1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Analysis/Presburger/Simplex.h" 10 #include "mlir/Analysis/Presburger/Fraction.h" 11 #include "mlir/Analysis/Presburger/IntegerRelation.h" 12 #include "mlir/Analysis/Presburger/Matrix.h" 13 #include "mlir/Analysis/Presburger/PresburgerSpace.h" 14 #include "mlir/Analysis/Presburger/Utils.h" 15 #include "llvm/ADT/DynamicAPInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Support/Compiler.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/LogicalResult.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <cassert> 24 #include <functional> 25 #include <limits> 26 #include <optional> 27 #include <tuple> 28 #include <utility> 29 30 using namespace mlir; 31 using namespace presburger; 32 33 using Direction = Simplex::Direction; 34 35 const int nullIndex = std::numeric_limits<int>::max(); 36 37 // Return a + scale*b; 38 LLVM_ATTRIBUTE_UNUSED 39 static SmallVector<DynamicAPInt, 8> 40 scaleAndAddForAssert(ArrayRef<DynamicAPInt> a, const DynamicAPInt &scale, 41 ArrayRef<DynamicAPInt> b) { 42 assert(a.size() == b.size()); 43 SmallVector<DynamicAPInt, 8> res; 44 res.reserve(a.size()); 45 for (unsigned i = 0, e = a.size(); i < e; ++i) 46 res.emplace_back(a[i] + scale * b[i]); 47 return res; 48 } 49 50 SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM) 51 : usingBigM(mustUseBigM), nRedundant(0), nSymbol(0), 52 tableau(0, getNumFixedCols() + nVar), empty(false) { 53 var.reserve(nVar); 54 colUnknown.reserve(nVar + 1); 55 colUnknown.insert(colUnknown.begin(), getNumFixedCols(), nullIndex); 56 for (unsigned i = 0; i < nVar; ++i) { 57 var.emplace_back(Orientation::Column, /*restricted=*/false, 58 /*pos=*/getNumFixedCols() + i); 59 colUnknown.emplace_back(i); 60 } 61 } 62 63 SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM, 64 const llvm::SmallBitVector &isSymbol) 65 : SimplexBase(nVar, mustUseBigM) { 66 assert(isSymbol.size() == nVar && "invalid bitmask!"); 67 // Invariant: nSymbol is the number of symbols that have been marked 68 // already and these occupy the columns 69 // [getNumFixedCols(), getNumFixedCols() + nSymbol). 70 for (unsigned symbolIdx : isSymbol.set_bits()) { 71 var[symbolIdx].isSymbol = true; 72 swapColumns(var[symbolIdx].pos, getNumFixedCols() + nSymbol); 73 ++nSymbol; 74 } 75 } 76 77 const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const { 78 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 79 return index >= 0 ? var[index] : con[~index]; 80 } 81 82 const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const { 83 assert(col < getNumColumns() && "Invalid column"); 84 return unknownFromIndex(colUnknown[col]); 85 } 86 87 const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const { 88 assert(row < getNumRows() && "Invalid row"); 89 return unknownFromIndex(rowUnknown[row]); 90 } 91 92 Simplex::Unknown &SimplexBase::unknownFromIndex(int index) { 93 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 94 return index >= 0 ? var[index] : con[~index]; 95 } 96 97 Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) { 98 assert(col < getNumColumns() && "Invalid column"); 99 return unknownFromIndex(colUnknown[col]); 100 } 101 102 Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) { 103 assert(row < getNumRows() && "Invalid row"); 104 return unknownFromIndex(rowUnknown[row]); 105 } 106 107 unsigned SimplexBase::addZeroRow(bool makeRestricted) { 108 // Resize the tableau to accommodate the extra row. 109 unsigned newRow = tableau.appendExtraRow(); 110 assert(getNumRows() == getNumRows() && "Inconsistent tableau size"); 111 rowUnknown.emplace_back(~con.size()); 112 con.emplace_back(Orientation::Row, makeRestricted, newRow); 113 undoLog.emplace_back(UndoLogEntry::RemoveLastConstraint); 114 tableau(newRow, 0) = 1; 115 return newRow; 116 } 117 118 /// Add a new row to the tableau corresponding to the given constant term and 119 /// list of coefficients. The coefficients are specified as a vector of 120 /// (variable index, coefficient) pairs. 121 unsigned SimplexBase::addRow(ArrayRef<DynamicAPInt> coeffs, 122 bool makeRestricted) { 123 assert(coeffs.size() == var.size() + 1 && 124 "Incorrect number of coefficients!"); 125 assert(var.size() + getNumFixedCols() == getNumColumns() && 126 "inconsistent column count!"); 127 128 unsigned newRow = addZeroRow(makeRestricted); 129 tableau(newRow, 1) = coeffs.back(); 130 if (usingBigM) { 131 // When the lexicographic pivot rule is used, instead of the variables 132 // 133 // x, y, z ... 134 // 135 // we internally use the variables 136 // 137 // M, M + x, M + y, M + z, ... 138 // 139 // where M is the big M parameter. As such, when the user tries to add 140 // a row ax + by + cz + d, we express it in terms of our internal variables 141 // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d. 142 // 143 // Symbols don't use the big M parameter since they do not get lex 144 // optimized. 145 DynamicAPInt bigMCoeff(0); 146 for (unsigned i = 0; i < coeffs.size() - 1; ++i) 147 if (!var[i].isSymbol) 148 bigMCoeff -= coeffs[i]; 149 // The coefficient to the big M parameter is stored in column 2. 150 tableau(newRow, 2) = bigMCoeff; 151 } 152 153 // Process each given variable coefficient. 154 for (unsigned i = 0; i < var.size(); ++i) { 155 unsigned pos = var[i].pos; 156 if (coeffs[i] == 0) 157 continue; 158 159 if (var[i].orientation == Orientation::Column) { 160 // If a variable is in column position at column col, then we just add the 161 // coefficient for that variable (scaled by the common row denominator) to 162 // the corresponding entry in the new row. 163 tableau(newRow, pos) += coeffs[i] * tableau(newRow, 0); 164 continue; 165 } 166 167 // If the variable is in row position, we need to add that row to the new 168 // row, scaled by the coefficient for the variable, accounting for the two 169 // rows potentially having different denominators. The new denominator is 170 // the lcm of the two. 171 DynamicAPInt lcm = llvm::lcm(tableau(newRow, 0), tableau(pos, 0)); 172 DynamicAPInt nRowCoeff = lcm / tableau(newRow, 0); 173 DynamicAPInt idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0)); 174 tableau(newRow, 0) = lcm; 175 for (unsigned col = 1, e = getNumColumns(); col < e; ++col) 176 tableau(newRow, col) = 177 nRowCoeff * tableau(newRow, col) + idxRowCoeff * tableau(pos, col); 178 } 179 180 tableau.normalizeRow(newRow); 181 // Push to undo log along with the index of the new constraint. 182 return con.size() - 1; 183 } 184 185 namespace { 186 bool signMatchesDirection(const DynamicAPInt &elem, Direction direction) { 187 assert(elem != 0 && "elem should not be 0"); 188 return direction == Direction::Up ? elem > 0 : elem < 0; 189 } 190 191 Direction flippedDirection(Direction direction) { 192 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up; 193 } 194 } // namespace 195 196 /// We simply make the tableau consistent while maintaining a lexicopositive 197 /// basis transform, and then return the sample value. If the tableau becomes 198 /// empty, we return empty. 199 /// 200 /// Let the variables be x = (x_1, ... x_n). 201 /// Let the basis unknowns be y = (y_1, ... y_n). 202 /// We have that x = A*y + b for some n x n matrix A and n x 1 column vector b. 203 /// 204 /// As we will show below, A*y is either zero or lexicopositive. 205 /// Adding a lexicopositive vector to b will make it lexicographically 206 /// greater, so A*y + b is always equal to or lexicographically greater than b. 207 /// Thus, since we can attain x = b, that is the lexicographic minimum. 208 /// 209 /// We have that every column in A is lexicopositive, i.e., has at least 210 /// one non-zero element, with the first such element being positive. Since for 211 /// the tableau to be consistent we must have non-negative sample values not 212 /// only for the constraints but also for the variables, we also have x >= 0 and 213 /// y >= 0, by which we mean every element in these vectors is non-negative. 214 /// 215 /// Proof that if every column in A is lexicopositive, and y >= 0, then 216 /// A*y is zero or lexicopositive. Begin by considering A_1, the first row of A. 217 /// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next 218 /// row. If we run out of rows, A*y is zero and we are done; otherwise, we 219 /// encounter some row A_i that has a non-zero element. Every column is 220 /// lexicopositive and so has some positive element before any negative elements 221 /// occur, so the element in this row for any column, if non-zero, must be 222 /// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are 223 /// non-negative, so if this is non-zero then it must be positive. Then the 224 /// first non-zero element of A*y is positive so A*y is lexicopositive. 225 /// 226 /// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero 227 /// element in A_i, y_j is zero. Thus these columns have no contribution to A*y 228 /// and we can completely ignore these columns of A. We now continue downwards, 229 /// looking for rows of A that have a non-zero element other than in the ignored 230 /// columns. If we find one, say A_k, once again these elements must be positive 231 /// since they are the first non-zero element in each of these columns, so if 232 /// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we 233 /// add these to the set of ignored columns and continue to the next row. If we 234 /// run out of rows, then A*y is zero and we are done. 235 MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() { 236 if (restoreRationalConsistency().failed()) { 237 markEmpty(); 238 return OptimumKind::Empty; 239 } 240 return getRationalSample(); 241 } 242 243 /// Given a row that has a non-integer sample value, add an inequality such 244 /// that this fractional sample value is cut away from the polytope. The added 245 /// inequality will be such that no integer points are removed. i.e., the 246 /// integer lexmin, if it exists, is the same with and without this constraint. 247 /// 248 /// Let the row be 249 /// (c + coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n)/d, 250 /// where s_1, ... s_m are the symbols and 251 /// y_1, ... y_n are the other basis unknowns. 252 /// 253 /// For this to be an integer, we want 254 /// coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n = -c (mod d) 255 /// Note that this constraint must always hold, independent of the basis, 256 /// becuse the row unknown's value always equals this expression, even if *we* 257 /// later compute the sample value from a different expression based on a 258 /// different basis. 259 /// 260 /// Let us assume that M has a factor of d in it. Imposing this constraint on M 261 /// does not in any way hinder us from finding a value of M that is big enough. 262 /// Moreover, this function is only called when the symbolic part of the sample, 263 /// a_1*s_1 + ... + a_m*s_m, is known to be an integer. 264 /// 265 /// Also, we can safely reduce the coefficients modulo d, so we have: 266 /// 267 /// (b_1%d)y_1 + ... + (b_n%d)y_n = (-c%d) + k*d for some integer `k` 268 /// 269 /// Note that all coefficient modulos here are non-negative. Also, all the 270 /// unknowns are non-negative here as both constraints and variables are 271 /// non-negative in LexSimplexBase. (We used the big M trick to make the 272 /// variables non-negative). Therefore, the LHS here is non-negative. 273 /// Since 0 <= (-c%d) < d, k is the quotient of dividing the LHS by d and 274 /// is therefore non-negative as well. 275 /// 276 /// So we have 277 /// ((b_1%d)y_1 + ... + (b_n%d)y_n - (-c%d))/d >= 0. 