xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/powerplay/smumgr/amdgpu_ci_smumgr.c (revision 6bda0fa7ce4700926b57d0328f147ac8a0ca147e)
1 /*	$NetBSD: amdgpu_ci_smumgr.c,v 1.4 2021/12/19 10:59:37 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2017 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: amdgpu_ci_smumgr.c,v 1.4 2021/12/19 10:59:37 riastradh Exp $");
27 
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/fb.h>
31 #include "linux/delay.h"
32 #include <linux/types.h>
33 #include <linux/pci.h>
34 
35 #include "smumgr.h"
36 #include "pp_debug.h"
37 #include "ci_smumgr.h"
38 #include "ppsmc.h"
39 #include "smu7_hwmgr.h"
40 #include "hardwaremanager.h"
41 #include "ppatomctrl.h"
42 #include "cgs_common.h"
43 #include "atombios.h"
44 #include "pppcielanes.h"
45 
46 #include "smu/smu_7_0_1_d.h"
47 #include "smu/smu_7_0_1_sh_mask.h"
48 
49 #include "dce/dce_8_0_d.h"
50 #include "dce/dce_8_0_sh_mask.h"
51 
52 #include "bif/bif_4_1_d.h"
53 #include "bif/bif_4_1_sh_mask.h"
54 
55 #include "gca/gfx_7_2_d.h"
56 #include "gca/gfx_7_2_sh_mask.h"
57 
58 #include "gmc/gmc_7_1_d.h"
59 #include "gmc/gmc_7_1_sh_mask.h"
60 
61 #include "processpptables.h"
62 
63 #define MC_CG_ARB_FREQ_F0           0x0a
64 #define MC_CG_ARB_FREQ_F1           0x0b
65 #define MC_CG_ARB_FREQ_F2           0x0c
66 #define MC_CG_ARB_FREQ_F3           0x0d
67 
68 #define SMC_RAM_END 0x40000
69 
70 #define CISLAND_MINIMUM_ENGINE_CLOCK 800
71 #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5
72 
73 static const struct ci_pt_defaults defaults_hawaii_xt = {
74 	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
75 	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
76 	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
77 };
78 
79 static const struct ci_pt_defaults defaults_hawaii_pro = {
80 	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
81 	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
82 	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
83 };
84 
85 static const struct ci_pt_defaults defaults_bonaire_xt = {
86 	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
87 	{ 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
88 	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
89 };
90 
91 
92 static const struct ci_pt_defaults defaults_saturn_xt = {
93 	1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
94 	{ 0x8C,  0x247, 0x249, 0xA6,  0x80,  0x81,  0x8B,  0x89,  0x86,  0xC9,  0xCA,  0xC9,  0x4D,  0x4D,  0x4D  },
95 	{ 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
96 };
97 
98 
ci_set_smc_sram_address(struct pp_hwmgr * hwmgr,uint32_t smc_addr,uint32_t limit)99 static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
100 					uint32_t smc_addr, uint32_t limit)
101 {
102 	if ((0 != (3 & smc_addr))
103 		|| ((smc_addr + 3) >= limit)) {
104 		pr_err("smc_addr invalid \n");
105 		return -EINVAL;
106 	}
107 
108 	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
109 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
110 	return 0;
111 }
112 
ci_copy_bytes_to_smc(struct pp_hwmgr * hwmgr,uint32_t smc_start_address,const uint8_t * src,uint32_t byte_count,uint32_t limit)113 static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
114 				const uint8_t *src, uint32_t byte_count, uint32_t limit)
115 {
116 	int result;
117 	uint32_t data = 0;
118 	uint32_t original_data;
119 	uint32_t addr = 0;
120 	uint32_t extra_shift;
121 
122 	if ((3 & smc_start_address)
123 		|| ((smc_start_address + byte_count) >= limit)) {
124 		pr_err("smc_start_address invalid \n");
125 		return -EINVAL;
126 	}
127 
128 	addr = smc_start_address;
129 
130 	while (byte_count >= 4) {
131 	/* Bytes are written into the SMC address space with the MSB first. */
132 		data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
133 
134 		result = ci_set_smc_sram_address(hwmgr, addr, limit);
135 
136 		if (0 != result)
137 			return result;
138 
139 		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
140 
141 		src += 4;
142 		byte_count -= 4;
143 		addr += 4;
144 	}
145 
146 	if (0 != byte_count) {
147 
148 		data = 0;
149 
150 		result = ci_set_smc_sram_address(hwmgr, addr, limit);
151 
152 		if (0 != result)
153 			return result;
154 
155 
156 		original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
157 
158 		extra_shift = 8 * (4 - byte_count);
159 
160 		while (byte_count > 0) {
161 			/* Bytes are written into the SMC addres space with the MSB first. */
162 			data = (0x100 * data) + *src++;
163 			byte_count--;
164 		}
165 
166 		data <<= extra_shift;
167 
168 		data |= (original_data & ~((~0UL) << extra_shift));
169 
170 		result = ci_set_smc_sram_address(hwmgr, addr, limit);
171 
172 		if (0 != result)
173 			return result;
174 
175 		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
176 	}
177 
178 	return 0;
179 }
180 
181 
ci_program_jump_on_start(struct pp_hwmgr * hwmgr)182 static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
183 {
184 	static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };
185 
186 	ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);
187 
188 	return 0;
189 }
190 
ci_is_smc_ram_running(struct pp_hwmgr * hwmgr)191 bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
192 {
193 	return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
194 			CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
195 	&& (0x20100 <= cgs_read_ind_register(hwmgr->device,
196 			CGS_IND_REG__SMC, ixSMC_PC_C)));
197 }
198 
ci_read_smc_sram_dword(struct pp_hwmgr * hwmgr,uint32_t smc_addr,uint32_t * value,uint32_t limit)199 static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
200 				uint32_t *value, uint32_t limit)
201 {
202 	int result;
203 
204 	result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);
205 
206 	if (result)
207 		return result;
208 
209 	*value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
210 	return 0;
211 }
212 
ci_send_msg_to_smc(struct pp_hwmgr * hwmgr,uint16_t msg)213 static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
214 {
215 	int ret;
216 
217 	cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0);
218 	cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);
219 
220 	PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
221 
222 	ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);
223 
224 	if (ret != 1)
225 		pr_info("\n failed to send message %x ret is %d\n",  msg, ret);
226 
227 	return 0;
228 }
229 
ci_send_msg_to_smc_with_parameter(struct pp_hwmgr * hwmgr,uint16_t msg,uint32_t parameter)230 static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
231 					uint16_t msg, uint32_t parameter)
232 {
233 	cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
234 	return ci_send_msg_to_smc(hwmgr, msg);
235 }
236 
ci_initialize_power_tune_defaults(struct pp_hwmgr * hwmgr)237 static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
238 {
239 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
240 	struct amdgpu_device *adev = hwmgr->adev;
241 	uint32_t dev_id;
242 
243 	dev_id = adev->pdev->device;
244 
245 	switch (dev_id) {
246 	case 0x67BA:
247 	case 0x66B1:
248 		smu_data->power_tune_defaults = &defaults_hawaii_pro;
249 		break;
250 	case 0x67B8:
251 	case 0x66B0:
252 		smu_data->power_tune_defaults = &defaults_hawaii_xt;
253 		break;
254 	case 0x6640:
255 	case 0x6641:
256 	case 0x6646:
257 	case 0x6647:
258 		smu_data->power_tune_defaults = &defaults_saturn_xt;
259 		break;
260 	case 0x6649:
261 	case 0x6650:
262 	case 0x6651:
263 	case 0x6658:
264 	case 0x665C:
265 	case 0x665D:
266 	case 0x67A0:
267 	case 0x67A1:
268 	case 0x67A2:
269 	case 0x67A8:
270 	case 0x67A9:
271 	case 0x67AA:
272 	case 0x67B9:
273 	case 0x67BE:
274 	default:
275 		smu_data->power_tune_defaults = &defaults_bonaire_xt;
276 		break;
277 	}
278 }
279 
ci_get_dependency_volt_by_clk(struct pp_hwmgr * hwmgr,struct phm_clock_voltage_dependency_table * allowed_clock_voltage_table,uint32_t clock,uint32_t * vol)280 static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
281 	struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
282 	uint32_t clock, uint32_t *vol)
283 {
284 	uint32_t i = 0;
285 
286 	if (allowed_clock_voltage_table->count == 0)
287 		return -EINVAL;
288 
289 	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
290 		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
291 			*vol = allowed_clock_voltage_table->entries[i].v;
292 			return 0;
293 		}
294 	}
295 
296 	*vol = allowed_clock_voltage_table->entries[i - 1].v;
297 	return 0;
298 }
299 
ci_calculate_sclk_params(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU7_Discrete_GraphicsLevel * sclk)300 static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
301 		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
302 {
303 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
304 	struct pp_atomctrl_clock_dividers_vi dividers;
305 	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
306 	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
307 	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
308 	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
309 	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
310 	uint32_t ref_clock;
311 	uint32_t ref_divider;
312 	uint32_t fbdiv;
313 	int result;
314 
315 	/* get the engine clock dividers for this clock value */
316 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
317 
318 	PP_ASSERT_WITH_CODE(result == 0,
319 			"Error retrieving Engine Clock dividers from VBIOS.",
320 			return result);
321 
322 	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
323 	ref_clock = atomctrl_get_reference_clock(hwmgr);
324 	ref_divider = 1 + dividers.uc_pll_ref_div;
325 
326 	/* low 14 bits is fraction and high 12 bits is divider */
327 	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
328 
329 	/* SPLL_FUNC_CNTL setup */
330 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
331 			SPLL_REF_DIV, dividers.uc_pll_ref_div);
332 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
333 			SPLL_PDIV_A,  dividers.uc_pll_post_div);
334 
335 	/* SPLL_FUNC_CNTL_3 setup*/
336 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
337 			SPLL_FB_DIV, fbdiv);
338 
339 	/* set to use fractional accumulation*/
340 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
341 			SPLL_DITHEN, 1);
342 
343 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
344 				PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
345 		struct pp_atomctrl_internal_ss_info ss_info;
346 		uint32_t vco_freq = clock * dividers.uc_pll_post_div;
347 
348 		if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
349 				vco_freq, &ss_info)) {
350 			uint32_t clk_s = ref_clock * 5 /
351 					(ref_divider * ss_info.speed_spectrum_rate);
352 			uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
353 					fbdiv / (clk_s * 10000);
354 
355 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
356 					CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
357 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
358 					CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
359 			cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
360 					CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
361 		}
362 	}
363 
364 	sclk->SclkFrequency        = clock;
365 	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
366 	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
367 	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
368 	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
369 	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
370 
371 	return 0;
372 }
373 
ci_populate_phase_value_based_on_sclk(struct pp_hwmgr * hwmgr,const struct phm_phase_shedding_limits_table * pl,uint32_t sclk,uint32_t * p_shed)374 static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
375 				const struct phm_phase_shedding_limits_table *pl,
376 					uint32_t sclk, uint32_t *p_shed)
377 {
378 	unsigned int i;
379 
380 	/* use the minimum phase shedding */
381 	*p_shed = 1;
382 
383 	for (i = 0; i < pl->count; i++) {
384 		if (sclk < pl->entries[i].Sclk) {
385 			*p_shed = i;
386 			break;
387 		}
388 	}
389 }
390 
ci_get_sleep_divider_id_from_clock(uint32_t clock,uint32_t clock_insr)391 static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
392 			uint32_t clock_insr)
393 {
394 	uint8_t i;
395 	uint32_t temp;
396 	uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);
397 
398 	if (clock < min) {
399 		pr_info("Engine clock can't satisfy stutter requirement!\n");
400 		return 0;
401 	}
402 	for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
403 		temp = clock >> i;
404 
405 		if (temp >= min || i == 0)
406 			break;
407 	}
408 	return i;
409 }
410 
ci_populate_single_graphic_level(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU7_Discrete_GraphicsLevel * level)411 static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
412 		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level)
413 {
414 	int result;
415 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
416 
417 
418 	result = ci_calculate_sclk_params(hwmgr, clock, level);
419 
420 	/* populate graphics levels */
421 	result = ci_get_dependency_volt_by_clk(hwmgr,
422 			hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
423 			(uint32_t *)(&level->MinVddc));
424 	if (result) {
425 		pr_err("vdd_dep_on_sclk table is NULL\n");
426 		return result;
