= Size && "base offset already allocated"); 3193 3194 VBases.insert(std::make_pair(BaseDecl, 3195 ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp))); 3196 Size = BaseOffset + BaseLayout.getNonVirtualSize(); 3197 PreviousBaseLayout = &BaseLayout; 3198 } 3199 } 3200 3201 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) { 3202 // Respect required alignment. Note that in 32-bit mode Required alignment 3203 // may be 0 and cause size not to be updated. 3204 DataSize = Size; 3205 if (!RequiredAlignment.isZero()) { 3206 Alignment = std::max(Alignment, RequiredAlignment); 3207 auto RoundingAlignment = Alignment; 3208 if (!MaxFieldAlignment.isZero()) 3209 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); 3210 RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment); 3211 Size = Size.alignTo(RoundingAlignment); 3212 } 3213 if (Size.isZero()) { 3214 if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) { 3215 EndsWithZeroSizedObject = true; 3216 LeadsWithZeroSizedBase = true; 3217 } 3218 // Zero-sized structures have size equal to their alignment if a 3219 // __declspec(align) came into play. 3220 if (RequiredAlignment >= MinEmptyStructSize) 3221 Size = Alignment; 3222 else 3223 Size = MinEmptyStructSize; 3224 } 3225 3226 if (UseExternalLayout) { 3227 Size = Context.toCharUnitsFromBits(External.Size); 3228 if (External.Align) 3229 Alignment = Context.toCharUnitsFromBits(External.Align); 3230 } 3231 } 3232 3233 // Recursively walks the non-virtual bases of a class and determines if any of 3234 // them are in the bases with overridden methods set. 3235 static bool 3236 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> & 3237 BasesWithOverriddenMethods, 3238 const CXXRecordDecl *RD) { 3239 if (BasesWithOverriddenMethods.count(RD)) 3240 return true; 3241 // If any of a virtual bases non-virtual bases (recursively) requires a 3242 // vtordisp than so does this virtual base. 3243 for (const CXXBaseSpecifier &Base : RD->bases()) 3244 if (!Base.isVirtual() && 3245 RequiresVtordisp(BasesWithOverriddenMethods, 3246 Base.getType()->getAsCXXRecordDecl())) 3247 return true; 3248 return false; 3249 } 3250 3251 void MicrosoftRecordLayoutBuilder::computeVtorDispSet( 3252 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet, 3253 const CXXRecordDecl *RD) const { 3254 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with 3255 // vftables. 3256 if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) { 3257 for (const CXXBaseSpecifier &Base : RD->vbases()) { 3258 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 3259 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); 3260 if (Layout.hasExtendableVFPtr()) 3261 HasVtordispSet.insert(BaseDecl); 3262 } 3263 return; 3264 } 3265 3266 // If any of our bases need a vtordisp for this type, so do we. Check our 3267 // direct bases for vtordisp requirements. 3268 for (const CXXBaseSpecifier &Base : RD->bases()) { 3269 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 3270 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); 3271 for (const auto &bi : Layout.getVBaseOffsetsMap()) 3272 if (bi.second.hasVtorDisp()) 3273 HasVtordispSet.insert(bi.first); 3274 } 3275 // We don't introduce any additional vtordisps if either: 3276 // * A user declared constructor or destructor aren't declared. 3277 // * #pragma vtordisp(0) or the /vd0 flag are in use. 3278 if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) || 3279 RD->getMSVtorDispMode() == MSVtorDispMode::Never) 3280 return; 3281 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's 3282 // possible for a partially constructed object with virtual base overrides to 3283 // escape a non-trivial constructor. 3284 assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride); 3285 // Compute a set of base classes which define methods we override. A virtual 3286 // base in this set will require a vtordisp. A virtual base that transitively 3287 // contains one of these bases as a non-virtual base will also require a 3288 // vtordisp. 