278 /// 279 /// The constraint is violated when added (it would be useless otherwise) 280 /// so we immediately try to move it to a column. 281 LogicalResult LexSimplexBase::addCut(unsigned row) { 282 DynamicAPInt d = tableau(row, 0); 283 unsigned cutRow = addZeroRow(/*makeRestricted=*/true); 284 tableau(cutRow, 0) = d; 285 tableau(cutRow, 1) = -mod(-tableau(row, 1), d); // -c%d. 286 tableau(cutRow, 2) = 0; 287 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) 288 tableau(cutRow, col) = mod(tableau(row, col), d); // b_i%d. 289 return moveRowUnknownToColumn(cutRow); 290 } 291 292 std::optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const { 293 for (const Unknown &u : var) { 294 if (u.orientation == Orientation::Column) 295 continue; 296 // If the sample value is of the form (a/d)M + b/d, we need b to be 297 // divisible by d. We assume M contains all possible 298 // factors and is divisible by everything. 299 unsigned row = u.pos; 300 if (tableau(row, 1) % tableau(row, 0) != 0) 301 return row; 302 } 303 return {}; 304 } 305 306 MaybeOptimum<SmallVector<DynamicAPInt, 8>> LexSimplex::findIntegerLexMin() { 307 // We first try to make the tableau consistent. 308 if (restoreRationalConsistency().failed()) 309 return OptimumKind::Empty; 310 311 // Then, if the sample value is integral, we are done. 312 while (std::optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) { 313 // Otherwise, for the variable whose row has a non-integral sample value, 314 // we add a cut, a constraint that remove this rational point 315 // while preserving all integer points, thus keeping the lexmin the same. 316 // We then again try to make the tableau with the new constraint 317 // consistent. This continues until the tableau becomes empty, in which 318 // case there is no integer point, or until there are no variables with 319 // non-integral sample values. 320 // 321 // Failure indicates that the tableau became empty, which occurs when the 322 // polytope is integer empty. 323 if (addCut(*maybeRow).failed()) 324 return OptimumKind::Empty; 325 if (restoreRationalConsistency().failed()) 326 return OptimumKind::Empty; 327 } 328 329 MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample(); 330 assert(!sample.isEmpty() && "If we reached here the sample should exist!"); 331 if (sample.isUnbounded()) 332 return OptimumKind::Unbounded; 333 return llvm::to_vector<8>( 334 llvm::map_range(*sample, std::mem_fn(&Fraction::getAsInteger))); 335 } 336 337 bool LexSimplex::isSeparateInequality(ArrayRef<DynamicAPInt> coeffs) { 338 SimplexRollbackScopeExit scopeExit(*this); 339 addInequality(coeffs); 340 return findIntegerLexMin().isEmpty(); 341 } 342 343 bool LexSimplex::isRedundantInequality(ArrayRef<DynamicAPInt> coeffs) { 344 return isSeparateInequality(getComplementIneq(coeffs)); 345 } 346 347 SmallVector<DynamicAPInt, 8> 348 SymbolicLexSimplex::getSymbolicSampleNumerator(unsigned row) const { 349 SmallVector<DynamicAPInt, 8> sample; 350 sample.reserve(nSymbol + 1); 351 for (unsigned col = 3; col < 3 + nSymbol; ++col) 352 sample.emplace_back(tableau(row, col)); 353 sample.emplace_back(tableau(row, 1)); 354 return sample; 355 } 356 357 SmallVector<DynamicAPInt, 8> 358 SymbolicLexSimplex::getSymbolicSampleIneq(unsigned row) const { 359 SmallVector<DynamicAPInt, 8> sample = getSymbolicSampleNumerator(row); 360 // The inequality is equivalent to the GCD-normalized one. 361 normalizeRange(sample); 362 return sample; 363 } 364 365 void LexSimplexBase::appendSymbol() { 366 appendVariable(); 367 swapColumns(3 + nSymbol, getNumColumns() - 1); 368 var.back().isSymbol = true; 369 nSymbol++; 370 } 371 372 static bool isRangeDivisibleBy(ArrayRef<DynamicAPInt> range, 373 const DynamicAPInt &divisor) { 374 assert(divisor > 0 && "divisor must be positive!"); 375 return llvm::all_of( 376 range, [divisor](const DynamicAPInt &x) { return x % divisor == 0; }); 377 } 378 379 bool SymbolicLexSimplex::isSymbolicSampleIntegral(unsigned row) const { 380 DynamicAPInt denom = tableau(row, 0); 381 return tableau(row, 1) % denom == 0 && 382 isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), denom); 383 } 384 385 /// This proceeds similarly to LexSimplexBase::addCut(). We are given a row that 386 /// has a symbolic sample value with fractional coefficients. 387 /// 388 /// Let the row be 389 /// (c + coeffM*M + sum_i a_i*s_i + sum_j b_j*y_j)/d, 390 /// where s_1, ... s_m are the symbols and 391 /// y_1, ... y_n are the other basis unknowns. 392 /// 393 /// As in LexSimplex::addCut, for this to be an integer, we want 394 /// 395 /// coeffM*M + sum_j b_j*y_j = -c + sum_i (-a_i*s_i) (mod d) 396 /// 397 /// This time, a_1*s_1 + ... + a_m*s_m may not be an integer. We find that 398 /// 399 /// sum_i (b_i%d)y_i = ((-c%d) + sum_i (-a_i%d)s_i)%d + k*d for some integer k 400 /// 401 /// where we take a modulo of the whole symbolic expression on the right to 402 /// bring it into the range [0, d - 1]. Therefore, as in addCut(), 403 /// k is the quotient on dividing the LHS by d, and since LHS >= 0, we have 404 /// k >= 0 as well. If all the a_i are divisible by d, then we can add the 405 /// constraint directly. Otherwise, we realize the modulo of the symbolic 406 /// expression by adding a division variable 407 /// 408 /// q = ((-c%d) + sum_i (-a_i%d)s_i)/d 409 /// 410 /// to the symbol domain, so the equality becomes 411 /// 412 /// sum_i (b_i%d)y_i = (-c%d) + sum_i (-a_i%d)s_i - q*d + k*d for some integer k 413 /// 414 /// So the cut is 415 /// (sum_i (b_i%d)y_i - (-c%d) - sum_i (-a_i%d)s_i + q*d)/d >= 0 416 /// This constraint is violated when added so we immediately try to move it to a 417 /// column. 418 LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) { 419 DynamicAPInt d = tableau(row, 0); 420 if (isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), d)) { 421 // The coefficients of symbols in the symbol numerator are divisible 422 // by the denominator, so we can add the constraint directly, 423 // i.e., ignore the symbols and add a regular cut as in addCut(). 424 return addCut(row); 425 } 426 427 // Construct the division variable `q = ((-c%d) + sum_i (-a_i%d)s_i)/d`. 428 SmallVector<DynamicAPInt, 8> divCoeffs; 429 divCoeffs.reserve(nSymbol + 1); 430 DynamicAPInt divDenom = d; 431 for (unsigned col = 3; col < 3 + nSymbol; ++col) 432 divCoeffs.emplace_back(mod(-tableau(row, col), divDenom)); // (-a_i%d)s_i 433 divCoeffs.emplace_back(mod(-tableau(row, 1), divDenom)); // -c%d. 434 normalizeDiv(divCoeffs, divDenom); 435 436 domainSimplex.addDivisionVariable(divCoeffs, divDenom); 437 domainPoly.addLocalFloorDiv(divCoeffs, divDenom); 438 439 // Update `this` to account for the additional symbol we just added. 440 appendSymbol(); 441 442 // Add the cut (sum_i (b_i%d)y_i - (-c%d) + sum_i -(-a_i%d)s_i + q*d)/d >= 0. 443 unsigned cutRow = addZeroRow(/*makeRestricted=*/true); 444 tableau(cutRow, 0) = d; 445 tableau(cutRow, 2) = 0; 446 447 tableau(cutRow, 1) = -mod(-tableau(row, 1), d); // -(-c%d). 448 for (unsigned col = 3; col < 3 + nSymbol - 1; ++col) 449 tableau(cutRow, col) = -mod(-tableau(row, col), d); // -(-a_i%d)s_i. 450 tableau(cutRow, 3 + nSymbol - 1) = d; // q*d. 451 452 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) 453 tableau(cutRow, col) = mod(tableau(row, col), d); // (b_i%d)y_i. 454 return moveRowUnknownToColumn(cutRow); 455 } 456 457 void SymbolicLexSimplex::recordOutput(SymbolicLexOpt &result) const { 458 IntMatrix output(0, domainPoly.getNumVars() + 1); 459 output.reserveRows(result.lexopt.getNumOutputs()); 460 for (const Unknown &u : var) { 461 if (u.isSymbol) 462 continue; 463 464 if (u.orientation == Orientation::Column) { 465 // M + u has a sample value of zero so u has a sample value of -M, i.e, 466 // unbounded. 467 result.unboundedDomain.unionInPlace(domainPoly); 468 return; 469 } 470 471 DynamicAPInt denom = tableau(u.pos, 0); 472 if (tableau(u.pos, 2) < denom) { 473 // M + u has a sample value of fM + something, where f < 1, so 474 // u = (f - 1)M + something, which has a negative coefficient for M, 475 // and so is unbounded. 476 result.unboundedDomain.unionInPlace(domainPoly); 477 return; 478 } 479 assert(tableau(u.pos, 2) == denom && 480 "Coefficient of M should not be greater than 1!"); 481 482 SmallVector<DynamicAPInt, 8> sample = getSymbolicSampleNumerator(u.pos); 483 for (DynamicAPInt &elem : sample) { 484 assert(elem % denom == 0 && "coefficients must be integral!"); 485 elem /= denom; 486 } 487 output.appendExtraRow(sample); 488 } 489 490 // Store the output in a MultiAffineFunction and add it the result. 491 PresburgerSpace funcSpace = result.lexopt.getSpace(); 492 funcSpace.insertVar(VarKind::Local, 0, domainPoly.getNumLocalVars()); 493 494 result.lexopt.addPiece( 495 {PresburgerSet(domainPoly), 496 MultiAffineFunction(funcSpace, output, domainPoly.getLocalReprs())}); 497 } 498 499 std::optional<unsigned> SymbolicLexSimplex::maybeGetAlwaysViolatedRow() { 500 // First look for rows that are clearly violated just from the big M 501 // coefficient, without needing to perform any simplex queries on the domain. 502 for (unsigned row = 0, e = getNumRows(); row < e; ++row) 503 if (tableau(row, 2) < 0) 504 return row; 505 506 for (unsigned row = 0, e = getNumRows(); row < e; ++row) { 507 if (tableau(row, 2) > 0) 508 continue; 509 if (domainSimplex.isSeparateInequality(getSymbolicSampleIneq(row))) { 510 // Sample numerator always takes negative values in the symbol domain. 511 return row; 512 } 513 } 514 return {}; 515 } 516 517 std::optional<unsigned> SymbolicLexSimplex::maybeGetNonIntegralVarRow() { 518 for (const Unknown &u : var) { 519 if (u.orientation == Orientation::Column) 520 continue; 521 assert(!u.isSymbol && "Symbol should not be in row orientation!"); 522 if (!isSymbolicSampleIntegral(u.pos)) 523 return u.pos; 524 } 525 return {}; 526 } 527 528 /// The non-branching pivots are just the ones moving the rows 529 /// that are always violated in the symbol domain. 530 LogicalResult SymbolicLexSimplex::doNonBranchingPivots() { 531 while (std::optional<unsigned> row = maybeGetAlwaysViolatedRow()) 532 if (moveRowUnknownToColumn(*row).failed()) 533 return failure(); 534 return success(); 535 } 536 537 SymbolicLexOpt SymbolicLexSimplex::computeSymbolicIntegerLexMin() { 538 SymbolicLexOpt result(PresburgerSpace::getRelationSpace( 539 /*numDomain=*/domainPoly.getNumDimVars(), 540 /*numRange=*/var.size() - nSymbol, 541 /*numSymbols=*/domainPoly.getNumSymbolVars())); 542 543 /// The algorithm is more naturally expressed recursively, but we implement 544 /// it iteratively here to avoid potential issues with stack overflows in the 545 /// compiler. We explicitly maintain the stack frames in a vector. 546 /// 547 /// To "recurse", we store the current "stack frame", i.e., state variables 548 /// that we will need when we "return", into `stack`, increment `level`, and 549 /// `continue`. To "tail recurse", we just `continue`. 550 /// To "return", we decrement `level` and `continue`. 551 /// 552 /// When there is no stack frame for the current `level`, this indicates that 553 /// we have just "recursed" or "tail recursed". When there does exist one, 554 /// this indicates that we have just "returned" from recursing. There is only 555 /// one point at which non-tail calls occur so we always "return" there. 