427 	}
428 
429 	level->SclkFrequency = clock;
430 	level->MinVddcPhases = 1;
431 
432 	if (data->vddc_phase_shed_control)
433 		ci_populate_phase_value_based_on_sclk(hwmgr,
434 				hwmgr->dyn_state.vddc_phase_shed_limits_table,
435 				clock,
436 				&level->MinVddcPhases);
437 
438 	level->ActivityLevel = data->current_profile_setting.sclk_activity;
439 	level->CcPwrDynRm = 0;
440 	level->CcPwrDynRm1 = 0;
441 	level->EnabledForActivity = 0;
442 	/* this level can be used for throttling.*/
443 	level->EnabledForThrottle = 1;
444 	level->UpH = data->current_profile_setting.sclk_up_hyst;
445 	level->DownH = data->current_profile_setting.sclk_down_hyst;
446 	level->VoltageDownH = 0;
447 	level->PowerThrottle = 0;
448 
449 
450 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
451 			PHM_PlatformCaps_SclkDeepSleep))
452 		level->DeepSleepDivId =
453 				ci_get_sleep_divider_id_from_clock(clock,
454 						CISLAND_MINIMUM_ENGINE_CLOCK);
455 
456 	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
457 	level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
458 
459 	if (0 == result) {
460 		level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
461 		CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
462 		CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
463 		CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
464 		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
465 		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
466 		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
467 		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
468 		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
469 		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
470 	}
471 
472 	return result;
473 }
474 
ci_populate_all_graphic_levels(struct pp_hwmgr * hwmgr)475 static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
476 {
477 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
478 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
479 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
480 	int result = 0;
481 	uint32_t array = smu_data->dpm_table_start +
482 			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
483 	uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
484 			SMU7_MAX_LEVELS_GRAPHICS;
485 	struct SMU7_Discrete_GraphicsLevel *levels =
486 			smu_data->smc_state_table.GraphicsLevel;
487 	uint32_t i;
488 
489 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
490 		result = ci_populate_single_graphic_level(hwmgr,
491 				dpm_table->sclk_table.dpm_levels[i].value,
492 				&levels[i]);
493 		if (result)
494 			return result;
495 		if (i > 1)
496 			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
497 		if (i == (dpm_table->sclk_table.count - 1))
498 			smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
499 				PPSMC_DISPLAY_WATERMARK_HIGH;
500 	}
501 
502 	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
503 
504 	smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
505 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
506 		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
507 
508 	result = ci_copy_bytes_to_smc(hwmgr, array,
509 				   (u8 *)levels, array_size,
510 				   SMC_RAM_END);
511 
512 	return result;
513 
514 }
515 
ci_populate_svi_load_line(struct pp_hwmgr * hwmgr)516 static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
517 {
518 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
519 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
520 
521 	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
522 	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
523 	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
524 	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
525 
526 	return 0;
527 }
528 
ci_populate_tdc_limit(struct pp_hwmgr * hwmgr)529 static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
530 {
531 	uint16_t tdc_limit;
532 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
533 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
534 
535 	tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
536 	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
537 			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
538 	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
539 			defaults->tdc_vddc_throttle_release_limit_perc;
540 	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
541 
542 	return 0;
543 }
544 
ci_populate_dw8(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)545 static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
546 {
547 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
548 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
549 	uint32_t temp;
550 
551 	if (ci_read_smc_sram_dword(hwmgr,
552 			fuse_table_offset +
553 			offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
554 			(uint32_t *)&temp, SMC_RAM_END))
555 		PP_ASSERT_WITH_CODE(false,
556 				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
557 				return -EINVAL);
558 	else
559 		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
560 
561 	return 0;
562 }
563 
ci_populate_fuzzy_fan(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)564 static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
565 {
566 	uint16_t tmp;
567 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
568 
569 	if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
570 		|| 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
571 		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
572 	else
573 		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
574 
575 	smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);
576 
577 	return 0;
578 }
579 
ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr * hwmgr)580 static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
581 {
582 	int i;
583 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
584 	uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
585 	uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
586 	uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;
587 
588 	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
589 			    "The CAC Leakage table does not exist!", return -EINVAL);
590 	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
591 			    "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
592 	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
593 			    "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
594 
595 	for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
596 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
597 			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
598 			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
599 			hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
600 		} else {
601 			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
602 			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
603 		}
604 	}
605 
606 	return 0;
607 }
608 
ci_populate_vddc_vid(struct pp_hwmgr * hwmgr)609 static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
610 {
611 	int i;
612 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
613 	uint8_t *vid = smu_data->power_tune_table.VddCVid;
614 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
615 
616 	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
617 		"There should never be more than 8 entries for VddcVid!!!",
618 		return -EINVAL);
619 
620 	for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
621 		vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
622 
623 	return 0;
624 }
625 
ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr * hwmgr)626 static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
627 {
628 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
629 	u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
630 	u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
631 	int i, min, max;
632 
633 	min = max = hi_vid[0];
634 	for (i = 0; i < 8; i++) {
635 		if (0 != hi_vid[i]) {
636 			if (min > hi_vid[i])
637 				min = hi_vid[i];
638 			if (max < hi_vid[i])
639 				max = hi_vid[i];
640 		}
641 
642 		if (0 != lo_vid[i]) {
643 			if (min > lo_vid[i])
644 				min = lo_vid[i];
645 			if (max < lo_vid[i])
646 				max = lo_vid[i];
647 		}
648 	}
649 
650 	if ((min == 0) || (max == 0))
651 		return -EINVAL;
652 	smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
653 	smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;
654 
655 	return 0;
656 }
657 
ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr * hwmgr)658 static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
659 {
660 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
661 	uint16_t HiSidd;
662 	uint16_t LoSidd;
663 	struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
664 
665 	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
666 	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
667 
668 	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
669 			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
670 	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
671 			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
672 
673 	return 0;
674 }
675 
ci_populate_pm_fuses(struct pp_hwmgr * hwmgr)676 static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
677 {
678 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
679 	uint32_t pm_fuse_table_offset;
680 	int ret = 0;
681 
682 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
683 			PHM_PlatformCaps_PowerContainment)) {
684 		if (ci_read_smc_sram_dword(hwmgr,
685 				SMU7_FIRMWARE_HEADER_LOCATION +
686 				offsetof(SMU7_Firmware_Header, PmFuseTable),
687 				&pm_fuse_table_offset, SMC_RAM_END)) {
688 			pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
689 			return -EINVAL;
690 		}
691 
692 		/* DW0 - DW3 */
693 		ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
694 		/* DW4 - DW5 */
695 		ret |= ci_populate_vddc_vid(hwmgr);
696 		/* DW6 */
697 		ret |= ci_populate_svi_load_line(hwmgr);
698 		/* DW7 */
699 		ret |= ci_populate_tdc_limit(hwmgr);
700 		/* DW8 */
701 		ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);
702 
703 		ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);
704 
705 		ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);
706 
707 		ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
708 		if (ret)
709 			return ret;
710 
711 		ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
712 				(uint8_t *)&smu_data->power_tune_table,
713 				sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
714 	}
715 	return ret;
716 }
717 
ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr * hwmgr)718 static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
719 {
720 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
721 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
722 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
723 	SMU7_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
724 	struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
725 	struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
726 	const uint16_t *def1, *def2;
727 	int i, j, k;
728 
729 	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
730 	dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
731 
732 	dpm_table->DTETjOffset = 0;
733 	dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
734 	dpm_table->GpuTjHyst = 8;
735 
736 	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
737 
738 	if (ppm) {
739 		dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
740 		dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
741 	} else {
742 		dpm_table->PPM_PkgPwrLimit = 0;
743 		dpm_table->PPM_TemperatureLimit = 0;
744 	}
745 
746 	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
747 	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
748 
749 	dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
750 	def1 = defaults->bapmti_r;
751 	def2 = defaults->bapmti_rc;
752 
753 	for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
754 		for (j = 0; j < SMU7_DTE_SOURCES; j++) {
755 			for (k = 0; k < SMU7_DTE_SINKS; k++) {
756 				dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
757 				dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
758 				def1++;
759 				def2++;
760 			}
761 		}
762 	}
763 
764 	return 0;
765 }
766 
ci_get_std_voltage_value_sidd(struct pp_hwmgr * hwmgr,pp_atomctrl_voltage_table_entry * tab,uint16_t * hi,uint16_t * lo)767 static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
768 		pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
769 		uint16_t *lo)
770 {
771 	uint16_t v_index;
772 	bool vol_found = false;
773 	*hi = tab->value * VOLTAGE_SCALE;
774 	*lo = tab->value * VOLTAGE_SCALE;
775 
776 	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
777 			"The SCLK/VDDC Dependency Table does not exist.\n",
778 			return -EINVAL);
779 
780 	if (NULL == hwmgr->dyn_state.cac_leakage_table) {
781 		pr_warn("CAC Leakage Table does not exist, using vddc.\n");
782 		return 0;
783 	}
784 
785 	for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
786 		if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
787 			vol_found = true;
788 			if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
789 				*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
790 				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
791 			} else {