3289 llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work; 3290 llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods; 3291 // Seed the working set with our non-destructor, non-pure virtual methods. 3292 for (const CXXMethodDecl *MD : RD->methods()) 3293 if (MicrosoftVTableContext::hasVtableSlot(MD) && 3294 !isa<CXXDestructorDecl>(MD) && !MD->isPureVirtual()) 3295 Work.insert(MD); 3296 while (!Work.empty()) { 3297 const CXXMethodDecl *MD = *Work.begin(); 3298 auto MethodRange = MD->overridden_methods(); 3299 // If a virtual method has no-overrides it lives in its parent's vtable. 3300 if (MethodRange.begin() == MethodRange.end()) 3301 BasesWithOverriddenMethods.insert(MD->getParent()); 3302 else 3303 Work.insert(MethodRange.begin(), MethodRange.end()); 3304 // We've finished processing this element, remove it from the working set. 3305 Work.erase(MD); 3306 } 3307 // For each of our virtual bases, check if it is in the set of overridden 3308 // bases or if it transitively contains a non-virtual base that is. 3309 for (const CXXBaseSpecifier &Base : RD->vbases()) { 3310 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 3311 if (!HasVtordispSet.count(BaseDecl) && 3312 RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl)) 3313 HasVtordispSet.insert(BaseDecl); 3314 } 3315 } 3316 3317 /// getASTRecordLayout - Get or compute information about the layout of the 3318 /// specified record (struct/union/class), which indicates its size and field 3319 /// position information. 3320 const ASTRecordLayout & 3321 ASTContext::getASTRecordLayout(const RecordDecl *D) const { 3322 // These asserts test different things. A record has a definition 3323 // as soon as we begin to parse the definition. That definition is 3324 // not a complete definition (which is what isDefinition() tests) 3325 // until we *finish* parsing the definition. 3326 3327 if (D->hasExternalLexicalStorage() && !D->getDefinition()) 3328 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D)); 3329 // Complete the redecl chain (if necessary). 3330 (void)D->getMostRecentDecl(); 3331 3332 D = D->getDefinition(); 3333 assert(D && "Cannot get layout of forward declarations!"); 3334 assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!"); 3335 assert(D->isCompleteDefinition() && "Cannot layout type before complete!"); 3336 3337 // Look up this layout, if already laid out, return what we have. 3338 // Note that we can't save a reference to the entry because this function 3339 // is recursive. 3340 const ASTRecordLayout *Entry = ASTRecordLayouts[D]; 3341 if (Entry) return *Entry; 3342 3343 const ASTRecordLayout *NewEntry = nullptr; 3344 3345 if (isMsLayout(*this)) { 3346 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 3347 EmptySubobjectMap EmptySubobjects(*this, RD); 3348 MicrosoftRecordLayoutBuilder Builder(*this, &EmptySubobjects); 3349 Builder.cxxLayout(RD); 3350 NewEntry = new (*this) ASTRecordLayout( 3351 *this, Builder.Size, Builder.Alignment, Builder.Alignment, 3352 Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr, 3353 Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset, 3354 Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize, 3355 Builder.Alignment, Builder.Alignment, CharUnits::Zero(), 3356 Builder.PrimaryBase, false, Builder.SharedVBPtrBase, 3357 Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase, 3358 Builder.Bases, Builder.VBases); 3359 } else { 3360 MicrosoftRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); 3361 Builder.layout(D); 3362 NewEntry = new (*this) ASTRecordLayout( 3363 *this, Builder.Size, Builder.Alignment, Builder.Alignment, 3364 Builder.Alignment, Builder.RequiredAlignment, Builder.Size, 3365 Builder.FieldOffsets); 3366 } 3367 } else { 3368 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 3369 EmptySubobjectMap EmptySubobjects(*this, RD); 3370 ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects); 3371 Builder.Layout(RD); 3372 3373 // In certain situations, we are allowed to lay out objects in the 3374 // tail-padding of base classes. This is ABI-dependent. 