556 unsigned level = 1; 557 struct StackFrame { 558 int splitIndex; 559 unsigned snapshot; 560 unsigned domainSnapshot; 561 IntegerRelation::CountsSnapshot domainPolyCounts; 562 }; 563 SmallVector<StackFrame, 8> stack; 564 565 while (level > 0) { 566 assert(level >= stack.size()); 567 if (level > stack.size()) { 568 if (empty || domainSimplex.findIntegerLexMin().isEmpty()) { 569 // No integer points; return. 570 --level; 571 continue; 572 } 573 574 if (doNonBranchingPivots().failed()) { 575 // Could not find pivots for violated constraints; return. 576 --level; 577 continue; 578 } 579 580 SmallVector<DynamicAPInt, 8> symbolicSample; 581 unsigned splitRow = 0; 582 for (unsigned e = getNumRows(); splitRow < e; ++splitRow) { 583 if (tableau(splitRow, 2) > 0) 584 continue; 585 assert(tableau(splitRow, 2) == 0 && 586 "Non-branching pivots should have been handled already!"); 587 588 symbolicSample = getSymbolicSampleIneq(splitRow); 589 if (domainSimplex.isRedundantInequality(symbolicSample)) 590 continue; 591 592 // It's neither redundant nor separate, so it takes both positive and 593 // negative values, and hence constitutes a row for which we need to 594 // split the domain and separately run each case. 595 assert(!domainSimplex.isSeparateInequality(symbolicSample) && 596 "Non-branching pivots should have been handled already!"); 597 break; 598 } 599 600 if (splitRow < getNumRows()) { 601 unsigned domainSnapshot = domainSimplex.getSnapshot(); 602 IntegerRelation::CountsSnapshot domainPolyCounts = 603 domainPoly.getCounts(); 604 605 // First, we consider the part of the domain where the row is not 606 // violated. We don't have to do any pivots for the row in this case, 607 // but we record the additional constraint that defines this part of 608 // the domain. 609 domainSimplex.addInequality(symbolicSample); 610 domainPoly.addInequality(symbolicSample); 611 612 // Recurse. 613 // 614 // On return, the basis as a set is preserved but not the internal 615 // ordering within rows or columns. Thus, we take note of the index of 616 // the Unknown that caused the split, which may be in a different 617 // row when we come back from recursing. We will need this to recurse 618 // on the other part of the split domain, where the row is violated. 619 // 620 // Note that we have to capture the index above and not a reference to 621 // the Unknown itself, since the array it lives in might get 622 // reallocated. 623 int splitIndex = rowUnknown[splitRow]; 624 unsigned snapshot = getSnapshot(); 625 stack.emplace_back( 626 StackFrame{splitIndex, snapshot, domainSnapshot, domainPolyCounts}); 627 ++level; 628 continue; 629 } 630 631 // The tableau is rationally consistent for the current domain. 632 // Now we look for non-integral sample values and add cuts for them. 633 if (std::optional<unsigned> row = maybeGetNonIntegralVarRow()) { 634 if (addSymbolicCut(*row).failed()) { 635 // No integral points; return. 636 --level; 637 continue; 638 } 639 640 // Rerun this level with the added cut constraint (tail recurse). 641 continue; 642 } 643 644 // Record output and return. 645 recordOutput(result); 646 --level; 647 continue; 648 } 649 650 if (level == stack.size()) { 651 // We have "returned" from "recursing". 652 const StackFrame &frame = stack.back(); 653 domainPoly.truncate(frame.domainPolyCounts); 654 domainSimplex.rollback(frame.domainSnapshot); 655 rollback(frame.snapshot); 656 const Unknown &u = unknownFromIndex(frame.splitIndex); 657 658 // Drop the frame. We don't need it anymore. 659 stack.pop_back(); 660 661 // Now we consider the part of the domain where the unknown `splitIndex` 662 // was negative. 663 assert(u.orientation == Orientation::Row && 664 "The split row should have been returned to row orientation!"); 665 SmallVector<DynamicAPInt, 8> splitIneq = 666 getComplementIneq(getSymbolicSampleIneq(u.pos)); 667 normalizeRange(splitIneq); 668 if (moveRowUnknownToColumn(u.pos).failed()) { 669 // The unknown can't be made non-negative; return. 670 --level; 671 continue; 672 } 673 674 // The unknown can be made negative; recurse with the corresponding domain 675 // constraints. 676 domainSimplex.addInequality(splitIneq); 677 domainPoly.addInequality(splitIneq); 678 679 // We are now taking care of the second half of the domain and we don't 680 // need to do anything else here after returning, so it's a tail recurse. 681 continue; 682 } 683 } 684 685 return result; 686 } 687 688 bool LexSimplex::rowIsViolated(unsigned row) const { 689 if (tableau(row, 2) < 0) 690 return true; 691 if (tableau(row, 2) == 0 && tableau(row, 1) < 0) 692 return true; 693 return false; 694 } 695 696 std::optional<unsigned> LexSimplex::maybeGetViolatedRow() const { 697 for (unsigned row = 0, e = getNumRows(); row < e; ++row) 698 if (rowIsViolated(row)) 699 return row; 700 return {}; 701 } 702 703 /// We simply look for violated rows and keep trying to move them to column 704 /// orientation, which always succeeds unless the constraints have no solution 705 /// in which case we just give up and return. 706 LogicalResult LexSimplex::restoreRationalConsistency() { 707 if (empty) 708 return failure(); 709 while (std::optional<unsigned> maybeViolatedRow = maybeGetViolatedRow()) 710 if (moveRowUnknownToColumn(*maybeViolatedRow).failed()) 711 return failure(); 712 return success(); 713 } 714 715 // Move the row unknown to column orientation while preserving lexicopositivity 716 // of the basis transform. The sample value of the row must be non-positive. 717 // 718 // We only consider pivots where the pivot element is positive. Suppose no such 719 // pivot exists, i.e., some violated row has no positive coefficient for any 720 // basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d, 721 // where d is the denominator, s is the sample value and the c_i are the basis 722 // coefficients. If s != 0, then since any feasible assignment of the basis 723 // satisfies u_i >= 0 for all i, and we have s < 0 as well as c_i < 0 for all i, 724 // any feasible assignment would violate this row and therefore the constraints 725 // have no solution. 726 // 727 // We can preserve lexicopositivity by picking the pivot column with positive 728 // pivot element that makes the lexicographically smallest change to the sample 729 // point. 730 // 731 // Proof. Let 732 // x = (x_1, ... x_n) be the variables, 733 // z = (z_1, ... z_m) be the constraints, 734 // y = (y_1, ... y_n) be the current basis, and 735 // define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s. 736 // B is basically the simplex tableau of our implementation except that instead 737 // of only describing the transform to get back the non-basis unknowns, it 738 // defines the values of all the unknowns in terms of the basis unknowns. 739 // Similarly, s is the column for the sample value. 740 // 741 // Our goal is to show that each column in B, restricted to the first n 742 // rows, is lexicopositive after the pivot if it is so before. This is 743 // equivalent to saying the columns in the whole matrix are lexicopositive; 744 // there must be some non-zero element in every column in the first n rows since 745 // the n variables cannot be spanned without using all the n basis unknowns. 746 // 747 // Consider a pivot where z_i replaces y_j in the basis. Recall the pivot 748 // transform for the tableau derived for SimplexBase::pivot: 749 // 750 // pivot col other col pivot col other col 751 // pivot row a b -> pivot row 1/a -b/a 752 // other row c d other row c/a d - bc/a 753 // 754 // Similarly, a pivot results in B changing to B' and c to c'; the difference 755 // between the tableau and these matrices B and B' is that there is no special 756 // case for the pivot row, since it continues to represent the same unknown. The 757 // same formula applies for all rows: 758 // 759 // B'.col(j) = B.col(j) / B(i,j) 760 // B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j 761 // and similarly, s' = s - s_i * B.col(j) / B(i,j). 762 // 763 // If s_i == 0, then the sample value remains unchanged. Otherwise, if s_i < 0, 764 // the change in sample value when pivoting with column a is lexicographically 765 // smaller than that when pivoting with column b iff B.col(a) / B(i, a) is 766 // lexicographically smaller than B.col(b) / B(i, b). 767 // 768 // Since B(i, j) > 0, column j remains lexicopositive. 769 // 770 // For the other columns, suppose C.col(k) is not lexicopositive. 771 // This means that for some p, for all t < p, 772 // C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and 773 // C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j), 774 // which is in contradiction to the fact that B.col(j) / B(i,j) must be 775 // lexicographically smaller than B.col(k) / B(i,k), since it lexicographically 776 // minimizes the change in sample value. 777 LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) { 778 std::optional<unsigned> maybeColumn; 779 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) { 780 if (tableau(row, col) <= 0) 781 continue; 782 maybeColumn = 783 !maybeColumn ? col : getLexMinPivotColumn(row, *maybeColumn, col); 784 } 785 786 if (!maybeColumn) 787 return failure(); 788 789 pivot(row, *maybeColumn); 790 return success(); 791 } 792 793 unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA, 794 unsigned colB) const { 795 // First, let's consider the non-symbolic case. 796 // A pivot causes the following change. (in the diagram the matrix elements 797 // are shown as rationals and there is no common denominator used) 798 // 799 // pivot col big M col const col 800 // pivot row a p b 801 // other row c q d 802 // | 803 // v 804 // 805 // pivot col big M col const col 806 // pivot row 1/a -p/a -b/a 807 // other row c/a q - pc/a d - bc/a 808 // 809 // Let the sample value of the pivot row be s = pM + b before the pivot. Since 810 // the pivot row represents a violated constraint we know that s < 0. 811 // 812 // If the variable is a non-pivot column, its sample value is zero before and 813 // after the pivot. 814 // 815 // If the variable is the pivot column, then its sample value goes from 0 to 816 // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample 817 // value is -s/a. 818 // 819 // If the variable is the pivot row, its sample value goes from s to 0, for a 820 // change of -s. 821 // 822 // If the variable is a non-pivot row, its sample value changes from 823 // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value 824 // is -(pM + b)(c/a) = -sc/a. 825 // 826 // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is 827 // fixed for all calls to this function since the row and tableau are fixed. 828 // The callee just wants to compare the return values with the return value of 829 // other invocations of the same function. So the -s is common for all 830 // comparisons involved and can be ignored, since -s is strictly positive. 831 // 832 // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as 833 // appropriate. This allows us to run the entire algorithm treating M 834 // symbolically, as the pivot to be performed does not depend on the value 835 // of M, so long as the sample value s is negative. Note that this is not 836 // because of any special feature of M; by the same argument, we ignore the 837 // symbols too. The caller ensure that the sample value s is negative for 838 // all possible values of the symbols. 