792 				pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
793 				*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
794 				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
795 			}
796 			break;
797 		}
798 	}
799 
800 	if (!vol_found) {
801 		for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
802 			if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
803 				vol_found = true;
804 				if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
805 					*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
806 					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
807 				} else {
808 					pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
809 					*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
810 					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
811 				}
812 				break;
813 			}
814 		}
815 
816 		if (!vol_found)
817 			pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
818 	}
819 
820 	return 0;
821 }
822 
ci_populate_smc_voltage_table(struct pp_hwmgr * hwmgr,pp_atomctrl_voltage_table_entry * tab,SMU7_Discrete_VoltageLevel * smc_voltage_tab)823 static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
824 		pp_atomctrl_voltage_table_entry *tab,
825 		SMU7_Discrete_VoltageLevel *smc_voltage_tab)
826 {
827 	int result;
828 
829 	result = ci_get_std_voltage_value_sidd(hwmgr, tab,
830 			&smc_voltage_tab->StdVoltageHiSidd,
831 			&smc_voltage_tab->StdVoltageLoSidd);
832 	if (result) {
833 		smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
834 		smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
835 	}
836 
837 	smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
838 	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
839 	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);
840 
841 	return 0;
842 }
843 
ci_populate_smc_vddc_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)844 static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
845 			SMU7_Discrete_DpmTable *table)
846 {
847 	unsigned int count;
848 	int result;
849 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
850 
851 	table->VddcLevelCount = data->vddc_voltage_table.count;
852 	for (count = 0; count < table->VddcLevelCount; count++) {
853 		result = ci_populate_smc_voltage_table(hwmgr,
854 				&(data->vddc_voltage_table.entries[count]),
855 				&(table->VddcLevel[count]));
856 		PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
857 
858 		/* GPIO voltage control */
859 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
860 			table->VddcLevel[count].Smio = (uint8_t) count;
861 			table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low;
862 			table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low;
863 		} else {
864 			table->VddcLevel[count].Smio = 0;
865 		}
866 	}
867 
868 	CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
869 
870 	return 0;
871 }
872 
ci_populate_smc_vdd_ci_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)873 static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
874 			SMU7_Discrete_DpmTable *table)
875 {
876 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
877 	uint32_t count;
878 	int result;
879 
880 	table->VddciLevelCount = data->vddci_voltage_table.count;
881 
882 	for (count = 0; count < table->VddciLevelCount; count++) {
883 		result = ci_populate_smc_voltage_table(hwmgr,
884 				&(data->vddci_voltage_table.entries[count]),
885 				&(table->VddciLevel[count]));
886 		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
887 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
888 			table->VddciLevel[count].Smio = (uint8_t) count;
889 			table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low;
890 			table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low;
891 		} else {
892 			table->VddciLevel[count].Smio = 0;
893 		}
894 	}
895 
896 	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
897 
898 	return 0;
899 }
900 
ci_populate_smc_mvdd_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)901 static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
902 			SMU7_Discrete_DpmTable *table)
903 {
904 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
905 	uint32_t count;
906 	int result;
907 
908 	table->MvddLevelCount = data->mvdd_voltage_table.count;
909 
910 	for (count = 0; count < table->MvddLevelCount; count++) {
911 		result = ci_populate_smc_voltage_table(hwmgr,
912 				&(data->mvdd_voltage_table.entries[count]),
913 				&table->MvddLevel[count]);
914 		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
915 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
916 			table->MvddLevel[count].Smio = (uint8_t) count;
917 			table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low;
918 			table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low;
919 		} else {
920 			table->MvddLevel[count].Smio = 0;
921 		}
922 	}
923 
924 	CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
925 
926 	return 0;
927 }
928 
929 
ci_populate_smc_voltage_tables(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)930 static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
931 	SMU7_Discrete_DpmTable *table)
932 {
933 	int result;
934 
935 	result = ci_populate_smc_vddc_table(hwmgr, table);
936 	PP_ASSERT_WITH_CODE(0 == result,
937 			"can not populate VDDC voltage table to SMC", return -EINVAL);
938 
939 	result = ci_populate_smc_vdd_ci_table(hwmgr, table);
940 	PP_ASSERT_WITH_CODE(0 == result,
941 			"can not populate VDDCI voltage table to SMC", return -EINVAL);
942 
943 	result = ci_populate_smc_mvdd_table(hwmgr, table);
944 	PP_ASSERT_WITH_CODE(0 == result,
945 			"can not populate MVDD voltage table to SMC", return -EINVAL);
946 
947 	return 0;
948 }
949 
ci_populate_ulv_level(struct pp_hwmgr * hwmgr,struct SMU7_Discrete_Ulv * state)950 static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
951 		struct SMU7_Discrete_Ulv *state)
952 {
953 	uint32_t voltage_response_time, ulv_voltage;
954 	int result;
955 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
956 
957 	state->CcPwrDynRm = 0;
958 	state->CcPwrDynRm1 = 0;
959 
960 	result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
961 	PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
962 
963 	if (ulv_voltage == 0) {
964 		data->ulv_supported = false;
965 		return 0;
966 	}
967 
968 	if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
969 		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
970 		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
971 			state->VddcOffset = 0;
972 		else
973 			/* used in SMIO Mode. not implemented for now. this is backup only for CI. */
974 			state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
975 	} else {
976 		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
977 		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
978 			state->VddcOffsetVid = 0;
979 		else  /* used in SVI2 Mode */
980 			state->VddcOffsetVid = (uint8_t)(
981 					(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
982 						* VOLTAGE_VID_OFFSET_SCALE2
983 						/ VOLTAGE_VID_OFFSET_SCALE1);
984 	}
985 	state->VddcPhase = 1;
986 
987 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
988 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
989 	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
990 
991 	return 0;
992 }
993 
ci_populate_ulv_state(struct pp_hwmgr * hwmgr,SMU7_Discrete_Ulv * ulv_level)994 static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
995 		 SMU7_Discrete_Ulv *ulv_level)
996 {
997 	return ci_populate_ulv_level(hwmgr, ulv_level);
998 }
999 
ci_populate_smc_link_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1000 static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1001 {
1002 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1003 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1004 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1005 	uint32_t i;
1006 
1007 /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
1008 	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1009 		table->LinkLevel[i].PcieGenSpeed  =
1010 			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1011 		table->LinkLevel[i].PcieLaneCount =
1012 			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1013 		table->LinkLevel[i].EnabledForActivity = 1;
1014 		table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
1015 		table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
1016 	}
1017 
1018 	smu_data->smc_state_table.LinkLevelCount =
1019 		(uint8_t)dpm_table->pcie_speed_table.count;
1020 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1021 		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1022 
1023 	return 0;
1024 }
1025 
ci_calculate_mclk_params(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU7_Discrete_MemoryLevel * mclk,bool strobe_mode,bool dllStateOn)1026 static int ci_calculate_mclk_params(
1027 		struct pp_hwmgr *hwmgr,
1028 		uint32_t memory_clock,
1029 		SMU7_Discrete_MemoryLevel *mclk,
1030 		bool strobe_mode,
1031 		bool dllStateOn
1032 		)
1033 {
1034 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1035 	uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1036 	uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1037 	uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1038 	uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1039 	uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1040 	uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1041 	uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1042 	uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1043 	uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1044 
1045 	pp_atomctrl_memory_clock_param mpll_param;
1046 	int result;
1047 
1048 	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1049 				memory_clock, &mpll_param, strobe_mode);
1050 	PP_ASSERT_WITH_CODE(0 == result,
1051 		"Error retrieving Memory Clock Parameters from VBIOS.", return result);
1052 
1053 	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1054 
1055 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1056 							MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1057 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1058 							MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1059 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1060 							MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1061 
1062 	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1063 							MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1064 
1065 	if (data->is_memory_gddr5) {
1066 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1067 								MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1068 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1069 								MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1070 	}
1071 
1072 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1073 			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1074 		pp_atomctrl_internal_ss_info ss_info;
1075 		uint32_t freq_nom;
1076 		uint32_t tmp;
1077 		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1078 
1079 		/* for GDDR5 for all modes and DDR3 */
1080 		if (1 == mpll_param.qdr)
1081 			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1082 		else
1083 			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1084 
1085 		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1086 		tmp = (freq_nom / reference_clock);
1087 		tmp = tmp * tmp;
1088 
1089 		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1090 			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1091 			uint32_t clkv =
1092 				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1093 							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1094 
1095 			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1096 			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1097 		}
1098 	}
1099 
1100 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1101 		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1102 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1103 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1104 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1105 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1106 
1107 
1108 	mclk->MclkFrequency   = memory_clock;
1109 	mclk->MpllFuncCntl    = mpll_func_cntl;
1110 	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1111 	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1112 	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1113 	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1114 	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1115 	mclk->DllCntl         = dll_cntl;
1116 	mclk->MpllSs1         = mpll_ss1;
1117 	mclk->MpllSs2         = mpll_ss2;
1118 
1119 	return 0;
1120 }
1121 
ci_get_mclk_frequency_ratio(uint32_t memory_clock,bool strobe_mode)1122 static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
1123 		bool strobe_mode)
1124 {
1125 	uint8_t mc_para_index;
1126 
1127 	if (strobe_mode) {
1128 		if (memory_clock < 12500)
1129 			mc_para_index = 0x00;
1130 		else if (memory_clock > 47500)
1131 			mc_para_index = 0x0f;
1132 		else
1133 			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1134 	} else {
1135 		if (memory_clock < 65000)
1136 			mc_para_index = 0x00;
1137 		else if (memory_clock > 135000)
1138 			mc_para_index = 0x0f;
1139 		else
1140 			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1141 	}