3375 // FIXME: this should be stored in the record layout. 3376 bool skipTailPadding = 3377 mustSkipTailPadding(getTargetInfo().getCXXABI(), RD); 3378 3379 // FIXME: This should be done in FinalizeLayout. 3380 CharUnits DataSize = 3381 skipTailPadding ? Builder.getSize() : Builder.getDataSize(); 3382 CharUnits NonVirtualSize = 3383 skipTailPadding ? DataSize : Builder.NonVirtualSize; 3384 NewEntry = new (*this) ASTRecordLayout( 3385 *this, Builder.getSize(), Builder.Alignment, 3386 Builder.PreferredAlignment, Builder.UnadjustedAlignment, 3387 /*RequiredAlignment : used by MS-ABI)*/ 3388 Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(), 3389 CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets, 3390 NonVirtualSize, Builder.NonVirtualAlignment, 3391 Builder.PreferredNVAlignment, 3392 EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase, 3393 Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases, 3394 Builder.VBases); 3395 } else { 3396 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); 3397 Builder.Layout(D); 3398 3399 NewEntry = new (*this) ASTRecordLayout( 3400 *this, Builder.getSize(), Builder.Alignment, 3401 Builder.PreferredAlignment, Builder.UnadjustedAlignment, 3402 /*RequiredAlignment : used by MS-ABI)*/ 3403 Builder.Alignment, Builder.getSize(), Builder.FieldOffsets); 3404 } 3405 } 3406 3407 ASTRecordLayouts[D] = NewEntry; 3408 3409 if (getLangOpts().DumpRecordLayouts) { 3410 llvm::outs() << "\n*** Dumping AST Record Layout\n"; 3411 DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple); 3412 } 3413 3414 return *NewEntry; 3415 } 3416 3417 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) { 3418 if (!getTargetInfo().getCXXABI().hasKeyFunctions()) 3419 return nullptr; 3420 3421 assert(RD->getDefinition() && "Cannot get key function for forward decl!"); 3422 RD = RD->getDefinition(); 3423 3424 // Beware: 3425 // 1) computing the key function might trigger deserialization, which might 3426 // invalidate iterators into KeyFunctions 3427 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and 3428 // invalidate the LazyDeclPtr within the map itself 3429 LazyDeclPtr Entry = KeyFunctions[RD]; 3430 const Decl *Result = 3431 Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD); 3432 3433 // Store it back if it changed. 3434 if (Entry.isOffset() || Entry.isValid() != bool(Result)) 3435 KeyFunctions[RD] = const_cast<Decl*>(Result); 3436 3437 return cast_or_null<CXXMethodDecl>(Result); 3438 } 3439 3440 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) { 3441 assert(Method == Method->getFirstDecl() && 3442 "not working with method declaration from class definition"); 3443 3444 // Look up the cache entry. Since we're working with the first 3445 // declaration, its parent must be the class definition, which is 3446 // the correct key for the KeyFunctions hash. 3447 const auto &Map = KeyFunctions; 3448 auto I = Map.find(Method->getParent()); 3449 3450 // If it's not cached, there's nothing to do. 3451 if (I == Map.end()) return; 3452 3453 // If it is cached, check whether it's the target method, and if so, 3454 // remove it from the cache. Note, the call to 'get' might invalidate 3455 // the iterator and the LazyDeclPtr object within the map. 3456 LazyDeclPtr Ptr = I->second; 3457 if (Ptr.get(getExternalSource()) == Method) { 3458 // FIXME: remember that we did this for module / chained PCH state? 