839 auto getSampleChangeCoeffForVar = [this, row](unsigned col, 840 const Unknown &u) -> Fraction { 841 DynamicAPInt a = tableau(row, col); 842 if (u.orientation == Orientation::Column) { 843 // Pivot column case. 844 if (u.pos == col) 845 return {1, a}; 846 847 // Non-pivot column case. 848 return {0, 1}; 849 } 850 851 // Pivot row case. 852 if (u.pos == row) 853 return {1, 1}; 854 855 // Non-pivot row case. 856 DynamicAPInt c = tableau(u.pos, col); 857 return {c, a}; 858 }; 859 860 for (const Unknown &u : var) { 861 Fraction changeA = getSampleChangeCoeffForVar(colA, u); 862 Fraction changeB = getSampleChangeCoeffForVar(colB, u); 863 if (changeA < changeB) 864 return colA; 865 if (changeA > changeB) 866 return colB; 867 } 868 869 // If we reached here, both result in exactly the same changes, so it 870 // doesn't matter which we return. 871 return colA; 872 } 873 874 /// Find a pivot to change the sample value of the row in the specified 875 /// direction. The returned pivot row will involve `row` if and only if the 876 /// unknown is unbounded in the specified direction. 877 /// 878 /// To increase (resp. decrease) the value of a row, we need to find a live 879 /// column with a non-zero coefficient. If the coefficient is positive, we need 880 /// to increase (decrease) the value of the column, and if the coefficient is 881 /// negative, we need to decrease (increase) the value of the column. Also, 882 /// we cannot decrease the sample value of restricted columns. 883 /// 884 /// If multiple columns are valid, we break ties by considering a lexicographic 885 /// ordering where we prefer unknowns with lower index. 886 std::optional<SimplexBase::Pivot> 887 Simplex::findPivot(int row, Direction direction) const { 888 std::optional<unsigned> col; 889 for (unsigned j = 2, e = getNumColumns(); j < e; ++j) { 890 DynamicAPInt elem = tableau(row, j); 891 if (elem == 0) 892 continue; 893 894 if (unknownFromColumn(j).restricted && 895 !signMatchesDirection(elem, direction)) 896 continue; 897 if (!col || colUnknown[j] < colUnknown[*col]) 898 col = j; 899 } 900 901 if (!col) 902 return {}; 903 904 Direction newDirection = 905 tableau(row, *col) < 0 ? flippedDirection(direction) : direction; 906 std::optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col); 907 return Pivot{maybePivotRow.value_or(row), *col}; 908 } 909 910 /// Swap the associated unknowns for the row and the column. 911 /// 912 /// First we swap the index associated with the row and column. Then we update 913 /// the unknowns to reflect their new position and orientation. 914 void SimplexBase::swapRowWithCol(unsigned row, unsigned col) { 915 std::swap(rowUnknown[row], colUnknown[col]); 916 Unknown &uCol = unknownFromColumn(col); 917 Unknown &uRow = unknownFromRow(row); 918 uCol.orientation = Orientation::Column; 919 uRow.orientation = Orientation::Row; 920 uCol.pos = col; 921 uRow.pos = row; 922 } 923 924 void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); } 925 926 /// Pivot pivotRow and pivotCol. 927 /// 928 /// Let R be the pivot row unknown and let C be the pivot col unknown. 929 /// Since initially R = a*C + sum b_i * X_i 930 /// (where the sum is over the other column's unknowns, x_i) 931 /// C = (R - (sum b_i * X_i))/a 932 /// 933 /// Let u be some other row unknown. 934 /// u = c*C + sum d_i * X_i 935 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i 936 /// 937 /// This results in the following transform: 938 /// pivot col other col pivot col other col 939 /// pivot row a b -> pivot row 1/a -b/a 940 /// other row c d other row c/a d - bc/a 941 /// 942 /// Taking into account the common denominators p and q: 943 /// 944 /// pivot col other col pivot col other col 945 /// pivot row a/p b/p -> pivot row p/a -b/a 946 /// other row c/q d/q other row cp/aq (da - bc)/aq 947 /// 948 /// The pivot row transform is accomplished be swapping a with the pivot row's 949 /// common denominator and negating the pivot row except for the pivot column 950 /// element. 951 void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) { 952 assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column"); 953 assert(!unknownFromColumn(pivotCol).isSymbol); 954 955 swapRowWithCol(pivotRow, pivotCol); 956 std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol)); 957 // We need to negate the whole pivot row except for the pivot column. 958 if (tableau(pivotRow, 0) < 0) { 959 // If the denominator is negative, we negate the row by simply negating the 960 // denominator. 961 tableau(pivotRow, 0) = -tableau(pivotRow, 0); 962 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol); 963 } else { 964 for (unsigned col = 1, e = getNumColumns(); col < e; ++col) { 965 if (col == pivotCol) 966 continue; 967 tableau(pivotRow, col) = -tableau(pivotRow, col); 968 } 969 } 970 tableau.normalizeRow(pivotRow); 971 972 for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) { 973 if (row == pivotRow) 974 continue; 975 if (tableau(row, pivotCol) == 0) // Nothing to do. 976 continue; 977 tableau(row, 0) *= tableau(pivotRow, 0); 978 for (unsigned col = 1, numCols = getNumColumns(); col < numCols; ++col) { 979 if (col == pivotCol) 980 continue; 981 // Add rather than subtract because the pivot row has been negated. 982 tableau(row, col) = tableau(row, col) * tableau(pivotRow, 0) + 983 tableau(row, pivotCol) * tableau(pivotRow, col); 984 } 985 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol); 986 tableau.normalizeRow(row); 987 } 988 } 989 990 /// Perform pivots until the unknown has a non-negative sample value or until 991 /// no more upward pivots can be performed. Return success if we were able to 992 /// bring the row to a non-negative sample value, and failure otherwise. 993 LogicalResult Simplex::restoreRow(Unknown &u) { 994 assert(u.orientation == Orientation::Row && 995 "unknown should be in row position"); 996 997 while (tableau(u.pos, 1) < 0) { 998 std::optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up); 999 if (!maybePivot) 1000 break; 1001 1002 pivot(*maybePivot); 1003 if (u.orientation == Orientation::Column) 1004 return success(); // the unknown is unbounded above. 1005 } 1006 return success(tableau(u.pos, 1) >= 0); 1007 } 1008 1009 /// Find a row that can be used to pivot the column in the specified direction. 1010 /// This returns an empty optional if and only if the column is unbounded in the 1011 /// specified direction (ignoring skipRow, if skipRow is set). 1012 /// 1013 /// If skipRow is set, this row is not considered, and (if it is restricted) its 1014 /// restriction may be violated by the returned pivot. Usually, skipRow is set 1015 /// because we don't want to move it to column position unless it is unbounded, 1016 /// and we are either trying to increase the value of skipRow or explicitly 1017 /// trying to make skipRow negative, so we are not concerned about this. 1018 /// 1019 /// If the direction is up (resp. down) and a restricted row has a negative 1020 /// (positive) coefficient for the column, then this row imposes a bound on how 1021 /// much the sample value of the column can change. Such a row with constant 1022 /// term c and coefficient f for the column imposes a bound of c/|f| on the 1023 /// change in sample value (in the specified direction). (note that c is 1024 /// non-negative here since the row is restricted and the tableau is consistent) 1025 /// 1026 /// We iterate through the rows and pick the row which imposes the most 1027 /// stringent bound, since pivoting with a row changes the row's sample value to 1028 /// 0 and hence saturates the bound it imposes. We break ties between rows that 1029 /// impose the same bound by considering a lexicographic ordering where we 1030 /// prefer unknowns with lower index value. 1031 std::optional<unsigned> Simplex::findPivotRow(std::optional<unsigned> skipRow, 1032 Direction direction, 1033 unsigned col) const { 1034 std::optional<unsigned> retRow; 1035 // Initialize these to zero in order to silence a warning about retElem and 1036 // retConst being used uninitialized in the initialization of `diff` below. In 1037 // reality, these are always initialized when that line is reached since these 1038 // are set whenever retRow is set. 1039 DynamicAPInt retElem, retConst; 1040 for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row) { 1041 if (skipRow && row == *skipRow) 1042 continue; 1043 DynamicAPInt elem = tableau(row, col); 1044 if (elem == 0) 1045 continue; 1046 if (!unknownFromRow(row).restricted) 1047 continue; 1048 if (signMatchesDirection(elem, direction)) 1049 continue; 1050 DynamicAPInt constTerm = tableau(row, 1); 1051 1052 if (!retRow) { 1053 retRow = row; 1054 retElem = elem; 1055 retConst = constTerm; 1056 continue; 1057 } 1058 1059 DynamicAPInt diff = retConst * elem - constTerm * retElem; 1060 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) || 1061 (diff != 0 && !signMatchesDirection(diff, direction))) { 1062 retRow = row; 1063 retElem = elem; 1064 retConst = constTerm; 1065 } 1066 } 1067 return retRow; 1068 } 1069 1070 bool SimplexBase::isEmpty() const { return empty; } 1071 1072 void SimplexBase::swapRows(unsigned i, unsigned j) { 1073 if (i == j) 1074 return; 1075 tableau.swapRows(i, j); 1076 std::swap(rowUnknown[i], rowUnknown[j]); 1077 unknownFromRow(i).pos = i; 1078 unknownFromRow(j).pos = j; 1079 } 1080 1081 void SimplexBase::swapColumns(unsigned i, unsigned j) { 1082 assert(i < getNumColumns() && j < getNumColumns() && 1083 "Invalid columns provided!"); 1084 if (i == j) 1085 return; 1086 tableau.swapColumns(i, j); 1087 std::swap(colUnknown[i], colUnknown[j]); 1088 unknownFromColumn(i).pos = i; 1089 unknownFromColumn(j).pos = j; 1090 } 1091 1092 /// Mark this tableau empty and push an entry to the undo stack. 1093 void SimplexBase::markEmpty() { 1094 // If the set is already empty, then we shouldn't add another UnmarkEmpty log 1095 // entry, since in that case the Simplex will be erroneously marked as 1096 // non-empty when rolling back past this point. 1097 if (empty) 1098 return; 1099 undoLog.emplace_back(UndoLogEntry::UnmarkEmpty); 1100 empty = true; 1101 } 1102 1103 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 1104 /// is the current number of variables, then the corresponding inequality is 1105 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0. 1106 /// 1107 /// We add the inequality and mark it as restricted. We then try to make its 1108 /// sample value non-negative. If this is not possible, the tableau has become 1109 /// empty and we mark it as such. 1110 void Simplex::addInequality(ArrayRef<DynamicAPInt> coeffs) { 1111 unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true); 1112 LogicalResult result = restoreRow(con[conIndex]); 1113 if (result.failed()) 1114 markEmpty(); 1115 } 1116 1117 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 1118 /// is the current number of variables, then the corresponding equality is 1119 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0. 1120 /// 1121 /// We simply add two opposing inequalities, which force the expression to 1122 /// be zero. 1123 void SimplexBase::addEquality(ArrayRef<DynamicAPInt> coeffs) { 1124 addInequality(coeffs); 1125 SmallVector<DynamicAPInt, 8> negatedCoeffs; 1126 negatedCoeffs.reserve(coeffs.size()); 1127 for (const DynamicAPInt &coeff : coeffs) 1128 negatedCoeffs.emplace_back(-coeff); 1129 addInequality(negatedCoeffs); 1130 } 1131 1132 unsigned SimplexBase::getNumVariables() const { return var.size(); } 1133 unsigned SimplexBase::getNumConstraints() const { return con.size(); } 1134 1135 /// Return a snapshot of the current state. This is just the current size of the 1136 /// undo log. 1137 unsigned SimplexBase::getSnapshot() const { return undoLog.size(); } 1138 1139 unsigned SimplexBase::getSnapshotBasis() { 1140 SmallVector<int, 8> basis; 1141 basis.reserve(colUnknown.size()); 1142 for (int index : colUnknown) { 1143 if (index != nullIndex) 1144 basis.emplace_back(index); 1145 } 1146 savedBases.emplace_back(std::move(basis)); 1147 1148 undoLog.emplace_back(UndoLogEntry::RestoreBasis); 1149 return undoLog.size() - 1; 1150 } 1151 1152 void SimplexBase::removeLastConstraintRowOrientation() { 1153 assert(con.back().orientation == Orientation::Row); 1154 1155 // Move this unknown to the last row and remove the last row from the 1156 // tableau. 