1142 
1143 	return mc_para_index;
1144 }
1145 
ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)1146 static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1147 {
1148 	uint8_t mc_para_index;
1149 
1150 	if (memory_clock < 10000)
1151 		mc_para_index = 0;
1152 	else if (memory_clock >= 80000)
1153 		mc_para_index = 0x0f;
1154 	else
1155 		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1156 
1157 	return mc_para_index;
1158 }
1159 
ci_populate_phase_value_based_on_mclk(struct pp_hwmgr * hwmgr,const struct phm_phase_shedding_limits_table * pl,uint32_t memory_clock,uint32_t * p_shed)1160 static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1161 					uint32_t memory_clock, uint32_t *p_shed)
1162 {
1163 	unsigned int i;
1164 
1165 	*p_shed = 1;
1166 
1167 	for (i = 0; i < pl->count; i++) {
1168 		if (memory_clock < pl->entries[i].Mclk) {
1169 			*p_shed = i;
1170 			break;
1171 		}
1172 	}
1173 
1174 	return 0;
1175 }
1176 
ci_populate_single_memory_level(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU7_Discrete_MemoryLevel * memory_level)1177 static int ci_populate_single_memory_level(
1178 		struct pp_hwmgr *hwmgr,
1179 		uint32_t memory_clock,
1180 		SMU7_Discrete_MemoryLevel *memory_level
1181 		)
1182 {
1183 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1184 	int result = 0;
1185 	bool dll_state_on;
1186 	uint32_t mclk_edc_wr_enable_threshold = 40000;
1187 	uint32_t mclk_edc_enable_threshold = 40000;
1188 	uint32_t mclk_strobe_mode_threshold = 40000;
1189 
1190 	if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1191 		result = ci_get_dependency_volt_by_clk(hwmgr,
1192 			hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1193 		PP_ASSERT_WITH_CODE((0 == result),
1194 			"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1195 	}
1196 
1197 	if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1198 		result = ci_get_dependency_volt_by_clk(hwmgr,
1199 				hwmgr->dyn_state.vddci_dependency_on_mclk,
1200 				memory_clock,
1201 				&memory_level->MinVddci);
1202 		PP_ASSERT_WITH_CODE((0 == result),
1203 			"can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1204 	}
1205 
1206 	if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
1207 		result = ci_get_dependency_volt_by_clk(hwmgr,
1208 				hwmgr->dyn_state.mvdd_dependency_on_mclk,
1209 				memory_clock,
1210 				&memory_level->MinMvdd);
1211 		PP_ASSERT_WITH_CODE((0 == result),
1212 			"can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
1213 	}
1214 
1215 	memory_level->MinVddcPhases = 1;
1216 
1217 	if (data->vddc_phase_shed_control) {
1218 		ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1219 				memory_clock, &memory_level->MinVddcPhases);
1220 	}
1221 
1222 	memory_level->EnabledForThrottle = 1;
1223 	memory_level->EnabledForActivity = 1;
1224 	memory_level->UpH = data->current_profile_setting.mclk_up_hyst;
1225 	memory_level->DownH = data->current_profile_setting.mclk_down_hyst;
1226 	memory_level->VoltageDownH = 0;
1227 
1228 	/* Indicates maximum activity level for this performance level.*/
1229 	memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1230 	memory_level->StutterEnable = 0;
1231 	memory_level->StrobeEnable = 0;
1232 	memory_level->EdcReadEnable = 0;
1233 	memory_level->EdcWriteEnable = 0;
1234 	memory_level->RttEnable = 0;
1235 
1236 	/* default set to low watermark. Highest level will be set to high later.*/
1237 	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1238 
1239 	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1240 	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1241 
1242 	/* stutter mode not support on ci */
1243 
1244 	/* decide strobe mode*/
1245 	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1246 		(memory_clock <= mclk_strobe_mode_threshold);
1247 
1248 	/* decide EDC mode and memory clock ratio*/
1249 	if (data->is_memory_gddr5) {
1250 		memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
1251 					memory_level->StrobeEnable);
1252 
1253 		if ((mclk_edc_enable_threshold != 0) &&
1254 				(memory_clock > mclk_edc_enable_threshold)) {
1255 			memory_level->EdcReadEnable = 1;
1256 		}
1257 
1258 		if ((mclk_edc_wr_enable_threshold != 0) &&
1259 				(memory_clock > mclk_edc_wr_enable_threshold)) {
1260 			memory_level->EdcWriteEnable = 1;
1261 		}
1262 
1263 		if (memory_level->StrobeEnable) {
1264 			if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
1265 					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1266 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1267 			else
1268 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1269 		} else
1270 			dll_state_on = data->dll_default_on;
1271 	} else {
1272 		memory_level->StrobeRatio =
1273 			ci_get_ddr3_mclk_frequency_ratio(memory_clock);
1274 		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1275 	}
1276 
1277 	result = ci_calculate_mclk_params(hwmgr,
1278 		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1279 
1280 	if (0 == result) {
1281 		memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1282 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1283 		memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1284 		memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1285 		/* MCLK frequency in units of 10KHz*/
1286 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1287 		/* Indicates maximum activity level for this performance level.*/
1288 		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1289 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1290 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1291 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1292 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1293 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1294 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1295 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1296 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1297 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1298 	}
1299 
1300 	return result;
1301 }
1302 
ci_populate_all_memory_levels(struct pp_hwmgr * hwmgr)1303 static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1304 {
1305 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1306 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1307 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1308 	int result;
1309 	struct amdgpu_device *adev = hwmgr->adev;
1310 	uint32_t dev_id;
1311 
1312 	uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
1313 	uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
1314 	SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1315 	uint32_t i;
1316 
1317 	memset(levels, 0x00, level_array_size);
1318 
1319 	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1320 		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1321 			"can not populate memory level as memory clock is zero", return -EINVAL);
1322 		result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1323 			&(smu_data->smc_state_table.MemoryLevel[i]));
1324 		if (0 != result)
1325 			return result;
1326 	}
1327 
1328 	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1329 
1330 	dev_id = adev->pdev->device;
1331 
1332 	if ((dpm_table->mclk_table.count >= 2)
1333 		&& ((dev_id == 0x67B0) ||  (dev_id == 0x67B1))) {
1334 		smu_data->smc_state_table.MemoryLevel[1].MinVddci =
1335 				smu_data->smc_state_table.MemoryLevel[0].MinVddci;
1336 		smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
1337 				smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
1338 	}
1339 	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1340 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1341 
1342 	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1343 	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1344 	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1345 
1346 	result = ci_copy_bytes_to_smc(hwmgr,
1347 		level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1348 		SMC_RAM_END);
1349 
1350 	return result;
1351 }
1352 
ci_populate_mvdd_value(struct pp_hwmgr * hwmgr,uint32_t mclk,SMU7_Discrete_VoltageLevel * voltage)1353 static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1354 					SMU7_Discrete_VoltageLevel *voltage)
1355 {
1356 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1357 
1358 	uint32_t i = 0;
1359 
1360 	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1361 		/* find mvdd value which clock is more than request */
1362 		for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1363 			if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1364 				/* Always round to higher voltage. */
1365 				voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1366 				break;
1367 			}
1368 		}
1369 
1370 		PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1371 			"MVDD Voltage is outside the supported range.", return -EINVAL);
1372 
1373 	} else {
1374 		return -EINVAL;
1375 	}
1376 
1377 	return 0;
1378 }
1379 
ci_populate_smc_acpi_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1380 static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1381 	SMU7_Discrete_DpmTable *table)
1382 {
1383 	int result = 0;
1384 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1385 	struct pp_atomctrl_clock_dividers_vi dividers;
1386 
1387 	SMU7_Discrete_VoltageLevel voltage_level;
1388 	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1389 	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1390 	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1391 	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1392 
1393 
1394 	/* The ACPI state should not do DPM on DC (or ever).*/
1395 	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1396 
1397 	if (data->acpi_vddc)
1398 		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1399 	else
1400 		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1401 
1402 	table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
1403 	/* assign zero for now*/
1404 	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1405 
1406 	/* get the engine clock dividers for this clock value*/
1407 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1408 		table->ACPILevel.SclkFrequency,  &dividers);
1409 
1410 	PP_ASSERT_WITH_CODE(result == 0,
1411 		"Error retrieving Engine Clock dividers from VBIOS.", return result);
1412 
1413 	/* divider ID for required SCLK*/
1414 	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1415 	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1416 	table->ACPILevel.DeepSleepDivId = 0;
1417 
1418 	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1419 							CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
1420 	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1421 							CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
1422 	spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
1423 							CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
1424 
1425 	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1426 	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1427 	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1428 	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1429 	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1430 	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1431 	table->ACPILevel.CcPwrDynRm = 0;
1432 	table->ACPILevel.CcPwrDynRm1 = 0;
1433 
1434 	/* For various features to be enabled/disabled while this level is active.*/
1435 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1436 	/* SCLK frequency in units of 10KHz*/
1437 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1438 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1439 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1440 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1441 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1442 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1443 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1444 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1445 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1446 
1447 
1448 	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1449 	table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1450 	table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1451 
1452 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1453 		table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1454 	else {
1455 		if (data->acpi_vddci != 0)
1456 			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1457 		else
1458 			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1459 	}
1460 
1461 	if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
1462 		table->MemoryACPILevel.MinMvdd =
1463 			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1464 	else
1465 		table->MemoryACPILevel.MinMvdd = 0;
1466 
1467 	/* Force reset on DLL*/
1468 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1469 		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1470 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1471 		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1472 
1473 	/* Disable DLL in ACPIState*/
1474 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1475 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1476 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1477 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1478 