3459 KeyFunctions.erase(Method->getParent()); 3460 } 3461 } 3462 3463 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) { 3464 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent()); 3465 return Layout.getFieldOffset(FD->getFieldIndex()); 3466 } 3467 3468 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const { 3469 uint64_t OffsetInBits; 3470 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) { 3471 OffsetInBits = ::getFieldOffset(*this, FD); 3472 } else { 3473 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD); 3474 3475 OffsetInBits = 0; 3476 for (const NamedDecl *ND : IFD->chain()) 3477 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND)); 3478 } 3479 3480 return OffsetInBits; 3481 } 3482 3483 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID, 3484 const ObjCImplementationDecl *ID, 3485 const ObjCIvarDecl *Ivar) const { 3486 Ivar = Ivar->getCanonicalDecl(); 3487 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 3488 3489 // FIXME: We should eliminate the need to have ObjCImplementationDecl passed 3490 // in here; it should never be necessary because that should be the lexical 3491 // decl context for the ivar. 3492 3493 // If we know have an implementation (and the ivar is in it) then 3494 // look up in the implementation layout. 3495 const ASTRecordLayout *RL; 3496 if (ID && declaresSameEntity(ID->getClassInterface(), Container)) 3497 RL = &getASTObjCImplementationLayout(ID); 3498 else 3499 RL = &getASTObjCInterfaceLayout(Container); 3500 3501 // Compute field index. 3502 // 3503 // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is 3504 // implemented. This should be fixed to get the information from the layout 3505 // directly. 3506 unsigned Index = 0; 3507 3508 for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin(); 3509 IVD; IVD = IVD->getNextIvar()) { 3510 if (Ivar == IVD) 3511 break; 3512 ++Index; 3513 } 3514 assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!"); 3515 3516 return RL->getFieldOffset(Index); 3517 } 3518 3519 /// getObjCLayout - Get or compute information about the layout of the 3520 /// given interface. 3521 /// 3522 /// \param Impl - If given, also include the layout of the interface's 3523 /// implementation. This may differ by including synthesized ivars. 3524 const ASTRecordLayout & 3525 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D, 3526 const ObjCImplementationDecl *Impl) const { 3527 // Retrieve the definition 3528 if (D->hasExternalLexicalStorage() && !D->getDefinition()) 3529 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D)); 3530 D = D->getDefinition(); 3531 assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() && 3532 "Invalid interface decl!"); 3533 3534 // Look up this layout, if already laid out, return what we have. 3535 const ObjCContainerDecl *Key = 3536 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D; 3537 if (const ASTRecordLayout *Entry = ObjCLayouts[Key]) 3538 return *Entry; 3539 3540 // Add in synthesized ivar count if laying out an implementation. 3541 if (Impl) { 3542 unsigned SynthCount = CountNonClassIvars(D); 3543 // If there aren't any synthesized ivars then reuse the interface 3544 // entry. Note we can't cache this because we simply free all 3545 // entries later; however we shouldn't look up implementations 3546 // frequently. 3547 if (SynthCount == 0) 3548 return getObjCLayout(D, nullptr); 3549 } 3550 3551 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); 3552 Builder.Layout(D); 3553 3554 const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout( 3555 *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment, 3556 Builder.UnadjustedAlignment, 3557 /*RequiredAlignment : used by MS-ABI)*/ 3558 Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets); 3559 3560 ObjCLayouts[Key] = NewEntry; 3561 3562 return *NewEntry; 3563 } 3564 3565 static void PrintOffset(raw_ostream &OS, 3566 CharUnits Offset, unsigned IndentLevel) { 3567 OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity()); 3568 OS.indent(IndentLevel * 2); 3569 } 3570 3571 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset, 3572 unsigned Begin, unsigned Width, 3573 unsigned IndentLevel) { 3574 llvm::SmallString<10> Buffer; 3575 { 3576 llvm::raw_svector_ostream BufferOS(Buffer); 3577 BufferOS << Offset.getQuantity() << ':'; 3578 if (Width == 0) { 3579 BufferOS << '-'; 3580 } else { 3581 BufferOS << Begin << '-' << (Begin + Width - 1); 3582 } 3583 } 3584 3585 OS << llvm::right_justify(Buffer, 10) << " | "; 3586 OS.indent(IndentLevel * 2); 3587 } 3588 3589 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) { 3590 OS << " | "; 3591 OS.indent(IndentLevel * 2); 3592 } 3593 3594 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD, 3595 const ASTContext &C, 3596 CharUnits Offset, 3597 unsigned IndentLevel, 3598 const char* Description, 3599 bool PrintSizeInfo, 3600 bool IncludeVirtualBases) { 3601 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD); 3602 auto CXXRD = dyn_cast<CXXRecordDecl>(RD); 3603 3604 PrintOffset(OS, Offset, IndentLevel); 3605 OS << C.getTypeDeclType(const_cast<RecordDecl *>(RD)); 3606 if (Description) 3607 OS << ' ' << Description; 3608 if (CXXRD && CXXRD->isEmpty()) 3609 OS << " (empty)"; 3610 OS << '\n'; 3611 3612 IndentLevel++; 3613 3614 // Dump bases. 3615 if (CXXRD) { 3616 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 3617 bool HasOwnVFPtr = Layout.hasOwnVFPtr(); 3618 bool HasOwnVBPtr = Layout.hasOwnVBPtr(); 3619 3620 // Vtable pointer. 3621 if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) { 3622 PrintOffset(OS, Offset, IndentLevel); 3623 OS << '(' << *RD << " vtable pointer)\n"; 3624 } else if (HasOwnVFPtr) { 3625 PrintOffset(OS, Offset, IndentLevel); 3626 // vfptr (for Microsoft C++ ABI) 3627 OS << '(' << *RD << " vftable pointer)\n"; 3628 } 3629 3630 // Collect nvbases. 3631 SmallVector<const CXXRecordDecl *, 4> Bases; 3632 for (const CXXBaseSpecifier &Base : CXXRD->bases()) { 3633 assert(!Base.getType()->isDependentType() && 3634 "Cannot layout class with dependent bases."); 3635 if (!Base.isVirtual()) 3636 Bases.push_back(Base.getType()->getAsCXXRecordDecl()); 3637 } 3638 3639 // Sort nvbases by offset. 3640 llvm::stable_sort( 3641 Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { 3642 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R); 3643 }); 3644 3645 // Dump (non-virtual) bases 3646 for (const CXXRecordDecl *Base : Bases) { 3647 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base); 3648 DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel, 3649 Base == PrimaryBase ? "(primary base)" : "(base)", 3650 /*PrintSizeInfo=*/false, 3651 /*IncludeVirtualBases=*/false); 3652 } 3653 3654 // vbptr (for Microsoft C++ ABI) 3655 if (HasOwnVBPtr) { 3656 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel); 3657 OS << '(' << *RD << " vbtable pointer)\n"; 3658 } 3659 } 3660 3661 // Dump fields. 3662 for (const FieldDecl *Field : RD->fields()) { 3663 uint64_t LocalFieldOffsetInBits = 3664 Layout.getFieldOffset(Field->getFieldIndex()); 3665 CharUnits FieldOffset = 3666 Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits); 3667 3668 // Recursively dump fields of record type. 3669 if (auto RT = Field->getType()->getAs<RecordType>()) { 3670 DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel, 3671 Field->getName().data(), 3672 /*PrintSizeInfo=*/false, 3673 /*IncludeVirtualBases=*/true); 3674 continue; 3675 } 3676 3677 if (Field->isBitField()) { 3678 uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset); 3679 unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits; 3680 unsigned Width = Field->getBitWidthValue(); 3681 PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel); 3682 } else { 3683 PrintOffset(OS, FieldOffset, IndentLevel); 3684 } 3685 const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical 3686 ? Field->getType().getCanonicalType() 3687 : Field->getType(); 3688 OS << FieldType << ' ' << *Field << '\n'; 3689 } 3690 3691 // Dump virtual bases. 