1157 swapRows(con.back().pos, getNumRows() - 1); 1158 // It is not strictly necessary to shrink the tableau, but for now we 1159 // maintain the invariant that the tableau has exactly getNumRows() 1160 // rows. 1161 tableau.resizeVertically(getNumRows() - 1); 1162 rowUnknown.pop_back(); 1163 con.pop_back(); 1164 } 1165 1166 // This doesn't find a pivot row only if the column has zero 1167 // coefficients for every row. 1168 // 1169 // If the unknown is a constraint, this can't happen, since it was added 1170 // initially as a row. Such a row could never have been pivoted to a column. So 1171 // a pivot row will always be found if we have a constraint. 1172 // 1173 // If we have a variable, then the column has zero coefficients for every row 1174 // iff no constraints have been added with a non-zero coefficient for this row. 1175 std::optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) { 1176 for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row) 1177 if (tableau(row, col) != 0) 1178 return row; 1179 return {}; 1180 } 1181 1182 // It's not valid to remove the constraint by deleting the column since this 1183 // would result in an invalid basis. 1184 void Simplex::undoLastConstraint() { 1185 if (con.back().orientation == Orientation::Column) { 1186 // We try to find any pivot row for this column that preserves tableau 1187 // consistency (except possibly the column itself, which is going to be 1188 // deallocated anyway). 1189 // 1190 // If no pivot row is found in either direction, then the unknown is 1191 // unbounded in both directions and we are free to perform any pivot at 1192 // all. To do this, we just need to find any row with a non-zero 1193 // coefficient for the column. findAnyPivotRow will always be able to 1194 // find such a row for a constraint. 1195 unsigned column = con.back().pos; 1196 if (std::optional<unsigned> maybeRow = 1197 findPivotRow({}, Direction::Up, column)) { 1198 pivot(*maybeRow, column); 1199 } else if (std::optional<unsigned> maybeRow = 1200 findPivotRow({}, Direction::Down, column)) { 1201 pivot(*maybeRow, column); 1202 } else { 1203 std::optional<unsigned> row = findAnyPivotRow(column); 1204 assert(row && "Pivot should always exist for a constraint!"); 1205 pivot(*row, column); 1206 } 1207 } 1208 removeLastConstraintRowOrientation(); 1209 } 1210 1211 // It's not valid to remove the constraint by deleting the column since this 1212 // would result in an invalid basis. 1213 void LexSimplexBase::undoLastConstraint() { 1214 if (con.back().orientation == Orientation::Column) { 1215 // When removing the last constraint during a rollback, we just need to find 1216 // any pivot at all, i.e., any row with non-zero coefficient for the 1217 // column, because when rolling back a lexicographic simplex, we always 1218 // end by restoring the exact basis that was present at the time of the 1219 // snapshot, so what pivots we perform while undoing doesn't matter as 1220 // long as we get the unknown to row orientation and remove it. 1221 unsigned column = con.back().pos; 1222 std::optional<unsigned> row = findAnyPivotRow(column); 1223 assert(row && "Pivot should always exist for a constraint!"); 1224 pivot(*row, column); 1225 } 1226 removeLastConstraintRowOrientation(); 1227 } 1228 1229 void SimplexBase::undo(UndoLogEntry entry) { 1230 if (entry == UndoLogEntry::RemoveLastConstraint) { 1231 // Simplex and LexSimplex handle this differently, so we call out to a 1232 // virtual function to handle this. 1233 undoLastConstraint(); 1234 } else if (entry == UndoLogEntry::RemoveLastVariable) { 1235 // Whenever we are rolling back the addition of a variable, it is guaranteed 1236 // that the variable will be in column position. 1237 // 1238 // We can see this as follows: any constraint that depends on this variable 1239 // was added after this variable was added, so the addition of such 1240 // constraints should already have been rolled back by the time we get to 1241 // rolling back the addition of the variable. Therefore, no constraint 1242 // currently has a component along the variable, so the variable itself must 1243 // be part of the basis. 1244 assert(var.back().orientation == Orientation::Column && 1245 "Variable to be removed must be in column orientation!"); 1246 1247 if (var.back().isSymbol) 1248 nSymbol--; 1249 1250 // Move this variable to the last column and remove the column from the 1251 // tableau. 1252 swapColumns(var.back().pos, getNumColumns() - 1); 1253 tableau.resizeHorizontally(getNumColumns() - 1); 1254 var.pop_back(); 1255 colUnknown.pop_back(); 1256 } else if (entry == UndoLogEntry::UnmarkEmpty) { 1257 empty = false; 1258 } else if (entry == UndoLogEntry::UnmarkLastRedundant) { 1259 nRedundant--; 1260 } else if (entry == UndoLogEntry::RestoreBasis) { 1261 assert(!savedBases.empty() && "No bases saved!"); 1262 1263 SmallVector<int, 8> basis = std::move(savedBases.back()); 1264 savedBases.pop_back(); 1265 1266 for (int index : basis) { 1267 Unknown &u = unknownFromIndex(index); 1268 if (u.orientation == Orientation::Column) 1269 continue; 1270 for (unsigned col = getNumFixedCols(), e = getNumColumns(); col < e; 1271 col++) { 1272 assert(colUnknown[col] != nullIndex && 1273 "Column should not be a fixed column!"); 1274 if (llvm::is_contained(basis, colUnknown[col])) 1275 continue; 1276 if (tableau(u.pos, col) == 0) 1277 continue; 1278 pivot(u.pos, col); 1279 break; 1280 } 1281 1282 assert(u.orientation == Orientation::Column && "No pivot found!"); 1283 } 1284 } 1285 } 1286 1287 /// Rollback to the specified snapshot. 1288 /// 1289 /// We undo all the log entries until the log size when the snapshot was taken 1290 /// is reached. 1291 void SimplexBase::rollback(unsigned snapshot) { 1292 while (undoLog.size() > snapshot) { 1293 undo(undoLog.back()); 1294 undoLog.pop_back(); 1295 } 1296 } 1297 1298 /// We add the usual floor division constraints: 1299 /// `0 <= coeffs - denom*q <= denom - 1`, where `q` is the new division 1300 /// variable. 1301 /// 1302 /// This constrains the remainder `coeffs - denom*q` to be in the 1303 /// range `[0, denom - 1]`, which fixes the integer value of the quotient `q`. 1304 void SimplexBase::addDivisionVariable(ArrayRef<DynamicAPInt> coeffs, 1305 const DynamicAPInt &denom) { 1306 assert(denom > 0 && "Denominator must be positive!"); 1307 appendVariable(); 1308 1309 SmallVector<DynamicAPInt, 8> ineq(coeffs); 1310 DynamicAPInt constTerm = ineq.back(); 1311 ineq.back() = -denom; 1312 ineq.emplace_back(constTerm); 1313 addInequality(ineq); 1314 1315 for (DynamicAPInt &coeff : ineq) 1316 coeff = -coeff; 1317 ineq.back() += denom - 1; 1318 addInequality(ineq); 1319 } 1320 1321 void SimplexBase::appendVariable(unsigned count) { 1322 if (count == 0) 1323 return; 1324 var.reserve(var.size() + count); 1325 colUnknown.reserve(colUnknown.size() + count); 1326 for (unsigned i = 0; i < count; ++i) { 1327 var.emplace_back(Orientation::Column, /*restricted=*/false, 1328 /*pos=*/getNumColumns() + i); 1329 colUnknown.emplace_back(var.size() - 1); 1330 } 1331 tableau.resizeHorizontally(getNumColumns() + count); 1332 undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable); 1333 } 1334 1335 /// Add all the constraints from the given IntegerRelation. 1336 void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) { 1337 assert(rel.getNumVars() == getNumVariables() && 1338 "IntegerRelation must have same dimensionality as simplex"); 1339 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) 1340 addInequality(rel.getInequality(i)); 1341 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) 1342 addEquality(rel.getEquality(i)); 1343 } 1344 1345 MaybeOptimum<Fraction> Simplex::computeRowOptimum(Direction direction, 1346 unsigned row) { 1347 // Keep trying to find a pivot for the row in the specified direction. 1348 while (std::optional<Pivot> maybePivot = findPivot(row, direction)) { 1349 // If findPivot returns a pivot involving the row itself, then the optimum 1350 // is unbounded, so we return std::nullopt. 1351 if (maybePivot->row == row) 1352 return OptimumKind::Unbounded; 1353 pivot(*maybePivot); 1354 } 1355 1356 // The row has reached its optimal sample value, which we return. 1357 // The sample value is the entry in the constant column divided by the common 1358 // denominator for this row. 1359 return Fraction(tableau(row, 1), tableau(row, 0)); 1360 } 1361 1362 /// Compute the optimum of the specified expression in the specified direction, 1363 /// or std::nullopt if it is unbounded. 1364 MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction, 1365 ArrayRef<DynamicAPInt> coeffs) { 1366 if (empty) 1367 return OptimumKind::Empty; 1368 1369 SimplexRollbackScopeExit scopeExit(*this); 1370 unsigned conIndex = addRow(coeffs); 1371 unsigned row = con[conIndex].pos; 1372 return computeRowOptimum(direction, row); 1373 } 1374 1375 MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction, 1376 Unknown &u) { 1377 if (empty) 1378 return OptimumKind::Empty; 1379 if (u.orientation == Orientation::Column) { 1380 unsigned column = u.pos; 1381 std::optional<unsigned> pivotRow = findPivotRow({}, direction, column); 1382 // If no pivot is returned, the constraint is unbounded in the specified 1383 // direction. 1384 if (!pivotRow) 1385 return OptimumKind::Unbounded; 1386 pivot(*pivotRow, column); 1387 } 1388 1389 unsigned row = u.pos; 1390 MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row); 1391 if (u.restricted && direction == Direction::Down && 1392 (optimum.isUnbounded() || *optimum < Fraction(0, 1))) { 1393 if (restoreRow(u).failed()) 1394 llvm_unreachable("Could not restore row!"); 1395 } 1396 return optimum; 1397 } 1398 1399 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) { 1400 assert(!empty && "It is not meaningful to ask whether a direction is bounded " 1401 "in an empty set."); 1402 // The constraint's perpendicular is already bounded below, since it is a 1403 // constraint. If it is also bounded above, we can return true. 1404 return computeOptimum(Direction::Up, con[constraintIndex]).isBounded(); 1405 } 1406 1407 /// Redundant constraints are those that are in row orientation and lie in 1408 /// rows 0 to nRedundant - 1. 1409 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const { 1410 const Unknown &u = con[constraintIndex]; 1411 return u.orientation == Orientation::Row && u.pos < nRedundant; 1412 } 1413 1414 /// Mark the specified row redundant. 1415 /// 1416 /// This is done by moving the unknown to the end of the block of redundant 1417 /// rows (namely, to row nRedundant) and incrementing nRedundant to 1418 /// accomodate the new redundant row. 1419 void Simplex::markRowRedundant(Unknown &u) { 1420 assert(u.orientation == Orientation::Row && 1421 "Unknown should be in row position!"); 1422 assert(u.pos >= nRedundant && "Unknown is already marked redundant!"); 1423 swapRows(u.pos, nRedundant); 1424 ++nRedundant; 1425 undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant); 1426 } 1427 1428 /// Find a subset of constraints that is redundant and mark them redundant. 