1479 	/* Enable DLL bypass signal*/
1480 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1481 		DLL_CNTL, MRDCK0_BYPASS, 0);
1482 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1483 		DLL_CNTL, MRDCK1_BYPASS, 0);
1484 
1485 	table->MemoryACPILevel.DllCntl            =
1486 		PP_HOST_TO_SMC_UL(dll_cntl);
1487 	table->MemoryACPILevel.MclkPwrmgtCntl     =
1488 		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1489 	table->MemoryACPILevel.MpllAdFuncCntl     =
1490 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1491 	table->MemoryACPILevel.MpllDqFuncCntl     =
1492 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1493 	table->MemoryACPILevel.MpllFuncCntl       =
1494 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1495 	table->MemoryACPILevel.MpllFuncCntl_1     =
1496 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1497 	table->MemoryACPILevel.MpllFuncCntl_2     =
1498 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1499 	table->MemoryACPILevel.MpllSs1            =
1500 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1501 	table->MemoryACPILevel.MpllSs2            =
1502 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1503 
1504 	table->MemoryACPILevel.EnabledForThrottle = 0;
1505 	table->MemoryACPILevel.EnabledForActivity = 0;
1506 	table->MemoryACPILevel.UpH = 0;
1507 	table->MemoryACPILevel.DownH = 100;
1508 	table->MemoryACPILevel.VoltageDownH = 0;
1509 	/* Indicates maximum activity level for this performance level.*/
1510 	table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1511 
1512 	table->MemoryACPILevel.StutterEnable = 0;
1513 	table->MemoryACPILevel.StrobeEnable = 0;
1514 	table->MemoryACPILevel.EdcReadEnable = 0;
1515 	table->MemoryACPILevel.EdcWriteEnable = 0;
1516 	table->MemoryACPILevel.RttEnable = 0;
1517 
1518 	return result;
1519 }
1520 
ci_populate_smc_uvd_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1521 static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1522 					SMU7_Discrete_DpmTable *table)
1523 {
1524 	int result = 0;
1525 	uint8_t count;
1526 	struct pp_atomctrl_clock_dividers_vi dividers;
1527 	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
1528 		hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
1529 
1530 	table->UvdLevelCount = (uint8_t)(uvd_table->count);
1531 
1532 	for (count = 0; count < table->UvdLevelCount; count++) {
1533 		table->UvdLevel[count].VclkFrequency =
1534 					uvd_table->entries[count].vclk;
1535 		table->UvdLevel[count].DclkFrequency =
1536 					uvd_table->entries[count].dclk;
1537 		table->UvdLevel[count].MinVddc =
1538 					uvd_table->entries[count].v * VOLTAGE_SCALE;
1539 		table->UvdLevel[count].MinVddcPhases = 1;
1540 
1541 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1542 				table->UvdLevel[count].VclkFrequency, &dividers);
1543 		PP_ASSERT_WITH_CODE((0 == result),
1544 				"can not find divide id for Vclk clock", return result);
1545 
1546 		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1547 
1548 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1549 				table->UvdLevel[count].DclkFrequency, &dividers);
1550 		PP_ASSERT_WITH_CODE((0 == result),
1551 				"can not find divide id for Dclk clock", return result);
1552 
1553 		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1554 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1555 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1556 		CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
1557 	}
1558 
1559 	return result;
1560 }
1561 
ci_populate_smc_vce_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1562 static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1563 		SMU7_Discrete_DpmTable *table)
1564 {
1565 	int result = -EINVAL;
1566 	uint8_t count;
1567 	struct pp_atomctrl_clock_dividers_vi dividers;
1568 	struct phm_vce_clock_voltage_dependency_table *vce_table =
1569 				hwmgr->dyn_state.vce_clock_voltage_dependency_table;
1570 
1571 	table->VceLevelCount = (uint8_t)(vce_table->count);
1572 	table->VceBootLevel = 0;
1573 
1574 	for (count = 0; count < table->VceLevelCount; count++) {
1575 		table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
1576 		table->VceLevel[count].MinVoltage =
1577 				vce_table->entries[count].v * VOLTAGE_SCALE;
1578 		table->VceLevel[count].MinPhases = 1;
1579 
1580 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1581 				table->VceLevel[count].Frequency, &dividers);
1582 		PP_ASSERT_WITH_CODE((0 == result),
1583 				"can not find divide id for VCE engine clock",
1584 				return result);
1585 
1586 		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1587 
1588 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1589 		CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
1590 	}
1591 	return result;
1592 }
1593 
ci_populate_smc_acp_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1594 static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1595 					SMU7_Discrete_DpmTable *table)
1596 {
1597 	int result = -EINVAL;
1598 	uint8_t count;
1599 	struct pp_atomctrl_clock_dividers_vi dividers;
1600 	struct phm_acp_clock_voltage_dependency_table *acp_table =
1601 				hwmgr->dyn_state.acp_clock_voltage_dependency_table;
1602 
1603 	table->AcpLevelCount = (uint8_t)(acp_table->count);
1604 	table->AcpBootLevel = 0;
1605 
1606 	for (count = 0; count < table->AcpLevelCount; count++) {
1607 		table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
1608 		table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
1609 		table->AcpLevel[count].MinPhases = 1;
1610 
1611 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1612 				table->AcpLevel[count].Frequency, &dividers);
1613 		PP_ASSERT_WITH_CODE((0 == result),
1614 				"can not find divide id for engine clock", return result);
1615 
1616 		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1617 
1618 		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1619 		CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
1620 	}
1621 	return result;
1622 }
1623 
ci_populate_memory_timing_parameters(struct pp_hwmgr * hwmgr,uint32_t engine_clock,uint32_t memory_clock,struct SMU7_Discrete_MCArbDramTimingTableEntry * arb_regs)1624 static int ci_populate_memory_timing_parameters(
1625 		struct pp_hwmgr *hwmgr,
1626 		uint32_t engine_clock,
1627 		uint32_t memory_clock,
1628 		struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
1629 		)
1630 {
1631 	uint32_t dramTiming;
1632 	uint32_t dramTiming2;
1633 	uint32_t burstTime;
1634 	int result;
1635 
1636 	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1637 				engine_clock, memory_clock);
1638 
1639 	PP_ASSERT_WITH_CODE(result == 0,
1640 		"Error calling VBIOS to set DRAM_TIMING.", return result);
1641 
1642 	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1643 	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1644 	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1645 
1646 	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1647 	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1648 	arb_regs->McArbBurstTime = (uint8_t)burstTime;
1649 
1650 	return 0;
1651 }
1652 
ci_program_memory_timing_parameters(struct pp_hwmgr * hwmgr)1653 static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1654 {
1655 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1656 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1657 	int result = 0;
1658 	SMU7_Discrete_MCArbDramTimingTable  arb_regs;
1659 	uint32_t i, j;
1660 
1661 	memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));
1662 
1663 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1664 		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1665 			result = ci_populate_memory_timing_parameters
1666 				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1667 				 data->dpm_table.mclk_table.dpm_levels[j].value,
1668 				 &arb_regs.entries[i][j]);
1669 
1670 			if (0 != result)
1671 				break;
1672 		}
1673 	}
1674 
1675 	if (0 == result) {
1676 		result = ci_copy_bytes_to_smc(
1677 				hwmgr,
1678 				smu_data->arb_table_start,
1679 				(uint8_t *)&arb_regs,
1680 				sizeof(SMU7_Discrete_MCArbDramTimingTable),
1681 				SMC_RAM_END
1682 				);
1683 	}
1684 
1685 	return result;
1686 }
1687 
ci_populate_smc_boot_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1688 static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1689 			SMU7_Discrete_DpmTable *table)
1690 {
1691 	int result = 0;
1692 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1693 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1694 
1695 	table->GraphicsBootLevel = 0;
1696 	table->MemoryBootLevel = 0;
1697 
1698 	/* find boot level from dpm table*/
1699 	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1700 			data->vbios_boot_state.sclk_bootup_value,
1701 			(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1702 
1703 	if (0 != result) {
1704 		smu_data->smc_state_table.GraphicsBootLevel = 0;
1705 		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1706 		result = 0;
1707 	}
1708 
1709 	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1710 		data->vbios_boot_state.mclk_bootup_value,
1711 		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1712 
1713 	if (0 != result) {
1714 		smu_data->smc_state_table.MemoryBootLevel = 0;
1715 		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1716 		result = 0;
1717 	}
1718 
1719 	table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1720 	table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1721 	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1722 
1723 	return result;
1724 }
1725 
ci_populate_mc_reg_address(struct pp_hwmgr * hwmgr,SMU7_Discrete_MCRegisters * mc_reg_table)1726 static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1727 				 SMU7_Discrete_MCRegisters *mc_reg_table)
1728 {
1729 	const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;
1730 
1731 	uint32_t i, j;
1732 
1733 	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1734 		if (smu_data->mc_reg_table.validflag & 1<<j) {
1735 			PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1736 				"Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1737 			mc_reg_table->address[i].s0 =
1738 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1739 			mc_reg_table->address[i].s1 =
1740 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1741 			i++;
1742 		}
1743 	}
1744 
1745 	mc_reg_table->last = (uint8_t)i;
1746 
1747 	return 0;
1748 }
1749 
ci_convert_mc_registers(const struct ci_mc_reg_entry * entry,SMU7_Discrete_MCRegisterSet * data,uint32_t num_entries,uint32_t valid_flag)1750 static void ci_convert_mc_registers(
1751 	const struct ci_mc_reg_entry *entry,
1752 	SMU7_Discrete_MCRegisterSet *data,
1753 	uint32_t num_entries, uint32_t valid_flag)
1754 {
1755 	uint32_t i, j;
1756 
1757 	for (i = 0, j = 0; j < num_entries; j++) {
1758 		if (valid_flag & 1<<j) {
1759 			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1760 			i++;
1761 		}
1762 	}
1763 }
1764 
ci_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr * hwmgr,const uint32_t memory_clock,SMU7_Discrete_MCRegisterSet * mc_reg_table_data)1765 static int ci_convert_mc_reg_table_entry_to_smc(
1766 		struct pp_hwmgr *hwmgr,
1767 		const uint32_t memory_clock,
1768 		SMU7_Discrete_MCRegisterSet *mc_reg_table_data
1769 		)
1770 {
1771 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1772 	uint32_t i = 0;
1773 
1774 	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1775 		if (memory_clock <=
1776 			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1777 			break;
1778 		}
1779 	}
1780 
1781 	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1782 		--i;
1783 
1784 	ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1785 				mc_reg_table_data, smu_data->mc_reg_table.last,
1786 				smu_data->mc_reg_table.validflag);
1787 
1788 	return 0;
1789 }
1790 
ci_convert_mc_reg_table_to_smc(struct pp_hwmgr * hwmgr,SMU7_Discrete_MCRegisters * mc_regs)1791 static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1792 		SMU7_Discrete_MCRegisters *mc_regs)
1793 {
1794 	int result = 0;
1795 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1796 	int res;
1797 	uint32_t i;
1798 
1799 	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1800 		res = ci_convert_mc_reg_table_entry_to_smc(
1801 				hwmgr,
1802 				data->dpm_table.mclk_table.dpm_levels[i].value,
1803 				&mc_regs->data[i]
1804 				);
1805 
1806 		if (0 != res)
1807 			result = res;
1808 	}
1809 
1810 	return result;
1811 }
1812 
ci_update_and_upload_mc_reg_table(struct pp_hwmgr * hwmgr)1813 static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1814 {
1815 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1816 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1817 	uint32_t address;
1818 	int32_t result;
1819 
1820 	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1821 		return 0;
1822 
1823 
1824 	memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));
1825 
1826 	result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1827 
1828 	if (result != 0)
1829 		return result;
1830 
1831 	address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);
1832 
1833 	return  ci_copy_bytes_to_smc(hwmgr, address,
1834 				 (uint8_t *)&smu_data->mc_regs.data[0],
1835 				sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1836 				SMC_RAM_END);
1837 }
1838 