3692 if (CXXRD && IncludeVirtualBases) { 3693 const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps = 3694 Layout.getVBaseOffsetsMap(); 3695 3696 for (const CXXBaseSpecifier &Base : CXXRD->vbases()) { 3697 assert(Base.isVirtual() && "Found non-virtual class!"); 3698 const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl(); 3699 3700 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase); 3701 3702 if (VtorDisps.find(VBase)->second.hasVtorDisp()) { 3703 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel); 3704 OS << "(vtordisp for vbase " << *VBase << ")\n"; 3705 } 3706 3707 DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel, 3708 VBase == Layout.getPrimaryBase() ? 3709 "(primary virtual base)" : "(virtual base)", 3710 /*PrintSizeInfo=*/false, 3711 /*IncludeVirtualBases=*/false); 3712 } 3713 } 3714 3715 if (!PrintSizeInfo) return; 3716 3717 PrintIndentNoOffset(OS, IndentLevel - 1); 3718 OS << "[sizeof=" << Layout.getSize().getQuantity(); 3719 if (CXXRD && !isMsLayout(C)) 3720 OS << ", dsize=" << Layout.getDataSize().getQuantity(); 3721 OS << ", align=" << Layout.getAlignment().getQuantity(); 3722 if (C.getTargetInfo().defaultsToAIXPowerAlignment()) 3723 OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity(); 3724 3725 if (CXXRD) { 3726 OS << ",\n"; 3727 PrintIndentNoOffset(OS, IndentLevel - 1); 3728 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity(); 3729 OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity(); 3730 if (C.getTargetInfo().defaultsToAIXPowerAlignment()) 3731 OS << ", preferrednvalign=" 3732 << Layout.getPreferredNVAlignment().getQuantity(); 3733 } 3734 OS << "]\n"; 3735 } 3736 3737 void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS, 3738 bool Simple) const { 3739 if (!Simple) { 3740 ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr, 3741 /*PrintSizeInfo*/ true, 3742 /*IncludeVirtualBases=*/true); 3743 return; 3744 } 3745 3746 // The "simple" format is designed to be parsed by the 3747 // layout-override testing code. There shouldn't be any external 3748 // uses of this format --- when LLDB overrides a layout, it sets up 3749 // the data structures directly --- so feel free to adjust this as 3750 // you like as long as you also update the rudimentary parser for it 3751 // in libFrontend. 3752 3753 const ASTRecordLayout &Info = getASTRecordLayout(RD); 3754 OS << "Type: " << getTypeDeclType(RD) << "\n"; 3755 OS << "\nLayout: "; 3756 OS << "<ASTRecordLayout\n"; 3757 OS << " Size:" << toBits(Info.getSize()) << "\n"; 3758 if (!isMsLayout(*this)) 3759 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n"; 3760 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n"; 3761 if (Target->defaultsToAIXPowerAlignment()) 3762 OS << " PreferredAlignment:" << toBits(Info.getPreferredAlignment()) 3763 << "\n"; 3764 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3765 OS << " BaseOffsets: ["; 3766 const CXXRecordDecl *Base = nullptr; 3767 for (auto I : CXXRD->bases()) { 3768 if (I.isVirtual()) 3769 continue; 3770 if (Base) 3771 OS << ", "; 3772 Base = I.getType()->getAsCXXRecordDecl(); 3773 OS << Info.CXXInfo->BaseOffsets[Base].getQuantity(); 3774 } 3775 OS << "]>\n"; 3776 OS << " VBaseOffsets: ["; 3777 const CXXRecordDecl *VBase = nullptr; 3778 for (auto I : CXXRD->vbases()) { 3779 if (VBase) 3780 OS << ", "; 3781 VBase = I.getType()->getAsCXXRecordDecl(); 3782 OS << Info.CXXInfo->VBaseOffsets[VBase].VBaseOffset.getQuantity(); 3783 } 3784 OS << "]>\n"; 3785 } 3786 OS << " FieldOffsets: ["; 3787 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) { 3788 if (i) 3789 OS << ", "; 3790 OS << Info.getFieldOffset(i); 3791 } 3792 OS << "]>\n"; 3793 } 3794