1429 void Simplex::detectRedundant(unsigned offset, unsigned count) { 1430 assert(offset + count <= con.size() && "invalid range!"); 1431 // It is not meaningful to talk about redundancy for empty sets. 1432 if (empty) 1433 return; 1434 1435 // Iterate through the constraints and check for each one if it can attain 1436 // negative sample values. If it can, it's not redundant. Otherwise, it is. 1437 // We mark redundant constraints redundant. 1438 // 1439 // Constraints that get marked redundant in one iteration are not respected 1440 // when checking constraints in later iterations. This prevents, for example, 1441 // two identical constraints both being marked redundant since each is 1442 // redundant given the other one. In this example, only the first of the 1443 // constraints that is processed will get marked redundant, as it should be. 1444 for (unsigned i = 0; i < count; ++i) { 1445 Unknown &u = con[offset + i]; 1446 if (u.orientation == Orientation::Column) { 1447 unsigned column = u.pos; 1448 std::optional<unsigned> pivotRow = 1449 findPivotRow({}, Direction::Down, column); 1450 // If no downward pivot is returned, the constraint is unbounded below 1451 // and hence not redundant. 1452 if (!pivotRow) 1453 continue; 1454 pivot(*pivotRow, column); 1455 } 1456 1457 unsigned row = u.pos; 1458 MaybeOptimum<Fraction> minimum = computeRowOptimum(Direction::Down, row); 1459 if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) { 1460 // Constraint is unbounded below or can attain negative sample values and 1461 // hence is not redundant. 1462 if (restoreRow(u).failed()) 1463 llvm_unreachable("Could not restore non-redundant row!"); 1464 continue; 1465 } 1466 1467 markRowRedundant(u); 1468 } 1469 } 1470 1471 bool Simplex::isUnbounded() { 1472 if (empty) 1473 return false; 1474 1475 SmallVector<DynamicAPInt, 8> dir(var.size() + 1); 1476 for (unsigned i = 0; i < var.size(); ++i) { 1477 dir[i] = 1; 1478 1479 if (computeOptimum(Direction::Up, dir).isUnbounded()) 1480 return true; 1481 1482 if (computeOptimum(Direction::Down, dir).isUnbounded()) 1483 return true; 1484 1485 dir[i] = 0; 1486 } 1487 return false; 1488 } 1489 1490 /// Make a tableau to represent a pair of points in the original tableau. 1491 /// 1492 /// The product constraints and variables are stored as: first A's, then B's. 1493 /// 1494 /// The product tableau has row layout: 1495 /// A's redundant rows, B's redundant rows, A's other rows, B's other rows. 1496 /// 1497 /// It has column layout: 1498 /// denominator, constant, A's columns, B's columns. 1499 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) { 1500 unsigned numVar = a.getNumVariables() + b.getNumVariables(); 1501 unsigned numCon = a.getNumConstraints() + b.getNumConstraints(); 1502 Simplex result(numVar); 1503 1504 result.tableau.reserveRows(numCon); 1505 result.empty = a.empty || b.empty; 1506 1507 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) { 1508 SmallVector<Unknown, 8> result; 1509 result.reserve(v.size() + w.size()); 1510 result.insert(result.end(), v.begin(), v.end()); 1511 result.insert(result.end(), w.begin(), w.end()); 1512 return result; 1513 }; 1514 result.con = concat(a.con, b.con); 1515 result.var = concat(a.var, b.var); 1516 1517 auto indexFromBIndex = [&](int index) { 1518 return index >= 0 ? a.getNumVariables() + index 1519 : ~(a.getNumConstraints() + ~index); 1520 }; 1521 1522 result.colUnknown.assign(2, nullIndex); 1523 for (unsigned i = 2, e = a.getNumColumns(); i < e; ++i) { 1524 result.colUnknown.emplace_back(a.colUnknown[i]); 1525 result.unknownFromIndex(result.colUnknown.back()).pos = 1526 result.colUnknown.size() - 1; 1527 } 1528 for (unsigned i = 2, e = b.getNumColumns(); i < e; ++i) { 1529 result.colUnknown.emplace_back(indexFromBIndex(b.colUnknown[i])); 1530 result.unknownFromIndex(result.colUnknown.back()).pos = 1531 result.colUnknown.size() - 1; 1532 } 1533 1534 auto appendRowFromA = [&](unsigned row) { 1535 unsigned resultRow = result.tableau.appendExtraRow(); 1536 for (unsigned col = 0, e = a.getNumColumns(); col < e; ++col) 1537 result.tableau(resultRow, col) = a.tableau(row, col); 1538 result.rowUnknown.emplace_back(a.rowUnknown[row]); 1539 result.unknownFromIndex(result.rowUnknown.back()).pos = 1540 result.rowUnknown.size() - 1; 1541 }; 1542 1543 // Also fixes the corresponding entry in rowUnknown and var/con (as the case 1544 // may be). 1545 auto appendRowFromB = [&](unsigned row) { 1546 unsigned resultRow = result.tableau.appendExtraRow(); 1547 result.tableau(resultRow, 0) = b.tableau(row, 0); 1548 result.tableau(resultRow, 1) = b.tableau(row, 1); 1549 1550 unsigned offset = a.getNumColumns() - 2; 1551 for (unsigned col = 2, e = b.getNumColumns(); col < e; ++col) 1552 result.tableau(resultRow, offset + col) = b.tableau(row, col); 1553 result.rowUnknown.emplace_back(indexFromBIndex(b.rowUnknown[row])); 1554 result.unknownFromIndex(result.rowUnknown.back()).pos = 1555 result.rowUnknown.size() - 1; 1556 }; 1557 1558 result.nRedundant = a.nRedundant + b.nRedundant; 1559 for (unsigned row = 0; row < a.nRedundant; ++row) 1560 appendRowFromA(row); 1561 for (unsigned row = 0; row < b.nRedundant; ++row) 1562 appendRowFromB(row); 1563 for (unsigned row = a.nRedundant, e = a.getNumRows(); row < e; ++row) 1564 appendRowFromA(row); 1565 for (unsigned row = b.nRedundant, e = b.getNumRows(); row < e; ++row) 1566 appendRowFromB(row); 1567 1568 return result; 1569 } 1570 1571 std::optional<SmallVector<Fraction, 8>> Simplex::getRationalSample() const { 1572 if (empty) 1573 return {}; 1574 1575 SmallVector<Fraction, 8> sample; 1576 sample.reserve(var.size()); 1577 // Push the sample value for each variable into the vector. 1578 for (const Unknown &u : var) { 1579 if (u.orientation == Orientation::Column) { 1580 // If the variable is in column position, its sample value is zero. 1581 sample.emplace_back(0, 1); 1582 } else { 1583 // If the variable is in row position, its sample value is the 1584 // entry in the constant column divided by the denominator. 1585 DynamicAPInt denom = tableau(u.pos, 0); 1586 sample.emplace_back(tableau(u.pos, 1), denom); 1587 } 1588 } 1589 return sample; 1590 } 1591 1592 void LexSimplexBase::addInequality(ArrayRef<DynamicAPInt> coeffs) { 1593 addRow(coeffs, /*makeRestricted=*/true); 1594 } 1595 1596 MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::getRationalSample() const { 1597 if (empty) 1598 return OptimumKind::Empty; 1599 1600 SmallVector<Fraction, 8> sample; 1601 sample.reserve(var.size()); 1602 // Push the sample value for each variable into the vector. 1603 for (const Unknown &u : var) { 1604 // When the big M parameter is being used, each variable x is represented 1605 // as M + x, so its sample value is finite if and only if it is of the 1606 // form 1*M + c. If the coefficient of M is not one then the sample value 1607 // is infinite, and we return an empty optional. 1608 1609 if (u.orientation == Orientation::Column) { 1610 // If the variable is in column position, the sample value of M + x is 1611 // zero, so x = -M which is unbounded. 1612 return OptimumKind::Unbounded; 1613 } 1614 1615 // If the variable is in row position, its sample value is the 1616 // entry in the constant column divided by the denominator. 1617 DynamicAPInt denom = tableau(u.pos, 0); 1618 if (usingBigM) 1619 if (tableau(u.pos, 2) != denom) 1620 return OptimumKind::Unbounded; 1621 sample.emplace_back(tableau(u.pos, 1), denom); 1622 } 1623 return sample; 1624 } 1625 1626 std::optional<SmallVector<DynamicAPInt, 8>> 1627 Simplex::getSamplePointIfIntegral() const { 1628 // If the tableau is empty, no sample point exists. 1629 if (empty) 1630 return {}; 1631 1632 // The value will always exist since the Simplex is non-empty. 1633 SmallVector<Fraction, 8> rationalSample = *getRationalSample(); 1634 SmallVector<DynamicAPInt, 8> integerSample; 1635 integerSample.reserve(var.size()); 1636 for (const Fraction &coord : rationalSample) { 1637 // If the sample is non-integral, return std::nullopt. 1638 if (coord.num % coord.den != 0) 1639 return {}; 1640 integerSample.emplace_back(coord.num / coord.den); 1641 } 1642 return integerSample; 1643 } 1644 1645 /// Given a simplex for a polytope, construct a new simplex whose variables are 1646 /// identified with a pair of points (x, y) in the original polytope. Supports 1647 /// some operations needed for generalized basis reduction. In what follows, 1648 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the 1649 /// dimension of the original polytope. 1650 /// 1651 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It 1652 /// also supports rolling back this addition, by maintaining a snapshot stack 1653 /// that contains a snapshot of the Simplex's state for each equality, just 1654 /// before that equality was added. 1655 class presburger::GBRSimplex { 1656 using Orientation = Simplex::Orientation; 1657 1658 public: 1659 GBRSimplex(const Simplex &originalSimplex) 1660 : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)), 1661 simplexConstraintOffset(simplex.getNumConstraints()) {} 1662 1663 /// Add an equality dotProduct(dir, x - y) == 0. 1664 /// First pushes a snapshot for the current simplex state to the stack so 1665 /// that this can be rolled back later. 1666 void addEqualityForDirection(ArrayRef<DynamicAPInt> dir) { 1667 assert(llvm::any_of(dir, [](const DynamicAPInt &x) { return x != 0; }) && 1668 "Direction passed is the zero vector!"); 1669 snapshotStack.emplace_back(simplex.getSnapshot()); 1670 simplex.addEquality(getCoeffsForDirection(dir)); 1671 } 1672 /// Compute max(dotProduct(dir, x - y)). 1673 Fraction computeWidth(ArrayRef<DynamicAPInt> dir) { 1674 MaybeOptimum<Fraction> maybeWidth = 1675 simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir)); 1676 assert(maybeWidth.isBounded() && "Width should be bounded!"); 1677 return *maybeWidth; 1678 } 1679 1680 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only 1681 /// the direction equalities to `dual`. 1682 Fraction computeWidthAndDuals(ArrayRef<DynamicAPInt> dir, 1683 SmallVectorImpl<DynamicAPInt> &dual, 1684 DynamicAPInt &dualDenom) { 1685 // We can't just call into computeWidth or computeOptimum since we need to 1686 // access the state of the tableau after computing the optimum, and these 1687 // functions rollback the insertion of the objective function into the 1688 // tableau before returning. We instead add a row for the objective function 1689 // ourselves, call into computeOptimum, compute the duals from the tableau 1690 // state, and finally rollback the addition of the row before returning. 1691 SimplexRollbackScopeExit scopeExit(simplex); 1692 unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir)); 1693 unsigned row = simplex.con[conIndex].pos; 1694 MaybeOptimum<Fraction> maybeWidth = 1695 simplex.computeRowOptimum(Simplex::Direction::Up, row); 1696 assert(maybeWidth.isBounded() && "Width should be bounded!"); 1697 dualDenom = simplex.tableau(row, 0); 1698 dual.clear(); 1699 dual.reserve((conIndex - simplexConstraintOffset) / 2); 1700 1701 // The increment is i += 2 because equalities are added as two inequalities, 1702 // one positive and one negative. Each iteration processes one equality. 