ci_populate_initial_mc_reg_table(struct pp_hwmgr * hwmgr)1839 static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1840 {
1841 	int result;
1842 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1843 
1844 	memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
1845 	result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1846 	PP_ASSERT_WITH_CODE(0 == result,
1847 		"Failed to initialize MCRegTable for the MC register addresses!", return result;);
1848 
1849 	result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1850 	PP_ASSERT_WITH_CODE(0 == result,
1851 		"Failed to initialize MCRegTable for driver state!", return result;);
1852 
1853 	return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
1854 			(uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
1855 }
1856 
ci_populate_smc_initial_state(struct pp_hwmgr * hwmgr)1857 static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1858 {
1859 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1860 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1861 	uint8_t count, level;
1862 
1863 	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1864 
1865 	for (level = 0; level < count; level++) {
1866 		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1867 			 >= data->vbios_boot_state.sclk_bootup_value) {
1868 			smu_data->smc_state_table.GraphicsBootLevel = level;
1869 			break;
1870 		}
1871 	}
1872 
1873 	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1874 
1875 	for (level = 0; level < count; level++) {
1876 		if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1877 			>= data->vbios_boot_state.mclk_bootup_value) {
1878 			smu_data->smc_state_table.MemoryBootLevel = level;
1879 			break;
1880 		}
1881 	}
1882 
1883 	return 0;
1884 }
1885 
ci_populate_smc_svi2_config(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1886 static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1887 					    SMU7_Discrete_DpmTable *table)
1888 {
1889 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1890 
1891 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1892 		table->SVI2Enable = 1;
1893 	else
1894 		table->SVI2Enable = 0;
1895 	return 0;
1896 }
1897 
ci_start_smc(struct pp_hwmgr * hwmgr)1898 static int ci_start_smc(struct pp_hwmgr *hwmgr)
1899 {
1900 	/* set smc instruct start point at 0x0 */
1901 	ci_program_jump_on_start(hwmgr);
1902 
1903 	/* enable smc clock */
1904 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
1905 
1906 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);
1907 
1908 	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
1909 				 INTERRUPTS_ENABLED, 1);
1910 
1911 	return 0;
1912 }
1913 
ci_populate_vr_config(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1914 static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1915 {
1916 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1917 	uint16_t config;
1918 
1919 	config = VR_SVI2_PLANE_1;
1920 	table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1921 
1922 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1923 		config = VR_SVI2_PLANE_2;
1924 		table->VRConfig |= config;
1925 	} else {
1926 		pr_info("VDDCshould be on SVI2 controller!");
1927 	}
1928 
1929 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1930 		config = VR_SVI2_PLANE_2;
1931 		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1932 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1933 		config = VR_SMIO_PATTERN_1;
1934 		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1935 	}
1936 
1937 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1938 		config = VR_SMIO_PATTERN_2;
1939 		table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1940 	}
1941 
1942 	return 0;
1943 }
1944 
ci_init_smc_table(struct pp_hwmgr * hwmgr)1945 static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
1946 {
1947 	int result;
1948 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1949 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1950 	SMU7_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1951 	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1952 	u32 i;
1953 
1954 	ci_initialize_power_tune_defaults(hwmgr);
1955 	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1956 
1957 	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1958 		ci_populate_smc_voltage_tables(hwmgr, table);
1959 
1960 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1961 			PHM_PlatformCaps_AutomaticDCTransition))
1962 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1963 
1964 
1965 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1966 			PHM_PlatformCaps_StepVddc))
1967 		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1968 
1969 	if (data->is_memory_gddr5)
1970 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1971 
1972 	if (data->ulv_supported) {
1973 		result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
1974 		PP_ASSERT_WITH_CODE(0 == result,
1975 			"Failed to initialize ULV state!", return result);
1976 
1977 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1978 			ixCG_ULV_PARAMETER, 0x40035);
1979 	}
1980 
1981 	result = ci_populate_all_graphic_levels(hwmgr);
1982 	PP_ASSERT_WITH_CODE(0 == result,
1983 		"Failed to initialize Graphics Level!", return result);
1984 
1985 	result = ci_populate_all_memory_levels(hwmgr);
1986 	PP_ASSERT_WITH_CODE(0 == result,
1987 		"Failed to initialize Memory Level!", return result);
1988 
1989 	result = ci_populate_smc_link_level(hwmgr, table);
1990 	PP_ASSERT_WITH_CODE(0 == result,
1991 		"Failed to initialize Link Level!", return result);
1992 
1993 	result = ci_populate_smc_acpi_level(hwmgr, table);
1994 	PP_ASSERT_WITH_CODE(0 == result,
1995 		"Failed to initialize ACPI Level!", return result);
1996 
1997 	result = ci_populate_smc_vce_level(hwmgr, table);
1998 	PP_ASSERT_WITH_CODE(0 == result,
1999 		"Failed to initialize VCE Level!", return result);
2000 
2001 	result = ci_populate_smc_acp_level(hwmgr, table);
2002 	PP_ASSERT_WITH_CODE(0 == result,
2003 		"Failed to initialize ACP Level!", return result);
2004 
2005 	/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2006 	/* need to populate the  ARB settings for the initial state. */
2007 	result = ci_program_memory_timing_parameters(hwmgr);
2008 	PP_ASSERT_WITH_CODE(0 == result,
2009 		"Failed to Write ARB settings for the initial state.", return result);
2010 
2011 	result = ci_populate_smc_uvd_level(hwmgr, table);
2012 	PP_ASSERT_WITH_CODE(0 == result,
2013 		"Failed to initialize UVD Level!", return result);
2014 
2015 	table->UvdBootLevel  = 0;
2016 	table->VceBootLevel  = 0;
2017 	table->AcpBootLevel  = 0;
2018 	table->SamuBootLevel  = 0;
2019 
2020 	table->GraphicsBootLevel = 0;
2021 	table->MemoryBootLevel = 0;
2022 
2023 	result = ci_populate_smc_boot_level(hwmgr, table);
2024 	PP_ASSERT_WITH_CODE(0 == result,
2025 		"Failed to initialize Boot Level!", return result);
2026 
2027 	result = ci_populate_smc_initial_state(hwmgr);
2028 	PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2029 
2030 	result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
2031 	PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2032 
2033 	table->UVDInterval = 1;
2034 	table->VCEInterval = 1;
2035 	table->ACPInterval = 1;
2036 	table->SAMUInterval = 1;
2037 	table->GraphicsVoltageChangeEnable  = 1;
2038 	table->GraphicsThermThrottleEnable  = 1;
2039 	table->GraphicsInterval = 1;
2040 	table->VoltageInterval  = 1;
2041 	table->ThermalInterval  = 1;
2042 
2043 	table->TemperatureLimitHigh =
2044 		(data->thermal_temp_setting.temperature_high *
2045 		 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2046 	table->TemperatureLimitLow =
2047 		(data->thermal_temp_setting.temperature_low *
2048 		SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2049 
2050 	table->MemoryVoltageChangeEnable  = 1;
2051 	table->MemoryInterval  = 1;
2052 	table->VoltageResponseTime  = 0;
2053 	table->VddcVddciDelta = 4000;
2054 	table->PhaseResponseTime  = 0;
2055 	table->MemoryThermThrottleEnable  = 1;
2056 
2057 	PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2058 			"There must be 1 or more PCIE levels defined in PPTable.",
2059 			return -EINVAL);
2060 
2061 	table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
2062 	table->PCIeGenInterval = 1;
2063 
2064 	result = ci_populate_vr_config(hwmgr, table);
2065 	PP_ASSERT_WITH_CODE(0 == result,
2066 			"Failed to populate VRConfig setting!", return result);
2067 	data->vr_config = table->VRConfig;
2068 
2069 	ci_populate_smc_svi2_config(hwmgr, table);
2070 
2071 	for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
2072 		CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);
2073 
2074 	table->ThermGpio  = 17;
2075 	table->SclkStepSize = 0x4000;
2076 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2077 		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2078 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2079 				PHM_PlatformCaps_RegulatorHot);
2080 	} else {
2081 		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2082 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2083 				PHM_PlatformCaps_RegulatorHot);
2084 	}
2085 
2086 	table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2087 
2088 	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2089 	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2090 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2091 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2092 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2093 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2094 	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2095 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2096 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2097 	table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
2098 	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2099 	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2100 
2101 	table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2102 	table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2103 	table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2104 
2105 	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2106 	result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
2107 					offsetof(SMU7_Discrete_DpmTable, SystemFlags),
2108 					(uint8_t *)&(table->SystemFlags),
2109 					sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
2110 					SMC_RAM_END);
2111 
2112 	PP_ASSERT_WITH_CODE(0 == result,
2113 		"Failed to upload dpm data to SMC memory!", return result;);
2114 
2115 	result = ci_populate_initial_mc_reg_table(hwmgr);
2116 	PP_ASSERT_WITH_CODE((0 == result),
2117 		"Failed to populate initialize MC Reg table!", return result);
2118 
2119 	result = ci_populate_pm_fuses(hwmgr);
2120 	PP_ASSERT_WITH_CODE(0 == result,
2121 			"Failed to  populate PM fuses to SMC memory!", return result);
2122 
2123 	ci_start_smc(hwmgr);
2124 
2125 	return 0;
2126 }
2127 
ci_thermal_setup_fan_table(struct pp_hwmgr * hwmgr)2128 static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2129 {
2130 	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2131 	SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2132 	uint32_t duty100;
2133 	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2134 	uint16_t fdo_min, slope1, slope2;
2135 	uint32_t reference_clock;
2136 	int res __unused;
2137 	uint64_t tmp64;
2138 
2139 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2140 		return 0;
2141 
2142 	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2143 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2144 			PHM_PlatformCaps_MicrocodeFanControl);
2145 		return 0;
2146 	}
2147 
2148 	if (0 == ci_data->fan_table_start) {
2149 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2150 		return 0;
2151 	}
2152 
2153 	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2154 
2155 	if (0 == duty100) {
2156 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2157 		return 0;
2158 	}
2159 
2160 	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2161 	do_div(tmp64, 10000);
2162 	fdo_min = (uint16_t)tmp64;
2163 
2164 	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2165 	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2166 
2167 	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2168 	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2169 
2170 	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2171 	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2172 
2173 	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2174 	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2175 	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2176 
2177 	fan_table.Slope1 = cpu_to_be16(slope1);
2178 	fan_table.Slope2 = cpu_to_be16(slope2);
2179 
2180 	fan_table.FdoMin = cpu_to_be16(fdo_min);
2181 
2182 	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2183 
2184 	fan_table.HystUp = cpu_to_be16(1);
2185 
2186 	fan_table.HystSlope = cpu_to_be16(1);
2187 
2188 	fan_table.TempRespLim = cpu_to_be16(5);
2189 
2190 	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2191 
2192 	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2193 
2194 	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2195 
2196 	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2197 
2198 	res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2199 
2200 	return 0;
2201 }
2202 
ci_program_mem_timing_parameters(struct pp_hwmgr * hwmgr)2203 static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2204 {
2205 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2206 
2207 	if (data->need_update_smu7_dpm_table &
2208 			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2209 		return ci_program_memory_timing_parameters(hwmgr);
2210 
2211 	return 0;
2212 }
2213 
ci_update_sclk_threshold(struct pp_hwmgr * hwmgr)2214 static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2215 {
2216 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2217 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2218 
2219 	int result = 0;
2220 	uint32_t low_sclk_interrupt_threshold = 0;
2221 
2222 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2223 			PHM_PlatformCaps_SclkThrottleLowNotification)
2224 		&& (data->low_sclk_interrupt_threshold != 0)) {
2225 		low_sclk_interrupt_threshold =
2226 				data->low_sclk_interrupt_threshold;
2227 
2228 		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2229 
2230 		result = ci_copy_bytes_to_smc(
2231 				hwmgr,
2232 				smu_data->dpm_table_start +
2233 				offsetof(SMU7_Discrete_DpmTable,
2234 					LowSclkInterruptT),
2235 				(uint8_t *)&low_sclk_interrupt_threshold,
2236 				sizeof(uint32_t),
2237 				SMC_RAM_END);
2238 	}
2239 
2240 	result = ci_update_and_upload_mc_reg_table(hwmgr);
2241 
2242 	PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2243 
2244 	result = ci_program_mem_timing_parameters(hwmgr);
2245 	PP_ASSERT_WITH_CODE((result == 0),
2246 			"Failed to program memory timing parameters!",
2247 			);
2248 
2249 	return result;
2250 }
2251 
ci_get_offsetof(uint32_t type,uint32_t member)2252 static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
2253 {
2254 	switch (type) {
2255 	case SMU_SoftRegisters:
2256 		switch (member) {
2257 		case HandshakeDisables:
2258 			return offsetof(SMU7_SoftRegisters, HandshakeDisables);
2259 		case VoltageChangeTimeout:
2260 			return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
2261 		case AverageGraphicsActivity:
2262 			return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
2263 		case AverageMemoryActivity:
2264 			return offsetof(SMU7_SoftRegisters, AverageMemoryA);
2265 		case PreVBlankGap:
2266 			return offsetof(SMU7_SoftRegisters, PreVBlankGap);
2267 		case VBlankTimeout:
2268 			return offsetof(SMU7_SoftRegisters, VBlankTimeout);
2269 		case DRAM_LOG_ADDR_H:
2270 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
2271 		case DRAM_LOG_ADDR_L:
2272 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
2273 		case DRAM_LOG_PHY_ADDR_H:
2274 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2275 		case DRAM_LOG_PHY_ADDR_L:
2276 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2277 		case DRAM_LOG_BUFF_SIZE:
2278 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2279 		}
2280 		break;
2281 	case SMU_Discrete_DpmTable:
2282 		switch (member) {
2283 		case LowSclkInterruptThreshold:
2284 			return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
2285 		}
2286 		break;
2287 	}
2288 	pr_debug("can't get the offset of type %x member %x\n", type, member);
2289 	return 0;
2290 }
2291 
ci_get_mac_definition(uint32_t value)2292 static uint32_t ci_get_mac_definition(uint32_t value)
2293 {
2294 	switch (value) {
2295 	case SMU_MAX_LEVELS_GRAPHICS:
2296 		return SMU7_MAX_LEVELS_GRAPHICS;
2297 	case SMU_MAX_LEVELS_MEMORY:
2298 		return SMU7_MAX_LEVELS_MEMORY;
2299 	case SMU_MAX_LEVELS_LINK:
2300 		return SMU7_MAX_LEVELS_LINK;
2301 	case SMU_MAX_ENTRIES_SMIO:
2302 		return SMU7_MAX_ENTRIES_SMIO;
2303 	case SMU_MAX_LEVELS_VDDC:
2304 		return SMU7_MAX_LEVELS_VDDC;
2305 	case SMU_MAX_LEVELS_VDDCI:
2306 		return SMU7_MAX_LEVELS_VDDCI;
2307 	case SMU_MAX_LEVELS_MVDD:
2308 		return SMU7_MAX_LEVELS_MVDD;
2309 	}
2310 
2311 	pr_debug("can't get the mac of %x\n", value);
2312 	return 0;
2313 }
2314 
ci_load_smc_ucode(struct pp_hwmgr * hwmgr)2315 static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
2316 {
2317 	uint32_t byte_count, start_addr;
2318 	uint8_t *src;
2319 	uint32_t data;
2320 
2321 	struct cgs_firmware_info info = {0};
2322 
2323 	cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);
2324 
2325 	hwmgr->is_kicker = info.is_kicker;
2326 	hwmgr->smu_version = info.version;
2327 	byte_count = info.image_size;
2328 	src = (uint8_t *)info.kptr;
2329 	start_addr = info.ucode_start_address;
2330 
2331 	if  (byte_count > SMC_RAM_END) {
2332 		pr_err("SMC address is beyond the SMC RAM area.\n");
2333 		return -EINVAL;
2334 	}
2335 
2336 	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
2337 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
2338 
2339 	for (; byte_count >= 4; byte_count -= 4) {
2340 		data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
2341 		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
2342 		src += 4;
2343 	}
2344 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
2345 
2346 	if (0 != byte_count) {
2347 		pr_err("SMC size must be divisible by 4\n");
2348 		return -EINVAL;
2349 	}
2350 
2351 	return 0;
2352 }
2353 
ci_upload_firmware(struct pp_hwmgr * hwmgr)2354 static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
2355 {
2356 	if (ci_is_smc_ram_running(hwmgr)) {
2357 		pr_info("smc is running, no need to load smc firmware\n");
2358 		return 0;
2359 	}
2360 	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
2361 			boot_seq_done, 1);
2362 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
2363 			pre_fetcher_en, 1);
2364 
2365 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
2366 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
2367 	return ci_load_smc_ucode(hwmgr);
2368 }
2369 
ci_process_firmware_header(struct pp_hwmgr * hwmgr)2370 static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
2371 {
2372 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2373 	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2374 
2375 	uint32_t tmp = 0;
2376 	int result;
2377 	bool error = false;
2378 
2379 	if (ci_upload_firmware(hwmgr))
2380 		return -EINVAL;
2381 
2382 	result = ci_read_smc_sram_dword(hwmgr,
2383 				SMU7_FIRMWARE_HEADER_LOCATION +
2384 				offsetof(SMU7_Firmware_Header, DpmTable),
2385 				&tmp, SMC_RAM_END);
2386 
2387 	if (0 == result)
2388 		ci_data->dpm_table_start = tmp;
2389 
2390 	error |= (0 != result);
2391 
2392 	result = ci_read_smc_sram_dword(hwmgr,
2393 				SMU7_FIRMWARE_HEADER_LOCATION +
2394 				offsetof(SMU7_Firmware_Header, SoftRegisters),
2395 				&tmp, SMC_RAM_END);
2396 
2397 	if (0 == result) {
2398 		data->soft_regs_start = tmp;
2399 		ci_data->soft_regs_start = tmp;
2400 	}
2401 
2402 	error |= (0 != result);
2403 
2404 	result = ci_read_smc_sram_dword(hwmgr,
2405 				SMU7_FIRMWARE_HEADER_LOCATION +
2406 				offsetof(SMU7_Firmware_Header, mcRegisterTable),
2407 				&tmp, SMC_RAM_END);
2408 
2409 	if (0 == result)
2410 		ci_data->mc_reg_table_start = tmp;
2411 
2412 	result = ci_read_smc_sram_dword(hwmgr,
2413 				SMU7_FIRMWARE_HEADER_LOCATION +
2414 				offsetof(SMU7_Firmware_Header, FanTable),
2415 				&tmp, SMC_RAM_END);
2416 
2417 	if (0 == result)
2418 		ci_data->fan_table_start = tmp;
2419 
2420 	error |= (0 != result);
2421 
2422 	result = ci_read_smc_sram_dword(hwmgr,
2423 				SMU7_FIRMWARE_HEADER_LOCATION +
2424 				offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
2425 				&tmp, SMC_RAM_END);
2426 
2427 	if (0 == result)
2428 		ci_data->arb_table_start = tmp;
2429 
2430 	error |= (0 != result);
2431 
2432 	result = ci_read_smc_sram_dword(hwmgr,
2433 				SMU7_FIRMWARE_HEADER_LOCATION +
2434 				offsetof(SMU7_Firmware_Header, Version),
2435 				&tmp, SMC_RAM_END);
2436 
2437 	if (0 == result)
2438 		hwmgr->microcode_version_info.SMC = tmp;
2439 
2440 	error |= (0 != result);
2441 
2442 	return error ? 1 : 0;
2443 }
2444 
ci_get_memory_modile_index(struct pp_hwmgr * hwmgr)2445 static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2446 {
2447 	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2448 }
2449 
ci_check_s0_mc_reg_index(uint16_t in_reg,uint16_t * out_reg)2450 static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2451 {
2452 	bool result = true;
2453 
2454 	switch (in_reg) {
2455 	case  mmMC_SEQ_RAS_TIMING:
2456 		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
2457 		break;
2458 
2459 	case  mmMC_SEQ_DLL_STBY:
2460 		*out_reg = mmMC_SEQ_DLL_STBY_LP;
2461 		break;
2462 
2463 	case  mmMC_SEQ_G5PDX_CMD0:
2464 		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2465 		break;
2466 
2467 	case  mmMC_SEQ_G5PDX_CMD1:
2468 		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2469 		break;
2470 
2471 	case  mmMC_SEQ_G5PDX_CTRL:
2472 		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2473 		break;
2474 
2475 	case mmMC_SEQ_CAS_TIMING:
2476 		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
2477 		break;
2478 
2479 	case mmMC_SEQ_MISC_TIMING:
2480 		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
2481 		break;
2482 
2483 	case mmMC_SEQ_MISC_TIMING2:
2484 		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2485 		break;
2486 
2487 	case mmMC_SEQ_PMG_DVS_CMD:
2488 		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2489 		break;
2490 
2491 	case mmMC_SEQ_PMG_DVS_CTL:
2492 		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2493 		break;
2494 
2495 	case mmMC_SEQ_RD_CTL_D0:
2496 		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2497 		break;
2498 
2499 	case mmMC_SEQ_RD_CTL_D1:
2500 		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2501 		break;
2502 
2503 	case mmMC_SEQ_WR_CTL_D0:
2504 		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2505 		break;
2506 
2507 	case mmMC_SEQ_WR_CTL_D1:
2508 		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2509 		break;
2510 
2511 	case mmMC_PMG_CMD_EMRS:
2512 		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2513 		break;
2514 
2515 	case mmMC_PMG_CMD_MRS:
2516 		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2517 		break;
2518 
2519 	case mmMC_PMG_CMD_MRS1:
2520 		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2521 		break;
2522 
2523 	case mmMC_SEQ_PMG_TIMING:
2524 		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
2525 		break;
2526 
2527 	case mmMC_PMG_CMD_MRS2:
2528 		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2529 		break;
2530 
2531 	case mmMC_SEQ_WR_CTL_2:
2532 		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
2533 		break;
2534 
2535 	default:
2536 		result = false;
2537 		break;
2538 	}
2539 
2540 	return result;
2541 }
2542 
ci_set_s0_mc_reg_index(struct ci_mc_reg_table * table)2543 static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
2544 {
2545 	uint32_t i;
2546 	uint16_t address;
2547 
2548 	for (i = 0; i < table->last; i++) {
2549 		table->mc_reg_address[i].s0 =
2550 			ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2551 			? address : table->mc_reg_address[i].s1;
2552 	}
2553 	return 0;
2554 }
2555 
ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table * table,struct ci_mc_reg_table * ni_table)2556 static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2557 					struct ci_mc_reg_table *ni_table)
2558 {
2559 	uint8_t i, j;
2560 
2561 	PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2562 		"Invalid VramInfo table.", return -EINVAL);
2563 	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2564 		"Invalid VramInfo table.", return -EINVAL);
2565 
2566 	for (i = 0; i < table->last; i++)
2567 		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2568 
2569 	ni_table->last = table->last;
2570 
2571 	for (i = 0; i < table->num_entries; i++) {
2572 		ni_table->mc_reg_table_entry[i].mclk_max =
2573 			table->mc_reg_table_entry[i].mclk_max;
2574 		for (j = 0; j < table->last; j++) {
2575 			ni_table->mc_reg_table_entry[i].mc_data[j] =
2576 				table->mc_reg_table_entry[i].mc_data[j];
2577 		}
2578 	}
2579 
2580 	ni_table->num_entries = table->num_entries;
2581 
2582 	return 0;
2583 }
2584 
ci_set_mc_special_registers(struct pp_hwmgr * hwmgr,struct ci_mc_reg_table * table)2585 static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2586 					struct ci_mc_reg_table *table)
2587 {
2588 	uint8_t i, j, k;
2589 	uint32_t temp_reg;
2590 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2591 
2592 	for (i = 0, j = table->last; i < table->last; i++) {
2593 		PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2594 			"Invalid VramInfo table.", return -EINVAL);
2595 
2596 		switch (table->mc_reg_address[i].s1) {
2597 
2598 		case mmMC_SEQ_MISC1:
2599 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2600 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2601 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2602 			for (k = 0; k < table->num_entries; k++) {
2603 				table->mc_reg_table_entry[k].mc_data[j] =
2604 					((temp_reg & 0xffff0000)) |
2605 					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2606 			}
2607 			j++;
2608 
2609 			PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2610 				"Invalid VramInfo table.", return -EINVAL);
2611 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2612 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2613 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2614 			for (k = 0; k < table->num_entries; k++) {
2615 				table->mc_reg_table_entry[k].mc_data[j] =
2616 					(temp_reg & 0xffff0000) |
2617 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2618 