1703 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) { 1704 // The dual variable for an inequality in column orientation is the 1705 // negative of its coefficient at the objective row. If the inequality is 1706 // in row orientation, the corresponding dual variable is zero. 1707 // 1708 // We want the dual for the original equality, which corresponds to two 1709 // inequalities: a positive inequality, which has the same coefficients as 1710 // the equality, and a negative equality, which has negated coefficients. 1711 // 1712 // Note that at most one of these inequalities can be in column 1713 // orientation because the column unknowns should form a basis and hence 1714 // must be linearly independent. If the positive inequality is in column 1715 // position, its dual is the dual corresponding to the equality. If the 1716 // negative inequality is in column position, the negation of its dual is 1717 // the dual corresponding to the equality. If neither is in column 1718 // position, then that means that this equality is redundant, and its dual 1719 // is zero. 1720 // 1721 // Note that it is NOT valid to perform pivots during the computation of 1722 // the duals. This entire dual computation must be performed on the same 1723 // tableau configuration. 1724 assert((simplex.con[i].orientation != Orientation::Column || 1725 simplex.con[i + 1].orientation != Orientation::Column) && 1726 "Both inequalities for the equality cannot be in column " 1727 "orientation!"); 1728 if (simplex.con[i].orientation == Orientation::Column) 1729 dual.emplace_back(-simplex.tableau(row, simplex.con[i].pos)); 1730 else if (simplex.con[i + 1].orientation == Orientation::Column) 1731 dual.emplace_back(simplex.tableau(row, simplex.con[i + 1].pos)); 1732 else 1733 dual.emplace_back(0); 1734 } 1735 return *maybeWidth; 1736 } 1737 1738 /// Remove the last equality that was added through addEqualityForDirection. 1739 /// 1740 /// We do this by rolling back to the snapshot at the top of the stack, which 1741 /// should be a snapshot taken just before the last equality was added. 1742 void removeLastEquality() { 1743 assert(!snapshotStack.empty() && "Snapshot stack is empty!"); 1744 simplex.rollback(snapshotStack.back()); 1745 snapshotStack.pop_back(); 1746 } 1747 1748 private: 1749 /// Returns coefficients of the expression 'dot_product(dir, x - y)', 1750 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n 1751 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n, 1752 /// where n is the dimension of the original polytope. 1753 SmallVector<DynamicAPInt, 8> 1754 getCoeffsForDirection(ArrayRef<DynamicAPInt> dir) { 1755 assert(2 * dir.size() == simplex.getNumVariables() && 1756 "Direction vector has wrong dimensionality"); 1757 SmallVector<DynamicAPInt, 8> coeffs(dir); 1758 coeffs.reserve(dir.size() + 1); 1759 for (const DynamicAPInt &coeff : dir) 1760 coeffs.emplace_back(-coeff); 1761 coeffs.emplace_back(0); // constant term 1762 return coeffs; 1763 } 1764 1765 Simplex simplex; 1766 /// The first index of the equality constraints, the index immediately after 1767 /// the last constraint in the initial product simplex. 1768 unsigned simplexConstraintOffset; 1769 /// A stack of snapshots, used for rolling back. 1770 SmallVector<unsigned, 8> snapshotStack; 1771 }; 1772 1773 /// Reduce the basis to try and find a direction in which the polytope is 1774 /// "thin". This only works for bounded polytopes. 1775 /// 1776 /// This is an implementation of the algorithm described in the paper 1777 /// "An Implementation of Generalized Basis Reduction for Integer Programming" 1778 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross. 1779 /// 1780 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis. 1781 /// Let width_i(v) = max <v, x - y> where x and y are points in the original 1782 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i. 1783 /// 1784 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u 1785 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i 1786 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when 1787 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the 1788 /// minimizing value of u, if it were allowed to be fractional. Due to 1789 /// convexity, the minimizing integer value is either floor(dual_i) or 1790 /// ceil(dual_i), so we just need to check which of these gives a lower 1791 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i. 1792 /// 1793 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new) 1794 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the 1795 /// same i). Otherwise, we increment i. 1796 /// 1797 /// We keep f values and duals cached and invalidate them when necessary. 1798 /// Whenever possible, we use them instead of recomputing them. We implement the 1799 /// algorithm as follows. 1800 /// 1801 /// In an iteration at i we need to compute: 1802 /// a) width_i(b_{i + 1}) 1803 /// b) width_i(b_i) 1804 /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i) 1805 /// 1806 /// If width_i(b_i) is not already cached, we compute it. 1807 /// 1808 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and 1809 /// store the duals from this computation. 1810 /// 1811 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value 1812 /// of u as explained before, caches the duals from this computation, sets 1813 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}). 1814 /// 1815 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and 1816 /// decrement i, resulting in the basis 1817 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ... 1818 /// with corresponding f values 1819 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ... 1820 /// The values up to i - 1 remain unchanged. We have just gotten the middle 1821 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the 1822 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from 1823 /// the cache. The iteration after decrementing needs exactly the duals from the 1824 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache. 1825 /// 1826 /// When incrementing i, no cached f values get invalidated. However, the cached 1827 /// duals do get invalidated as the duals for the higher levels are different. 1828 void Simplex::reduceBasis(IntMatrix &basis, unsigned level) { 1829 const Fraction epsilon(3, 4); 1830 1831 if (level == basis.getNumRows() - 1) 1832 return; 1833 1834 GBRSimplex gbrSimplex(*this); 1835 SmallVector<Fraction, 8> width; 1836 SmallVector<DynamicAPInt, 8> dual; 1837 DynamicAPInt dualDenom; 1838 1839 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the 1840 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns 1841 // the new value of width_i(b_{i+1}). 1842 // 1843 // If dual_i is not an integer, the minimizing value must be either 1844 // floor(dual_i) or ceil(dual_i). We compute the expression for both and 1845 // choose the minimizing value. 1846 // 1847 // If dual_i is an integer, we don't need to perform these computations. We 1848 // know that in this case, 1849 // a) u = dual_i. 1850 // b) one can show that dual_j for j < i are the same duals we would have 1851 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals 1852 // are the ones already in the cache. 1853 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i), 1854 // which 1855 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must 1856 // be in the cache, so we get it from there and return it. 1857 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction { 1858 assert(i < level + dual.size() && "dual_i is not known!"); 1859 1860 DynamicAPInt u = floorDiv(dual[i - level], dualDenom); 1861 basis.addToRow(i, i + 1, u); 1862 if (dual[i - level] % dualDenom != 0) { 1863 SmallVector<DynamicAPInt, 8> candidateDual[2]; 1864 DynamicAPInt candidateDualDenom[2]; 1865 Fraction widthI[2]; 1866 1867 // Initially u is floor(dual) and basis reflects this. 1868 widthI[0] = gbrSimplex.computeWidthAndDuals( 1869 basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]); 1870 1871 // Now try ceil(dual), i.e. floor(dual) + 1. 1872 ++u; 1873 basis.addToRow(i, i + 1, 1); 1874 widthI[1] = gbrSimplex.computeWidthAndDuals( 1875 basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]); 1876 1877 unsigned j = widthI[0] < widthI[1] ? 0 : 1; 1878 if (j == 0) 1879 // Subtract 1 to go from u = ceil(dual) back to floor(dual). 1880 basis.addToRow(i, i + 1, -1); 1881 1882 // width_i(b{i+1} + u*b_i) should be minimized at our value of u. 1883 // We assert that this holds by checking that the values of width_i at 1884 // u - 1 and u + 1 are greater than or equal to the value at u. If the 1885 // width is lesser at either of the adjacent values, then our computed 1886 // value of u is clearly not the minimizer. Otherwise by convexity the 1887 // computed value of u is really the minimizer. 1888 1889 // Check the value at u - 1. 1890 assert(gbrSimplex.computeWidth(scaleAndAddForAssert( 1891 basis.getRow(i + 1), DynamicAPInt(-1), basis.getRow(i))) >= 1892 widthI[j] && 1893 "Computed u value does not minimize the width!"); 1894 // Check the value at u + 1. 1895 assert(gbrSimplex.computeWidth(scaleAndAddForAssert( 1896 basis.getRow(i + 1), DynamicAPInt(+1), basis.getRow(i))) >= 1897 widthI[j] && 1898 "Computed u value does not minimize the width!"); 1899 1900 dual = std::move(candidateDual[j]); 1901 dualDenom = candidateDualDenom[j]; 1902 return widthI[j]; 1903 } 1904 1905 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved"); 1906 // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the 1907 // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in 1908 // the above expression is equal to basis.getRow(i+1) below.) 1909 assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) == 1910 width[i + 1 - level]); 1911 return width[i + 1 - level]; 1912 }; 1913 1914 // In the ith iteration of the loop, gbrSimplex has constraints for directions 1915 // from `level` to i - 1. 1916 unsigned i = level; 1917 while (i < basis.getNumRows() - 1) { 1918 if (i >= level + width.size()) { 1919 // We don't even know the value of f_i(b_i), so let's find that first. 1920 // We have to do this first since later we assume that width already 1921 // contains values up to and including i. 1922 1923 assert((i == 0 || i - 1 < level + width.size()) && 1924 "We are at level i but we don't know the value of width_{i-1}"); 1925 1926 // We don't actually use these duals at all, but it doesn't matter 1927 // because this case should only occur when i is level, and there are no 1928 // duals in that case anyway. 1929 assert(i == level && "This case should only occur when i == level"); 1930 width.emplace_back( 1931 gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom)); 1932 } 1933 1934 if (i >= level + dual.size()) { 1935 assert(i + 1 >= level + width.size() && 1936 "We don't know dual_i but we know width_{i+1}"); 1937 // We don't know dual for our level, so let's find it. 1938 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1939 width.emplace_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), 1940 dual, dualDenom)); 1941 gbrSimplex.removeLastEquality(); 1942 } 1943 1944 // This variable stores width_i(b_{i+1} + u*b_i). 1945 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i); 1946 if (widthICandidate < epsilon * width[i - level]) { 1947 basis.swapRows(i, i + 1); 1948 width[i - level] = widthICandidate; 1949 // The values of width_{i+1}(b_{i+1}) and higher may change after the 1950 // swap, so we remove the cached values here. 1951 width.resize(i - level + 1); 1952 if (i == level) { 1953 dual.clear(); 1954 continue; 1955 } 1956 1957 gbrSimplex.removeLastEquality(); 1958 i--; 1959 continue; 1960 } 1961 1962 // Invalidate duals since the higher level needs to recompute its own duals. 