2619 				if (!data->is_memory_gddr5)
2620 					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2621 			}
2622 			j++;
2623 
2624 			if (!data->is_memory_gddr5) {
2625 				PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2626 					"Invalid VramInfo table.", return -EINVAL);
2627 				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2628 				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2629 				for (k = 0; k < table->num_entries; k++) {
2630 					table->mc_reg_table_entry[k].mc_data[j] =
2631 						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2632 				}
2633 				j++;
2634 			}
2635 
2636 			break;
2637 
2638 		case mmMC_SEQ_RESERVE_M:
2639 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2640 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2641 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2642 			for (k = 0; k < table->num_entries; k++) {
2643 				table->mc_reg_table_entry[k].mc_data[j] =
2644 					(temp_reg & 0xffff0000) |
2645 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2646 			}
2647 			j++;
2648 			break;
2649 
2650 		default:
2651 			break;
2652 		}
2653 
2654 	}
2655 
2656 	table->last = j;
2657 
2658 	return 0;
2659 }
2660 
ci_set_valid_flag(struct ci_mc_reg_table * table)2661 static int ci_set_valid_flag(struct ci_mc_reg_table *table)
2662 {
2663 	uint8_t i, j;
2664 
2665 	for (i = 0; i < table->last; i++) {
2666 		for (j = 1; j < table->num_entries; j++) {
2667 			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2668 				table->mc_reg_table_entry[j].mc_data[i]) {
2669 				table->validflag |= (1 << i);
2670 				break;
2671 			}
2672 		}
2673 	}
2674 
2675 	return 0;
2676 }
2677 
ci_initialize_mc_reg_table(struct pp_hwmgr * hwmgr)2678 static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2679 {
2680 	int result;
2681 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2682 	pp_atomctrl_mc_reg_table *table;
2683 	struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2684 	uint8_t module_index = ci_get_memory_modile_index(hwmgr);
2685 
2686 	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2687 
2688 	if (NULL == table)
2689 		return -ENOMEM;
2690 
2691 	/* Program additional LP registers that are no longer programmed by VBIOS */
2692 	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2693 	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2694 	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2695 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2696 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2697 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2698 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2699 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2700 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2701 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2702 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2703 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2704 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2705 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2706 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2707 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2708 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2709 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2710 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2711 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2712 
2713 	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2714 
2715 	if (0 == result)
2716 		result = ci_copy_vbios_smc_reg_table(table, ni_table);
2717 
2718 	if (0 == result) {
2719 		ci_set_s0_mc_reg_index(ni_table);
2720 		result = ci_set_mc_special_registers(hwmgr, ni_table);
2721 	}
2722 
2723 	if (0 == result)
2724 		ci_set_valid_flag(ni_table);
2725 
2726 	kfree(table);
2727 
2728 	return result;
2729 }
2730 
ci_is_dpm_running(struct pp_hwmgr * hwmgr)2731 static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
2732 {
2733 	return ci_is_smc_ram_running(hwmgr);
2734 }
2735 
ci_smu_init(struct pp_hwmgr * hwmgr)2736 static int ci_smu_init(struct pp_hwmgr *hwmgr)
2737 {
2738 	struct ci_smumgr *ci_priv = NULL;
2739 
2740 	ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);
2741 
2742 	if (ci_priv == NULL)
2743 		return -ENOMEM;
2744 
2745 	hwmgr->smu_backend = ci_priv;
2746 
2747 	return 0;
2748 }
2749 
ci_smu_fini(struct pp_hwmgr * hwmgr)2750 static int ci_smu_fini(struct pp_hwmgr *hwmgr)
2751 {
2752 	kfree(hwmgr->smu_backend);
2753 	hwmgr->smu_backend = NULL;
2754 	return 0;
2755 }
2756 
ci_start_smu(struct pp_hwmgr * hwmgr)2757 static int ci_start_smu(struct pp_hwmgr *hwmgr)
2758 {
2759 	return 0;
2760 }
2761 
ci_update_dpm_settings(struct pp_hwmgr * hwmgr,void * profile_setting)2762 static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr,
2763 				void *profile_setting)
2764 {
2765 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2766 	struct ci_smumgr *smu_data = (struct ci_smumgr *)
2767 			(hwmgr->smu_backend);
2768 	struct profile_mode_setting *setting;
2769 	struct SMU7_Discrete_GraphicsLevel *levels =
2770 			smu_data->smc_state_table.GraphicsLevel;
2771 	uint32_t array = smu_data->dpm_table_start +
2772 			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
2773 
2774 	uint32_t mclk_array = smu_data->dpm_table_start +
2775 			offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
2776 	struct SMU7_Discrete_MemoryLevel *mclk_levels =
2777 			smu_data->smc_state_table.MemoryLevel;
2778 	uint32_t i;
2779 	uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2780 
2781 	if (profile_setting == NULL)
2782 		return -EINVAL;
2783 
2784 	setting = (struct profile_mode_setting *)profile_setting;
2785 
2786 	if (setting->bupdate_sclk) {
2787 		if (!data->sclk_dpm_key_disabled)
2788 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel);
2789 		for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2790 			if (levels[i].ActivityLevel !=
2791 				cpu_to_be16(setting->sclk_activity)) {
2792 				levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2793 
2794 				clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2795 						+ offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel);
2796 				offset = clk_activity_offset & ~0x3;
2797 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2798 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2799 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2800 
2801 			}
2802 			if (levels[i].UpH != setting->sclk_up_hyst ||
2803 				levels[i].DownH != setting->sclk_down_hyst) {
2804 				levels[i].UpH = setting->sclk_up_hyst;
2805 				levels[i].DownH = setting->sclk_down_hyst;
2806 				up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2807 						+ offsetof(SMU7_Discrete_GraphicsLevel, UpH);
2808 				down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2809 						+ offsetof(SMU7_Discrete_GraphicsLevel, DownH);
2810 				offset = up_hyst_offset & ~0x3;
2811 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2812 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t));
2813 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t));
2814 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2815 			}
2816 		}
2817 		if (!data->sclk_dpm_key_disabled)
2818 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
2819 	}
2820 
2821 	if (setting->bupdate_mclk) {
2822 		if (!data->mclk_dpm_key_disabled)
2823 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel);
2824 		for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2825 			if (mclk_levels[i].ActivityLevel !=
2826 				cpu_to_be16(setting->mclk_activity)) {
2827 				mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2828 
2829 				clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2830 						+ offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel);
2831 				offset = clk_activity_offset & ~0x3;
2832 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2833 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2834 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2835 
2836 			}
2837 			if (mclk_levels[i].UpH != setting->mclk_up_hyst ||
2838 				mclk_levels[i].DownH != setting->mclk_down_hyst) {
2839 				mclk_levels[i].UpH = setting->mclk_up_hyst;
2840 				mclk_levels[i].DownH = setting->mclk_down_hyst;
2841 				up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2842 						+ offsetof(SMU7_Discrete_MemoryLevel, UpH);
2843 				down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2844 						+ offsetof(SMU7_Discrete_MemoryLevel, DownH);
2845 				offset = up_hyst_offset & ~0x3;
2846 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2847 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t));
2848 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t));
2849 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2850 			}
2851 		}
2852 		if (!data->mclk_dpm_key_disabled)
2853 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
2854 	}
2855 	return 0;
2856 }
2857 
ci_update_uvd_smc_table(struct pp_hwmgr * hwmgr)2858 static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2859 {
2860 	struct amdgpu_device *adev = hwmgr->adev;
2861 	struct smu7_hwmgr *data = hwmgr->backend;
2862 	struct ci_smumgr *smu_data = hwmgr->smu_backend;
2863 	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
2864 			hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
2865 	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2866 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2867 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2868 					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2869 	uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2870 						hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2871 	int32_t i;
2872 
2873 	if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0)
2874 		smu_data->smc_state_table.UvdBootLevel = 0;
2875 	else
2876 		smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1;
2877 
2878 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2879 				UvdBootLevel, smu_data->smc_state_table.UvdBootLevel);
2880 
2881 	data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
2882 
2883 	for (i = uvd_table->count - 1; i >= 0; i--) {
2884 		if (uvd_table->entries[i].v <= max_vddc)
2885 			data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
2886 		if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM))
2887 			break;
2888 	}
2889 	ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask,
2890 				data->dpm_level_enable_mask.uvd_dpm_enable_mask);
2891 
2892 	return 0;
2893 }
2894 
ci_update_vce_smc_table(struct pp_hwmgr * hwmgr)2895 static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2896 {
2897 	struct amdgpu_device *adev = hwmgr->adev;
2898 	struct smu7_hwmgr *data = hwmgr->backend;
2899 	struct phm_vce_clock_voltage_dependency_table *vce_table =
2900 			hwmgr->dyn_state.vce_clock_voltage_dependency_table;
2901 	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2902 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2903 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2904 					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2905 	uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2906 						hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2907 	int32_t i;
2908 
2909 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2910 				VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/
2911 
2912 	data->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
2913 
2914 	for (i = vce_table->count - 1; i >= 0; i--) {
2915 		if (vce_table->entries[i].v <= max_vddc)
2916 			data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
2917 		if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM))
2918 			break;
2919 	}
2920 	ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask,
2921 				data->dpm_level_enable_mask.vce_dpm_enable_mask);
2922 
2923 	return 0;
2924 }
2925 
ci_update_smc_table(struct pp_hwmgr * hwmgr,uint32_t type)2926 static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2927 {
2928 	switch (type) {
2929 	case SMU_UVD_TABLE:
2930 		ci_update_uvd_smc_table(hwmgr);
2931 		break;
2932 	case SMU_VCE_TABLE:
2933 		ci_update_vce_smc_table(hwmgr);
2934 		break;
2935 	default:
2936 		break;
2937 	}
2938 	return 0;
2939 }
2940 
2941 const struct pp_smumgr_func ci_smu_funcs = {
2942 	.name = "ci_smu",
2943 	.smu_init = ci_smu_init,
2944 	.smu_fini = ci_smu_fini,
2945 	.start_smu = ci_start_smu,
2946 	.check_fw_load_finish = NULL,
2947 	.request_smu_load_fw = NULL,
2948 	.request_smu_load_specific_fw = NULL,
2949 	.send_msg_to_smc = ci_send_msg_to_smc,
2950 	.send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
2951 	.download_pptable_settings = NULL,
2952 	.upload_pptable_settings = NULL,
2953 	.get_offsetof = ci_get_offsetof,
2954 	.process_firmware_header = ci_process_firmware_header,
2955 	.init_smc_table = ci_init_smc_table,
2956 	.update_sclk_threshold = ci_update_sclk_threshold,
2957 	.thermal_setup_fan_table = ci_thermal_setup_fan_table,
2958 	.populate_all_graphic_levels = ci_populate_all_graphic_levels,
2959 	.populate_all_memory_levels = ci_populate_all_memory_levels,
2960 	.get_mac_definition = ci_get_mac_definition,
2961 	.initialize_mc_reg_table = ci_initialize_mc_reg_table,
2962 	.is_dpm_running = ci_is_dpm_running,
2963 	.update_dpm_settings = ci_update_dpm_settings,
2964 	.update_smc_table = ci_update_smc_table,
2965 };
2966