1963 dual.clear(); 1964 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1965 i++; 1966 } 1967 } 1968 1969 /// Search for an integer sample point using a branch and bound algorithm. 1970 /// 1971 /// Each row in the basis matrix is a vector, and the set of basis vectors 1972 /// should span the space. Initially this is the identity matrix, 1973 /// i.e., the basis vectors are just the variables. 1974 /// 1975 /// In every level, a value is assigned to the level-th basis vector, as 1976 /// follows. Compute the minimum and maximum rational values of this direction. 1977 /// If only one integer point lies in this range, constrain the variable to 1978 /// have this value and recurse to the next variable. 1979 /// 1980 /// If the range has multiple values, perform generalized basis reduction via 1981 /// reduceBasis and then compute the bounds again. Now we try constraining 1982 /// this direction in the first value in this range and "recurse" to the next 1983 /// level. If we fail to find a sample, we try assigning the direction the next 1984 /// value in this range, and so on. 1985 /// 1986 /// If no integer sample is found from any of the assignments, or if the range 1987 /// contains no integer value, then of course the polytope is empty for the 1988 /// current assignment of the values in previous levels, so we return to 1989 /// the previous level. 1990 /// 1991 /// If we reach the last level where all the variables have been assigned values 1992 /// already, then we simply return the current sample point if it is integral, 1993 /// and go back to the previous level otherwise. 1994 /// 1995 /// To avoid potentially arbitrarily large recursion depths leading to stack 1996 /// overflows, this algorithm is implemented iteratively. 1997 std::optional<SmallVector<DynamicAPInt, 8>> Simplex::findIntegerSample() { 1998 if (empty) 1999 return {}; 2000 2001 unsigned nDims = var.size(); 2002 IntMatrix basis = IntMatrix::identity(nDims); 2003 2004 unsigned level = 0; 2005 // The snapshot just before constraining a direction to a value at each level. 2006 SmallVector<unsigned, 8> snapshotStack; 2007 // The maximum value in the range of the direction for each level. 2008 SmallVector<DynamicAPInt, 8> upperBoundStack; 2009 // The next value to try constraining the basis vector to at each level. 2010 SmallVector<DynamicAPInt, 8> nextValueStack; 2011 2012 snapshotStack.reserve(basis.getNumRows()); 2013 upperBoundStack.reserve(basis.getNumRows()); 2014 nextValueStack.reserve(basis.getNumRows()); 2015 while (level != -1u) { 2016 if (level == basis.getNumRows()) { 2017 // We've assigned values to all variables. Return if we have a sample, 2018 // or go back up to the previous level otherwise. 2019 if (auto maybeSample = getSamplePointIfIntegral()) 2020 return maybeSample; 2021 level--; 2022 continue; 2023 } 2024 2025 if (level >= upperBoundStack.size()) { 2026 // We haven't populated the stack values for this level yet, so we have 2027 // just come down a level ("recursed"). Find the lower and upper bounds. 2028 // If there is more than one integer point in the range, perform 2029 // generalized basis reduction. 2030 SmallVector<DynamicAPInt, 8> basisCoeffs = 2031 llvm::to_vector<8>(basis.getRow(level)); 2032 basisCoeffs.emplace_back(0); 2033 2034 auto [minRoundedUp, maxRoundedDown] = computeIntegerBounds(basisCoeffs); 2035 2036 // We don't have any integer values in the range. 2037 // Pop the stack and return up a level. 2038 if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) { 2039 assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) && 2040 "If one bound is empty, both should be."); 2041 snapshotStack.pop_back(); 2042 nextValueStack.pop_back(); 2043 upperBoundStack.pop_back(); 2044 level--; 2045 continue; 2046 } 2047 2048 // We already checked the empty case above. 2049 assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) && 2050 "Polyhedron should be bounded!"); 2051 2052 // Heuristic: if the sample point is integral at this point, just return 2053 // it. 2054 if (auto maybeSample = getSamplePointIfIntegral()) 2055 return *maybeSample; 2056 2057 if (*minRoundedUp < *maxRoundedDown) { 2058 reduceBasis(basis, level); 2059 basisCoeffs = llvm::to_vector<8>(basis.getRow(level)); 2060 basisCoeffs.emplace_back(0); 2061 std::tie(minRoundedUp, maxRoundedDown) = 2062 computeIntegerBounds(basisCoeffs); 2063 } 2064 2065 snapshotStack.emplace_back(getSnapshot()); 2066 // The smallest value in the range is the next value to try. 2067 // The values in the optionals are guaranteed to exist since we know the 2068 // polytope is bounded. 2069 nextValueStack.emplace_back(*minRoundedUp); 2070 upperBoundStack.emplace_back(*maxRoundedDown); 2071 } 2072 2073 assert((snapshotStack.size() - 1 == level && 2074 nextValueStack.size() - 1 == level && 2075 upperBoundStack.size() - 1 == level) && 2076 "Mismatched variable stack sizes!"); 2077 2078 // Whether we "recursed" or "returned" from a lower level, we rollback 2079 // to the snapshot of the starting state at this level. (in the "recursed" 2080 // case this has no effect) 2081 rollback(snapshotStack.back()); 2082 DynamicAPInt nextValue = nextValueStack.back(); 2083 ++nextValueStack.back(); 2084 if (nextValue > upperBoundStack.back()) { 2085 // We have exhausted the range and found no solution. Pop the stack and 2086 // return up a level. 2087 snapshotStack.pop_back(); 2088 nextValueStack.pop_back(); 2089 upperBoundStack.pop_back(); 2090 level--; 2091 continue; 2092 } 2093 2094 // Try the next value in the range and "recurse" into the next level. 2095 SmallVector<DynamicAPInt, 8> basisCoeffs(basis.getRow(level).begin(), 2096 basis.getRow(level).end()); 2097 basisCoeffs.emplace_back(-nextValue); 2098 addEquality(basisCoeffs); 2099 level++; 2100 } 2101 2102 return {}; 2103 } 2104 2105 /// Compute the minimum and maximum integer values the expression can take. We 2106 /// compute each separately. 2107 std::pair<MaybeOptimum<DynamicAPInt>, MaybeOptimum<DynamicAPInt>> 2108 Simplex::computeIntegerBounds(ArrayRef<DynamicAPInt> coeffs) { 2109 MaybeOptimum<DynamicAPInt> minRoundedUp( 2110 computeOptimum(Simplex::Direction::Down, coeffs).map(ceil)); 2111 MaybeOptimum<DynamicAPInt> maxRoundedDown( 2112 computeOptimum(Simplex::Direction::Up, coeffs).map(floor)); 2113 return {minRoundedUp, maxRoundedDown}; 2114 } 2115 2116 bool Simplex::isFlatAlong(ArrayRef<DynamicAPInt> coeffs) { 2117 assert(!isEmpty() && "cannot check for flatness of empty simplex!"); 2118 auto upOpt = computeOptimum(Simplex::Direction::Up, coeffs); 2119 auto downOpt = computeOptimum(Simplex::Direction::Down, coeffs); 2120 2121 if (!upOpt.isBounded()) 2122 return false; 2123 if (!downOpt.isBounded()) 2124 return false; 2125 2126 return *upOpt == *downOpt; 2127 } 2128 2129 void SimplexBase::print(raw_ostream &os) const { 2130 os << "rows = " << getNumRows() << ", columns = " << getNumColumns() << "\n"; 2131 if (empty) 2132 os << "Simplex marked empty!\n"; 2133 os << "var: "; 2134 for (unsigned i = 0; i < var.size(); ++i) { 2135 if (i > 0) 2136 os << ", "; 2137 var[i].print(os); 2138 } 2139 os << "\ncon: "; 2140 for (unsigned i = 0; i < con.size(); ++i) { 2141 if (i > 0) 2142 os << ", "; 2143 con[i].print(os); 2144 } 2145 os << '\n'; 2146 for (unsigned row = 0, e = getNumRows(); row < e; ++row) { 2147 if (row > 0) 2148 os << ", "; 2149 os << "r" << row << ": " << rowUnknown[row]; 2150 } 2151 os << '\n'; 2152 os << "c0: denom, c1: const"; 2153 for (unsigned col = 2, e = getNumColumns(); col < e; ++col) 2154 os << ", c" << col << ": " << colUnknown[col]; 2155 os << '\n'; 2156 PrintTableMetrics ptm = {0, 0, "-"}; 2157 for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) 2158 for (unsigned col = 0, numCols = getNumColumns(); col < numCols; ++col) 2159 updatePrintMetrics<DynamicAPInt>(tableau(row, col), ptm); 2160 unsigned MIN_SPACING = 1; 2161 for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) { 2162 for (unsigned col = 0, numCols = getNumColumns(); col < numCols; ++col) { 2163 printWithPrintMetrics<DynamicAPInt>(os, tableau(row, col), MIN_SPACING, 2164 ptm); 2165 } 2166 os << '\n'; 2167 } 2168 os << '\n'; 2169 } 2170 2171 void SimplexBase::dump() const { print(llvm::errs()); } 2172 2173 bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) { 2174 if (isEmpty()) 2175 return true; 2176 2177 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) 2178 if (findIneqType(rel.getInequality(i)) != IneqType::Redundant) 2179 return false; 2180 2181 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) 2182 if (!isRedundantEquality(rel.getEquality(i))) 2183 return false; 2184 2185 return true; 2186 } 2187 2188 /// Returns the type of the inequality with coefficients `coeffs`. 2189 /// Possible types are: 2190 /// Redundant The inequality is satisfied by all points in the polytope 2191 /// Cut The inequality is satisfied by some points, but not by others 2192 /// Separate The inequality is not satisfied by any point 2193 /// 2194 /// Internally, this computes the minimum and the maximum the inequality with 2195 /// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds 2196 /// for all points in the polytope, so it is redundant. If the minimum is <= 0 2197 /// and the maximum is >= 0, the points in between the minimum and the 2198 /// inequality do not satisfy it, the points in between the inequality and the 2199 /// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no 2200 /// points of the polytope satisfy the inequality, which means it is a separate 2201 /// inequality. 2202 Simplex::IneqType Simplex::findIneqType(ArrayRef<DynamicAPInt> coeffs) { 2203 MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs); 2204 if (minimum.isBounded() && *minimum >= Fraction(0, 1)) { 2205 return IneqType::Redundant; 2206 } 2207 MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs); 2208 if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) && 2209 (!maximum.isBounded() || *maximum >= Fraction(0, 1))) { 2210 return IneqType::Cut; 2211 } 2212 return IneqType::Separate; 2213 } 2214 2215 /// Checks whether the type of the inequality with coefficients `coeffs` 2216 /// is Redundant. 2217 bool Simplex::isRedundantInequality(ArrayRef<DynamicAPInt> coeffs) { 2218 assert(!empty && 2219 "It is not meaningful to ask about redundancy in an empty set!"); 2220 return findIneqType(coeffs) == IneqType::Redundant; 2221 } 2222 2223 /// Check whether the equality given by `coeffs == 0` is redundant given 2224 /// the existing constraints. This is redundant when `coeffs` is already 2225 /// always zero under the existing constraints. `coeffs` is always zero 2226 /// when the minimum and maximum value that `coeffs` can take are both zero. 2227 bool Simplex::isRedundantEquality(ArrayRef<DynamicAPInt> coeffs) { 2228 assert(!empty && 2229 "It is not meaningful to ask about redundancy in an empty set!"); 2230 MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs); 2231 MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs); 2232 assert((!minimum.isEmpty() && !maximum.isEmpty()) && 2233 "Optima should be non-empty for a non-empty set"); 2234 return minimum.isBounded() && maximum.isBounded() && 2235 *maximum == Fraction(0, 1) && *minimum == Fraction(0, 1); 2236 } 2237